]> Git Repo - linux.git/blame - fs/xfs/xfs_inode.c
pstore: Convert internal records to timespec64
[linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d 18#include <linux/log2.h>
f0e28280 19#include <linux/iversion.h>
40ebd81d 20
1da177e4 21#include "xfs.h"
a844f451 22#include "xfs_fs.h"
70a9883c 23#include "xfs_shared.h"
239880ef
DC
24#include "xfs_format.h"
25#include "xfs_log_format.h"
26#include "xfs_trans_resv.h"
1da177e4 27#include "xfs_sb.h"
1da177e4 28#include "xfs_mount.h"
3ab78df2 29#include "xfs_defer.h"
a4fbe6ab 30#include "xfs_inode.h"
57062787 31#include "xfs_da_format.h"
c24b5dfa 32#include "xfs_da_btree.h"
c24b5dfa 33#include "xfs_dir2.h"
a844f451 34#include "xfs_attr_sf.h"
c24b5dfa 35#include "xfs_attr.h"
239880ef
DC
36#include "xfs_trans_space.h"
37#include "xfs_trans.h"
1da177e4 38#include "xfs_buf_item.h"
a844f451 39#include "xfs_inode_item.h"
a844f451
NS
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
68988114 42#include "xfs_bmap_util.h"
e9e899a2 43#include "xfs_errortag.h"
1da177e4 44#include "xfs_error.h"
1da177e4 45#include "xfs_quota.h"
2a82b8be 46#include "xfs_filestream.h"
93848a99 47#include "xfs_cksum.h"
0b1b213f 48#include "xfs_trace.h"
33479e05 49#include "xfs_icache.h"
c24b5dfa 50#include "xfs_symlink.h"
239880ef
DC
51#include "xfs_trans_priv.h"
52#include "xfs_log.h"
a4fbe6ab 53#include "xfs_bmap_btree.h"
aa8968f2 54#include "xfs_reflink.h"
005c5db8 55#include "xfs_dir2_priv.h"
1da177e4 56
1da177e4 57kmem_zone_t *xfs_inode_zone;
1da177e4
LT
58
59/*
8f04c47a 60 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
61 * freed from a file in a single transaction.
62 */
63#define XFS_ITRUNC_MAX_EXTENTS 2
64
54d7b5c1
DC
65STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
66STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
67STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 68
2a0ec1d9
DC
69/*
70 * helper function to extract extent size hint from inode
71 */
72xfs_extlen_t
73xfs_get_extsz_hint(
74 struct xfs_inode *ip)
75{
76 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
77 return ip->i_d.di_extsize;
78 if (XFS_IS_REALTIME_INODE(ip))
79 return ip->i_mount->m_sb.sb_rextsize;
80 return 0;
81}
82
f7ca3522
DW
83/*
84 * Helper function to extract CoW extent size hint from inode.
85 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
86 * return the greater of the two. If the value is zero (automatic),
87 * use the default size.
f7ca3522
DW
88 */
89xfs_extlen_t
90xfs_get_cowextsz_hint(
91 struct xfs_inode *ip)
92{
93 xfs_extlen_t a, b;
94
95 a = 0;
96 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
97 a = ip->i_d.di_cowextsize;
98 b = xfs_get_extsz_hint(ip);
99
e153aa79
DW
100 a = max(a, b);
101 if (a == 0)
102 return XFS_DEFAULT_COWEXTSZ_HINT;
103 return a;
f7ca3522
DW
104}
105
fa96acad 106/*
efa70be1
CH
107 * These two are wrapper routines around the xfs_ilock() routine used to
108 * centralize some grungy code. They are used in places that wish to lock the
109 * inode solely for reading the extents. The reason these places can't just
110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
111 * bringing in of the extents from disk for a file in b-tree format. If the
112 * inode is in b-tree format, then we need to lock the inode exclusively until
113 * the extents are read in. Locking it exclusively all the time would limit
114 * our parallelism unnecessarily, though. What we do instead is check to see
115 * if the extents have been read in yet, and only lock the inode exclusively
116 * if they have not.
