]>
Commit | Line | Data |
---|---|---|
bb5530e4 | 1 | /* |
dfc9fa91 SM |
2 | * Non-physical true random number generator based on timing jitter -- |
3 | * Jitter RNG standalone code. | |
bb5530e4 | 4 | * |
764428fe | 5 | * Copyright Stephan Mueller <[email protected]>, 2015 - 2020 |
bb5530e4 SM |
6 | * |
7 | * Design | |
8 | * ====== | |
9 | * | |
9332a9e7 | 10 | * See https://www.chronox.de/jent.html |
bb5530e4 SM |
11 | * |
12 | * License | |
13 | * ======= | |
14 | * | |
15 | * Redistribution and use in source and binary forms, with or without | |
16 | * modification, are permitted provided that the following conditions | |
17 | * are met: | |
18 | * 1. Redistributions of source code must retain the above copyright | |
19 | * notice, and the entire permission notice in its entirety, | |
20 | * including the disclaimer of warranties. | |
21 | * 2. Redistributions in binary form must reproduce the above copyright | |
22 | * notice, this list of conditions and the following disclaimer in the | |
23 | * documentation and/or other materials provided with the distribution. | |
24 | * 3. The name of the author may not be used to endorse or promote | |
25 | * products derived from this software without specific prior | |
26 | * written permission. | |
27 | * | |
28 | * ALTERNATIVELY, this product may be distributed under the terms of | |
29 | * the GNU General Public License, in which case the provisions of the GPL2 are | |
30 | * required INSTEAD OF the above restrictions. (This clause is | |
31 | * necessary due to a potential bad interaction between the GPL and | |
32 | * the restrictions contained in a BSD-style copyright.) | |
33 | * | |
34 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | |
35 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | |
36 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF | |
37 | * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE | |
38 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
39 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT | |
40 | * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | |
41 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
42 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
43 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | |
44 | * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH | |
45 | * DAMAGE. | |
46 | */ | |
47 | ||
48 | /* | |
49 | * This Jitterentropy RNG is based on the jitterentropy library | |
9332a9e7 | 50 | * version 2.2.0 provided at https://www.chronox.de/jent.html |
bb5530e4 SM |
51 | */ |
52 | ||
dfc9fa91 SM |
53 | #ifdef __OPTIMIZE__ |
54 | #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c." | |
55 | #endif | |
56 | ||
57 | typedef unsigned long long __u64; | |
58 | typedef long long __s64; | |
59 | typedef unsigned int __u32; | |
60 | #define NULL ((void *) 0) | |
bb5530e4 | 61 | |
bb5530e4 SM |
62 | /* The entropy pool */ |
63 | struct rand_data { | |
64 | /* all data values that are vital to maintain the security | |
65 | * of the RNG are marked as SENSITIVE. A user must not | |
66 | * access that information while the RNG executes its loops to | |
67 | * calculate the next random value. */ | |
68 | __u64 data; /* SENSITIVE Actual random number */ | |
69 | __u64 old_data; /* SENSITIVE Previous random number */ | |
70 | __u64 prev_time; /* SENSITIVE Previous time stamp */ | |
71 | #define DATA_SIZE_BITS ((sizeof(__u64)) * 8) | |
72 | __u64 last_delta; /* SENSITIVE stuck test */ | |
73 | __s64 last_delta2; /* SENSITIVE stuck test */ | |
bb5530e4 | 74 | unsigned int osr; /* Oversample rate */ |
bb5530e4 SM |
75 | #define JENT_MEMORY_BLOCKS 64 |
76 | #define JENT_MEMORY_BLOCKSIZE 32 | |
77 | #define JENT_MEMORY_ACCESSLOOPS 128 | |
78 | #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE) | |
79 | unsigned char *mem; /* Memory access location with size of | |
80 | * memblocks * memblocksize */ | |
81 | unsigned int memlocation; /* Pointer to byte in *mem */ | |
82 | unsigned int memblocks; /* Number of memory blocks in *mem */ | |
83 | unsigned int memblocksize; /* Size of one memory block in bytes */ | |
84 | unsigned int memaccessloops; /* Number of memory accesses per random | |
85 | * bit generation */ | |
764428fe SM |
86 | |
87 | /* Repetition Count Test */ | |
