]>
Commit | Line | Data |
---|---|---|
bc7f75fa AK |
1 | /******************************************************************************* |
2 | ||
3 | Intel PRO/1000 Linux driver | |
c7e54b1b | 4 | Copyright(c) 1999 - 2009 Intel Corporation. |
bc7f75fa AK |
5 | |
6 | This program is free software; you can redistribute it and/or modify it | |
7 | under the terms and conditions of the GNU General Public License, | |
8 | version 2, as published by the Free Software Foundation. | |
9 | ||
10 | This program is distributed in the hope it will be useful, but WITHOUT | |
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
13 | more details. | |
14 | ||
15 | You should have received a copy of the GNU General Public License along with | |
16 | this program; if not, write to the Free Software Foundation, Inc., | |
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | |
18 | ||
19 | The full GNU General Public License is included in this distribution in | |
20 | the file called "COPYING". | |
21 | ||
22 | Contact Information: | |
23 | Linux NICS <[email protected]> | |
24 | e1000-devel Mailing List <[email protected]> | |
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | |
26 | ||
27 | *******************************************************************************/ | |
28 | ||
29 | #include <linux/module.h> | |
30 | #include <linux/types.h> | |
31 | #include <linux/init.h> | |
32 | #include <linux/pci.h> | |
33 | #include <linux/vmalloc.h> | |
34 | #include <linux/pagemap.h> | |
35 | #include <linux/delay.h> | |
36 | #include <linux/netdevice.h> | |
37 | #include <linux/tcp.h> | |
38 | #include <linux/ipv6.h> | |
39 | #include <net/checksum.h> | |
40 | #include <net/ip6_checksum.h> | |
41 | #include <linux/mii.h> | |
42 | #include <linux/ethtool.h> | |
43 | #include <linux/if_vlan.h> | |
44 | #include <linux/cpu.h> | |
45 | #include <linux/smp.h> | |
97ac8cae | 46 | #include <linux/pm_qos_params.h> |
111b9dc5 | 47 | #include <linux/aer.h> |
bc7f75fa AK |
48 | |
49 | #include "e1000.h" | |
50 | ||
3be8c940 | 51 | #define DRV_VERSION "1.0.2-k2" |
bc7f75fa AK |
52 | char e1000e_driver_name[] = "e1000e"; |
53 | const char e1000e_driver_version[] = DRV_VERSION; | |
54 | ||
55 | static const struct e1000_info *e1000_info_tbl[] = { | |
56 | [board_82571] = &e1000_82571_info, | |
57 | [board_82572] = &e1000_82572_info, | |
58 | [board_82573] = &e1000_82573_info, | |
4662e82b | 59 | [board_82574] = &e1000_82574_info, |
8c81c9c3 | 60 | [board_82583] = &e1000_82583_info, |
bc7f75fa AK |
61 | [board_80003es2lan] = &e1000_es2_info, |
62 | [board_ich8lan] = &e1000_ich8_info, | |
63 | [board_ich9lan] = &e1000_ich9_info, | |
f4187b56 | 64 | [board_ich10lan] = &e1000_ich10_info, |
a4f58f54 | 65 | [board_pchlan] = &e1000_pch_info, |
bc7f75fa AK |
66 | }; |
67 | ||
bc7f75fa AK |
68 | /** |
69 | * e1000_desc_unused - calculate if we have unused descriptors | |
70 | **/ | |
71 | static int e1000_desc_unused(struct e1000_ring *ring) | |
72 | { | |
73 | if (ring->next_to_clean > ring->next_to_use) | |
74 | return ring->next_to_clean - ring->next_to_use - 1; | |
75 | ||
76 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | |
77 | } | |
78 | ||
79 | /** | |
ad68076e | 80 | * e1000_receive_skb - helper function to handle Rx indications |
bc7f75fa AK |
81 | * @adapter: board private structure |
82 | * @status: descriptor status field as written by hardware | |
83 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | |
84 | * @skb: pointer to sk_buff to be indicated to stack | |
85 | **/ | |
86 | static void e1000_receive_skb(struct e1000_adapter *adapter, | |
87 | struct net_device *netdev, | |
88 | struct sk_buff *skb, | |
a39fe742 | 89 | u8 status, __le16 vlan) |
bc7f75fa AK |
90 | { |
91 | skb->protocol = eth_type_trans(skb, netdev); | |
92 | ||
93 | if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | |
c405b828 HX |
94 | vlan_gro_receive(&adapter->napi, adapter->vlgrp, |
95 | le16_to_cpu(vlan), skb); | |
bc7f75fa | 96 | else |
89c88b16 | 97 | napi_gro_receive(&adapter->napi, skb); |
bc7f75fa AK |
98 | } |
99 | ||
100 | /** | |
101 | * e1000_rx_checksum - Receive Checksum Offload for 82543 | |
102 | * @adapter: board private structure | |
103 | * @status_err: receive descriptor status and error fields | |
104 | * @csum: receive descriptor csum field | |
105 | * @sk_buff: socket buffer with received data | |
106 | **/ | |
107 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | |
108 | u32 csum, struct sk_buff *skb) | |
109 | { | |
110 | u16 status = (u16)status_err; | |
111 | u8 errors = (u8)(status_err >> 24); | |
112 | skb->ip_summed = CHECKSUM_NONE; | |
113 | ||
114 | /* Ignore Checksum bit is set */ | |
115 | if (status & E1000_RXD_STAT_IXSM) | |
116 | return; | |
117 | /* TCP/UDP checksum error bit is set */ | |
118 | if (errors & E1000_RXD_ERR_TCPE) { | |
119 | /* let the stack verify checksum errors */ | |
120 | adapter->hw_csum_err++; | |
121 | return; | |
122 | } | |
123 | ||
124 | /* TCP/UDP Checksum has not been calculated */ | |
125 | if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | |
126 | return; | |
127 | ||
128 | /* It must be a TCP or UDP packet with a valid checksum */ | |
129 | if (status & E1000_RXD_STAT_TCPCS) { | |
130 | /* TCP checksum is good */ | |
131 | skb->ip_summed = CHECKSUM_UNNECESSARY; | |
132 | } else { | |
ad68076e BA |
133 | /* |
134 | * IP fragment with UDP payload | |
135 | * Hardware complements the payload checksum, so we undo it | |
bc7f75fa AK |
136 | * and then put the value in host order for further stack use. |
137 | */ | |
a39fe742 AV |
138 | __sum16 sum = (__force __sum16)htons(csum); |
139 | skb->csum = csum_unfold(~sum); | |
bc7f75fa AK |
140 | skb->ip_summed = CHECKSUM_COMPLETE; |
141 | } | |
142 | adapter->hw_csum_good++; | |
143 | } | |
144 | ||
145 | /** | |
146 | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | |
147 | * @adapter: address of board private structure | |
148 | **/ | |
149 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | |
150 | int cleaned_count) | |
151 | { | |
152 | struct net_device *netdev = adapter->netdev; | |
153 | struct pci_dev *pdev = adapter->pdev; | |
154 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
155 | struct e1000_rx_desc *rx_desc; | |
156 | struct e1000_buffer *buffer_info; | |
157 | struct sk_buff *skb; | |
158 | unsigned int i; | |
89d71a66 | 159 | unsigned int bufsz = adapter->rx_buffer_len; |
bc7f75fa AK |
160 | |
161 | i = rx_ring->next_to_use; | |
162 | buffer_info = &rx_ring->buffer_info[i]; | |
163 | ||
164 | while (cleaned_count--) { | |
165 | skb = buffer_info->skb; | |
166 | if (skb) { | |
167 | skb_trim(skb, 0); | |
168 | goto map_skb; | |
169 | } | |
170 | ||
89d71a66 | 171 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
bc7f75fa AK |
172 | if (!skb) { |
173 | /* Better luck next round */ | |
174 | adapter->alloc_rx_buff_failed++; | |
175 | break; | |
176 | } | |
177 | ||
bc7f75fa AK |
178 | buffer_info->skb = skb; |
179 | map_skb: | |
180 | buffer_info->dma = pci_map_single(pdev, skb->data, | |
181 | adapter->rx_buffer_len, | |
182 | PCI_DMA_FROMDEVICE); | |
8d8bb39b | 183 | if (pci_dma_mapping_error(pdev, buffer_info->dma)) { |
bc7f75fa AK |
184 | dev_err(&pdev->dev, "RX DMA map failed\n"); |
185 | adapter->rx_dma_failed++; | |
186 | break; | |
187 | } | |
188 | ||
189 | rx_desc = E1000_RX_DESC(*rx_ring, i); | |
190 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | |
191 | ||
192 | i++; | |
193 | if (i == rx_ring->count) | |
194 | i = 0; | |
195 | buffer_info = &rx_ring->buffer_info[i]; | |
196 | } | |
197 | ||
198 | if (rx_ring->next_to_use != i) { | |
199 | rx_ring->next_to_use = i; | |
200 | if (i-- == 0) | |
201 | i = (rx_ring->count - 1); | |
202 | ||
ad68076e BA |
203 | /* |
204 | * Force memory writes to complete before letting h/w | |
bc7f75fa AK |
205 | * know there are new descriptors to fetch. (Only |
206 | * applicable for weak-ordered memory model archs, | |
ad68076e BA |
207 | * such as IA-64). |
208 | */ | |
bc7f75fa AK |
209 | wmb(); |
210 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | |
211 | } | |
212 | } | |
213 | ||
214 | /** | |
215 | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | |
216 | * @adapter: address of board private structure | |
217 | **/ | |
218 | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | |
219 | int cleaned_count) | |
220 | { | |
221 | struct net_device *netdev = adapter->netdev; | |
222 | struct pci_dev *pdev = adapter->pdev; | |
223 | union e1000_rx_desc_packet_split *rx_desc; | |
224 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
225 | struct e1000_buffer *buffer_info; | |
226 | struct e1000_ps_page *ps_page; | |
227 | struct sk_buff *skb; | |
228 | unsigned int i, j; | |
229 | ||
230 | i = rx_ring->next_to_use; | |
231 | buffer_info = &rx_ring->buffer_info[i]; | |
232 | ||
233 | while (cleaned_count--) { | |
234 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | |
235 | ||
236 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | |
47f44e40 AK |
237 | ps_page = &buffer_info->ps_pages[j]; |
238 | if (j >= adapter->rx_ps_pages) { | |
239 | /* all unused desc entries get hw null ptr */ | |
a39fe742 | 240 | rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); |
47f44e40 AK |
241 | continue; |
242 | } | |
243 | if (!ps_page->page) { | |
244 | ps_page->page = alloc_page(GFP_ATOMIC); | |
bc7f75fa | 245 | if (!ps_page->page) { |
47f44e40 AK |
246 | adapter->alloc_rx_buff_failed++; |
247 | goto no_buffers; | |
248 | } | |
249 | ps_page->dma = pci_map_page(pdev, | |
250 | ps_page->page, | |
251 | 0, PAGE_SIZE, | |
252 | PCI_DMA_FROMDEVICE); | |
8d8bb39b | 253 | if (pci_dma_mapping_error(pdev, ps_page->dma)) { |
47f44e40 AK |
254 | dev_err(&adapter->pdev->dev, |
255 | "RX DMA page map failed\n"); | |
256 | adapter->rx_dma_failed++; | |
257 | goto no_buffers; | |
bc7f75fa | 258 | } |
bc7f75fa | 259 | } |
47f44e40 AK |
260 | /* |
261 | * Refresh the desc even if buffer_addrs | |
262 | * didn't change because each write-back | |
263 | * erases this info. | |
264 | */ | |
265 | rx_desc->read.buffer_addr[j+1] = | |
266 | cpu_to_le64(ps_page->dma); | |
bc7f75fa AK |
267 | } |
268 | ||
89d71a66 ED |
269 | skb = netdev_alloc_skb_ip_align(netdev, |
270 | adapter->rx_ps_bsize0); | |
bc7f75fa AK |
271 | |
272 | if (!skb) { | |
273 | adapter->alloc_rx_buff_failed++; | |
274 | break; | |
275 | } | |
276 | ||
bc7f75fa AK |
277 | buffer_info->skb = skb; |
278 | buffer_info->dma = pci_map_single(pdev, skb->data, | |
279 | adapter->rx_ps_bsize0, | |
280 | PCI_DMA_FROMDEVICE); | |
8d8bb39b | 281 | if (pci_dma_mapping_error(pdev, buffer_info->dma)) { |
bc7f75fa AK |
282 | dev_err(&pdev->dev, "RX DMA map failed\n"); |
283 | adapter->rx_dma_failed++; | |
284 | /* cleanup skb */ | |
285 | dev_kfree_skb_any(skb); | |
286 | buffer_info->skb = NULL; | |
287 | break; | |
288 | } | |
289 | ||
290 | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | |
291 | ||
292 | i++; | |
293 | if (i == rx_ring->count) | |
294 | i = 0; | |
295 | buffer_info = &rx_ring->buffer_info[i]; | |
296 | } | |
297 | ||
298 | no_buffers: | |
299 | if (rx_ring->next_to_use != i) { | |
300 | rx_ring->next_to_use = i; | |
301 | ||
302 | if (!(i--)) | |
303 | i = (rx_ring->count - 1); | |
304 | ||
ad68076e BA |
305 | /* |
306 | * Force memory writes to complete before letting h/w | |
bc7f75fa AK |
307 | * know there are new descriptors to fetch. (Only |
308 | * applicable for weak-ordered memory model archs, | |
ad68076e BA |
309 | * such as IA-64). |
310 | */ | |
bc7f75fa | 311 | wmb(); |
ad68076e BA |
312 | /* |
313 | * Hardware increments by 16 bytes, but packet split | |
bc7f75fa AK |
314 | * descriptors are 32 bytes...so we increment tail |
315 | * twice as much. | |
316 | */ | |
317 | writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); | |
318 | } | |
319 | } | |
320 | ||
97ac8cae BA |
321 | /** |
322 | * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers | |
323 | * @adapter: address of board private structure | |
97ac8cae BA |
324 | * @cleaned_count: number of buffers to allocate this pass |
325 | **/ | |
326 | ||
327 | static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, | |
328 | int cleaned_count) | |
329 | { | |
330 | struct net_device *netdev = adapter->netdev; | |
331 | struct pci_dev *pdev = adapter->pdev; | |
332 | struct e1000_rx_desc *rx_desc; | |
333 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
334 | struct e1000_buffer *buffer_info; | |
335 | struct sk_buff *skb; | |
336 | unsigned int i; | |
89d71a66 | 337 | unsigned int bufsz = 256 - 16 /* for skb_reserve */; |
97ac8cae BA |
338 | |
339 | i = rx_ring->next_to_use; | |
340 | buffer_info = &rx_ring->buffer_info[i]; | |
341 | ||
342 | while (cleaned_count--) { | |
343 | skb = buffer_info->skb; | |
344 | if (skb) { | |
345 | skb_trim(skb, 0); | |
346 | goto check_page; | |
347 | } | |
348 | ||
89d71a66 | 349 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
97ac8cae BA |
350 | if (unlikely(!skb)) { |
351 | /* Better luck next round */ | |
352 | adapter->alloc_rx_buff_failed++; | |
353 | break; | |
354 | } | |
355 | ||
97ac8cae BA |
356 | buffer_info->skb = skb; |
357 | check_page: | |
358 | /* allocate a new page if necessary */ | |
359 | if (!buffer_info->page) { | |
360 | buffer_info->page = alloc_page(GFP_ATOMIC); | |
361 | if (unlikely(!buffer_info->page)) { | |
362 | adapter->alloc_rx_buff_failed++; | |
363 | break; | |
364 | } | |
365 | } | |
366 | ||
367 | if (!buffer_info->dma) | |
368 | buffer_info->dma = pci_map_page(pdev, | |
369 | buffer_info->page, 0, | |
370 | PAGE_SIZE, | |
371 | PCI_DMA_FROMDEVICE); | |
372 | ||
373 | rx_desc = E1000_RX_DESC(*rx_ring, i); | |
374 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | |
375 | ||
376 | if (unlikely(++i == rx_ring->count)) | |
377 | i = 0; | |
378 | buffer_info = &rx_ring->buffer_info[i]; | |
379 | } | |
380 | ||
381 | if (likely(rx_ring->next_to_use != i)) { | |
382 | rx_ring->next_to_use = i; | |
383 | if (unlikely(i-- == 0)) | |
384 | i = (rx_ring->count - 1); | |
385 | ||
386 | /* Force memory writes to complete before letting h/w | |
387 | * know there are new descriptors to fetch. (Only | |
388 | * applicable for weak-ordered memory model archs, | |
389 | * such as IA-64). */ | |
390 | wmb(); | |
391 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | |
392 | } | |
393 | } | |
394 | ||
bc7f75fa AK |
395 | /** |
396 | * e1000_clean_rx_irq - Send received data up the network stack; legacy | |
397 | * @adapter: board private structure | |
398 | * | |
399 | * the return value indicates whether actual cleaning was done, there | |
400 | * is no guarantee that everything was cleaned | |
401 | **/ | |
402 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | |
403 | int *work_done, int work_to_do) | |
404 | { | |
405 | struct net_device *netdev = adapter->netdev; | |
406 | struct pci_dev *pdev = adapter->pdev; | |
3bb99fe2 | 407 | struct e1000_hw *hw = &adapter->hw; |
bc7f75fa AK |
408 | struct e1000_ring *rx_ring = adapter->rx_ring; |
409 | struct e1000_rx_desc *rx_desc, *next_rxd; | |
410 | struct e1000_buffer *buffer_info, *next_buffer; | |
411 | u32 length; | |
412 | unsigned int i; | |
413 | int cleaned_count = 0; | |
414 | bool cleaned = 0; | |
415 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | |
416 | ||
417 | i = rx_ring->next_to_clean; | |
418 | rx_desc = E1000_RX_DESC(*rx_ring, i); | |
419 | buffer_info = &rx_ring->buffer_info[i]; | |
420 | ||
421 | while (rx_desc->status & E1000_RXD_STAT_DD) { | |
422 | struct sk_buff *skb; | |
423 | u8 status; | |
424 | ||
425 | if (*work_done >= work_to_do) | |
426 | break; | |
427 | (*work_done)++; | |
428 | ||
429 | status = rx_desc->status; | |
430 | skb = buffer_info->skb; | |
431 | buffer_info->skb = NULL; | |
432 | ||
433 | prefetch(skb->data - NET_IP_ALIGN); | |
434 | ||
435 | i++; | |
436 | if (i == rx_ring->count) | |
437 | i = 0; | |
438 | next_rxd = E1000_RX_DESC(*rx_ring, i); | |
439 | prefetch(next_rxd); | |
440 | ||
441 | next_buffer = &rx_ring->buffer_info[i]; | |
442 | ||
443 | cleaned = 1; | |
444 | cleaned_count++; | |
445 | pci_unmap_single(pdev, | |
446 | buffer_info->dma, | |
447 | adapter->rx_buffer_len, | |
448 | PCI_DMA_FROMDEVICE); | |
449 | buffer_info->dma = 0; | |
450 | ||
451 | length = le16_to_cpu(rx_desc->length); | |
452 | ||
453 | /* !EOP means multiple descriptors were used to store a single | |
454 | * packet, also make sure the frame isn't just CRC only */ | |
455 | if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { | |
456 | /* All receives must fit into a single buffer */ | |
3bb99fe2 | 457 | e_dbg("Receive packet consumed multiple buffers\n"); |
bc7f75fa AK |
458 | /* recycle */ |
459 | buffer_info->skb = skb; | |
460 | goto next_desc; | |
461 | } | |
462 | ||
463 | if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { | |
464 | /* recycle */ | |
465 | buffer_info->skb = skb; | |
466 | goto next_desc; | |
467 | } | |
468 | ||
eb7c3adb JK |
469 | /* adjust length to remove Ethernet CRC */ |
470 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | |
471 | length -= 4; | |
472 | ||
bc7f75fa AK |
473 | total_rx_bytes += length; |
474 | total_rx_packets++; | |
475 | ||
ad68076e BA |
476 | /* |
477 | * code added for copybreak, this should improve | |
bc7f75fa | 478 | * performance for small packets with large amounts |
ad68076e BA |
479 | * of reassembly being done in the stack |
480 | */ | |
bc7f75fa AK |
481 | if (length < copybreak) { |
482 | struct sk_buff *new_skb = | |
89d71a66 | 483 | netdev_alloc_skb_ip_align(netdev, length); |
bc7f75fa | 484 | if (new_skb) { |
808ff676 BA |
485 | skb_copy_to_linear_data_offset(new_skb, |
486 | -NET_IP_ALIGN, | |
487 | (skb->data - | |
488 | NET_IP_ALIGN), | |
489 | (length + | |
490 | NET_IP_ALIGN)); | |
bc7f75fa AK |
491 | /* save the skb in buffer_info as good */ |
492 | buffer_info->skb = skb; | |
493 | skb = new_skb; | |
494 | } | |
495 | /* else just continue with the old one */ | |
496 | } | |
497 | /* end copybreak code */ | |
498 | skb_put(skb, length); | |
499 | ||
500 | /* Receive Checksum Offload */ | |
501 | e1000_rx_checksum(adapter, | |
502 | (u32)(status) | | |
503 | ((u32)(rx_desc->errors) << 24), | |
504 | le16_to_cpu(rx_desc->csum), skb); | |
505 | ||
506 | e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); | |
507 | ||
508 | next_desc: | |
509 | rx_desc->status = 0; | |
510 | ||
511 | /* return some buffers to hardware, one at a time is too slow */ | |
512 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | |
513 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
514 | cleaned_count = 0; | |
515 | } | |
516 | ||
517 | /* use prefetched values */ | |
518 | rx_desc = next_rxd; | |
519 | buffer_info = next_buffer; | |
520 | } | |
521 | rx_ring->next_to_clean = i; | |
522 | ||
523 | cleaned_count = e1000_desc_unused(rx_ring); | |
524 | if (cleaned_count) | |
525 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
526 | ||
bc7f75fa | 527 | adapter->total_rx_bytes += total_rx_bytes; |
7c25769f | 528 | adapter->total_rx_packets += total_rx_packets; |
7274c20f AK |
529 | netdev->stats.rx_bytes += total_rx_bytes; |
530 | netdev->stats.rx_packets += total_rx_packets; | |
bc7f75fa AK |
531 | return cleaned; |
532 | } | |
533 | ||
bc7f75fa AK |
534 | static void e1000_put_txbuf(struct e1000_adapter *adapter, |
535 | struct e1000_buffer *buffer_info) | |
536 | { | |
03b1320d AD |
537 | if (buffer_info->dma) { |
538 | if (buffer_info->mapped_as_page) | |
539 | pci_unmap_page(adapter->pdev, buffer_info->dma, | |
540 | buffer_info->length, PCI_DMA_TODEVICE); | |
541 | else | |
542 | pci_unmap_single(adapter->pdev, buffer_info->dma, | |
543 | buffer_info->length, | |
544 | PCI_DMA_TODEVICE); | |
545 | buffer_info->dma = 0; | |
546 | } | |
bc7f75fa AK |
547 | if (buffer_info->skb) { |
548 | dev_kfree_skb_any(buffer_info->skb); | |
549 | buffer_info->skb = NULL; | |
550 | } | |
1b7719c4 | 551 | buffer_info->time_stamp = 0; |
bc7f75fa AK |
552 | } |
553 | ||
41cec6f1 | 554 | static void e1000_print_hw_hang(struct work_struct *work) |
bc7f75fa | 555 | { |
41cec6f1 BA |
556 | struct e1000_adapter *adapter = container_of(work, |
557 | struct e1000_adapter, | |
558 | print_hang_task); | |
bc7f75fa AK |
559 | struct e1000_ring *tx_ring = adapter->tx_ring; |
560 | unsigned int i = tx_ring->next_to_clean; | |
561 | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | |
562 | struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); | |
41cec6f1 BA |
563 | struct e1000_hw *hw = &adapter->hw; |
564 | u16 phy_status, phy_1000t_status, phy_ext_status; | |
565 | u16 pci_status; | |
566 | ||
567 | e1e_rphy(hw, PHY_STATUS, &phy_status); | |
568 | e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status); | |
569 | e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status); | |
bc7f75fa | 570 | |
41cec6f1 BA |
571 | pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); |
572 | ||
573 | /* detected Hardware unit hang */ | |
574 | e_err("Detected Hardware Unit Hang:\n" | |
44defeb3 JK |
575 | " TDH <%x>\n" |
576 | " TDT <%x>\n" | |
577 | " next_to_use <%x>\n" | |
578 | " next_to_clean <%x>\n" | |
579 | "buffer_info[next_to_clean]:\n" | |
580 | " time_stamp <%lx>\n" | |
581 | " next_to_watch <%x>\n" | |
582 | " jiffies <%lx>\n" | |
41cec6f1 BA |
583 | " next_to_watch.status <%x>\n" |
584 | "MAC Status <%x>\n" | |
585 | "PHY Status <%x>\n" | |
586 | "PHY 1000BASE-T Status <%x>\n" | |
587 | "PHY Extended Status <%x>\n" | |
588 | "PCI Status <%x>\n", | |
44defeb3 JK |
589 | readl(adapter->hw.hw_addr + tx_ring->head), |
590 | readl(adapter->hw.hw_addr + tx_ring->tail), | |
591 | tx_ring->next_to_use, | |
592 | tx_ring->next_to_clean, | |
593 | tx_ring->buffer_info[eop].time_stamp, | |
594 | eop, | |
595 | jiffies, | |
41cec6f1 BA |
596 | eop_desc->upper.fields.status, |
597 | er32(STATUS), | |
598 | phy_status, | |
599 | phy_1000t_status, | |
600 | phy_ext_status, | |
601 | pci_status); | |
bc7f75fa AK |
602 | } |
603 | ||
604 | /** | |
605 | * e1000_clean_tx_irq - Reclaim resources after transmit completes | |
606 | * @adapter: board private structure | |
607 | * | |
608 | * the return value indicates whether actual cleaning was done, there | |
609 | * is no guarantee that everything was cleaned | |
610 | **/ | |
611 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) | |
612 | { | |
613 | struct net_device *netdev = adapter->netdev; | |
614 | struct e1000_hw *hw = &adapter->hw; | |
615 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
616 | struct e1000_tx_desc *tx_desc, *eop_desc; | |
617 | struct e1000_buffer *buffer_info; | |
618 | unsigned int i, eop; | |
619 | unsigned int count = 0; | |
bc7f75fa AK |
620 | unsigned int total_tx_bytes = 0, total_tx_packets = 0; |
621 | ||
622 | i = tx_ring->next_to_clean; | |
623 | eop = tx_ring->buffer_info[i].next_to_watch; | |
624 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | |
625 | ||
12d04a3c AD |
626 | while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
627 | (count < tx_ring->count)) { | |
a86043c2 JB |
628 | bool cleaned = false; |
629 | for (; !cleaned; count++) { | |
bc7f75fa AK |
630 | tx_desc = E1000_TX_DESC(*tx_ring, i); |
631 | buffer_info = &tx_ring->buffer_info[i]; | |
632 | cleaned = (i == eop); | |
633 | ||
634 | if (cleaned) { | |
635 | struct sk_buff *skb = buffer_info->skb; | |
636 | unsigned int segs, bytecount; | |
637 | segs = skb_shinfo(skb)->gso_segs ?: 1; | |
638 | /* multiply data chunks by size of headers */ | |
639 | bytecount = ((segs - 1) * skb_headlen(skb)) + | |
640 | skb->len; | |
641 | total_tx_packets += segs; | |
642 | total_tx_bytes += bytecount; | |
643 | } | |
644 | ||
645 | e1000_put_txbuf(adapter, buffer_info); | |
646 | tx_desc->upper.data = 0; | |
647 | ||
648 | i++; | |
649 | if (i == tx_ring->count) | |
650 | i = 0; | |
651 | } | |
652 | ||
653 | eop = tx_ring->buffer_info[i].next_to_watch; | |
654 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | |
bc7f75fa AK |
655 | } |
656 | ||
657 | tx_ring->next_to_clean = i; | |
658 | ||
659 | #define TX_WAKE_THRESHOLD 32 | |
a86043c2 JB |
660 | if (count && netif_carrier_ok(netdev) && |
661 | e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { | |
bc7f75fa AK |
662 | /* Make sure that anybody stopping the queue after this |
663 | * sees the new next_to_clean. | |
664 | */ | |
665 | smp_mb(); | |
666 | ||
667 | if (netif_queue_stopped(netdev) && | |
668 | !(test_bit(__E1000_DOWN, &adapter->state))) { | |
669 | netif_wake_queue(netdev); | |
670 | ++adapter->restart_queue; | |
671 | } | |
672 | } | |
673 | ||
674 | if (adapter->detect_tx_hung) { | |
41cec6f1 BA |
675 | /* |
676 | * Detect a transmit hang in hardware, this serializes the | |
677 | * check with the clearing of time_stamp and movement of i | |
678 | */ | |
bc7f75fa | 679 | adapter->detect_tx_hung = 0; |
12d04a3c AD |
680 | if (tx_ring->buffer_info[i].time_stamp && |
681 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp | |
8e95a202 JP |
682 | + (adapter->tx_timeout_factor * HZ)) && |
683 | !(er32(STATUS) & E1000_STATUS_TXOFF)) { | |
41cec6f1 | 684 | schedule_work(&adapter->print_hang_task); |
bc7f75fa AK |
685 | netif_stop_queue(netdev); |
686 | } | |
687 | } | |
688 | adapter->total_tx_bytes += total_tx_bytes; | |
689 | adapter->total_tx_packets += total_tx_packets; | |
7274c20f AK |
690 | netdev->stats.tx_bytes += total_tx_bytes; |
691 | netdev->stats.tx_packets += total_tx_packets; | |
12d04a3c | 692 | return (count < tx_ring->count); |
bc7f75fa AK |
693 | } |
694 | ||
bc7f75fa AK |
695 | /** |
696 | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | |
697 | * @adapter: board private structure | |
698 | * | |
699 | * the return value indicates whether actual cleaning was done, there | |
700 | * is no guarantee that everything was cleaned | |
701 | **/ | |
702 | static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | |
703 | int *work_done, int work_to_do) | |
704 | { | |
3bb99fe2 | 705 | struct e1000_hw *hw = &adapter->hw; |
bc7f75fa AK |
706 | union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
