]>
Commit | Line | Data |
---|---|---|
108b42b4 DH |
1 | ============================ |
2 | LINUX KERNEL MEMORY BARRIERS | |
3 | ============================ | |
4 | ||
5 | By: David Howells <[email protected]> | |
714b6904 | 6 | Paul E. McKenney <[email protected]> |
e7720af5 PZ |
7 | Will Deacon <[email protected]> |
8 | Peter Zijlstra <[email protected]> | |
108b42b4 | 9 | |
e7720af5 PZ |
10 | ========== |
11 | DISCLAIMER | |
12 | ========== | |
13 | ||
14 | This document is not a specification; it is intentionally (for the sake of | |
15 | brevity) and unintentionally (due to being human) incomplete. This document is | |
16 | meant as a guide to using the various memory barriers provided by Linux, but | |
621df431 AP |
17 | in case of any doubt (and there are many) please ask. Some doubts may be |
18 | resolved by referring to the formal memory consistency model and related | |
19 | documentation at tools/memory-model/. Nevertheless, even this memory | |
20 | model should be viewed as the collective opinion of its maintainers rather | |
21 | than as an infallible oracle. | |
e7720af5 PZ |
22 | |
23 | To repeat, this document is not a specification of what Linux expects from | |
24 | hardware. | |
25 | ||
8d4840e8 DH |
26 | The purpose of this document is twofold: |
27 | ||
28 | (1) to specify the minimum functionality that one can rely on for any | |
29 | particular barrier, and | |
30 | ||
31 | (2) to provide a guide as to how to use the barriers that are available. | |
32 | ||
33 | Note that an architecture can provide more than the minimum requirement | |
35bdc72a | 34 | for any particular barrier, but if the architecture provides less than |
8d4840e8 DH |
35 | that, that architecture is incorrect. |
36 | ||
37 | Note also that it is possible that a barrier may be a no-op for an | |
38 | architecture because the way that arch works renders an explicit barrier | |
39 | unnecessary in that case. | |
40 | ||
41 | ||
e7720af5 PZ |
42 | ======== |
43 | CONTENTS | |
44 | ======== | |
108b42b4 DH |
45 | |
46 | (*) Abstract memory access model. | |
47 | ||
48 | - Device operations. | |
49 | - Guarantees. | |
50 | ||
51 | (*) What are memory barriers? | |
52 | ||
53 | - Varieties of memory barrier. | |
54 | - What may not be assumed about memory barriers? | |
203185f6 | 55 | - Address-dependency barriers (historical). |
108b42b4 DH |
56 | - Control dependencies. |
57 | - SMP barrier pairing. | |
58 | - Examples of memory barrier sequences. | |
670bd95e | 59 | - Read memory barriers vs load speculation. |
f1ab25a3 | 60 | - Multicopy atomicity. |
108b42b4 DH |
61 | |
62 | (*) Explicit kernel barriers. | |
63 | ||
64 | - Compiler barrier. | |
81fc6323 | 65 | - CPU memory barriers. |
108b42b4 DH |
66 | |
67 | (*) Implicit kernel memory barriers. | |
68 | ||
166bda71 | 69 | - Lock acquisition functions. |
108b42b4 | 70 | - Interrupt disabling functions. |
50fa610a | 71 | - Sleep and wake-up functions. |
108b42b4 DH |
72 | - Miscellaneous functions. |
73 | ||
166bda71 | 74 | (*) Inter-CPU acquiring barrier effects. |
108b42b4 | 75 | |
166bda71 | 76 | - Acquires vs memory accesses. |
108b42b4 DH |
77 | |
78 | (*) Where are memory barriers needed? | |
79 | ||
80 | - Interprocessor interaction. | |
81 | - Atomic operations. | |
82 | - Accessing devices. | |
83 | - Interrupts. | |
84 | ||
85 | (*) Kernel I/O barrier effects. | |
86 | ||
87 | (*) Assumed minimum execution ordering model. | |
88 | ||
89 | (*) The effects of the cpu cache. | |
90 | ||
91 | - Cache coherency. | |
92 | - Cache coherency vs DMA. | |
93 | - Cache coherency vs MMIO. | |
94 | ||
95 | (*) The things CPUs get up to. | |
96 | ||
97 | - And then there's the Alpha. | |
01e1cd6d | 98 | - Virtual Machine Guests. |
108b42b4 | 99 | |
90fddabf DH |
100 | (*) Example uses. |
101 | ||
102 | - Circular buffers. | |
103 | ||
108b42b4 DH |
104 | (*) References. |
105 | ||
106 | ||
107 | ============================ | |
108 | ABSTRACT MEMORY ACCESS MODEL | |
109 | ============================ | |
110 | ||
111 | Consider the following abstract model of the system: | |
112 | ||
113 | : : | |
114 | : : | |
115 | : : | |
116 | +-------+ : +--------+ : +-------+ | |
117 | | | : | | : | | | |
118 | | | : | | : | | | |
119 | | CPU 1 |<----->| Memory |<----->| CPU 2 | | |
120 | | | : | | : | | | |
121 | | | : | | : | | | |
122 | +-------+ : +--------+ : +-------+ | |
123 | ^ : ^ : ^ | |
124 | | : | : | | |
125 | | : | : | | |
126 | | : v : | | |
127 | | : +--------+ : | | |
128 | | : | | : | | |
129 | | : | | : | | |
130 | +---------->| Device |<----------+ | |
131 | : | | : | |
132 | : | | : | |
133 | : +--------+ : | |
134 | : : | |
135 | ||
136 | Each CPU executes a program that generates memory access operations. In the | |
137 | abstract CPU, memory operation ordering is very relaxed, and a CPU may actually | |
138 | perform the memory operations in any order it likes, provided program causality | |
139 | appears to be maintained. Similarly, the compiler may also arrange the | |
140 | instructions it emits in any order it likes, provided it doesn't affect the | |
141 | apparent operation of the program. | |
142 | ||
143 | So in the above diagram, the effects of the memory operations performed by a | |
144 | CPU are perceived by the rest of the system as the operations cross the | |
145 | interface between the CPU and rest of the system (the dotted lines). | |
146 | ||
147 | ||
148 | For example, consider the following sequence of events: | |
149 | ||
150 | CPU 1 CPU 2 | |
151 | =============== =============== | |
152 | { A == 1; B == 2 } | |
615cc2c9 AD |
153 | A = 3; x = B; |
154 | B = 4; y = A; | |
108b42b4 DH |
155 | |
156 | The set of accesses as seen by the memory system in the middle can be arranged | |
157 | in 24 different combinations: | |
158 | ||
8ab8b3e1 PK |
159 | STORE A=3, STORE B=4, y=LOAD A->3, x=LOAD B->4 |
160 | STORE A=3, STORE B=4, x=LOAD B->4, y=LOAD A->3 | |
161 | STORE A=3, y=LOAD A->3, STORE B=4, x=LOAD B->4 | |
162 | STORE A=3, y=LOAD A->3, x=LOAD B->2, STORE B=4 | |
163 | STORE A=3, x=LOAD B->2, STORE B=4, y=LOAD A->3 | |
164 | STORE A=3, x=LOAD B->2, y=LOAD A->3, STORE B=4 | |
165 | STORE B=4, STORE A=3, y=LOAD A->3, x=LOAD B->4 | |
108b42b4 DH |
166 | STORE B=4, ... |
167 | ... | |
168 | ||
169 | and can thus result in four different combinations of values: | |
170 | ||
8ab8b3e1 PK |
171 | x == 2, y == 1 |
172 | x == 2, y == 3 | |
173 | x == 4, y == 1 | |
174 | x == 4, y == 3 | |
108b42b4 DH |
175 | |
176 | ||
177 | Furthermore, the stores committed by a CPU to the memory system may not be | |
178 | perceived by the loads made by another CPU in the same order as the stores were | |
179 | committed. | |
180 | ||
181 | ||
182 | As a further example, consider this sequence of events: | |
183 | ||
184 | CPU 1 CPU 2 | |
185 | =============== =============== | |
3dbf0913 | 186 | { A == 1, B == 2, C == 3, P == &A, Q == &C } |
108b42b4 | 187 | B = 4; Q = P; |
8149b5cb | 188 | P = &B; D = *Q; |
108b42b4 | 189 | |
f556082d AY |
190 | There is an obvious address dependency here, as the value loaded into D depends |
191 | on the address retrieved from P by CPU 2. At the end of the sequence, any of | |
192 | the following results are possible: | |
108b42b4 DH |
193 | |
194 | (Q == &A) and (D == 1) | |
195 | (Q == &B) and (D == 2) | |
196 | (Q == &B) and (D == 4) | |
197 | ||
198 | Note that CPU 2 will never try and load C into D because the CPU will load P | |
199 | into Q before issuing the load of *Q. | |
200 | ||
201 | ||
202 | DEVICE OPERATIONS | |
203 | ----------------- | |
204 | ||
205 | Some devices present their control interfaces as collections of memory | |
206 | locations, but the order in which the control registers are accessed is very | |
207 | important. For instance, imagine an ethernet card with a set of internal | |
208 | registers that are accessed through an address port register (A) and a data | |
209 | port register (D). To read internal register 5, the following code might then | |
210 | be used: | |
211 | ||
212 | *A = 5; | |
213 | x = *D; | |
214 | ||
215 | but this might show up as either of the following two sequences: | |
216 | ||
217 | STORE *A = 5, x = LOAD *D | |
218 | x = LOAD *D, STORE *A = 5 | |
219 | ||
220 | the second of which will almost certainly result in a malfunction, since it set | |
221 | the address _after_ attempting to read the register. | |
222 | ||
223 | ||
224 | GUARANTEES | |
225 | ---------- | |
226 | ||
227 | There are some minimal guarantees that may be expected of a CPU: | |
228 | ||
229 | (*) On any given CPU, dependent memory accesses will be issued in order, with | |
230 | respect to itself. This means that for: | |
231 | ||
40555946 | 232 | Q = READ_ONCE(P); D = READ_ONCE(*Q); |
108b42b4 DH |
233 | |
234 | the CPU will issue the following memory operations: | |
235 | ||
236 | Q = LOAD P, D = LOAD *Q | |
237 | ||
40555946 PM |
238 | and always in that order. However, on DEC Alpha, READ_ONCE() also |
239 | emits a memory-barrier instruction, so that a DEC Alpha CPU will | |
240 | instead issue the following memory operations: | |
241 | ||
242 | Q = LOAD P, MEMORY_BARRIER, D = LOAD *Q, MEMORY_BARRIER | |
243 | ||
244 | Whether on DEC Alpha or not, the READ_ONCE() also prevents compiler | |
245 | mischief. | |
108b42b4 DH |
246 | |
247 | (*) Overlapping loads and stores within a particular CPU will appear to be | |
248 | ordered within that CPU. This means that for: | |
249 | ||
9af194ce | 250 | a = READ_ONCE(*X); WRITE_ONCE(*X, b); |
108b42b4 DH |
251 | |
252 | the CPU will only issue the following sequence of memory operations: | |
253 | ||
254 | a = LOAD *X, STORE *X = b | |
255 | ||
256 | And for: | |
257 | ||
9af194ce | 258 | WRITE_ONCE(*X, c); d = READ_ONCE(*X); |
108b42b4 DH |
259 | |
260 | the CPU will only issue: | |
261 | ||
262 | STORE *X = c, d = LOAD *X | |
263 | ||
fa00e7e1 | 264 | (Loads and stores overlap if they are targeted at overlapping pieces of |
108b42b4 DH |
265 | memory). |
266 | ||
267 | And there are a number of things that _must_ or _must_not_ be assumed: | |
268 | ||
9af194ce PM |
269 | (*) It _must_not_ be assumed that the compiler will do what you want |
270 | with memory references that are not protected by READ_ONCE() and | |
271 | WRITE_ONCE(). Without them, the compiler is within its rights to | |
272 | do all sorts of "creative" transformations, which are covered in | |
895f5542 | 273 | the COMPILER BARRIER section. |
2ecf8101 | 274 | |
108b42b4 DH |
275 | (*) It _must_not_ be assumed that independent loads and stores will be issued |
276 | in the order given. This means that for: | |
277 | ||
278 | X = *A; Y = *B; *D = Z; | |
279 | ||
280 | we may get any of the following sequences: | |
281 | ||
282 | X = LOAD *A, Y = LOAD *B, STORE *D = Z | |
283 | X = LOAD *A, STORE *D = Z, Y = LOAD *B | |
284 | Y = LOAD *B, X = LOAD *A, STORE *D = Z | |
285 | Y = LOAD *B, STORE *D = Z, X = LOAD *A | |
286 | STORE *D = Z, X = LOAD *A, Y = LOAD *B | |
287 | STORE *D = Z, Y = LOAD *B, X = LOAD *A | |
288 | ||
289 | (*) It _must_ be assumed that overlapping memory accesses may be merged or | |
290 | discarded. This means that for: | |
291 | ||
292 | X = *A; Y = *(A + 4); | |
293 | ||
294 | we may get any one of the following sequences: | |
295 | ||
296 | X = LOAD *A; Y = LOAD *(A + 4); | |
297 | Y = LOAD *(A + 4); X = LOAD *A; | |
298 | {X, Y} = LOAD {*A, *(A + 4) }; | |
299 | ||
300 | And for: | |
301 | ||
f191eec5 | 302 | *A = X; *(A + 4) = Y; |
108b42b4 | 303 | |
f191eec5 | 304 | we may get any of: |
108b42b4 | 305 | |
f191eec5 PM |
306 | STORE *A = X; STORE *(A + 4) = Y; |
307 | STORE *(A + 4) = Y; STORE *A = X; | |
308 | STORE {*A, *(A + 4) } = {X, Y}; | |
108b42b4 | 309 | |
432fbf3c PM |
310 | And there are anti-guarantees: |
311 | ||
312 | (*) These guarantees do not apply to bitfields, because compilers often | |
313 | generate code to modify these using non-atomic read-modify-write | |
314 | sequences. Do not attempt to use bitfields to synchronize parallel | |
315 | algorithms. | |
316 | ||
317 | (*) Even in cases where bitfields are protected by locks, all fields | |
318 | in a given bitfield must be protected by one lock. If two fields | |
319 | in a given bitfield are protected by different locks, the compiler's | |
320 | non-atomic read-modify-write sequences can cause an update to one | |
321 | field to corrupt the value of an adjacent field. | |
322 | ||
323 | (*) These guarantees apply only to properly aligned and sized scalar | |
324 | variables. "Properly sized" currently means variables that are | |
325 | the same size as "char", "short", "int" and "long". "Properly | |
326 | aligned" means the natural alignment, thus no constraints for | |
327 | "char", two-byte alignment for "short", four-byte alignment for | |
328 | "int", and either four-byte or eight-byte alignment for "long", | |
329 | on 32-bit and 64-bit systems, respectively. Note that these | |
330 | guarantees were introduced into the C11 standard, so beware when | |
331 | using older pre-C11 compilers (for example, gcc 4.6). The portion | |
332 | of the standard containing this guarantee is Section 3.14, which | |
333 | defines "memory location" as follows: | |
334 | ||
335 | memory location | |
336 | either an object of scalar type, or a maximal sequence | |
337 | of adjacent bit-fields all having nonzero width | |
338 | ||
339 | NOTE 1: Two threads of execution can update and access | |
340 | separate memory locations without interfering with | |
341 | each other. | |
342 | ||
343 | NOTE 2: A bit-field and an adjacent non-bit-field member | |
344 | are in separate memory locations. The same applies | |
345 | to two bit-fields, if one is declared inside a nested | |
346 | structure declaration and the other is not, or if the two | |
347 | are separated by a zero-length bit-field declaration, | |
348 | or if they are separated by a non-bit-field member | |
349 | declaration. It is not safe to concurrently update two | |
350 | bit-fields in the same structure if all members declared | |
351 | between them are also bit-fields, no matter what the | |
352 | sizes of those intervening bit-fields happen to be. | |
353 | ||
108b42b4 DH |
354 | |
355 | ========================= | |
356 | WHAT ARE MEMORY BARRIERS? | |
357 | ========================= | |
358 | ||
359 | As can be seen above, independent memory operations are effectively performed | |
360 | in random order, but this can be a problem for CPU-CPU interaction and for I/O. | |
361 | What is required is some way of intervening to instruct the compiler and the | |
362 | CPU to restrict the order. | |
363 | ||
364 | Memory barriers are such interventions. They impose a perceived partial | |
2b94895b DH |
365 | ordering over the memory operations on either side of the barrier. |
366 | ||
367 | Such enforcement is important because the CPUs and other devices in a system | |
81fc6323 | 368 | can use a variety of tricks to improve performance, including reordering, |
2b94895b DH |
369 | deferral and combination of memory operations; speculative loads; speculative |
370 | branch prediction and various types of caching. Memory barriers are used to | |
371 | override or suppress these tricks, allowing the code to sanely control the | |
372 | interaction of multiple CPUs and/or devices. | |
108b42b4 DH |
373 | |
374 | ||
375 | VARIETIES OF MEMORY BARRIER | |
376 | --------------------------- | |
377 | ||
378 | Memory barriers come in four basic varieties: | |
379 | ||
380 | (1) Write (or store) memory barriers. | |
381 | ||
382 | A write memory barrier gives a guarantee that all the STORE operations | |
383 | specified before the barrier will appear to happen before all the STORE | |
384 | operations specified after the barrier with respect to the other | |
385 | components of the system. | |
386 | ||
387 | A write barrier is a partial ordering on stores only; it is not required | |
388 | to have any effect on loads. | |
389 | ||
6bc39274 | 390 | A CPU can be viewed as committing a sequence of store operations to the |
5692fcc6 GP |
391 | memory system as time progresses. All stores _before_ a write barrier |
392 | will occur _before_ all the stores after the write barrier. | |
108b42b4 | 393 | |
203185f6 AY |
394 | [!] Note that write barriers should normally be paired with read or |
395 | address-dependency barriers; see the "SMP barrier pairing" subsection. | |
108b42b4 DH |
396 | |
397 | ||
203185f6 | 398 | (2) Address-dependency barriers (historical). |
ad944630 PM |
399 | [!] This section is marked as HISTORICAL: it covers the long-obsolete |
400 | smp_read_barrier_depends() macro, the semantics of which are now | |
401 | implicit in all marked accesses. For more up-to-date information, | |
402 | including how compiler transformations can sometimes break address | |
403 | dependencies, see Documentation/RCU/rcu_dereference.rst. | |
108b42b4 | 404 | |
f556082d AY |
405 | An address-dependency barrier is a weaker form of read barrier. In the |
406 | case where two loads are performed such that the second depends on the | |
407 | result of the first (eg: the first load retrieves the address to which | |
408 | the second load will be directed), an address-dependency barrier would | |
409 | be required to make sure that the target of the second load is updated | |
410 | after the address obtained by the first load is accessed. | |
108b42b4 | 411 | |
f556082d AY |
412 | An address-dependency barrier is a partial ordering on interdependent |
413 | loads only; it is not required to have any effect on stores, independent | |
414 | loads or overlapping loads. | |
108b42b4 DH |
415 | |