88 | int rct_count; /* Number of stuck values */ | |
89 | ||
90 | /* Adaptive Proportion Test for a significance level of 2^-30 */ | |
91 | #define JENT_APT_CUTOFF 325 /* Taken from SP800-90B sec 4.4.2 */ | |
92 | #define JENT_APT_WINDOW_SIZE 512 /* Data window size */ | |
93 | /* LSB of time stamp to process */ | |
94 | #define JENT_APT_LSB 16 | |
95 | #define JENT_APT_WORD_MASK (JENT_APT_LSB - 1) | |
96 | unsigned int apt_observations; /* Number of collected observations */ | |
97 | unsigned int apt_count; /* APT counter */ | |
98 | unsigned int apt_base; /* APT base reference */ | |
99 | unsigned int apt_base_set:1; /* APT base reference set? */ | |
100 | ||
101 | unsigned int health_failure:1; /* Permanent health failure */ | |
bb5530e4 SM |
102 | }; |
103 | ||
104 | /* Flags that can be used to initialize the RNG */ | |
bb5530e4 SM |
105 | #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more |
106 | * entropy, saves MEMORY_SIZE RAM for | |
107 | * entropy collector */ | |
108 | ||
bb5530e4 SM |
109 | /* -- error codes for init function -- */ |
110 | #define JENT_ENOTIME 1 /* Timer service not available */ | |
111 | #define JENT_ECOARSETIME 2 /* Timer too coarse for RNG */ | |
112 | #define JENT_ENOMONOTONIC 3 /* Timer is not monotonic increasing */ | |
bb5530e4 SM |
113 | #define JENT_EVARVAR 5 /* Timer does not produce variations of |
114 | * variations (2nd derivation of time is | |
115 | * zero). */ | |
d9d67c87 | 116 | #define JENT_ESTUCK 8 /* Too many stuck results during init. */ |
764428fe SM |
117 | #define JENT_EHEALTH 9 /* Health test failed during initialization */ |
118 | #define JENT_ERCT 10 /* RCT failed during initialization */ | |
119 | ||
120 | #include "jitterentropy.h" | |
bb5530e4 SM |
121 | |
122 | /*************************************************************************** | |
764428fe SM |
123 | * Adaptive Proportion Test |
124 | * | |
125 | * This test complies with SP800-90B section 4.4.2. | |
bb5530e4 SM |
126 | ***************************************************************************/ |
127 | ||
764428fe SM |
128 | /** |
129 | * Reset the APT counter | |
130 | * | |
131 | * @ec [in] Reference to entropy collector | |
132 | */ | |
133 | static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked) | |
134 | { | |
135 | /* Reset APT counter */ | |
136 | ec->apt_count = 0; | |
137 | ec->apt_base = delta_masked; | |
138 | ec->apt_observations = 0; | |
139 | } | |
140 | ||
141 | /** | |
142 | * Insert a new entropy event into APT | |
143 | * | |
144 | * @ec [in] Reference to entropy collector | |
145 | * @delta_masked [in] Masked time delta to process | |
146 | */ | |
147 | static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked) | |
148 | { | |
149 | /* Initialize the base reference */ | |
150 | if (!ec->apt_base_set) { | |
151 | ec->apt_base = delta_masked; | |
152 | ec->apt_base_set = 1; | |
153 | return; | |
154 | } | |
155 | ||
156 | if (delta_masked == ec->apt_base) { | |
157 | ec->apt_count++; | |
158 | ||
159 | if (ec->apt_count >= JENT_APT_CUTOFF) | |
160 | ec->health_failure = 1; | |
161 | } | |
162 | ||
163 | ec->apt_observations++; | |
164 | ||
165 | if (ec->apt_observations >= JENT_APT_WINDOW_SIZE) | |
166 | jent_apt_reset(ec, delta_masked); | |
167 | } | |
168 | ||
169 | /*************************************************************************** | |
170 | * Stuck Test and its use as Repetition Count Test | |
171 | * | |
172 | * The Jitter RNG uses an enhanced version of the Repetition Count Test | |
173 | * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical | |
174 | * back-to-back values, the input to the RCT is the counting of the stuck | |
175 | * values during the generation of one Jitter RNG output block. | |
176 | * | |
177 | * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8. | |
178 | * | |
179 | * During the counting operation, the Jitter RNG always calculates the RCT | |
180 | * cut-off value of C. If that value exceeds the allowed cut-off value, | |
181 | * the Jitter RNG output block will be calculated completely but discarded at | |
182 | * the end. The caller of the Jitter RNG is informed with an error code. | |
183 | ***************************************************************************/ | |
184 | ||
185 | /** | |