707 | struct net_device *netdev = adapter->netdev; | |
708 | struct pci_dev *pdev = adapter->pdev; | |
709 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
710 | struct e1000_buffer *buffer_info, *next_buffer; | |
711 | struct e1000_ps_page *ps_page; | |
712 | struct sk_buff *skb; | |
713 | unsigned int i, j; | |
714 | u32 length, staterr; | |
715 | int cleaned_count = 0; | |
716 | bool cleaned = 0; | |
717 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | |
718 | ||
719 | i = rx_ring->next_to_clean; | |
720 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | |
721 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | |
722 | buffer_info = &rx_ring->buffer_info[i]; | |
723 | ||
724 | while (staterr & E1000_RXD_STAT_DD) { | |
725 | if (*work_done >= work_to_do) | |
726 | break; | |
727 | (*work_done)++; | |
728 | skb = buffer_info->skb; | |
729 | ||
730 | /* in the packet split case this is header only */ | |
731 | prefetch(skb->data - NET_IP_ALIGN); | |
732 | ||
733 | i++; | |
734 | if (i == rx_ring->count) | |
735 | i = 0; | |
736 | next_rxd = E1000_RX_DESC_PS(*rx_ring, i); | |
737 | prefetch(next_rxd); | |
738 | ||
739 | next_buffer = &rx_ring->buffer_info[i]; | |
740 | ||
741 | cleaned = 1; | |
742 | cleaned_count++; | |
743 | pci_unmap_single(pdev, buffer_info->dma, | |
744 | adapter->rx_ps_bsize0, | |
745 | PCI_DMA_FROMDEVICE); | |
746 | buffer_info->dma = 0; | |
747 | ||
748 | if (!(staterr & E1000_RXD_STAT_EOP)) { | |
3bb99fe2 BA |
749 | e_dbg("Packet Split buffers didn't pick up the full " |
750 | "packet\n"); | |
bc7f75fa AK |
751 | dev_kfree_skb_irq(skb); |
752 | goto next_desc; | |
753 | } | |
754 | ||
755 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | |
756 | dev_kfree_skb_irq(skb); | |
757 | goto next_desc; | |
758 | } | |
759 | ||
760 | length = le16_to_cpu(rx_desc->wb.middle.length0); | |
761 | ||
762 | if (!length) { | |
3bb99fe2 BA |
763 | e_dbg("Last part of the packet spanning multiple " |
764 | "descriptors\n"); | |
bc7f75fa AK |
765 | dev_kfree_skb_irq(skb); |
766 | goto next_desc; | |
767 | } | |
768 | ||
769 | /* Good Receive */ | |
770 | skb_put(skb, length); | |
771 | ||
772 | { | |
ad68076e BA |
773 | /* |
774 | * this looks ugly, but it seems compiler issues make it | |
775 | * more efficient than reusing j | |
776 | */ | |
bc7f75fa AK |
777 | int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
778 | ||
ad68076e BA |
779 | /* |
780 | * page alloc/put takes too long and effects small packet | |
781 | * throughput, so unsplit small packets and save the alloc/put | |
782 | * only valid in softirq (napi) context to call kmap_* | |
783 | */ | |
bc7f75fa AK |
784 | if (l1 && (l1 <= copybreak) && |
785 | ((length + l1) <= adapter->rx_ps_bsize0)) { | |
786 | u8 *vaddr; | |
787 | ||
47f44e40 | 788 | ps_page = &buffer_info->ps_pages[0]; |
bc7f75fa | 789 | |
ad68076e BA |
790 | /* |
791 | * there is no documentation about how to call | |
bc7f75fa | 792 | * kmap_atomic, so we can't hold the mapping |
ad68076e BA |
793 | * very long |
794 | */ | |
bc7f75fa AK |
795 | pci_dma_sync_single_for_cpu(pdev, ps_page->dma, |
796 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | |
797 | vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); | |
798 | memcpy(skb_tail_pointer(skb), vaddr, l1); | |
799 | kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); | |
800 | pci_dma_sync_single_for_device(pdev, ps_page->dma, | |
801 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | |
140a7480 | 802 | |
eb7c3adb JK |
803 | /* remove the CRC */ |
804 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | |
805 | l1 -= 4; | |
806 | ||
bc7f75fa AK |
807 | skb_put(skb, l1); |
808 | goto copydone; | |
809 | } /* if */ | |
810 | } | |
811 | ||
812 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | |
813 | length = le16_to_cpu(rx_desc->wb.upper.length[j]); | |
814 | if (!length) | |
815 | break; | |
816 | ||
47f44e40 | 817 | ps_page = &buffer_info->ps_pages[j]; |
bc7f75fa AK |
818 | pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, |
819 | PCI_DMA_FROMDEVICE); | |
820 | ps_page->dma = 0; | |
821 | skb_fill_page_desc(skb, j, ps_page->page, 0, length); | |
822 | ps_page->page = NULL; | |
823 | skb->len += length; | |
824 | skb->data_len += length; | |
825 | skb->truesize += length; | |
826 | } | |
827 | ||
eb7c3adb JK |
828 | /* strip the ethernet crc, problem is we're using pages now so |
829 | * this whole operation can get a little cpu intensive | |
830 | */ | |
831 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | |
832 | pskb_trim(skb, skb->len - 4); | |
833 | ||
bc7f75fa AK |
834 | copydone: |
835 | total_rx_bytes += skb->len; | |
836 | total_rx_packets++; | |
837 | ||
838 | e1000_rx_checksum(adapter, staterr, le16_to_cpu( | |
839 | rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); | |
840 | ||
841 | if (rx_desc->wb.upper.header_status & | |
842 | cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) | |
843 | adapter->rx_hdr_split++; | |
844 | ||
845 | e1000_receive_skb(adapter, netdev, skb, | |
846 | staterr, rx_desc->wb.middle.vlan); | |
847 | ||
848 | next_desc: | |
849 | rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); | |
850 | buffer_info->skb = NULL; | |
851 | ||
852 | /* return some buffers to hardware, one at a time is too slow */ | |
853 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | |
854 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
855 | cleaned_count = 0; | |
856 | } | |
857 | ||
858 | /* use prefetched values */ | |
859 | rx_desc = next_rxd; | |
860 | buffer_info = next_buffer; | |
861 | ||
862 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | |
863 | } | |
864 | rx_ring->next_to_clean = i; | |
865 | ||
866 | cleaned_count = e1000_desc_unused(rx_ring); | |
867 | if (cleaned_count) | |
868 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
869 | ||
bc7f75fa | 870 | adapter->total_rx_bytes += total_rx_bytes; |
7c25769f | 871 | adapter->total_rx_packets += total_rx_packets; |
7274c20f AK |
872 | netdev->stats.rx_bytes += total_rx_bytes; |
873 | netdev->stats.rx_packets += total_rx_packets; | |
bc7f75fa AK |
874 | return cleaned; |
875 | } | |
876 | ||
97ac8cae BA |
877 | /** |
878 | * e1000_consume_page - helper function | |
879 | **/ | |
880 | static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, | |
881 | u16 length) | |
882 | { | |
883 | bi->page = NULL; | |
884 | skb->len += length; | |
885 | skb->data_len += length; | |
886 | skb->truesize += length; | |
887 | } | |
888 | ||
889 | /** | |
890 | * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy | |
891 | * @adapter: board private structure | |
892 | * | |
893 | * the return value indicates whether actual cleaning was done, there | |
894 | * is no guarantee that everything was cleaned | |
895 | **/ | |
896 | ||
897 | static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, | |
898 | int *work_done, int work_to_do) | |
899 | { | |
900 | struct net_device *netdev = adapter->netdev; | |
901 | struct pci_dev *pdev = adapter->pdev; | |
902 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
903 | struct e1000_rx_desc *rx_desc, *next_rxd; | |
904 | struct e1000_buffer *buffer_info, *next_buffer; | |
905 | u32 length; | |
906 | unsigned int i; | |
907 | int cleaned_count = 0; | |
908 | bool cleaned = false; | |
909 | unsigned int total_rx_bytes=0, total_rx_packets=0; | |
910 | ||
911 | i = rx_ring->next_to_clean; | |
912 | rx_desc = E1000_RX_DESC(*rx_ring, i); | |
913 | buffer_info = &rx_ring->buffer_info[i]; | |
914 | ||
915 | while (rx_desc->status & E1000_RXD_STAT_DD) { | |
916 | struct sk_buff *skb; | |
917 | u8 status; | |
918 | ||
919 | if (*work_done >= work_to_do) | |
920 | break; | |
921 | (*work_done)++; | |
922 | ||
923 | status = rx_desc->status; | |
924 | skb = buffer_info->skb; | |
925 | buffer_info->skb = NULL; | |
926 | ||
927 | ++i; | |
928 | if (i == rx_ring->count) | |
929 | i = 0; | |
930 | next_rxd = E1000_RX_DESC(*rx_ring, i); | |
931 | prefetch(next_rxd); | |
932 | ||
933 | next_buffer = &rx_ring->buffer_info[i]; | |
934 | ||
935 | cleaned = true; | |
936 | cleaned_count++; | |
937 | pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE, | |
938 | PCI_DMA_FROMDEVICE); | |
939 | buffer_info->dma = 0; | |
940 | ||
941 | length = le16_to_cpu(rx_desc->length); | |
942 | ||
943 | /* errors is only valid for DD + EOP descriptors */ | |
944 | if (unlikely((status & E1000_RXD_STAT_EOP) && | |
945 | (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { | |
946 | /* recycle both page and skb */ | |
947 | buffer_info->skb = skb; | |
948 | /* an error means any chain goes out the window | |
949 | * too */ | |
950 | if (rx_ring->rx_skb_top) | |
951 | dev_kfree_skb(rx_ring->rx_skb_top); | |
952 | rx_ring->rx_skb_top = NULL; | |
953 | goto next_desc; | |
954 | } | |
955 | ||
956 | #define rxtop rx_ring->rx_skb_top | |
957 | if (!(status & E1000_RXD_STAT_EOP)) { | |
958 | /* this descriptor is only the beginning (or middle) */ | |
959 | if (!rxtop) { | |
960 | /* this is the beginning of a chain */ | |
961 | rxtop = skb; | |
962 | skb_fill_page_desc(rxtop, 0, buffer_info->page, | |
963 | 0, length); | |
964 | } else { | |
965 | /* this is the middle of a chain */ | |
966 | skb_fill_page_desc(rxtop, | |
967 | skb_shinfo(rxtop)->nr_frags, | |
968 | buffer_info->page, 0, length); | |
969 | /* re-use the skb, only consumed the page */ | |
970 | buffer_info->skb = skb; | |
971 | } | |
972 | e1000_consume_page(buffer_info, rxtop, length); | |
973 | goto next_desc; | |
974 | } else { | |
975 | if (rxtop) { | |
976 | /* end of the chain */ | |
977 | skb_fill_page_desc(rxtop, | |
978 | skb_shinfo(rxtop)->nr_frags, | |
979 | buffer_info->page, 0, length); | |
980 | /* re-use the current skb, we only consumed the | |
981 | * page */ | |
982 | buffer_info->skb = skb; | |
983 | skb = rxtop; | |
984 | rxtop = NULL; | |
985 | e1000_consume_page(buffer_info, skb, length); | |
986 | } else { | |
987 | /* no chain, got EOP, this buf is the packet | |
988 | * copybreak to save the put_page/alloc_page */ | |
989 | if (length <= copybreak && | |
990 | skb_tailroom(skb) >= length) { | |
991 | u8 *vaddr; | |
992 | vaddr = kmap_atomic(buffer_info->page, | |
993 | KM_SKB_DATA_SOFTIRQ); | |
994 | memcpy(skb_tail_pointer(skb), vaddr, | |
995 | length); | |
996 | kunmap_atomic(vaddr, | |
997 | KM_SKB_DATA_SOFTIRQ); | |
998 | /* re-use the page, so don't erase | |
999 | * buffer_info->page */ | |
1000 | skb_put(skb, length); | |
1001 | } else { | |
1002 | skb_fill_page_desc(skb, 0, | |
1003 | buffer_info->page, 0, | |
1004 | length); | |
1005 | e1000_consume_page(buffer_info, skb, | |
1006 | length); | |
1007 | } | |
1008 | } | |
1009 | } | |
1010 | ||
1011 | /* Receive Checksum Offload XXX recompute due to CRC strip? */ | |
1012 | e1000_rx_checksum(adapter, | |
1013 | (u32)(status) | | |
1014 | ((u32)(rx_desc->errors) << 24), | |
1015 | le16_to_cpu(rx_desc->csum), skb); | |
1016 | ||
1017 | /* probably a little skewed due to removing CRC */ | |
1018 | total_rx_bytes += skb->len; | |
1019 | total_rx_packets++; | |
1020 | ||
1021 | /* eth type trans needs skb->data to point to something */ | |
1022 | if (!pskb_may_pull(skb, ETH_HLEN)) { | |
44defeb3 | 1023 | e_err("pskb_may_pull failed.\n"); |
97ac8cae BA |
1024 | dev_kfree_skb(skb); |
1025 | goto next_desc; | |
1026 | } | |
1027 | ||
1028 | e1000_receive_skb(adapter, netdev, skb, status, | |
1029 | rx_desc->special); | |
1030 | ||
1031 | next_desc: | |
1032 | rx_desc->status = 0; | |
1033 | ||
1034 | /* return some buffers to hardware, one at a time is too slow */ | |
1035 | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | |
1036 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
1037 | cleaned_count = 0; | |
1038 | } | |
1039 | ||
1040 | /* use prefetched values */ | |
1041 | rx_desc = next_rxd; | |
1042 | buffer_info = next_buffer; | |
1043 | } | |
1044 | rx_ring->next_to_clean = i; | |
1045 | ||
1046 | cleaned_count = e1000_desc_unused(rx_ring); | |
1047 | if (cleaned_count) | |
1048 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
1049 | ||
1050 | adapter->total_rx_bytes += total_rx_bytes; | |
1051 | adapter->total_rx_packets += total_rx_packets; | |
7274c20f AK |
1052 | netdev->stats.rx_bytes += total_rx_bytes; |
1053 | netdev->stats.rx_packets += total_rx_packets; | |
97ac8cae BA |
1054 | return cleaned; |
1055 | } | |
1056 | ||
bc7f75fa AK |
1057 | /** |
1058 | * e1000_clean_rx_ring - Free Rx Buffers per Queue | |
1059 | * @adapter: board private structure | |
1060 | **/ | |
1061 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter) | |
1062 | { | |
1063 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
1064 | struct e1000_buffer *buffer_info; | |
1065 | struct e1000_ps_page *ps_page; | |
1066 | struct pci_dev *pdev = adapter->pdev; | |
bc7f75fa AK |
1067 | unsigned int i, j; |
1068 | ||
1069 | /* Free all the Rx ring sk_buffs */ | |
1070 | for (i = 0; i < rx_ring->count; i++) { | |
1071 | buffer_info = &rx_ring->buffer_info[i]; | |
1072 | if (buffer_info->dma) { | |
1073 | if (adapter->clean_rx == e1000_clean_rx_irq) | |
1074 | pci_unmap_single(pdev, buffer_info->dma, | |
1075 | adapter->rx_buffer_len, | |
1076 | PCI_DMA_FROMDEVICE); | |
97ac8cae BA |
1077 | else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) |
1078 | pci_unmap_page(pdev, buffer_info->dma, | |
1079 | PAGE_SIZE, | |
1080 | PCI_DMA_FROMDEVICE); | |
bc7f75fa AK |
1081 | else if (adapter->clean_rx == e1000_clean_rx_irq_ps) |
1082 | pci_unmap_single(pdev, buffer_info->dma, | |
1083 | adapter->rx_ps_bsize0, | |
1084 | PCI_DMA_FROMDEVICE); | |
1085 | buffer_info->dma = 0; | |
1086 | } | |
1087 | ||
97ac8cae BA |
1088 | if (buffer_info->page) { |
1089 | put_page(buffer_info->page); | |
1090 | buffer_info->page = NULL; | |
1091 | } | |
1092 | ||
bc7f75fa AK |
1093 | if (buffer_info->skb) { |
1094 | dev_kfree_skb(buffer_info->skb); | |
1095 | buffer_info->skb = NULL; | |
1096 | } | |
1097 | ||
1098 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | |
47f44e40 | 1099 | ps_page = &buffer_info->ps_pages[j]; |
bc7f75fa AK |
1100 | if (!ps_page->page) |
1101 | break; | |
1102 | pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | |
1103 | PCI_DMA_FROMDEVICE); | |
1104 | ps_page->dma = 0; | |
1105 | put_page(ps_page->page); | |
1106 | ps_page->page = NULL; | |
1107 | } | |
1108 | } | |
1109 | ||
1110 | /* there also may be some cached data from a chained receive */ | |
1111 | if (rx_ring->rx_skb_top) { | |
1112 | dev_kfree_skb(rx_ring->rx_skb_top); | |
1113 | rx_ring->rx_skb_top = NULL; | |
1114 | } | |
1115 | ||
bc7f75fa AK |
1116 | /* Zero out the descriptor ring */ |
1117 | memset(rx_ring->desc, 0, rx_ring->size); | |
1118 | ||
1119 | rx_ring->next_to_clean = 0; | |
1120 | rx_ring->next_to_use = 0; | |
1121 | ||
1122 | writel(0, adapter->hw.hw_addr + rx_ring->head); | |
1123 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | |
1124 | } | |
1125 | ||
a8f88ff5 JB |
1126 | static void e1000e_downshift_workaround(struct work_struct *work) |
1127 | { | |
1128 | struct e1000_adapter *adapter = container_of(work, | |
1129 | struct e1000_adapter, downshift_task); | |
1130 | ||
1131 | e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); | |
1132 | } | |
1133 | ||
bc7f75fa AK |
1134 | /** |
1135 | * e1000_intr_msi - Interrupt Handler | |
1136 | * @irq: interrupt number | |
1137 | * @data: pointer to a network interface device structure | |
1138 | **/ | |
1139 | static irqreturn_t e1000_intr_msi(int irq, void *data) | |
1140 | { | |
1141 | struct net_device *netdev = data; | |
1142 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
1143 | struct e1000_hw *hw = &adapter->hw; | |
1144 | u32 icr = er32(ICR); | |
1145 | ||
ad68076e BA |
1146 | /* |
1147 | * read ICR disables interrupts using IAM | |
1148 | */ | |
bc7f75fa | 1149 | |
573cca8c | 1150 | if (icr & E1000_ICR_LSC) { |
bc7f75fa | 1151 | hw->mac.get_link_status = 1; |
ad68076e BA |
1152 | /* |
1153 | * ICH8 workaround-- Call gig speed drop workaround on cable | |
1154 | * disconnect (LSC) before accessing any PHY registers | |
1155 | */ | |
bc7f75fa AK |
1156 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
1157 | (!(er32(STATUS) & E1000_STATUS_LU))) | |
a8f88ff5 | 1158 | schedule_work(&adapter->downshift_task); |
bc7f75fa | 1159 | |
ad68076e BA |
1160 | /* |
1161 | * 80003ES2LAN workaround-- For packet buffer work-around on | |
bc7f75fa | 1162 | * link down event; disable receives here in the ISR and reset |
ad68076e BA |
1163 | * adapter in watchdog |
1164 | */ | |
bc7f75fa AK |
1165 | if (netif_carrier_ok(netdev) && |
1166 | adapter->flags & FLAG_RX_NEEDS_RESTART) { | |
1167 | /* disable receives */ | |
1168 | u32 rctl = er32(RCTL); | |
1169 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | |
318a94d6 | 1170 | adapter->flags |= FLAG_RX_RESTART_NOW; |
bc7f75fa AK |
1171 | } |
1172 | /* guard against interrupt when we're going down */ | |
1173 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
1174 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | |
1175 | } | |
1176 | ||
288379f0 | 1177 | if (napi_schedule_prep(&adapter->napi)) { |
bc7f75fa AK |
1178 | adapter->total_tx_bytes = 0; |
1179 | adapter->total_tx_packets = 0; | |
1180 | adapter->total_rx_bytes = 0; | |
1181 | adapter->total_rx_packets = 0; | |
288379f0 | 1182 | __napi_schedule(&adapter->napi); |
bc7f75fa AK |
1183 | } |
1184 | ||
1185 | return IRQ_HANDLED; | |
1186 | } | |
1187 | ||
1188 | /** | |
1189 | * e1000_intr - Interrupt Handler | |
1190 | * @irq: interrupt number | |
1191 | * @data: pointer to a network interface device structure | |
1192 | **/ | |
1193 | static irqreturn_t e1000_intr(int irq, void *data) | |
1194 | { | |
1195 | struct net_device *netdev = data; | |
1196 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
1197 | struct e1000_hw *hw = &adapter->hw; | |
bc7f75fa | 1198 | u32 rctl, icr = er32(ICR); |
4662e82b | 1199 | |
a68ea775 | 1200 | if (!icr || test_bit(__E1000_DOWN, &adapter->state)) |
bc7f75fa AK |
1201 | return IRQ_NONE; /* Not our interrupt */ |
1202 | ||
ad68076e BA |
1203 | /* |
1204 | * IMS will not auto-mask if INT_ASSERTED is not set, and if it is | |
1205 | * not set, then the adapter didn't send an interrupt | |
1206 | */ | |
bc7f75fa AK |
1207 | if (!(icr & E1000_ICR_INT_ASSERTED)) |
1208 | return IRQ_NONE; | |
1209 | ||
ad68076e BA |
1210 | /* |
1211 | * Interrupt Auto-Mask...upon reading ICR, | |
1212 | * interrupts are masked. No need for the | |
1213 | * IMC write | |
1214 | */ | |
bc7f75fa | 1215 | |
573cca8c | 1216 | if (icr & E1000_ICR_LSC) { |
bc7f75fa | 1217 | hw->mac.get_link_status = 1; |
ad68076e BA |
1218 | /* |
1219 | * ICH8 workaround-- Call gig speed drop workaround on cable | |
1220 | * disconnect (LSC) before accessing any PHY registers | |
1221 | */ | |
bc7f75fa AK |
1222 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
1223 | (!(er32(STATUS) & E1000_STATUS_LU))) | |
a8f88ff5 | 1224 | schedule_work(&adapter->downshift_task); |
bc7f75fa | 1225 | |
ad68076e BA |
1226 | /* |
1227 | * 80003ES2LAN workaround-- | |
bc7f75fa AK |
1228 | * For packet buffer work-around on link down event; |
1229 | * disable receives here in the ISR and | |
1230 | * reset adapter in watchdog | |
1231 | */ | |
1232 | if (netif_carrier_ok(netdev) && | |
1233 | (adapter->flags & FLAG_RX_NEEDS_RESTART)) { | |
1234 | /* disable receives */ | |
1235 | rctl = er32(RCTL); | |
1236 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | |
318a94d6 | 1237 | adapter->flags |= FLAG_RX_RESTART_NOW; |
bc7f75fa AK |
1238 | } |
1239 | /* guard against interrupt when we're going down */ | |
1240 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
1241 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | |
1242 | } | |
1243 | ||
288379f0 | 1244 | if (napi_schedule_prep(&adapter->napi)) { |
bc7f75fa AK |
1245 | adapter->total_tx_bytes = 0; |
1246 | adapter->total_tx_packets = 0; | |
1247 | adapter->total_rx_bytes = 0; | |
1248 | adapter->total_rx_packets = 0; | |
288379f0 | 1249 | __napi_schedule(&adapter->napi); |
bc7f75fa AK |
1250 | } |
1251 | ||
1252 | return IRQ_HANDLED; | |
1253 | } | |
1254 | ||
4662e82b BA |
1255 | static irqreturn_t e1000_msix_other(int irq, void *data) |
1256 | { | |
1257 | struct net_device *netdev = data; | |
1258 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
1259 | struct e1000_hw *hw = &adapter->hw; | |
1260 | u32 icr = er32(ICR); | |
1261 | ||
1262 | if (!(icr & E1000_ICR_INT_ASSERTED)) { | |
a3c69fef JB |
1263 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
1264 | ew32(IMS, E1000_IMS_OTHER); | |
4662e82b BA |
1265 | return IRQ_NONE; |
1266 | } | |
1267 | ||
1268 | if (icr & adapter->eiac_mask) | |
1269 | ew32(ICS, (icr & adapter->eiac_mask)); | |
1270 | ||
1271 | if (icr & E1000_ICR_OTHER) { | |
1272 | if (!(icr & E1000_ICR_LSC)) | |
1273 | goto no_link_interrupt; | |
1274 | hw->mac.get_link_status = 1; | |
1275 | /* guard against interrupt when we're going down */ | |
1276 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
1277 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | |
1278 | } | |
1279 | ||
1280 | no_link_interrupt: | |
a3c69fef JB |
1281 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
1282 | ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); | |
4662e82b BA |
1283 | |
1284 | return IRQ_HANDLED; | |
1285 | } | |
1286 | ||
1287 | ||
1288 | static irqreturn_t e1000_intr_msix_tx(int irq, void *data) | |
1289 | { | |
1290 | struct net_device *netdev = data; | |
1291 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
1292 | struct e1000_hw *hw = &adapter->hw; | |
1293 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
1294 | ||
1295 | ||
1296 | adapter->total_tx_bytes = 0; | |
1297 | adapter->total_tx_packets = 0; | |
1298 | ||
1299 | if (!e1000_clean_tx_irq(adapter)) | |
1300 | /* Ring was not completely cleaned, so fire another interrupt */ | |
1301 | ew32(ICS, tx_ring->ims_val); | |
1302 | ||
1303 | return IRQ_HANDLED; | |
1304 | } | |
1305 | ||
1306 | static irqreturn_t e1000_intr_msix_rx(int irq, void *data) | |
1307 | { | |
1308 | struct net_device *netdev = data; | |
1309 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
1310 | ||
1311 | /* Write the ITR value calculated at the end of the | |
1312 | * previous interrupt. | |
1313 | */ | |
1314 | if (adapter->rx_ring->set_itr) { | |
1315 | writel(1000000000 / (adapter->rx_ring->itr_val * 256), | |
1316 | adapter->hw.hw_addr + adapter->rx_ring->itr_register); | |
1317 | adapter->rx_ring->set_itr = 0; | |
1318 | } | |
1319 | ||
288379f0 | 1320 | if (napi_schedule_prep(&adapter->napi)) { |
4662e82b BA |
1321 | adapter->total_rx_bytes = 0; |
1322 | adapter->total_rx_packets = 0; | |
288379f0 | 1323 | __napi_schedule(&adapter->napi); |
4662e82b BA |
1324 | } |
1325 | return IRQ_HANDLED; | |
1326 | } | |
1327 | ||
1328 | /** | |
1329 | * e1000_configure_msix - Configure MSI-X hardware | |
1330 | * | |
1331 | * e1000_configure_msix sets up the hardware to properly | |
1332 | * generate MSI-X interrupts. | |
1333 | **/ | |
1334 | static void e1000_configure_msix(struct e1000_adapter *adapter) | |
1335 | { | |
1336 | struct e1000_hw *hw = &adapter->hw; | |
1337 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
1338 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
1339 | int vector = 0; | |
1340 | u32 ctrl_ext, ivar = 0; | |
1341 | ||
1342 | adapter->eiac_mask = 0; | |
1343 | ||
1344 | /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ | |
1345 | if (hw->mac.type == e1000_82574) { | |
1346 | u32 rfctl = er32(RFCTL); | |
1347 | rfctl |= E1000_RFCTL_ACK_DIS; | |
1348 | ew32(RFCTL, rfctl); | |
1349 | } | |
1350 | ||
1351 | #define E1000_IVAR_INT_ALLOC_VALID 0x8 | |
1352 | /* Configure Rx vector */ | |
1353 | rx_ring->ims_val = E1000_IMS_RXQ0; | |
1354 | adapter->eiac_mask |= rx_ring->ims_val; | |
1355 | if (rx_ring->itr_val) | |
1356 | writel(1000000000 / (rx_ring->itr_val * 256), | |
1357 | hw->hw_addr + rx_ring->itr_register); | |
1358 | else | |
1359 | writel(1, hw->hw_addr + rx_ring->itr_register); | |
1360 | ivar = E1000_IVAR_INT_ALLOC_VALID | vector; | |
1361 | ||
1362 | /* Configure Tx vector */ | |
1363 | tx_ring->ims_val = E1000_IMS_TXQ0; | |
1364 | vector++; | |
1365 | if (tx_ring->itr_val) | |
1366 | writel(1000000000 / (tx_ring->itr_val * 256), | |
1367 | hw->hw_addr + tx_ring->itr_register); | |
1368 | else | |
1369 | writel(1, hw->hw_addr + tx_ring->itr_register); | |
1370 | adapter->eiac_mask |= tx_ring->ims_val; | |
1371 | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); | |
1372 | ||
1373 | /* set vector for Other Causes, e.g. link changes */ | |
1374 | vector++; | |
1375 | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); | |
1376 | if (rx_ring->itr_val) | |
1377 | writel(1000000000 / (rx_ring->itr_val * 256), | |
1378 | hw->hw_addr + E1000_EITR_82574(vector)); | |
1379 | else | |
1380 | writel(1, hw->hw_addr + E1000_EITR_82574(vector)); | |
1381 | ||
1382 | /* Cause Tx interrupts on every write back */ | |
1383 | ivar |= (1 << 31); | |
1384 | ||
1385 | ew32(IVAR, ivar); | |
1386 | ||
1387 | /* enable MSI-X PBA support */ | |
1388 | ctrl_ext = er32(CTRL_EXT); | |
1389 | ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; | |
1390 | ||
1391 | /* Auto-Mask Other interrupts upon ICR read */ | |
1392 | #define E1000_EIAC_MASK_82574 0x01F00000 | |
1393 | ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); | |
1394 | ctrl_ext |= E1000_CTRL_EXT_EIAME; | |
1395 | ew32(CTRL_EXT, ctrl_ext); | |
1396 | e1e_flush(); | |
1397 | } | |
1398 | ||
1399 | void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) | |
1400 | { | |
1401 | if (adapter->msix_entries) { | |
1402 | pci_disable_msix(adapter->pdev); | |
1403 | kfree(adapter->msix_entries); | |
1404 | adapter->msix_entries = NULL; | |
1405 | } else if (adapter->flags & FLAG_MSI_ENABLED) { | |
1406 | pci_disable_msi(adapter->pdev); | |
1407 | adapter->flags &= ~FLAG_MSI_ENABLED; | |
1408 | } | |
1409 | ||
1410 | return; | |
1411 | } | |
1412 | ||
1413 | /** | |
1414 | * e1000e_set_interrupt_capability - set MSI or MSI-X if supported | |