416 | As mentioned in (1), the other CPUs in the system can be viewed as | |
417 | committing sequences of stores to the memory system that the CPU being | |
f556082d AY |
418 | considered can then perceive. An address-dependency barrier issued by |
419 | the CPU under consideration guarantees that for any load preceding it, | |
420 | if that load touches one of a sequence of stores from another CPU, then | |
421 | by the time the barrier completes, the effects of all the stores prior to | |
422 | that touched by the load will be perceptible to any loads issued after | |
423 | the address-dependency barrier. | |
108b42b4 DH |
424 | |
425 | See the "Examples of memory barrier sequences" subsection for diagrams | |
426 | showing the ordering constraints. | |
427 | ||
203185f6 | 428 | [!] Note that the first load really has to have an _address_ dependency and |
108b42b4 DH |
429 | not a control dependency. If the address for the second load is dependent |
430 | on the first load, but the dependency is through a conditional rather than | |
431 | actually loading the address itself, then it's a _control_ dependency and | |
432 | a full read barrier or better is required. See the "Control dependencies" | |
433 | subsection for more information. | |
434 | ||
203185f6 | 435 | [!] Note that address-dependency barriers should normally be paired with |
108b42b4 DH |
436 | write barriers; see the "SMP barrier pairing" subsection. |
437 | ||
203185f6 AY |
438 | [!] Kernel release v5.9 removed kernel APIs for explicit address- |
439 | dependency barriers. Nowadays, APIs for marking loads from shared | |
440 | variables such as READ_ONCE() and rcu_dereference() provide implicit | |
441 | address-dependency barriers. | |
108b42b4 DH |
442 | |
443 | (3) Read (or load) memory barriers. | |
444 | ||
f556082d AY |
445 | A read barrier is an address-dependency barrier plus a guarantee that all |
446 | the LOAD operations specified before the barrier will appear to happen | |
447 | before all the LOAD operations specified after the barrier with respect to | |
448 | the other components of the system. | |
108b42b4 DH |
449 | |
450 | A read barrier is a partial ordering on loads only; it is not required to | |
451 | have any effect on stores. | |
452 | ||
f556082d AY |
453 | Read memory barriers imply address-dependency barriers, and so can |
454 | substitute for them. | |
108b42b4 DH |
455 | |
456 | [!] Note that read barriers should normally be paired with write barriers; | |
457 | see the "SMP barrier pairing" subsection. | |
458 | ||
459 | ||
460 | (4) General memory barriers. | |
461 | ||
670bd95e DH |
462 | A general memory barrier gives a guarantee that all the LOAD and STORE |
463 | operations specified before the barrier will appear to happen before all | |
464 | the LOAD and STORE operations specified after the barrier with respect to | |
465 | the other components of the system. | |
466 | ||
467 | A general memory barrier is a partial ordering over both loads and stores. | |
108b42b4 DH |
468 | |
469 | General memory barriers imply both read and write memory barriers, and so | |
470 | can substitute for either. | |
471 | ||
472 | ||
473 | And a couple of implicit varieties: | |
474 | ||
2e4f5382 | 475 | (5) ACQUIRE operations. |
108b42b4 DH |
476 | |
477 | This acts as a one-way permeable barrier. It guarantees that all memory | |
2e4f5382 PZ |
478 | operations after the ACQUIRE operation will appear to happen after the |
479 | ACQUIRE operation with respect to the other components of the system. | |
787df638 | 480 | ACQUIRE operations include LOCK operations and both smp_load_acquire() |
2f359c7e | 481 | and smp_cond_load_acquire() operations. |
108b42b4 | 482 | |
2e4f5382 PZ |
483 | Memory operations that occur before an ACQUIRE operation may appear to |
484 | happen after it completes. | |
108b42b4 | 485 | |
2e4f5382 PZ |
486 | An ACQUIRE operation should almost always be paired with a RELEASE |
487 | operation. | |
108b42b4 DH |
488 | |
489 | ||
2e4f5382 | 490 | (6) RELEASE operations. |
108b42b4 DH |
491 | |
492 | This also acts as a one-way permeable barrier. It guarantees that all | |
2e4f5382 PZ |
493 | memory operations before the RELEASE operation will appear to happen |
494 | before the RELEASE operation with respect to the other components of the | |
495 | system. RELEASE operations include UNLOCK operations and | |
496 | smp_store_release() operations. | |
108b42b4 | 497 | |
2e4f5382 | 498 | Memory operations that occur after a RELEASE operation may appear to |
108b42b4 DH |
499 | happen before it completes. |
500 | ||
2e4f5382 | 501 | The use of ACQUIRE and RELEASE operations generally precludes the need |
a897b13d SP |
502 | for other sorts of memory barrier. In addition, a RELEASE+ACQUIRE pair is |
503 | -not- guaranteed to act as a full memory barrier. However, after an | |
504 | ACQUIRE on a given variable, all memory accesses preceding any prior | |
2e4f5382 PZ |
505 | RELEASE on that same variable are guaranteed to be visible. In other |
506 | words, within a given variable's critical section, all accesses of all | |
507 | previous critical sections for that variable are guaranteed to have | |
508 | completed. | |
17eb88e0 | 509 | |
2e4f5382 PZ |
510 | This means that ACQUIRE acts as a minimal "acquire" operation and |
511 | RELEASE acts as a minimal "release" operation. | |
108b42b4 | 512 | |
706eeb3e PZ |
513 | A subset of the atomic operations described in atomic_t.txt have ACQUIRE and |
514 | RELEASE variants in addition to fully-ordered and relaxed (no barrier | |
515 | semantics) definitions. For compound atomics performing both a load and a | |
516 | store, ACQUIRE semantics apply only to the load and RELEASE semantics apply | |
517 | only to the store portion of the operation. | |
108b42b4 DH |
518 | |
519 | Memory barriers are only required where there's a possibility of interaction | |
520 | between two CPUs or between a CPU and a device. If it can be guaranteed that | |
521 | there won't be any such interaction in any particular piece of code, then | |
522 | memory barriers are unnecessary in that piece of code. | |
523 | ||
524 | ||
525 | Note that these are the _minimum_ guarantees. Different architectures may give | |
526 | more substantial guarantees, but they may _not_ be relied upon outside of arch | |
527 | specific code. | |
528 | ||
529 | ||
530 | WHAT MAY NOT BE ASSUMED ABOUT MEMORY BARRIERS? | |
531 | ---------------------------------------------- | |
532 | ||
533 | There are certain things that the Linux kernel memory barriers do not guarantee: | |
534 | ||
535 | (*) There is no guarantee that any of the memory accesses specified before a | |
536 | memory barrier will be _complete_ by the completion of a memory barrier | |
537 | instruction; the barrier can be considered to draw a line in that CPU's | |
538 | access queue that accesses of the appropriate type may not cross. | |
539 | ||
540 | (*) There is no guarantee that issuing a memory barrier on one CPU will have | |
541 | any direct effect on another CPU or any other hardware in the system. The | |
542 | indirect effect will be the order in which the second CPU sees the effects | |
543 | of the first CPU's accesses occur, but see the next point: | |
544 | ||
6bc39274 | 545 | (*) There is no guarantee that a CPU will see the correct order of effects |
108b42b4 DH |
546 | from a second CPU's accesses, even _if_ the second CPU uses a memory |
547 | barrier, unless the first CPU _also_ uses a matching memory barrier (see | |
548 | the subsection on "SMP Barrier Pairing"). | |
549 | ||
550 | (*) There is no guarantee that some intervening piece of off-the-CPU | |
551 | hardware[*] will not reorder the memory accesses. CPU cache coherency | |
552 | mechanisms should propagate the indirect effects of a memory barrier | |
553 | between CPUs, but might not do so in order. | |
554 | ||
555 | [*] For information on bus mastering DMA and coherency please read: | |
556 | ||
bff9e34c | 557 | Documentation/driver-api/pci/pci.rst |
537f3a7c SP |
558 | Documentation/core-api/dma-api-howto.rst |
559 | Documentation/core-api/dma-api.rst | |
108b42b4 DH |
560 | |
561 | ||
203185f6 AY |
562 | ADDRESS-DEPENDENCY BARRIERS (HISTORICAL) |
563 | ---------------------------------------- | |
ad944630 PM |
564 | [!] This section is marked as HISTORICAL: it covers the long-obsolete |
565 | smp_read_barrier_depends() macro, the semantics of which are now implicit | |
566 | in all marked accesses. For more up-to-date information, including | |
567 | how compiler transformations can sometimes break address dependencies, | |
568 | see Documentation/RCU/rcu_dereference.rst. | |
f28f0868 | 569 | |
8ca924ae WD |
570 | As of v4.15 of the Linux kernel, an smp_mb() was added to READ_ONCE() for |
571 | DEC Alpha, which means that about the only people who need to pay attention | |
572 | to this section are those working on DEC Alpha architecture-specific code | |
573 | and those working on READ_ONCE() itself. For those who need it, and for | |
574 | those who are interested in the history, here is the story of | |
203185f6 AY |
575 | address-dependency barriers. |
576 | ||
577 | [!] While address dependencies are observed in both load-to-load and | |
578 | load-to-store relations, address-dependency barriers are not necessary | |
579 | for load-to-store situations. | |
108b42b4 | 580 | |
203185f6 | 581 | The requirement of address-dependency barriers is a little subtle, and |
108b42b4 DH |
582 | it's not always obvious that they're needed. To illustrate, consider the |
583 | following sequence of events: | |
584 | ||
2ecf8101 PM |
585 | CPU 1 CPU 2 |
586 | =============== =============== | |
3dbf0913 | 587 | { A == 1, B == 2, C == 3, P == &A, Q == &C } |
108b42b4 DH |
588 | B = 4; |
589 | <write barrier> | |
8149b5cb | 590 | WRITE_ONCE(P, &B); |
203185f6 | 591 | Q = READ_ONCE_OLD(P); |
2ecf8101 | 592 | D = *Q; |
108b42b4 | 593 | |
203185f6 AY |
594 | [!] READ_ONCE_OLD() corresponds to READ_ONCE() of pre-4.15 kernel, which |
595 | doesn't imply an address-dependency barrier. | |
596 | ||
f556082d AY |
597 | There's a clear address dependency here, and it would seem that by the end of |
598 | the sequence, Q must be either &A or &B, and that: | |
108b42b4 DH |
599 | |
600 | (Q == &A) implies (D == 1) | |
601 | (Q == &B) implies (D == 4) | |
602 | ||
81fc6323 | 603 | But! CPU 2's perception of P may be updated _before_ its perception of B, thus |
108b42b4 DH |
604 | leading to the following situation: |
605 | ||
606 | (Q == &B) and (D == 2) ???? | |
607 | ||
806654a9 | 608 | While this may seem like a failure of coherency or causality maintenance, it |
108b42b4 DH |
609 | isn't, and this behaviour can be observed on certain real CPUs (such as the DEC |
610 | Alpha). | |
611 | ||
f556082d AY |
612 | To deal with this, READ_ONCE() provides an implicit address-dependency barrier |
613 | since kernel release v4.15: | |
108b42b4 | 614 | |
2ecf8101 PM |
615 | CPU 1 CPU 2 |
616 | =============== =============== | |
3dbf0913 | 617 | { A == 1, B == 2, C == 3, P == &A, Q == &C } |
108b42b4 DH |
618 | B = 4; |
619 | <write barrier> | |
9af194ce PM |
620 | WRITE_ONCE(P, &B); |
621 | Q = READ_ONCE(P); | |
203185f6 | 622 | <implicit address-dependency barrier> |
2ecf8101 | 623 | D = *Q; |
108b42b4 DH |
624 | |
625 | This enforces the occurrence of one of the two implications, and prevents the | |
626 | third possibility from arising. | |
627 | ||
66ce3a4d PM |
628 | |
629 | [!] Note that this extremely counterintuitive situation arises most easily on | |
630 | machines with split caches, so that, for example, one cache bank processes | |
631 | even-numbered cache lines and the other bank processes odd-numbered cache | |
632 | lines. The pointer P might be stored in an odd-numbered cache line, and the | |
633 | variable B might be stored in an even-numbered cache line. Then, if the | |
634 | even-numbered bank of the reading CPU's cache is extremely busy while the | |
635 | odd-numbered bank is idle, one can see the new value of the pointer P (&B), | |
636 | but the old value of the variable B (2). | |
637 | ||
638 | ||
203185f6 | 639 | An address-dependency barrier is not required to order dependent writes |
f556082d AY |
640 | because the CPUs that the Linux kernel supports don't do writes until they |
641 | are certain (1) that the write will actually happen, (2) of the location of | |
642 | the write, and (3) of the value to be written. | |
66ce3a4d | 643 | But please carefully read the "CONTROL DEPENDENCIES" section and the |
f556082d AY |
644 | Documentation/RCU/rcu_dereference.rst file: The compiler can and does break |
645 | dependencies in a great many highly creative ways. | |
92a84dd2 PM |
646 | |
647 | CPU 1 CPU 2 | |
648 | =============== =============== | |
649 | { A == 1, B == 2, C = 3, P == &A, Q == &C } | |
650 | B = 4; | |
651 | <write barrier> | |
652 | WRITE_ONCE(P, &B); | |
203185f6 | 653 | Q = READ_ONCE_OLD(P); |
66ce3a4d | 654 | WRITE_ONCE(*Q, 5); |
92a84dd2 | 655 | |
203185f6 | 656 | Therefore, no address-dependency barrier is required to order the read into |
66ce3a4d | 657 | Q with the store into *Q. In other words, this outcome is prohibited, |
203185f6 | 658 | even without an implicit address-dependency barrier of modern READ_ONCE(): |
92a84dd2 | 659 | |
8b9e7715 | 660 | (Q == &B) && (B == 4) |
92a84dd2 PM |
661 | |
662 | Please note that this pattern should be rare. After all, the whole point | |
663 | of dependency ordering is to -prevent- writes to the data structure, along | |
664 | with the expensive cache misses associated with those writes. This pattern | |
66ce3a4d PM |
665 | can be used to record rare error conditions and the like, and the CPUs' |
666 | naturally occurring ordering prevents such records from being lost. | |
108b42b4 DH |
667 | |
668 | ||
203185f6 | 669 | Note well that the ordering provided by an address dependency is local to |
f1ab25a3 PM |
670 | the CPU containing it. See the section on "Multicopy atomicity" for |
671 | more information. | |
672 | ||
673 | ||
203185f6 | 674 | The address-dependency barrier is very important to the RCU system, |
2ecf8101 PM |
675 | for example. See rcu_assign_pointer() and rcu_dereference() in |
676 | include/linux/rcupdate.h. This permits the current target of an RCU'd | |
677 | pointer to be replaced with a new modified target, without the replacement | |
678 | target appearing to be incompletely initialised. | |
108b42b4 DH |
679 | |
680 | See also the subsection on "Cache Coherency" for a more thorough example. | |
681 | ||
682 | ||
683 | CONTROL DEPENDENCIES | |
684 | -------------------- | |
685 | ||
c8241f85 PM |
686 | Control dependencies can be a bit tricky because current compilers do |
687 | not understand them. The purpose of this section is to help you prevent | |
688 | the compiler's ignorance from breaking your code. | |
689 | ||
ff382810 | 690 | A load-load control dependency requires a full read memory barrier, not |
f556082d AY |
691 | simply an (implicit) address-dependency barrier to make it work correctly. |
692 | Consider the following bit of code: | |
108b42b4 | 693 | |
9af194ce | 694 | q = READ_ONCE(a); |
203185f6 | 695 | <implicit address-dependency barrier> |
18c03c61 | 696 | if (q) { |
203185f6 | 697 | /* BUG: No address dependency!!! */ |
9af194ce | 698 | p = READ_ONCE(b); |
45c8a36a | 699 | } |
108b42b4 | 700 | |
203185f6 | 701 | This will not have the desired effect because there is no actual address |
2ecf8101 PM |
702 | dependency, but rather a control dependency that the CPU may short-circuit |
703 | by attempting to predict the outcome in advance, so that other CPUs see | |
f556082d AY |
704 | the load from b as having happened before the load from a. In such a case |
705 | what's actually required is: | |
108b42b4 | 706 | |
9af194ce | 707 | q = READ_ONCE(a); |
18c03c61 | 708 | if (q) { |
45c8a36a | 709 | <read barrier> |
9af194ce | 710 | p = READ_ONCE(b); |
45c8a36a | 711 | } |
18c03c61 PZ |
712 | |
713 | However, stores are not speculated. This means that ordering -is- provided | |
ff382810 | 714 | for load-store control dependencies, as in the following example: |
18c03c61 | 715 | |
105ff3cb | 716 | q = READ_ONCE(a); |
18c03c61 | 717 | if (q) { |
c8241f85 | 718 | WRITE_ONCE(b, 1); |
18c03c61 PZ |
719 | } |
720 | ||
c8241f85 PM |
721 | Control dependencies pair normally with other types of barriers. |
722 | That said, please note that neither READ_ONCE() nor WRITE_ONCE() | |
723 | are optional! Without the READ_ONCE(), the compiler might combine the | |
724 | load from 'a' with other loads from 'a'. Without the WRITE_ONCE(), | |
725 | the compiler might combine the store to 'b' with other stores to 'b'. | |
726 | Either can result in highly counterintuitive effects on ordering. | |
18c03c61 PZ |
727 | |
728 | Worse yet, if the compiler is able to prove (say) that the value of | |
729 | variable 'a' is always non-zero, it would be well within its rights | |
730 | to optimize the original example by eliminating the "if" statement | |
731 | as follows: | |
732 | ||
733 | q = a; | |
c8241f85 | 734 | b = 1; /* BUG: Compiler and CPU can both reorder!!! */ |
2456d2a6 | 735 | |
105ff3cb | 736 | So don't leave out the READ_ONCE(). |
18c03c61 | 737 | |
2456d2a6 PM |
738 | It is tempting to try to enforce ordering on identical stores on both |
739 | branches of the "if" statement as follows: | |
18c03c61 | 740 | |
105ff3cb | 741 | q = READ_ONCE(a); |
18c03c61 | 742 | if (q) { |
9b2b3bf5 | 743 | barrier(); |
c8241f85 | 744 | WRITE_ONCE(b, 1); |
18c03c61 PZ |
745 | do_something(); |
746 | } else { | |
