]>
Commit | Line | Data |
---|---|---|
b20a3503 CL |
1 | /* |
2 | * Memory Migration functionality - linux/mm/migration.c | |
3 | * | |
4 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | |
5 | * | |
6 | * Page migration was first developed in the context of the memory hotplug | |
7 | * project. The main authors of the migration code are: | |
8 | * | |
9 | * IWAMOTO Toshihiro <[email protected]> | |
10 | * Hirokazu Takahashi <[email protected]> | |
11 | * Dave Hansen <[email protected]> | |
cde53535 | 12 | * Christoph Lameter |
b20a3503 CL |
13 | */ |
14 | ||
15 | #include <linux/migrate.h> | |
b95f1b31 | 16 | #include <linux/export.h> |
b20a3503 | 17 | #include <linux/swap.h> |
0697212a | 18 | #include <linux/swapops.h> |
b20a3503 | 19 | #include <linux/pagemap.h> |
e23ca00b | 20 | #include <linux/buffer_head.h> |
b20a3503 | 21 | #include <linux/mm_inline.h> |
b488893a | 22 | #include <linux/nsproxy.h> |
b20a3503 | 23 | #include <linux/pagevec.h> |
e9995ef9 | 24 | #include <linux/ksm.h> |
b20a3503 CL |
25 | #include <linux/rmap.h> |
26 | #include <linux/topology.h> | |
27 | #include <linux/cpu.h> | |
28 | #include <linux/cpuset.h> | |
04e62a29 | 29 | #include <linux/writeback.h> |
742755a1 CL |
30 | #include <linux/mempolicy.h> |
31 | #include <linux/vmalloc.h> | |
86c3a764 | 32 | #include <linux/security.h> |
8a9f3ccd | 33 | #include <linux/memcontrol.h> |
4f5ca265 | 34 | #include <linux/syscalls.h> |
290408d4 | 35 | #include <linux/hugetlb.h> |
8e6ac7fa | 36 | #include <linux/hugetlb_cgroup.h> |
5a0e3ad6 | 37 | #include <linux/gfp.h> |
b20a3503 | 38 | |
0d1836c3 MN |
39 | #include <asm/tlbflush.h> |
40 | ||
b20a3503 CL |
41 | #include "internal.h" |
42 | ||
b20a3503 | 43 | /* |
742755a1 | 44 | * migrate_prep() needs to be called before we start compiling a list of pages |
748446bb MG |
45 | * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is |
46 | * undesirable, use migrate_prep_local() | |
b20a3503 CL |
47 | */ |
48 | int migrate_prep(void) | |
49 | { | |
b20a3503 CL |
50 | /* |
51 | * Clear the LRU lists so pages can be isolated. | |
52 | * Note that pages may be moved off the LRU after we have | |
53 | * drained them. Those pages will fail to migrate like other | |
54 | * pages that may be busy. | |
55 | */ | |
56 | lru_add_drain_all(); | |
57 | ||
58 | return 0; | |
59 | } | |
60 | ||
748446bb MG |
61 | /* Do the necessary work of migrate_prep but not if it involves other CPUs */ |
62 | int migrate_prep_local(void) | |
63 | { | |
64 | lru_add_drain(); | |
65 | ||
66 | return 0; | |
67 | } | |
68 | ||
b20a3503 | 69 | /* |
894bc310 LS |
70 | * Add isolated pages on the list back to the LRU under page lock |
71 | * to avoid leaking evictable pages back onto unevictable list. | |
b20a3503 | 72 | */ |
e13861d8 | 73 | void putback_lru_pages(struct list_head *l) |
b20a3503 CL |
74 | { |
75 | struct page *page; | |
76 | struct page *page2; | |
b20a3503 CL |
77 | |
78 | list_for_each_entry_safe(page, page2, l, lru) { | |
e24f0b8f | 79 | list_del(&page->lru); |
a731286d | 80 | dec_zone_page_state(page, NR_ISOLATED_ANON + |
6c0b1351 | 81 | page_is_file_cache(page)); |
894bc310 | 82 | putback_lru_page(page); |
b20a3503 | 83 | } |
b20a3503 CL |
84 | } |
85 | ||
0697212a CL |
86 | /* |
87 | * Restore a potential migration pte to a working pte entry | |
88 | */ | |
e9995ef9 HD |
89 | static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, |
90 | unsigned long addr, void *old) | |
0697212a CL |
91 | { |
92 | struct mm_struct *mm = vma->vm_mm; | |
93 | swp_entry_t entry; | |
94 | pgd_t *pgd; | |
95 | pud_t *pud; | |
96 | pmd_t *pmd; | |
97 | pte_t *ptep, pte; | |
98 | spinlock_t *ptl; | |
99 | ||
290408d4 NH |
100 | if (unlikely(PageHuge(new))) { |
101 | ptep = huge_pte_offset(mm, addr); | |
102 | if (!ptep) | |
103 | goto out; | |
104 | ptl = &mm->page_table_lock; | |
105 | } else { | |
106 | pgd = pgd_offset(mm, addr); | |
107 | if (!pgd_present(*pgd)) | |
108 | goto out; | |
0697212a | 109 | |
290408d4 NH |
110 | pud = pud_offset(pgd, addr); |
111 | if (!pud_present(*pud)) | |
112 | goto out; | |
0697212a | 113 | |
290408d4 | 114 | pmd = pmd_offset(pud, addr); |
500d65d4 AA |
115 | if (pmd_trans_huge(*pmd)) |
116 | goto out; | |
290408d4 NH |
117 | if (!pmd_present(*pmd)) |
118 | goto out; | |
0697212a | 119 | |
290408d4 | 120 | ptep = pte_offset_map(pmd, addr); |
0697212a | 121 | |
486cf46f HD |
122 | /* |
123 | * Peek to check is_swap_pte() before taking ptlock? No, we | |
124 | * can race mremap's move_ptes(), which skips anon_vma lock. | |
125 | */ | |
290408d4 NH |
126 | |
127 | ptl = pte_lockptr(mm, pmd); | |
128 | } | |
0697212a | 129 | |
0697212a CL |
130 | spin_lock(ptl); |
131 | pte = *ptep; | |
132 | if (!is_swap_pte(pte)) | |
e9995ef9 | 133 | goto unlock; |
0697212a CL |
134 | |
135 | entry = pte_to_swp_entry(pte); | |
136 | ||
e9995ef9 HD |
137 | if (!is_migration_entry(entry) || |
138 | migration_entry_to_page(entry) != old) | |
139 | goto unlock; | |
0697212a | 140 | |
0697212a CL |
141 | get_page(new); |
142 | pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); | |
143 | if (is_write_migration_entry(entry)) | |
144 | pte = pte_mkwrite(pte); | |
3ef8fd7f | 145 | #ifdef CONFIG_HUGETLB_PAGE |
290408d4 NH |
146 | if (PageHuge(new)) |
147 | pte = pte_mkhuge(pte); | |
3ef8fd7f | 148 | #endif |
97ee0524 | 149 | flush_cache_page(vma, addr, pte_pfn(pte)); |
0697212a | 150 | set_pte_at(mm, addr, ptep, pte); |
04e62a29 | 151 | |
290408d4 NH |
152 | if (PageHuge(new)) { |
153 | if (PageAnon(new)) | |
154 | hugepage_add_anon_rmap(new, vma, addr); | |
155 | else | |
156 | page_dup_rmap(new); | |
157 | } else if (PageAnon(new)) | |
04e62a29 CL |
158 | page_add_anon_rmap(new, vma, addr); |
159 | else | |
160 | page_add_file_rmap(new); | |
161 | ||
162 | /* No need to invalidate - it was non-present before */ | |
4b3073e1 | 163 | update_mmu_cache(vma, addr, ptep); |
e9995ef9 | 164 | unlock: |
0697212a | 165 | pte_unmap_unlock(ptep, ptl); |
e9995ef9 HD |
166 | out: |
167 | return SWAP_AGAIN; | |
0697212a CL |
168 | } |
169 | ||
04e62a29 CL |
170 | /* |
171 | * Get rid of all migration entries and replace them by | |
172 | * references to the indicated page. | |
173 | */ | |
174 | static void remove_migration_ptes(struct page *old, struct page *new) | |
175 | { | |
e9995ef9 | 176 | rmap_walk(new, remove_migration_pte, old); |
04e62a29 CL |
177 | } |
178 | ||
0697212a CL |
179 | /* |