1415 | * | |
1416 | * Attempt to configure interrupts using the best available | |
1417 | * capabilities of the hardware and kernel. | |
1418 | **/ | |
1419 | void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) | |
1420 | { | |
1421 | int err; | |
1422 | int numvecs, i; | |
1423 | ||
1424 | ||
1425 | switch (adapter->int_mode) { | |
1426 | case E1000E_INT_MODE_MSIX: | |
1427 | if (adapter->flags & FLAG_HAS_MSIX) { | |
1428 | numvecs = 3; /* RxQ0, TxQ0 and other */ | |
1429 | adapter->msix_entries = kcalloc(numvecs, | |
1430 | sizeof(struct msix_entry), | |
1431 | GFP_KERNEL); | |
1432 | if (adapter->msix_entries) { | |
1433 | for (i = 0; i < numvecs; i++) | |
1434 | adapter->msix_entries[i].entry = i; | |
1435 | ||
1436 | err = pci_enable_msix(adapter->pdev, | |
1437 | adapter->msix_entries, | |
1438 | numvecs); | |
1439 | if (err == 0) | |
1440 | return; | |
1441 | } | |
1442 | /* MSI-X failed, so fall through and try MSI */ | |
1443 | e_err("Failed to initialize MSI-X interrupts. " | |
1444 | "Falling back to MSI interrupts.\n"); | |
1445 | e1000e_reset_interrupt_capability(adapter); | |
1446 | } | |
1447 | adapter->int_mode = E1000E_INT_MODE_MSI; | |
1448 | /* Fall through */ | |
1449 | case E1000E_INT_MODE_MSI: | |
1450 | if (!pci_enable_msi(adapter->pdev)) { | |
1451 | adapter->flags |= FLAG_MSI_ENABLED; | |
1452 | } else { | |
1453 | adapter->int_mode = E1000E_INT_MODE_LEGACY; | |
1454 | e_err("Failed to initialize MSI interrupts. Falling " | |
1455 | "back to legacy interrupts.\n"); | |
1456 | } | |
1457 | /* Fall through */ | |
1458 | case E1000E_INT_MODE_LEGACY: | |
1459 | /* Don't do anything; this is the system default */ | |
1460 | break; | |
1461 | } | |
1462 | ||
1463 | return; | |
1464 | } | |
1465 | ||
1466 | /** | |
1467 | * e1000_request_msix - Initialize MSI-X interrupts | |
1468 | * | |
1469 | * e1000_request_msix allocates MSI-X vectors and requests interrupts from the | |
1470 | * kernel. | |
1471 | **/ | |
1472 | static int e1000_request_msix(struct e1000_adapter *adapter) | |
1473 | { | |
1474 | struct net_device *netdev = adapter->netdev; | |
1475 | int err = 0, vector = 0; | |
1476 | ||
1477 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | |
cb7b48f6 | 1478 | sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); |
4662e82b BA |
1479 | else |
1480 | memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); | |
1481 | err = request_irq(adapter->msix_entries[vector].vector, | |
a0607fd3 | 1482 | e1000_intr_msix_rx, 0, adapter->rx_ring->name, |
4662e82b BA |
1483 | netdev); |
1484 | if (err) | |
1485 | goto out; | |
1486 | adapter->rx_ring->itr_register = E1000_EITR_82574(vector); | |
1487 | adapter->rx_ring->itr_val = adapter->itr; | |
1488 | vector++; | |
1489 | ||
1490 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | |
cb7b48f6 | 1491 | sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); |
4662e82b BA |
1492 | else |
1493 | memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); | |
1494 | err = request_irq(adapter->msix_entries[vector].vector, | |
a0607fd3 | 1495 | e1000_intr_msix_tx, 0, adapter->tx_ring->name, |
4662e82b BA |
1496 | netdev); |
1497 | if (err) | |
1498 | goto out; | |
1499 | adapter->tx_ring->itr_register = E1000_EITR_82574(vector); | |
1500 | adapter->tx_ring->itr_val = adapter->itr; | |
1501 | vector++; | |
1502 | ||
1503 | err = request_irq(adapter->msix_entries[vector].vector, | |
a0607fd3 | 1504 | e1000_msix_other, 0, netdev->name, netdev); |
4662e82b BA |
1505 | if (err) |
1506 | goto out; | |
1507 | ||
1508 | e1000_configure_msix(adapter); | |
1509 | return 0; | |
1510 | out: | |
1511 | return err; | |
1512 | } | |
1513 | ||
f8d59f78 BA |
1514 | /** |
1515 | * e1000_request_irq - initialize interrupts | |
1516 | * | |
1517 | * Attempts to configure interrupts using the best available | |
1518 | * capabilities of the hardware and kernel. | |
1519 | **/ | |
bc7f75fa AK |
1520 | static int e1000_request_irq(struct e1000_adapter *adapter) |
1521 | { | |
1522 | struct net_device *netdev = adapter->netdev; | |
bc7f75fa AK |
1523 | int err; |
1524 | ||
4662e82b BA |
1525 | if (adapter->msix_entries) { |
1526 | err = e1000_request_msix(adapter); | |
1527 | if (!err) | |
1528 | return err; | |
1529 | /* fall back to MSI */ | |
1530 | e1000e_reset_interrupt_capability(adapter); | |
1531 | adapter->int_mode = E1000E_INT_MODE_MSI; | |
1532 | e1000e_set_interrupt_capability(adapter); | |
bc7f75fa | 1533 | } |
4662e82b | 1534 | if (adapter->flags & FLAG_MSI_ENABLED) { |
a0607fd3 | 1535 | err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, |
4662e82b BA |
1536 | netdev->name, netdev); |
1537 | if (!err) | |
1538 | return err; | |
bc7f75fa | 1539 | |
4662e82b BA |
1540 | /* fall back to legacy interrupt */ |
1541 | e1000e_reset_interrupt_capability(adapter); | |
1542 | adapter->int_mode = E1000E_INT_MODE_LEGACY; | |
bc7f75fa AK |
1543 | } |
1544 | ||
a0607fd3 | 1545 | err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, |
4662e82b BA |
1546 | netdev->name, netdev); |
1547 | if (err) | |
1548 | e_err("Unable to allocate interrupt, Error: %d\n", err); | |
1549 | ||
bc7f75fa AK |
1550 | return err; |
1551 | } | |
1552 | ||
1553 | static void e1000_free_irq(struct e1000_adapter *adapter) | |
1554 | { | |
1555 | struct net_device *netdev = adapter->netdev; | |
1556 | ||
4662e82b BA |
1557 | if (adapter->msix_entries) { |
1558 | int vector = 0; | |
1559 | ||
1560 | free_irq(adapter->msix_entries[vector].vector, netdev); | |
1561 | vector++; | |
1562 | ||
1563 | free_irq(adapter->msix_entries[vector].vector, netdev); | |
1564 | vector++; | |
1565 | ||
1566 | /* Other Causes interrupt vector */ | |
1567 | free_irq(adapter->msix_entries[vector].vector, netdev); | |
1568 | return; | |
bc7f75fa | 1569 | } |
4662e82b BA |
1570 | |
1571 | free_irq(adapter->pdev->irq, netdev); | |
bc7f75fa AK |
1572 | } |
1573 | ||
1574 | /** | |
1575 | * e1000_irq_disable - Mask off interrupt generation on the NIC | |
1576 | **/ | |
1577 | static void e1000_irq_disable(struct e1000_adapter *adapter) | |
1578 | { | |
1579 | struct e1000_hw *hw = &adapter->hw; | |
1580 | ||
bc7f75fa | 1581 | ew32(IMC, ~0); |
4662e82b BA |
1582 | if (adapter->msix_entries) |
1583 | ew32(EIAC_82574, 0); | |
bc7f75fa AK |
1584 | e1e_flush(); |
1585 | synchronize_irq(adapter->pdev->irq); | |
1586 | } | |
1587 | ||
1588 | /** | |
1589 | * e1000_irq_enable - Enable default interrupt generation settings | |
1590 | **/ | |
1591 | static void e1000_irq_enable(struct e1000_adapter *adapter) | |
1592 | { | |
1593 | struct e1000_hw *hw = &adapter->hw; | |
1594 | ||
4662e82b BA |
1595 | if (adapter->msix_entries) { |
1596 | ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); | |
1597 | ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); | |
1598 | } else { | |
1599 | ew32(IMS, IMS_ENABLE_MASK); | |
1600 | } | |
74ef9c39 | 1601 | e1e_flush(); |
bc7f75fa AK |
1602 | } |
1603 | ||
1604 | /** | |
1605 | * e1000_get_hw_control - get control of the h/w from f/w | |
1606 | * @adapter: address of board private structure | |
1607 | * | |
489815ce | 1608 | * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
bc7f75fa AK |
1609 | * For ASF and Pass Through versions of f/w this means that |
1610 | * the driver is loaded. For AMT version (only with 82573) | |
1611 | * of the f/w this means that the network i/f is open. | |
1612 | **/ | |
1613 | static void e1000_get_hw_control(struct e1000_adapter *adapter) | |
1614 | { | |
1615 | struct e1000_hw *hw = &adapter->hw; | |
1616 | u32 ctrl_ext; | |
1617 | u32 swsm; | |
1618 | ||
1619 | /* Let firmware know the driver has taken over */ | |
1620 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | |
1621 | swsm = er32(SWSM); | |
1622 | ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); | |
1623 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | |
1624 | ctrl_ext = er32(CTRL_EXT); | |
ad68076e | 1625 | ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
bc7f75fa AK |
1626 | } |
1627 | } | |
1628 | ||
1629 | /** | |
1630 | * e1000_release_hw_control - release control of the h/w to f/w | |
1631 | * @adapter: address of board private structure | |
1632 | * | |
489815ce | 1633 | * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
bc7f75fa AK |
1634 | * For ASF and Pass Through versions of f/w this means that the |
1635 | * driver is no longer loaded. For AMT version (only with 82573) i | |
1636 | * of the f/w this means that the network i/f is closed. | |
1637 | * | |
1638 | **/ | |
1639 | static void e1000_release_hw_control(struct e1000_adapter *adapter) | |
1640 | { | |
1641 | struct e1000_hw *hw = &adapter->hw; | |
1642 | u32 ctrl_ext; | |
1643 | u32 swsm; | |
1644 | ||
1645 | /* Let firmware taken over control of h/w */ | |
1646 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | |
1647 | swsm = er32(SWSM); | |
1648 | ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); | |
1649 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | |
1650 | ctrl_ext = er32(CTRL_EXT); | |
ad68076e | 1651 | ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
bc7f75fa AK |
1652 | } |
1653 | } | |
1654 | ||
bc7f75fa AK |
1655 | /** |
1656 | * @e1000_alloc_ring - allocate memory for a ring structure | |
1657 | **/ | |
1658 | static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, | |
1659 | struct e1000_ring *ring) | |
1660 | { | |
1661 | struct pci_dev *pdev = adapter->pdev; | |
1662 | ||
1663 | ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, | |
1664 | GFP_KERNEL); | |
1665 | if (!ring->desc) | |
1666 | return -ENOMEM; | |
1667 | ||
1668 | return 0; | |
1669 | } | |
1670 | ||
1671 | /** | |
1672 | * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) | |
1673 | * @adapter: board private structure | |
1674 | * | |
1675 | * Return 0 on success, negative on failure | |
1676 | **/ | |
1677 | int e1000e_setup_tx_resources(struct e1000_adapter *adapter) | |
1678 | { | |
1679 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
1680 | int err = -ENOMEM, size; | |
1681 | ||
1682 | size = sizeof(struct e1000_buffer) * tx_ring->count; | |
1683 | tx_ring->buffer_info = vmalloc(size); | |
1684 | if (!tx_ring->buffer_info) | |
1685 | goto err; | |
1686 | memset(tx_ring->buffer_info, 0, size); | |
1687 | ||
1688 | /* round up to nearest 4K */ | |
1689 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | |
1690 | tx_ring->size = ALIGN(tx_ring->size, 4096); | |
1691 | ||
1692 | err = e1000_alloc_ring_dma(adapter, tx_ring); | |
1693 | if (err) | |
1694 | goto err; | |
1695 | ||
1696 | tx_ring->next_to_use = 0; | |
1697 | tx_ring->next_to_clean = 0; | |
bc7f75fa AK |
1698 | |
1699 | return 0; | |
1700 | err: | |
1701 | vfree(tx_ring->buffer_info); | |
44defeb3 | 1702 | e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
bc7f75fa AK |
1703 | return err; |
1704 | } | |
1705 | ||
1706 | /** | |
1707 | * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) | |
1708 | * @adapter: board private structure | |
1709 | * | |
1710 | * Returns 0 on success, negative on failure | |
1711 | **/ | |
1712 | int e1000e_setup_rx_resources(struct e1000_adapter *adapter) | |
1713 | { | |
1714 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
47f44e40 AK |
1715 | struct e1000_buffer *buffer_info; |
1716 | int i, size, desc_len, err = -ENOMEM; | |
bc7f75fa AK |
1717 | |
1718 | size = sizeof(struct e1000_buffer) * rx_ring->count; | |
1719 | rx_ring->buffer_info = vmalloc(size); | |
1720 | if (!rx_ring->buffer_info) | |
1721 | goto err; | |
1722 | memset(rx_ring->buffer_info, 0, size); | |
1723 | ||
47f44e40 AK |
1724 | for (i = 0; i < rx_ring->count; i++) { |
1725 | buffer_info = &rx_ring->buffer_info[i]; | |
1726 | buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, | |
1727 | sizeof(struct e1000_ps_page), | |
1728 | GFP_KERNEL); | |
1729 | if (!buffer_info->ps_pages) | |
1730 | goto err_pages; | |
1731 | } | |
bc7f75fa AK |
1732 | |
1733 | desc_len = sizeof(union e1000_rx_desc_packet_split); | |
1734 | ||
1735 | /* Round up to nearest 4K */ | |
1736 | rx_ring->size = rx_ring->count * desc_len; | |
1737 | rx_ring->size = ALIGN(rx_ring->size, 4096); | |
1738 | ||
1739 | err = e1000_alloc_ring_dma(adapter, rx_ring); | |
1740 | if (err) | |
47f44e40 | 1741 | goto err_pages; |
bc7f75fa AK |
1742 | |
1743 | rx_ring->next_to_clean = 0; | |
1744 | rx_ring->next_to_use = 0; | |
1745 | rx_ring->rx_skb_top = NULL; | |
1746 | ||
1747 | return 0; | |
47f44e40 AK |
1748 | |
1749 | err_pages: | |
1750 | for (i = 0; i < rx_ring->count; i++) { | |
1751 | buffer_info = &rx_ring->buffer_info[i]; | |
1752 | kfree(buffer_info->ps_pages); | |
1753 | } | |
bc7f75fa AK |
1754 | err: |
1755 | vfree(rx_ring->buffer_info); | |
44defeb3 | 1756 | e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
bc7f75fa AK |
1757 | return err; |
1758 | } | |
1759 | ||
1760 | /** | |
1761 | * e1000_clean_tx_ring - Free Tx Buffers | |
1762 | * @adapter: board private structure | |
1763 | **/ | |
1764 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter) | |
1765 | { | |
1766 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
1767 | struct e1000_buffer *buffer_info; | |
1768 | unsigned long size; | |
1769 | unsigned int i; | |
1770 | ||
1771 | for (i = 0; i < tx_ring->count; i++) { | |
1772 | buffer_info = &tx_ring->buffer_info[i]; | |
1773 | e1000_put_txbuf(adapter, buffer_info); | |
1774 | } | |
1775 | ||
1776 | size = sizeof(struct e1000_buffer) * tx_ring->count; | |
1777 | memset(tx_ring->buffer_info, 0, size); | |
1778 | ||
1779 | memset(tx_ring->desc, 0, tx_ring->size); | |
1780 | ||
1781 | tx_ring->next_to_use = 0; | |
1782 | tx_ring->next_to_clean = 0; | |
1783 | ||
1784 | writel(0, adapter->hw.hw_addr + tx_ring->head); | |
1785 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | |
1786 | } | |
1787 | ||
1788 | /** | |
1789 | * e1000e_free_tx_resources - Free Tx Resources per Queue | |
1790 | * @adapter: board private structure | |
1791 | * | |
1792 | * Free all transmit software resources | |
1793 | **/ | |
1794 | void e1000e_free_tx_resources(struct e1000_adapter *adapter) | |
1795 | { | |
1796 | struct pci_dev *pdev = adapter->pdev; | |
1797 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
1798 | ||
1799 | e1000_clean_tx_ring(adapter); | |
1800 | ||
1801 | vfree(tx_ring->buffer_info); | |
1802 | tx_ring->buffer_info = NULL; | |
1803 | ||
1804 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | |
1805 | tx_ring->dma); | |
1806 | tx_ring->desc = NULL; | |
1807 | } | |
1808 | ||
1809 | /** | |
1810 | * e1000e_free_rx_resources - Free Rx Resources | |
1811 | * @adapter: board private structure | |
1812 | * | |
1813 | * Free all receive software resources | |
1814 | **/ | |
1815 | ||
1816 | void e1000e_free_rx_resources(struct e1000_adapter *adapter) | |
1817 | { | |
1818 | struct pci_dev *pdev = adapter->pdev; | |
1819 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
47f44e40 | 1820 | int i; |
bc7f75fa AK |
1821 | |
1822 | e1000_clean_rx_ring(adapter); | |
1823 | ||
47f44e40 AK |
1824 | for (i = 0; i < rx_ring->count; i++) { |
1825 | kfree(rx_ring->buffer_info[i].ps_pages); | |
1826 | } | |
1827 | ||
bc7f75fa AK |
1828 | vfree(rx_ring->buffer_info); |
1829 | rx_ring->buffer_info = NULL; | |
1830 | ||
bc7f75fa AK |
1831 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
1832 | rx_ring->dma); | |
1833 | rx_ring->desc = NULL; | |
1834 | } | |
1835 | ||
1836 | /** | |
1837 | * e1000_update_itr - update the dynamic ITR value based on statistics | |
489815ce AK |
1838 | * @adapter: pointer to adapter |
1839 | * @itr_setting: current adapter->itr | |
1840 | * @packets: the number of packets during this measurement interval | |
1841 | * @bytes: the number of bytes during this measurement interval | |
1842 | * | |
bc7f75fa AK |
1843 | * Stores a new ITR value based on packets and byte |
1844 | * counts during the last interrupt. The advantage of per interrupt | |
1845 | * computation is faster updates and more accurate ITR for the current | |
1846 | * traffic pattern. Constants in this function were computed | |
1847 | * based on theoretical maximum wire speed and thresholds were set based | |
1848 | * on testing data as well as attempting to minimize response time | |
4662e82b BA |
1849 | * while increasing bulk throughput. This functionality is controlled |
1850 | * by the InterruptThrottleRate module parameter. | |
bc7f75fa AK |
1851 | **/ |
1852 | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | |
1853 | u16 itr_setting, int packets, | |
1854 | int bytes) | |
1855 | { | |
1856 | unsigned int retval = itr_setting; | |
1857 | ||
1858 | if (packets == 0) | |
1859 | goto update_itr_done; | |
1860 | ||
1861 | switch (itr_setting) { | |
1862 | case lowest_latency: | |
1863 | /* handle TSO and jumbo frames */ | |
1864 | if (bytes/packets > 8000) | |
1865 | retval = bulk_latency; | |
1866 | else if ((packets < 5) && (bytes > 512)) { | |
1867 | retval = low_latency; | |
1868 | } | |
1869 | break; | |
1870 | case low_latency: /* 50 usec aka 20000 ints/s */ | |
1871 | if (bytes > 10000) { | |
1872 | /* this if handles the TSO accounting */ | |
1873 | if (bytes/packets > 8000) { | |
1874 | retval = bulk_latency; | |
1875 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | |
1876 | retval = bulk_latency; | |
1877 | } else if ((packets > 35)) { | |
1878 | retval = lowest_latency; | |
1879 | } | |
1880 | } else if (bytes/packets > 2000) { | |
1881 | retval = bulk_latency; | |
1882 | } else if (packets <= 2 && bytes < 512) { | |
1883 | retval = lowest_latency; | |
1884 | } | |
1885 | break; | |
1886 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | |
1887 | if (bytes > 25000) { | |
1888 | if (packets > 35) { | |
1889 | retval = low_latency; | |
1890 | } | |
1891 | } else if (bytes < 6000) { | |
1892 | retval = low_latency; | |
1893 | } | |
1894 | break; | |
1895 | } | |
1896 | ||
1897 | update_itr_done: | |
1898 | return retval; | |
1899 | } | |
1900 | ||
1901 | static void e1000_set_itr(struct e1000_adapter *adapter) | |
1902 | { | |
1903 | struct e1000_hw *hw = &adapter->hw; | |
1904 | u16 current_itr; | |
1905 | u32 new_itr = adapter->itr; | |
1906 | ||
1907 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | |
1908 | if (adapter->link_speed != SPEED_1000) { | |
1909 | current_itr = 0; | |
1910 | new_itr = 4000; | |
1911 | goto set_itr_now; | |
1912 | } | |
1913 | ||
1914 | adapter->tx_itr = e1000_update_itr(adapter, | |
1915 | adapter->tx_itr, | |
1916 | adapter->total_tx_packets, | |
1917 | adapter->total_tx_bytes); | |
1918 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | |
1919 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | |
1920 | adapter->tx_itr = low_latency; | |
1921 | ||
1922 | adapter->rx_itr = e1000_update_itr(adapter, | |
1923 | adapter->rx_itr, | |
1924 | adapter->total_rx_packets, | |
1925 | adapter->total_rx_bytes); | |
1926 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | |
1927 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | |
1928 | adapter->rx_itr = low_latency; | |
1929 | ||
1930 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | |
1931 | ||
1932 | switch (current_itr) { | |
1933 | /* counts and packets in update_itr are dependent on these numbers */ | |
1934 | case lowest_latency: | |
1935 | new_itr = 70000; | |
1936 | break; | |
1937 | case low_latency: | |
1938 | new_itr = 20000; /* aka hwitr = ~200 */ | |
1939 | break; | |
1940 | case bulk_latency: | |
1941 | new_itr = 4000; | |
1942 | break; | |
1943 | default: | |
1944 | break; | |
1945 | } | |
1946 | ||
1947 | set_itr_now: | |
1948 | if (new_itr != adapter->itr) { | |
ad68076e BA |
1949 | /* |
1950 | * this attempts to bias the interrupt rate towards Bulk | |
bc7f75fa | 1951 | * by adding intermediate steps when interrupt rate is |
ad68076e BA |
1952 | * increasing |
1953 | */ | |
bc7f75fa AK |
1954 | new_itr = new_itr > adapter->itr ? |
1955 | min(adapter->itr + (new_itr >> 2), new_itr) : | |
1956 | new_itr; | |
1957 | adapter->itr = new_itr; | |
4662e82b BA |
1958 | adapter->rx_ring->itr_val = new_itr; |
1959 | if (adapter->msix_entries) | |
1960 | adapter->rx_ring->set_itr = 1; | |
1961 | else | |
1962 | ew32(ITR, 1000000000 / (new_itr * 256)); | |
bc7f75fa AK |
1963 | } |
1964 | } | |
1965 | ||
4662e82b BA |
1966 | /** |
1967 | * e1000_alloc_queues - Allocate memory for all rings | |
1968 | * @adapter: board private structure to initialize | |
1969 | **/ | |
1970 | static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) | |
1971 | { | |
1972 | adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | |
1973 | if (!adapter->tx_ring) | |
1974 | goto err; | |
1975 | ||
1976 | adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | |
1977 | if (!adapter->rx_ring) | |
1978 | goto err; | |
1979 | ||
1980 | return 0; | |
1981 | err: | |
1982 | e_err("Unable to allocate memory for queues\n"); | |
1983 | kfree(adapter->rx_ring); | |
1984 | kfree(adapter->tx_ring); | |
1985 | return -ENOMEM; | |
1986 | } | |
1987 | ||
bc7f75fa AK |
1988 | /** |
1989 | * e1000_clean - NAPI Rx polling callback | |
ad68076e | 1990 | * @napi: struct associated with this polling callback |
489815ce | 1991 | * @budget: amount of packets driver is allowed to process this poll |
bc7f75fa AK |
1992 | **/ |
1993 | static int e1000_clean(struct napi_struct *napi, int budget) | |
1994 | { | |
1995 | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | |
4662e82b | 1996 | struct e1000_hw *hw = &adapter->hw; |
bc7f75fa | 1997 | struct net_device *poll_dev = adapter->netdev; |
679e8a0f | 1998 | int tx_cleaned = 1, work_done = 0; |
bc7f75fa | 1999 | |
4cf1653a | 2000 | adapter = netdev_priv(poll_dev); |
bc7f75fa | 2001 | |
4662e82b BA |
2002 | if (adapter->msix_entries && |
2003 | !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) | |
2004 | goto clean_rx; | |
2005 | ||
92af3e95 | 2006 | tx_cleaned = e1000_clean_tx_irq(adapter); |
bc7f75fa | 2007 | |
4662e82b | 2008 | clean_rx: |
bc7f75fa | 2009 | adapter->clean_rx(adapter, &work_done, budget); |
d2c7ddd6 | 2010 | |
12d04a3c | 2011 | if (!tx_cleaned) |
d2c7ddd6 | 2012 | work_done = budget; |
bc7f75fa | 2013 | |
53e52c72 DM |
2014 | /* If budget not fully consumed, exit the polling mode */ |
2015 | if (work_done < budget) { | |
bc7f75fa AK |
2016 | if (adapter->itr_setting & 3) |
2017 | e1000_set_itr(adapter); | |
288379f0 | 2018 | napi_complete(napi); |
a3c69fef JB |
2019 | if (!test_bit(__E1000_DOWN, &adapter->state)) { |
2020 | if (adapter->msix_entries) | |
2021 | ew32(IMS, adapter->rx_ring->ims_val); | |
2022 | else | |
2023 | e1000_irq_enable(adapter); | |
2024 | } | |
bc7f75fa AK |
2025 | } |
2026 | ||
2027 | return work_done; | |
2028 | } | |
2029 | ||
2030 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | |
2031 | { | |
2032 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
2033 | struct e1000_hw *hw = &adapter->hw; | |
2034 | u32 vfta, index; | |
2035 | ||
2036 | /* don't update vlan cookie if already programmed */ | |
2037 | if ((adapter->hw.mng_cookie.status & | |
2038 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | |
2039 | (vid == adapter->mng_vlan_id)) | |
2040 | return; | |
caaddaf8 | 2041 | |
bc7f75fa | 2042 | /* add VID to filter table */ |
caaddaf8 BA |
2043 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
2044 | index = (vid >> 5) & 0x7F; | |
2045 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | |
2046 | vfta |= (1 << (vid & 0x1F)); | |
2047 | hw->mac.ops.write_vfta(hw, index, vfta); | |
2048 | } | |
bc7f75fa AK |
2049 | } |
2050 | ||
2051 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | |
2052 | { | |
2053 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
2054 | struct e1000_hw *hw = &adapter->hw; | |
2055 | u32 vfta, index; | |
2056 | ||
74ef9c39 JB |
2057 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
2058 | e1000_irq_disable(adapter); | |
bc7f75fa | 2059 | vlan_group_set_device(adapter->vlgrp, vid, NULL); |
74ef9c39 JB |
2060 | |
2061 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
2062 | e1000_irq_enable(adapter); | |
bc7f75fa AK |
2063 | |
2064 | if ((adapter->hw.mng_cookie.status & | |
2065 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | |
2066 | (vid == adapter->mng_vlan_id)) { | |
2067 | /* release control to f/w */ | |
2068 | e1000_release_hw_control(adapter); | |
2069 | return; | |
2070 | } | |
2071 | ||
2072 | /* remove VID from filter table */ | |
caaddaf8 BA |
2073 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
2074 | index = (vid >> 5) & 0x7F; | |
2075 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | |
2076 | vfta &= ~(1 << (vid & 0x1F)); | |
2077 | hw->mac.ops.write_vfta(hw, index, vfta); | |
2078 | } | |
bc7f75fa AK |
2079 | } |
2080 | ||
2081 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | |
2082 | { | |
2083 | struct net_device *netdev = adapter->netdev; | |
2084 | u16 vid = adapter->hw.mng_cookie.vlan_id; | |
2085 | u16 old_vid = adapter->mng_vlan_id; | |
2086 | ||
2087 | if (!adapter->vlgrp) | |
2088 | return; | |
2089 | ||
2090 | if (!vlan_group_get_device(adapter->vlgrp, vid)) { | |
2091 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | |
2092 | if (adapter->hw.mng_cookie.status & | |
2093 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | |
2094 | e1000_vlan_rx_add_vid(netdev, vid); | |
2095 | adapter->mng_vlan_id = vid; | |
2096 | } | |
2097 | ||
2098 | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | |
2099 | (vid != old_vid) && | |
2100 | !vlan_group_get_device(adapter->vlgrp, old_vid)) | |
2101 | e1000_vlan_rx_kill_vid(netdev, old_vid); | |
2102 | } else { | |
2103 | adapter->mng_vlan_id = vid; | |
2104 | } | |
2105 | } | |
2106 | ||
2107 | ||
2108 | static void e1000_vlan_rx_register(struct net_device *netdev, | |
2109 | struct vlan_group *grp) | |
2110 | { | |
2111 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
2112 | struct e1000_hw *hw = &adapter->hw; | |
2113 | u32 ctrl, rctl; | |
2114 | ||
74ef9c39 JB |
2115 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
2116 | e1000_irq_disable(adapter); | |
bc7f75fa AK |