9b2b3bf5 | 747 | barrier(); |
c8241f85 | 748 | WRITE_ONCE(b, 1); |
18c03c61 PZ |
749 | do_something_else(); |
750 | } | |
751 | ||
2456d2a6 PM |
752 | Unfortunately, current compilers will transform this as follows at high |
753 | optimization levels: | |
18c03c61 | 754 | |
105ff3cb | 755 | q = READ_ONCE(a); |
2456d2a6 | 756 | barrier(); |
c8241f85 | 757 | WRITE_ONCE(b, 1); /* BUG: No ordering vs. load from a!!! */ |
18c03c61 | 758 | if (q) { |
c8241f85 | 759 | /* WRITE_ONCE(b, 1); -- moved up, BUG!!! */ |
18c03c61 PZ |
760 | do_something(); |
761 | } else { | |
c8241f85 | 762 | /* WRITE_ONCE(b, 1); -- moved up, BUG!!! */ |
18c03c61 PZ |
763 | do_something_else(); |
764 | } | |
765 | ||
2456d2a6 PM |
766 | Now there is no conditional between the load from 'a' and the store to |
767 | 'b', which means that the CPU is within its rights to reorder them: | |
768 | The conditional is absolutely required, and must be present in the | |
769 | assembly code even after all compiler optimizations have been applied. | |
770 | Therefore, if you need ordering in this example, you need explicit | |
771 | memory barriers, for example, smp_store_release(): | |
18c03c61 | 772 | |
9af194ce | 773 | q = READ_ONCE(a); |
2456d2a6 | 774 | if (q) { |
c8241f85 | 775 | smp_store_release(&b, 1); |
18c03c61 PZ |
776 | do_something(); |
777 | } else { | |
c8241f85 | 778 | smp_store_release(&b, 1); |
18c03c61 PZ |
779 | do_something_else(); |
780 | } | |
781 | ||
2456d2a6 PM |
782 | In contrast, without explicit memory barriers, two-legged-if control |
783 | ordering is guaranteed only when the stores differ, for example: | |
784 | ||
105ff3cb | 785 | q = READ_ONCE(a); |
2456d2a6 | 786 | if (q) { |
c8241f85 | 787 | WRITE_ONCE(b, 1); |
2456d2a6 PM |
788 | do_something(); |
789 | } else { | |
c8241f85 | 790 | WRITE_ONCE(b, 2); |
2456d2a6 PM |
791 | do_something_else(); |
792 | } | |
793 | ||
105ff3cb LT |
794 | The initial READ_ONCE() is still required to prevent the compiler from |
795 | proving the value of 'a'. | |
18c03c61 PZ |
796 | |
797 | In addition, you need to be careful what you do with the local variable 'q', | |
798 | otherwise the compiler might be able to guess the value and again remove | |
799 | the needed conditional. For example: | |
800 | ||
105ff3cb | 801 | q = READ_ONCE(a); |
18c03c61 | 802 | if (q % MAX) { |
c8241f85 | 803 | WRITE_ONCE(b, 1); |
18c03c61 PZ |
804 | do_something(); |
805 | } else { | |
c8241f85 | 806 | WRITE_ONCE(b, 2); |
18c03c61 PZ |
807 | do_something_else(); |
808 | } | |
809 | ||
810 | If MAX is defined to be 1, then the compiler knows that (q % MAX) is | |
811 | equal to zero, in which case the compiler is within its rights to | |
812 | transform the above code into the following: | |
813 | ||
105ff3cb | 814 | q = READ_ONCE(a); |
b26cfc48 | 815 | WRITE_ONCE(b, 2); |
18c03c61 PZ |
816 | do_something_else(); |
817 | ||
2456d2a6 PM |
818 | Given this transformation, the CPU is not required to respect the ordering |
819 | between the load from variable 'a' and the store to variable 'b'. It is | |
820 | tempting to add a barrier(), but this does not help. The conditional | |
821 | is gone, and the barrier won't bring it back. Therefore, if you are | |
822 | relying on this ordering, you should make sure that MAX is greater than | |
823 | one, perhaps as follows: | |
18c03c61 | 824 | |
105ff3cb | 825 | q = READ_ONCE(a); |
18c03c61 PZ |
826 | BUILD_BUG_ON(MAX <= 1); /* Order load from a with store to b. */ |
827 | if (q % MAX) { | |
c8241f85 | 828 | WRITE_ONCE(b, 1); |
18c03c61 PZ |
829 | do_something(); |
830 | } else { | |
c8241f85 | 831 | WRITE_ONCE(b, 2); |
18c03c61 PZ |
832 | do_something_else(); |
833 | } | |
834 | ||
2456d2a6 PM |
835 | Please note once again that the stores to 'b' differ. If they were |
836 | identical, as noted earlier, the compiler could pull this store outside | |
837 | of the 'if' statement. | |
838 | ||
8b19d1de PM |
839 | You must also be careful not to rely too much on boolean short-circuit |
840 | evaluation. Consider this example: | |
841 | ||
105ff3cb | 842 | q = READ_ONCE(a); |
57aecae9 | 843 | if (q || 1 > 0) |
9af194ce | 844 | WRITE_ONCE(b, 1); |
8b19d1de | 845 | |
5af4692a PM |
846 | Because the first condition cannot fault and the second condition is |
847 | always true, the compiler can transform this example as following, | |
848 | defeating control dependency: | |
8b19d1de | 849 | |
105ff3cb | 850 | q = READ_ONCE(a); |
9af194ce | 851 | WRITE_ONCE(b, 1); |
8b19d1de PM |
852 | |
853 | This example underscores the need to ensure that the compiler cannot | |
9af194ce | 854 | out-guess your code. More generally, although READ_ONCE() does force |
8b19d1de PM |
855 | the compiler to actually emit code for a given load, it does not force |
856 | the compiler to use the results. | |
857 | ||
ebff09a6 PM |
858 | In addition, control dependencies apply only to the then-clause and |
859 | else-clause of the if-statement in question. In particular, it does | |
860 | not necessarily apply to code following the if-statement: | |
861 | ||
862 | q = READ_ONCE(a); | |
863 | if (q) { | |
c8241f85 | 864 | WRITE_ONCE(b, 1); |
ebff09a6 | 865 | } else { |
c8241f85 | 866 | WRITE_ONCE(b, 2); |
ebff09a6 | 867 | } |
c8241f85 | 868 | WRITE_ONCE(c, 1); /* BUG: No ordering against the read from 'a'. */ |
ebff09a6 PM |
869 | |
870 | It is tempting to argue that there in fact is ordering because the | |
871 | compiler cannot reorder volatile accesses and also cannot reorder | |
c8241f85 PM |
872 | the writes to 'b' with the condition. Unfortunately for this line |
873 | of reasoning, the compiler might compile the two writes to 'b' as | |
ebff09a6 PM |
874 | conditional-move instructions, as in this fanciful pseudo-assembly |
875 | language: | |
876 | ||
877 | ld r1,a | |
ebff09a6 | 878 | cmp r1,$0 |
c8241f85 PM |
879 | cmov,ne r4,$1 |
880 | cmov,eq r4,$2 | |
ebff09a6 PM |
881 | st r4,b |
882 | st $1,c | |
883 | ||
884 | A weakly ordered CPU would have no dependency of any sort between the load | |
c8241f85 | 885 | from 'a' and the store to 'c'. The control dependencies would extend |
ebff09a6 PM |
886 | only to the pair of cmov instructions and the store depending on them. |
887 | In short, control dependencies apply only to the stores in the then-clause | |
888 | and else-clause of the if-statement in question (including functions | |
889 | invoked by those two clauses), not to code following that if-statement. | |
890 | ||
18c03c61 | 891 | |
f1ab25a3 PM |
892 | Note well that the ordering provided by a control dependency is local |
893 | to the CPU containing it. See the section on "Multicopy atomicity" | |
894 | for more information. | |
18c03c61 | 895 | |
18c03c61 PZ |
896 | |
897 | In summary: | |
898 | ||
899 | (*) Control dependencies can order prior loads against later stores. | |
900 | However, they do -not- guarantee any other sort of ordering: | |
901 | Not prior loads against later loads, nor prior stores against | |
902 | later anything. If you need these other forms of ordering, | |
d87510c5 | 903 | use smp_rmb(), smp_wmb(), or, in the case of prior stores and |
18c03c61 PZ |
904 | later loads, smp_mb(). |
905 | ||
7817b799 PM |
906 | (*) If both legs of the "if" statement begin with identical stores to |
907 | the same variable, then those stores must be ordered, either by | |
908 | preceding both of them with smp_mb() or by using smp_store_release() | |
909 | to carry out the stores. Please note that it is -not- sufficient | |
a5052657 PM |
910 | to use barrier() at beginning of each leg of the "if" statement |
911 | because, as shown by the example above, optimizing compilers can | |
912 | destroy the control dependency while respecting the letter of the | |
913 | barrier() law. | |
9b2b3bf5 | 914 | |
18c03c61 | 915 | (*) Control dependencies require at least one run-time conditional |
586dd56a | 916 | between the prior load and the subsequent store, and this |
9af194ce PM |
917 | conditional must involve the prior load. If the compiler is able |
918 | to optimize the conditional away, it will have also optimized | |
105ff3cb LT |
919 | away the ordering. Careful use of READ_ONCE() and WRITE_ONCE() |
920 | can help to preserve the needed conditional. | |
18c03c61 PZ |
921 | |
922 | (*) Control dependencies require that the compiler avoid reordering the | |
105ff3cb LT |
923 | dependency into nonexistence. Careful use of READ_ONCE() or |
924 | atomic{,64}_read() can help to preserve your control dependency. | |
895f5542 | 925 | Please see the COMPILER BARRIER section for more information. |
18c03c61 | 926 | |
ebff09a6 PM |
927 | (*) Control dependencies apply only to the then-clause and else-clause |
928 | of the if-statement containing the control dependency, including | |
929 | any functions that these two clauses call. Control dependencies | |
930 | do -not- apply to code following the if-statement containing the | |
931 | control dependency. | |
932 | ||
ff382810 PM |
933 | (*) Control dependencies pair normally with other types of barriers. |
934 | ||
f1ab25a3 PM |
935 | (*) Control dependencies do -not- provide multicopy atomicity. If you |
936 | need all the CPUs to see a given store at the same time, use smp_mb(). | |
108b42b4 | 937 | |
c8241f85 PM |
938 | (*) Compilers do not understand control dependencies. It is therefore |
939 | your job to ensure that they do not break your code. | |
940 | ||
108b42b4 DH |
941 | |
942 | SMP BARRIER PAIRING | |
943 | ------------------- | |
944 | ||
945 | When dealing with CPU-CPU interactions, certain types of memory barrier should | |
946 | always be paired. A lack of appropriate pairing is almost certainly an error. | |
947 | ||
ff382810 | 948 | General barriers pair with each other, though they also pair with most |
f1ab25a3 PM |
949 | other types of barriers, albeit without multicopy atomicity. An acquire |
950 | barrier pairs with a release barrier, but both may also pair with other | |
951 | barriers, including of course general barriers. A write barrier pairs | |
203185f6 | 952 | with an address-dependency barrier, a control dependency, an acquire barrier, |
f1ab25a3 | 953 | a release barrier, a read barrier, or a general barrier. Similarly a |
203185f6 | 954 | read barrier, control dependency, or an address-dependency barrier pairs |
f1ab25a3 PM |
955 | with a write barrier, an acquire barrier, a release barrier, or a |
956 | general barrier: | |
108b42b4 | 957 | |
2ecf8101 PM |
958 | CPU 1 CPU 2 |
959 | =============== =============== | |
9af194ce | 960 | WRITE_ONCE(a, 1); |
108b42b4 | 961 | <write barrier> |
9af194ce | 962 | WRITE_ONCE(b, 2); x = READ_ONCE(b); |
2ecf8101 | 963 | <read barrier> |
9af194ce | 964 | y = READ_ONCE(a); |
108b42b4 DH |
965 | |
966 | Or: | |
967 | ||
2ecf8101 PM |
968 | CPU 1 CPU 2 |
969 | =============== =============================== | |
108b42b4 DH |
970 | a = 1; |
971 | <write barrier> | |
9af194ce | 972 | WRITE_ONCE(b, &a); x = READ_ONCE(b); |
203185f6 | 973 | <implicit address-dependency barrier> |
2ecf8101 | 974 | y = *x; |
108b42b4 | 975 | |
ff382810 PM |
976 | Or even: |
977 | ||
978 | CPU 1 CPU 2 | |
979 | =============== =============================== | |
9af194ce | 980 | r1 = READ_ONCE(y); |
ff382810 | 981 | <general barrier> |
d92f842b | 982 | WRITE_ONCE(x, 1); if (r2 = READ_ONCE(x)) { |
ff382810 | 983 | <implicit control dependency> |
9af194ce | 984 | WRITE_ONCE(y, 1); |
ff382810 PM |
985 | } |
986 | ||
987 | assert(r1 == 0 || r2 == 0); | |
988 | ||
108b42b4 DH |
989 | Basically, the read barrier always has to be there, even though it can be of |
990 | the "weaker" type. | |
991 | ||
670bd95e | 992 | [!] Note that the stores before the write barrier would normally be expected to |
f556082d AY |
993 | match the loads after the read barrier or the address-dependency barrier, and |
994 | vice versa: | |
670bd95e | 995 | |
2ecf8101 PM |
996 | CPU 1 CPU 2 |
997 | =================== =================== | |
9af194ce PM |
998 | WRITE_ONCE(a, 1); }---- --->{ v = READ_ONCE(c); |
999 | WRITE_ONCE(b, 2); } \ / { w = READ_ONCE(d); | |
2ecf8101 | 1000 | <write barrier> \ <read barrier> |
9af194ce PM |
1001 | WRITE_ONCE(c, 3); } / \ { x = READ_ONCE(a); |
1002 | WRITE_ONCE(d, 4); }---- --->{ y = READ_ONCE(b); | |
670bd95e | 1003 | |
108b42b4 DH |
1004 | |
1005 | EXAMPLES OF MEMORY BARRIER SEQUENCES | |
1006 | ------------------------------------ | |
1007 | ||
81fc6323 | 1008 | Firstly, write barriers act as partial orderings on store operations. |
108b42b4 DH |
1009 | Consider the following sequence of events: |
1010 | ||
1011 | CPU 1 | |
1012 | ======================= | |
1013 | STORE A = 1 | |
1014 | STORE B = 2 | |
1015 | STORE C = 3 | |
1016 | <write barrier> | |
1017 | STORE D = 4 | |
1018 | STORE E = 5 | |
1019 | ||
1020 | This sequence of events is committed to the memory coherence system in an order | |
1021 | that the rest of the system might perceive as the unordered set of { STORE A, | |
80f7228b | 1022 | STORE B, STORE C } all occurring before the unordered set of { STORE D, STORE E |
108b42b4 DH |
1023 | }: |
1024 | ||
1025 | +-------+ : : | |
1026 | | | +------+ | |
1027 | | |------>| C=3 | } /\ | |
81fc6323 JP |
1028 | | | : +------+ }----- \ -----> Events perceptible to |
1029 | | | : | A=1 | } \/ the rest of the system | |
108b42b4 DH |
1030 | | | : +------+ } |
1031 | | CPU 1 | : | B=2 | } | |
1032 | | | +------+ } | |
1033 | | | wwwwwwwwwwwwwwww } <--- At this point the write barrier | |
1034 | | | +------+ } requires all stores prior to the | |
1035 | | | : | E=5 | } barrier to be committed before | |
81fc6323 | 1036 | | | : +------+ } further stores may take place |
108b42b4 DH |
1037 | | |------>| D=4 | } |
1038 | | | +------+ | |
1039 | +-------+ : : | |
1040 | | | |
670bd95e DH |
1041 | | Sequence in which stores are committed to the |
1042 | | memory system by CPU 1 | |
108b42b4 DH |
1043 | V |
1044 | ||
1045 | ||
f556082d AY |
1046 | Secondly, address-dependency barriers act as partial orderings on address- |
1047 | dependent loads. Consider the following sequence of events: | |
108b42b4 DH |
1048 | |
1049 | CPU 1 CPU 2 | |
1050 | ======================= ======================= | |
c14038c3 | 1051 | { B = 7; X = 9; Y = 8; C = &Y } |
108b42b4 DH |
1052 | STORE A = 1 |
1053 | STORE B = 2 | |
1054 | <write barrier> | |
1055 | STORE C = &B LOAD X | |
1056 | STORE D = 4 LOAD C (gets &B) | |
1057 | LOAD *C (reads B) | |
1058 | ||
1059 | Without intervention, CPU 2 may perceive the events on CPU 1 in some | |
1060 | effectively random order, despite the write barrier issued by CPU 1: | |
1061 | ||
1062 | +-------+ : : : : | |
1063 | | | +------+ +-------+ | Sequence of update | |
1064 | | |------>| B=2 |----- --->| Y->8 | | of perception on | |
1065 | | | : +------+ \ +-------+ | CPU 2 | |
1066 | | CPU 1 | : | A=1 | \ --->| C->&Y | V | |
1067 | | | +------+ | +-------+ | |
1068 | | | wwwwwwwwwwwwwwww | : : | |
1069 | | | +------+ | : : | |
1070 | | | : | C=&B |--- | : : +-------+ | |
1071 | | | : +------+ \ | +-------+ | | | |
1072 | | |------>| D=4 | ----------->| C->&B |------>| | | |
1073 | | | +------+ | +-------+ | | | |
1074 | +-------+ : : | : : | | | |
1075 | | : : | | | |
1076 | | : : | CPU 2 | | |
1077 | | +-------+ | | | |
1078 | Apparently incorrect ---> | | B->7 |------>| | | |
1079 | perception of B (!) | +-------+ | | | |
1080 | | : : | | | |
1081 | | +-------+ | | | |
1082 | The load of X holds ---> \ | X->9 |------>| | | |
1083 | up the maintenance \ +-------+ | | | |
1084 | of coherence of B ----->| B->2 | +-------+ | |
1085 | +-------+ | |
1086 | : : | |
1087 | ||
1088 | ||
1089 | In the above example, CPU 2 perceives that B is 7, despite the load of *C | |
670e9f34 | 1090 | (which would be B) coming after the LOAD of C. |
108b42b4 | 1091 | |
f556082d AY |
1092 | If, however, an address-dependency barrier were to be placed between the load |
1093 | of C and the load of *C (ie: B) on CPU 2: | |
c14038c3 DH |
1094 | |
1095 | CPU 1 CPU 2 | |
1096 | ======================= ======================= | |
1097 | { B = 7; X = 9; Y = 8; C = &Y } | |
1098 | STORE A = 1 | |
1099 | STORE B = 2 | |
1100 | <write barrier> | |
1101 | STORE C = &B LOAD X | |
1102 | STORE D = 4 LOAD C (gets &B) | |
203185f6 | 1103 | <address-dependency barrier> |
c14038c3 DH |
1104 | LOAD *C (reads B) |
1105 | ||
1106 | then the following will occur: | |
108b42b4 DH |
1107 | |
1108 | +-------+ : : : : | |
1109 | | | +------+ +-------+ | |
1110 | | |------>| B=2 |----- --->| Y->8 | | |
1111 | | | : +------+ \ +-------+ | |
1112 | | CPU 1 | : | A=1 | \ --->| C->&Y | | |
1113 | | | +------+ | +-------+ | |
1114 | | | wwwwwwwwwwwwwwww | : : | |
1115 | | | +------+ | : : | |
1116 | | | : | C=&B |--- | : : +-------+ | |
1117 | | | : +------+ \ | +-------+ | | | |
1118 | | |------>| D=4 | ----------->| C->&B |------>| | | |
1119 | | | +------+ | +-------+ | | | |
1120 | +-------+ : : | : : | | | |
1121 | | : : | | | |
1122 | | : : | CPU 2 | | |
1123 | | +-------+ | | | |
670bd95e DH |
1124 | | | X->9 |------>| | |
1125 | | +-------+ | | | |
203185f6 | 1126 | Makes sure all effects ---> \ aaaaaaaaaaaaaaaaa | | |
670bd95e DH |
1127 | prior to the store of C \ +-------+ | | |
1128 | are perceptible to ----->| B->2 |------>| | | |
1129 | subsequent loads +-------+ | | | |
108b42b4 DH |
1130 | : : +-------+ |
1131 | ||
1132 | ||
1133 | And thirdly, a read barrier acts as a partial order on loads. Consider the | |
1134 | following sequence of events: | |
1135 | ||
1136 | CPU 1 CPU 2 | |
1137 | ======================= ======================= | |
670bd95e | 1138 | { A = 0, B = 9 } |
108b42b4 | 1139 | STORE A=1 |
108b42b4 | 1140 | <write barrier> |