180 | * Something used the pte of a page under migration. We need to | |
181 | * get to the page and wait until migration is finished. | |
182 | * When we return from this function the fault will be retried. | |
0697212a CL |
183 | */ |
184 | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | |
185 | unsigned long address) | |
186 | { | |
187 | pte_t *ptep, pte; | |
188 | spinlock_t *ptl; | |
189 | swp_entry_t entry; | |
190 | struct page *page; | |
191 | ||
192 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
193 | pte = *ptep; | |
194 | if (!is_swap_pte(pte)) | |
195 | goto out; | |
196 | ||
197 | entry = pte_to_swp_entry(pte); | |
198 | if (!is_migration_entry(entry)) | |
199 | goto out; | |
200 | ||
201 | page = migration_entry_to_page(entry); | |
202 | ||
e286781d NP |
203 | /* |
204 | * Once radix-tree replacement of page migration started, page_count | |
205 | * *must* be zero. And, we don't want to call wait_on_page_locked() | |
206 | * against a page without get_page(). | |
207 | * So, we use get_page_unless_zero(), here. Even failed, page fault | |
208 | * will occur again. | |
209 | */ | |
210 | if (!get_page_unless_zero(page)) | |
211 | goto out; | |
0697212a CL |
212 | pte_unmap_unlock(ptep, ptl); |
213 | wait_on_page_locked(page); | |
214 | put_page(page); | |
215 | return; | |
216 | out: | |
217 | pte_unmap_unlock(ptep, ptl); | |
218 | } | |
219 | ||
b969c4ab MG |
220 | #ifdef CONFIG_BLOCK |
221 | /* Returns true if all buffers are successfully locked */ | |
a6bc32b8 MG |
222 | static bool buffer_migrate_lock_buffers(struct buffer_head *head, |
223 | enum migrate_mode mode) | |
b969c4ab MG |
224 | { |
225 | struct buffer_head *bh = head; | |
226 | ||
227 | /* Simple case, sync compaction */ | |
a6bc32b8 | 228 | if (mode != MIGRATE_ASYNC) { |
b969c4ab MG |
229 | do { |
230 | get_bh(bh); | |
231 | lock_buffer(bh); | |
232 | bh = bh->b_this_page; | |
233 | ||
234 | } while (bh != head); | |
235 | ||
236 | return true; | |
237 | } | |
238 | ||
239 | /* async case, we cannot block on lock_buffer so use trylock_buffer */ | |
240 | do { | |
241 | get_bh(bh); | |
242 | if (!trylock_buffer(bh)) { | |
243 | /* | |
244 | * We failed to lock the buffer and cannot stall in | |
245 | * async migration. Release the taken locks | |
246 | */ | |
247 | struct buffer_head *failed_bh = bh; | |
248 | put_bh(failed_bh); | |
249 | bh = head; | |
250 | while (bh != failed_bh) { | |
251 | unlock_buffer(bh); | |
252 | put_bh(bh); | |
253 | bh = bh->b_this_page; | |
254 | } | |
255 | return false; | |
256 | } | |
257 | ||
258 | bh = bh->b_this_page; | |
259 | } while (bh != head); | |
260 | return true; | |
261 | } | |
262 | #else | |
263 | static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, | |
a6bc32b8 | 264 | enum migrate_mode mode) |
b969c4ab MG |
265 | { |
266 | return true; | |
267 | } | |
268 | #endif /* CONFIG_BLOCK */ | |
269 | ||
b20a3503 | 270 | /* |
c3fcf8a5 | 271 | * Replace the page in the mapping. |
5b5c7120 CL |
272 | * |
273 | * The number of remaining references must be: | |
274 | * 1 for anonymous pages without a mapping | |
275 | * 2 for pages with a mapping | |
266cf658 | 276 | * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. |
b20a3503 | 277 | */ |
2d1db3b1 | 278 | static int migrate_page_move_mapping(struct address_space *mapping, |
b969c4ab | 279 | struct page *newpage, struct page *page, |
a6bc32b8 | 280 | struct buffer_head *head, enum migrate_mode mode) |
b20a3503 | 281 | { |
e286781d | 282 | int expected_count; |
7cf9c2c7 | 283 | void **pslot; |
b20a3503 | 284 | |
6c5240ae | 285 | if (!mapping) { |
0e8c7d0f | 286 | /* Anonymous page without mapping */ |
6c5240ae CL |
287 | if (page_count(page) != 1) |
288 | return -EAGAIN; | |
289 | return 0; | |
290 | } | |
291 | ||
19fd6231 | 292 | spin_lock_irq(&mapping->tree_lock); |
b20a3503 | 293 | |
7cf9c2c7 NP |
294 | pslot = radix_tree_lookup_slot(&mapping->page_tree, |
295 | page_index(page)); | |
b20a3503 | 296 | |
edcf4748 | 297 | expected_count = 2 + page_has_private(page); |
e286781d | 298 | if (page_count(page) != expected_count || |
29c1f677 | 299 | radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { |
19fd6231 | 300 | spin_unlock_irq(&mapping->tree_lock); |
e23ca00b | 301 | return -EAGAIN; |
b20a3503 CL |
302 | } |
303 | ||
e286781d | 304 | if (!page_freeze_refs(page, expected_count)) { |
19fd6231 | 305 | spin_unlock_irq(&mapping->tree_lock); |
e286781d NP |
306 | return -EAGAIN; |
307 | } | |
308 | ||
b969c4ab MG |
309 | /* |
310 | * In the async migration case of moving a page with buffers, lock the | |
311 | * buffers using trylock before the mapping is moved. If the mapping | |
312 | * was moved, we later failed to lock the buffers and could not move | |
313 | * the mapping back due to an elevated page count, we would have to | |
314 | * block waiting on other references to be dropped. | |
315 | */ | |
a6bc32b8 MG |
316 | if (mode == MIGRATE_ASYNC && head && |
317 | !buffer_migrate_lock_buffers(head, mode)) { | |
b969c4ab MG |
318 | page_unfreeze_refs(page, expected_count); |
319 | spin_unlock_irq(&mapping->tree_lock); | |
320 | return -EAGAIN; | |
321 | } | |
322 | ||
b20a3503 CL |
323 | /* |
324 | * Now we know that no one else is looking at the page. | |
b20a3503 | 325 | */ |
7cf9c2c7 | 326 | get_page(newpage); /* add cache reference */ |
b20a3503 CL |
327 | if (PageSwapCache(page)) { |
328 | SetPageSwapCache(newpage); | |
329 | set_page_private(newpage, page_private(page)); | |
330 | } | |
331 | ||
7cf9c2c7 NP |
332 | radix_tree_replace_slot(pslot, newpage); |
333 | ||
334 | /* | |
937a94c9 JG |
335 | * Drop cache reference from old page by unfreezing |
336 | * to one less reference. | |
7cf9c2c7 NP |
337 | * We know this isn't the last reference. |
338 | */ | |
937a94c9 | 339 | page_unfreeze_refs(page, expected_count - 1); |
7cf9c2c7 | 340 | |
0e8c7d0f CL |
341 | /* |
342 | * If moved to a different zone then also account | |
343 | * the page for that zone. Other VM counters will be | |
344 | * taken care of when we establish references to the | |
345 | * new page and drop references to the old page. | |
346 | * | |
347 | * Note that anonymous pages are accounted for | |
348 | * via NR_FILE_PAGES and NR_ANON_PAGES if they | |
349 | * are mapped to swap space. | |
350 | */ | |
351 | __dec_zone_page_state(page, NR_FILE_PAGES); | |
352 | __inc_zone_page_state(newpage, NR_FILE_PAGES); | |
99a15e21 | 353 | if (!PageSwapCache(page) && PageSwapBacked(page)) { |