186 | * Repetition Count Test as defined in SP800-90B section 4.4.1 | |
187 | * | |
188 | * @ec [in] Reference to entropy collector | |
189 | * @stuck [in] Indicator whether the value is stuck | |
190 | */ | |
191 | static void jent_rct_insert(struct rand_data *ec, int stuck) | |
192 | { | |
193 | /* | |
194 | * If we have a count less than zero, a previous RCT round identified | |
195 | * a failure. We will not overwrite it. | |
196 | */ | |
197 | if (ec->rct_count < 0) | |
198 | return; | |
199 | ||
200 | if (stuck) { | |
201 | ec->rct_count++; | |
202 | ||
203 | /* | |
204 | * The cutoff value is based on the following consideration: | |
205 | * alpha = 2^-30 as recommended in FIPS 140-2 IG 9.8. | |
206 | * In addition, we require an entropy value H of 1/OSR as this | |
207 | * is the minimum entropy required to provide full entropy. | |
208 | * Note, we collect 64 * OSR deltas for inserting them into | |
209 | * the entropy pool which should then have (close to) 64 bits | |
210 | * of entropy. | |
211 | * | |
212 | * Note, ec->rct_count (which equals to value B in the pseudo | |
213 | * code of SP800-90B section 4.4.1) starts with zero. Hence | |
214 | * we need to subtract one from the cutoff value as calculated | |
215 | * following SP800-90B. | |
216 | */ | |
217 | if ((unsigned int)ec->rct_count >= (31 * ec->osr)) { | |
218 | ec->rct_count = -1; | |
219 | ec->health_failure = 1; | |
220 | } | |
221 | } else { | |
222 | ec->rct_count = 0; | |
223 | } | |
224 | } | |
225 | ||
226 | /** | |
227 | * Is there an RCT health test failure? | |
228 | * | |
229 | * @ec [in] Reference to entropy collector | |
230 | * | |
231 | * @return | |
232 | * 0 No health test failure | |
233 | * 1 Permanent health test failure | |
234 | */ | |
235 | static int jent_rct_failure(struct rand_data *ec) | |
236 | { | |
237 | if (ec->rct_count < 0) | |
238 | return 1; | |
239 | return 0; | |
240 | } | |
241 | ||
242 | static inline __u64 jent_delta(__u64 prev, __u64 next) | |
243 | { | |
244 | #define JENT_UINT64_MAX (__u64)(~((__u64) 0)) | |
245 | return (prev < next) ? (next - prev) : | |
246 | (JENT_UINT64_MAX - prev + 1 + next); | |
247 | } | |
248 | ||
249 | /** | |
250 | * Stuck test by checking the: | |
251 | * 1st derivative of the jitter measurement (time delta) | |
252 | * 2nd derivative of the jitter measurement (delta of time deltas) | |
253 | * 3rd derivative of the jitter measurement (delta of delta of time deltas) | |
254 | * | |
255 | * All values must always be non-zero. | |
256 | * | |
257 | * @ec [in] Reference to entropy collector | |
258 | * @current_delta [in] Jitter time delta | |
259 | * | |
260 | * @return | |
261 | * 0 jitter measurement not stuck (good bit) | |
262 | * 1 jitter measurement stuck (reject bit) | |
263 | */ | |
264 | static int jent_stuck(struct rand_data *ec, __u64 current_delta) | |
265 | { | |
266 | __u64 delta2 = jent_delta(ec->last_delta, current_delta); | |
267 | __u64 delta3 = jent_delta(ec->last_delta2, delta2); | |
268 | unsigned int delta_masked = current_delta & JENT_APT_WORD_MASK; | |
269 | ||
270 | ec->last_delta = current_delta; | |
271 | ec->last_delta2 = delta2; | |
272 | ||
273 | /* | |
274 | * Insert the result of the comparison of two back-to-back time | |
275 | * deltas. | |
276 | */ | |
277 | jent_apt_insert(ec, delta_masked); | |
278 | ||
279 | if (!current_delta || !delta2 || !delta3) { | |
280 | /* RCT with a stuck bit */ | |
281 | jent_rct_insert(ec, 1); | |
282 | return 1; | |
283 | } | |
284 | ||
285 | /* RCT with a non-stuck bit */ | |
286 | jent_rct_insert(ec, 0); | |
287 | ||
288 | return 0; | |
289 | } | |
290 | ||
291 | /** | |
292 | * Report any health test failures | |
293 | * | |
294 | * @ec [in] Reference to entropy collector | |
295 | * | |
296 | * @return | |
297 | * 0 No health test failure | |
298 | * 1 Permanent health test failure | |
299 | */ | |
300 | static int jent_health_failure(struct rand_data *ec) | |
301 | { | |
302 | /* Test is only enabled in FIPS mode */ | |
303 | if (!jent_fips_enabled()) | |
304 | return 0; | |
305 | ||
306 | return ec->health_failure; | |
307 | } | |
308 | ||
309 | /*************************************************************************** | |
310 | * Noise sources | |