670bd95e | 1141 | STORE B=2 |
108b42b4 | 1142 | LOAD B |
670bd95e | 1143 | LOAD A |
108b42b4 DH |
1144 | |
1145 | Without intervention, CPU 2 may then choose to perceive the events on CPU 1 in | |
1146 | some effectively random order, despite the write barrier issued by CPU 1: | |
1147 | ||
670bd95e DH |
1148 | +-------+ : : : : |
1149 | | | +------+ +-------+ | |
1150 | | |------>| A=1 |------ --->| A->0 | | |
1151 | | | +------+ \ +-------+ | |
1152 | | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | | |
1153 | | | +------+ | +-------+ | |
1154 | | |------>| B=2 |--- | : : | |
1155 | | | +------+ \ | : : +-------+ | |
1156 | +-------+ : : \ | +-------+ | | | |
1157 | ---------->| B->2 |------>| | | |
1158 | | +-------+ | CPU 2 | | |
1159 | | | A->0 |------>| | | |
1160 | | +-------+ | | | |
1161 | | : : +-------+ | |
1162 | \ : : | |
1163 | \ +-------+ | |
1164 | ---->| A->1 | | |
1165 | +-------+ | |
1166 | : : | |
108b42b4 | 1167 | |
670bd95e | 1168 | |
6bc39274 | 1169 | If, however, a read barrier were to be placed between the load of B and the |
670bd95e DH |
1170 | load of A on CPU 2: |
1171 | ||
1172 | CPU 1 CPU 2 | |
1173 | ======================= ======================= | |
1174 | { A = 0, B = 9 } | |
1175 | STORE A=1 | |
1176 | <write barrier> | |
1177 | STORE B=2 | |
1178 | LOAD B | |
1179 | <read barrier> | |
1180 | LOAD A | |
1181 | ||
1182 | then the partial ordering imposed by CPU 1 will be perceived correctly by CPU | |
1183 | 2: | |
1184 | ||
1185 | +-------+ : : : : | |
1186 | | | +------+ +-------+ | |
1187 | | |------>| A=1 |------ --->| A->0 | | |
1188 | | | +------+ \ +-------+ | |
1189 | | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | | |
1190 | | | +------+ | +-------+ | |
1191 | | |------>| B=2 |--- | : : | |
1192 | | | +------+ \ | : : +-------+ | |
1193 | +-------+ : : \ | +-------+ | | | |
1194 | ---------->| B->2 |------>| | | |
1195 | | +-------+ | CPU 2 | | |
1196 | | : : | | | |
1197 | | : : | | | |
1198 | At this point the read ----> \ rrrrrrrrrrrrrrrrr | | | |
1199 | barrier causes all effects \ +-------+ | | | |
1200 | prior to the storage of B ---->| A->1 |------>| | | |
1201 | to be perceptible to CPU 2 +-------+ | | | |
1202 | : : +-------+ | |
1203 | ||
1204 | ||
1205 | To illustrate this more completely, consider what could happen if the code | |
1206 | contained a load of A either side of the read barrier: | |
1207 | ||
1208 | CPU 1 CPU 2 | |
1209 | ======================= ======================= | |
1210 | { A = 0, B = 9 } | |
1211 | STORE A=1 | |
1212 | <write barrier> | |
1213 | STORE B=2 | |
1214 | LOAD B | |
1215 | LOAD A [first load of A] | |
1216 | <read barrier> | |
1217 | LOAD A [second load of A] | |
1218 | ||
1219 | Even though the two loads of A both occur after the load of B, they may both | |
1220 | come up with different values: | |
1221 | ||
1222 | +-------+ : : : : | |
1223 | | | +------+ +-------+ | |
1224 | | |------>| A=1 |------ --->| A->0 | | |
1225 | | | +------+ \ +-------+ | |
1226 | | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | | |
1227 | | | +------+ | +-------+ | |
1228 | | |------>| B=2 |--- | : : | |
1229 | | | +------+ \ | : : +-------+ | |
1230 | +-------+ : : \ | +-------+ | | | |
1231 | ---------->| B->2 |------>| | | |
1232 | | +-------+ | CPU 2 | | |
1233 | | : : | | | |
1234 | | : : | | | |
1235 | | +-------+ | | | |
1236 | | | A->0 |------>| 1st | | |
1237 | | +-------+ | | | |
1238 | At this point the read ----> \ rrrrrrrrrrrrrrrrr | | | |
1239 | barrier causes all effects \ +-------+ | | | |
1240 | prior to the storage of B ---->| A->1 |------>| 2nd | | |
1241 | to be perceptible to CPU 2 +-------+ | | | |
1242 | : : +-------+ | |
1243 | ||
1244 | ||
1245 | But it may be that the update to A from CPU 1 becomes perceptible to CPU 2 | |
1246 | before the read barrier completes anyway: | |
1247 | ||
1248 | +-------+ : : : : | |
1249 | | | +------+ +-------+ | |
1250 | | |------>| A=1 |------ --->| A->0 | | |
1251 | | | +------+ \ +-------+ | |
1252 | | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | | |
1253 | | | +------+ | +-------+ | |
1254 | | |------>| B=2 |--- | : : | |
1255 | | | +------+ \ | : : +-------+ | |
1256 | +-------+ : : \ | +-------+ | | | |
1257 | ---------->| B->2 |------>| | | |
1258 | | +-------+ | CPU 2 | | |
1259 | | : : | | | |
1260 | \ : : | | | |
1261 | \ +-------+ | | | |
1262 | ---->| A->1 |------>| 1st | | |
1263 | +-------+ | | | |
1264 | rrrrrrrrrrrrrrrrr | | | |
1265 | +-------+ | | | |
1266 | | A->1 |------>| 2nd | | |
1267 | +-------+ | | | |
1268 | : : +-------+ | |
1269 | ||
1270 | ||
1271 | The guarantee is that the second load will always come up with A == 1 if the | |
1272 | load of B came up with B == 2. No such guarantee exists for the first load of | |
1273 | A; that may come up with either A == 0 or A == 1. | |
1274 | ||
1275 | ||
1276 | READ MEMORY BARRIERS VS LOAD SPECULATION | |
1277 | ---------------------------------------- | |
1278 | ||
1279 | Many CPUs speculate with loads: that is they see that they will need to load an | |
1280 | item from memory, and they find a time where they're not using the bus for any | |
1281 | other loads, and so do the load in advance - even though they haven't actually | |
1282 | got to that point in the instruction execution flow yet. This permits the | |
1283 | actual load instruction to potentially complete immediately because the CPU | |
1284 | already has the value to hand. | |
1285 | ||
1286 | It may turn out that the CPU didn't actually need the value - perhaps because a | |
1287 | branch circumvented the load - in which case it can discard the value or just | |
1288 | cache it for later use. | |
1289 | ||
1290 | Consider: | |
1291 | ||
e0edc78f | 1292 | CPU 1 CPU 2 |
670bd95e | 1293 | ======================= ======================= |
e0edc78f IM |
1294 | LOAD B |
1295 | DIVIDE } Divide instructions generally | |
1296 | DIVIDE } take a long time to perform | |
1297 | LOAD A | |
670bd95e DH |
1298 | |
1299 | Which might appear as this: | |
1300 | ||
1301 | : : +-------+ | |
1302 | +-------+ | | | |
1303 | --->| B->2 |------>| | | |
1304 | +-------+ | CPU 2 | | |
1305 | : :DIVIDE | | | |
1306 | +-------+ | | | |
1307 | The CPU being busy doing a ---> --->| A->0 |~~~~ | | | |
1308 | division speculates on the +-------+ ~ | | | |
1309 | LOAD of A : : ~ | | | |
1310 | : :DIVIDE | | | |
1311 | : : ~ | | | |
1312 | Once the divisions are complete --> : : ~-->| | | |
1313 | the CPU can then perform the : : | | | |
1314 | LOAD with immediate effect : : +-------+ | |
1315 | ||
1316 | ||
203185f6 | 1317 | Placing a read barrier or an address-dependency barrier just before the second |
670bd95e DH |
1318 | load: |
1319 | ||
e0edc78f | 1320 | CPU 1 CPU 2 |
670bd95e | 1321 | ======================= ======================= |
e0edc78f IM |
1322 | LOAD B |
1323 | DIVIDE | |
1324 | DIVIDE | |
670bd95e | 1325 | <read barrier> |
e0edc78f | 1326 | LOAD A |
670bd95e DH |
1327 | |
1328 | will force any value speculatively obtained to be reconsidered to an extent | |
1329 | dependent on the type of barrier used. If there was no change made to the | |
1330 | speculated memory location, then the speculated value will just be used: | |
1331 | ||
1332 | : : +-------+ | |
1333 | +-------+ | | | |
1334 | --->| B->2 |------>| | | |
1335 | +-------+ | CPU 2 | | |
1336 | : :DIVIDE | | | |
1337 | +-------+ | | | |
1338 | The CPU being busy doing a ---> --->| A->0 |~~~~ | | | |
1339 | division speculates on the +-------+ ~ | | | |
1340 | LOAD of A : : ~ | | | |
1341 | : :DIVIDE | | | |
1342 | : : ~ | | | |
1343 | : : ~ | | | |
1344 | rrrrrrrrrrrrrrrr~ | | | |
1345 | : : ~ | | | |
1346 | : : ~-->| | | |
1347 | : : | | | |
1348 | : : +-------+ | |
1349 | ||
1350 | ||
1351 | but if there was an update or an invalidation from another CPU pending, then | |
1352 | the speculation will be cancelled and the value reloaded: | |
1353 | ||
1354 | : : +-------+ | |
1355 | +-------+ | | | |
1356 | --->| B->2 |------>| | | |
1357 | +-------+ | CPU 2 | | |
1358 | : :DIVIDE | | | |
1359 | +-------+ | | | |
1360 | The CPU being busy doing a ---> --->| A->0 |~~~~ | | | |
1361 | division speculates on the +-------+ ~ | | | |
1362 | LOAD of A : : ~ | | | |
1363 | : :DIVIDE | | | |
1364 | : : ~ | | | |
1365 | : : ~ | | | |
1366 | rrrrrrrrrrrrrrrrr | | | |
1367 | +-------+ | | | |
1368 | The speculation is discarded ---> --->| A->1 |------>| | | |
1369 | and an updated value is +-------+ | | | |
1370 | retrieved : : +-------+ | |
108b42b4 DH |
1371 | |
1372 | ||
f1ab25a3 PM |
1373 | MULTICOPY ATOMICITY |
1374 | -------------------- | |
1375 | ||
1376 | Multicopy atomicity is a deeply intuitive notion about ordering that is | |
1377 | not always provided by real computer systems, namely that a given store | |
0902b1f4 AS |
1378 | becomes visible at the same time to all CPUs, or, alternatively, that all |
1379 | CPUs agree on the order in which all stores become visible. However, | |
1380 | support of full multicopy atomicity would rule out valuable hardware | |
1381 | optimizations, so a weaker form called ``other multicopy atomicity'' | |
1382 | instead guarantees only that a given store becomes visible at the same | |
1383 | time to all -other- CPUs. The remainder of this document discusses this | |
1384 | weaker form, but for brevity will call it simply ``multicopy atomicity''. | |
241e6663 | 1385 | |
f1ab25a3 | 1386 | The following example demonstrates multicopy atomicity: |
241e6663 PM |
1387 | |
1388 | CPU 1 CPU 2 CPU 3 | |
1389 | ======================= ======================= ======================= | |
1390 | { X = 0, Y = 0 } | |
f1ab25a3 PM |
1391 | STORE X=1 r1=LOAD X (reads 1) LOAD Y (reads 1) |
1392 | <general barrier> <read barrier> | |
1393 | STORE Y=r1 LOAD X | |
241e6663 | 1394 | |
0902b1f4 AS |
1395 | Suppose that CPU 2's load from X returns 1, which it then stores to Y, |
1396 | and CPU 3's load from Y returns 1. This indicates that CPU 1's store | |
1397 | to X precedes CPU 2's load from X and that CPU 2's store to Y precedes | |
1398 | CPU 3's load from Y. In addition, the memory barriers guarantee that | |
1399 | CPU 2 executes its load before its store, and CPU 3 loads from Y before | |
1400 | it loads from X. The question is then "Can CPU 3's load from X return 0?" | |
241e6663 | 1401 | |
0902b1f4 | 1402 | Because CPU 3's load from X in some sense comes after CPU 2's load, it |
241e6663 | 1403 | is natural to expect that CPU 3's load from X must therefore return 1. |
0902b1f4 AS |
1404 | This expectation follows from multicopy atomicity: if a load executing |
1405 | on CPU B follows a load from the same variable executing on CPU A (and | |
1406 | CPU A did not originally store the value which it read), then on | |
1407 | multicopy-atomic systems, CPU B's load must return either the same value | |
1408 | that CPU A's load did or some later value. However, the Linux kernel | |
1409 | does not require systems to be multicopy atomic. | |
1410 | ||
1411 | The use of a general memory barrier in the example above compensates | |
1412 | for any lack of multicopy atomicity. In the example, if CPU 2's load | |
1413 | from X returns 1 and CPU 3's load from Y returns 1, then CPU 3's load | |
1414 | from X must indeed also return 1. | |
f1ab25a3 PM |
1415 | |
1416 | However, dependencies, read barriers, and write barriers are not always | |
1417 | able to compensate for non-multicopy atomicity. For example, suppose | |
1418 | that CPU 2's general barrier is removed from the above example, leaving | |
1419 | only the data dependency shown below: | |
241e6663 PM |
1420 | |
1421 | CPU 1 CPU 2 CPU 3 | |
1422 | ======================= ======================= ======================= | |
1423 | { X = 0, Y = 0 } | |
f1ab25a3 PM |
1424 | STORE X=1 r1=LOAD X (reads 1) LOAD Y (reads 1) |
1425 | <data dependency> <read barrier> | |
1426 | STORE Y=r1 LOAD X (reads 0) | |
1427 | ||
1428 | This substitution allows non-multicopy atomicity to run rampant: in | |
1429 | this example, it is perfectly legal for CPU 2's load from X to return 1, | |
1430 | CPU 3's load from Y to return 1, and its load from X to return 0. | |
1431 | ||
1432 | The key point is that although CPU 2's data dependency orders its load | |
0902b1f4 AS |
1433 | and store, it does not guarantee to order CPU 1's store. Thus, if this |
1434 | example runs on a non-multicopy-atomic system where CPUs 1 and 2 share a | |
1435 | store buffer or a level of cache, CPU 2 might have early access to CPU 1's | |
1436 | writes. General barriers are therefore required to ensure that all CPUs | |
1437 | agree on the combined order of multiple accesses. | |
f1ab25a3 PM |
1438 | |
1439 | General barriers can compensate not only for non-multicopy atomicity, | |
1440 | but can also generate additional ordering that can ensure that -all- | |
1441 | CPUs will perceive the same order of -all- operations. In contrast, a | |
1442 | chain of release-acquire pairs do not provide this additional ordering, | |
1443 | which means that only those CPUs on the chain are guaranteed to agree | |
1444 | on the combined order of the accesses. For example, switching to C code | |
1445 | in deference to the ghost of Herman Hollerith: | |
c535cc92 PM |
1446 | |
1447 | int u, v, x, y, z; | |
1448 | ||
1449 | void cpu0(void) | |
1450 | { | |
1451 | r0 = smp_load_acquire(&x); | |
1452 | WRITE_ONCE(u, 1); | |
1453 | smp_store_release(&y, 1); | |
1454 | } | |
1455 | ||
1456 | void cpu1(void) | |
1457 | { | |
1458 | r1 = smp_load_acquire(&y); | |
1459 | r4 = READ_ONCE(v); | |
1460 | r5 = READ_ONCE(u); | |
1461 | smp_store_release(&z, 1); | |
1462 | } | |
1463 | ||
1464 | void cpu2(void) | |
1465 | { | |
1466 | r2 = smp_load_acquire(&z); | |
1467 | smp_store_release(&x, 1); | |
1468 | } | |
1469 | ||
1470 | void cpu3(void) | |
1471 | { | |
1472 | WRITE_ONCE(v, 1); | |
1473 | smp_mb(); | |
1474 | r3 = READ_ONCE(u); | |
1475 | } | |
1476 | ||
f1ab25a3 PM |
1477 | Because cpu0(), cpu1(), and cpu2() participate in a chain of |
1478 | smp_store_release()/smp_load_acquire() pairs, the following outcome | |
1479 | is prohibited: | |
c535cc92 PM |
1480 | |
1481 | r0 == 1 && r1 == 1 && r2 == 1 | |
1482 | ||
1483 | Furthermore, because of the release-acquire relationship between cpu0() | |
1484 | and cpu1(), cpu1() must see cpu0()'s writes, so that the following | |
1485 | outcome is prohibited: | |
1486 | ||
1487 | r1 == 1 && r5 == 0 | |
1488 | ||
f1ab25a3 PM |
1489 | However, the ordering provided by a release-acquire chain is local |
1490 | to the CPUs participating in that chain and does not apply to cpu3(), | |
1491 | at least aside from stores. Therefore, the following outcome is possible: | |
c535cc92 PM |
1492 | |
1493 | r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 | |
1494 | ||
37ef0341 PM |
1495 | As an aside, the following outcome is also possible: |
1496 | ||
1497 | r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 && r5 == 1 | |
1498 | ||
c535cc92 PM |
1499 | Although cpu0(), cpu1(), and cpu2() will see their respective reads and |
1500 | writes in order, CPUs not involved in the release-acquire chain might | |
1501 | well disagree on the order. This disagreement stems from the fact that | |
1502 | the weak memory-barrier instructions used to implement smp_load_acquire() | |
1503 | and smp_store_release() are not required to order prior stores against | |
1504 | subsequent loads in all cases. This means that cpu3() can see cpu0()'s | |
1505 | store to u as happening -after- cpu1()'s load from v, even though | |
1506 | both cpu0() and cpu1() agree that these two operations occurred in the | |
1507 | intended order. | |
1508 | ||
1509 | However, please keep in mind that smp_load_acquire() is not magic. | |
1510 | In particular, it simply reads from its argument with ordering. It does | |
1511 | -not- ensure that any particular value will be read. Therefore, the | |
1512 | following outcome is possible: | |
1513 | ||
1514 | r0 == 0 && r1 == 0 && r2 == 0 && r5 == 0 | |
1515 | ||
1516 | Note that this outcome can happen even on a mythical sequentially | |
1517 | consistent system where nothing is ever reordered. | |
1518 | ||
f1ab25a3 PM |
1519 | To reiterate, if your code requires full ordering of all operations, |
1520 | use general barriers throughout. | |
241e6663 PM |
1521 | |
1522 | ||
108b42b4 DH |
1523 | ======================== |
1524 | EXPLICIT KERNEL BARRIERS | |
1525 | ======================== | |
1526 | ||
1527 | The Linux kernel has a variety of different barriers that act at different | |
1528 | levels: | |
1529 | ||
1530 | (*) Compiler barrier. | |
1531 | ||
1532 | (*) CPU memory barriers. | |
1533 | ||
108b42b4 DH |
1534 | |
1535 | COMPILER BARRIER | |
1536 | ---------------- | |
1537 | ||
1538 | The Linux kernel has an explicit compiler barrier function that prevents the | |
1539 | compiler from moving the memory accesses either side of it to the other side: | |
1540 | ||
1541 | barrier(); | |
1542 | ||
9af194ce PM |
1543 | This is a general barrier -- there are no read-read or write-write |
1544 | variants of barrier(). However, READ_ONCE() and WRITE_ONCE() can be | |
1545 | thought of as weak forms of barrier() that affect only the specific | |
1546 | accesses flagged by the READ_ONCE() or WRITE_ONCE(). | |
108b42b4 | 1547 | |
692118da PM |
1548 | The barrier() function has the following effects: |
1549 | ||
1550 | (*) Prevents the compiler from reordering accesses following the | |
1551 | barrier() to precede any accesses preceding the barrier(). | |
1552 | One example use for this property is to ease communication between | |