2117 | adapter->vlgrp = grp; |
2118 | ||
2119 | if (grp) { | |
2120 | /* enable VLAN tag insert/strip */ | |
2121 | ctrl = er32(CTRL); | |
2122 | ctrl |= E1000_CTRL_VME; | |
2123 | ew32(CTRL, ctrl); | |
2124 | ||
2125 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | |
2126 | /* enable VLAN receive filtering */ | |
2127 | rctl = er32(RCTL); | |
bc7f75fa AK |
2128 | rctl &= ~E1000_RCTL_CFIEN; |
2129 | ew32(RCTL, rctl); | |
2130 | e1000_update_mng_vlan(adapter); | |
2131 | } | |
2132 | } else { | |
2133 | /* disable VLAN tag insert/strip */ | |
2134 | ctrl = er32(CTRL); | |
2135 | ctrl &= ~E1000_CTRL_VME; | |
2136 | ew32(CTRL, ctrl); | |
2137 | ||
2138 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | |
bc7f75fa AK |
2139 | if (adapter->mng_vlan_id != |
2140 | (u16)E1000_MNG_VLAN_NONE) { | |
2141 | e1000_vlan_rx_kill_vid(netdev, | |
2142 | adapter->mng_vlan_id); | |
2143 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | |
2144 | } | |
2145 | } | |
2146 | } | |
2147 | ||
74ef9c39 JB |
2148 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
2149 | e1000_irq_enable(adapter); | |
bc7f75fa AK |
2150 | } |
2151 | ||
2152 | static void e1000_restore_vlan(struct e1000_adapter *adapter) | |
2153 | { | |
2154 | u16 vid; | |
2155 | ||
2156 | e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); | |
2157 | ||
2158 | if (!adapter->vlgrp) | |
2159 | return; | |
2160 | ||
2161 | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | |
2162 | if (!vlan_group_get_device(adapter->vlgrp, vid)) | |
2163 | continue; | |
2164 | e1000_vlan_rx_add_vid(adapter->netdev, vid); | |
2165 | } | |
2166 | } | |
2167 | ||
2168 | static void e1000_init_manageability(struct e1000_adapter *adapter) | |
2169 | { | |
2170 | struct e1000_hw *hw = &adapter->hw; | |
2171 | u32 manc, manc2h; | |
2172 | ||
2173 | if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) | |
2174 | return; | |
2175 | ||
2176 | manc = er32(MANC); | |
2177 | ||
ad68076e BA |
2178 | /* |
2179 | * enable receiving management packets to the host. this will probably | |
bc7f75fa | 2180 | * generate destination unreachable messages from the host OS, but |
ad68076e BA |
2181 | * the packets will be handled on SMBUS |
2182 | */ | |
bc7f75fa AK |
2183 | manc |= E1000_MANC_EN_MNG2HOST; |
2184 | manc2h = er32(MANC2H); | |
2185 | #define E1000_MNG2HOST_PORT_623 (1 << 5) | |
2186 | #define E1000_MNG2HOST_PORT_664 (1 << 6) | |
2187 | manc2h |= E1000_MNG2HOST_PORT_623; | |
2188 | manc2h |= E1000_MNG2HOST_PORT_664; | |
2189 | ew32(MANC2H, manc2h); | |
2190 | ew32(MANC, manc); | |
2191 | } | |
2192 | ||
2193 | /** | |
2194 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | |
2195 | * @adapter: board private structure | |
2196 | * | |
2197 | * Configure the Tx unit of the MAC after a reset. | |
2198 | **/ | |
2199 | static void e1000_configure_tx(struct e1000_adapter *adapter) | |
2200 | { | |
2201 | struct e1000_hw *hw = &adapter->hw; | |
2202 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
2203 | u64 tdba; | |
2204 | u32 tdlen, tctl, tipg, tarc; | |
2205 | u32 ipgr1, ipgr2; | |
2206 | ||
2207 | /* Setup the HW Tx Head and Tail descriptor pointers */ | |
2208 | tdba = tx_ring->dma; | |
2209 | tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); | |
284901a9 | 2210 | ew32(TDBAL, (tdba & DMA_BIT_MASK(32))); |
bc7f75fa AK |
2211 | ew32(TDBAH, (tdba >> 32)); |
2212 | ew32(TDLEN, tdlen); | |
2213 | ew32(TDH, 0); | |
2214 | ew32(TDT, 0); | |
2215 | tx_ring->head = E1000_TDH; | |
2216 | tx_ring->tail = E1000_TDT; | |
2217 | ||
2218 | /* Set the default values for the Tx Inter Packet Gap timer */ | |
2219 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ | |
2220 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ | |
2221 | ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ | |
2222 | ||
2223 | if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) | |
2224 | ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ | |
2225 | ||
2226 | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | |
2227 | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | |
2228 | ew32(TIPG, tipg); | |
2229 | ||
2230 | /* Set the Tx Interrupt Delay register */ | |
2231 | ew32(TIDV, adapter->tx_int_delay); | |
ad68076e | 2232 | /* Tx irq moderation */ |
bc7f75fa AK |
2233 | ew32(TADV, adapter->tx_abs_int_delay); |
2234 | ||
2235 | /* Program the Transmit Control Register */ | |
2236 | tctl = er32(TCTL); | |
2237 | tctl &= ~E1000_TCTL_CT; | |
2238 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | |
2239 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | |
2240 | ||
2241 | if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { | |
e9ec2c0f | 2242 | tarc = er32(TARC(0)); |
ad68076e BA |
2243 | /* |
2244 | * set the speed mode bit, we'll clear it if we're not at | |
2245 | * gigabit link later | |
2246 | */ | |
bc7f75fa AK |
2247 | #define SPEED_MODE_BIT (1 << 21) |
2248 | tarc |= SPEED_MODE_BIT; | |
e9ec2c0f | 2249 | ew32(TARC(0), tarc); |
bc7f75fa AK |
2250 | } |
2251 | ||
2252 | /* errata: program both queues to unweighted RR */ | |
2253 | if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { | |
e9ec2c0f | 2254 | tarc = er32(TARC(0)); |
bc7f75fa | 2255 | tarc |= 1; |
e9ec2c0f JK |
2256 | ew32(TARC(0), tarc); |
2257 | tarc = er32(TARC(1)); | |
bc7f75fa | 2258 | tarc |= 1; |
e9ec2c0f | 2259 | ew32(TARC(1), tarc); |
bc7f75fa AK |
2260 | } |
2261 | ||
bc7f75fa AK |
2262 | /* Setup Transmit Descriptor Settings for eop descriptor */ |
2263 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | |
2264 | ||
2265 | /* only set IDE if we are delaying interrupts using the timers */ | |
2266 | if (adapter->tx_int_delay) | |
2267 | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | |
2268 | ||
2269 | /* enable Report Status bit */ | |
2270 | adapter->txd_cmd |= E1000_TXD_CMD_RS; | |
2271 | ||
2272 | ew32(TCTL, tctl); | |
2273 | ||
edfea6e6 SH |
2274 | e1000e_config_collision_dist(hw); |
2275 | ||
bc7f75fa AK |
2276 | adapter->tx_queue_len = adapter->netdev->tx_queue_len; |
2277 | } | |
2278 | ||
2279 | /** | |
2280 | * e1000_setup_rctl - configure the receive control registers | |
2281 | * @adapter: Board private structure | |
2282 | **/ | |
2283 | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | |
2284 | (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | |
2285 | static void e1000_setup_rctl(struct e1000_adapter *adapter) | |
2286 | { | |
2287 | struct e1000_hw *hw = &adapter->hw; | |
2288 | u32 rctl, rfctl; | |
2289 | u32 psrctl = 0; | |
2290 | u32 pages = 0; | |
2291 | ||
2292 | /* Program MC offset vector base */ | |
2293 | rctl = er32(RCTL); | |
2294 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | |
2295 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | |
2296 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | |
2297 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | |
2298 | ||
2299 | /* Do not Store bad packets */ | |
2300 | rctl &= ~E1000_RCTL_SBP; | |
2301 | ||
2302 | /* Enable Long Packet receive */ | |
2303 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | |
2304 | rctl &= ~E1000_RCTL_LPE; | |
2305 | else | |
2306 | rctl |= E1000_RCTL_LPE; | |
2307 | ||
eb7c3adb JK |
2308 | /* Some systems expect that the CRC is included in SMBUS traffic. The |
2309 | * hardware strips the CRC before sending to both SMBUS (BMC) and to | |
2310 | * host memory when this is enabled | |
2311 | */ | |
2312 | if (adapter->flags2 & FLAG2_CRC_STRIPPING) | |
2313 | rctl |= E1000_RCTL_SECRC; | |
5918bd88 | 2314 | |
a4f58f54 BA |
2315 | /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ |
2316 | if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { | |
2317 | u16 phy_data; | |
2318 | ||
2319 | e1e_rphy(hw, PHY_REG(770, 26), &phy_data); | |
2320 | phy_data &= 0xfff8; | |
2321 | phy_data |= (1 << 2); | |
2322 | e1e_wphy(hw, PHY_REG(770, 26), phy_data); | |
2323 | ||
2324 | e1e_rphy(hw, 22, &phy_data); | |
2325 | phy_data &= 0x0fff; | |
2326 | phy_data |= (1 << 14); | |
2327 | e1e_wphy(hw, 0x10, 0x2823); | |
2328 | e1e_wphy(hw, 0x11, 0x0003); | |
2329 | e1e_wphy(hw, 22, phy_data); | |
2330 | } | |
2331 | ||
bc7f75fa AK |
2332 | /* Setup buffer sizes */ |
2333 | rctl &= ~E1000_RCTL_SZ_4096; | |
2334 | rctl |= E1000_RCTL_BSEX; | |
2335 | switch (adapter->rx_buffer_len) { | |
2336 | case 256: | |
2337 | rctl |= E1000_RCTL_SZ_256; | |
2338 | rctl &= ~E1000_RCTL_BSEX; | |
2339 | break; | |
2340 | case 512: | |
2341 | rctl |= E1000_RCTL_SZ_512; | |
2342 | rctl &= ~E1000_RCTL_BSEX; | |
2343 | break; | |
2344 | case 1024: | |
2345 | rctl |= E1000_RCTL_SZ_1024; | |
2346 | rctl &= ~E1000_RCTL_BSEX; | |
2347 | break; | |
2348 | case 2048: | |
2349 | default: | |
2350 | rctl |= E1000_RCTL_SZ_2048; | |
2351 | rctl &= ~E1000_RCTL_BSEX; | |
2352 | break; | |
2353 | case 4096: | |
2354 | rctl |= E1000_RCTL_SZ_4096; | |
2355 | break; | |
2356 | case 8192: | |
2357 | rctl |= E1000_RCTL_SZ_8192; | |
2358 | break; | |
2359 | case 16384: | |
2360 | rctl |= E1000_RCTL_SZ_16384; | |
2361 | break; | |
2362 | } | |
2363 | ||
2364 | /* | |
2365 | * 82571 and greater support packet-split where the protocol | |
2366 | * header is placed in skb->data and the packet data is | |
2367 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | |
2368 | * In the case of a non-split, skb->data is linearly filled, | |
2369 | * followed by the page buffers. Therefore, skb->data is | |
2370 | * sized to hold the largest protocol header. | |
2371 | * | |
2372 | * allocations using alloc_page take too long for regular MTU | |
2373 | * so only enable packet split for jumbo frames | |
2374 | * | |
2375 | * Using pages when the page size is greater than 16k wastes | |
2376 | * a lot of memory, since we allocate 3 pages at all times | |
2377 | * per packet. | |
2378 | */ | |
bc7f75fa | 2379 | pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
97ac8cae BA |
2380 | if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) && |
2381 | (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) | |
bc7f75fa | 2382 | adapter->rx_ps_pages = pages; |
97ac8cae BA |
2383 | else |
2384 | adapter->rx_ps_pages = 0; | |
bc7f75fa AK |
2385 | |
2386 | if (adapter->rx_ps_pages) { | |
2387 | /* Configure extra packet-split registers */ | |
2388 | rfctl = er32(RFCTL); | |
2389 | rfctl |= E1000_RFCTL_EXTEN; | |
ad68076e BA |
2390 | /* |
2391 | * disable packet split support for IPv6 extension headers, | |
2392 | * because some malformed IPv6 headers can hang the Rx | |
2393 | */ | |
bc7f75fa AK |
2394 | rfctl |= (E1000_RFCTL_IPV6_EX_DIS | |
2395 | E1000_RFCTL_NEW_IPV6_EXT_DIS); | |
2396 | ||
2397 | ew32(RFCTL, rfctl); | |
2398 | ||
140a7480 AK |
2399 | /* Enable Packet split descriptors */ |
2400 | rctl |= E1000_RCTL_DTYP_PS; | |
bc7f75fa AK |
2401 | |
2402 | psrctl |= adapter->rx_ps_bsize0 >> | |
2403 | E1000_PSRCTL_BSIZE0_SHIFT; | |
2404 | ||
2405 | switch (adapter->rx_ps_pages) { | |
2406 | case 3: | |
2407 | psrctl |= PAGE_SIZE << | |
2408 | E1000_PSRCTL_BSIZE3_SHIFT; | |
2409 | case 2: | |
2410 | psrctl |= PAGE_SIZE << | |
2411 | E1000_PSRCTL_BSIZE2_SHIFT; | |
2412 | case 1: | |
2413 | psrctl |= PAGE_SIZE >> | |
2414 | E1000_PSRCTL_BSIZE1_SHIFT; | |
2415 | break; | |
2416 | } | |
2417 | ||
2418 | ew32(PSRCTL, psrctl); | |
2419 | } | |
2420 | ||
2421 | ew32(RCTL, rctl); | |
318a94d6 JK |
2422 | /* just started the receive unit, no need to restart */ |
2423 | adapter->flags &= ~FLAG_RX_RESTART_NOW; | |
bc7f75fa AK |
2424 | } |
2425 | ||
2426 | /** | |
2427 | * e1000_configure_rx - Configure Receive Unit after Reset | |
2428 | * @adapter: board private structure | |
2429 | * | |
2430 | * Configure the Rx unit of the MAC after a reset. | |
2431 | **/ | |
2432 | static void e1000_configure_rx(struct e1000_adapter *adapter) | |
2433 | { | |
2434 | struct e1000_hw *hw = &adapter->hw; | |
2435 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
2436 | u64 rdba; | |
2437 | u32 rdlen, rctl, rxcsum, ctrl_ext; | |
2438 | ||
2439 | if (adapter->rx_ps_pages) { | |
2440 | /* this is a 32 byte descriptor */ | |
2441 | rdlen = rx_ring->count * | |
2442 | sizeof(union e1000_rx_desc_packet_split); | |
2443 | adapter->clean_rx = e1000_clean_rx_irq_ps; | |
2444 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | |
97ac8cae BA |
2445 | } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { |
2446 | rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); | |
2447 | adapter->clean_rx = e1000_clean_jumbo_rx_irq; | |
2448 | adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; | |
bc7f75fa | 2449 | } else { |
97ac8cae | 2450 | rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); |
bc7f75fa AK |
2451 | adapter->clean_rx = e1000_clean_rx_irq; |
2452 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | |
2453 | } | |
2454 | ||
2455 | /* disable receives while setting up the descriptors */ | |
2456 | rctl = er32(RCTL); | |
2457 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | |
2458 | e1e_flush(); | |
2459 | msleep(10); | |
2460 | ||
2461 | /* set the Receive Delay Timer Register */ | |
2462 | ew32(RDTR, adapter->rx_int_delay); | |
2463 | ||
2464 | /* irq moderation */ | |
2465 | ew32(RADV, adapter->rx_abs_int_delay); | |
2466 | if (adapter->itr_setting != 0) | |
ad68076e | 2467 | ew32(ITR, 1000000000 / (adapter->itr * 256)); |
bc7f75fa AK |
2468 | |
2469 | ctrl_ext = er32(CTRL_EXT); | |
bc7f75fa AK |
2470 | /* Auto-Mask interrupts upon ICR access */ |
2471 | ctrl_ext |= E1000_CTRL_EXT_IAME; | |
2472 | ew32(IAM, 0xffffffff); | |
2473 | ew32(CTRL_EXT, ctrl_ext); | |
2474 | e1e_flush(); | |
2475 | ||
ad68076e BA |
2476 | /* |
2477 | * Setup the HW Rx Head and Tail Descriptor Pointers and | |
2478 | * the Base and Length of the Rx Descriptor Ring | |
2479 | */ | |
bc7f75fa | 2480 | rdba = rx_ring->dma; |
284901a9 | 2481 | ew32(RDBAL, (rdba & DMA_BIT_MASK(32))); |
bc7f75fa AK |
2482 | ew32(RDBAH, (rdba >> 32)); |
2483 | ew32(RDLEN, rdlen); | |
2484 | ew32(RDH, 0); | |
2485 | ew32(RDT, 0); | |
2486 | rx_ring->head = E1000_RDH; | |
2487 | rx_ring->tail = E1000_RDT; | |
2488 | ||
2489 | /* Enable Receive Checksum Offload for TCP and UDP */ | |
2490 | rxcsum = er32(RXCSUM); | |
2491 | if (adapter->flags & FLAG_RX_CSUM_ENABLED) { | |
2492 | rxcsum |= E1000_RXCSUM_TUOFL; | |
2493 | ||
ad68076e BA |
2494 | /* |
2495 | * IPv4 payload checksum for UDP fragments must be | |
2496 | * used in conjunction with packet-split. | |
2497 | */ | |
bc7f75fa AK |
2498 | if (adapter->rx_ps_pages) |
2499 | rxcsum |= E1000_RXCSUM_IPPCSE; | |
2500 | } else { | |
2501 | rxcsum &= ~E1000_RXCSUM_TUOFL; | |
2502 | /* no need to clear IPPCSE as it defaults to 0 */ | |
2503 | } | |
2504 | ew32(RXCSUM, rxcsum); | |
2505 | ||
ad68076e BA |
2506 | /* |
2507 | * Enable early receives on supported devices, only takes effect when | |
bc7f75fa | 2508 | * packet size is equal or larger than the specified value (in 8 byte |
ad68076e BA |
2509 | * units), e.g. using jumbo frames when setting to E1000_ERT_2048 |
2510 | */ | |
53ec5498 BA |
2511 | if (adapter->flags & FLAG_HAS_ERT) { |
2512 | if (adapter->netdev->mtu > ETH_DATA_LEN) { | |
2513 | u32 rxdctl = er32(RXDCTL(0)); | |
2514 | ew32(RXDCTL(0), rxdctl | 0x3); | |
2515 | ew32(ERT, E1000_ERT_2048 | (1 << 13)); | |
2516 | /* | |
2517 | * With jumbo frames and early-receive enabled, | |
2518 | * excessive C-state transition latencies result in | |
2519 | * dropped transactions. | |
2520 | */ | |
2521 | pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, | |
2522 | adapter->netdev->name, 55); | |
2523 | } else { | |
2524 | pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, | |
2525 | adapter->netdev->name, | |
2526 | PM_QOS_DEFAULT_VALUE); | |
2527 | } | |
97ac8cae | 2528 | } |
bc7f75fa AK |
2529 | |
2530 | /* Enable Receives */ | |
2531 | ew32(RCTL, rctl); | |
2532 | } | |
2533 | ||
2534 | /** | |
e2de3eb6 | 2535 | * e1000_update_mc_addr_list - Update Multicast addresses |
bc7f75fa AK |
2536 | * @hw: pointer to the HW structure |
2537 | * @mc_addr_list: array of multicast addresses to program | |
2538 | * @mc_addr_count: number of multicast addresses to program | |
2539 | * @rar_used_count: the first RAR register free to program | |
2540 | * @rar_count: total number of supported Receive Address Registers | |
2541 | * | |
2542 | * Updates the Receive Address Registers and Multicast Table Array. | |
2543 | * The caller must have a packed mc_addr_list of multicast addresses. | |
2544 | * The parameter rar_count will usually be hw->mac.rar_entry_count | |
2545 | * unless there are workarounds that change this. Currently no func pointer | |
2546 | * exists and all implementations are handled in the generic version of this | |
2547 | * function. | |
2548 | **/ | |
e2de3eb6 JK |
2549 | static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, |
2550 | u32 mc_addr_count, u32 rar_used_count, | |
2551 | u32 rar_count) | |
bc7f75fa | 2552 | { |
e2de3eb6 | 2553 | hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count, |
bc7f75fa AK |
2554 | rar_used_count, rar_count); |
2555 | } | |
2556 | ||
2557 | /** | |
2558 | * e1000_set_multi - Multicast and Promiscuous mode set | |
2559 | * @netdev: network interface device structure | |
2560 | * | |
2561 | * The set_multi entry point is called whenever the multicast address | |
2562 | * list or the network interface flags are updated. This routine is | |
2563 | * responsible for configuring the hardware for proper multicast, | |
2564 | * promiscuous mode, and all-multi behavior. | |
2565 | **/ | |
2566 | static void e1000_set_multi(struct net_device *netdev) | |
2567 | { | |
2568 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
2569 | struct e1000_hw *hw = &adapter->hw; | |
2570 | struct e1000_mac_info *mac = &hw->mac; | |
2571 | struct dev_mc_list *mc_ptr; | |
2572 | u8 *mta_list; | |
2573 | u32 rctl; | |
2574 | int i; | |
2575 | ||
2576 | /* Check for Promiscuous and All Multicast modes */ | |
2577 | ||
2578 | rctl = er32(RCTL); | |
2579 | ||
2580 | if (netdev->flags & IFF_PROMISC) { | |
2581 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | |
746b9f02 | 2582 | rctl &= ~E1000_RCTL_VFE; |
bc7f75fa | 2583 | } else { |
746b9f02 PM |
2584 | if (netdev->flags & IFF_ALLMULTI) { |
2585 | rctl |= E1000_RCTL_MPE; | |
2586 | rctl &= ~E1000_RCTL_UPE; | |
2587 | } else { | |
2588 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | |
2589 | } | |
78ed11a5 | 2590 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
746b9f02 | 2591 | rctl |= E1000_RCTL_VFE; |
bc7f75fa AK |
2592 | } |
2593 | ||
2594 | ew32(RCTL, rctl); | |
2595 | ||
2596 | if (netdev->mc_count) { | |
2597 | mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); | |
2598 | if (!mta_list) | |
2599 | return; | |
2600 | ||
2601 | /* prepare a packed array of only addresses. */ | |
2602 | mc_ptr = netdev->mc_list; | |
2603 | ||
2604 | for (i = 0; i < netdev->mc_count; i++) { | |
2605 | if (!mc_ptr) | |
2606 | break; | |
2607 | memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, | |
2608 | ETH_ALEN); | |
2609 | mc_ptr = mc_ptr->next; | |
2610 | } | |
2611 | ||
e2de3eb6 | 2612 | e1000_update_mc_addr_list(hw, mta_list, i, 1, |
bc7f75fa AK |
2613 | mac->rar_entry_count); |
2614 | kfree(mta_list); | |
2615 | } else { | |
2616 | /* | |
2617 | * if we're called from probe, we might not have | |
2618 | * anything to do here, so clear out the list | |
2619 | */ | |
e2de3eb6 | 2620 | e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count); |
bc7f75fa AK |
2621 | } |
2622 | } | |
2623 | ||
2624 | /** | |
ad68076e | 2625 | * e1000_configure - configure the hardware for Rx and Tx |
bc7f75fa AK |
2626 | * @adapter: private board structure |
2627 | **/ | |
2628 | static void e1000_configure(struct e1000_adapter *adapter) | |
2629 | { | |
2630 | e1000_set_multi(adapter->netdev); | |
2631 | ||
2632 | e1000_restore_vlan(adapter); | |
2633 | e1000_init_manageability(adapter); | |
2634 | ||
2635 | e1000_configure_tx(adapter); | |
2636 | e1000_setup_rctl(adapter); | |
2637 | e1000_configure_rx(adapter); | |
ad68076e | 2638 | adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); |
bc7f75fa AK |
2639 | } |
2640 | ||
2641 | /** | |
2642 | * e1000e_power_up_phy - restore link in case the phy was powered down | |
2643 | * @adapter: address of board private structure | |
2644 | * | |
2645 | * The phy may be powered down to save power and turn off link when the | |
2646 | * driver is unloaded and wake on lan is not enabled (among others) | |
2647 | * *** this routine MUST be followed by a call to e1000e_reset *** | |
2648 | **/ | |
2649 | void e1000e_power_up_phy(struct e1000_adapter *adapter) | |
2650 | { | |
17f208de BA |
2651 | if (adapter->hw.phy.ops.power_up) |
2652 | adapter->hw.phy.ops.power_up(&adapter->hw); | |
bc7f75fa AK |
2653 | |
2654 | adapter->hw.mac.ops.setup_link(&adapter->hw); | |
2655 | } | |
2656 | ||
2657 | /** | |
2658 | * e1000_power_down_phy - Power down the PHY | |
2659 | * | |
17f208de BA |
2660 | * Power down the PHY so no link is implied when interface is down. |
2661 | * The PHY cannot be powered down if management or WoL is active. | |
bc7f75fa AK |
2662 | */ |
2663 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | |
2664 | { | |
bc7f75fa | 2665 | /* WoL is enabled */ |
23b66e2b | 2666 | if (adapter->wol) |
bc7f75fa AK |
2667 | return; |
2668 | ||
17f208de BA |
2669 | if (adapter->hw.phy.ops.power_down) |
2670 | adapter->hw.phy.ops.power_down(&adapter->hw); | |
bc7f75fa AK |
2671 | } |
2672 | ||
2673 | /** | |
2674 | * e1000e_reset - bring the hardware into a known good state | |
2675 | * | |
2676 | * This function boots the hardware and enables some settings that | |
2677 | * require a configuration cycle of the hardware - those cannot be | |
2678 | * set/changed during runtime. After reset the device needs to be | |
ad68076e | 2679 | * properly configured for Rx, Tx etc. |
bc7f75fa AK |
2680 | */ |
2681 | void e1000e_reset(struct e1000_adapter *adapter) | |
2682 | { | |
2683 | struct e1000_mac_info *mac = &adapter->hw.mac; | |
318a94d6 | 2684 | struct e1000_fc_info *fc = &adapter->hw.fc; |
bc7f75fa AK |
2685 | struct e1000_hw *hw = &adapter->hw; |
2686 | u32 tx_space, min_tx_space, min_rx_space; | |
318a94d6 | 2687 | u32 pba = adapter->pba; |
bc7f75fa AK |
2688 | u16 hwm; |
2689 | ||
ad68076e | 2690 | /* reset Packet Buffer Allocation to default */ |
318a94d6 | 2691 | ew32(PBA, pba); |
df762464 | 2692 | |
318a94d6 | 2693 | if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { |
ad68076e BA |
2694 | /* |
2695 | * To maintain wire speed transmits, the Tx FIFO should be | |
bc7f75fa AK |
2696 | * large enough to accommodate two full transmit packets, |
2697 | * rounded up to the next 1KB and expressed in KB. Likewise, | |
2698 | * the Rx FIFO should be large enough to accommodate at least | |
2699 | * one full receive packet and is similarly rounded up and | |
ad68076e BA |
2700 | * expressed in KB. |
2701 | */ | |
df762464 | 2702 | pba = er32(PBA); |
bc7f75fa | 2703 | /* upper 16 bits has Tx packet buffer allocation size in KB */ |
df762464 | 2704 | tx_space = pba >> 16; |
bc7f75fa | 2705 | /* lower 16 bits has Rx packet buffer allocation size in KB */ |
df762464 | 2706 | pba &= 0xffff; |
ad68076e BA |
2707 | /* |
2708 | * the Tx fifo also stores 16 bytes of information about the tx | |
2709 | * but don't include ethernet FCS because hardware appends it | |
318a94d6 JK |
2710 | */ |
2711 | min_tx_space = (adapter->max_frame_size + | |
bc7f75fa AK |
2712 | sizeof(struct e1000_tx_desc) - |
2713 | ETH_FCS_LEN) * 2; | |
2714 | min_tx_space = ALIGN(min_tx_space, 1024); | |
2715 | min_tx_space >>= 10; | |
2716 | /* software strips receive CRC, so leave room for it */ | |
318a94d6 | 2717 | min_rx_space = adapter->max_frame_size; |
bc7f75fa AK |
2718 | min_rx_space = ALIGN(min_rx_space, 1024); |
2719 | min_rx_space >>= 10; | |
2720 | ||
ad68076e BA |
2721 | /* |
2722 | * If current Tx allocation is less than the min Tx FIFO size, | |
bc7f75fa | 2723 | * and the min Tx FIFO size is less than the current Rx FIFO |
ad68076e BA |
2724 | * allocation, take space away from current Rx allocation |
2725 | */ | |
df762464 AK |
2726 | if ((tx_space < min_tx_space) && |
2727 | ((min_tx_space - tx_space) < pba)) { | |
2728 | pba -= min_tx_space - tx_space; | |
bc7f75fa | 2729 | |
ad68076e BA |
2730 | /* |
2731 | * if short on Rx space, Rx wins and must trump tx | |
2732 | * adjustment or use Early Receive if available | |
2733 | */ | |
df762464 | 2734 | if ((pba < min_rx_space) && |
bc7f75fa AK |
2735 | (!(adapter->flags & FLAG_HAS_ERT))) |
2736 | /* ERT enabled in e1000_configure_rx */ | |
df762464 | 2737 | pba = min_rx_space; |
bc7f75fa | 2738 | } |
df762464 AK |
2739 | |
2740 | ew32(PBA, pba); | |
bc7f75fa AK |
2741 | } |
2742 | ||
bc7f75fa | 2743 | |
ad68076e BA |
2744 | /* |
2745 | * flow control settings | |
2746 | * | |
38eb394e | 2747 | * The high water mark must be low enough to fit one full frame |
bc7f75fa AK |
2748 | * (or the size used for early receive) above it in the Rx FIFO. |
2749 | * Set it to the lower of: | |
2750 | * - 90% of the Rx FIFO size, and | |
2751 | * - the full Rx FIFO size minus the early receive size (for parts | |
2752 | * with ERT support assuming ERT set to E1000_ERT_2048), or | |
38eb394e | 2753 | * - the full Rx FIFO size minus one full frame |
ad68076e | 2754 | */ |
38eb394e BA |
2755 | if (hw->mac.type == e1000_pchlan) { |
2756 | /* | |
2757 | * Workaround PCH LOM adapter hangs with certain network | |
2758 | * loads. If hangs persist, try disabling Tx flow control. | |
2759 | */ | |
2760 | if (adapter->netdev->mtu > ETH_DATA_LEN) { | |
2761 | fc->high_water = 0x3500; | |
2762 | fc->low_water = 0x1500; | |
2763 | } else { | |
2764 | fc->high_water = 0x5000; | |
2765 | fc->low_water = 0x3000; | |
2766 | } | |
2767 | } else { | |
2768 | if ((adapter->flags & FLAG_HAS_ERT) && | |
2769 | (adapter->netdev->mtu > ETH_DATA_LEN)) | |
2770 | hwm = min(((pba << 10) * 9 / 10), | |
2771 | ((pba << 10) - (E1000_ERT_2048 << 3))); | |
2772 | else | |
2773 | hwm = min(((pba << 10) * 9 / 10), | |
2774 | ((pba << 10) - adapter->max_frame_size)); | |