311 | ***************************************************************************/ | |
bb5530e4 SM |
312 | |
313 | /** | |
314 | * Update of the loop count used for the next round of | |
315 | * an entropy collection. | |
316 | * | |
317 | * Input: | |
318 | * @ec entropy collector struct -- may be NULL | |
319 | * @bits is the number of low bits of the timer to consider | |
320 | * @min is the number of bits we shift the timer value to the right at | |
321 | * the end to make sure we have a guaranteed minimum value | |
322 | * | |
323 | * @return Newly calculated loop counter | |
324 | */ | |
325 | static __u64 jent_loop_shuffle(struct rand_data *ec, | |
326 | unsigned int bits, unsigned int min) | |
327 | { | |
328 | __u64 time = 0; | |
329 | __u64 shuffle = 0; | |
330 | unsigned int i = 0; | |
331 | unsigned int mask = (1<<bits) - 1; | |
332 | ||
333 | jent_get_nstime(&time); | |
334 | /* | |
d9d67c87 SM |
335 | * Mix the current state of the random number into the shuffle |
336 | * calculation to balance that shuffle a bit more. | |
bb5530e4 SM |
337 | */ |
338 | if (ec) | |
339 | time ^= ec->data; | |
340 | /* | |
d9d67c87 SM |
341 | * We fold the time value as much as possible to ensure that as many |
342 | * bits of the time stamp are included as possible. | |
bb5530e4 | 343 | */ |
d9d67c87 | 344 | for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) { |
bb5530e4 SM |
345 | shuffle ^= time & mask; |
346 | time = time >> bits; | |
347 | } | |
348 | ||
349 | /* | |
350 | * We add a lower boundary value to ensure we have a minimum | |
351 | * RNG loop count. | |
352 | */ | |
353 | return (shuffle + (1<<min)); | |
354 | } | |
355 | ||
bb5530e4 SM |
356 | /** |
357 | * CPU Jitter noise source -- this is the noise source based on the CPU | |
358 | * execution time jitter | |
359 | * | |
d9d67c87 SM |
360 | * This function injects the individual bits of the time value into the |
361 | * entropy pool using an LFSR. | |
bb5530e4 | 362 | * |
d9d67c87 SM |
363 | * The code is deliberately inefficient with respect to the bit shifting |
364 | * and shall stay that way. This function is the root cause why the code | |
365 | * shall be compiled without optimization. This function not only acts as | |
366 | * folding operation, but this function's execution is used to measure | |
367 | * the CPU execution time jitter. Any change to the loop in this function | |
368 | * implies that careful retesting must be done. | |
bb5530e4 | 369 | * |
764428fe SM |
370 | * @ec [in] entropy collector struct |
371 | * @time [in] time stamp to be injected | |
372 | * @loop_cnt [in] if a value not equal to 0 is set, use the given value as | |
373 | * number of loops to perform the folding | |
374 | * @stuck [in] Is the time stamp identified as stuck? | |
bb5530e4 SM |
375 | * |
376 | * Output: | |
d9d67c87 | 377 | * updated ec->data |
bb5530e4 SM |
378 | * |
379 | * @return Number of loops the folding operation is performed | |
380 | */ | |
764428fe SM |
381 | static void jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt, |
382 | int stuck) | |
bb5530e4 SM |
383 | { |
384 | unsigned int i; | |
385 | __u64 j = 0; | |
386 | __u64 new = 0; | |
387 | #define MAX_FOLD_LOOP_BIT 4 | |
388 | #define MIN_FOLD_LOOP_BIT 0 | |
389 | __u64 fold_loop_cnt = | |
390 | jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT); | |
391 | ||
392 | /* | |
393 | * testing purposes -- allow test app to set the counter, not | |
394 | * needed during runtime | |
395 | */ | |
396 | if (loop_cnt) | |
397 | fold_loop_cnt = loop_cnt; | |
398 | for (j = 0; j < fold_loop_cnt; j++) { | |
d9d67c87 | 399 | new = ec->data; |
bb5530e4 SM |
400 | for (i = 1; (DATA_SIZE_BITS) >= i; i++) { |
401 | __u64 tmp = time << (DATA_SIZE_BITS - i); | |
402 | ||
403 | tmp = tmp >> (DATA_SIZE_BITS - 1); | |
d9d67c87 SM |
404 | |
405 | /* | |
406 | * Fibonacci LSFR with polynomial of | |
407 | * x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is | |
408 | * primitive according to | |
409 | * http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf | |
410 | * (the shift values are the polynomial values minus one | |
411 | * due to counting bits from 0 to 63). As the current | |
412 | * position is always the LSB, the polynomial only needs | |
413 | * to shift data in from the left without wrap. | |