1553 | interrupt-handler code and the code that was interrupted. | |
1554 | ||
1555 | (*) Within a loop, forces the compiler to load the variables used | |
1556 | in that loop's conditional on each pass through that loop. | |
1557 | ||
9af194ce PM |
1558 | The READ_ONCE() and WRITE_ONCE() functions can prevent any number of |
1559 | optimizations that, while perfectly safe in single-threaded code, can | |
1560 | be fatal in concurrent code. Here are some examples of these sorts | |
1561 | of optimizations: | |
692118da | 1562 | |
449f7413 PM |
1563 | (*) The compiler is within its rights to reorder loads and stores |
1564 | to the same variable, and in some cases, the CPU is within its | |
1565 | rights to reorder loads to the same variable. This means that | |
1566 | the following code: | |
1567 | ||
1568 | a[0] = x; | |
1569 | a[1] = x; | |
1570 | ||
1571 | Might result in an older value of x stored in a[1] than in a[0]. | |
1572 | Prevent both the compiler and the CPU from doing this as follows: | |
1573 | ||
9af194ce PM |
1574 | a[0] = READ_ONCE(x); |
1575 | a[1] = READ_ONCE(x); | |
449f7413 | 1576 | |
9af194ce PM |
1577 | In short, READ_ONCE() and WRITE_ONCE() provide cache coherence for |
1578 | accesses from multiple CPUs to a single variable. | |
449f7413 | 1579 | |
692118da PM |
1580 | (*) The compiler is within its rights to merge successive loads from |
1581 | the same variable. Such merging can cause the compiler to "optimize" | |
1582 | the following code: | |
1583 | ||
1584 | while (tmp = a) | |
1585 | do_something_with(tmp); | |
1586 | ||
1587 | into the following code, which, although in some sense legitimate | |
1588 | for single-threaded code, is almost certainly not what the developer | |
1589 | intended: | |
1590 | ||
1591 | if (tmp = a) | |
1592 | for (;;) | |
1593 | do_something_with(tmp); | |
1594 | ||
9af194ce | 1595 | Use READ_ONCE() to prevent the compiler from doing this to you: |
692118da | 1596 | |
9af194ce | 1597 | while (tmp = READ_ONCE(a)) |
692118da PM |
1598 | do_something_with(tmp); |
1599 | ||
1600 | (*) The compiler is within its rights to reload a variable, for example, | |
1601 | in cases where high register pressure prevents the compiler from | |
1602 | keeping all data of interest in registers. The compiler might | |
1603 | therefore optimize the variable 'tmp' out of our previous example: | |
1604 | ||
1605 | while (tmp = a) | |
1606 | do_something_with(tmp); | |
1607 | ||
1608 | This could result in the following code, which is perfectly safe in | |
1609 | single-threaded code, but can be fatal in concurrent code: | |
1610 | ||
1611 | while (a) | |
1612 | do_something_with(a); | |
1613 | ||
1614 | For example, the optimized version of this code could result in | |
1615 | passing a zero to do_something_with() in the case where the variable | |
1616 | a was modified by some other CPU between the "while" statement and | |
1617 | the call to do_something_with(). | |
1618 | ||
9af194ce | 1619 | Again, use READ_ONCE() to prevent the compiler from doing this: |
692118da | 1620 | |
9af194ce | 1621 | while (tmp = READ_ONCE(a)) |
692118da PM |
1622 | do_something_with(tmp); |
1623 | ||
1624 | Note that if the compiler runs short of registers, it might save | |
1625 | tmp onto the stack. The overhead of this saving and later restoring | |
1626 | is why compilers reload variables. Doing so is perfectly safe for | |
1627 | single-threaded code, so you need to tell the compiler about cases | |
1628 | where it is not safe. | |
1629 | ||
1630 | (*) The compiler is within its rights to omit a load entirely if it knows | |
1631 | what the value will be. For example, if the compiler can prove that | |
1632 | the value of variable 'a' is always zero, it can optimize this code: | |
1633 | ||
1634 | while (tmp = a) | |
1635 | do_something_with(tmp); | |
1636 | ||
1637 | Into this: | |
1638 | ||
1639 | do { } while (0); | |
1640 | ||
9af194ce PM |
1641 | This transformation is a win for single-threaded code because it |
1642 | gets rid of a load and a branch. The problem is that the compiler | |
1643 | will carry out its proof assuming that the current CPU is the only | |
1644 | one updating variable 'a'. If variable 'a' is shared, then the | |
1645 | compiler's proof will be erroneous. Use READ_ONCE() to tell the | |
1646 | compiler that it doesn't know as much as it thinks it does: | |
692118da | 1647 | |
9af194ce | 1648 | while (tmp = READ_ONCE(a)) |
692118da PM |
1649 | do_something_with(tmp); |
1650 | ||
1651 | But please note that the compiler is also closely watching what you | |
9af194ce | 1652 | do with the value after the READ_ONCE(). For example, suppose you |
692118da PM |
1653 | do the following and MAX is a preprocessor macro with the value 1: |
1654 | ||
9af194ce | 1655 | while ((tmp = READ_ONCE(a)) % MAX) |
692118da PM |
1656 | do_something_with(tmp); |
1657 | ||
1658 | Then the compiler knows that the result of the "%" operator applied | |
1659 | to MAX will always be zero, again allowing the compiler to optimize | |
1660 | the code into near-nonexistence. (It will still load from the | |
1661 | variable 'a'.) | |
1662 | ||
1663 | (*) Similarly, the compiler is within its rights to omit a store entirely | |
1664 | if it knows that the variable already has the value being stored. | |
1665 | Again, the compiler assumes that the current CPU is the only one | |
1666 | storing into the variable, which can cause the compiler to do the | |
1667 | wrong thing for shared variables. For example, suppose you have | |
1668 | the following: | |
1669 | ||
1670 | a = 0; | |
65f95ff2 | 1671 | ... Code that does not store to variable a ... |
692118da PM |
1672 | a = 0; |
1673 | ||
1674 | The compiler sees that the value of variable 'a' is already zero, so | |
1675 | it might well omit the second store. This would come as a fatal | |
1676 | surprise if some other CPU might have stored to variable 'a' in the | |
1677 | meantime. | |
1678 | ||
9af194ce | 1679 | Use WRITE_ONCE() to prevent the compiler from making this sort of |
692118da PM |
1680 | wrong guess: |
1681 | ||
9af194ce | 1682 | WRITE_ONCE(a, 0); |
65f95ff2 | 1683 | ... Code that does not store to variable a ... |
9af194ce | 1684 | WRITE_ONCE(a, 0); |
692118da PM |
1685 | |
1686 | (*) The compiler is within its rights to reorder memory accesses unless | |
1687 | you tell it not to. For example, consider the following interaction | |
1688 | between process-level code and an interrupt handler: | |
1689 | ||
1690 | void process_level(void) | |
1691 | { | |
1692 | msg = get_message(); | |
1693 | flag = true; | |
1694 | } | |
1695 | ||
1696 | void interrupt_handler(void) | |
1697 | { | |
1698 | if (flag) | |
1699 | process_message(msg); | |
1700 | } | |
1701 | ||
df5cbb27 | 1702 | There is nothing to prevent the compiler from transforming |
692118da PM |
1703 | process_level() to the following, in fact, this might well be a |
1704 | win for single-threaded code: | |
1705 | ||
1706 | void process_level(void) | |
1707 | { | |
1708 | flag = true; | |
1709 | msg = get_message(); | |
1710 | } | |
1711 | ||
1712 | If the interrupt occurs between these two statement, then | |
9af194ce | 1713 | interrupt_handler() might be passed a garbled msg. Use WRITE_ONCE() |
692118da PM |
1714 | to prevent this as follows: |
1715 | ||
1716 | void process_level(void) | |
1717 | { | |
9af194ce PM |
1718 | WRITE_ONCE(msg, get_message()); |
1719 | WRITE_ONCE(flag, true); | |
692118da PM |
1720 | } |
1721 | ||
1722 | void interrupt_handler(void) | |
1723 | { | |
9af194ce PM |
1724 | if (READ_ONCE(flag)) |
1725 | process_message(READ_ONCE(msg)); | |
692118da PM |
1726 | } |
1727 | ||
9af194ce PM |
1728 | Note that the READ_ONCE() and WRITE_ONCE() wrappers in |
1729 | interrupt_handler() are needed if this interrupt handler can itself | |
1730 | be interrupted by something that also accesses 'flag' and 'msg', | |
1731 | for example, a nested interrupt or an NMI. Otherwise, READ_ONCE() | |
1732 | and WRITE_ONCE() are not needed in interrupt_handler() other than | |
1733 | for documentation purposes. (Note also that nested interrupts | |
1734 | do not typically occur in modern Linux kernels, in fact, if an | |
1735 | interrupt handler returns with interrupts enabled, you will get a | |
1736 | WARN_ONCE() splat.) | |
1737 | ||
1738 | You should assume that the compiler can move READ_ONCE() and | |
1739 | WRITE_ONCE() past code not containing READ_ONCE(), WRITE_ONCE(), | |
1740 | barrier(), or similar primitives. | |
1741 | ||
1742 | This effect could also be achieved using barrier(), but READ_ONCE() | |
1743 | and WRITE_ONCE() are more selective: With READ_ONCE() and | |
1744 | WRITE_ONCE(), the compiler need only forget the contents of the | |
1745 | indicated memory locations, while with barrier() the compiler must | |
8149b5cb | 1746 | discard the value of all memory locations that it has currently |
9af194ce PM |
1747 | cached in any machine registers. Of course, the compiler must also |
1748 | respect the order in which the READ_ONCE()s and WRITE_ONCE()s occur, | |
1749 | though the CPU of course need not do so. | |
692118da PM |
1750 | |
1751 | (*) The compiler is within its rights to invent stores to a variable, | |
1752 | as in the following example: | |
1753 | ||
1754 | if (a) | |
1755 | b = a; | |
1756 | else | |
1757 | b = 42; | |
1758 | ||
1759 | The compiler might save a branch by optimizing this as follows: | |
1760 | ||
1761 | b = 42; | |
1762 | if (a) | |
1763 | b = a; | |
1764 | ||
1765 | In single-threaded code, this is not only safe, but also saves | |
1766 | a branch. Unfortunately, in concurrent code, this optimization | |
1767 | could cause some other CPU to see a spurious value of 42 -- even | |
1768 | if variable 'a' was never zero -- when loading variable 'b'. | |
9af194ce | 1769 | Use WRITE_ONCE() to prevent this as follows: |
692118da PM |
1770 | |
1771 | if (a) | |
9af194ce | 1772 | WRITE_ONCE(b, a); |
692118da | 1773 | else |
9af194ce | 1774 | WRITE_ONCE(b, 42); |
692118da PM |
1775 | |
1776 | The compiler can also invent loads. These are usually less | |
1777 | damaging, but they can result in cache-line bouncing and thus in | |
9af194ce | 1778 | poor performance and scalability. Use READ_ONCE() to prevent |
692118da PM |
1779 | invented loads. |
1780 | ||
1781 | (*) For aligned memory locations whose size allows them to be accessed | |
1782 | with a single memory-reference instruction, prevents "load tearing" | |
1783 | and "store tearing," in which a single large access is replaced by | |
1784 | multiple smaller accesses. For example, given an architecture having | |
1785 | 16-bit store instructions with 7-bit immediate fields, the compiler | |
1786 | might be tempted to use two 16-bit store-immediate instructions to | |
1787 | implement the following 32-bit store: | |
1788 | ||
1789 | p = 0x00010002; | |
1790 | ||
1791 | Please note that GCC really does use this sort of optimization, | |
1792 | which is not surprising given that it would likely take more | |
1793 | than two instructions to build the constant and then store it. | |
1794 | This optimization can therefore be a win in single-threaded code. | |
1795 | In fact, a recent bug (since fixed) caused GCC to incorrectly use | |
1796 | this optimization in a volatile store. In the absence of such bugs, | |
9af194ce | 1797 | use of WRITE_ONCE() prevents store tearing in the following example: |
692118da | 1798 | |
9af194ce | 1799 | WRITE_ONCE(p, 0x00010002); |
692118da PM |
1800 | |
1801 | Use of packed structures can also result in load and store tearing, | |
1802 | as in this example: | |
1803 | ||
1804 | struct __attribute__((__packed__)) foo { | |
1805 | short a; | |
1806 | int b; | |
1807 | short c; | |
1808 | }; | |
1809 | struct foo foo1, foo2; | |
1810 | ... | |
1811 | ||
1812 | foo2.a = foo1.a; | |
1813 | foo2.b = foo1.b; | |
1814 | foo2.c = foo1.c; | |
1815 | ||
9af194ce PM |
1816 | Because there are no READ_ONCE() or WRITE_ONCE() wrappers and no |
1817 | volatile markings, the compiler would be well within its rights to | |
1818 | implement these three assignment statements as a pair of 32-bit | |
1819 | loads followed by a pair of 32-bit stores. This would result in | |
1820 | load tearing on 'foo1.b' and store tearing on 'foo2.b'. READ_ONCE() | |
1821 | and WRITE_ONCE() again prevent tearing in this example: | |
692118da PM |
1822 | |
1823 | foo2.a = foo1.a; | |
9af194ce | 1824 | WRITE_ONCE(foo2.b, READ_ONCE(foo1.b)); |
692118da PM |
1825 | foo2.c = foo1.c; |
1826 | ||
9af194ce PM |
1827 | All that aside, it is never necessary to use READ_ONCE() and |
1828 | WRITE_ONCE() on a variable that has been marked volatile. For example, | |
1829 | because 'jiffies' is marked volatile, it is never necessary to | |
1830 | say READ_ONCE(jiffies). The reason for this is that READ_ONCE() and | |
1831 | WRITE_ONCE() are implemented as volatile casts, which has no effect when | |
1832 | its argument is already marked volatile. | |
692118da PM |
1833 | |
1834 | Please note that these compiler barriers have no direct effect on the CPU, | |
1835 | which may then reorder things however it wishes. | |
108b42b4 DH |
1836 | |
1837 | ||
1838 | CPU MEMORY BARRIERS | |
1839 | ------------------- | |
1840 | ||
203185f6 | 1841 | The Linux kernel has seven basic CPU memory barriers: |
108b42b4 | 1842 | |
203185f6 AY |
1843 | TYPE MANDATORY SMP CONDITIONAL |
1844 | ======================= =============== =============== | |
1845 | GENERAL mb() smp_mb() | |
1846 | WRITE wmb() smp_wmb() | |
1847 | READ rmb() smp_rmb() | |
1848 | ADDRESS DEPENDENCY READ_ONCE() | |
108b42b4 DH |
1849 | |
1850 | ||
203185f6 AY |
1851 | All memory barriers except the address-dependency barriers imply a compiler |
1852 | barrier. Address dependencies do not impose any additional compiler ordering. | |
73f10281 | 1853 | |
203185f6 | 1854 | Aside: In the case of address dependencies, the compiler would be expected |
9af194ce PM |
1855 | to issue the loads in the correct order (eg. `a[b]` would have to load |
1856 | the value of b before loading a[b]), however there is no guarantee in | |
1857 | the C specification that the compiler may not speculate the value of b | |
8149b5cb | 1858 | (eg. is equal to 1) and load a[b] before b (eg. tmp = a[1]; if (b != 1) |
0b6fa347 SP |
1859 | tmp = a[b]; ). There is also the problem of a compiler reloading b after |
1860 | having loaded a[b], thus having a newer copy of b than a[b]. A consensus | |
9af194ce PM |
1861 | has not yet been reached about these problems, however the READ_ONCE() |
1862 | macro is a good place to start looking. | |
108b42b4 DH |
1863 | |
1864 | SMP memory barriers are reduced to compiler barriers on uniprocessor compiled | |
81fc6323 | 1865 | systems because it is assumed that a CPU will appear to be self-consistent, |
108b42b4 | 1866 | and will order overlapping accesses correctly with respect to itself. |
6a65d263 | 1867 | However, see the subsection on "Virtual Machine Guests" below. |
108b42b4 DH |
1868 | |
1869 | [!] Note that SMP memory barriers _must_ be used to control the ordering of | |
1870 | references to shared memory on SMP systems, though the use of locking instead | |
1871 | is sufficient. | |
1872 | ||
1873 | Mandatory barriers should not be used to control SMP effects, since mandatory | |
6a65d263 MT |
1874 | barriers impose unnecessary overhead on both SMP and UP systems. They may, |
1875 | however, be used to control MMIO effects on accesses through relaxed memory I/O | |
1876 | windows. These barriers are required even on non-SMP systems as they affect | |
1877 | the order in which memory operations appear to a device by prohibiting both the | |
1878 | compiler and the CPU from reordering them. | |
108b42b4 DH |
1879 | |
1880 | ||
1881 | There are some more advanced barrier functions: | |
1882 | ||
b92b8b35 | 1883 | (*) smp_store_mb(var, value) |
108b42b4 | 1884 | |
75b2bd55 | 1885 | This assigns the value to the variable and then inserts a full memory |
2d142e59 DB |
1886 | barrier after it. It isn't guaranteed to insert anything more than a |
1887 | compiler barrier in a UP compilation. | |
108b42b4 DH |
1888 | |
1889 | ||
1b15611e PZ |
1890 | (*) smp_mb__before_atomic(); |
1891 | (*) smp_mb__after_atomic(); | |
108b42b4 | 1892 | |
39323c64 MS |
1893 | These are for use with atomic RMW functions that do not imply memory |
1894 | barriers, but where the code needs a memory barrier. Examples for atomic | |
d8566f15 | 1895 | RMW functions that do not imply a memory barrier are e.g. add, |
39323c64 MS |
1896 | subtract, (failed) conditional operations, _relaxed functions, |
1897 | but not atomic_read or atomic_set. A common example where a memory | |
1898 | barrier may be required is when atomic ops are used for reference | |
1899 | counting. | |
1900 | ||
1901 | These are also used for atomic RMW bitop functions that do not imply a | |
1902 | memory barrier (such as set_bit and clear_bit). | |
108b42b4 DH |
1903 | |
1904 | As an example, consider a piece of code that marks an object as being dead | |
1905 | and then decrements the object's reference count: | |
1906 | ||
1907 | obj->dead = 1; | |
1b15611e | 1908 | smp_mb__before_atomic(); |
108b42b4 DH |
1909 | atomic_dec(&obj->ref_count); |
1910 | ||
1911 | This makes sure that the death mark on the object is perceived to be set | |
1912 | *before* the reference counter is decremented. | |
1913 | ||
706eeb3e | 1914 | See Documentation/atomic_{t,bitops}.txt for more information. |
108b42b4 DH |
1915 | |
1916 | ||
1077fa36 AD |
1917 | (*) dma_wmb(); |
1918 | (*) dma_rmb(); | |
ed59dfd9 | 1919 | (*) dma_mb(); |
1077fa36 AD |
1920 | |