fa96acad 117 *
efa70be1 118 * The functions return a value which should be given to the corresponding
01f4f327 119 * xfs_iunlock() call.
fa96acad
DC
120 */
121uint
309ecac8
CH
122xfs_ilock_data_map_shared(
123 struct xfs_inode *ip)
fa96acad 124{
309ecac8 125 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 126
309ecac8
CH
127 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
128 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 129 lock_mode = XFS_ILOCK_EXCL;
fa96acad 130 xfs_ilock(ip, lock_mode);
fa96acad
DC
131 return lock_mode;
132}
133
efa70be1
CH
134uint
135xfs_ilock_attr_map_shared(
136 struct xfs_inode *ip)
fa96acad 137{
efa70be1
CH
138 uint lock_mode = XFS_ILOCK_SHARED;
139
140 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
141 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
142 lock_mode = XFS_ILOCK_EXCL;
143 xfs_ilock(ip, lock_mode);
144 return lock_mode;
fa96acad
DC
145}
146
147/*
65523218
CH
148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
149 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
150 * various combinations of the locks to be obtained.
fa96acad 151 *
653c60b6
DC
152 * The 3 locks should always be ordered so that the IO lock is obtained first,
153 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 154 *
653c60b6
DC
155 * Basic locking order:
156 *
65523218 157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6
DC
158 *
159 * mmap_sem locking order:
160 *
65523218 161 * i_rwsem -> page lock -> mmap_sem
653c60b6
DC
162 * mmap_sem -> i_mmap_lock -> page_lock
163 *
164 * The difference in mmap_sem locking order mean that we cannot hold the
165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
167 * in get_user_pages() to map the user pages into the kernel address space for
65523218 168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
653c60b6
DC
169 * page faults already hold the mmap_sem.
170 *
171 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
173 * taken in places where we need to invalidate the page cache in a race
174 * free manner (e.g. truncate, hole punch and other extent manipulation
175 * functions).
fa96acad
DC
176 */
177void
178xfs_ilock(
179 xfs_inode_t *ip,
180 uint lock_flags)
181{
182 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
183
184 /*
185 * You can't set both SHARED and EXCL for the same lock,
186 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
187 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
188 */
189 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
190 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
191 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
192 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
193 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
194 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 195 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 196
65523218
CH
197 if (lock_flags & XFS_IOLOCK_EXCL) {
198 down_write_nested(&VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 } else if (lock_flags & XFS_IOLOCK_SHARED) {
201 down_read_nested(&VFS_I(ip)->i_rwsem,
202 XFS_IOLOCK_DEP(lock_flags));
203 }
fa96acad 204
653c60b6
DC
205 if (lock_flags & XFS_MMAPLOCK_EXCL)
206 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
207 else if (lock_flags & XFS_MMAPLOCK_SHARED)
208 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
209
fa96acad
DC
210 if (lock_flags & XFS_ILOCK_EXCL)
211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 else if (lock_flags & XFS_ILOCK_SHARED)
213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214}
215
216/*
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep. It returns 1 if it gets
219 * the requested locks and 0 otherwise. If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
222 *
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 * to be locked. See the comment for xfs_ilock() for a list
226 * of valid values.