4b02108a KM |
354 | __dec_zone_page_state(page, NR_SHMEM); |
355 | __inc_zone_page_state(newpage, NR_SHMEM); | |
356 | } | |
19fd6231 | 357 | spin_unlock_irq(&mapping->tree_lock); |
b20a3503 CL |
358 | |
359 | return 0; | |
360 | } | |
b20a3503 | 361 | |
290408d4 NH |
362 | /* |
363 | * The expected number of remaining references is the same as that | |
364 | * of migrate_page_move_mapping(). | |
365 | */ | |
366 | int migrate_huge_page_move_mapping(struct address_space *mapping, | |
367 | struct page *newpage, struct page *page) | |
368 | { | |
369 | int expected_count; | |
370 | void **pslot; | |
371 | ||
372 | if (!mapping) { | |
373 | if (page_count(page) != 1) | |
374 | return -EAGAIN; | |
375 | return 0; | |
376 | } | |
377 | ||
378 | spin_lock_irq(&mapping->tree_lock); | |
379 | ||
380 | pslot = radix_tree_lookup_slot(&mapping->page_tree, | |
381 | page_index(page)); | |
382 | ||
383 | expected_count = 2 + page_has_private(page); | |
384 | if (page_count(page) != expected_count || | |
29c1f677 | 385 | radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { |
290408d4 NH |
386 | spin_unlock_irq(&mapping->tree_lock); |
387 | return -EAGAIN; | |
388 | } | |
389 | ||
390 | if (!page_freeze_refs(page, expected_count)) { | |
391 | spin_unlock_irq(&mapping->tree_lock); | |
392 | return -EAGAIN; | |
393 | } | |
394 | ||
395 | get_page(newpage); | |
396 | ||
397 | radix_tree_replace_slot(pslot, newpage); | |
398 | ||
937a94c9 | 399 | page_unfreeze_refs(page, expected_count - 1); |
290408d4 NH |
400 | |
401 | spin_unlock_irq(&mapping->tree_lock); | |
402 | return 0; | |
403 | } | |
404 | ||
b20a3503 CL |
405 | /* |
406 | * Copy the page to its new location | |
407 | */ | |
290408d4 | 408 | void migrate_page_copy(struct page *newpage, struct page *page) |
b20a3503 | 409 | { |
290408d4 NH |
410 | if (PageHuge(page)) |
411 | copy_huge_page(newpage, page); | |
412 | else | |
413 | copy_highpage(newpage, page); | |
b20a3503 CL |
414 | |
415 | if (PageError(page)) | |
416 | SetPageError(newpage); | |
417 | if (PageReferenced(page)) | |
418 | SetPageReferenced(newpage); | |
419 | if (PageUptodate(page)) | |
420 | SetPageUptodate(newpage); | |
894bc310 LS |
421 | if (TestClearPageActive(page)) { |
422 | VM_BUG_ON(PageUnevictable(page)); | |
b20a3503 | 423 | SetPageActive(newpage); |
418b27ef LS |
424 | } else if (TestClearPageUnevictable(page)) |
425 | SetPageUnevictable(newpage); | |
b20a3503 CL |
426 | if (PageChecked(page)) |
427 | SetPageChecked(newpage); | |
428 | if (PageMappedToDisk(page)) | |
429 | SetPageMappedToDisk(newpage); | |
430 | ||
431 | if (PageDirty(page)) { | |
432 | clear_page_dirty_for_io(page); | |
3a902c5f NP |
433 | /* |
434 | * Want to mark the page and the radix tree as dirty, and | |
435 | * redo the accounting that clear_page_dirty_for_io undid, | |
436 | * but we can't use set_page_dirty because that function | |
437 | * is actually a signal that all of the page has become dirty. | |
25985edc | 438 | * Whereas only part of our page may be dirty. |
3a902c5f | 439 | */ |
752dc185 HD |
440 | if (PageSwapBacked(page)) |
441 | SetPageDirty(newpage); | |
442 | else | |
443 | __set_page_dirty_nobuffers(newpage); | |
b20a3503 CL |
444 | } |
445 | ||
b291f000 | 446 | mlock_migrate_page(newpage, page); |
e9995ef9 | 447 | ksm_migrate_page(newpage, page); |
b291f000 | 448 | |
b20a3503 | 449 | ClearPageSwapCache(page); |
b20a3503 CL |
450 | ClearPagePrivate(page); |
451 | set_page_private(page, 0); | |
b20a3503 CL |
452 | |
453 | /* | |
454 | * If any waiters have accumulated on the new page then | |
455 | * wake them up. | |
456 | */ | |
457 | if (PageWriteback(newpage)) | |
458 | end_page_writeback(newpage); | |
459 | } | |
b20a3503 | 460 | |
1d8b85cc CL |
461 | /************************************************************ |
462 | * Migration functions | |
463 | ***********************************************************/ | |
464 | ||
465 | /* Always fail migration. Used for mappings that are not movable */ | |
2d1db3b1 CL |
466 | int fail_migrate_page(struct address_space *mapping, |
467 | struct page *newpage, struct page *page) | |
1d8b85cc CL |
468 | { |
469 | return -EIO; | |
470 | } | |
471 | EXPORT_SYMBOL(fail_migrate_page); | |
472 | ||
b20a3503 CL |
473 | /* |
474 | * Common logic to directly migrate a single page suitable for | |
266cf658 | 475 | * pages that do not use PagePrivate/PagePrivate2. |
b20a3503 CL |
476 | * |
477 | * Pages are locked upon entry and exit. | |
478 | */ | |
2d1db3b1 | 479 | int migrate_page(struct address_space *mapping, |
a6bc32b8 MG |
480 | struct page *newpage, struct page *page, |
481 | enum migrate_mode mode) | |
b20a3503 CL |
482 | { |
483 | int rc; | |
484 | ||
485 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | |
486 | ||
a6bc32b8 | 487 | rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode); |
b20a3503 CL |
488 | |
489 | if (rc) | |
490 | return rc; | |
491 | ||
492 | migrate_page_copy(newpage, page); | |
b20a3503 CL |
493 | return 0; |
494 | } | |
495 | EXPORT_SYMBOL(migrate_page); | |
496 | ||
9361401e | 497 | #ifdef CONFIG_BLOCK |
1d8b85cc CL |
498 | /* |
499 | * Migration function for pages with buffers. This function can only be used | |
500 | * if the underlying filesystem guarantees that no other references to "page" | |
501 | * exist. | |
502 | */ | |
2d1db3b1 | 503 | int buffer_migrate_page(struct address_space *mapping, |
a6bc32b8 | 504 | struct page *newpage, struct page *page, enum migrate_mode mode) |
1d8b85cc | 505 | { |
1d8b85cc CL |
506 | struct buffer_head *bh, *head; |
507 | int rc; | |
508 | ||
1d8b85cc | 509 | if (!page_has_buffers(page)) |
a6bc32b8 | 510 | return migrate_page(mapping, newpage, page, mode); |
1d8b85cc CL |
511 | |
512 | head = page_buffers(page); | |
513 | ||
a6bc32b8 | 514 | rc = migrate_page_move_mapping(mapping, newpage, page, head, mode); |
1d8b85cc CL |
515 | |
516 | if (rc) | |
517 | return rc; | |
518 | ||
b969c4ab MG |
519 | /* |
520 | * In the async case, migrate_page_move_mapping locked the buffers | |
521 | * with an IRQ-safe spinlock held. In the sync case, the buffers | |
522 | * need to be locked now | |
523 | */ | |
a6bc32b8 MG |
524 | if (mode != MIGRATE_ASYNC) |
525 | BUG_ON(!buffer_migrate_lock_buffers(head, mode)); | |
1d8b85cc CL |
526 | |
527 | ClearPagePrivate(page); | |
528 | set_page_private(newpage, page_private(page)); | |
529 | set_page_private(page, 0); | |
530 | put_page(page); | |