1921 | These are for use with consistent memory to guarantee the ordering | |
1922 | of writes or reads of shared memory accessible to both the CPU and a | |
289e1c89 PP |
1923 | DMA capable device. See Documentation/core-api/dma-api.rst file for more |
1924 | information about consistent memory. | |
1077fa36 AD |
1925 | |
1926 | For example, consider a device driver that shares memory with a device | |
1927 | and uses a descriptor status value to indicate if the descriptor belongs | |
1928 | to the device or the CPU, and a doorbell to notify it when new | |
1929 | descriptors are available: | |
1930 | ||
1931 | if (desc->status != DEVICE_OWN) { | |
1932 | /* do not read data until we own descriptor */ | |
1933 | dma_rmb(); | |
1934 | ||
1935 | /* read/modify data */ | |
1936 | read_data = desc->data; | |
1937 | desc->data = write_data; | |
1938 | ||
1939 | /* flush modifications before status update */ | |
1940 | dma_wmb(); | |
1941 | ||
1942 | /* assign ownership */ | |
1943 | desc->status = DEVICE_OWN; | |
1944 | ||
289e1c89 PP |
1945 | /* Make descriptor status visible to the device followed by |
1946 | * notify device of new descriptor | |
1947 | */ | |
1077fa36 AD |
1948 | writel(DESC_NOTIFY, doorbell); |
1949 | } | |
1950 | ||
289e1c89 | 1951 | The dma_rmb() allows us to guarantee that the device has released ownership |
7a458007 | 1952 | before we read the data from the descriptor, and the dma_wmb() allows |
1077fa36 | 1953 | us to guarantee the data is written to the descriptor before the device |
ed59dfd9 | 1954 | can see it now has ownership. The dma_mb() implies both a dma_rmb() and |
289e1c89 PP |
1955 | a dma_wmb(). |
1956 | ||
1957 | Note that the dma_*() barriers do not provide any ordering guarantees for | |
1958 | accesses to MMIO regions. See the later "KERNEL I/O BARRIER EFFECTS" | |
1959 | subsection for more information about I/O accessors and MMIO ordering. | |
1077fa36 | 1960 | |
3e79f082 AK |
1961 | (*) pmem_wmb(); |
1962 | ||
1963 | This is for use with persistent memory to ensure that stores for which | |
1964 | modifications are written to persistent storage reached a platform | |
1965 | durability domain. | |
1966 | ||
1967 | For example, after a non-temporal write to pmem region, we use pmem_wmb() | |
1968 | to ensure that stores have reached a platform durability domain. This ensures | |
1969 | that stores have updated persistent storage before any data access or | |
1970 | data transfer caused by subsequent instructions is initiated. This is | |
1971 | in addition to the ordering done by wmb(). | |
1972 | ||
1973 | For load from persistent memory, existing read memory barriers are sufficient | |
1974 | to ensure read ordering. | |
dfeccea6 | 1975 | |
d5624bb2 XW |
1976 | (*) io_stop_wc(); |
1977 | ||
1978 | For memory accesses with write-combining attributes (e.g. those returned | |
1ab8f248 | 1979 | by ioremap_wc()), the CPU may wait for prior accesses to be merged with |
d5624bb2 XW |
1980 | subsequent ones. io_stop_wc() can be used to prevent the merging of |
1981 | write-combining memory accesses before this macro with those after it when | |
1982 | such wait has performance implications. | |
1983 | ||
108b42b4 DH |
1984 | =============================== |
1985 | IMPLICIT KERNEL MEMORY BARRIERS | |
1986 | =============================== | |
1987 | ||
1988 | Some of the other functions in the linux kernel imply memory barriers, amongst | |
670bd95e | 1989 | which are locking and scheduling functions. |
108b42b4 DH |
1990 | |
1991 | This specification is a _minimum_ guarantee; any particular architecture may | |
1992 | provide more substantial guarantees, but these may not be relied upon outside | |
1993 | of arch specific code. | |
1994 | ||
1995 | ||
166bda71 SP |
1996 | LOCK ACQUISITION FUNCTIONS |
1997 | -------------------------- | |
108b42b4 DH |
1998 | |
1999 | The Linux kernel has a number of locking constructs: | |
2000 | ||
2001 | (*) spin locks | |
2002 | (*) R/W spin locks | |
2003 | (*) mutexes | |
2004 | (*) semaphores | |
2005 | (*) R/W semaphores | |
108b42b4 | 2006 | |
2e4f5382 | 2007 | In all cases there are variants on "ACQUIRE" operations and "RELEASE" operations |
108b42b4 DH |
2008 | for each construct. These operations all imply certain barriers: |
2009 | ||
2e4f5382 | 2010 | (1) ACQUIRE operation implication: |
108b42b4 | 2011 | |
2e4f5382 PZ |
2012 | Memory operations issued after the ACQUIRE will be completed after the |
2013 | ACQUIRE operation has completed. | |
108b42b4 | 2014 | |
8dd853d7 | 2015 | Memory operations issued before the ACQUIRE may be completed after |
a9668cd6 | 2016 | the ACQUIRE operation has completed. |
108b42b4 | 2017 | |
2e4f5382 | 2018 | (2) RELEASE operation implication: |
108b42b4 | 2019 | |
2e4f5382 PZ |
2020 | Memory operations issued before the RELEASE will be completed before the |
2021 | RELEASE operation has completed. | |
108b42b4 | 2022 | |
2e4f5382 PZ |
2023 | Memory operations issued after the RELEASE may be completed before the |
2024 | RELEASE operation has completed. | |
108b42b4 | 2025 | |
2e4f5382 | 2026 | (3) ACQUIRE vs ACQUIRE implication: |
108b42b4 | 2027 | |
2e4f5382 PZ |
2028 | All ACQUIRE operations issued before another ACQUIRE operation will be |
2029 | completed before that ACQUIRE operation. | |
108b42b4 | 2030 | |
2e4f5382 | 2031 | (4) ACQUIRE vs RELEASE implication: |
108b42b4 | 2032 | |
2e4f5382 PZ |
2033 | All ACQUIRE operations issued before a RELEASE operation will be |
2034 | completed before the RELEASE operation. | |
108b42b4 | 2035 | |
2e4f5382 | 2036 | (5) Failed conditional ACQUIRE implication: |
108b42b4 | 2037 | |
2e4f5382 PZ |
2038 | Certain locking variants of the ACQUIRE operation may fail, either due to |
2039 | being unable to get the lock immediately, or due to receiving an unblocked | |
806654a9 | 2040 | signal while asleep waiting for the lock to become available. Failed |
108b42b4 DH |
2041 | locks do not imply any sort of barrier. |
2042 | ||
2e4f5382 PZ |
2043 | [!] Note: one of the consequences of lock ACQUIREs and RELEASEs being only |
2044 | one-way barriers is that the effects of instructions outside of a critical | |
2045 | section may seep into the inside of the critical section. | |
108b42b4 | 2046 | |
2e4f5382 PZ |
2047 | An ACQUIRE followed by a RELEASE may not be assumed to be full memory barrier |
2048 | because it is possible for an access preceding the ACQUIRE to happen after the | |
2049 | ACQUIRE, and an access following the RELEASE to happen before the RELEASE, and | |
2050 | the two accesses can themselves then cross: | |
670bd95e DH |
2051 | |
2052 | *A = a; | |
2e4f5382 PZ |
2053 | ACQUIRE M |
2054 | RELEASE M | |
670bd95e DH |
2055 | *B = b; |
2056 | ||
2057 | may occur as: | |
2058 | ||
2e4f5382 | 2059 | ACQUIRE M, STORE *B, STORE *A, RELEASE M |
17eb88e0 | 2060 | |
8dd853d7 PM |
2061 | When the ACQUIRE and RELEASE are a lock acquisition and release, |
2062 | respectively, this same reordering can occur if the lock's ACQUIRE and | |
2063 | RELEASE are to the same lock variable, but only from the perspective of | |
2064 | another CPU not holding that lock. In short, a ACQUIRE followed by an | |
2065 | RELEASE may -not- be assumed to be a full memory barrier. | |
2066 | ||
12d560f4 PM |
2067 | Similarly, the reverse case of a RELEASE followed by an ACQUIRE does |
2068 | not imply a full memory barrier. Therefore, the CPU's execution of the | |
2069 | critical sections corresponding to the RELEASE and the ACQUIRE can cross, | |
2070 | so that: | |
17eb88e0 PM |
2071 | |
2072 | *A = a; | |
2e4f5382 PZ |
2073 | RELEASE M |
2074 | ACQUIRE N | |
17eb88e0 PM |
2075 | *B = b; |
2076 | ||
2077 | could occur as: | |
2078 | ||
2e4f5382 | 2079 | ACQUIRE N, STORE *B, STORE *A, RELEASE M |
17eb88e0 | 2080 | |
8dd853d7 PM |
2081 | It might appear that this reordering could introduce a deadlock. |
2082 | However, this cannot happen because if such a deadlock threatened, | |
2083 | the RELEASE would simply complete, thereby avoiding the deadlock. | |
2084 | ||
2085 | Why does this work? | |
2086 | ||
2087 | One key point is that we are only talking about the CPU doing | |
2088 | the reordering, not the compiler. If the compiler (or, for | |
2089 | that matter, the developer) switched the operations, deadlock | |
2090 | -could- occur. | |
2091 | ||
2092 | But suppose the CPU reordered the operations. In this case, | |
2093 | the unlock precedes the lock in the assembly code. The CPU | |
2094 | simply elected to try executing the later lock operation first. | |
2095 | If there is a deadlock, this lock operation will simply spin (or | |
2096 | try to sleep, but more on that later). The CPU will eventually | |
2097 | execute the unlock operation (which preceded the lock operation | |
2098 | in the assembly code), which will unravel the potential deadlock, | |
2099 | allowing the lock operation to succeed. | |
2100 | ||
2101 | But what if the lock is a sleeplock? In that case, the code will | |
2102 | try to enter the scheduler, where it will eventually encounter | |
2103 | a memory barrier, which will force the earlier unlock operation | |
2104 | to complete, again unraveling the deadlock. There might be | |
2105 | a sleep-unlock race, but the locking primitive needs to resolve | |
2106 | such races properly in any case. | |
2107 | ||
108b42b4 DH |
2108 | Locks and semaphores may not provide any guarantee of ordering on UP compiled |
2109 | systems, and so cannot be counted on in such a situation to actually achieve | |
2110 | anything at all - especially with respect to I/O accesses - unless combined | |
2111 | with interrupt disabling operations. | |
2112 | ||
d7cab36d | 2113 | See also the section on "Inter-CPU acquiring barrier effects". |
108b42b4 DH |
2114 | |
2115 | ||
2116 | As an example, consider the following: | |
2117 | ||
2118 | *A = a; | |
2119 | *B = b; | |
2e4f5382 | 2120 | ACQUIRE |
108b42b4 DH |
2121 | *C = c; |
2122 | *D = d; | |
2e4f5382 | 2123 | RELEASE |
108b42b4 DH |
2124 | *E = e; |
2125 | *F = f; | |
2126 | ||
2127 | The following sequence of events is acceptable: | |
2128 | ||
2e4f5382 | 2129 | ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE |
108b42b4 DH |
2130 | |
2131 | [+] Note that {*F,*A} indicates a combined access. | |
2132 | ||
2133 | But none of the following are: | |
2134 | ||
2e4f5382 PZ |
2135 | {*F,*A}, *B, ACQUIRE, *C, *D, RELEASE, *E |
2136 | *A, *B, *C, ACQUIRE, *D, RELEASE, *E, *F | |
2137 | *A, *B, ACQUIRE, *C, RELEASE, *D, *E, *F | |
2138 | *B, ACQUIRE, *C, *D, RELEASE, {*F,*A}, *E | |
108b42b4 DH |
2139 | |
2140 | ||
2141 | ||
2142 | INTERRUPT DISABLING FUNCTIONS | |
2143 | ----------------------------- | |
2144 | ||
2e4f5382 PZ |
2145 | Functions that disable interrupts (ACQUIRE equivalent) and enable interrupts |
2146 | (RELEASE equivalent) will act as compiler barriers only. So if memory or I/O | |
108b42b4 DH |
2147 | barriers are required in such a situation, they must be provided from some |
2148 | other means. | |
2149 | ||
2150 | ||
50fa610a DH |
2151 | SLEEP AND WAKE-UP FUNCTIONS |
2152 | --------------------------- | |
2153 | ||
2154 | Sleeping and waking on an event flagged in global data can be viewed as an | |
2155 | interaction between two pieces of data: the task state of the task waiting for | |
2156 | the event and the global data used to indicate the event. To make sure that | |
2157 | these appear to happen in the right order, the primitives to begin the process | |
2158 | of going to sleep, and the primitives to initiate a wake up imply certain | |
2159 | barriers. | |
2160 | ||
2161 | Firstly, the sleeper normally follows something like this sequence of events: | |
2162 | ||
2163 | for (;;) { | |
2164 | set_current_state(TASK_UNINTERRUPTIBLE); | |
2165 | if (event_indicated) | |
2166 | break; | |
2167 | schedule(); | |
2168 | } | |
2169 | ||
2170 | A general memory barrier is interpolated automatically by set_current_state() | |
2171 | after it has altered the task state: | |
2172 | ||
2173 | CPU 1 | |
2174 | =============================== | |
2175 | set_current_state(); | |
b92b8b35 | 2176 | smp_store_mb(); |
50fa610a DH |
2177 | STORE current->state |
2178 | <general barrier> | |
2179 | LOAD event_indicated | |
2180 | ||
2181 | set_current_state() may be wrapped by: | |
2182 | ||
2183 | prepare_to_wait(); | |
2184 | prepare_to_wait_exclusive(); | |
2185 | ||
2186 | which therefore also imply a general memory barrier after setting the state. | |
2187 | The whole sequence above is available in various canned forms, all of which | |
2188 | interpolate the memory barrier in the right place: | |
2189 | ||
2190 | wait_event(); | |
2191 | wait_event_interruptible(); | |
2192 | wait_event_interruptible_exclusive(); | |
2193 | wait_event_interruptible_timeout(); | |
2194 | wait_event_killable(); | |
2195 | wait_event_timeout(); | |
2196 | wait_on_bit(); | |
2197 | wait_on_bit_lock(); | |
2198 | ||
2199 | ||
2200 | Secondly, code that performs a wake up normally follows something like this: | |
2201 | ||
2202 | event_indicated = 1; | |
2203 | wake_up(&event_wait_queue); | |
2204 | ||
2205 | or: | |
2206 | ||
2207 | event_indicated = 1; | |
2208 | wake_up_process(event_daemon); | |
2209 | ||
7696f991 AP |
2210 | A general memory barrier is executed by wake_up() if it wakes something up. |
2211 | If it doesn't wake anything up then a memory barrier may or may not be | |
2212 | executed; you must not rely on it. The barrier occurs before the task state | |
2213 | is accessed, in particular, it sits between the STORE to indicate the event | |
2214 | and the STORE to set TASK_RUNNING: | |
50fa610a | 2215 | |
7696f991 | 2216 | CPU 1 (Sleeper) CPU 2 (Waker) |
50fa610a DH |
2217 | =============================== =============================== |
2218 | set_current_state(); STORE event_indicated | |
b92b8b35 | 2219 | smp_store_mb(); wake_up(); |
7696f991 AP |
2220 | STORE current->state ... |
2221 | <general barrier> <general barrier> | |
2222 | LOAD event_indicated if ((LOAD task->state) & TASK_NORMAL) | |
2223 | STORE task->state | |
50fa610a | 2224 | |
7696f991 AP |
2225 | where "task" is the thread being woken up and it equals CPU 1's "current". |
2226 | ||
2227 | To repeat, a general memory barrier is guaranteed to be executed by wake_up() | |
2228 | if something is actually awakened, but otherwise there is no such guarantee. | |
2229 | To see this, consider the following sequence of events, where X and Y are both | |
2230 | initially zero: | |
5726ce06 PM |
2231 | |
2232 | CPU 1 CPU 2 | |
2233 | =============================== =============================== | |
7696f991 | 2234 | X = 1; Y = 1; |
5726ce06 | 2235 | smp_mb(); wake_up(); |
7696f991 AP |
2236 | LOAD Y LOAD X |
2237 | ||
2238 | If a wakeup does occur, one (at least) of the two loads must see 1. If, on | |
2239 | the other hand, a wakeup does not occur, both loads might see 0. | |
5726ce06 | 2240 | |
7696f991 AP |
2241 | wake_up_process() always executes a general memory barrier. The barrier again |
2242 | occurs before the task state is accessed. In particular, if the wake_up() in | |
2243 | the previous snippet were replaced by a call to wake_up_process() then one of | |
2244 | the two loads would be guaranteed to see 1. | |
5726ce06 | 2245 | |
50fa610a DH |
2246 | The available waker functions include: |
2247 | ||
2248 | complete(); | |
2249 | wake_up(); | |
2250 | wake_up_all(); | |
2251 | wake_up_bit(); | |
2252 | wake_up_interruptible(); | |
2253 | wake_up_interruptible_all(); | |
2254 | wake_up_interruptible_nr(); | |
2255 | wake_up_interruptible_poll(); | |
2256 | wake_up_interruptible_sync(); | |
2257 | wake_up_interruptible_sync_poll(); | |
2258 | wake_up_locked(); | |
2259 | wake_up_locked_poll(); | |
2260 | wake_up_nr(); | |
2261 | wake_up_poll(); | |
2262 | wake_up_process(); | |
2263 | ||
7696f991 AP |
2264 | In terms of memory ordering, these functions all provide the same guarantees of |
2265 | a wake_up() (or stronger). | |
50fa610a DH |
2266 | |
2267 | [!] Note that the memory barriers implied by the sleeper and the waker do _not_ | |
2268 | order multiple stores before the wake-up with respect to loads of those stored | |
2269 | values after the sleeper has called set_current_state(). For instance, if the | |
2270 | sleeper does: | |
2271 | ||
2272 | set_current_state(TASK_INTERRUPTIBLE); | |
2273 | if (event_indicated) | |
2274 | break; | |
2275 | __set_current_state(TASK_RUNNING); | |
2276 | do_something(my_data); | |
2277 | ||
2278 | and the waker does: | |
2279 | ||
2280 | my_data = value; | |
2281 | event_indicated = 1; | |
2282 | wake_up(&event_wait_queue); | |
2283 | ||
2284 | there's no guarantee that the change to event_indicated will be perceived by | |
2285 | the sleeper as coming after the change to my_data. In such a circumstance, the | |
2286 | code on both sides must interpolate its own memory barriers between the | |
2287 | separate data accesses. Thus the above sleeper ought to do: | |
2288 | ||
2289 | set_current_state(TASK_INTERRUPTIBLE); | |
2290 | if (event_indicated) { | |
2291 | smp_rmb(); | |
2292 | do_something(my_data); | |
2293 | } | |
2294 | ||
2295 | and the waker should do: | |
2296 | ||
2297 | my_data = value; | |
2298 | smp_wmb(); | |
2299 | event_indicated = 1; | |
2300 | wake_up(&event_wait_queue); | |
2301 | ||
2302 | ||
108b42b4 DH |
2303 | MISCELLANEOUS FUNCTIONS |
2304 | ----------------------- | |
2305 | ||
2306 | Other functions that imply barriers: | |
2307 | ||
2308 | (*) schedule() and similar imply full memory barriers. | |
2309 | ||
108b42b4 | 2310 | |
2e4f5382 PZ |
2311 | =================================== |
2312 | INTER-CPU ACQUIRING BARRIER EFFECTS | |