227 */
228int
229xfs_ilock_nowait(
230 xfs_inode_t *ip,
231 uint lock_flags)
232{
233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234
235 /*
236 * You can't set both SHARED and EXCL for the same lock,
237 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
238 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
239 */
240 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
241 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
242 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
243 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
244 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
245 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 246 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
247
248 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 249 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
250 goto out;
251 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 252 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
253 goto out;
254 }
653c60b6
DC
255
256 if (lock_flags & XFS_MMAPLOCK_EXCL) {
257 if (!mrtryupdate(&ip->i_mmaplock))
258 goto out_undo_iolock;
259 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
260 if (!mrtryaccess(&ip->i_mmaplock))
261 goto out_undo_iolock;
262 }
263
fa96acad
DC
264 if (lock_flags & XFS_ILOCK_EXCL) {
265 if (!mrtryupdate(&ip->i_lock))
653c60b6 266 goto out_undo_mmaplock;
fa96acad
DC
267 } else if (lock_flags & XFS_ILOCK_SHARED) {
268 if (!mrtryaccess(&ip->i_lock))
653c60b6 269 goto out_undo_mmaplock;
fa96acad
DC
270 }
271 return 1;
272
653c60b6
DC
273out_undo_mmaplock:
274 if (lock_flags & XFS_MMAPLOCK_EXCL)
275 mrunlock_excl(&ip->i_mmaplock);
276 else if (lock_flags & XFS_MMAPLOCK_SHARED)
277 mrunlock_shared(&ip->i_mmaplock);
278out_undo_iolock:
fa96acad 279 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 280 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 281 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 282 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 283out:
fa96acad
DC
284 return 0;
285}
286
287/*
288 * xfs_iunlock() is used to drop the inode locks acquired with
289 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
291 * that we know which locks to drop.
292 *
293 * ip -- the inode being unlocked
294 * lock_flags -- this parameter indicates the inode's locks to be
295 * to be unlocked. See the comment for xfs_ilock() for a list
296 * of valid values for this parameter.
297 *
298 */
299void
300xfs_iunlock(
301 xfs_inode_t *ip,
302 uint lock_flags)
303{
304 /*
305 * You can't set both SHARED and EXCL for the same lock,
306 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
307 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
308 */
309 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
310 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
311 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
312 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
313 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
314 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 315 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
316 ASSERT(lock_flags != 0);
317
318 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 319 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 320 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 321 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 322
653c60b6
DC
323 if (lock_flags & XFS_MMAPLOCK_EXCL)
324 mrunlock_excl(&ip->i_mmaplock);
325 else if (lock_flags & XFS_MMAPLOCK_SHARED)
326 mrunlock_shared(&ip->i_mmaplock);
327
fa96acad
DC
328 if (lock_flags & XFS_ILOCK_EXCL)
329 mrunlock_excl(&ip->i_lock);
330 else if (lock_flags & XFS_ILOCK_SHARED)
331 mrunlock_shared(&ip->i_lock);
332
333 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
334}
335
336/*
337 * give up write locks. the i/o lock cannot be held nested
338 * if it is being demoted.
339 */
340void
341xfs_ilock_demote(
342 xfs_inode_t *ip,
343 uint lock_flags)
344{
653c60b6
DC
345 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
346 ASSERT((lock_flags &
347 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
348
349 if (lock_flags & XFS_ILOCK_EXCL)
350 mrdemote(&ip->i_lock);
653c60b6
DC
351 if (lock_flags & XFS_MMAPLOCK_EXCL)
352 mrdemote(&ip->i_mmaplock);
fa96acad 353 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 354 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
355
356 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
357}
358
742ae1e3 359#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
360int
361xfs_isilocked(
362 xfs_inode_t *ip,
363 uint lock_flags)
364{
365 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
366 if (!(lock_flags & XFS_ILOCK_SHARED))
367 return !!ip->i_lock.mr_writer;
368 return rwsem_is_locked(&ip->i_lock.mr_lock);
369 }
370
653c60b6
DC
371 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
372 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
373 return !!ip->i_mmaplock.mr_writer;
374 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
375 }
376
fa96acad
DC
377 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
378 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
379 return !debug_locks ||
380 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
381 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
382 }
383
384 ASSERT(0);
385 return 0;
386}
387#endif
388
b6a9947e
DC
389/*
390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
393 * errors and warnings.