531 | get_page(newpage); | |
532 | ||
533 | bh = head; | |
534 | do { | |
535 | set_bh_page(bh, newpage, bh_offset(bh)); | |
536 | bh = bh->b_this_page; | |
537 | ||
538 | } while (bh != head); | |
539 | ||
540 | SetPagePrivate(newpage); | |
541 | ||
542 | migrate_page_copy(newpage, page); | |
543 | ||
544 | bh = head; | |
545 | do { | |
546 | unlock_buffer(bh); | |
547 | put_bh(bh); | |
548 | bh = bh->b_this_page; | |
549 | ||
550 | } while (bh != head); | |
551 | ||
552 | return 0; | |
553 | } | |
554 | EXPORT_SYMBOL(buffer_migrate_page); | |
9361401e | 555 | #endif |
1d8b85cc | 556 | |
04e62a29 CL |
557 | /* |
558 | * Writeback a page to clean the dirty state | |
559 | */ | |
560 | static int writeout(struct address_space *mapping, struct page *page) | |
8351a6e4 | 561 | { |
04e62a29 CL |
562 | struct writeback_control wbc = { |
563 | .sync_mode = WB_SYNC_NONE, | |
564 | .nr_to_write = 1, | |
565 | .range_start = 0, | |
566 | .range_end = LLONG_MAX, | |
04e62a29 CL |
567 | .for_reclaim = 1 |
568 | }; | |
569 | int rc; | |
570 | ||
571 | if (!mapping->a_ops->writepage) | |
572 | /* No write method for the address space */ | |
573 | return -EINVAL; | |
574 | ||
575 | if (!clear_page_dirty_for_io(page)) | |
576 | /* Someone else already triggered a write */ | |
577 | return -EAGAIN; | |
578 | ||
8351a6e4 | 579 | /* |
04e62a29 CL |
580 | * A dirty page may imply that the underlying filesystem has |
581 | * the page on some queue. So the page must be clean for | |
582 | * migration. Writeout may mean we loose the lock and the | |
583 | * page state is no longer what we checked for earlier. | |
584 | * At this point we know that the migration attempt cannot | |
585 | * be successful. | |
8351a6e4 | 586 | */ |
04e62a29 | 587 | remove_migration_ptes(page, page); |
8351a6e4 | 588 | |
04e62a29 | 589 | rc = mapping->a_ops->writepage(page, &wbc); |
8351a6e4 | 590 | |
04e62a29 CL |
591 | if (rc != AOP_WRITEPAGE_ACTIVATE) |
592 | /* unlocked. Relock */ | |
593 | lock_page(page); | |
594 | ||
bda8550d | 595 | return (rc < 0) ? -EIO : -EAGAIN; |
04e62a29 CL |
596 | } |
597 | ||
598 | /* | |
599 | * Default handling if a filesystem does not provide a migration function. | |
600 | */ | |
601 | static int fallback_migrate_page(struct address_space *mapping, | |
a6bc32b8 | 602 | struct page *newpage, struct page *page, enum migrate_mode mode) |
04e62a29 | 603 | { |
b969c4ab | 604 | if (PageDirty(page)) { |
a6bc32b8 MG |
605 | /* Only writeback pages in full synchronous migration */ |
606 | if (mode != MIGRATE_SYNC) | |
b969c4ab | 607 | return -EBUSY; |
04e62a29 | 608 | return writeout(mapping, page); |
b969c4ab | 609 | } |
8351a6e4 CL |
610 | |
611 | /* | |
612 | * Buffers may be managed in a filesystem specific way. | |
613 | * We must have no buffers or drop them. | |
614 | */ | |
266cf658 | 615 | if (page_has_private(page) && |
8351a6e4 CL |
616 | !try_to_release_page(page, GFP_KERNEL)) |
617 | return -EAGAIN; | |
618 | ||
a6bc32b8 | 619 | return migrate_page(mapping, newpage, page, mode); |
8351a6e4 CL |
620 | } |
621 | ||
e24f0b8f CL |
622 | /* |
623 | * Move a page to a newly allocated page | |
624 | * The page is locked and all ptes have been successfully removed. | |
625 | * | |
626 | * The new page will have replaced the old page if this function | |
627 | * is successful. | |
894bc310 LS |
628 | * |
629 | * Return value: | |
630 | * < 0 - error code | |
631 | * == 0 - success | |
e24f0b8f | 632 | */ |
3fe2011f | 633 | static int move_to_new_page(struct page *newpage, struct page *page, |
a6bc32b8 | 634 | int remap_swapcache, enum migrate_mode mode) |
e24f0b8f CL |
635 | { |
636 | struct address_space *mapping; | |
637 | int rc; | |
638 | ||
639 | /* | |
640 | * Block others from accessing the page when we get around to | |
641 | * establishing additional references. We are the only one | |
642 | * holding a reference to the new page at this point. | |
643 | */ | |
529ae9aa | 644 | if (!trylock_page(newpage)) |
e24f0b8f CL |
645 | BUG(); |
646 | ||
647 | /* Prepare mapping for the new page.*/ | |
648 | newpage->index = page->index; | |
649 | newpage->mapping = page->mapping; | |
b2e18538 RR |
650 | if (PageSwapBacked(page)) |
651 | SetPageSwapBacked(newpage); | |
e24f0b8f CL |
652 | |
653 | mapping = page_mapping(page); | |
654 | if (!mapping) | |
a6bc32b8 | 655 | rc = migrate_page(mapping, newpage, page, mode); |
b969c4ab | 656 | else if (mapping->a_ops->migratepage) |
e24f0b8f | 657 | /* |
b969c4ab MG |
658 | * Most pages have a mapping and most filesystems provide a |
659 | * migratepage callback. Anonymous pages are part of swap | |
660 | * space which also has its own migratepage callback. This | |
661 | * is the most common path for page migration. | |
e24f0b8f | 662 | */ |
b969c4ab | 663 | rc = mapping->a_ops->migratepage(mapping, |
a6bc32b8 | 664 | newpage, page, mode); |
b969c4ab | 665 | else |
a6bc32b8 | 666 | rc = fallback_migrate_page(mapping, newpage, page, mode); |
e24f0b8f | 667 | |
3fe2011f | 668 | if (rc) { |
e24f0b8f | 669 | newpage->mapping = NULL; |
3fe2011f MG |
670 | } else { |
671 | if (remap_swapcache) | |
672 | remove_migration_ptes(page, newpage); | |
35512eca | 673 | page->mapping = NULL; |
3fe2011f | 674 | } |
e24f0b8f CL |
675 | |
676 | unlock_page(newpage); | |
677 | ||
678 | return rc; | |
679 | } | |
680 | ||
0dabec93 | 681 | static int __unmap_and_move(struct page *page, struct page *newpage, |
a6bc32b8 | 682 | int force, bool offlining, enum migrate_mode mode) |
e24f0b8f | 683 | { |
0dabec93 | 684 | int rc = -EAGAIN; |
3fe2011f | 685 | int remap_swapcache = 1; |
ae41be37 | 686 | int charge = 0; |
56039efa | 687 | struct mem_cgroup *mem; |
3f6c8272 | 688 | struct anon_vma *anon_vma = NULL; |
95a402c3 | 689 | |
529ae9aa | 690 | if (!trylock_page(page)) { |
a6bc32b8 | 691 | if (!force || mode == MIGRATE_ASYNC) |
0dabec93 | 692 | goto out; |
3e7d3449 MG |
693 | |
694 | /* | |
695 | * It's not safe for direct compaction to call lock_page. | |
696 | * For example, during page readahead pages are added locked | |
697 | * to the LRU. Later, when the IO completes the pages are | |
698 | * marked uptodate and unlocked. However, the queueing | |
699 | * could be merging multiple pages for one bio (e.g. | |
700 | * mpage_readpages). If an allocation happens for the | |
701 | * second or third page, the process can end up locking | |
702 | * the same page twice and deadlocking. Rather than | |