2313 | =================================== | |
108b42b4 DH |
2314 | |
2315 | On SMP systems locking primitives give a more substantial form of barrier: one | |
2316 | that does affect memory access ordering on other CPUs, within the context of | |
2317 | conflict on any particular lock. | |
2318 | ||
2319 | ||
2e4f5382 PZ |
2320 | ACQUIRES VS MEMORY ACCESSES |
2321 | --------------------------- | |
108b42b4 | 2322 | |
79afecfa | 2323 | Consider the following: the system has a pair of spinlocks (M) and (Q), and |
108b42b4 DH |
2324 | three CPUs; then should the following sequence of events occur: |
2325 | ||
2326 | CPU 1 CPU 2 | |
2327 | =============================== =============================== | |
9af194ce | 2328 | WRITE_ONCE(*A, a); WRITE_ONCE(*E, e); |
2e4f5382 | 2329 | ACQUIRE M ACQUIRE Q |
9af194ce PM |
2330 | WRITE_ONCE(*B, b); WRITE_ONCE(*F, f); |
2331 | WRITE_ONCE(*C, c); WRITE_ONCE(*G, g); | |
2e4f5382 | 2332 | RELEASE M RELEASE Q |
9af194ce | 2333 | WRITE_ONCE(*D, d); WRITE_ONCE(*H, h); |
108b42b4 | 2334 | |
81fc6323 | 2335 | Then there is no guarantee as to what order CPU 3 will see the accesses to *A |
108b42b4 | 2336 | through *H occur in, other than the constraints imposed by the separate locks |
0b6fa347 | 2337 | on the separate CPUs. It might, for example, see: |
108b42b4 | 2338 | |
2e4f5382 | 2339 | *E, ACQUIRE M, ACQUIRE Q, *G, *C, *F, *A, *B, RELEASE Q, *D, *H, RELEASE M |
108b42b4 DH |
2340 | |
2341 | But it won't see any of: | |
2342 | ||
2e4f5382 PZ |
2343 | *B, *C or *D preceding ACQUIRE M |
2344 | *A, *B or *C following RELEASE M | |
2345 | *F, *G or *H preceding ACQUIRE Q | |
2346 | *E, *F or *G following RELEASE Q | |
108b42b4 DH |
2347 | |
2348 | ||
108b42b4 DH |
2349 | ================================= |
2350 | WHERE ARE MEMORY BARRIERS NEEDED? | |
2351 | ================================= | |
2352 | ||
2353 | Under normal operation, memory operation reordering is generally not going to | |
2354 | be a problem as a single-threaded linear piece of code will still appear to | |
50fa610a | 2355 | work correctly, even if it's in an SMP kernel. There are, however, four |
108b42b4 DH |
2356 | circumstances in which reordering definitely _could_ be a problem: |
2357 | ||
2358 | (*) Interprocessor interaction. | |
2359 | ||
2360 | (*) Atomic operations. | |
2361 | ||
81fc6323 | 2362 | (*) Accessing devices. |
108b42b4 DH |
2363 | |
2364 | (*) Interrupts. | |
2365 | ||
2366 | ||
2367 | INTERPROCESSOR INTERACTION | |
2368 | -------------------------- | |
2369 | ||
2370 | When there's a system with more than one processor, more than one CPU in the | |
2371 | system may be working on the same data set at the same time. This can cause | |
2372 | synchronisation problems, and the usual way of dealing with them is to use | |
2373 | locks. Locks, however, are quite expensive, and so it may be preferable to | |
2374 | operate without the use of a lock if at all possible. In such a case | |
2375 | operations that affect both CPUs may have to be carefully ordered to prevent | |
2376 | a malfunction. | |
2377 | ||
2378 | Consider, for example, the R/W semaphore slow path. Here a waiting process is | |
2379 | queued on the semaphore, by virtue of it having a piece of its stack linked to | |
2380 | the semaphore's list of waiting processes: | |
2381 | ||
2382 | struct rw_semaphore { | |
2383 | ... | |
2384 | spinlock_t lock; | |
2385 | struct list_head waiters; | |
2386 | }; | |
2387 | ||
2388 | struct rwsem_waiter { | |
2389 | struct list_head list; | |
2390 | struct task_struct *task; | |
2391 | }; | |
2392 | ||
2393 | To wake up a particular waiter, the up_read() or up_write() functions have to: | |
2394 | ||
2395 | (1) read the next pointer from this waiter's record to know as to where the | |
2396 | next waiter record is; | |
2397 | ||
81fc6323 | 2398 | (2) read the pointer to the waiter's task structure; |
108b42b4 DH |
2399 | |
2400 | (3) clear the task pointer to tell the waiter it has been given the semaphore; | |
2401 | ||
2402 | (4) call wake_up_process() on the task; and | |
2403 | ||
2404 | (5) release the reference held on the waiter's task struct. | |
2405 | ||
81fc6323 | 2406 | In other words, it has to perform this sequence of events: |
108b42b4 DH |
2407 | |
2408 | LOAD waiter->list.next; | |
2409 | LOAD waiter->task; | |
2410 | STORE waiter->task; | |
2411 | CALL wakeup | |
2412 | RELEASE task | |
2413 | ||
2414 | and if any of these steps occur out of order, then the whole thing may | |
2415 | malfunction. | |
2416 | ||
2417 | Once it has queued itself and dropped the semaphore lock, the waiter does not | |
2418 | get the lock again; it instead just waits for its task pointer to be cleared | |
2419 | before proceeding. Since the record is on the waiter's stack, this means that | |
2420 | if the task pointer is cleared _before_ the next pointer in the list is read, | |
2421 | another CPU might start processing the waiter and might clobber the waiter's | |
2422 | stack before the up*() function has a chance to read the next pointer. | |
2423 | ||
2424 | Consider then what might happen to the above sequence of events: | |
2425 | ||
2426 | CPU 1 CPU 2 | |
2427 | =============================== =============================== | |
2428 | down_xxx() | |
2429 | Queue waiter | |
2430 | Sleep | |
2431 | up_yyy() | |
2432 | LOAD waiter->task; | |
2433 | STORE waiter->task; | |
2434 | Woken up by other event | |
2435 | <preempt> | |
2436 | Resume processing | |
2437 | down_xxx() returns | |
2438 | call foo() | |
2439 | foo() clobbers *waiter | |
2440 | </preempt> | |
2441 | LOAD waiter->list.next; | |
2442 | --- OOPS --- | |
2443 | ||
2444 | This could be dealt with using the semaphore lock, but then the down_xxx() | |
2445 | function has to needlessly get the spinlock again after being woken up. | |
2446 | ||
2447 | The way to deal with this is to insert a general SMP memory barrier: | |
2448 | ||
2449 | LOAD waiter->list.next; | |
2450 | LOAD waiter->task; | |
2451 | smp_mb(); | |
2452 | STORE waiter->task; | |
2453 | CALL wakeup | |
2454 | RELEASE task | |
2455 | ||
2456 | In this case, the barrier makes a guarantee that all memory accesses before the | |
2457 | barrier will appear to happen before all the memory accesses after the barrier | |
2458 | with respect to the other CPUs on the system. It does _not_ guarantee that all | |
2459 | the memory accesses before the barrier will be complete by the time the barrier | |
2460 | instruction itself is complete. | |
2461 | ||
2462 | On a UP system - where this wouldn't be a problem - the smp_mb() is just a | |
2463 | compiler barrier, thus making sure the compiler emits the instructions in the | |
6bc39274 DH |
2464 | right order without actually intervening in the CPU. Since there's only one |
2465 | CPU, that CPU's dependency ordering logic will take care of everything else. | |
108b42b4 DH |
2466 | |
2467 | ||
2468 | ATOMIC OPERATIONS | |
2469 | ----------------- | |
2470 | ||
806654a9 | 2471 | While they are technically interprocessor interaction considerations, atomic |
dbc8700e DH |
2472 | operations are noted specially as some of them imply full memory barriers and |
2473 | some don't, but they're very heavily relied on as a group throughout the | |
2474 | kernel. | |
2475 | ||
706eeb3e | 2476 | See Documentation/atomic_t.txt for more information. |
108b42b4 DH |
2477 | |
2478 | ||
2479 | ACCESSING DEVICES | |
2480 | ----------------- | |
2481 | ||
2482 | Many devices can be memory mapped, and so appear to the CPU as if they're just | |
2483 | a set of memory locations. To control such a device, the driver usually has to | |
2484 | make the right memory accesses in exactly the right order. | |
2485 | ||
2486 | However, having a clever CPU or a clever compiler creates a potential problem | |
2487 | in that the carefully sequenced accesses in the driver code won't reach the | |
2488 | device in the requisite order if the CPU or the compiler thinks it is more | |
2489 | efficient to reorder, combine or merge accesses - something that would cause | |
2490 | the device to malfunction. | |
2491 | ||
2492 | Inside of the Linux kernel, I/O should be done through the appropriate accessor | |
2493 | routines - such as inb() or writel() - which know how to make such accesses | |
806654a9 | 2494 | appropriately sequential. While this, for the most part, renders the explicit |
91553039 WD |
2495 | use of memory barriers unnecessary, if the accessor functions are used to refer |
2496 | to an I/O memory window with relaxed memory access properties, then _mandatory_ | |
2497 | memory barriers are required to enforce ordering. | |
108b42b4 | 2498 | |
0fe397f0 | 2499 | See Documentation/driver-api/device-io.rst for more information. |
108b42b4 DH |
2500 | |
2501 | ||
2502 | INTERRUPTS | |
2503 | ---------- | |
2504 | ||
2505 | A driver may be interrupted by its own interrupt service routine, and thus the | |
2506 | two parts of the driver may interfere with each other's attempts to control or | |
2507 | access the device. | |
2508 | ||
2509 | This may be alleviated - at least in part - by disabling local interrupts (a | |
2510 | form of locking), such that the critical operations are all contained within | |
806654a9 | 2511 | the interrupt-disabled section in the driver. While the driver's interrupt |
108b42b4 DH |
2512 | routine is executing, the driver's core may not run on the same CPU, and its |
2513 | interrupt is not permitted to happen again until the current interrupt has been | |
2514 | handled, thus the interrupt handler does not need to lock against that. | |
2515 | ||
2516 | However, consider a driver that was talking to an ethernet card that sports an | |
2517 | address register and a data register. If that driver's core talks to the card | |
2518 | under interrupt-disablement and then the driver's interrupt handler is invoked: | |
2519 | ||
2520 | LOCAL IRQ DISABLE | |
2521 | writew(ADDR, 3); | |
2522 | writew(DATA, y); | |
2523 | LOCAL IRQ ENABLE | |
2524 | <interrupt> | |
2525 | writew(ADDR, 4); | |
2526 | q = readw(DATA); | |
2527 | </interrupt> | |
2528 | ||
2529 | The store to the data register might happen after the second store to the | |
2530 | address register if ordering rules are sufficiently relaxed: | |
2531 | ||
2532 | STORE *ADDR = 3, STORE *ADDR = 4, STORE *DATA = y, q = LOAD *DATA | |
2533 | ||
2534 | ||
2535 | If ordering rules are relaxed, it must be assumed that accesses done inside an | |
2536 | interrupt disabled section may leak outside of it and may interleave with | |
2537 | accesses performed in an interrupt - and vice versa - unless implicit or | |
2538 | explicit barriers are used. | |
2539 | ||
2540 | Normally this won't be a problem because the I/O accesses done inside such | |
2541 | sections will include synchronous load operations on strictly ordered I/O | |
91553039 | 2542 | registers that form implicit I/O barriers. |
108b42b4 DH |
2543 | |
2544 | ||
2545 | A similar situation may occur between an interrupt routine and two routines | |
0b6fa347 | 2546 | running on separate CPUs that communicate with each other. If such a case is |
108b42b4 DH |
2547 | likely, then interrupt-disabling locks should be used to guarantee ordering. |
2548 | ||
2549 | ||
2550 | ========================== | |
2551 | KERNEL I/O BARRIER EFFECTS | |
2552 | ========================== | |
2553 | ||
4614bbde WD |
2554 | Interfacing with peripherals via I/O accesses is deeply architecture and device |
2555 | specific. Therefore, drivers which are inherently non-portable may rely on | |
2556 | specific behaviours of their target systems in order to achieve synchronization | |
2557 | in the most lightweight manner possible. For drivers intending to be portable | |
2558 | between multiple architectures and bus implementations, the kernel offers a | |
2559 | series of accessor functions that provide various degrees of ordering | |
2560 | guarantees: | |
108b42b4 | 2561 | |
4614bbde | 2562 | (*) readX(), writeX(): |
108b42b4 | 2563 | |
0cde62a4 WD |
2564 | The readX() and writeX() MMIO accessors take a pointer to the |
2565 | peripheral being accessed as an __iomem * parameter. For pointers | |
2566 | mapped with the default I/O attributes (e.g. those returned by | |
2567 | ioremap()), the ordering guarantees are as follows: | |
2568 | ||
2569 | 1. All readX() and writeX() accesses to the same peripheral are ordered | |
9726840d WD |
2570 | with respect to each other. This ensures that MMIO register accesses |
2571 | by the same CPU thread to a particular device will arrive in program | |
2572 | order. | |
2573 | ||
2574 | 2. A writeX() issued by a CPU thread holding a spinlock is ordered | |
2575 | before a writeX() to the same peripheral from another CPU thread | |
2576 | issued after a later acquisition of the same spinlock. This ensures | |
2577 | that MMIO register writes to a particular device issued while holding | |
2578 | a spinlock will arrive in an order consistent with acquisitions of | |
2579 | the lock. | |
2580 | ||
2581 | 3. A writeX() by a CPU thread to the peripheral will first wait for the | |
2582 | completion of all prior writes to memory either issued by, or | |
2583 | propagated to, the same thread. This ensures that writes by the CPU | |
2584 | to an outbound DMA buffer allocated by dma_alloc_coherent() will be | |
2585 | visible to a DMA engine when the CPU writes to its MMIO control | |
2586 | register to trigger the transfer. | |
2587 | ||
2588 | 4. A readX() by a CPU thread from the peripheral will complete before | |
2589 | any subsequent reads from memory by the same thread can begin. This | |
2590 | ensures that reads by the CPU from an incoming DMA buffer allocated | |
2591 | by dma_alloc_coherent() will not see stale data after reading from | |
2592 | the DMA engine's MMIO status register to establish that the DMA | |
2593 | transfer has completed. | |
2594 | ||
2595 | 5. A readX() by a CPU thread from the peripheral will complete before | |
2596 | any subsequent delay() loop can begin execution on the same thread. | |
2597 | This ensures that two MMIO register writes by the CPU to a peripheral | |
2598 | will arrive at least 1us apart if the first write is immediately read | |
2599 | back with readX() and udelay(1) is called prior to the second | |
2600 | writeX(): | |
0cde62a4 WD |
2601 | |
2602 | writel(42, DEVICE_REGISTER_0); // Arrives at the device... | |
2603 | readl(DEVICE_REGISTER_0); | |
2604 | udelay(1); | |
2605 | writel(42, DEVICE_REGISTER_1); // ...at least 1us before this. | |
2606 | ||
2607 | The ordering properties of __iomem pointers obtained with non-default | |
2608 | attributes (e.g. those returned by ioremap_wc()) are specific to the | |
2609 | underlying architecture and therefore the guarantees listed above cannot | |
2610 | generally be relied upon for accesses to these types of mappings. | |
108b42b4 | 2611 | |
4614bbde | 2612 | (*) readX_relaxed(), writeX_relaxed(): |
108b42b4 | 2613 | |
0cde62a4 WD |
2614 | These are similar to readX() and writeX(), but provide weaker memory |
2615 | ordering guarantees. Specifically, they do not guarantee ordering with | |
9726840d WD |
2616 | respect to locking, normal memory accesses or delay() loops (i.e. |
2617 | bullets 2-5 above) but they are still guaranteed to be ordered with | |
2618 | respect to other accesses from the same CPU thread to the same | |
2619 | peripheral when operating on __iomem pointers mapped with the default | |
2620 | I/O attributes. | |
108b42b4 | 2621 | |
4614bbde | 2622 | (*) readsX(), writesX(): |
108b42b4 | 2623 | |
0cde62a4 WD |
2624 | The readsX() and writesX() MMIO accessors are designed for accessing |
2625 | register-based, memory-mapped FIFOs residing on peripherals that are not | |
2626 | capable of performing DMA. Consequently, they provide only the ordering | |
2627 | guarantees of readX_relaxed() and writeX_relaxed(), as documented above. | |
108b42b4 | 2628 | |
4614bbde | 2629 | (*) inX(), outX(): |
108b42b4 | 2630 | |
0cde62a4 WD |
2631 | The inX() and outX() accessors are intended to access legacy port-mapped |
2632 | I/O peripherals, which may require special instructions on some | |
2633 | architectures (notably x86). The port number of the peripheral being | |
2634 | accessed is passed as an argument. | |
108b42b4 | 2635 | |
0cde62a4 WD |
2636 | Since many CPU architectures ultimately access these peripherals via an |
2637 | internal virtual memory mapping, the portable ordering guarantees | |
2638 | provided by inX() and outX() are the same as those provided by readX() | |
2639 | and writeX() respectively when accessing a mapping with the default I/O | |
2640 | attributes. | |
a8e0aead | 2641 | |
0cde62a4 WD |
2642 | Device drivers may expect outX() to emit a non-posted write transaction |
2643 | that waits for a completion response from the I/O peripheral before | |
2644 | returning. This is not guaranteed by all architectures and is therefore | |
2645 | not part of the portable ordering semantics. | |
4614bbde WD |
2646 | |
2647 | (*) insX(), outsX(): | |
2648 | ||
0cde62a4 WD |
2649 | As above, the insX() and outsX() accessors provide the same ordering |
2650 | guarantees as readsX() and writesX() respectively when accessing a | |
2651 | mapping with the default I/O attributes. | |
108b42b4 | 2652 | |
0cde62a4 | 2653 | (*) ioreadX(), iowriteX(): |
108b42b4 | 2654 | |
0cde62a4 WD |
2655 | These will perform appropriately for the type of access they're actually |
2656 | doing, be it inX()/outX() or readX()/writeX(). | |
108b42b4 | 2657 | |
9726840d WD |
2658 | With the exception of the string accessors (insX(), outsX(), readsX() and |