414 | */ | |
415 | tmp ^= ((new >> 63) & 1); | |
416 | tmp ^= ((new >> 60) & 1); | |
417 | tmp ^= ((new >> 55) & 1); | |
418 | tmp ^= ((new >> 30) & 1); | |
419 | tmp ^= ((new >> 27) & 1); | |
420 | tmp ^= ((new >> 22) & 1); | |
421 | new <<= 1; | |
bb5530e4 SM |
422 | new ^= tmp; |
423 | } | |
424 | } | |
d9d67c87 | 425 | |
764428fe SM |
426 | /* |
427 | * If the time stamp is stuck, do not finally insert the value into | |
428 | * the entropy pool. Although this operation should not do any harm | |
429 | * even when the time stamp has no entropy, SP800-90B requires that | |
430 | * any conditioning operation (SP800-90B considers the LFSR to be a | |
431 | * conditioning operation) to have an identical amount of input | |
432 | * data according to section 3.1.5. | |
433 | */ | |
434 | if (!stuck) | |
435 | ec->data = new; | |
bb5530e4 SM |
436 | } |
437 | ||
438 | /** | |
439 | * Memory Access noise source -- this is a noise source based on variations in | |
440 | * memory access times | |
441 | * | |
442 | * This function performs memory accesses which will add to the timing | |
443 | * variations due to an unknown amount of CPU wait states that need to be | |
444 | * added when accessing memory. The memory size should be larger than the L1 | |
445 | * caches as outlined in the documentation and the associated testing. | |
446 | * | |
447 | * The L1 cache has a very high bandwidth, albeit its access rate is usually | |
448 | * slower than accessing CPU registers. Therefore, L1 accesses only add minimal | |
449 | * variations as the CPU has hardly to wait. Starting with L2, significant | |
450 | * variations are added because L2 typically does not belong to the CPU any more | |
451 | * and therefore a wider range of CPU wait states is necessary for accesses. | |
452 | * L3 and real memory accesses have even a wider range of wait states. However, | |
453 | * to reliably access either L3 or memory, the ec->mem memory must be quite | |
454 | * large which is usually not desirable. | |
455 | * | |
764428fe SM |
456 | * @ec [in] Reference to the entropy collector with the memory access data -- if |
457 | * the reference to the memory block to be accessed is NULL, this noise | |
458 | * source is disabled | |
459 | * @loop_cnt [in] if a value not equal to 0 is set, use the given value | |
460 | * number of loops to perform the LFSR | |
bb5530e4 | 461 | */ |
764428fe | 462 | static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt) |
bb5530e4 | 463 | { |
bb5530e4 SM |
464 | unsigned int wrap = 0; |
465 | __u64 i = 0; | |
466 | #define MAX_ACC_LOOP_BIT 7 | |
467 | #define MIN_ACC_LOOP_BIT 0 | |
468 | __u64 acc_loop_cnt = | |
469 | jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT); | |
470 | ||
471 | if (NULL == ec || NULL == ec->mem) | |
764428fe | 472 | return; |
bb5530e4 SM |
473 | wrap = ec->memblocksize * ec->memblocks; |
474 | ||
475 | /* | |
476 | * testing purposes -- allow test app to set the counter, not | |
477 | * needed during runtime | |
478 | */ | |
479 | if (loop_cnt) | |
480 | acc_loop_cnt = loop_cnt; | |
481 | ||
482 | for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) { | |
d9d67c87 | 483 | unsigned char *tmpval = ec->mem + ec->memlocation; |
bb5530e4 SM |
484 | /* |
485 | * memory access: just add 1 to one byte, | |
486 | * wrap at 255 -- memory access implies read | |
487 | * from and write to memory location | |
488 | */ | |
489 | *tmpval = (*tmpval + 1) & 0xff; | |
490 | /* | |
491 | * Addition of memblocksize - 1 to pointer | |
492 | * with wrap around logic to ensure that every | |
493 | * memory location is hit evenly | |
494 | */ | |
495 | ec->memlocation = ec->memlocation + ec->memblocksize - 1; | |
496 | ec->memlocation = ec->memlocation % wrap; | |
497 | } | |
bb5530e4 SM |
498 | } |
499 | ||
500 | /*************************************************************************** | |
501 | * Start of entropy processing logic | |
502 | ***************************************************************************/ | |
bb5530e4 SM |
503 | /** |
504 | * This is the heart of the entropy generation: calculate time deltas and | |
d9d67c87 SM |
505 | * use the CPU jitter in the time deltas. The jitter is injected into the |
506 | * entropy pool. | |
bb5530e4 SM |
507 | * |