bc7f75fa | 2775 | |
38eb394e BA |
2776 | fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ |
2777 | fc->low_water = fc->high_water - 8; | |
2778 | } | |
bc7f75fa AK |
2779 | |
2780 | if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) | |
318a94d6 | 2781 | fc->pause_time = 0xFFFF; |
bc7f75fa | 2782 | else |
318a94d6 JK |
2783 | fc->pause_time = E1000_FC_PAUSE_TIME; |
2784 | fc->send_xon = 1; | |
5c48ef3e | 2785 | fc->current_mode = fc->requested_mode; |
bc7f75fa AK |
2786 | |
2787 | /* Allow time for pending master requests to run */ | |
2788 | mac->ops.reset_hw(hw); | |
97ac8cae BA |
2789 | |
2790 | /* | |
2791 | * For parts with AMT enabled, let the firmware know | |
2792 | * that the network interface is in control | |
2793 | */ | |
c43bc57e | 2794 | if (adapter->flags & FLAG_HAS_AMT) |
97ac8cae BA |
2795 | e1000_get_hw_control(adapter); |
2796 | ||
bc7f75fa | 2797 | ew32(WUC, 0); |
a4f58f54 BA |
2798 | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) |
2799 | e1e_wphy(&adapter->hw, BM_WUC, 0); | |
bc7f75fa AK |
2800 | |
2801 | if (mac->ops.init_hw(hw)) | |
44defeb3 | 2802 | e_err("Hardware Error\n"); |
bc7f75fa | 2803 | |
38eb394e BA |
2804 | /* additional part of the flow-control workaround above */ |
2805 | if (hw->mac.type == e1000_pchlan) | |
2806 | ew32(FCRTV_PCH, 0x1000); | |
2807 | ||
bc7f75fa AK |
2808 | e1000_update_mng_vlan(adapter); |
2809 | ||
2810 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | |
2811 | ew32(VET, ETH_P_8021Q); | |
2812 | ||
2813 | e1000e_reset_adaptive(hw); | |
2814 | e1000_get_phy_info(hw); | |
2815 | ||
918d7197 BA |
2816 | if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && |
2817 | !(adapter->flags & FLAG_SMART_POWER_DOWN)) { | |
bc7f75fa | 2818 | u16 phy_data = 0; |
ad68076e BA |
2819 | /* |
2820 | * speed up time to link by disabling smart power down, ignore | |
bc7f75fa | 2821 | * the return value of this function because there is nothing |
ad68076e BA |
2822 | * different we would do if it failed |
2823 | */ | |
bc7f75fa AK |
2824 | e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
2825 | phy_data &= ~IGP02E1000_PM_SPD; | |
2826 | e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | |
2827 | } | |
bc7f75fa AK |
2828 | } |
2829 | ||
2830 | int e1000e_up(struct e1000_adapter *adapter) | |
2831 | { | |
2832 | struct e1000_hw *hw = &adapter->hw; | |
2833 | ||
53ec5498 BA |
2834 | /* DMA latency requirement to workaround early-receive/jumbo issue */ |
2835 | if (adapter->flags & FLAG_HAS_ERT) | |
2836 | pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, | |
2837 | adapter->netdev->name, | |
2838 | PM_QOS_DEFAULT_VALUE); | |
2839 | ||
bc7f75fa AK |
2840 | /* hardware has been reset, we need to reload some things */ |
2841 | e1000_configure(adapter); | |
2842 | ||
2843 | clear_bit(__E1000_DOWN, &adapter->state); | |
2844 | ||
2845 | napi_enable(&adapter->napi); | |
4662e82b BA |
2846 | if (adapter->msix_entries) |
2847 | e1000_configure_msix(adapter); | |
bc7f75fa AK |
2848 | e1000_irq_enable(adapter); |
2849 | ||
4cb9be7a JB |
2850 | netif_wake_queue(adapter->netdev); |
2851 | ||
bc7f75fa AK |
2852 | /* fire a link change interrupt to start the watchdog */ |
2853 | ew32(ICS, E1000_ICS_LSC); | |
2854 | return 0; | |
2855 | } | |
2856 | ||
2857 | void e1000e_down(struct e1000_adapter *adapter) | |
2858 | { | |
2859 | struct net_device *netdev = adapter->netdev; | |
2860 | struct e1000_hw *hw = &adapter->hw; | |
2861 | u32 tctl, rctl; | |
2862 | ||
ad68076e BA |
2863 | /* |
2864 | * signal that we're down so the interrupt handler does not | |
2865 | * reschedule our watchdog timer | |
2866 | */ | |
bc7f75fa AK |
2867 | set_bit(__E1000_DOWN, &adapter->state); |
2868 | ||
2869 | /* disable receives in the hardware */ | |
2870 | rctl = er32(RCTL); | |
2871 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | |
2872 | /* flush and sleep below */ | |
2873 | ||
4cb9be7a | 2874 | netif_stop_queue(netdev); |
bc7f75fa AK |
2875 | |
2876 | /* disable transmits in the hardware */ | |
2877 | tctl = er32(TCTL); | |
2878 | tctl &= ~E1000_TCTL_EN; | |
2879 | ew32(TCTL, tctl); | |
2880 | /* flush both disables and wait for them to finish */ | |
2881 | e1e_flush(); | |
2882 | msleep(10); | |
2883 | ||
2884 | napi_disable(&adapter->napi); | |
2885 | e1000_irq_disable(adapter); | |
2886 | ||
2887 | del_timer_sync(&adapter->watchdog_timer); | |
2888 | del_timer_sync(&adapter->phy_info_timer); | |
2889 | ||
2890 | netdev->tx_queue_len = adapter->tx_queue_len; | |
2891 | netif_carrier_off(netdev); | |
2892 | adapter->link_speed = 0; | |
2893 | adapter->link_duplex = 0; | |
2894 | ||
52cc3086 JK |
2895 | if (!pci_channel_offline(adapter->pdev)) |
2896 | e1000e_reset(adapter); | |
bc7f75fa AK |
2897 | e1000_clean_tx_ring(adapter); |
2898 | e1000_clean_rx_ring(adapter); | |
2899 | ||
53ec5498 BA |
2900 | if (adapter->flags & FLAG_HAS_ERT) |
2901 | pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, | |
2902 | adapter->netdev->name); | |
2903 | ||
bc7f75fa AK |
2904 | /* |
2905 | * TODO: for power management, we could drop the link and | |
2906 | * pci_disable_device here. | |
2907 | */ | |
2908 | } | |
2909 | ||
2910 | void e1000e_reinit_locked(struct e1000_adapter *adapter) | |
2911 | { | |
2912 | might_sleep(); | |
2913 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | |
2914 | msleep(1); | |
2915 | e1000e_down(adapter); | |
2916 | e1000e_up(adapter); | |
2917 | clear_bit(__E1000_RESETTING, &adapter->state); | |
2918 | } | |
2919 | ||
2920 | /** | |
2921 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | |
2922 | * @adapter: board private structure to initialize | |
2923 | * | |
2924 | * e1000_sw_init initializes the Adapter private data structure. | |
2925 | * Fields are initialized based on PCI device information and | |
2926 | * OS network device settings (MTU size). | |
2927 | **/ | |
2928 | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | |
2929 | { | |
bc7f75fa AK |
2930 | struct net_device *netdev = adapter->netdev; |
2931 | ||
2932 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | |
2933 | adapter->rx_ps_bsize0 = 128; | |
318a94d6 JK |
2934 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; |
2935 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | |
bc7f75fa | 2936 | |
4662e82b | 2937 | e1000e_set_interrupt_capability(adapter); |
bc7f75fa | 2938 | |
4662e82b BA |
2939 | if (e1000_alloc_queues(adapter)) |
2940 | return -ENOMEM; | |
bc7f75fa | 2941 | |
bc7f75fa | 2942 | /* Explicitly disable IRQ since the NIC can be in any state. */ |
bc7f75fa AK |
2943 | e1000_irq_disable(adapter); |
2944 | ||
bc7f75fa AK |
2945 | set_bit(__E1000_DOWN, &adapter->state); |
2946 | return 0; | |
bc7f75fa AK |
2947 | } |
2948 | ||
f8d59f78 BA |
2949 | /** |
2950 | * e1000_intr_msi_test - Interrupt Handler | |
2951 | * @irq: interrupt number | |
2952 | * @data: pointer to a network interface device structure | |
2953 | **/ | |
2954 | static irqreturn_t e1000_intr_msi_test(int irq, void *data) | |
2955 | { | |
2956 | struct net_device *netdev = data; | |
2957 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
2958 | struct e1000_hw *hw = &adapter->hw; | |
2959 | u32 icr = er32(ICR); | |
2960 | ||
3bb99fe2 | 2961 | e_dbg("icr is %08X\n", icr); |
f8d59f78 BA |
2962 | if (icr & E1000_ICR_RXSEQ) { |
2963 | adapter->flags &= ~FLAG_MSI_TEST_FAILED; | |
2964 | wmb(); | |
2965 | } | |
2966 | ||
2967 | return IRQ_HANDLED; | |
2968 | } | |
2969 | ||
2970 | /** | |
2971 | * e1000_test_msi_interrupt - Returns 0 for successful test | |
2972 | * @adapter: board private struct | |
2973 | * | |
2974 | * code flow taken from tg3.c | |
2975 | **/ | |
2976 | static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) | |
2977 | { | |
2978 | struct net_device *netdev = adapter->netdev; | |
2979 | struct e1000_hw *hw = &adapter->hw; | |
2980 | int err; | |
2981 | ||
2982 | /* poll_enable hasn't been called yet, so don't need disable */ | |
2983 | /* clear any pending events */ | |
2984 | er32(ICR); | |
2985 | ||
2986 | /* free the real vector and request a test handler */ | |
2987 | e1000_free_irq(adapter); | |
4662e82b | 2988 | e1000e_reset_interrupt_capability(adapter); |
f8d59f78 BA |
2989 | |
2990 | /* Assume that the test fails, if it succeeds then the test | |
2991 | * MSI irq handler will unset this flag */ | |
2992 | adapter->flags |= FLAG_MSI_TEST_FAILED; | |
2993 | ||
2994 | err = pci_enable_msi(adapter->pdev); | |
2995 | if (err) | |
2996 | goto msi_test_failed; | |
2997 | ||
a0607fd3 | 2998 | err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, |
f8d59f78 BA |
2999 | netdev->name, netdev); |
3000 | if (err) { | |
3001 | pci_disable_msi(adapter->pdev); | |
3002 | goto msi_test_failed; | |
3003 | } | |
3004 | ||
3005 | wmb(); | |
3006 | ||
3007 | e1000_irq_enable(adapter); | |
3008 | ||
3009 | /* fire an unusual interrupt on the test handler */ | |
3010 | ew32(ICS, E1000_ICS_RXSEQ); | |
3011 | e1e_flush(); | |
3012 | msleep(50); | |
3013 | ||
3014 | e1000_irq_disable(adapter); | |
3015 | ||
3016 | rmb(); | |
3017 | ||
3018 | if (adapter->flags & FLAG_MSI_TEST_FAILED) { | |
4662e82b | 3019 | adapter->int_mode = E1000E_INT_MODE_LEGACY; |
f8d59f78 BA |
3020 | err = -EIO; |
3021 | e_info("MSI interrupt test failed!\n"); | |
3022 | } | |
3023 | ||
3024 | free_irq(adapter->pdev->irq, netdev); | |
3025 | pci_disable_msi(adapter->pdev); | |
3026 | ||
3027 | if (err == -EIO) | |
3028 | goto msi_test_failed; | |
3029 | ||
3030 | /* okay so the test worked, restore settings */ | |
3bb99fe2 | 3031 | e_dbg("MSI interrupt test succeeded!\n"); |
f8d59f78 | 3032 | msi_test_failed: |
4662e82b | 3033 | e1000e_set_interrupt_capability(adapter); |
f8d59f78 BA |
3034 | e1000_request_irq(adapter); |
3035 | return err; | |
3036 | } | |
3037 | ||
3038 | /** | |
3039 | * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored | |
3040 | * @adapter: board private struct | |
3041 | * | |
3042 | * code flow taken from tg3.c, called with e1000 interrupts disabled. | |
3043 | **/ | |
3044 | static int e1000_test_msi(struct e1000_adapter *adapter) | |
3045 | { | |
3046 | int err; | |
3047 | u16 pci_cmd; | |
3048 | ||
3049 | if (!(adapter->flags & FLAG_MSI_ENABLED)) | |
3050 | return 0; | |
3051 | ||
3052 | /* disable SERR in case the MSI write causes a master abort */ | |
3053 | pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); | |
3054 | pci_write_config_word(adapter->pdev, PCI_COMMAND, | |
3055 | pci_cmd & ~PCI_COMMAND_SERR); | |
3056 | ||
3057 | err = e1000_test_msi_interrupt(adapter); | |
3058 | ||
3059 | /* restore previous setting of command word */ | |
3060 | pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); | |
3061 | ||
3062 | /* success ! */ | |
3063 | if (!err) | |
3064 | return 0; | |
3065 | ||
3066 | /* EIO means MSI test failed */ | |
3067 | if (err != -EIO) | |
3068 | return err; | |
3069 | ||
3070 | /* back to INTx mode */ | |
3071 | e_warn("MSI interrupt test failed, using legacy interrupt.\n"); | |
3072 | ||
3073 | e1000_free_irq(adapter); | |
3074 | ||
3075 | err = e1000_request_irq(adapter); | |
3076 | ||
3077 | return err; | |
3078 | } | |
3079 | ||
bc7f75fa AK |
3080 | /** |
3081 | * e1000_open - Called when a network interface is made active | |
3082 | * @netdev: network interface device structure | |
3083 | * | |
3084 | * Returns 0 on success, negative value on failure | |
3085 | * | |
3086 | * The open entry point is called when a network interface is made | |
3087 | * active by the system (IFF_UP). At this point all resources needed | |
3088 | * for transmit and receive operations are allocated, the interrupt | |
3089 | * handler is registered with the OS, the watchdog timer is started, | |
3090 | * and the stack is notified that the interface is ready. | |
3091 | **/ | |
3092 | static int e1000_open(struct net_device *netdev) | |
3093 | { | |
3094 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
3095 | struct e1000_hw *hw = &adapter->hw; | |
3096 | int err; | |
3097 | ||
3098 | /* disallow open during test */ | |
3099 | if (test_bit(__E1000_TESTING, &adapter->state)) | |
3100 | return -EBUSY; | |
3101 | ||
9c563d20 JB |
3102 | netif_carrier_off(netdev); |
3103 | ||
bc7f75fa AK |
3104 | /* allocate transmit descriptors */ |
3105 | err = e1000e_setup_tx_resources(adapter); | |
3106 | if (err) | |
3107 | goto err_setup_tx; | |
3108 | ||
3109 | /* allocate receive descriptors */ | |
3110 | err = e1000e_setup_rx_resources(adapter); | |
3111 | if (err) | |
3112 | goto err_setup_rx; | |
3113 | ||
3114 | e1000e_power_up_phy(adapter); | |
3115 | ||
3116 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | |
3117 | if ((adapter->hw.mng_cookie.status & | |
3118 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | |
3119 | e1000_update_mng_vlan(adapter); | |
3120 | ||
ad68076e BA |
3121 | /* |
3122 | * If AMT is enabled, let the firmware know that the network | |
3123 | * interface is now open | |
3124 | */ | |
c43bc57e | 3125 | if (adapter->flags & FLAG_HAS_AMT) |
bc7f75fa AK |
3126 | e1000_get_hw_control(adapter); |
3127 | ||
ad68076e BA |
3128 | /* |
3129 | * before we allocate an interrupt, we must be ready to handle it. | |
bc7f75fa AK |
3130 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
3131 | * as soon as we call pci_request_irq, so we have to setup our | |
ad68076e BA |
3132 | * clean_rx handler before we do so. |
3133 | */ | |
bc7f75fa AK |
3134 | e1000_configure(adapter); |
3135 | ||
3136 | err = e1000_request_irq(adapter); | |
3137 | if (err) | |
3138 | goto err_req_irq; | |
3139 | ||
f8d59f78 BA |
3140 | /* |
3141 | * Work around PCIe errata with MSI interrupts causing some chipsets to | |
3142 | * ignore e1000e MSI messages, which means we need to test our MSI | |
3143 | * interrupt now | |
3144 | */ | |
4662e82b | 3145 | if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { |
f8d59f78 BA |
3146 | err = e1000_test_msi(adapter); |
3147 | if (err) { | |
3148 | e_err("Interrupt allocation failed\n"); | |
3149 | goto err_req_irq; | |
3150 | } | |
3151 | } | |
3152 | ||
bc7f75fa AK |
3153 | /* From here on the code is the same as e1000e_up() */ |
3154 | clear_bit(__E1000_DOWN, &adapter->state); | |
3155 | ||
3156 | napi_enable(&adapter->napi); | |
3157 | ||
3158 | e1000_irq_enable(adapter); | |
3159 | ||
4cb9be7a | 3160 | netif_start_queue(netdev); |
d55b53ff | 3161 | |
bc7f75fa AK |
3162 | /* fire a link status change interrupt to start the watchdog */ |
3163 | ew32(ICS, E1000_ICS_LSC); | |
3164 | ||
3165 | return 0; | |
3166 | ||
3167 | err_req_irq: | |
3168 | e1000_release_hw_control(adapter); | |
3169 | e1000_power_down_phy(adapter); | |
3170 | e1000e_free_rx_resources(adapter); | |
3171 | err_setup_rx: | |
3172 | e1000e_free_tx_resources(adapter); | |
3173 | err_setup_tx: | |
3174 | e1000e_reset(adapter); | |
3175 | ||
3176 | return err; | |
3177 | } | |
3178 | ||
3179 | /** | |
3180 | * e1000_close - Disables a network interface | |
3181 | * @netdev: network interface device structure | |
3182 | * | |
3183 | * Returns 0, this is not allowed to fail | |
3184 | * | |
3185 | * The close entry point is called when an interface is de-activated | |
3186 | * by the OS. The hardware is still under the drivers control, but | |
3187 | * needs to be disabled. A global MAC reset is issued to stop the | |
3188 | * hardware, and all transmit and receive resources are freed. | |
3189 | **/ | |
3190 | static int e1000_close(struct net_device *netdev) | |
3191 | { | |
3192 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
3193 | ||
3194 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | |
3195 | e1000e_down(adapter); | |
3196 | e1000_power_down_phy(adapter); | |
3197 | e1000_free_irq(adapter); | |
3198 | ||
3199 | e1000e_free_tx_resources(adapter); | |
3200 | e1000e_free_rx_resources(adapter); | |
3201 | ||
ad68076e BA |
3202 | /* |
3203 | * kill manageability vlan ID if supported, but not if a vlan with | |
3204 | * the same ID is registered on the host OS (let 8021q kill it) | |
3205 | */ | |
bc7f75fa AK |
3206 | if ((adapter->hw.mng_cookie.status & |
3207 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | |
3208 | !(adapter->vlgrp && | |
3209 | vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) | |
3210 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | |
3211 | ||
ad68076e BA |
3212 | /* |
3213 | * If AMT is enabled, let the firmware know that the network | |
3214 | * interface is now closed | |
3215 | */ | |
c43bc57e | 3216 | if (adapter->flags & FLAG_HAS_AMT) |
bc7f75fa AK |
3217 | e1000_release_hw_control(adapter); |
3218 | ||
3219 | return 0; | |
3220 | } | |
3221 | /** | |
3222 | * e1000_set_mac - Change the Ethernet Address of the NIC | |
3223 | * @netdev: network interface device structure | |
3224 | * @p: pointer to an address structure | |
3225 | * | |
3226 | * Returns 0 on success, negative on failure | |
3227 | **/ | |
3228 | static int e1000_set_mac(struct net_device *netdev, void *p) | |
3229 | { | |
3230 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
3231 | struct sockaddr *addr = p; | |
3232 | ||
3233 | if (!is_valid_ether_addr(addr->sa_data)) | |
3234 | return -EADDRNOTAVAIL; | |
3235 | ||
3236 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | |
3237 | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | |
3238 | ||
3239 | e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | |
3240 | ||
3241 | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { | |
3242 | /* activate the work around */ | |
3243 | e1000e_set_laa_state_82571(&adapter->hw, 1); | |
3244 | ||
ad68076e BA |
3245 | /* |
3246 | * Hold a copy of the LAA in RAR[14] This is done so that | |
bc7f75fa AK |
3247 | * between the time RAR[0] gets clobbered and the time it |
3248 | * gets fixed (in e1000_watchdog), the actual LAA is in one | |
3249 | * of the RARs and no incoming packets directed to this port | |
3250 | * are dropped. Eventually the LAA will be in RAR[0] and | |
ad68076e BA |
3251 | * RAR[14] |
3252 | */ | |
bc7f75fa AK |
3253 | e1000e_rar_set(&adapter->hw, |
3254 | adapter->hw.mac.addr, | |
3255 | adapter->hw.mac.rar_entry_count - 1); | |
3256 | } | |
3257 | ||
3258 | return 0; | |
3259 | } | |
3260 | ||
a8f88ff5 JB |
3261 | /** |
3262 | * e1000e_update_phy_task - work thread to update phy | |
3263 | * @work: pointer to our work struct | |
3264 | * | |
3265 | * this worker thread exists because we must acquire a | |
3266 | * semaphore to read the phy, which we could msleep while | |
3267 | * waiting for it, and we can't msleep in a timer. | |
3268 | **/ | |
3269 | static void e1000e_update_phy_task(struct work_struct *work) | |
3270 | { | |
3271 | struct e1000_adapter *adapter = container_of(work, | |
3272 | struct e1000_adapter, update_phy_task); | |
3273 | e1000_get_phy_info(&adapter->hw); | |
3274 | } | |
3275 | ||
ad68076e BA |
3276 | /* |
3277 | * Need to wait a few seconds after link up to get diagnostic information from | |
3278 | * the phy | |
3279 | */ | |
bc7f75fa AK |
3280 | static void e1000_update_phy_info(unsigned long data) |
3281 | { | |
3282 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | |
a8f88ff5 | 3283 | schedule_work(&adapter->update_phy_task); |
bc7f75fa AK |
3284 | } |
3285 | ||
3286 | /** | |
3287 | * e1000e_update_stats - Update the board statistics counters | |
3288 | * @adapter: board private structure | |
3289 | **/ | |
3290 | void e1000e_update_stats(struct e1000_adapter *adapter) | |
3291 | { | |
7274c20f | 3292 | struct net_device *netdev = adapter->netdev; |
bc7f75fa AK |
3293 | struct e1000_hw *hw = &adapter->hw; |
3294 | struct pci_dev *pdev = adapter->pdev; | |
a4f58f54 | 3295 | u16 phy_data; |
bc7f75fa AK |
3296 | |
3297 | /* | |
3298 | * Prevent stats update while adapter is being reset, or if the pci | |
3299 | * connection is down. | |
3300 | */ | |
3301 | if (adapter->link_speed == 0) | |
3302 | return; | |
3303 | if (pci_channel_offline(pdev)) | |
3304 | return; | |
3305 | ||
bc7f75fa AK |
3306 | adapter->stats.crcerrs += er32(CRCERRS); |
3307 | adapter->stats.gprc += er32(GPRC); | |
7c25769f BA |
3308 | adapter->stats.gorc += er32(GORCL); |
3309 | er32(GORCH); /* Clear gorc */ | |
bc7f75fa AK |
3310 | adapter->stats.bprc += er32(BPRC); |
3311 | adapter->stats.mprc += er32(MPRC); | |
3312 | adapter->stats.roc += er32(ROC); | |
3313 | ||
bc7f75fa | 3314 | adapter->stats.mpc += er32(MPC); |
a4f58f54 BA |
3315 | if ((hw->phy.type == e1000_phy_82578) || |
3316 | (hw->phy.type == e1000_phy_82577)) { | |
3317 | e1e_rphy(hw, HV_SCC_UPPER, &phy_data); | |
3318 | e1e_rphy(hw, HV_SCC_LOWER, &phy_data); | |
3319 | adapter->stats.scc += phy_data; | |
3320 | ||
3321 | e1e_rphy(hw, HV_ECOL_UPPER, &phy_data); | |
3322 | e1e_rphy(hw, HV_ECOL_LOWER, &phy_data); | |
3323 | adapter->stats.ecol += phy_data; | |
3324 | ||
3325 | e1e_rphy(hw, HV_MCC_UPPER, &phy_data); | |
3326 | e1e_rphy(hw, HV_MCC_LOWER, &phy_data); | |
3327 | adapter->stats.mcc += phy_data; | |
3328 | ||
3329 | e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data); | |
3330 | e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data); | |
3331 | adapter->stats.latecol += phy_data; | |
3332 | ||
3333 | e1e_rphy(hw, HV_DC_UPPER, &phy_data); | |
3334 | e1e_rphy(hw, HV_DC_LOWER, &phy_data); | |
3335 | adapter->stats.dc += phy_data; | |
3336 | } else { | |
3337 | adapter->stats.scc += er32(SCC); | |
3338 | adapter->stats.ecol += er32(ECOL); | |
3339 | adapter->stats.mcc += er32(MCC); | |
3340 | adapter->stats.latecol += er32(LATECOL); | |
3341 | adapter->stats.dc += er32(DC); | |
3342 | } | |
bc7f75fa AK |
3343 | adapter->stats.xonrxc += er32(XONRXC); |
3344 | adapter->stats.xontxc += er32(XONTXC); | |
3345 | adapter->stats.xoffrxc += er32(XOFFRXC); | |
3346 | adapter->stats.xofftxc += er32(XOFFTXC); | |
bc7f75fa | 3347 | adapter->stats.gptc += er32(GPTC); |
7c25769f BA |
3348 | adapter->stats.gotc += er32(GOTCL); |
3349 | er32(GOTCH); /* Clear gotc */ | |
bc7f75fa AK |
3350 | adapter->stats.rnbc += er32(RNBC); |
3351 | adapter->stats.ruc += er32(RUC); | |
bc7f75fa AK |
3352 | |
3353 | adapter->stats.mptc += er32(MPTC); | |
3354 | adapter->stats.bptc += er32(BPTC); | |
3355 | ||
3356 | /* used for adaptive IFS */ | |
3357 | ||
3358 | hw->mac.tx_packet_delta = er32(TPT); | |
3359 | adapter->stats.tpt += hw->mac.tx_packet_delta; | |
a4f58f54 BA |
3360 | if ((hw->phy.type == e1000_phy_82578) || |
3361 | (hw->phy.type == e1000_phy_82577)) { | |
3362 | e1e_rphy(hw, HV_COLC_UPPER, &phy_data); | |
3363 | e1e_rphy(hw, HV_COLC_LOWER, &phy_data); | |
3364 | hw->mac.collision_delta = phy_data; | |
3365 | } else { | |
3366 | hw->mac.collision_delta = er32(COLC); | |
3367 | } | |
bc7f75fa AK |
3368 | adapter->stats.colc += hw->mac.collision_delta; |
3369 | ||
3370 | adapter->stats.algnerrc += er32(ALGNERRC); | |
3371 | adapter->stats.rxerrc += er32(RXERRC); | |
a4f58f54 BA |
3372 | if ((hw->phy.type == e1000_phy_82578) || |
3373 | (hw->phy.type == e1000_phy_82577)) { | |
3374 | e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data); | |
3375 | e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data); | |
3376 | adapter->stats.tncrs += phy_data; | |
3377 | } else { | |
3378 | if ((hw->mac.type != e1000_82574) && | |
3379 | (hw->mac.type != e1000_82583)) | |
3380 | adapter->stats.tncrs += er32(TNCRS); | |
3381 | } | |
bc7f75fa AK |
3382 | adapter->stats.cexterr += er32(CEXTERR); |
3383 | adapter->stats.tsctc += er32(TSCTC); | |
3384 | adapter->stats.tsctfc += er32(TSCTFC); | |
3385 | ||
bc7f75fa | 3386 | /* Fill out the OS statistics structure */ |
7274c20f AK |
3387 | netdev->stats.multicast = adapter->stats.mprc; |
3388 | netdev->stats.collisions = adapter->stats.colc; | |
bc7f75fa AK |
3389 | |
3390 | /* Rx Errors */ | |
3391 | ||
ad68076e BA |
3392 | /* |
3393 | * RLEC on some newer hardware can be incorrect so build | |
3394 | * our own version based on RUC and ROC | |
3395 | */ | |
7274c20f | 3396 | netdev->stats.rx_errors = adapter->stats.rxerrc + |
bc7f75fa AK |
3397 | adapter->stats.crcerrs + adapter->stats.algnerrc + |
3398 | adapter->stats.ruc + adapter->stats.roc + | |
3399 | adapter->stats.cexterr; | |
7274c20f | 3400 | netdev->stats.rx_length_errors = adapter->stats.ruc + |
bc7f75fa | 3401 | adapter->stats.roc; |
7274c20f AK |
3402 | netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
3403 | netdev->stats.rx_frame_errors = adapter->stats.algnerrc; | |
3404 | netdev->stats.rx_missed_errors = adapter->stats.mpc; | |
bc7f75fa AK |
3405 | |
3406 | /* Tx Errors */ | |
7274c20f | 3407 | netdev->stats.tx_errors = adapter->stats.ecol + |
bc7f75fa | 3408 | adapter->stats.latecol; |
7274c20f AK |
3409 | netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
3410 | netdev->stats.tx_window_errors = adapter->stats.latecol; | |
3411 | netdev->stats.tx_carrier_errors = adapter->stats.tncrs; | |
bc7f75fa AK |
3412 | |
3413 | /* Tx Dropped needs to be maintained elsewhere */ | |
3414 | ||
bc7f75fa AK |
3415 | /* Management Stats */ |
3416 | adapter->stats.mgptc += er32(MGTPTC); | |
3417 | adapter->stats.mgprc += er32(MGTPRC); | |
3418 | adapter->stats.mgpdc += er32(MGTPDC); | |
bc7f75fa AK |
3419 | } |
3420 | ||
7c25769f BA |
3421 | /** |
3422 | * e1000_phy_read_status - Update the PHY register status snapshot | |
3423 | * @adapter: board private structure | |
3424 | **/ | |
3425 | static void e1000_phy_read_status(struct e1000_adapter *adapter) | |
3426 | { | |
3427 | struct e1000_hw *hw = &adapter->hw; | |
3428 | struct e1000_phy_regs *phy = &adapter->phy_regs; | |
3429 | int ret_val; | |
7c25769f BA |
3430 | |
3431 | if ((er32(STATUS) & E1000_STATUS_LU) && | |
3432 | (adapter->hw.phy.media_type == e1000_media_type_copper)) { | |
3433 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); | |
3434 | ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); | |
3435 | ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); | |
3436 | ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); | |
3437 | ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); | |
3438 | ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); | |
3439 | ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); | |