394 */
395#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
396static bool
397xfs_lockdep_subclass_ok(
398 int subclass)
399{
400 return subclass < MAX_LOCKDEP_SUBCLASSES;
401}
402#else
403#define xfs_lockdep_subclass_ok(subclass) (true)
404#endif
405
c24b5dfa 406/*
653c60b6 407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
408 * value. This can be called for any type of inode lock combination, including
409 * parent locking. Care must be taken to ensure we don't overrun the subclass
410 * storage fields in the class mask we build.
c24b5dfa
DC
411 */
412static inline int
413xfs_lock_inumorder(int lock_mode, int subclass)
414{
0952c818
DC
415 int class = 0;
416
417 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
418 XFS_ILOCK_RTSUM)));
3403ccc0 419 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 420
653c60b6 421 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 422 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 423 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
424 }
425
426 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
427 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
428 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
429 }
430
0952c818
DC
431 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
432 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
433 class += subclass << XFS_ILOCK_SHIFT;
434 }
c24b5dfa 435
0952c818 436 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
437}
438
439/*
95afcf5c
DC
440 * The following routine will lock n inodes in exclusive mode. We assume the
441 * caller calls us with the inodes in i_ino order.
c24b5dfa 442 *
95afcf5c
DC
443 * We need to detect deadlock where an inode that we lock is in the AIL and we
444 * start waiting for another inode that is locked by a thread in a long running
445 * transaction (such as truncate). This can result in deadlock since the long
446 * running trans might need to wait for the inode we just locked in order to
447 * push the tail and free space in the log.
0952c818
DC
448 *
449 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
451 * lock more than one at a time, lockdep will report false positives saying we
452 * have violated locking orders.
c24b5dfa 453 */
0d5a75e9 454static void
c24b5dfa
DC
455xfs_lock_inodes(
456 xfs_inode_t **ips,
457 int inodes,
458 uint lock_mode)
459{
460 int attempts = 0, i, j, try_lock;
461 xfs_log_item_t *lp;
462
0952c818
DC
463 /*
464 * Currently supports between 2 and 5 inodes with exclusive locking. We
465 * support an arbitrary depth of locking here, but absolute limits on
466 * inodes depend on the the type of locking and the limits placed by
467 * lockdep annotations in xfs_lock_inumorder. These are all checked by
468 * the asserts.
469 */
95afcf5c 470 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
471 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
472 XFS_ILOCK_EXCL));
473 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
474 XFS_ILOCK_SHARED)));
0952c818
DC
475 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
476 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
477 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
478 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
479
480 if (lock_mode & XFS_IOLOCK_EXCL) {
481 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
482 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
484
485 try_lock = 0;
486 i = 0;
c24b5dfa
DC
487again:
488 for (; i < inodes; i++) {
489 ASSERT(ips[i]);
490
95afcf5c 491 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
492 continue;
493
494 /*
95afcf5c
DC
495 * If try_lock is not set yet, make sure all locked inodes are
496 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 497 */
c24b5dfa
DC
498 if (!try_lock) {
499 for (j = (i - 1); j >= 0 && !try_lock; j--) {
500 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 501 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 502 try_lock++;
c24b5dfa
DC
503 }
504 }
505
506 /*
507 * If any of the previous locks we have locked is in the AIL,
508 * we must TRY to get the second and subsequent locks. If
509 * we can't get any, we must release all we have
510 * and try again.
511 */
95afcf5c
DC
512 if (!try_lock) {
513 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
514 continue;
515 }
516
517 /* try_lock means we have an inode locked that is in the AIL. */
518 ASSERT(i != 0);
519 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
520 continue;
c24b5dfa 521
95afcf5c
DC
522 /*
523 * Unlock all previous guys and try again. xfs_iunlock will try
524 * to push the tail if the inode is in the AIL.
525 */
526 attempts++;
527 for (j = i - 1; j >= 0; j--) {
c24b5dfa 528 /*
95afcf5c
DC
529 * Check to see if we've already unlocked this one. Not
530 * the first one going back, and the inode ptr is the
531 * same.