508 | * WARNING: ensure that ->prev_time is primed before using the output | |
509 | * of this function! This can be done by calling this function | |
510 | * and not using its result. | |
511 | * | |
764428fe | 512 | * @ec [in] Reference to entropy collector |
bb5530e4 | 513 | * |
d9d67c87 | 514 | * @return result of stuck test |
bb5530e4 | 515 | */ |
d9d67c87 | 516 | static int jent_measure_jitter(struct rand_data *ec) |
bb5530e4 SM |
517 | { |
518 | __u64 time = 0; | |
bb5530e4 | 519 | __u64 current_delta = 0; |
764428fe | 520 | int stuck; |
bb5530e4 SM |
521 | |
522 | /* Invoke one noise source before time measurement to add variations */ | |
523 | jent_memaccess(ec, 0); | |
524 | ||
525 | /* | |
526 | * Get time stamp and calculate time delta to previous | |
527 | * invocation to measure the timing variations | |
528 | */ | |
529 | jent_get_nstime(&time); | |
764428fe | 530 | current_delta = jent_delta(ec->prev_time, time); |
bb5530e4 SM |
531 | ec->prev_time = time; |
532 | ||
764428fe SM |
533 | /* Check whether we have a stuck measurement. */ |
534 | stuck = jent_stuck(ec, current_delta); | |
535 | ||
d9d67c87 | 536 | /* Now call the next noise sources which also injects the data */ |
764428fe | 537 | jent_lfsr_time(ec, current_delta, 0, stuck); |
bb5530e4 | 538 | |
764428fe | 539 | return stuck; |
bb5530e4 SM |
540 | } |
541 | ||
542 | /** | |
543 | * Generator of one 64 bit random number | |
544 | * Function fills rand_data->data | |
545 | * | |
764428fe | 546 | * @ec [in] Reference to entropy collector |
bb5530e4 SM |
547 | */ |
548 | static void jent_gen_entropy(struct rand_data *ec) | |
549 | { | |
550 | unsigned int k = 0; | |
551 | ||
552 | /* priming of the ->prev_time value */ | |
553 | jent_measure_jitter(ec); | |
554 | ||
555 | while (1) { | |
d9d67c87 SM |
556 | /* If a stuck measurement is received, repeat measurement */ |
557 | if (jent_measure_jitter(ec)) | |
bb5530e4 | 558 | continue; |
bb5530e4 SM |
559 | |
560 | /* | |
561 | * We multiply the loop value with ->osr to obtain the | |
562 | * oversampling rate requested by the caller | |
563 | */ | |
564 | if (++k >= (DATA_SIZE_BITS * ec->osr)) | |
565 | break; | |
566 | } | |
bb5530e4 SM |
567 | } |
568 | ||
bb5530e4 SM |
569 | /** |
570 | * Entry function: Obtain entropy for the caller. | |
571 | * | |
572 | * This function invokes the entropy gathering logic as often to generate | |
573 | * as many bytes as requested by the caller. The entropy gathering logic | |
574 | * creates 64 bit per invocation. | |
575 | * | |
576 | * This function truncates the last 64 bit entropy value output to the exact | |
577 | * size specified by the caller. | |
578 | * | |
764428fe SM |
579 | * @ec [in] Reference to entropy collector |
580 | * @data [in] pointer to buffer for storing random data -- buffer must already | |
581 | * exist | |
582 | * @len [in] size of the buffer, specifying also the requested number of random | |
583 | * in bytes | |
bb5530e4 SM |
584 | * |
585 | * @return 0 when request is fulfilled or an error | |
586 | * | |
587 | * The following error codes can occur: | |
588 | * -1 entropy_collector is NULL | |
764428fe SM |
589 | * -2 RCT failed |
590 | * -3 APT test failed | |
bb5530e4 | 591 | */ |
dfc9fa91 SM |
592 | int jent_read_entropy(struct rand_data *ec, unsigned char *data, |
593 | unsigned int len) | |
bb5530e4 | 594 | { |
dfc9fa91 | 595 | unsigned char *p = data; |
bb5530e4 SM |
596 | |
597 | if (!ec) | |
dfc9fa91 | 598 | return -1; |
bb5530e4 | 599 | |
36c25011 | 600 | while (len > 0) { |
dfc9fa91 | 601 | unsigned int tocopy; |
bb5530e4 SM |
602 | |
603 | jent_gen_entropy(ec); | |
764428fe SM |
604 | |
605 | if (jent_health_failure(ec)) { | |
606 | int ret; | |
607 | ||
608 | if (jent_rct_failure(ec)) | |
609 | ret = -2; | |
610 | else | |
611 | ret = -3; | |
612 | ||
613 | /* | |
614 | * Re-initialize the noise source | |
615 | * | |
616 | * If the health test fails, the Jitter RNG remains | |
617 | * in failure state and will return a health failure | |
618 | * during next invocation. | |
619 | */ | |
620 | if (jent_entropy_init()) | |
621 | return ret; | |
622 | ||
623 | /* Set APT to initial state */ | |
624 | jent_apt_reset(ec, 0); | |
625 | ec->apt_base_set = 0; | |
626 | ||
627 | /* Set RCT to initial state */ | |