703 | * trying to be clever about what pages can be locked, | |
704 | * avoid the use of lock_page for direct compaction | |
705 | * altogether. | |
706 | */ | |
707 | if (current->flags & PF_MEMALLOC) | |
0dabec93 | 708 | goto out; |
3e7d3449 | 709 | |
e24f0b8f CL |
710 | lock_page(page); |
711 | } | |
712 | ||
62b61f61 HD |
713 | /* |
714 | * Only memory hotplug's offline_pages() caller has locked out KSM, | |
715 | * and can safely migrate a KSM page. The other cases have skipped | |
716 | * PageKsm along with PageReserved - but it is only now when we have | |
717 | * the page lock that we can be certain it will not go KSM beneath us | |
718 | * (KSM will not upgrade a page from PageAnon to PageKsm when it sees | |
719 | * its pagecount raised, but only here do we take the page lock which | |
720 | * serializes that). | |
721 | */ | |
722 | if (PageKsm(page) && !offlining) { | |
723 | rc = -EBUSY; | |
724 | goto unlock; | |
725 | } | |
726 | ||
01b1ae63 | 727 | /* charge against new page */ |
ef6a3c63 | 728 | charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL); |
01b1ae63 KH |
729 | if (charge == -ENOMEM) { |
730 | rc = -ENOMEM; | |
731 | goto unlock; | |
732 | } | |
733 | BUG_ON(charge); | |
734 | ||
e24f0b8f | 735 | if (PageWriteback(page)) { |
11bc82d6 | 736 | /* |
a6bc32b8 MG |
737 | * Only in the case of a full syncronous migration is it |
738 | * necessary to wait for PageWriteback. In the async case, | |
739 | * the retry loop is too short and in the sync-light case, | |
740 | * the overhead of stalling is too much | |
11bc82d6 | 741 | */ |
a6bc32b8 | 742 | if (mode != MIGRATE_SYNC) { |
11bc82d6 AA |
743 | rc = -EBUSY; |
744 | goto uncharge; | |
745 | } | |
746 | if (!force) | |
01b1ae63 | 747 | goto uncharge; |
e24f0b8f CL |
748 | wait_on_page_writeback(page); |
749 | } | |
e24f0b8f | 750 | /* |
dc386d4d KH |
751 | * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, |
752 | * we cannot notice that anon_vma is freed while we migrates a page. | |
1ce82b69 | 753 | * This get_anon_vma() delays freeing anon_vma pointer until the end |
dc386d4d | 754 | * of migration. File cache pages are no problem because of page_lock() |
989f89c5 KH |
755 | * File Caches may use write_page() or lock_page() in migration, then, |
756 | * just care Anon page here. | |
dc386d4d | 757 | */ |
989f89c5 | 758 | if (PageAnon(page)) { |
1ce82b69 HD |
759 | /* |
760 | * Only page_lock_anon_vma() understands the subtleties of | |
761 | * getting a hold on an anon_vma from outside one of its mms. | |
762 | */ | |
746b18d4 | 763 | anon_vma = page_get_anon_vma(page); |
1ce82b69 HD |
764 | if (anon_vma) { |
765 | /* | |
746b18d4 | 766 | * Anon page |
1ce82b69 | 767 | */ |
1ce82b69 | 768 | } else if (PageSwapCache(page)) { |
3fe2011f MG |
769 | /* |
770 | * We cannot be sure that the anon_vma of an unmapped | |
771 | * swapcache page is safe to use because we don't | |
772 | * know in advance if the VMA that this page belonged | |
773 | * to still exists. If the VMA and others sharing the | |
774 | * data have been freed, then the anon_vma could | |
775 | * already be invalid. | |
776 | * | |
777 | * To avoid this possibility, swapcache pages get | |
778 | * migrated but are not remapped when migration | |
779 | * completes | |
780 | */ | |
781 | remap_swapcache = 0; | |
782 | } else { | |
1ce82b69 | 783 | goto uncharge; |
3fe2011f | 784 | } |
989f89c5 | 785 | } |
62e1c553 | 786 | |
dc386d4d | 787 | /* |
62e1c553 SL |
788 | * Corner case handling: |
789 | * 1. When a new swap-cache page is read into, it is added to the LRU | |
790 | * and treated as swapcache but it has no rmap yet. | |
791 | * Calling try_to_unmap() against a page->mapping==NULL page will | |
792 | * trigger a BUG. So handle it here. | |
793 | * 2. An orphaned page (see truncate_complete_page) might have | |
794 | * fs-private metadata. The page can be picked up due to memory | |
795 | * offlining. Everywhere else except page reclaim, the page is | |
796 | * invisible to the vm, so the page can not be migrated. So try to | |
797 | * free the metadata, so the page can be freed. | |
e24f0b8f | 798 | */ |
62e1c553 | 799 | if (!page->mapping) { |
1ce82b69 HD |
800 | VM_BUG_ON(PageAnon(page)); |
801 | if (page_has_private(page)) { | |
62e1c553 | 802 | try_to_free_buffers(page); |
1ce82b69 | 803 | goto uncharge; |
62e1c553 | 804 | } |
abfc3488 | 805 | goto skip_unmap; |
62e1c553 SL |
806 | } |
807 | ||
dc386d4d | 808 | /* Establish migration ptes or remove ptes */ |
14fa31b8 | 809 | try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); |
dc386d4d | 810 | |
abfc3488 | 811 | skip_unmap: |
e6a1530d | 812 | if (!page_mapped(page)) |
a6bc32b8 | 813 | rc = move_to_new_page(newpage, page, remap_swapcache, mode); |
e24f0b8f | 814 | |
3fe2011f | 815 | if (rc && remap_swapcache) |
e24f0b8f | 816 | remove_migration_ptes(page, page); |
3f6c8272 MG |
817 | |
818 | /* Drop an anon_vma reference if we took one */ | |
76545066 | 819 | if (anon_vma) |
9e60109f | 820 | put_anon_vma(anon_vma); |
3f6c8272 | 821 | |
01b1ae63 KH |
822 | uncharge: |
823 | if (!charge) | |
50de1dd9 | 824 | mem_cgroup_end_migration(mem, page, newpage, rc == 0); |
e24f0b8f CL |
825 | unlock: |
826 | unlock_page(page); | |
0dabec93 MK |
827 | out: |
828 | return rc; | |
829 | } | |
95a402c3 | 830 | |
0dabec93 MK |
831 | /* |
832 | * Obtain the lock on page, remove all ptes and migrate the page | |
833 | * to the newly allocated page in newpage. | |
834 | */ | |
835 | static int unmap_and_move(new_page_t get_new_page, unsigned long private, | |
a6bc32b8 MG |
836 | struct page *page, int force, bool offlining, |
837 | enum migrate_mode mode) | |
0dabec93 MK |
838 | { |
839 | int rc = 0; | |
840 | int *result = NULL; | |
841 | struct page *newpage = get_new_page(page, private, &result); | |
842 | ||
843 | if (!newpage) | |
844 | return -ENOMEM; | |
845 | ||
846 | if (page_count(page) == 1) { | |
847 | /* page was freed from under us. So we are done. */ | |
848 | goto out; | |
849 | } | |
850 | ||
851 | if (unlikely(PageTransHuge(page))) | |
852 | if (unlikely(split_huge_page(page))) | |
853 | goto out; | |
854 | ||
a6bc32b8 | 855 | rc = __unmap_and_move(page, newpage, force, offlining, mode); |
0dabec93 | 856 | out: |
e24f0b8f | 857 | if (rc != -EAGAIN) { |
0dabec93 MK |
858 | /* |
859 | * A page that has been migrated has all references | |
860 | * removed and will be freed. A page that has not been | |
861 | * migrated will have kepts its references and be | |