c24b5dfa 532 */
95afcf5c
DC
533 if (j != (i - 1) && ips[j] == ips[j + 1])
534 continue;
c24b5dfa 535
95afcf5c
DC
536 xfs_iunlock(ips[j], lock_mode);
537 }
c24b5dfa 538
95afcf5c
DC
539 if ((attempts % 5) == 0) {
540 delay(1); /* Don't just spin the CPU */
c24b5dfa 541 }
95afcf5c
DC
542 i = 0;
543 try_lock = 0;
544 goto again;
c24b5dfa 545 }
c24b5dfa
DC
546}
547
548/*
653c60b6 549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
7c2d238a
DW
550 * the mmaplock or the ilock, but not more than one type at a time. If we lock
551 * more than one at a time, lockdep will report false positives saying we have
552 * violated locking orders. The iolock must be double-locked separately since
553 * we use i_rwsem for that. We now support taking one lock EXCL and the other
554 * SHARED.
c24b5dfa
DC
555 */
556void
557xfs_lock_two_inodes(
7c2d238a
DW
558 struct xfs_inode *ip0,
559 uint ip0_mode,
560 struct xfs_inode *ip1,
561 uint ip1_mode)
c24b5dfa 562{
7c2d238a
DW
563 struct xfs_inode *temp;
564 uint mode_temp;
c24b5dfa
DC
565 int attempts = 0;
566 xfs_log_item_t *lp;
567
7c2d238a
DW
568 ASSERT(hweight32(ip0_mode) == 1);
569 ASSERT(hweight32(ip1_mode) == 1);
570 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
571 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
572 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
573 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
574 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
575 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
576 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
577 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
578 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
579 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
653c60b6 580
c24b5dfa
DC
581 ASSERT(ip0->i_ino != ip1->i_ino);
582
583 if (ip0->i_ino > ip1->i_ino) {
584 temp = ip0;
585 ip0 = ip1;
586 ip1 = temp;
7c2d238a
DW
587 mode_temp = ip0_mode;
588 ip0_mode = ip1_mode;
589 ip1_mode = mode_temp;
c24b5dfa
DC
590 }
591
592 again:
7c2d238a 593 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
c24b5dfa
DC
594
595 /*
596 * If the first lock we have locked is in the AIL, we must TRY to get
597 * the second lock. If we can't get it, we must release the first one
598 * and try again.
599 */
600 lp = (xfs_log_item_t *)ip0->i_itemp;
601 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
7c2d238a
DW
602 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
603 xfs_iunlock(ip0, ip0_mode);
c24b5dfa
DC
604 if ((++attempts % 5) == 0)
605 delay(1); /* Don't just spin the CPU */
606 goto again;
607 }
608 } else {
7c2d238a 609 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
c24b5dfa
DC
610 }
611}
612
fa96acad
DC
613void
614__xfs_iflock(
615 struct xfs_inode *ip)
616{
617 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
618 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
619
620 do {
21417136 621 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
fa96acad
DC
622 if (xfs_isiflocked(ip))
623 io_schedule();
624 } while (!xfs_iflock_nowait(ip));
625
21417136 626 finish_wait(wq, &wait.wq_entry);
fa96acad
DC
627}
628
1da177e4
LT
629STATIC uint
630_xfs_dic2xflags(
c8ce540d 631 uint16_t di_flags,
58f88ca2
DC
632 uint64_t di_flags2,
633 bool has_attr)
1da177e4
LT
634{
635 uint flags = 0;
636
637 if (di_flags & XFS_DIFLAG_ANY) {
638 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 639 flags |= FS_XFLAG_REALTIME;
1da177e4 640 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 641 flags |= FS_XFLAG_PREALLOC;
1da177e4 642 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 643 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 644 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 645 flags |= FS_XFLAG_APPEND;
1da177e4 646 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 647 flags |= FS_XFLAG_SYNC;
1da177e4 648 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 649 flags |= FS_XFLAG_NOATIME;
1da177e4 650 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 651 flags |= FS_XFLAG_NODUMP;
1da177e4 652 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 653 flags |= FS_XFLAG_RTINHERIT;
1da177e4 654 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 655 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 656 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 657 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 658 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 659 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 660 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 661 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 662 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 663 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 664 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 665 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
666 }
667
58f88ca2
DC
668 if (di_flags2 & XFS_DIFLAG2_ANY) {
669 if (di_flags2 & XFS_DIFLAG2_DAX)
670 flags |= FS_XFLAG_DAX;
f7ca3522
DW
671 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
672 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
673 }
674
675 if (has_attr)
676 flags |= FS_XFLAG_HASATTR;
677
1da177e4
LT
678 return flags;
679}
680
681uint
682xfs_ip2xflags(
58f88ca2 683 struct xfs_inode *ip)
1da177e4 684{
58f88ca2 685 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 686
58f88ca2 687 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
688}
689
c24b5dfa
DC
690/*
691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
692 * is allowed, otherwise it has to be an exact match. If a CI match is found,
693 * ci_name->name will point to a the actual name (caller must free) or
694 * will be set to NULL if an exact match is found.