628 | ec->rct_count = 0; | |
629 | ||
630 | /* Re-enable Jitter RNG */ | |
631 | ec->health_failure = 0; | |
632 | ||
633 | /* | |
634 | * Return the health test failure status to the | |
635 | * caller as the generated value is not appropriate. | |
636 | */ | |
637 | return ret; | |
638 | } | |
639 | ||
bb5530e4 SM |
640 | if ((DATA_SIZE_BITS / 8) < len) |
641 | tocopy = (DATA_SIZE_BITS / 8); | |
642 | else | |
643 | tocopy = len; | |
dfc9fa91 | 644 | jent_memcpy(p, &ec->data, tocopy); |
bb5530e4 SM |
645 | |
646 | len -= tocopy; | |
647 | p += tocopy; | |
648 | } | |
649 | ||
650 | return 0; | |
651 | } | |
652 | ||
653 | /*************************************************************************** | |
654 | * Initialization logic | |
655 | ***************************************************************************/ | |
656 | ||
dfc9fa91 SM |
657 | struct rand_data *jent_entropy_collector_alloc(unsigned int osr, |
658 | unsigned int flags) | |
bb5530e4 SM |
659 | { |
660 | struct rand_data *entropy_collector; | |
661 | ||
dfc9fa91 | 662 | entropy_collector = jent_zalloc(sizeof(struct rand_data)); |
bb5530e4 SM |
663 | if (!entropy_collector) |
664 | return NULL; | |
665 | ||
666 | if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) { | |
667 | /* Allocate memory for adding variations based on memory | |
668 | * access | |
669 | */ | |
dfc9fa91 | 670 | entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE); |
bb5530e4 | 671 | if (!entropy_collector->mem) { |
dfc9fa91 | 672 | jent_zfree(entropy_collector); |
bb5530e4 SM |
673 | return NULL; |
674 | } | |
675 | entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE; | |
676 | entropy_collector->memblocks = JENT_MEMORY_BLOCKS; | |
677 | entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS; | |
678 | } | |
679 | ||
680 | /* verify and set the oversampling rate */ | |
36c25011 | 681 | if (osr == 0) |
bb5530e4 SM |
682 | osr = 1; /* minimum sampling rate is 1 */ |
683 | entropy_collector->osr = osr; | |
684 | ||
bb5530e4 SM |
685 | /* fill the data pad with non-zero values */ |
686 | jent_gen_entropy(entropy_collector); | |
687 | ||
688 | return entropy_collector; | |
689 | } | |
690 | ||
dfc9fa91 | 691 | void jent_entropy_collector_free(struct rand_data *entropy_collector) |
bb5530e4 | 692 | { |
cea0a3c3 | 693 | jent_zfree(entropy_collector->mem); |
bb5530e4 | 694 | entropy_collector->mem = NULL; |
cea0a3c3 | 695 | jent_zfree(entropy_collector); |
bb5530e4 SM |
696 | } |
697 | ||
dfc9fa91 | 698 | int jent_entropy_init(void) |
bb5530e4 SM |
699 | { |
700 | int i; | |
701 | __u64 delta_sum = 0; | |
702 | __u64 old_delta = 0; | |
764428fe | 703 | unsigned int nonstuck = 0; |
bb5530e4 | 704 | int time_backwards = 0; |
bb5530e4 | 705 | int count_mod = 0; |
d9d67c87 SM |
706 | int count_stuck = 0; |
707 | struct rand_data ec = { 0 }; | |
bb5530e4 | 708 | |
764428fe SM |
709 | /* Required for RCT */ |
710 | ec.osr = 1; | |
711 | ||
bb5530e4 SM |
712 | /* We could perform statistical tests here, but the problem is |
713 | * that we only have a few loop counts to do testing. These | |
714 | * loop counts may show some slight skew and we produce | |
715 | * false positives. | |
716 | * | |
717 | * Moreover, only old systems show potentially problematic | |
718 | * jitter entropy that could potentially be caught here. But | |
719 | * the RNG is intended for hardware that is available or widely | |
720 | * used, but not old systems that are long out of favor. Thus, | |
721 | * no statistical tests. | |
722 | */ | |
723 | ||
724 | /* | |
725 | * We could add a check for system capabilities such as clock_getres or | |
726 | * check for CONFIG_X86_TSC, but it does not make much sense as the | |
727 | * following sanity checks verify that we have a high-resolution | |
728 | * timer. | |
729 | */ | |
730 | /* | |
731 | * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is | |
732 | * definitely too little. | |
764428fe SM |
733 | * |
734 | * SP800-90B requires at least 1024 initial test cycles. | |
bb5530e4 | 735 | */ |
764428fe | 736 | #define TESTLOOPCOUNT 1024 |
bb5530e4 SM |
737 | #define CLEARCACHE 100 |
738 | for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) { | |
739 | __u64 time = 0; | |
740 | __u64 time2 = 0; | |
bb5530e4 SM |