3440 | ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); | |
3441 | if (ret_val) | |
44defeb3 | 3442 | e_warn("Error reading PHY register\n"); |
7c25769f BA |
3443 | } else { |
3444 | /* | |
3445 | * Do not read PHY registers if link is not up | |
3446 | * Set values to typical power-on defaults | |
3447 | */ | |
3448 | phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); | |
3449 | phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | | |
3450 | BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | | |
3451 | BMSR_ERCAP); | |
3452 | phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | | |
3453 | ADVERTISE_ALL | ADVERTISE_CSMA); | |
3454 | phy->lpa = 0; | |
3455 | phy->expansion = EXPANSION_ENABLENPAGE; | |
3456 | phy->ctrl1000 = ADVERTISE_1000FULL; | |
3457 | phy->stat1000 = 0; | |
3458 | phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); | |
3459 | } | |
7c25769f BA |
3460 | } |
3461 | ||
bc7f75fa AK |
3462 | static void e1000_print_link_info(struct e1000_adapter *adapter) |
3463 | { | |
bc7f75fa AK |
3464 | struct e1000_hw *hw = &adapter->hw; |
3465 | u32 ctrl = er32(CTRL); | |
3466 | ||
8f12fe86 BA |
3467 | /* Link status message must follow this format for user tools */ |
3468 | printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, " | |
3469 | "Flow Control: %s\n", | |
3470 | adapter->netdev->name, | |
44defeb3 JK |
3471 | adapter->link_speed, |
3472 | (adapter->link_duplex == FULL_DUPLEX) ? | |
3473 | "Full Duplex" : "Half Duplex", | |
3474 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? | |
3475 | "RX/TX" : | |
3476 | ((ctrl & E1000_CTRL_RFCE) ? "RX" : | |
3477 | ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); | |
bc7f75fa AK |
3478 | } |
3479 | ||
a20e4cf9 | 3480 | bool e1000_has_link(struct e1000_adapter *adapter) |
318a94d6 JK |
3481 | { |
3482 | struct e1000_hw *hw = &adapter->hw; | |
3483 | bool link_active = 0; | |
3484 | s32 ret_val = 0; | |
3485 | ||
3486 | /* | |
3487 | * get_link_status is set on LSC (link status) interrupt or | |
3488 | * Rx sequence error interrupt. get_link_status will stay | |
3489 | * false until the check_for_link establishes link | |
3490 | * for copper adapters ONLY | |
3491 | */ | |
3492 | switch (hw->phy.media_type) { | |
3493 | case e1000_media_type_copper: | |
3494 | if (hw->mac.get_link_status) { | |
3495 | ret_val = hw->mac.ops.check_for_link(hw); | |
3496 | link_active = !hw->mac.get_link_status; | |
3497 | } else { | |
3498 | link_active = 1; | |
3499 | } | |
3500 | break; | |
3501 | case e1000_media_type_fiber: | |
3502 | ret_val = hw->mac.ops.check_for_link(hw); | |
3503 | link_active = !!(er32(STATUS) & E1000_STATUS_LU); | |
3504 | break; | |
3505 | case e1000_media_type_internal_serdes: | |
3506 | ret_val = hw->mac.ops.check_for_link(hw); | |
3507 | link_active = adapter->hw.mac.serdes_has_link; | |
3508 | break; | |
3509 | default: | |
3510 | case e1000_media_type_unknown: | |
3511 | break; | |
3512 | } | |
3513 | ||
3514 | if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && | |
3515 | (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { | |
3516 | /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ | |
44defeb3 | 3517 | e_info("Gigabit has been disabled, downgrading speed\n"); |
318a94d6 JK |
3518 | } |
3519 | ||
3520 | return link_active; | |
3521 | } | |
3522 | ||
3523 | static void e1000e_enable_receives(struct e1000_adapter *adapter) | |
3524 | { | |
3525 | /* make sure the receive unit is started */ | |
3526 | if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && | |
3527 | (adapter->flags & FLAG_RX_RESTART_NOW)) { | |
3528 | struct e1000_hw *hw = &adapter->hw; | |
3529 | u32 rctl = er32(RCTL); | |
3530 | ew32(RCTL, rctl | E1000_RCTL_EN); | |
3531 | adapter->flags &= ~FLAG_RX_RESTART_NOW; | |
3532 | } | |
3533 | } | |
3534 | ||
bc7f75fa AK |
3535 | /** |
3536 | * e1000_watchdog - Timer Call-back | |
3537 | * @data: pointer to adapter cast into an unsigned long | |
3538 | **/ | |
3539 | static void e1000_watchdog(unsigned long data) | |
3540 | { | |
3541 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | |
3542 | ||
3543 | /* Do the rest outside of interrupt context */ | |
3544 | schedule_work(&adapter->watchdog_task); | |
3545 | ||
3546 | /* TODO: make this use queue_delayed_work() */ | |
3547 | } | |
3548 | ||
3549 | static void e1000_watchdog_task(struct work_struct *work) | |
3550 | { | |
3551 | struct e1000_adapter *adapter = container_of(work, | |
3552 | struct e1000_adapter, watchdog_task); | |
bc7f75fa AK |
3553 | struct net_device *netdev = adapter->netdev; |
3554 | struct e1000_mac_info *mac = &adapter->hw.mac; | |
75eb0fad | 3555 | struct e1000_phy_info *phy = &adapter->hw.phy; |
bc7f75fa AK |
3556 | struct e1000_ring *tx_ring = adapter->tx_ring; |
3557 | struct e1000_hw *hw = &adapter->hw; | |
3558 | u32 link, tctl; | |
bc7f75fa AK |
3559 | int tx_pending = 0; |
3560 | ||
318a94d6 JK |
3561 | link = e1000_has_link(adapter); |
3562 | if ((netif_carrier_ok(netdev)) && link) { | |
3563 | e1000e_enable_receives(adapter); | |
bc7f75fa | 3564 | goto link_up; |
bc7f75fa AK |
3565 | } |
3566 | ||
3567 | if ((e1000e_enable_tx_pkt_filtering(hw)) && | |
3568 | (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) | |
3569 | e1000_update_mng_vlan(adapter); | |
3570 | ||
bc7f75fa AK |
3571 | if (link) { |
3572 | if (!netif_carrier_ok(netdev)) { | |
3573 | bool txb2b = 1; | |
318a94d6 | 3574 | /* update snapshot of PHY registers on LSC */ |
7c25769f | 3575 | e1000_phy_read_status(adapter); |
bc7f75fa AK |
3576 | mac->ops.get_link_up_info(&adapter->hw, |
3577 | &adapter->link_speed, | |
3578 | &adapter->link_duplex); | |
3579 | e1000_print_link_info(adapter); | |
f4187b56 BA |
3580 | /* |
3581 | * On supported PHYs, check for duplex mismatch only | |
3582 | * if link has autonegotiated at 10/100 half | |
3583 | */ | |
3584 | if ((hw->phy.type == e1000_phy_igp_3 || | |
3585 | hw->phy.type == e1000_phy_bm) && | |
3586 | (hw->mac.autoneg == true) && | |
3587 | (adapter->link_speed == SPEED_10 || | |
3588 | adapter->link_speed == SPEED_100) && | |
3589 | (adapter->link_duplex == HALF_DUPLEX)) { | |
3590 | u16 autoneg_exp; | |
3591 | ||
3592 | e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); | |
3593 | ||
3594 | if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) | |
3595 | e_info("Autonegotiated half duplex but" | |
3596 | " link partner cannot autoneg. " | |
3597 | " Try forcing full duplex if " | |
3598 | "link gets many collisions.\n"); | |
3599 | } | |
3600 | ||
ad68076e BA |
3601 | /* |
3602 | * tweak tx_queue_len according to speed/duplex | |
3603 | * and adjust the timeout factor | |
3604 | */ | |
bc7f75fa AK |
3605 | netdev->tx_queue_len = adapter->tx_queue_len; |
3606 | adapter->tx_timeout_factor = 1; | |
3607 | switch (adapter->link_speed) { | |
3608 | case SPEED_10: | |
3609 | txb2b = 0; | |
3610 | netdev->tx_queue_len = 10; | |
10f1b492 | 3611 | adapter->tx_timeout_factor = 16; |
bc7f75fa AK |
3612 | break; |
3613 | case SPEED_100: | |
3614 | txb2b = 0; | |
3615 | netdev->tx_queue_len = 100; | |
4c86e0b9 | 3616 | adapter->tx_timeout_factor = 10; |
bc7f75fa AK |
3617 | break; |
3618 | } | |
3619 | ||
ad68076e BA |
3620 | /* |
3621 | * workaround: re-program speed mode bit after | |
3622 | * link-up event | |
3623 | */ | |
bc7f75fa AK |
3624 | if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && |
3625 | !txb2b) { | |
3626 | u32 tarc0; | |
e9ec2c0f | 3627 | tarc0 = er32(TARC(0)); |
bc7f75fa | 3628 | tarc0 &= ~SPEED_MODE_BIT; |
e9ec2c0f | 3629 | ew32(TARC(0), tarc0); |
bc7f75fa AK |
3630 | } |
3631 | ||
ad68076e BA |
3632 | /* |
3633 | * disable TSO for pcie and 10/100 speeds, to avoid | |
3634 | * some hardware issues | |
3635 | */ | |
bc7f75fa AK |
3636 | if (!(adapter->flags & FLAG_TSO_FORCE)) { |
3637 | switch (adapter->link_speed) { | |
3638 | case SPEED_10: | |
3639 | case SPEED_100: | |
44defeb3 | 3640 | e_info("10/100 speed: disabling TSO\n"); |
bc7f75fa AK |
3641 | netdev->features &= ~NETIF_F_TSO; |
3642 | netdev->features &= ~NETIF_F_TSO6; | |
3643 | break; | |
3644 | case SPEED_1000: | |
3645 | netdev->features |= NETIF_F_TSO; | |
3646 | netdev->features |= NETIF_F_TSO6; | |
3647 | break; | |
3648 | default: | |
3649 | /* oops */ | |
3650 | break; | |
3651 | } | |
3652 | } | |
3653 | ||
ad68076e BA |
3654 | /* |
3655 | * enable transmits in the hardware, need to do this | |
3656 | * after setting TARC(0) | |
3657 | */ | |
bc7f75fa AK |
3658 | tctl = er32(TCTL); |
3659 | tctl |= E1000_TCTL_EN; | |
3660 | ew32(TCTL, tctl); | |
3661 | ||
75eb0fad BA |
3662 | /* |
3663 | * Perform any post-link-up configuration before | |
3664 | * reporting link up. | |
3665 | */ | |
3666 | if (phy->ops.cfg_on_link_up) | |
3667 | phy->ops.cfg_on_link_up(hw); | |
3668 | ||
bc7f75fa | 3669 | netif_carrier_on(netdev); |
bc7f75fa AK |
3670 | |
3671 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
3672 | mod_timer(&adapter->phy_info_timer, | |
3673 | round_jiffies(jiffies + 2 * HZ)); | |
bc7f75fa AK |
3674 | } |
3675 | } else { | |
3676 | if (netif_carrier_ok(netdev)) { | |
3677 | adapter->link_speed = 0; | |
3678 | adapter->link_duplex = 0; | |
8f12fe86 BA |
3679 | /* Link status message must follow this format */ |
3680 | printk(KERN_INFO "e1000e: %s NIC Link is Down\n", | |
3681 | adapter->netdev->name); | |
bc7f75fa | 3682 | netif_carrier_off(netdev); |
bc7f75fa AK |
3683 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
3684 | mod_timer(&adapter->phy_info_timer, | |
3685 | round_jiffies(jiffies + 2 * HZ)); | |
3686 | ||
3687 | if (adapter->flags & FLAG_RX_NEEDS_RESTART) | |
3688 | schedule_work(&adapter->reset_task); | |
3689 | } | |
3690 | } | |
3691 | ||
3692 | link_up: | |
3693 | e1000e_update_stats(adapter); | |
3694 | ||
3695 | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | |
3696 | adapter->tpt_old = adapter->stats.tpt; | |
3697 | mac->collision_delta = adapter->stats.colc - adapter->colc_old; | |
3698 | adapter->colc_old = adapter->stats.colc; | |
3699 | ||
7c25769f BA |
3700 | adapter->gorc = adapter->stats.gorc - adapter->gorc_old; |
3701 | adapter->gorc_old = adapter->stats.gorc; | |
3702 | adapter->gotc = adapter->stats.gotc - adapter->gotc_old; | |
3703 | adapter->gotc_old = adapter->stats.gotc; | |
bc7f75fa AK |
3704 | |
3705 | e1000e_update_adaptive(&adapter->hw); | |
3706 | ||
3707 | if (!netif_carrier_ok(netdev)) { | |
3708 | tx_pending = (e1000_desc_unused(tx_ring) + 1 < | |
3709 | tx_ring->count); | |
3710 | if (tx_pending) { | |
ad68076e BA |
3711 | /* |
3712 | * We've lost link, so the controller stops DMA, | |
bc7f75fa AK |
3713 | * but we've got queued Tx work that's never going |
3714 | * to get done, so reset controller to flush Tx. | |
ad68076e BA |
3715 | * (Do the reset outside of interrupt context). |
3716 | */ | |
bc7f75fa AK |
3717 | adapter->tx_timeout_count++; |
3718 | schedule_work(&adapter->reset_task); | |
c2d5ab49 JB |
3719 | /* return immediately since reset is imminent */ |
3720 | return; | |
bc7f75fa AK |
3721 | } |
3722 | } | |
3723 | ||
ad68076e | 3724 | /* Cause software interrupt to ensure Rx ring is cleaned */ |
4662e82b BA |
3725 | if (adapter->msix_entries) |
3726 | ew32(ICS, adapter->rx_ring->ims_val); | |
3727 | else | |
3728 | ew32(ICS, E1000_ICS_RXDMT0); | |
bc7f75fa AK |
3729 | |
3730 | /* Force detection of hung controller every watchdog period */ | |
3731 | adapter->detect_tx_hung = 1; | |
3732 | ||
ad68076e BA |
3733 | /* |
3734 | * With 82571 controllers, LAA may be overwritten due to controller | |
3735 | * reset from the other port. Set the appropriate LAA in RAR[0] | |
3736 | */ | |
bc7f75fa AK |
3737 | if (e1000e_get_laa_state_82571(hw)) |
3738 | e1000e_rar_set(hw, adapter->hw.mac.addr, 0); | |
3739 | ||
3740 | /* Reset the timer */ | |
3741 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
3742 | mod_timer(&adapter->watchdog_timer, | |
3743 | round_jiffies(jiffies + 2 * HZ)); | |
3744 | } | |
3745 | ||
3746 | #define E1000_TX_FLAGS_CSUM 0x00000001 | |
3747 | #define E1000_TX_FLAGS_VLAN 0x00000002 | |
3748 | #define E1000_TX_FLAGS_TSO 0x00000004 | |
3749 | #define E1000_TX_FLAGS_IPV4 0x00000008 | |
3750 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 | |
3751 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 | |
3752 | ||
3753 | static int e1000_tso(struct e1000_adapter *adapter, | |
3754 | struct sk_buff *skb) | |
3755 | { | |
3756 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
3757 | struct e1000_context_desc *context_desc; | |
3758 | struct e1000_buffer *buffer_info; | |
3759 | unsigned int i; | |
3760 | u32 cmd_length = 0; | |
3761 | u16 ipcse = 0, tucse, mss; | |
3762 | u8 ipcss, ipcso, tucss, tucso, hdr_len; | |
3763 | int err; | |
3764 | ||
3d5e33c9 BA |
3765 | if (!skb_is_gso(skb)) |
3766 | return 0; | |
bc7f75fa | 3767 | |
3d5e33c9 BA |
3768 | if (skb_header_cloned(skb)) { |
3769 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | |
3770 | if (err) | |
3771 | return err; | |
bc7f75fa AK |
3772 | } |
3773 | ||
3d5e33c9 BA |
3774 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
3775 | mss = skb_shinfo(skb)->gso_size; | |
3776 | if (skb->protocol == htons(ETH_P_IP)) { | |
3777 | struct iphdr *iph = ip_hdr(skb); | |
3778 | iph->tot_len = 0; | |
3779 | iph->check = 0; | |
3780 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, | |
3781 | 0, IPPROTO_TCP, 0); | |
3782 | cmd_length = E1000_TXD_CMD_IP; | |
3783 | ipcse = skb_transport_offset(skb) - 1; | |
3784 | } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { | |
3785 | ipv6_hdr(skb)->payload_len = 0; | |
3786 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | |
3787 | &ipv6_hdr(skb)->daddr, | |
3788 | 0, IPPROTO_TCP, 0); | |
3789 | ipcse = 0; | |
3790 | } | |
3791 | ipcss = skb_network_offset(skb); | |
3792 | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | |
3793 | tucss = skb_transport_offset(skb); | |
3794 | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | |
3795 | tucse = 0; | |
3796 | ||
3797 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | |
3798 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | |
3799 | ||
3800 | i = tx_ring->next_to_use; | |
3801 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | |
3802 | buffer_info = &tx_ring->buffer_info[i]; | |
3803 | ||
3804 | context_desc->lower_setup.ip_fields.ipcss = ipcss; | |
3805 | context_desc->lower_setup.ip_fields.ipcso = ipcso; | |
3806 | context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); | |
3807 | context_desc->upper_setup.tcp_fields.tucss = tucss; | |
3808 | context_desc->upper_setup.tcp_fields.tucso = tucso; | |
3809 | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | |
3810 | context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); | |
3811 | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | |
3812 | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | |
3813 | ||
3814 | buffer_info->time_stamp = jiffies; | |
3815 | buffer_info->next_to_watch = i; | |
3816 | ||
3817 | i++; | |
3818 | if (i == tx_ring->count) | |
3819 | i = 0; | |
3820 | tx_ring->next_to_use = i; | |
3821 | ||
3822 | return 1; | |
bc7f75fa AK |
3823 | } |
3824 | ||
3825 | static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) | |
3826 | { | |
3827 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
3828 | struct e1000_context_desc *context_desc; | |
3829 | struct e1000_buffer *buffer_info; | |
3830 | unsigned int i; | |
3831 | u8 css; | |
af807c82 | 3832 | u32 cmd_len = E1000_TXD_CMD_DEXT; |
5f66f208 | 3833 | __be16 protocol; |
bc7f75fa | 3834 | |
af807c82 DG |
3835 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
3836 | return 0; | |
bc7f75fa | 3837 | |
5f66f208 AJ |
3838 | if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) |
3839 | protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; | |
3840 | else | |
3841 | protocol = skb->protocol; | |
3842 | ||
3f518390 | 3843 | switch (protocol) { |
09640e63 | 3844 | case cpu_to_be16(ETH_P_IP): |
af807c82 DG |
3845 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
3846 | cmd_len |= E1000_TXD_CMD_TCP; | |
3847 | break; | |
09640e63 | 3848 | case cpu_to_be16(ETH_P_IPV6): |
af807c82 DG |
3849 | /* XXX not handling all IPV6 headers */ |
3850 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | |
3851 | cmd_len |= E1000_TXD_CMD_TCP; | |
3852 | break; | |
3853 | default: | |
3854 | if (unlikely(net_ratelimit())) | |
5f66f208 AJ |
3855 | e_warn("checksum_partial proto=%x!\n", |
3856 | be16_to_cpu(protocol)); | |
af807c82 | 3857 | break; |
bc7f75fa AK |
3858 | } |
3859 | ||
af807c82 DG |
3860 | css = skb_transport_offset(skb); |
3861 | ||
3862 | i = tx_ring->next_to_use; | |
3863 | buffer_info = &tx_ring->buffer_info[i]; | |
3864 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | |
3865 | ||
3866 | context_desc->lower_setup.ip_config = 0; | |
3867 | context_desc->upper_setup.tcp_fields.tucss = css; | |
3868 | context_desc->upper_setup.tcp_fields.tucso = | |
3869 | css + skb->csum_offset; | |
3870 | context_desc->upper_setup.tcp_fields.tucse = 0; | |
3871 | context_desc->tcp_seg_setup.data = 0; | |
3872 | context_desc->cmd_and_length = cpu_to_le32(cmd_len); | |
3873 | ||
3874 | buffer_info->time_stamp = jiffies; | |
3875 | buffer_info->next_to_watch = i; | |
3876 | ||
3877 | i++; | |
3878 | if (i == tx_ring->count) | |
3879 | i = 0; | |
3880 | tx_ring->next_to_use = i; | |
3881 | ||
3882 | return 1; | |
bc7f75fa AK |
3883 | } |
3884 | ||
3885 | #define E1000_MAX_PER_TXD 8192 | |
3886 | #define E1000_MAX_TXD_PWR 12 | |
3887 | ||
3888 | static int e1000_tx_map(struct e1000_adapter *adapter, | |
3889 | struct sk_buff *skb, unsigned int first, | |
3890 | unsigned int max_per_txd, unsigned int nr_frags, | |
3891 | unsigned int mss) | |
3892 | { | |
3893 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
03b1320d | 3894 | struct pci_dev *pdev = adapter->pdev; |
1b7719c4 | 3895 | struct e1000_buffer *buffer_info; |
8ddc951c | 3896 | unsigned int len = skb_headlen(skb); |
03b1320d | 3897 | unsigned int offset = 0, size, count = 0, i; |
bc7f75fa AK |
3898 | unsigned int f; |
3899 | ||
3900 | i = tx_ring->next_to_use; | |
3901 | ||
3902 | while (len) { | |
1b7719c4 | 3903 | buffer_info = &tx_ring->buffer_info[i]; |
bc7f75fa AK |
3904 | size = min(len, max_per_txd); |
3905 | ||
bc7f75fa | 3906 | buffer_info->length = size; |
bc7f75fa | 3907 | buffer_info->time_stamp = jiffies; |
bc7f75fa | 3908 | buffer_info->next_to_watch = i; |
03b1320d AD |
3909 | buffer_info->dma = pci_map_single(pdev, skb->data + offset, |
3910 | size, PCI_DMA_TODEVICE); | |
3911 | buffer_info->mapped_as_page = false; | |
3912 | if (pci_dma_mapping_error(pdev, buffer_info->dma)) | |
3913 | goto dma_error; | |
bc7f75fa AK |
3914 | |
3915 | len -= size; | |
3916 | offset += size; | |
03b1320d | 3917 | count++; |
1b7719c4 AD |
3918 | |
3919 | if (len) { | |
3920 | i++; | |
3921 | if (i == tx_ring->count) | |
3922 | i = 0; | |
3923 | } | |
bc7f75fa AK |
3924 | } |
3925 | ||
3926 | for (f = 0; f < nr_frags; f++) { | |
3927 | struct skb_frag_struct *frag; | |
3928 | ||
3929 | frag = &skb_shinfo(skb)->frags[f]; | |
3930 | len = frag->size; | |
03b1320d | 3931 | offset = frag->page_offset; |
bc7f75fa AK |
3932 | |
3933 | while (len) { | |
1b7719c4 AD |
3934 | i++; |
3935 | if (i == tx_ring->count) | |
3936 | i = 0; | |
3937 | ||
bc7f75fa AK |
3938 | buffer_info = &tx_ring->buffer_info[i]; |
3939 | size = min(len, max_per_txd); | |
bc7f75fa AK |
3940 | |
3941 | buffer_info->length = size; | |
3942 | buffer_info->time_stamp = jiffies; | |
bc7f75fa | 3943 | buffer_info->next_to_watch = i; |
03b1320d AD |
3944 | buffer_info->dma = pci_map_page(pdev, frag->page, |
3945 | offset, size, | |
3946 | PCI_DMA_TODEVICE); | |
3947 | buffer_info->mapped_as_page = true; | |
3948 | if (pci_dma_mapping_error(pdev, buffer_info->dma)) | |
3949 | goto dma_error; | |
bc7f75fa AK |
3950 | |
3951 | len -= size; | |
3952 | offset += size; | |
3953 | count++; | |
bc7f75fa AK |
3954 | } |
3955 | } | |
3956 | ||
bc7f75fa AK |
3957 | tx_ring->buffer_info[i].skb = skb; |
3958 | tx_ring->buffer_info[first].next_to_watch = i; | |
3959 | ||
3960 | return count; | |
03b1320d AD |
3961 | |
3962 | dma_error: | |
3963 | dev_err(&pdev->dev, "TX DMA map failed\n"); | |
3964 | buffer_info->dma = 0; | |
3965 | count--; | |
3966 | ||
3967 | while (count >= 0) { | |
3968 | count--; | |
3969 | i--; | |
3970 | if (i < 0) | |
3971 | i += tx_ring->count; | |
3972 | buffer_info = &tx_ring->buffer_info[i]; | |
3973 | e1000_put_txbuf(adapter, buffer_info);; | |
3974 | } | |
3975 | ||
3976 | return 0; | |
bc7f75fa AK |
3977 | } |
3978 | ||
3979 | static void e1000_tx_queue(struct e1000_adapter *adapter, | |
3980 | int tx_flags, int count) | |
3981 | { | |
3982 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
3983 | struct e1000_tx_desc *tx_desc = NULL; | |
3984 | struct e1000_buffer *buffer_info; | |
3985 | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | |
3986 | unsigned int i; | |
3987 | ||
3988 | if (tx_flags & E1000_TX_FLAGS_TSO) { | |
3989 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | |
3990 | E1000_TXD_CMD_TSE; | |
3991 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | |
3992 | ||
3993 | if (tx_flags & E1000_TX_FLAGS_IPV4) | |
3994 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | |
3995 | } | |
3996 | ||
3997 | if (tx_flags & E1000_TX_FLAGS_CSUM) { | |
3998 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | |
3999 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | |
4000 | } | |
4001 | ||
4002 | if (tx_flags & E1000_TX_FLAGS_VLAN) { | |
4003 | txd_lower |= E1000_TXD_CMD_VLE; | |
4004 | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | |
4005 | } | |
4006 | ||
4007 | i = tx_ring->next_to_use; | |
4008 | ||
4009 | while (count--) { | |
4010 | buffer_info = &tx_ring->buffer_info[i]; | |
4011 | tx_desc = E1000_TX_DESC(*tx_ring, i); | |
4012 | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | |
4013 | tx_desc->lower.data = | |
4014 | cpu_to_le32(txd_lower | buffer_info->length); | |
4015 | tx_desc->upper.data = cpu_to_le32(txd_upper); | |
4016 | ||
4017 | i++; | |
4018 | if (i == tx_ring->count) | |
4019 | i = 0; | |
4020 | } | |
4021 | ||
4022 | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | |
4023 | ||
ad68076e BA |
4024 | /* |
4025 | * Force memory writes to complete before letting h/w | |
bc7f75fa AK |
4026 | * know there are new descriptors to fetch. (Only |
4027 | * applicable for weak-ordered memory model archs, | |
ad68076e BA |
4028 | * such as IA-64). |
4029 | */ | |
bc7f75fa AK |
4030 | wmb(); |
4031 | ||
4032 | tx_ring->next_to_use = i; | |
4033 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | |
ad68076e BA |
4034 | /* |
4035 | * we need this if more than one processor can write to our tail | |
4036 | * at a time, it synchronizes IO on IA64/Altix systems | |
4037 | */ | |
bc7f75fa AK |
4038 | mmiowb(); |
4039 | } | |
4040 | ||
4041 | #define MINIMUM_DHCP_PACKET_SIZE 282 | |
4042 | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, | |
4043 | struct sk_buff *skb) | |
4044 | { | |
4045 | struct e1000_hw *hw = &adapter->hw; | |
4046 | u16 length, offset; | |
4047 | ||
4048 | if (vlan_tx_tag_present(skb)) { | |
8e95a202 JP |
4049 | if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && |
4050 | (adapter->hw.mng_cookie.status & | |
bc7f75fa AK |
4051 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) |
4052 | return 0; | |
4053 | } | |
4054 | ||
4055 | if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) | |
4056 | return 0; | |
4057 | ||
4058 | if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) | |
4059 | return 0; | |
4060 | ||
4061 | { | |
4062 | const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); | |
4063 | struct udphdr *udp; | |
4064 | ||
4065 | if (ip->protocol != IPPROTO_UDP) | |
4066 | return 0; | |
4067 | ||
4068 | udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); | |
4069 | if (ntohs(udp->dest) != 67) | |
4070 | return 0; | |
4071 | ||
4072 | offset = (u8 *)udp + 8 - skb->data; | |
4073 | length = skb->len - offset; | |
4074 | return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); | |
4075 | } | |
4076 | ||
4077 | return 0; | |
4078 | } | |
4079 | ||
4080 | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | |
4081 | { | |
4082 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4083 | ||
4084 | netif_stop_queue(netdev); | |
ad68076e BA |
4085 | /* |
4086 | * Herbert's original patch had: | |
bc7f75fa | 4087 | * smp_mb__after_netif_stop_queue(); |
ad68076e BA |
4088 | * but since that doesn't exist yet, just open code it. |
4089 | */ | |
bc7f75fa AK |
4090 | smp_mb(); |
4091 | ||
ad68076e BA |
4092 | /* |
4093 | * We need to check again in a case another CPU has just | |
4094 | * made room available. | |
4095 | */ | |
bc7f75fa AK |
4096 | if (e1000_desc_unused(adapter->tx_ring) < size) |
4097 | return -EBUSY; | |
4098 | ||
4099 | /* A reprieve! */ | |
4100 | netif_start_queue(netdev); | |
4101 | ++adapter->restart_queue; | |
4102 | return 0; | |
4103 | } | |
4104 | ||
4105 | static int e1000_maybe_stop_tx(struct net_device *netdev, int size) | |
4106 | { | |
4107 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4108 | ||
4109 | if (e1000_desc_unused(adapter->tx_ring) >= size) | |
4110 | return 0; | |
4111 | return __e1000_maybe_stop_tx(netdev, size); | |
4112 | } | |
4113 | ||
4114 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | |
3b29a56d SH |
4115 | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
4116 | struct net_device *netdev) | |
bc7f75fa AK |
4117 | { |
4118 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4119 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
4120 | unsigned int first; | |
4121 | unsigned int max_per_txd = E1000_MAX_PER_TXD; | |
4122 | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | |
4123 | unsigned int tx_flags = 0; | |
4e6c709c | 4124 | unsigned int len = skb->len - skb->data_len; |
4e6c709c AK |
4125 | unsigned int nr_frags; |
4126 | unsigned int mss; | |
bc7f75fa AK |
4127 | int count = 0; |
4128 | int tso; | |
4129 | unsigned int f; | |