2659 | writesX()), all of the above assume that the underlying peripheral is | |
2660 | little-endian and will therefore perform byte-swapping operations on big-endian | |
2661 | architectures. | |
4614bbde | 2662 | |
108b42b4 DH |
2663 | |
2664 | ======================================== | |
2665 | ASSUMED MINIMUM EXECUTION ORDERING MODEL | |
2666 | ======================================== | |
2667 | ||
2668 | It has to be assumed that the conceptual CPU is weakly-ordered but that it will | |
2669 | maintain the appearance of program causality with respect to itself. Some CPUs | |
2670 | (such as i386 or x86_64) are more constrained than others (such as powerpc or | |
2671 | frv), and so the most relaxed case (namely DEC Alpha) must be assumed outside | |
2672 | of arch-specific code. | |
2673 | ||
2674 | This means that it must be considered that the CPU will execute its instruction | |
2675 | stream in any order it feels like - or even in parallel - provided that if an | |
81fc6323 | 2676 | instruction in the stream depends on an earlier instruction, then that |
108b42b4 DH |
2677 | earlier instruction must be sufficiently complete[*] before the later |
2678 | instruction may proceed; in other words: provided that the appearance of | |
2679 | causality is maintained. | |
2680 | ||
2681 | [*] Some instructions have more than one effect - such as changing the | |
2682 | condition codes, changing registers or changing memory - and different | |
2683 | instructions may depend on different effects. | |
2684 | ||
2685 | A CPU may also discard any instruction sequence that winds up having no | |
2686 | ultimate effect. For example, if two adjacent instructions both load an | |
2687 | immediate value into the same register, the first may be discarded. | |
2688 | ||
2689 | ||
2690 | Similarly, it has to be assumed that compiler might reorder the instruction | |
2691 | stream in any way it sees fit, again provided the appearance of causality is | |
2692 | maintained. | |
2693 | ||
2694 | ||
2695 | ============================ | |
2696 | THE EFFECTS OF THE CPU CACHE | |
2697 | ============================ | |
2698 | ||
2699 | The way cached memory operations are perceived across the system is affected to | |
2700 | a certain extent by the caches that lie between CPUs and memory, and by the | |
2701 | memory coherence system that maintains the consistency of state in the system. | |
2702 | ||
2703 | As far as the way a CPU interacts with another part of the system through the | |
2704 | caches goes, the memory system has to include the CPU's caches, and memory | |
2705 | barriers for the most part act at the interface between the CPU and its cache | |
2706 | (memory barriers logically act on the dotted line in the following diagram): | |
2707 | ||
2708 | <--- CPU ---> : <----------- Memory -----------> | |
2709 | : | |
2710 | +--------+ +--------+ : +--------+ +-----------+ | |
2711 | | | | | : | | | | +--------+ | |
e0edc78f IM |
2712 | | CPU | | Memory | : | CPU | | | | | |
2713 | | Core |--->| Access |----->| Cache |<-->| | | | | |
108b42b4 | 2714 | | | | Queue | : | | | |--->| Memory | |
e0edc78f IM |
2715 | | | | | : | | | | | | |
2716 | +--------+ +--------+ : +--------+ | | | | | |
108b42b4 DH |
2717 | : | Cache | +--------+ |
2718 | : | Coherency | | |
2719 | : | Mechanism | +--------+ | |
2720 | +--------+ +--------+ : +--------+ | | | | | |
2721 | | | | | : | | | | | | | |
2722 | | CPU | | Memory | : | CPU | | |--->| Device | | |
e0edc78f IM |
2723 | | Core |--->| Access |----->| Cache |<-->| | | | |
2724 | | | | Queue | : | | | | | | | |
108b42b4 DH |
2725 | | | | | : | | | | +--------+ |
2726 | +--------+ +--------+ : +--------+ +-----------+ | |
2727 | : | |
2728 | : | |
2729 | ||
2730 | Although any particular load or store may not actually appear outside of the | |
2731 | CPU that issued it since it may have been satisfied within the CPU's own cache, | |
2732 | it will still appear as if the full memory access had taken place as far as the | |
2733 | other CPUs are concerned since the cache coherency mechanisms will migrate the | |
2734 | cacheline over to the accessing CPU and propagate the effects upon conflict. | |
2735 | ||
2736 | The CPU core may execute instructions in any order it deems fit, provided the | |
2737 | expected program causality appears to be maintained. Some of the instructions | |
2738 | generate load and store operations which then go into the queue of memory | |
2739 | accesses to be performed. The core may place these in the queue in any order | |
2740 | it wishes, and continue execution until it is forced to wait for an instruction | |
2741 | to complete. | |
2742 | ||
2743 | What memory barriers are concerned with is controlling the order in which | |
2744 | accesses cross from the CPU side of things to the memory side of things, and | |
2745 | the order in which the effects are perceived to happen by the other observers | |
2746 | in the system. | |
2747 | ||
2748 | [!] Memory barriers are _not_ needed within a given CPU, as CPUs always see | |
2749 | their own loads and stores as if they had happened in program order. | |
2750 | ||
2751 | [!] MMIO or other device accesses may bypass the cache system. This depends on | |
2752 | the properties of the memory window through which devices are accessed and/or | |
2753 | the use of any special device communication instructions the CPU may have. | |
2754 | ||
2755 | ||
108b42b4 DH |
2756 | CACHE COHERENCY VS DMA |
2757 | ---------------------- | |
2758 | ||
2759 | Not all systems maintain cache coherency with respect to devices doing DMA. In | |
2760 | such cases, a device attempting DMA may obtain stale data from RAM because | |
2761 | dirty cache lines may be resident in the caches of various CPUs, and may not | |
2762 | have been written back to RAM yet. To deal with this, the appropriate part of | |
2763 | the kernel must flush the overlapping bits of cache on each CPU (and maybe | |
2764 | invalidate them as well). | |
2765 | ||
2766 | In addition, the data DMA'd to RAM by a device may be overwritten by dirty | |
2767 | cache lines being written back to RAM from a CPU's cache after the device has | |
81fc6323 JP |
2768 | installed its own data, or cache lines present in the CPU's cache may simply |
2769 | obscure the fact that RAM has been updated, until at such time as the cacheline | |
2770 | is discarded from the CPU's cache and reloaded. To deal with this, the | |
2771 | appropriate part of the kernel must invalidate the overlapping bits of the | |
108b42b4 DH |
2772 | cache on each CPU. |
2773 | ||
f556082d AY |
2774 | See Documentation/core-api/cachetlb.rst for more information on cache |
2775 | management. | |
108b42b4 DH |
2776 | |
2777 | ||
2778 | CACHE COHERENCY VS MMIO | |
2779 | ----------------------- | |
2780 | ||
2781 | Memory mapped I/O usually takes place through memory locations that are part of | |
81fc6323 | 2782 | a window in the CPU's memory space that has different properties assigned than |
108b42b4 DH |
2783 | the usual RAM directed window. |
2784 | ||
2785 | Amongst these properties is usually the fact that such accesses bypass the | |
2786 | caching entirely and go directly to the device buses. This means MMIO accesses | |
2787 | may, in effect, overtake accesses to cached memory that were emitted earlier. | |
2788 | A memory barrier isn't sufficient in such a case, but rather the cache must be | |
2789 | flushed between the cached memory write and the MMIO access if the two are in | |
2790 | any way dependent. | |
2791 | ||
2792 | ||
2793 | ========================= | |
2794 | THE THINGS CPUS GET UP TO | |
2795 | ========================= | |
2796 | ||
2797 | A programmer might take it for granted that the CPU will perform memory | |
81fc6323 | 2798 | operations in exactly the order specified, so that if the CPU is, for example, |
108b42b4 DH |
2799 | given the following piece of code to execute: |
2800 | ||
9af194ce PM |
2801 | a = READ_ONCE(*A); |
2802 | WRITE_ONCE(*B, b); | |
2803 | c = READ_ONCE(*C); | |
2804 | d = READ_ONCE(*D); | |
2805 | WRITE_ONCE(*E, e); | |
108b42b4 | 2806 | |
81fc6323 | 2807 | they would then expect that the CPU will complete the memory operation for each |
108b42b4 DH |
2808 | instruction before moving on to the next one, leading to a definite sequence of |
2809 | operations as seen by external observers in the system: | |
2810 | ||
2811 | LOAD *A, STORE *B, LOAD *C, LOAD *D, STORE *E. | |
2812 | ||
2813 | ||
2814 | Reality is, of course, much messier. With many CPUs and compilers, the above | |
2815 | assumption doesn't hold because: | |
2816 | ||
2817 | (*) loads are more likely to need to be completed immediately to permit | |
2818 | execution progress, whereas stores can often be deferred without a | |
2819 | problem; | |
2820 | ||
2821 | (*) loads may be done speculatively, and the result discarded should it prove | |
2822 | to have been unnecessary; | |
2823 | ||
81fc6323 JP |
2824 | (*) loads may be done speculatively, leading to the result having been fetched |
2825 | at the wrong time in the expected sequence of events; | |
108b42b4 DH |
2826 | |
2827 | (*) the order of the memory accesses may be rearranged to promote better use | |
2828 | of the CPU buses and caches; | |
2829 | ||
2830 | (*) loads and stores may be combined to improve performance when talking to | |
2831 | memory or I/O hardware that can do batched accesses of adjacent locations, | |
2832 | thus cutting down on transaction setup costs (memory and PCI devices may | |
2833 | both be able to do this); and | |
2834 | ||
806654a9 | 2835 | (*) the CPU's data cache may affect the ordering, and while cache-coherency |
108b42b4 DH |
2836 | mechanisms may alleviate this - once the store has actually hit the cache |
2837 | - there's no guarantee that the coherency management will be propagated in | |
2838 | order to other CPUs. | |
2839 | ||
2840 | So what another CPU, say, might actually observe from the above piece of code | |
2841 | is: | |
2842 | ||
2843 | LOAD *A, ..., LOAD {*C,*D}, STORE *E, STORE *B | |
2844 | ||
2845 | (Where "LOAD {*C,*D}" is a combined load) | |
2846 | ||
2847 | ||
2848 | However, it is guaranteed that a CPU will be self-consistent: it will see its | |
2849 | _own_ accesses appear to be correctly ordered, without the need for a memory | |
2850 | barrier. For instance with the following code: | |
2851 | ||
9af194ce PM |
2852 | U = READ_ONCE(*A); |
2853 | WRITE_ONCE(*A, V); | |
2854 | WRITE_ONCE(*A, W); | |
2855 | X = READ_ONCE(*A); | |
2856 | WRITE_ONCE(*A, Y); | |
2857 | Z = READ_ONCE(*A); | |
108b42b4 DH |
2858 | |
2859 | and assuming no intervention by an external influence, it can be assumed that | |
2860 | the final result will appear to be: | |
2861 | ||
2862 | U == the original value of *A | |
2863 | X == W | |
2864 | Z == Y | |
2865 | *A == Y | |
2866 | ||
2867 | The code above may cause the CPU to generate the full sequence of memory | |
2868 | accesses: | |
2869 | ||
2870 | U=LOAD *A, STORE *A=V, STORE *A=W, X=LOAD *A, STORE *A=Y, Z=LOAD *A | |
2871 | ||
2872 | in that order, but, without intervention, the sequence may have almost any | |
9af194ce PM |
2873 | combination of elements combined or discarded, provided the program's view |
2874 | of the world remains consistent. Note that READ_ONCE() and WRITE_ONCE() | |
2875 | are -not- optional in the above example, as there are architectures | |
2876 | where a given CPU might reorder successive loads to the same location. | |
2877 | On such architectures, READ_ONCE() and WRITE_ONCE() do whatever is | |
2878 | necessary to prevent this, for example, on Itanium the volatile casts | |
2879 | used by READ_ONCE() and WRITE_ONCE() cause GCC to emit the special ld.acq | |
2880 | and st.rel instructions (respectively) that prevent such reordering. | |
108b42b4 DH |
2881 | |
2882 | The compiler may also combine, discard or defer elements of the sequence before | |
2883 | the CPU even sees them. | |
2884 | ||
2885 | For instance: | |
2886 | ||
2887 | *A = V; | |
2888 | *A = W; | |
2889 | ||
2890 | may be reduced to: | |
2891 | ||
2892 | *A = W; | |
2893 | ||
9af194ce | 2894 | since, without either a write barrier or an WRITE_ONCE(), it can be |
2ecf8101 | 2895 | assumed that the effect of the storage of V to *A is lost. Similarly: |
108b42b4 DH |
2896 | |
2897 | *A = Y; | |
2898 | Z = *A; | |
2899 | ||
9af194ce PM |
2900 | may, without a memory barrier or an READ_ONCE() and WRITE_ONCE(), be |
2901 | reduced to: | |
108b42b4 DH |
2902 | |
2903 | *A = Y; | |
2904 | Z = Y; | |
2905 | ||
2906 | and the LOAD operation never appear outside of the CPU. | |
2907 | ||
2908 | ||
2909 | AND THEN THERE'S THE ALPHA | |
2910 | -------------------------- | |
2911 | ||
2912 | The DEC Alpha CPU is one of the most relaxed CPUs there is. Not only that, | |
2913 | some versions of the Alpha CPU have a split data cache, permitting them to have | |
81fc6323 | 2914 | two semantically-related cache lines updated at separate times. This is where |
f556082d AY |
2915 | the address-dependency barrier really becomes necessary as this synchronises |
2916 | both caches with the memory coherence system, thus making it seem like pointer | |
108b42b4 DH |
2917 | changes vs new data occur in the right order. |
2918 | ||
f28f0868 | 2919 | The Alpha defines the Linux kernel's memory model, although as of v4.15 |
8ca924ae WD |
2920 | the Linux kernel's addition of smp_mb() to READ_ONCE() on Alpha greatly |
2921 | reduced its impact on the memory model. | |
108b42b4 | 2922 | |
0b6fa347 | 2923 | |
6a65d263 | 2924 | VIRTUAL MACHINE GUESTS |
3dbf0913 | 2925 | ---------------------- |
6a65d263 MT |
2926 | |
2927 | Guests running within virtual machines might be affected by SMP effects even if | |
2928 | the guest itself is compiled without SMP support. This is an artifact of | |
2929 | interfacing with an SMP host while running an UP kernel. Using mandatory | |
2930 | barriers for this use-case would be possible but is often suboptimal. | |
2931 | ||
2932 | To handle this case optimally, low-level virt_mb() etc macros are available. | |
2933 | These have the same effect as smp_mb() etc when SMP is enabled, but generate | |
0b6fa347 | 2934 | identical code for SMP and non-SMP systems. For example, virtual machine guests |
6a65d263 MT |
2935 | should use virt_mb() rather than smp_mb() when synchronizing against a |
2936 | (possibly SMP) host. | |
2937 | ||
2938 | These are equivalent to smp_mb() etc counterparts in all other respects, | |
2939 | in particular, they do not control MMIO effects: to control | |
2940 | MMIO effects, use mandatory barriers. | |
108b42b4 | 2941 | |
0b6fa347 | 2942 | |
90fddabf DH |
2943 | ============ |
2944 | EXAMPLE USES | |
2945 | ============ | |
2946 | ||
2947 | CIRCULAR BUFFERS | |
2948 | ---------------- | |
2949 | ||
2950 | Memory barriers can be used to implement circular buffering without the need | |
2951 | of a lock to serialise the producer with the consumer. See: | |
2952 | ||
d8a121e3 | 2953 | Documentation/core-api/circular-buffers.rst |
90fddabf DH |
2954 | |
2955 | for details. | |
2956 | ||
2957 | ||
108b42b4 DH |
2958 | ========== |
2959 | REFERENCES | |
2960 | ========== | |
2961 | ||
2962 | Alpha AXP Architecture Reference Manual, Second Edition (Sites & Witek, | |
2963 | Digital Press) | |
2964 | Chapter 5.2: Physical Address Space Characteristics | |
2965 | Chapter 5.4: Caches and Write Buffers | |
2966 | Chapter 5.5: Data Sharing | |
2967 | Chapter 5.6: Read/Write Ordering | |
2968 | ||
2969 | AMD64 Architecture Programmer's Manual Volume 2: System Programming | |
2970 | Chapter 7.1: Memory-Access Ordering | |
2971 | Chapter 7.4: Buffering and Combining Memory Writes | |
2972 | ||
f1ab25a3 PM |
2973 | ARM Architecture Reference Manual (ARMv8, for ARMv8-A architecture profile) |
2974 | Chapter B2: The AArch64 Application Level Memory Model | |
2975 | ||
108b42b4 DH |
2976 | IA-32 Intel Architecture Software Developer's Manual, Volume 3: |
2977 | System Programming Guide | |
2978 | Chapter 7.1: Locked Atomic Operations | |
2979 | Chapter 7.2: Memory Ordering | |
2980 | Chapter 7.4: Serializing Instructions | |
2981 | ||
2982 | The SPARC Architecture Manual, Version 9 | |
2983 | Chapter 8: Memory Models | |
2984 | Appendix D: Formal Specification of the Memory Models | |
2985 | Appendix J: Programming with the Memory Models | |
2986 | ||
f1ab25a3 PM |
2987 | Storage in the PowerPC (Stone and Fitzgerald) |
2988 | ||
108b42b4 DH |
2989 | UltraSPARC Programmer Reference Manual |
2990 | Chapter 5: Memory Accesses and Cacheability | |
2991 | Chapter 15: Sparc-V9 Memory Models | |
2992 | ||
2993 | UltraSPARC III Cu User's Manual | |
2994 | Chapter 9: Memory Models | |
2995 | ||
2996 | UltraSPARC IIIi Processor User's Manual | |
2997 | Chapter 8: Memory Models | |
2998 | ||
2999 | UltraSPARC Architecture 2005 | |
3000 | Chapter 9: Memory | |
3001 | Appendix D: Formal Specifications of the Memory Models | |
3002 | ||
3003 | UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005 | |
3004 | Chapter 8: Memory Models | |
3005 | Appendix F: Caches and Cache Coherency | |
3006 | ||
3007 | Solaris Internals, Core Kernel Architecture, p63-68: | |
3008 | Chapter 3.3: Hardware Considerations for Locks and | |
3009 | Synchronization | |
3010 | ||
3011 | Unix Systems for Modern Architectures, Symmetric Multiprocessing and Caching | |
3012 | for Kernel Programmers: | |
3013 | Chapter 13: Other Memory Models | |
3014 | ||
3015 | Intel Itanium Architecture Software Developer's Manual: Volume 1: | |
3016 | Section 2.6: Speculation | |
3017 | Section 4.4: Memory Access |