695 */
696int
697xfs_lookup(
698 xfs_inode_t *dp,
699 struct xfs_name *name,
700 xfs_inode_t **ipp,
701 struct xfs_name *ci_name)
702{
703 xfs_ino_t inum;
704 int error;
c24b5dfa
DC
705
706 trace_xfs_lookup(dp, name);
707
708 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 709 return -EIO;
c24b5dfa 710
c24b5dfa 711 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 712 if (error)
dbad7c99 713 goto out_unlock;
c24b5dfa
DC
714
715 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
716 if (error)
717 goto out_free_name;
718
719 return 0;
720
721out_free_name:
722 if (ci_name)
723 kmem_free(ci_name->name);
dbad7c99 724out_unlock:
c24b5dfa
DC
725 *ipp = NULL;
726 return error;
727}
728
1da177e4
LT
729/*
730 * Allocate an inode on disk and return a copy of its in-core version.
731 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
732 * appropriately within the inode. The uid and gid for the inode are
733 * set according to the contents of the given cred structure.
734 *
735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
736 * has a free inode available, call xfs_iget() to obtain the in-core
737 * version of the allocated inode. Finally, fill in the inode and
738 * log its initial contents. In this case, ialloc_context would be
739 * set to NULL.
1da177e4 740 *
cd856db6
CM
741 * If xfs_dialloc() does not have an available inode, it will replenish
742 * its supply by doing an allocation. Since we can only do one
743 * allocation within a transaction without deadlocks, we must commit
744 * the current transaction before returning the inode itself.
745 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
746 * The caller should then commit the current transaction, start a new
747 * transaction, and call xfs_ialloc() again to actually get the inode.
748 *
749 * To ensure that some other process does not grab the inode that
750 * was allocated during the first call to xfs_ialloc(), this routine
751 * also returns the [locked] bp pointing to the head of the freelist
752 * as ialloc_context. The caller should hold this buffer across
753 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
754 *
755 * If we are allocating quota inodes, we do not have a parent inode
756 * to attach to or associate with (i.e. pip == NULL) because they
757 * are not linked into the directory structure - they are attached
758 * directly to the superblock - and so have no parent.
1da177e4 759 */
0d5a75e9 760static int
1da177e4
LT
761xfs_ialloc(
762 xfs_trans_t *tp,
763 xfs_inode_t *pip,
576b1d67 764 umode_t mode,
31b084ae 765 xfs_nlink_t nlink,
66f36464 766 dev_t rdev,
6743099c 767 prid_t prid,
1da177e4 768 xfs_buf_t **ialloc_context,
1da177e4
LT
769 xfs_inode_t **ipp)
770{
93848a99 771 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
772 xfs_ino_t ino;
773 xfs_inode_t *ip;
1da177e4
LT
774 uint flags;
775 int error;
e076b0f3 776 struct timespec tv;
3987848c 777 struct inode *inode;
1da177e4
LT
778
779 /*
780 * Call the space management code to pick
781 * the on-disk inode to be allocated.