bc7f75fa AK |
4130 | |
4131 | if (test_bit(__E1000_DOWN, &adapter->state)) { | |
4132 | dev_kfree_skb_any(skb); | |
4133 | return NETDEV_TX_OK; | |
4134 | } | |
4135 | ||
4136 | if (skb->len <= 0) { | |
4137 | dev_kfree_skb_any(skb); | |
4138 | return NETDEV_TX_OK; | |
4139 | } | |
4140 | ||
4141 | mss = skb_shinfo(skb)->gso_size; | |
ad68076e BA |
4142 | /* |
4143 | * The controller does a simple calculation to | |
bc7f75fa AK |
4144 | * make sure there is enough room in the FIFO before |
4145 | * initiating the DMA for each buffer. The calc is: | |
4146 | * 4 = ceil(buffer len/mss). To make sure we don't | |
4147 | * overrun the FIFO, adjust the max buffer len if mss | |
ad68076e BA |
4148 | * drops. |
4149 | */ | |
bc7f75fa AK |
4150 | if (mss) { |
4151 | u8 hdr_len; | |
4152 | max_per_txd = min(mss << 2, max_per_txd); | |
4153 | max_txd_pwr = fls(max_per_txd) - 1; | |
4154 | ||
ad68076e BA |
4155 | /* |
4156 | * TSO Workaround for 82571/2/3 Controllers -- if skb->data | |
4157 | * points to just header, pull a few bytes of payload from | |
4158 | * frags into skb->data | |
4159 | */ | |
bc7f75fa | 4160 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
ad68076e BA |
4161 | /* |
4162 | * we do this workaround for ES2LAN, but it is un-necessary, | |
4163 | * avoiding it could save a lot of cycles | |
4164 | */ | |
4e6c709c | 4165 | if (skb->data_len && (hdr_len == len)) { |
bc7f75fa AK |
4166 | unsigned int pull_size; |
4167 | ||
4168 | pull_size = min((unsigned int)4, skb->data_len); | |
4169 | if (!__pskb_pull_tail(skb, pull_size)) { | |
44defeb3 | 4170 | e_err("__pskb_pull_tail failed.\n"); |
bc7f75fa AK |
4171 | dev_kfree_skb_any(skb); |
4172 | return NETDEV_TX_OK; | |
4173 | } | |
4174 | len = skb->len - skb->data_len; | |
4175 | } | |
4176 | } | |
4177 | ||
4178 | /* reserve a descriptor for the offload context */ | |
4179 | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | |
4180 | count++; | |
4181 | count++; | |
4182 | ||
4183 | count += TXD_USE_COUNT(len, max_txd_pwr); | |
4184 | ||
4185 | nr_frags = skb_shinfo(skb)->nr_frags; | |
4186 | for (f = 0; f < nr_frags; f++) | |
4187 | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | |
4188 | max_txd_pwr); | |
4189 | ||
4190 | if (adapter->hw.mac.tx_pkt_filtering) | |
4191 | e1000_transfer_dhcp_info(adapter, skb); | |
4192 | ||
ad68076e BA |
4193 | /* |
4194 | * need: count + 2 desc gap to keep tail from touching | |
4195 | * head, otherwise try next time | |
4196 | */ | |
92af3e95 | 4197 | if (e1000_maybe_stop_tx(netdev, count + 2)) |
bc7f75fa | 4198 | return NETDEV_TX_BUSY; |
bc7f75fa AK |
4199 | |
4200 | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | |
4201 | tx_flags |= E1000_TX_FLAGS_VLAN; | |
4202 | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | |
4203 | } | |
4204 | ||
4205 | first = tx_ring->next_to_use; | |
4206 | ||
4207 | tso = e1000_tso(adapter, skb); | |
4208 | if (tso < 0) { | |
4209 | dev_kfree_skb_any(skb); | |
bc7f75fa AK |
4210 | return NETDEV_TX_OK; |
4211 | } | |
4212 | ||
4213 | if (tso) | |
4214 | tx_flags |= E1000_TX_FLAGS_TSO; | |
4215 | else if (e1000_tx_csum(adapter, skb)) | |
4216 | tx_flags |= E1000_TX_FLAGS_CSUM; | |
4217 | ||
ad68076e BA |
4218 | /* |
4219 | * Old method was to assume IPv4 packet by default if TSO was enabled. | |
bc7f75fa | 4220 | * 82571 hardware supports TSO capabilities for IPv6 as well... |
ad68076e BA |
4221 | * no longer assume, we must. |
4222 | */ | |
bc7f75fa AK |
4223 | if (skb->protocol == htons(ETH_P_IP)) |
4224 | tx_flags |= E1000_TX_FLAGS_IPV4; | |
4225 | ||
1b7719c4 | 4226 | /* if count is 0 then mapping error has occured */ |
bc7f75fa | 4227 | count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); |
1b7719c4 AD |
4228 | if (count) { |
4229 | e1000_tx_queue(adapter, tx_flags, count); | |
1b7719c4 AD |
4230 | /* Make sure there is space in the ring for the next send. */ |
4231 | e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); | |
4232 | ||
4233 | } else { | |
bc7f75fa | 4234 | dev_kfree_skb_any(skb); |
1b7719c4 AD |
4235 | tx_ring->buffer_info[first].time_stamp = 0; |
4236 | tx_ring->next_to_use = first; | |
bc7f75fa AK |
4237 | } |
4238 | ||
bc7f75fa AK |
4239 | return NETDEV_TX_OK; |
4240 | } | |
4241 | ||
4242 | /** | |
4243 | * e1000_tx_timeout - Respond to a Tx Hang | |
4244 | * @netdev: network interface device structure | |
4245 | **/ | |
4246 | static void e1000_tx_timeout(struct net_device *netdev) | |
4247 | { | |
4248 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4249 | ||
4250 | /* Do the reset outside of interrupt context */ | |
4251 | adapter->tx_timeout_count++; | |
4252 | schedule_work(&adapter->reset_task); | |
4253 | } | |
4254 | ||
4255 | static void e1000_reset_task(struct work_struct *work) | |
4256 | { | |
4257 | struct e1000_adapter *adapter; | |
4258 | adapter = container_of(work, struct e1000_adapter, reset_task); | |
4259 | ||
4260 | e1000e_reinit_locked(adapter); | |
4261 | } | |
4262 | ||
4263 | /** | |
4264 | * e1000_get_stats - Get System Network Statistics | |
4265 | * @netdev: network interface device structure | |
4266 | * | |
4267 | * Returns the address of the device statistics structure. | |
4268 | * The statistics are actually updated from the timer callback. | |
4269 | **/ | |
4270 | static struct net_device_stats *e1000_get_stats(struct net_device *netdev) | |
4271 | { | |
bc7f75fa | 4272 | /* only return the current stats */ |
7274c20f | 4273 | return &netdev->stats; |
bc7f75fa AK |
4274 | } |
4275 | ||
4276 | /** | |
4277 | * e1000_change_mtu - Change the Maximum Transfer Unit | |
4278 | * @netdev: network interface device structure | |
4279 | * @new_mtu: new value for maximum frame size | |
4280 | * | |
4281 | * Returns 0 on success, negative on failure | |
4282 | **/ | |
4283 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | |
4284 | { | |
4285 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4286 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | |
4287 | ||
2adc55c9 BA |
4288 | /* Jumbo frame support */ |
4289 | if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && | |
4290 | !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | |
4291 | e_err("Jumbo Frames not supported.\n"); | |
bc7f75fa AK |
4292 | return -EINVAL; |
4293 | } | |
4294 | ||
2adc55c9 BA |
4295 | /* Supported frame sizes */ |
4296 | if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || | |
4297 | (max_frame > adapter->max_hw_frame_size)) { | |
4298 | e_err("Unsupported MTU setting\n"); | |
bc7f75fa AK |
4299 | return -EINVAL; |
4300 | } | |
4301 | ||
4302 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | |
4303 | msleep(1); | |
610c9928 | 4304 | /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ |
318a94d6 | 4305 | adapter->max_frame_size = max_frame; |
610c9928 BA |
4306 | e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); |
4307 | netdev->mtu = new_mtu; | |
bc7f75fa AK |
4308 | if (netif_running(netdev)) |
4309 | e1000e_down(adapter); | |
4310 | ||
ad68076e BA |
4311 | /* |
4312 | * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | |
bc7f75fa AK |
4313 | * means we reserve 2 more, this pushes us to allocate from the next |
4314 | * larger slab size. | |
ad68076e | 4315 | * i.e. RXBUFFER_2048 --> size-4096 slab |
97ac8cae BA |
4316 | * However with the new *_jumbo_rx* routines, jumbo receives will use |
4317 | * fragmented skbs | |
ad68076e | 4318 | */ |
bc7f75fa AK |
4319 | |
4320 | if (max_frame <= 256) | |
4321 | adapter->rx_buffer_len = 256; | |
4322 | else if (max_frame <= 512) | |
4323 | adapter->rx_buffer_len = 512; | |
4324 | else if (max_frame <= 1024) | |
4325 | adapter->rx_buffer_len = 1024; | |
4326 | else if (max_frame <= 2048) | |
4327 | adapter->rx_buffer_len = 2048; | |
4328 | else | |
4329 | adapter->rx_buffer_len = 4096; | |
4330 | ||
4331 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | |
4332 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | |
4333 | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | |
4334 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN | |
ad68076e | 4335 | + ETH_FCS_LEN; |
bc7f75fa | 4336 | |
bc7f75fa AK |
4337 | if (netif_running(netdev)) |
4338 | e1000e_up(adapter); | |
4339 | else | |
4340 | e1000e_reset(adapter); | |
4341 | ||
4342 | clear_bit(__E1000_RESETTING, &adapter->state); | |
4343 | ||
4344 | return 0; | |
4345 | } | |
4346 | ||
4347 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | |
4348 | int cmd) | |
4349 | { | |
4350 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4351 | struct mii_ioctl_data *data = if_mii(ifr); | |
bc7f75fa | 4352 | |
318a94d6 | 4353 | if (adapter->hw.phy.media_type != e1000_media_type_copper) |
bc7f75fa AK |
4354 | return -EOPNOTSUPP; |
4355 | ||
4356 | switch (cmd) { | |
4357 | case SIOCGMIIPHY: | |
4358 | data->phy_id = adapter->hw.phy.addr; | |
4359 | break; | |
4360 | case SIOCGMIIREG: | |
b16a002e BA |
4361 | e1000_phy_read_status(adapter); |
4362 | ||
7c25769f BA |
4363 | switch (data->reg_num & 0x1F) { |
4364 | case MII_BMCR: | |
4365 | data->val_out = adapter->phy_regs.bmcr; | |
4366 | break; | |
4367 | case MII_BMSR: | |
4368 | data->val_out = adapter->phy_regs.bmsr; | |
4369 | break; | |
4370 | case MII_PHYSID1: | |
4371 | data->val_out = (adapter->hw.phy.id >> 16); | |
4372 | break; | |
4373 | case MII_PHYSID2: | |
4374 | data->val_out = (adapter->hw.phy.id & 0xFFFF); | |
4375 | break; | |
4376 | case MII_ADVERTISE: | |
4377 | data->val_out = adapter->phy_regs.advertise; | |
4378 | break; | |
4379 | case MII_LPA: | |
4380 | data->val_out = adapter->phy_regs.lpa; | |
4381 | break; | |
4382 | case MII_EXPANSION: | |
4383 | data->val_out = adapter->phy_regs.expansion; | |
4384 | break; | |
4385 | case MII_CTRL1000: | |
4386 | data->val_out = adapter->phy_regs.ctrl1000; | |
4387 | break; | |
4388 | case MII_STAT1000: | |
4389 | data->val_out = adapter->phy_regs.stat1000; | |
4390 | break; | |
4391 | case MII_ESTATUS: | |
4392 | data->val_out = adapter->phy_regs.estatus; | |
4393 | break; | |
4394 | default: | |
bc7f75fa AK |
4395 | return -EIO; |
4396 | } | |
bc7f75fa AK |
4397 | break; |
4398 | case SIOCSMIIREG: | |
4399 | default: | |
4400 | return -EOPNOTSUPP; | |
4401 | } | |
4402 | return 0; | |
4403 | } | |
4404 | ||
4405 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | |
4406 | { | |
4407 | switch (cmd) { | |
4408 | case SIOCGMIIPHY: | |
4409 | case SIOCGMIIREG: | |
4410 | case SIOCSMIIREG: | |
4411 | return e1000_mii_ioctl(netdev, ifr, cmd); | |
4412 | default: | |
4413 | return -EOPNOTSUPP; | |
4414 | } | |
4415 | } | |
4416 | ||
a4f58f54 BA |
4417 | static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) |
4418 | { | |
4419 | struct e1000_hw *hw = &adapter->hw; | |
4420 | u32 i, mac_reg; | |
4421 | u16 phy_reg; | |
4422 | int retval = 0; | |
4423 | ||
4424 | /* copy MAC RARs to PHY RARs */ | |
4425 | for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) { | |
4426 | mac_reg = er32(RAL(i)); | |
4427 | e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF)); | |
4428 | e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF)); | |
4429 | mac_reg = er32(RAH(i)); | |
4430 | e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF)); | |
4431 | e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF)); | |
4432 | } | |
4433 | ||
4434 | /* copy MAC MTA to PHY MTA */ | |
4435 | for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { | |
4436 | mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); | |
4437 | e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF)); | |
4438 | e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF)); | |
4439 | } | |
4440 | ||
4441 | /* configure PHY Rx Control register */ | |
4442 | e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg); | |
4443 | mac_reg = er32(RCTL); | |
4444 | if (mac_reg & E1000_RCTL_UPE) | |
4445 | phy_reg |= BM_RCTL_UPE; | |
4446 | if (mac_reg & E1000_RCTL_MPE) | |
4447 | phy_reg |= BM_RCTL_MPE; | |
4448 | phy_reg &= ~(BM_RCTL_MO_MASK); | |
4449 | if (mac_reg & E1000_RCTL_MO_3) | |
4450 | phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) | |
4451 | << BM_RCTL_MO_SHIFT); | |
4452 | if (mac_reg & E1000_RCTL_BAM) | |
4453 | phy_reg |= BM_RCTL_BAM; | |
4454 | if (mac_reg & E1000_RCTL_PMCF) | |
4455 | phy_reg |= BM_RCTL_PMCF; | |
4456 | mac_reg = er32(CTRL); | |
4457 | if (mac_reg & E1000_CTRL_RFCE) | |
4458 | phy_reg |= BM_RCTL_RFCE; | |
4459 | e1e_wphy(&adapter->hw, BM_RCTL, phy_reg); | |
4460 | ||
4461 | /* enable PHY wakeup in MAC register */ | |
4462 | ew32(WUFC, wufc); | |
4463 | ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); | |
4464 | ||
4465 | /* configure and enable PHY wakeup in PHY registers */ | |
4466 | e1e_wphy(&adapter->hw, BM_WUFC, wufc); | |
4467 | e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); | |
4468 | ||
4469 | /* activate PHY wakeup */ | |
94d8186a | 4470 | retval = hw->phy.ops.acquire(hw); |
a4f58f54 BA |
4471 | if (retval) { |
4472 | e_err("Could not acquire PHY\n"); | |
4473 | return retval; | |
4474 | } | |
4475 | e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, | |
4476 | (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); | |
4477 | retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg); | |
4478 | if (retval) { | |
4479 | e_err("Could not read PHY page 769\n"); | |
4480 | goto out; | |
4481 | } | |
4482 | phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; | |
4483 | retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); | |
4484 | if (retval) | |
4485 | e_err("Could not set PHY Host Wakeup bit\n"); | |
4486 | out: | |
94d8186a | 4487 | hw->phy.ops.release(hw); |
a4f58f54 BA |
4488 | |
4489 | return retval; | |
4490 | } | |
4491 | ||
4f9de721 | 4492 | static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) |
bc7f75fa AK |
4493 | { |
4494 | struct net_device *netdev = pci_get_drvdata(pdev); | |
4495 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4496 | struct e1000_hw *hw = &adapter->hw; | |
4497 | u32 ctrl, ctrl_ext, rctl, status; | |
4498 | u32 wufc = adapter->wol; | |
4499 | int retval = 0; | |
4500 | ||
4501 | netif_device_detach(netdev); | |
4502 | ||
4503 | if (netif_running(netdev)) { | |
4504 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | |
4505 | e1000e_down(adapter); | |
4506 | e1000_free_irq(adapter); | |
4507 | } | |
4662e82b | 4508 | e1000e_reset_interrupt_capability(adapter); |
bc7f75fa AK |
4509 | |
4510 | retval = pci_save_state(pdev); | |
4511 | if (retval) | |
4512 | return retval; | |
4513 | ||
4514 | status = er32(STATUS); | |
4515 | if (status & E1000_STATUS_LU) | |
4516 | wufc &= ~E1000_WUFC_LNKC; | |
4517 | ||
4518 | if (wufc) { | |
4519 | e1000_setup_rctl(adapter); | |
4520 | e1000_set_multi(netdev); | |
4521 | ||
4522 | /* turn on all-multi mode if wake on multicast is enabled */ | |
4523 | if (wufc & E1000_WUFC_MC) { | |
4524 | rctl = er32(RCTL); | |
4525 | rctl |= E1000_RCTL_MPE; | |
4526 | ew32(RCTL, rctl); | |
4527 | } | |
4528 | ||
4529 | ctrl = er32(CTRL); | |
4530 | /* advertise wake from D3Cold */ | |
4531 | #define E1000_CTRL_ADVD3WUC 0x00100000 | |
4532 | /* phy power management enable */ | |
4533 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | |
a4f58f54 BA |
4534 | ctrl |= E1000_CTRL_ADVD3WUC; |
4535 | if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) | |
4536 | ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; | |
bc7f75fa AK |
4537 | ew32(CTRL, ctrl); |
4538 | ||
318a94d6 JK |
4539 | if (adapter->hw.phy.media_type == e1000_media_type_fiber || |
4540 | adapter->hw.phy.media_type == | |
4541 | e1000_media_type_internal_serdes) { | |
bc7f75fa AK |
4542 | /* keep the laser running in D3 */ |
4543 | ctrl_ext = er32(CTRL_EXT); | |
93a23f48 | 4544 | ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; |
bc7f75fa AK |
4545 | ew32(CTRL_EXT, ctrl_ext); |
4546 | } | |
4547 | ||
97ac8cae BA |
4548 | if (adapter->flags & FLAG_IS_ICH) |
4549 | e1000e_disable_gig_wol_ich8lan(&adapter->hw); | |
4550 | ||
bc7f75fa AK |
4551 | /* Allow time for pending master requests to run */ |
4552 | e1000e_disable_pcie_master(&adapter->hw); | |
4553 | ||
82776a4b | 4554 | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
a4f58f54 BA |
4555 | /* enable wakeup by the PHY */ |
4556 | retval = e1000_init_phy_wakeup(adapter, wufc); | |
4557 | if (retval) | |
4558 | return retval; | |
4559 | } else { | |
4560 | /* enable wakeup by the MAC */ | |
4561 | ew32(WUFC, wufc); | |
4562 | ew32(WUC, E1000_WUC_PME_EN); | |
4563 | } | |
bc7f75fa AK |
4564 | } else { |
4565 | ew32(WUC, 0); | |
4566 | ew32(WUFC, 0); | |
bc7f75fa AK |
4567 | } |
4568 | ||
4f9de721 RW |
4569 | *enable_wake = !!wufc; |
4570 | ||
bc7f75fa | 4571 | /* make sure adapter isn't asleep if manageability is enabled */ |
82776a4b BA |
4572 | if ((adapter->flags & FLAG_MNG_PT_ENABLED) || |
4573 | (hw->mac.ops.check_mng_mode(hw))) | |
4f9de721 | 4574 | *enable_wake = true; |
bc7f75fa AK |
4575 | |
4576 | if (adapter->hw.phy.type == e1000_phy_igp_3) | |
4577 | e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); | |
4578 | ||
ad68076e BA |
4579 | /* |
4580 | * Release control of h/w to f/w. If f/w is AMT enabled, this | |
4581 | * would have already happened in close and is redundant. | |
4582 | */ | |
bc7f75fa AK |
4583 | e1000_release_hw_control(adapter); |
4584 | ||
4585 | pci_disable_device(pdev); | |
4586 | ||
4f9de721 RW |
4587 | return 0; |
4588 | } | |
4589 | ||
4590 | static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake) | |
4591 | { | |
4592 | if (sleep && wake) { | |
4593 | pci_prepare_to_sleep(pdev); | |
4594 | return; | |
4595 | } | |
4596 | ||
4597 | pci_wake_from_d3(pdev, wake); | |
4598 | pci_set_power_state(pdev, PCI_D3hot); | |
4599 | } | |
4600 | ||
4601 | static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep, | |
4602 | bool wake) | |
4603 | { | |
4604 | struct net_device *netdev = pci_get_drvdata(pdev); | |
4605 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4606 | ||
005cbdfc AD |
4607 | /* |
4608 | * The pci-e switch on some quad port adapters will report a | |
4609 | * correctable error when the MAC transitions from D0 to D3. To | |
4610 | * prevent this we need to mask off the correctable errors on the | |
4611 | * downstream port of the pci-e switch. | |
4612 | */ | |
4613 | if (adapter->flags & FLAG_IS_QUAD_PORT) { | |
4614 | struct pci_dev *us_dev = pdev->bus->self; | |
4615 | int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP); | |
4616 | u16 devctl; | |
4617 | ||
4618 | pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); | |
4619 | pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, | |
4620 | (devctl & ~PCI_EXP_DEVCTL_CERE)); | |
4621 | ||
4f9de721 | 4622 | e1000_power_off(pdev, sleep, wake); |
005cbdfc AD |
4623 | |
4624 | pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); | |
4625 | } else { | |
4f9de721 | 4626 | e1000_power_off(pdev, sleep, wake); |
005cbdfc | 4627 | } |
bc7f75fa AK |
4628 | } |
4629 | ||
1eae4eb2 AK |
4630 | static void e1000e_disable_l1aspm(struct pci_dev *pdev) |
4631 | { | |
4632 | int pos; | |
1eae4eb2 AK |
4633 | u16 val; |
4634 | ||
4635 | /* | |
4636 | * 82573 workaround - disable L1 ASPM on mobile chipsets | |
4637 | * | |
4638 | * L1 ASPM on various mobile (ich7) chipsets do not behave properly | |
4639 | * resulting in lost data or garbage information on the pci-e link | |
4640 | * level. This could result in (false) bad EEPROM checksum errors, | |
4641 | * long ping times (up to 2s) or even a system freeze/hang. | |
4642 | * | |
4643 | * Unfortunately this feature saves about 1W power consumption when | |
4644 | * active. | |
4645 | */ | |
4646 | pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); | |
1eae4eb2 AK |
4647 | pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val); |
4648 | if (val & 0x2) { | |
4649 | dev_warn(&pdev->dev, "Disabling L1 ASPM\n"); | |
4650 | val &= ~0x2; | |
4651 | pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val); | |
4652 | } | |
4653 | } | |
4654 | ||
bc7f75fa | 4655 | #ifdef CONFIG_PM |
4f9de721 RW |
4656 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
4657 | { | |
4658 | int retval; | |
4659 | bool wake; | |
4660 | ||
4661 | retval = __e1000_shutdown(pdev, &wake); | |
4662 | if (!retval) | |
4663 | e1000_complete_shutdown(pdev, true, wake); | |
4664 | ||
4665 | return retval; | |
4666 | } | |
4667 | ||
bc7f75fa AK |
4668 | static int e1000_resume(struct pci_dev *pdev) |
4669 | { | |
4670 | struct net_device *netdev = pci_get_drvdata(pdev); | |
4671 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4672 | struct e1000_hw *hw = &adapter->hw; | |
4673 | u32 err; | |
4674 | ||
4675 | pci_set_power_state(pdev, PCI_D0); | |
4676 | pci_restore_state(pdev); | |
1eae4eb2 | 4677 | e1000e_disable_l1aspm(pdev); |
6e4f6f6b | 4678 | |
f0f422e5 | 4679 | err = pci_enable_device_mem(pdev); |
bc7f75fa AK |
4680 | if (err) { |
4681 | dev_err(&pdev->dev, | |
4682 | "Cannot enable PCI device from suspend\n"); | |
4683 | return err; | |
4684 | } | |
4685 | ||
4686 | pci_set_master(pdev); | |
4687 | ||
4688 | pci_enable_wake(pdev, PCI_D3hot, 0); | |
4689 | pci_enable_wake(pdev, PCI_D3cold, 0); | |
4690 | ||
4662e82b | 4691 | e1000e_set_interrupt_capability(adapter); |
bc7f75fa AK |
4692 | if (netif_running(netdev)) { |
4693 | err = e1000_request_irq(adapter); | |
4694 | if (err) | |
4695 | return err; | |
4696 | } | |
4697 | ||
4698 | e1000e_power_up_phy(adapter); | |
a4f58f54 BA |
4699 | |
4700 | /* report the system wakeup cause from S3/S4 */ | |
4701 | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { | |
4702 | u16 phy_data; | |
4703 | ||
4704 | e1e_rphy(&adapter->hw, BM_WUS, &phy_data); | |
4705 | if (phy_data) { | |
4706 | e_info("PHY Wakeup cause - %s\n", | |
4707 | phy_data & E1000_WUS_EX ? "Unicast Packet" : | |
4708 | phy_data & E1000_WUS_MC ? "Multicast Packet" : | |
4709 | phy_data & E1000_WUS_BC ? "Broadcast Packet" : | |
4710 | phy_data & E1000_WUS_MAG ? "Magic Packet" : | |
4711 | phy_data & E1000_WUS_LNKC ? "Link Status " | |
4712 | " Change" : "other"); | |
4713 | } | |
4714 | e1e_wphy(&adapter->hw, BM_WUS, ~0); | |
4715 | } else { | |
4716 | u32 wus = er32(WUS); | |
4717 | if (wus) { | |
4718 | e_info("MAC Wakeup cause - %s\n", | |
4719 | wus & E1000_WUS_EX ? "Unicast Packet" : | |
4720 | wus & E1000_WUS_MC ? "Multicast Packet" : | |
4721 | wus & E1000_WUS_BC ? "Broadcast Packet" : | |
4722 | wus & E1000_WUS_MAG ? "Magic Packet" : | |
4723 | wus & E1000_WUS_LNKC ? "Link Status Change" : | |
4724 | "other"); | |
4725 | } | |
4726 | ew32(WUS, ~0); | |
4727 | } | |
4728 | ||
bc7f75fa | 4729 | e1000e_reset(adapter); |
bc7f75fa AK |
4730 | |
4731 | e1000_init_manageability(adapter); | |
4732 | ||
4733 | if (netif_running(netdev)) | |
4734 | e1000e_up(adapter); | |
4735 | ||
4736 | netif_device_attach(netdev); | |
4737 | ||
ad68076e BA |
4738 | /* |
4739 | * If the controller has AMT, do not set DRV_LOAD until the interface | |
bc7f75fa | 4740 | * is up. For all other cases, let the f/w know that the h/w is now |
ad68076e BA |
4741 | * under the control of the driver. |
4742 | */ | |
c43bc57e | 4743 | if (!(adapter->flags & FLAG_HAS_AMT)) |
bc7f75fa AK |
4744 | e1000_get_hw_control(adapter); |
4745 | ||
4746 | return 0; | |
4747 | } | |
4748 | #endif | |
4749 | ||
4750 | static void e1000_shutdown(struct pci_dev *pdev) | |
4751 | { | |
4f9de721 RW |
4752 | bool wake = false; |
4753 | ||
4754 | __e1000_shutdown(pdev, &wake); | |
4755 | ||
4756 | if (system_state == SYSTEM_POWER_OFF) | |
4757 | e1000_complete_shutdown(pdev, false, wake); | |
bc7f75fa AK |
4758 | } |
4759 | ||
4760 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
4761 | /* | |
4762 | * Polling 'interrupt' - used by things like netconsole to send skbs | |
4763 | * without having to re-enable interrupts. It's not called while | |
4764 | * the interrupt routine is executing. | |
4765 | */ | |
4766 | static void e1000_netpoll(struct net_device *netdev) | |
4767 | { | |
4768 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4769 | ||
4770 | disable_irq(adapter->pdev->irq); | |
4771 | e1000_intr(adapter->pdev->irq, netdev); | |
4772 | ||
bc7f75fa AK |
4773 | enable_irq(adapter->pdev->irq); |
4774 | } | |
4775 | #endif | |
4776 | ||
4777 | /** | |
4778 | * e1000_io_error_detected - called when PCI error is detected | |
4779 | * @pdev: Pointer to PCI device | |
4780 | * @state: The current pci connection state | |
4781 | * | |
4782 | * This function is called after a PCI bus error affecting | |
4783 | * this device has been detected. | |
4784 | */ | |
4785 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | |
4786 | pci_channel_state_t state) | |
4787 | { | |
4788 | struct net_device *netdev = pci_get_drvdata(pdev); | |
4789 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4790 | ||
4791 | netif_device_detach(netdev); | |
4792 | ||
c93b5a76 MM |
4793 | if (state == pci_channel_io_perm_failure) |
4794 | return PCI_ERS_RESULT_DISCONNECT; | |
4795 | ||
bc7f75fa AK |
4796 | if (netif_running(netdev)) |
4797 | e1000e_down(adapter); | |
4798 | pci_disable_device(pdev); | |
4799 | ||
4800 | /* Request a slot slot reset. */ | |
4801 | return PCI_ERS_RESULT_NEED_RESET; | |
4802 | } | |
4803 | ||
4804 | /** | |
4805 | * e1000_io_slot_reset - called after the pci bus has been reset. | |
4806 | * @pdev: Pointer to PCI device | |
4807 | * | |
4808 | * Restart the card from scratch, as if from a cold-boot. Implementation | |
4809 | * resembles the first-half of the e1000_resume routine. | |
4810 | */ | |
4811 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | |
4812 | { | |
4813 | struct net_device *netdev = pci_get_drvdata(pdev); | |
4814 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4815 | struct e1000_hw *hw = &adapter->hw; | |
6e4f6f6b | 4816 | int err; |
111b9dc5 | 4817 | pci_ers_result_t result; |
bc7f75fa | 4818 | |
1eae4eb2 | 4819 | e1000e_disable_l1aspm(pdev); |
f0f422e5 | 4820 | err = pci_enable_device_mem(pdev); |
6e4f6f6b | 4821 | if (err) { |
bc7f75fa AK |
4822 | dev_err(&pdev->dev, |
4823 | "Cannot re-enable PCI device after reset.\n"); | |