862 | * restored. | |
863 | */ | |
864 | list_del(&page->lru); | |
a731286d | 865 | dec_zone_page_state(page, NR_ISOLATED_ANON + |
6c0b1351 | 866 | page_is_file_cache(page)); |
894bc310 | 867 | putback_lru_page(page); |
e24f0b8f | 868 | } |
95a402c3 CL |
869 | /* |
870 | * Move the new page to the LRU. If migration was not successful | |
871 | * then this will free the page. | |
872 | */ | |
894bc310 | 873 | putback_lru_page(newpage); |
742755a1 CL |
874 | if (result) { |
875 | if (rc) | |
876 | *result = rc; | |
877 | else | |
878 | *result = page_to_nid(newpage); | |
879 | } | |
e24f0b8f CL |
880 | return rc; |
881 | } | |
882 | ||
290408d4 NH |
883 | /* |
884 | * Counterpart of unmap_and_move_page() for hugepage migration. | |
885 | * | |
886 | * This function doesn't wait the completion of hugepage I/O | |
887 | * because there is no race between I/O and migration for hugepage. | |
888 | * Note that currently hugepage I/O occurs only in direct I/O | |
889 | * where no lock is held and PG_writeback is irrelevant, | |
890 | * and writeback status of all subpages are counted in the reference | |
891 | * count of the head page (i.e. if all subpages of a 2MB hugepage are | |
892 | * under direct I/O, the reference of the head page is 512 and a bit more.) | |
893 | * This means that when we try to migrate hugepage whose subpages are | |
894 | * doing direct I/O, some references remain after try_to_unmap() and | |
895 | * hugepage migration fails without data corruption. | |
896 | * | |
897 | * There is also no race when direct I/O is issued on the page under migration, | |
898 | * because then pte is replaced with migration swap entry and direct I/O code | |
899 | * will wait in the page fault for migration to complete. | |
900 | */ | |
901 | static int unmap_and_move_huge_page(new_page_t get_new_page, | |
902 | unsigned long private, struct page *hpage, | |
a6bc32b8 MG |
903 | int force, bool offlining, |
904 | enum migrate_mode mode) | |
290408d4 NH |
905 | { |
906 | int rc = 0; | |
907 | int *result = NULL; | |
908 | struct page *new_hpage = get_new_page(hpage, private, &result); | |
290408d4 NH |
909 | struct anon_vma *anon_vma = NULL; |
910 | ||
911 | if (!new_hpage) | |
912 | return -ENOMEM; | |
913 | ||
914 | rc = -EAGAIN; | |
915 | ||
916 | if (!trylock_page(hpage)) { | |
a6bc32b8 | 917 | if (!force || mode != MIGRATE_SYNC) |
290408d4 NH |
918 | goto out; |
919 | lock_page(hpage); | |
920 | } | |
921 | ||
746b18d4 PZ |
922 | if (PageAnon(hpage)) |
923 | anon_vma = page_get_anon_vma(hpage); | |
290408d4 NH |
924 | |
925 | try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); | |
926 | ||
927 | if (!page_mapped(hpage)) | |
a6bc32b8 | 928 | rc = move_to_new_page(new_hpage, hpage, 1, mode); |
290408d4 NH |
929 | |
930 | if (rc) | |
931 | remove_migration_ptes(hpage, hpage); | |
932 | ||
fd4a4663 | 933 | if (anon_vma) |
9e60109f | 934 | put_anon_vma(anon_vma); |
8e6ac7fa AK |
935 | |
936 | if (!rc) | |
937 | hugetlb_cgroup_migrate(hpage, new_hpage); | |
938 | ||
290408d4 | 939 | unlock_page(hpage); |
09761333 | 940 | out: |
290408d4 | 941 | put_page(new_hpage); |
290408d4 NH |
942 | if (result) { |
943 | if (rc) | |
944 | *result = rc; | |
945 | else | |
946 | *result = page_to_nid(new_hpage); | |
947 | } | |
948 | return rc; | |
949 | } | |
950 | ||
b20a3503 CL |
951 | /* |
952 | * migrate_pages | |
953 | * | |
95a402c3 CL |
954 | * The function takes one list of pages to migrate and a function |
955 | * that determines from the page to be migrated and the private data | |
956 | * the target of the move and allocates the page. | |
b20a3503 CL |
957 | * |
958 | * The function returns after 10 attempts or if no pages | |
959 | * are movable anymore because to has become empty | |
cf608ac1 MK |
960 | * or no retryable pages exist anymore. |
961 | * Caller should call putback_lru_pages to return pages to the LRU | |
28bd6578 | 962 | * or free list only if ret != 0. |
b20a3503 | 963 | * |
95a402c3 | 964 | * Return: Number of pages not migrated or error code. |
b20a3503 | 965 | */ |
95a402c3 | 966 | int migrate_pages(struct list_head *from, |
7f0f2496 | 967 | new_page_t get_new_page, unsigned long private, bool offlining, |
a6bc32b8 | 968 | enum migrate_mode mode) |
b20a3503 | 969 | { |
e24f0b8f | 970 | int retry = 1; |
b20a3503 CL |
971 | int nr_failed = 0; |
972 | int pass = 0; | |
973 | struct page *page; | |
974 | struct page *page2; | |
975 | int swapwrite = current->flags & PF_SWAPWRITE; | |
976 | int rc; | |
977 | ||
978 | if (!swapwrite) | |
979 | current->flags |= PF_SWAPWRITE; | |
980 | ||
e24f0b8f CL |
981 | for(pass = 0; pass < 10 && retry; pass++) { |
982 | retry = 0; | |
b20a3503 | 983 | |
e24f0b8f | 984 | list_for_each_entry_safe(page, page2, from, lru) { |
e24f0b8f | 985 | cond_resched(); |
2d1db3b1 | 986 | |
95a402c3 | 987 | rc = unmap_and_move(get_new_page, private, |
77f1fe6b | 988 | page, pass > 2, offlining, |
a6bc32b8 | 989 | mode); |
2d1db3b1 | 990 | |
e24f0b8f | 991 | switch(rc) { |
95a402c3 CL |
992 | case -ENOMEM: |
993 | goto out; | |
e24f0b8f | 994 | case -EAGAIN: |
2d1db3b1 | 995 | retry++; |
e24f0b8f CL |
996 | break; |
997 | case 0: | |
e24f0b8f CL |
998 | break; |
999 | default: | |
2d1db3b1 | 1000 | /* Permanent failure */ |
2d1db3b1 | 1001 | nr_failed++; |
e24f0b8f | 1002 | break; |
2d1db3b1 | 1003 | } |
b20a3503 CL |
1004 | } |
1005 | } | |
95a402c3 CL |
1006 | rc = 0; |
1007 | out: | |
b20a3503 CL |
1008 | if (!swapwrite) |
1009 | current->flags &= ~PF_SWAPWRITE; | |
1010 | ||
95a402c3 CL |
1011 | if (rc) |
1012 | return rc; | |
b20a3503 | 1013 | |
95a402c3 | 1014 | return nr_failed + retry; |
b20a3503 | 1015 | } |
95a402c3 | 1016 | |
189ebff2 AK |
1017 | int migrate_huge_page(struct page *hpage, new_page_t get_new_page, |
1018 | unsigned long private, bool offlining, | |
1019 | enum migrate_mode mode) | |
290408d4 | 1020 | { |
189ebff2 AK |
1021 | int pass, rc; |
1022 | ||
1023 | for (pass = 0; pass < 10; pass++) { | |
1024 | rc = unmap_and_move_huge_page(get_new_page, | |
1025 | private, hpage, pass > 2, offlining, | |
1026 | mode); | |
1027 | switch (rc) { | |
1028 | case -ENOMEM: | |
1029 | goto out; | |
1030 | case -EAGAIN: | |
1031 | /* try again */ | |
290408d4 | 1032 | cond_resched(); |
189ebff2 AK |
1033 | break; |
1034 | case 0: | |
1035 | goto out; | |
1036 | default: | |
1037 | rc = -EIO; | |
1038 | goto out; | |
290408d4 NH |
1039 | } |
1040 | } | |
290408d4 | 1041 | out: |