741 | __u64 delta = 0; |
742 | unsigned int lowdelta = 0; | |
d9d67c87 | 743 | int stuck; |
bb5530e4 | 744 | |
d9d67c87 | 745 | /* Invoke core entropy collection logic */ |
bb5530e4 | 746 | jent_get_nstime(&time); |
d9d67c87 | 747 | ec.prev_time = time; |
764428fe | 748 | jent_lfsr_time(&ec, time, 0, 0); |
bb5530e4 SM |
749 | jent_get_nstime(&time2); |
750 | ||
751 | /* test whether timer works */ | |
752 | if (!time || !time2) | |
753 | return JENT_ENOTIME; | |
764428fe | 754 | delta = jent_delta(time, time2); |
bb5530e4 SM |
755 | /* |
756 | * test whether timer is fine grained enough to provide | |
757 | * delta even when called shortly after each other -- this | |
758 | * implies that we also have a high resolution timer | |
759 | */ | |
760 | if (!delta) | |
761 | return JENT_ECOARSETIME; | |
762 | ||
d9d67c87 SM |
763 | stuck = jent_stuck(&ec, delta); |
764 | ||
bb5530e4 SM |
765 | /* |
766 | * up to here we did not modify any variable that will be | |
767 | * evaluated later, but we already performed some work. Thus we | |
768 | * already have had an impact on the caches, branch prediction, | |
769 | * etc. with the goal to clear it to get the worst case | |
770 | * measurements. | |
771 | */ | |
36c25011 | 772 | if (i < CLEARCACHE) |
bb5530e4 SM |
773 | continue; |
774 | ||
d9d67c87 SM |
775 | if (stuck) |
776 | count_stuck++; | |
764428fe SM |
777 | else { |
778 | nonstuck++; | |
779 | ||
780 | /* | |
781 | * Ensure that the APT succeeded. | |
782 | * | |
783 | * With the check below that count_stuck must be less | |
784 | * than 10% of the overall generated raw entropy values | |
785 | * it is guaranteed that the APT is invoked at | |
786 | * floor((TESTLOOPCOUNT * 0.9) / 64) == 14 times. | |
787 | */ | |
788 | if ((nonstuck % JENT_APT_WINDOW_SIZE) == 0) { | |
789 | jent_apt_reset(&ec, | |
790 | delta & JENT_APT_WORD_MASK); | |
791 | if (jent_health_failure(&ec)) | |
792 | return JENT_EHEALTH; | |
793 | } | |
794 | } | |
795 | ||
796 | /* Validate RCT */ | |
797 | if (jent_rct_failure(&ec)) | |
798 | return JENT_ERCT; | |
d9d67c87 | 799 | |
bb5530e4 SM |
800 | /* test whether we have an increasing timer */ |
801 | if (!(time2 > time)) | |
802 | time_backwards++; | |
803 | ||
d9d67c87 | 804 | /* use 32 bit value to ensure compilation on 32 bit arches */ |
bb5530e4 SM |
805 | lowdelta = time2 - time; |
806 | if (!(lowdelta % 100)) | |
807 | count_mod++; | |
808 | ||
809 | /* | |
810 | * ensure that we have a varying delta timer which is necessary | |
811 | * for the calculation of entropy -- perform this check | |
812 | * only after the first loop is executed as we need to prime | |
813 | * the old_data value | |
814 | */ | |
d9d67c87 SM |
815 | if (delta > old_delta) |
816 | delta_sum += (delta - old_delta); | |
817 | else | |
818 | delta_sum += (old_delta - delta); | |
bb5530e4 SM |
819 | old_delta = delta; |
820 | } | |
821 | ||
822 | /* | |
823 | * we allow up to three times the time running backwards. | |
824 | * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus, | |
825 | * if such an operation just happens to interfere with our test, it | |
826 | * should not fail. The value of 3 should cover the NTP case being | |
827 | * performed during our test run. | |
828 | */ | |
36c25011 | 829 | if (time_backwards > 3) |
bb5530e4 | 830 | return JENT_ENOMONOTONIC; |
bb5530e4 SM |
831 | |
832 | /* | |
833 | * Variations of deltas of time must on average be larger | |
834 | * than 1 to ensure the entropy estimation | |
835 | * implied with 1 is preserved | |
836 | */ | |
d9d67c87 SM |
837 | if ((delta_sum) <= 1) |
838 | return JENT_EVARVAR; | |
bb5530e4 SM |
839 | |
840 | /* | |
841 | * Ensure that we have variations in the time stamp below 10 for at | |
d9d67c87 SM |
842 | * least 10% of all checks -- on some platforms, the counter increments |
843 | * in multiples of 100, but not always | |
bb5530e4 SM |
844 | */ |
845 | if ((TESTLOOPCOUNT/10 * 9) < count_mod) | |
846 | return JENT_ECOARSETIME; | |
847 | ||
d9d67c87 SM |
848 | /* |
849 | * If we have more than 90% stuck results, then this Jitter RNG is | |
850 | * likely to not work well. | |
851 | */ | |
852 | if ((TESTLOOPCOUNT/10 * 9) < count_stuck) | |
853 | return JENT_ESTUCK; | |
854 | ||
bb5530e4 SM |
855 | return 0; |
856 | } |