111b9dc5 JB |
4824 | result = PCI_ERS_RESULT_DISCONNECT; |
4825 | } else { | |
4826 | pci_set_master(pdev); | |
4827 | pci_restore_state(pdev); | |
bc7f75fa | 4828 | |
111b9dc5 JB |
4829 | pci_enable_wake(pdev, PCI_D3hot, 0); |
4830 | pci_enable_wake(pdev, PCI_D3cold, 0); | |
bc7f75fa | 4831 | |
111b9dc5 JB |
4832 | e1000e_reset(adapter); |
4833 | ew32(WUS, ~0); | |
4834 | result = PCI_ERS_RESULT_RECOVERED; | |
4835 | } | |
bc7f75fa | 4836 | |
111b9dc5 JB |
4837 | pci_cleanup_aer_uncorrect_error_status(pdev); |
4838 | ||
4839 | return result; | |
bc7f75fa AK |
4840 | } |
4841 | ||
4842 | /** | |
4843 | * e1000_io_resume - called when traffic can start flowing again. | |
4844 | * @pdev: Pointer to PCI device | |
4845 | * | |
4846 | * This callback is called when the error recovery driver tells us that | |
4847 | * its OK to resume normal operation. Implementation resembles the | |
4848 | * second-half of the e1000_resume routine. | |
4849 | */ | |
4850 | static void e1000_io_resume(struct pci_dev *pdev) | |
4851 | { | |
4852 | struct net_device *netdev = pci_get_drvdata(pdev); | |
4853 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4854 | ||
4855 | e1000_init_manageability(adapter); | |
4856 | ||
4857 | if (netif_running(netdev)) { | |
4858 | if (e1000e_up(adapter)) { | |
4859 | dev_err(&pdev->dev, | |
4860 | "can't bring device back up after reset\n"); | |
4861 | return; | |
4862 | } | |
4863 | } | |
4864 | ||
4865 | netif_device_attach(netdev); | |
4866 | ||
ad68076e BA |
4867 | /* |
4868 | * If the controller has AMT, do not set DRV_LOAD until the interface | |
bc7f75fa | 4869 | * is up. For all other cases, let the f/w know that the h/w is now |
ad68076e BA |
4870 | * under the control of the driver. |
4871 | */ | |
c43bc57e | 4872 | if (!(adapter->flags & FLAG_HAS_AMT)) |
bc7f75fa AK |
4873 | e1000_get_hw_control(adapter); |
4874 | ||
4875 | } | |
4876 | ||
4877 | static void e1000_print_device_info(struct e1000_adapter *adapter) | |
4878 | { | |
4879 | struct e1000_hw *hw = &adapter->hw; | |
4880 | struct net_device *netdev = adapter->netdev; | |
69e3fd8c | 4881 | u32 pba_num; |
bc7f75fa AK |
4882 | |
4883 | /* print bus type/speed/width info */ | |
7c510e4b | 4884 | e_info("(PCI Express:2.5GB/s:%s) %pM\n", |
44defeb3 JK |
4885 | /* bus width */ |
4886 | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | |
4887 | "Width x1"), | |
4888 | /* MAC address */ | |
7c510e4b | 4889 | netdev->dev_addr); |
44defeb3 JK |
4890 | e_info("Intel(R) PRO/%s Network Connection\n", |
4891 | (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); | |
69e3fd8c | 4892 | e1000e_read_pba_num(hw, &pba_num); |
44defeb3 JK |
4893 | e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n", |
4894 | hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff)); | |
bc7f75fa AK |
4895 | } |
4896 | ||
10aa4c04 AK |
4897 | static void e1000_eeprom_checks(struct e1000_adapter *adapter) |
4898 | { | |
4899 | struct e1000_hw *hw = &adapter->hw; | |
4900 | int ret_val; | |
4901 | u16 buf = 0; | |
4902 | ||
4903 | if (hw->mac.type != e1000_82573) | |
4904 | return; | |
4905 | ||
4906 | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); | |
e243455d | 4907 | if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) { |
10aa4c04 | 4908 | /* Deep Smart Power Down (DSPD) */ |
6c2a9efa FP |
4909 | dev_warn(&adapter->pdev->dev, |
4910 | "Warning: detected DSPD enabled in EEPROM\n"); | |
10aa4c04 AK |
4911 | } |
4912 | ||
4913 | ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf); | |
e243455d | 4914 | if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) { |
10aa4c04 | 4915 | /* ASPM enable */ |
6c2a9efa FP |
4916 | dev_warn(&adapter->pdev->dev, |
4917 | "Warning: detected ASPM enabled in EEPROM\n"); | |
10aa4c04 AK |
4918 | } |
4919 | } | |
4920 | ||
651c2466 SH |
4921 | static const struct net_device_ops e1000e_netdev_ops = { |
4922 | .ndo_open = e1000_open, | |
4923 | .ndo_stop = e1000_close, | |
00829823 | 4924 | .ndo_start_xmit = e1000_xmit_frame, |
651c2466 SH |
4925 | .ndo_get_stats = e1000_get_stats, |
4926 | .ndo_set_multicast_list = e1000_set_multi, | |
4927 | .ndo_set_mac_address = e1000_set_mac, | |
4928 | .ndo_change_mtu = e1000_change_mtu, | |
4929 | .ndo_do_ioctl = e1000_ioctl, | |
4930 | .ndo_tx_timeout = e1000_tx_timeout, | |
4931 | .ndo_validate_addr = eth_validate_addr, | |
4932 | ||
4933 | .ndo_vlan_rx_register = e1000_vlan_rx_register, | |
4934 | .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, | |
4935 | .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, | |
4936 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
4937 | .ndo_poll_controller = e1000_netpoll, | |
4938 | #endif | |
4939 | }; | |
4940 | ||
bc7f75fa AK |
4941 | /** |
4942 | * e1000_probe - Device Initialization Routine | |
4943 | * @pdev: PCI device information struct | |
4944 | * @ent: entry in e1000_pci_tbl | |
4945 | * | |
4946 | * Returns 0 on success, negative on failure | |
4947 | * | |
4948 | * e1000_probe initializes an adapter identified by a pci_dev structure. | |
4949 | * The OS initialization, configuring of the adapter private structure, | |
4950 | * and a hardware reset occur. | |
4951 | **/ | |
4952 | static int __devinit e1000_probe(struct pci_dev *pdev, | |
4953 | const struct pci_device_id *ent) | |
4954 | { | |
4955 | struct net_device *netdev; | |
4956 | struct e1000_adapter *adapter; | |
4957 | struct e1000_hw *hw; | |
4958 | const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; | |
f47e81fc BB |
4959 | resource_size_t mmio_start, mmio_len; |
4960 | resource_size_t flash_start, flash_len; | |
bc7f75fa AK |
4961 | |
4962 | static int cards_found; | |
4963 | int i, err, pci_using_dac; | |
4964 | u16 eeprom_data = 0; | |
4965 | u16 eeprom_apme_mask = E1000_EEPROM_APME; | |
4966 | ||
1eae4eb2 | 4967 | e1000e_disable_l1aspm(pdev); |
6e4f6f6b | 4968 | |
f0f422e5 | 4969 | err = pci_enable_device_mem(pdev); |
bc7f75fa AK |
4970 | if (err) |
4971 | return err; | |
4972 | ||
4973 | pci_using_dac = 0; | |
6a35528a | 4974 | err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); |
bc7f75fa | 4975 | if (!err) { |
6a35528a | 4976 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); |
bc7f75fa AK |
4977 | if (!err) |
4978 | pci_using_dac = 1; | |
4979 | } else { | |
284901a9 | 4980 | err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
bc7f75fa AK |
4981 | if (err) { |
4982 | err = pci_set_consistent_dma_mask(pdev, | |
284901a9 | 4983 | DMA_BIT_MASK(32)); |
bc7f75fa AK |
4984 | if (err) { |
4985 | dev_err(&pdev->dev, "No usable DMA " | |
4986 | "configuration, aborting\n"); | |
4987 | goto err_dma; | |
4988 | } | |
4989 | } | |
4990 | } | |
4991 | ||
e8de1481 | 4992 | err = pci_request_selected_regions_exclusive(pdev, |
f0f422e5 BA |
4993 | pci_select_bars(pdev, IORESOURCE_MEM), |
4994 | e1000e_driver_name); | |
bc7f75fa AK |
4995 | if (err) |
4996 | goto err_pci_reg; | |
4997 | ||
68eac460 | 4998 | /* AER (Advanced Error Reporting) hooks */ |
19d5afd4 | 4999 | pci_enable_pcie_error_reporting(pdev); |
68eac460 | 5000 | |
bc7f75fa | 5001 | pci_set_master(pdev); |
438b365a BA |
5002 | /* PCI config space info */ |
5003 | err = pci_save_state(pdev); | |
5004 | if (err) | |
5005 | goto err_alloc_etherdev; | |
bc7f75fa AK |
5006 | |
5007 | err = -ENOMEM; | |
5008 | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | |
5009 | if (!netdev) | |
5010 | goto err_alloc_etherdev; | |
5011 | ||
bc7f75fa AK |
5012 | SET_NETDEV_DEV(netdev, &pdev->dev); |
5013 | ||
5014 | pci_set_drvdata(pdev, netdev); | |
5015 | adapter = netdev_priv(netdev); | |
5016 | hw = &adapter->hw; | |
5017 | adapter->netdev = netdev; | |
5018 | adapter->pdev = pdev; | |
5019 | adapter->ei = ei; | |
5020 | adapter->pba = ei->pba; | |
5021 | adapter->flags = ei->flags; | |
eb7c3adb | 5022 | adapter->flags2 = ei->flags2; |
bc7f75fa AK |
5023 | adapter->hw.adapter = adapter; |
5024 | adapter->hw.mac.type = ei->mac; | |
2adc55c9 | 5025 | adapter->max_hw_frame_size = ei->max_hw_frame_size; |
bc7f75fa AK |
5026 | adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; |
5027 | ||
5028 | mmio_start = pci_resource_start(pdev, 0); | |
5029 | mmio_len = pci_resource_len(pdev, 0); | |
5030 | ||
5031 | err = -EIO; | |
5032 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | |
5033 | if (!adapter->hw.hw_addr) | |
5034 | goto err_ioremap; | |
5035 | ||
5036 | if ((adapter->flags & FLAG_HAS_FLASH) && | |
5037 | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | |
5038 | flash_start = pci_resource_start(pdev, 1); | |
5039 | flash_len = pci_resource_len(pdev, 1); | |
5040 | adapter->hw.flash_address = ioremap(flash_start, flash_len); | |
5041 | if (!adapter->hw.flash_address) | |
5042 | goto err_flashmap; | |
5043 | } | |
5044 | ||
5045 | /* construct the net_device struct */ | |
651c2466 | 5046 | netdev->netdev_ops = &e1000e_netdev_ops; |
bc7f75fa | 5047 | e1000e_set_ethtool_ops(netdev); |
bc7f75fa AK |
5048 | netdev->watchdog_timeo = 5 * HZ; |
5049 | netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | |
bc7f75fa AK |
5050 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
5051 | ||
5052 | netdev->mem_start = mmio_start; | |
5053 | netdev->mem_end = mmio_start + mmio_len; | |
5054 | ||
5055 | adapter->bd_number = cards_found++; | |
5056 | ||
4662e82b BA |
5057 | e1000e_check_options(adapter); |
5058 | ||
bc7f75fa AK |
5059 | /* setup adapter struct */ |
5060 | err = e1000_sw_init(adapter); | |
5061 | if (err) | |
5062 | goto err_sw_init; | |
5063 | ||
5064 | err = -EIO; | |
5065 | ||
5066 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | |
5067 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | |
5068 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | |
5069 | ||
69e3fd8c | 5070 | err = ei->get_variants(adapter); |
bc7f75fa AK |
5071 | if (err) |
5072 | goto err_hw_init; | |
5073 | ||
4a770358 BA |
5074 | if ((adapter->flags & FLAG_IS_ICH) && |
5075 | (adapter->flags & FLAG_READ_ONLY_NVM)) | |
5076 | e1000e_write_protect_nvm_ich8lan(&adapter->hw); | |
5077 | ||
bc7f75fa AK |
5078 | hw->mac.ops.get_bus_info(&adapter->hw); |
5079 | ||
318a94d6 | 5080 | adapter->hw.phy.autoneg_wait_to_complete = 0; |
bc7f75fa AK |
5081 | |
5082 | /* Copper options */ | |
318a94d6 | 5083 | if (adapter->hw.phy.media_type == e1000_media_type_copper) { |
bc7f75fa AK |
5084 | adapter->hw.phy.mdix = AUTO_ALL_MODES; |
5085 | adapter->hw.phy.disable_polarity_correction = 0; | |
5086 | adapter->hw.phy.ms_type = e1000_ms_hw_default; | |
5087 | } | |
5088 | ||
5089 | if (e1000_check_reset_block(&adapter->hw)) | |
44defeb3 | 5090 | e_info("PHY reset is blocked due to SOL/IDER session.\n"); |
bc7f75fa AK |
5091 | |
5092 | netdev->features = NETIF_F_SG | | |
5093 | NETIF_F_HW_CSUM | | |
5094 | NETIF_F_HW_VLAN_TX | | |
5095 | NETIF_F_HW_VLAN_RX; | |
5096 | ||
5097 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) | |
5098 | netdev->features |= NETIF_F_HW_VLAN_FILTER; | |
5099 | ||
5100 | netdev->features |= NETIF_F_TSO; | |
5101 | netdev->features |= NETIF_F_TSO6; | |
5102 | ||
a5136e23 JK |
5103 | netdev->vlan_features |= NETIF_F_TSO; |
5104 | netdev->vlan_features |= NETIF_F_TSO6; | |
5105 | netdev->vlan_features |= NETIF_F_HW_CSUM; | |
5106 | netdev->vlan_features |= NETIF_F_SG; | |
5107 | ||
bc7f75fa AK |
5108 | if (pci_using_dac) |
5109 | netdev->features |= NETIF_F_HIGHDMA; | |
5110 | ||
bc7f75fa AK |
5111 | if (e1000e_enable_mng_pass_thru(&adapter->hw)) |
5112 | adapter->flags |= FLAG_MNG_PT_ENABLED; | |
5113 | ||
ad68076e BA |
5114 | /* |
5115 | * before reading the NVM, reset the controller to | |
5116 | * put the device in a known good starting state | |
5117 | */ | |
bc7f75fa AK |
5118 | adapter->hw.mac.ops.reset_hw(&adapter->hw); |
5119 | ||
5120 | /* | |
5121 | * systems with ASPM and others may see the checksum fail on the first | |
5122 | * attempt. Let's give it a few tries | |
5123 | */ | |
5124 | for (i = 0;; i++) { | |
5125 | if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) | |
5126 | break; | |
5127 | if (i == 2) { | |
44defeb3 | 5128 | e_err("The NVM Checksum Is Not Valid\n"); |
bc7f75fa AK |
5129 | err = -EIO; |
5130 | goto err_eeprom; | |
5131 | } | |
5132 | } | |
5133 | ||
10aa4c04 AK |
5134 | e1000_eeprom_checks(adapter); |
5135 | ||
bc7f75fa AK |
5136 | /* copy the MAC address out of the NVM */ |
5137 | if (e1000e_read_mac_addr(&adapter->hw)) | |
44defeb3 | 5138 | e_err("NVM Read Error while reading MAC address\n"); |
bc7f75fa AK |
5139 | |
5140 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | |
5141 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | |
5142 | ||
5143 | if (!is_valid_ether_addr(netdev->perm_addr)) { | |
7c510e4b | 5144 | e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); |
bc7f75fa AK |
5145 | err = -EIO; |
5146 | goto err_eeprom; | |
5147 | } | |
5148 | ||
5149 | init_timer(&adapter->watchdog_timer); | |
5150 | adapter->watchdog_timer.function = &e1000_watchdog; | |
5151 | adapter->watchdog_timer.data = (unsigned long) adapter; | |
5152 | ||
5153 | init_timer(&adapter->phy_info_timer); | |
5154 | adapter->phy_info_timer.function = &e1000_update_phy_info; | |
5155 | adapter->phy_info_timer.data = (unsigned long) adapter; | |
5156 | ||
5157 | INIT_WORK(&adapter->reset_task, e1000_reset_task); | |
5158 | INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); | |
a8f88ff5 JB |
5159 | INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); |
5160 | INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); | |
41cec6f1 | 5161 | INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); |
bc7f75fa | 5162 | |
bc7f75fa AK |
5163 | /* Initialize link parameters. User can change them with ethtool */ |
5164 | adapter->hw.mac.autoneg = 1; | |
309af40b | 5165 | adapter->fc_autoneg = 1; |
5c48ef3e BA |
5166 | adapter->hw.fc.requested_mode = e1000_fc_default; |
5167 | adapter->hw.fc.current_mode = e1000_fc_default; | |
bc7f75fa AK |
5168 | adapter->hw.phy.autoneg_advertised = 0x2f; |
5169 | ||
5170 | /* ring size defaults */ | |
5171 | adapter->rx_ring->count = 256; | |
5172 | adapter->tx_ring->count = 256; | |
5173 | ||
5174 | /* | |
5175 | * Initial Wake on LAN setting - If APM wake is enabled in | |
5176 | * the EEPROM, enable the ACPI Magic Packet filter | |
5177 | */ | |
5178 | if (adapter->flags & FLAG_APME_IN_WUC) { | |
5179 | /* APME bit in EEPROM is mapped to WUC.APME */ | |
5180 | eeprom_data = er32(WUC); | |
5181 | eeprom_apme_mask = E1000_WUC_APME; | |
a4f58f54 BA |
5182 | if (eeprom_data & E1000_WUC_PHY_WAKE) |
5183 | adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; | |
bc7f75fa AK |
5184 | } else if (adapter->flags & FLAG_APME_IN_CTRL3) { |
5185 | if (adapter->flags & FLAG_APME_CHECK_PORT_B && | |
5186 | (adapter->hw.bus.func == 1)) | |
5187 | e1000_read_nvm(&adapter->hw, | |
5188 | NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | |
5189 | else | |
5190 | e1000_read_nvm(&adapter->hw, | |
5191 | NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | |
5192 | } | |
5193 | ||
5194 | /* fetch WoL from EEPROM */ | |
5195 | if (eeprom_data & eeprom_apme_mask) | |
5196 | adapter->eeprom_wol |= E1000_WUFC_MAG; | |
5197 | ||
5198 | /* | |
5199 | * now that we have the eeprom settings, apply the special cases | |
5200 | * where the eeprom may be wrong or the board simply won't support | |
5201 | * wake on lan on a particular port | |
5202 | */ | |
5203 | if (!(adapter->flags & FLAG_HAS_WOL)) | |
5204 | adapter->eeprom_wol = 0; | |
5205 | ||
5206 | /* initialize the wol settings based on the eeprom settings */ | |
5207 | adapter->wol = adapter->eeprom_wol; | |
6ff68026 | 5208 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
bc7f75fa | 5209 | |
84527590 BA |
5210 | /* save off EEPROM version number */ |
5211 | e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); | |
5212 | ||
bc7f75fa AK |
5213 | /* reset the hardware with the new settings */ |
5214 | e1000e_reset(adapter); | |
5215 | ||
ad68076e BA |
5216 | /* |
5217 | * If the controller has AMT, do not set DRV_LOAD until the interface | |
bc7f75fa | 5218 | * is up. For all other cases, let the f/w know that the h/w is now |
ad68076e BA |
5219 | * under the control of the driver. |
5220 | */ | |
c43bc57e | 5221 | if (!(adapter->flags & FLAG_HAS_AMT)) |
bc7f75fa AK |
5222 | e1000_get_hw_control(adapter); |
5223 | ||
bc7f75fa AK |
5224 | strcpy(netdev->name, "eth%d"); |
5225 | err = register_netdev(netdev); | |
5226 | if (err) | |
5227 | goto err_register; | |
5228 | ||
9c563d20 JB |
5229 | /* carrier off reporting is important to ethtool even BEFORE open */ |
5230 | netif_carrier_off(netdev); | |
5231 | ||
bc7f75fa AK |
5232 | e1000_print_device_info(adapter); |
5233 | ||
5234 | return 0; | |
5235 | ||
5236 | err_register: | |
c43bc57e JB |
5237 | if (!(adapter->flags & FLAG_HAS_AMT)) |
5238 | e1000_release_hw_control(adapter); | |
bc7f75fa AK |
5239 | err_eeprom: |
5240 | if (!e1000_check_reset_block(&adapter->hw)) | |
5241 | e1000_phy_hw_reset(&adapter->hw); | |
c43bc57e | 5242 | err_hw_init: |
bc7f75fa | 5243 | |
bc7f75fa AK |
5244 | kfree(adapter->tx_ring); |
5245 | kfree(adapter->rx_ring); | |
5246 | err_sw_init: | |
c43bc57e JB |
5247 | if (adapter->hw.flash_address) |
5248 | iounmap(adapter->hw.flash_address); | |
e82f54ba | 5249 | e1000e_reset_interrupt_capability(adapter); |
c43bc57e | 5250 | err_flashmap: |
bc7f75fa AK |
5251 | iounmap(adapter->hw.hw_addr); |
5252 | err_ioremap: | |
5253 | free_netdev(netdev); | |
5254 | err_alloc_etherdev: | |
f0f422e5 BA |
5255 | pci_release_selected_regions(pdev, |
5256 | pci_select_bars(pdev, IORESOURCE_MEM)); | |
bc7f75fa AK |
5257 | err_pci_reg: |
5258 | err_dma: | |
5259 | pci_disable_device(pdev); | |
5260 | return err; | |
5261 | } | |
5262 | ||
5263 | /** | |
5264 | * e1000_remove - Device Removal Routine | |
5265 | * @pdev: PCI device information struct | |
5266 | * | |
5267 | * e1000_remove is called by the PCI subsystem to alert the driver | |
5268 | * that it should release a PCI device. The could be caused by a | |
5269 | * Hot-Plug event, or because the driver is going to be removed from | |
5270 | * memory. | |
5271 | **/ | |
5272 | static void __devexit e1000_remove(struct pci_dev *pdev) | |
5273 | { | |
5274 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5275 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5276 | ||
ad68076e BA |
5277 | /* |
5278 | * flush_scheduled work may reschedule our watchdog task, so | |
5279 | * explicitly disable watchdog tasks from being rescheduled | |
5280 | */ | |
bc7f75fa AK |
5281 | set_bit(__E1000_DOWN, &adapter->state); |
5282 | del_timer_sync(&adapter->watchdog_timer); | |
5283 | del_timer_sync(&adapter->phy_info_timer); | |
5284 | ||
41cec6f1 BA |
5285 | cancel_work_sync(&adapter->reset_task); |
5286 | cancel_work_sync(&adapter->watchdog_task); | |
5287 | cancel_work_sync(&adapter->downshift_task); | |
5288 | cancel_work_sync(&adapter->update_phy_task); | |
5289 | cancel_work_sync(&adapter->print_hang_task); | |
bc7f75fa AK |
5290 | flush_scheduled_work(); |
5291 | ||
17f208de BA |
5292 | if (!(netdev->flags & IFF_UP)) |
5293 | e1000_power_down_phy(adapter); | |
5294 | ||
5295 | unregister_netdev(netdev); | |
5296 | ||
ad68076e BA |
5297 | /* |
5298 | * Release control of h/w to f/w. If f/w is AMT enabled, this | |
5299 | * would have already happened in close and is redundant. | |
5300 | */ | |
bc7f75fa AK |
5301 | e1000_release_hw_control(adapter); |
5302 | ||
4662e82b | 5303 | e1000e_reset_interrupt_capability(adapter); |
bc7f75fa AK |
5304 | kfree(adapter->tx_ring); |
5305 | kfree(adapter->rx_ring); | |
5306 | ||
5307 | iounmap(adapter->hw.hw_addr); | |
5308 | if (adapter->hw.flash_address) | |
5309 | iounmap(adapter->hw.flash_address); | |
f0f422e5 BA |
5310 | pci_release_selected_regions(pdev, |
5311 | pci_select_bars(pdev, IORESOURCE_MEM)); | |
bc7f75fa AK |
5312 | |
5313 | free_netdev(netdev); | |
5314 | ||
111b9dc5 | 5315 | /* AER disable */ |
19d5afd4 | 5316 | pci_disable_pcie_error_reporting(pdev); |
111b9dc5 | 5317 | |
bc7f75fa AK |
5318 | pci_disable_device(pdev); |
5319 | } | |
5320 | ||
5321 | /* PCI Error Recovery (ERS) */ | |
5322 | static struct pci_error_handlers e1000_err_handler = { | |
5323 | .error_detected = e1000_io_error_detected, | |
5324 | .slot_reset = e1000_io_slot_reset, | |
5325 | .resume = e1000_io_resume, | |
5326 | }; | |
5327 | ||
5328 | static struct pci_device_id e1000_pci_tbl[] = { | |
bc7f75fa AK |
5329 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, |
5330 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, | |
5331 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, | |
5332 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, | |
5333 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, | |
5334 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, | |
040babf9 AK |
5335 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, |
5336 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, | |
5337 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, | |
ad68076e | 5338 | |
bc7f75fa AK |
5339 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, |
5340 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, | |
5341 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, | |
5342 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, | |
ad68076e | 5343 | |
bc7f75fa AK |
5344 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, |
5345 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, | |
5346 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, | |
ad68076e | 5347 | |
4662e82b | 5348 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, |
bef28b11 | 5349 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, |
8c81c9c3 | 5350 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, |
4662e82b | 5351 | |
bc7f75fa AK |
5352 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), |
5353 | board_80003es2lan }, | |
5354 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), | |
5355 | board_80003es2lan }, | |
5356 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), | |
5357 | board_80003es2lan }, | |
5358 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), | |
5359 | board_80003es2lan }, | |
ad68076e | 5360 | |
bc7f75fa AK |
5361 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, |
5362 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, | |
5363 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, | |
5364 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, | |
5365 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, | |
5366 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, | |
5367 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, | |
9e135a2e | 5368 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, |
ad68076e | 5369 | |
bc7f75fa AK |
5370 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, |
5371 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, | |
5372 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, | |
5373 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, | |
5374 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, | |
2f15f9d6 | 5375 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, |
97ac8cae BA |
5376 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, |
5377 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, | |
5378 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, | |
5379 | ||
5380 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, | |
5381 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, | |
5382 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, | |
bc7f75fa | 5383 | |
f4187b56 BA |
5384 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, |
5385 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, | |
5386 | ||
a4f58f54 BA |
5387 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, |
5388 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, | |
5389 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, | |
5390 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, | |
5391 | ||
bc7f75fa AK |
5392 | { } /* terminate list */ |
5393 | }; | |
5394 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | |
5395 | ||
5396 | /* PCI Device API Driver */ | |
5397 | static struct pci_driver e1000_driver = { | |
5398 | .name = e1000e_driver_name, | |
5399 | .id_table = e1000_pci_tbl, | |
5400 | .probe = e1000_probe, | |
5401 | .remove = __devexit_p(e1000_remove), | |
5402 | #ifdef CONFIG_PM | |
ad68076e | 5403 | /* Power Management Hooks */ |
bc7f75fa AK |
5404 | .suspend = e1000_suspend, |
5405 | .resume = e1000_resume, | |
5406 | #endif | |
5407 | .shutdown = e1000_shutdown, | |
5408 | .err_handler = &e1000_err_handler | |
5409 | }; | |
5410 | ||
5411 | /** | |
5412 | * e1000_init_module - Driver Registration Routine | |
5413 | * | |
5414 | * e1000_init_module is the first routine called when the driver is | |
5415 | * loaded. All it does is register with the PCI subsystem. | |
5416 | **/ | |
5417 | static int __init e1000_init_module(void) | |
5418 | { | |
5419 | int ret; | |
5420 | printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", | |
5421 | e1000e_driver_name, e1000e_driver_version); | |
c7e54b1b | 5422 | printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n", |
bc7f75fa AK |
5423 | e1000e_driver_name); |
5424 | ret = pci_register_driver(&e1000_driver); | |
53ec5498 | 5425 | |
bc7f75fa AK |
5426 | return ret; |
5427 | } | |
5428 | module_init(e1000_init_module); | |
5429 | ||
5430 | /** | |
5431 | * e1000_exit_module - Driver Exit Cleanup Routine | |
5432 | * | |
5433 | * e1000_exit_module is called just before the driver is removed | |
5434 | * from memory. | |
5435 | **/ | |
5436 | static void __exit e1000_exit_module(void) | |
5437 | { | |
5438 | pci_unregister_driver(&e1000_driver); | |
5439 | } | |
5440 | module_exit(e1000_exit_module); | |
5441 | ||
5442 | ||
5443 | MODULE_AUTHOR("Intel Corporation, <[email protected]>"); | |
5444 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | |
5445 | MODULE_LICENSE("GPL"); | |
5446 | MODULE_VERSION(DRV_VERSION); | |
5447 | ||
5448 | /* e1000_main.c */ |