189ebff2 | 1042 | return rc; |
290408d4 NH |
1043 | } |
1044 | ||
742755a1 CL |
1045 | #ifdef CONFIG_NUMA |
1046 | /* | |
1047 | * Move a list of individual pages | |
1048 | */ | |
1049 | struct page_to_node { | |
1050 | unsigned long addr; | |
1051 | struct page *page; | |
1052 | int node; | |
1053 | int status; | |
1054 | }; | |
1055 | ||
1056 | static struct page *new_page_node(struct page *p, unsigned long private, | |
1057 | int **result) | |
1058 | { | |
1059 | struct page_to_node *pm = (struct page_to_node *)private; | |
1060 | ||
1061 | while (pm->node != MAX_NUMNODES && pm->page != p) | |
1062 | pm++; | |
1063 | ||
1064 | if (pm->node == MAX_NUMNODES) | |
1065 | return NULL; | |
1066 | ||
1067 | *result = &pm->status; | |
1068 | ||
6484eb3e | 1069 | return alloc_pages_exact_node(pm->node, |
769848c0 | 1070 | GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); |
742755a1 CL |
1071 | } |
1072 | ||
1073 | /* | |
1074 | * Move a set of pages as indicated in the pm array. The addr | |
1075 | * field must be set to the virtual address of the page to be moved | |
1076 | * and the node number must contain a valid target node. | |
5e9a0f02 | 1077 | * The pm array ends with node = MAX_NUMNODES. |
742755a1 | 1078 | */ |
5e9a0f02 BG |
1079 | static int do_move_page_to_node_array(struct mm_struct *mm, |
1080 | struct page_to_node *pm, | |
1081 | int migrate_all) | |
742755a1 CL |
1082 | { |
1083 | int err; | |
1084 | struct page_to_node *pp; | |
1085 | LIST_HEAD(pagelist); | |
1086 | ||
1087 | down_read(&mm->mmap_sem); | |
1088 | ||
1089 | /* | |
1090 | * Build a list of pages to migrate | |
1091 | */ | |
742755a1 CL |
1092 | for (pp = pm; pp->node != MAX_NUMNODES; pp++) { |
1093 | struct vm_area_struct *vma; | |
1094 | struct page *page; | |
1095 | ||
742755a1 CL |
1096 | err = -EFAULT; |
1097 | vma = find_vma(mm, pp->addr); | |
70384dc6 | 1098 | if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) |
742755a1 CL |
1099 | goto set_status; |
1100 | ||
500d65d4 | 1101 | page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); |
89f5b7da LT |
1102 | |
1103 | err = PTR_ERR(page); | |
1104 | if (IS_ERR(page)) | |
1105 | goto set_status; | |
1106 | ||
742755a1 CL |
1107 | err = -ENOENT; |
1108 | if (!page) | |
1109 | goto set_status; | |
1110 | ||
62b61f61 HD |
1111 | /* Use PageReserved to check for zero page */ |
1112 | if (PageReserved(page) || PageKsm(page)) | |
742755a1 CL |
1113 | goto put_and_set; |
1114 | ||
1115 | pp->page = page; | |
1116 | err = page_to_nid(page); | |
1117 | ||
1118 | if (err == pp->node) | |
1119 | /* | |
1120 | * Node already in the right place | |
1121 | */ | |
1122 | goto put_and_set; | |
1123 | ||
1124 | err = -EACCES; | |
1125 | if (page_mapcount(page) > 1 && | |
1126 | !migrate_all) | |
1127 | goto put_and_set; | |
1128 | ||
62695a84 | 1129 | err = isolate_lru_page(page); |
6d9c285a | 1130 | if (!err) { |
62695a84 | 1131 | list_add_tail(&page->lru, &pagelist); |
6d9c285a KM |
1132 | inc_zone_page_state(page, NR_ISOLATED_ANON + |
1133 | page_is_file_cache(page)); | |
1134 | } | |
742755a1 CL |
1135 | put_and_set: |
1136 | /* | |
1137 | * Either remove the duplicate refcount from | |
1138 | * isolate_lru_page() or drop the page ref if it was | |
1139 | * not isolated. | |
1140 | */ | |
1141 | put_page(page); | |
1142 | set_status: | |
1143 | pp->status = err; | |
1144 | } | |
1145 | ||
e78bbfa8 | 1146 | err = 0; |
cf608ac1 | 1147 | if (!list_empty(&pagelist)) { |
742755a1 | 1148 | err = migrate_pages(&pagelist, new_page_node, |
a6bc32b8 | 1149 | (unsigned long)pm, 0, MIGRATE_SYNC); |
cf608ac1 MK |
1150 | if (err) |
1151 | putback_lru_pages(&pagelist); | |
1152 | } | |
742755a1 CL |
1153 | |
1154 | up_read(&mm->mmap_sem); | |
1155 | return err; | |
1156 | } | |
1157 | ||
5e9a0f02 BG |
1158 | /* |
1159 | * Migrate an array of page address onto an array of nodes and fill | |
1160 | * the corresponding array of status. | |
1161 | */ | |
3268c63e | 1162 | static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, |
5e9a0f02 BG |
1163 | unsigned long nr_pages, |
1164 | const void __user * __user *pages, | |
1165 | const int __user *nodes, | |
1166 | int __user *status, int flags) | |
1167 | { | |
3140a227 | 1168 | struct page_to_node *pm; |
3140a227 BG |
1169 | unsigned long chunk_nr_pages; |
1170 | unsigned long chunk_start; | |
1171 | int err; | |
5e9a0f02 | 1172 | |
3140a227 BG |
1173 | err = -ENOMEM; |
1174 | pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); | |
1175 | if (!pm) | |
5e9a0f02 | 1176 | goto out; |
35282a2d BG |
1177 | |
1178 | migrate_prep(); | |
1179 | ||
5e9a0f02 | 1180 | /* |
3140a227 BG |
1181 | * Store a chunk of page_to_node array in a page, |
1182 | * but keep the last one as a marker | |
5e9a0f02 | 1183 | */ |
3140a227 | 1184 | chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; |
5e9a0f02 | 1185 | |
3140a227 BG |
1186 | for (chunk_start = 0; |
1187 | chunk_start < nr_pages; | |
1188 | chunk_start += chunk_nr_pages) { | |
1189 | int j; | |
5e9a0f02 | 1190 | |
3140a227 BG |
1191 | if (chunk_start + chunk_nr_pages > nr_pages) |
1192 | chunk_nr_pages = nr_pages - chunk_start; | |
1193 | ||
1194 | /* fill the chunk pm with addrs and nodes from user-space */ | |
1195 | for (j = 0; j < chunk_nr_pages; j++) { | |
1196 | const void __user *p; | |
5e9a0f02 BG |
1197 | int node; |
1198 | ||
3140a227 BG |
1199 | err = -EFAULT; |
1200 | if (get_user(p, pages + j + chunk_start)) | |
1201 | goto out_pm; | |
1202 | pm[j].addr = (unsigned long) p; | |
1203 | ||
1204 | if (get_user(node, nodes + j + chunk_start)) | |
5e9a0f02 BG |
1205 | goto out_pm; |
1206 | ||
1207 | err = -ENODEV; | |
6f5a55f1 LT |
1208 | if (node < 0 || node >= MAX_NUMNODES) |
1209 | goto out_pm; | |
1210 | ||
5e9a0f02 BG |
1211 | if (!node_state(node, N_HIGH_MEMORY)) |
1212 | goto out_pm; | |
1213 | ||
1214 | err = -EACCES; | |
1215 | if (!node_isset(node, task_nodes)) | |
1216 | goto out_pm; | |
1217 | ||
3140a227 BG |
1218 | pm[j].node = node; |
1219 | } | |
1220 | ||
1221 | /* End marker for this chunk */ | |
1222 | pm[chunk_nr_pages].node = MAX_NUMNODES; | |
1223 | ||
1224 | /* Migrate this chunk */ | |
1225 | err = do_move_page_to_node_array(mm, pm, | |
1226 | flags & MPOL_MF_MOVE_ALL); | |
1227 | if (err < 0) | |
1228 | goto out_pm; | |
5e9a0f02 | 1229 | |
5e9a0f02 | 1230 | /* Return status information */ |
3140a227 BG |
1231 | for (j = 0; j < chunk_nr_pages; j++) |
1232 | if (put_user(pm[j].status, status + j + chunk_start)) { | |
5e9a0f02 | 1233 | err = -EFAULT; |
3140a227 BG |
1234 | goto out_pm; |
1235 | } | |
1236 | } | |
1237 | err = 0; | |
5e9a0f02 BG |
1238 | |
1239 | out_pm: | |
3140a227 | 1240 | free_page((unsigned long)pm); |
5e9a0f02 BG |
1241 | out: |
1242 | return err; | |
1243 | } | |
1244 | ||
742755a1 | 1245 | /* |
2f007e74 | 1246 | * Determine the nodes of an array of pages and store it in an array of status. |
742755a1 | 1247 | */ |
80bba129 BG |
1248 | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, |
1249 | const void __user **pages, int *status) | |
742755a1 | 1250 | { |
2f007e74 | 1251 | unsigned long i; |
2f007e74 | 1252 | |
742755a1 CL |
1253 | down_read(&mm->mmap_sem); |
1254 | ||
2f007e74 | 1255 | for (i = 0; i < nr_pages; i++) { |
80bba129 | 1256 | unsigned long addr = (unsigned long)(*pages); |
742755a1 CL |
1257 | struct vm_area_struct *vma; |
1258 | struct page *page; | |
c095adbc | 1259 | int err = -EFAULT; |
2f007e74 BG |
1260 | |
1261 | vma = find_vma(mm, addr); | |
70384dc6 | 1262 | if (!vma || addr < vma->vm_start) |
742755a1 CL |
1263 | goto set_status; |
1264 | ||
2f007e74 | 1265 | page = follow_page(vma, addr, 0); |
89f5b7da LT |
1266 | |
1267 | err = PTR_ERR(page); | |
1268 | if (IS_ERR(page)) | |
1269 | goto set_status; | |
1270 | ||
742755a1 CL |
1271 | err = -ENOENT; |
1272 | /* Use PageReserved to check for zero page */ | |
62b61f61 | 1273 | if (!page || PageReserved(page) || PageKsm(page)) |
742755a1 CL |
1274 | goto set_status; |
1275 | ||
1276 | err = page_to_nid(page); | |
1277 | set_status: | |
80bba129 BG |
1278 | *status = err; |
1279 | ||
1280 | pages++; | |
1281 | status++; | |
1282 | } | |
1283 | ||
1284 | up_read(&mm->mmap_sem); | |
1285 | } | |
1286 | ||
1287 | /* | |
1288 | * Determine the nodes of a user array of pages and store it in | |
1289 | * a user array of status. | |
1290 | */ | |
1291 | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | |
1292 | const void __user * __user *pages, | |
1293 | int __user *status) | |
1294 | { | |
1295 | #define DO_PAGES_STAT_CHUNK_NR 16 | |
1296 | const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; | |
1297 | int chunk_status[DO_PAGES_STAT_CHUNK_NR]; | |
80bba129 | 1298 | |
87b8d1ad PA |
1299 | while (nr_pages) { |
1300 | unsigned long chunk_nr; | |
80bba129 | 1301 | |
87b8d1ad PA |
1302 | chunk_nr = nr_pages; |
1303 | if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) | |
1304 | chunk_nr = DO_PAGES_STAT_CHUNK_NR; | |
1305 | ||
1306 | if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) | |
1307 | break; | |
80bba129 BG |
1308 | |
1309 | do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); | |
1310 | ||
87b8d1ad PA |
1311 | if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) |
1312 | break; | |
742755a1 | 1313 | |
87b8d1ad PA |
1314 | pages += chunk_nr; |
1315 | status += chunk_nr; | |
1316 | nr_pages -= chunk_nr; | |
1317 | } | |
1318 | return nr_pages ? -EFAULT : 0; | |
742755a1 CL |
1319 | } |
1320 | ||
1321 | /* | |
1322 | * Move a list of pages in the address space of the currently executing | |
1323 | * process. | |
1324 | */ | |
938bb9f5 HC |
1325 | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, |
1326 | const void __user * __user *, pages, | |
1327 | const int __user *, nodes, | |
1328 | int __user *, status, int, flags) | |
742755a1 | 1329 | { |
c69e8d9c | 1330 | const struct cred *cred = current_cred(), *tcred; |
742755a1 | 1331 | struct task_struct *task; |
742755a1 | 1332 | struct mm_struct *mm; |
5e9a0f02 | 1333 | int err; |
3268c63e | 1334 | nodemask_t task_nodes; |
742755a1 CL |
1335 | |
1336 | /* Check flags */ | |
1337 | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | |
1338 | return -EINVAL; | |
1339 | ||
1340 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | |
1341 | return -EPERM; | |
1342 | ||
1343 | /* Find the mm_struct */ | |
a879bf58 | 1344 | rcu_read_lock(); |
228ebcbe | 1345 | task = pid ? find_task_by_vpid(pid) : current; |
742755a1 | 1346 | if (!task) { |
a879bf58 | 1347 | rcu_read_unlock(); |
742755a1 CL |
1348 | return -ESRCH; |
1349 | } | |
3268c63e | 1350 | get_task_struct(task); |
742755a1 CL |
1351 | |
1352 | /* | |
1353 | * Check if this process has the right to modify the specified | |
1354 | * process. The right exists if the process has administrative | |
1355 | * capabilities, superuser privileges or the same | |
1356 | * userid as the target process. | |
1357 | */ | |
c69e8d9c | 1358 | tcred = __task_cred(task); |
b38a86eb EB |
1359 | if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && |
1360 | !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && | |
742755a1 | 1361 | !capable(CAP_SYS_NICE)) { |
c69e8d9c | 1362 | rcu_read_unlock(); |
742755a1 | 1363 | err = -EPERM; |
5e9a0f02 | 1364 | goto out; |
742755a1 | 1365 | } |
c69e8d9c | 1366 | rcu_read_unlock(); |
742755a1 | 1367 | |
86c3a764 DQ |
1368 | err = security_task_movememory(task); |
1369 | if (err) | |
5e9a0f02 | 1370 | goto out; |
86c3a764 | 1371 | |
3268c63e CL |
1372 | task_nodes = cpuset_mems_allowed(task); |
1373 | mm = get_task_mm(task); | |
1374 | put_task_struct(task); | |
1375 | ||
6e8b09ea SL |
1376 | if (!mm) |
1377 | return -EINVAL; | |
1378 | ||
1379 | if (nodes) | |
1380 | err = do_pages_move(mm, task_nodes, nr_pages, pages, | |
1381 | nodes, status, flags); | |
1382 | else | |
1383 | err = do_pages_stat(mm, nr_pages, pages, status); | |
742755a1 | 1384 | |
742755a1 CL |
1385 | mmput(mm); |
1386 | return err; | |
3268c63e CL |
1387 | |
1388 | out: | |
1389 | put_task_struct(task); | |
1390 | return err; | |
742755a1 | 1391 | } |
742755a1 | 1392 | |
7b2259b3 CL |
1393 | /* |
1394 | * Call migration functions in the vma_ops that may prepare | |
1395 | * memory in a vm for migration. migration functions may perform | |
1396 | * the migration for vmas that do not have an underlying page struct. | |
1397 | */ | |
1398 | int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, | |
1399 | const nodemask_t *from, unsigned long flags) | |
1400 | { | |
1401 | struct vm_area_struct *vma; | |
1402 | int err = 0; | |
1403 | ||
1001c9fb | 1404 | for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { |
7b2259b3 CL |
1405 | if (vma->vm_ops && vma->vm_ops->migrate) { |
1406 | err = vma->vm_ops->migrate(vma, to, from, flags); | |
1407 | if (err) | |
1408 | break; | |
1409 | } | |
1410 | } | |
1411 | return err; | |
1412 | } | |
83d1674a | 1413 | #endif |