782 */
f59cf5c2 783 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
08358906 784 ialloc_context, &ino);
bf904248 785 if (error)
1da177e4 786 return error;
08358906 787 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
788 *ipp = NULL;
789 return 0;
790 }
791 ASSERT(*ialloc_context == NULL);
792
793 /*
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
797 */
93848a99 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 799 XFS_ILOCK_EXCL, &ip);
bf904248 800 if (error)
1da177e4 801 return error;
1da177e4 802 ASSERT(ip != NULL);
3987848c 803 inode = VFS_I(ip);
1da177e4 804
263997a6
DC
805 /*
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
809 */
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
812
c19b3b05 813 inode->i_mode = mode;
54d7b5c1 814 set_nlink(inode, nlink);
7aab1b28
DE
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
66f36464 817 inode->i_rdev = rdev;
6743099c 818 xfs_set_projid(ip, prid);
1da177e4 819
bd186aa9 820 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 821 ip->i_d.di_gid = pip->i_d.di_gid;
c19b3b05
DC
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
1da177e4
LT
824 }
825
826 /*
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
830 */
831 if ((irix_sgid_inherit) &&
c19b3b05
DC
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
1da177e4
LT
835
836 ip->i_d.di_size = 0;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 839
c2050a45 840 tv = current_time(inode);
3987848c
DC
841 inode->i_mtime = tv;
842 inode->i_atime = tv;
843 inode->i_ctime = tv;
dff35fd4 844
1da177e4
LT
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
93848a99
CH
849
850 if (ip->i_d.di_version == 3) {
f0e28280 851 inode_set_iversion(inode, 1);
93848a99 852 ip->i_d.di_flags2 = 0;
f7ca3522 853 ip->i_d.di_cowextsize = 0;
c8ce540d
DW
854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
93848a99
CH
856 }
857
858
1da177e4
LT
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
861 case S_IFIFO:
862 case S_IFCHR:
863 case S_IFBLK:
864 case S_IFSOCK:
865 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
866 ip->i_df.if_flags = 0;
867 flags |= XFS_ILOG_DEV;
868 break;
869 case S_IFREG:
870 case S_IFDIR:
b11f94d5 871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2 872 uint di_flags = 0;
365ca83d 873
abbede1b 874 if (S_ISDIR(mode)) {
365ca83d
NS
875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 ip->i_d.di_extsize = pip->i_d.di_extsize;
880 }
9336e3a7
DC
881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 883 } else if (S_ISREG(mode)) {
613d7043 884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 885 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 di_flags |= XFS_DIFLAG_EXTSIZE;
888 ip->i_d.di_extsize = pip->i_d.di_extsize;
889 }
1da177e4
LT
890 }
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
892 xfs_inherit_noatime)
365ca83d 893 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
895 xfs_inherit_nodump)
365ca83d 896 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
898 xfs_inherit_sync)
365ca83d 899 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 xfs_inherit_nosymlinks)
365ca83d 902 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 xfs_inherit_nodefrag)
905 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2 908
365ca83d 909 ip->i_d.di_flags |= di_flags;
1da177e4 910 }
f7ca3522
DW
911 if (pip &&
912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 pip->i_d.di_version == 3 &&
914 ip->i_d.di_version == 3) {
56bdf855
LC
915 uint64_t di_flags2 = 0;
916
f7ca3522 917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
56bdf855 918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
920 }
56bdf855
LC
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
923
924 ip->i_d.di_flags2 |= di_flags2;
f7ca3522 925 }
1da177e4
LT
926 /* FALLTHROUGH */
927 case S_IFLNK:
928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 ip->i_df.if_flags = XFS_IFEXTENTS;
930 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
6bdcf26a 931 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
932 break;
933 default:
934 ASSERT(0);
935 }
936 /*
937 * Attribute fork settings for new inode.
938 */
939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 ip->i_d.di_anextents = 0;
941
942 /*
943 * Log the new values stuffed into the inode.
944 */
ddc3415a 945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
946 xfs_trans_log_inode(tp, ip, flags);
947
58c90473 948 /* now that we have an i_mode we can setup the inode structure */
41be8bed 949 xfs_setup_inode(ip);
1da177e4
LT
950
951 *ipp = ip;
952 return 0;
953}
954
e546cb79
DC
955/*
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
960 *
961 * This routine is designed to be called from xfs_create and
962 * xfs_create_dir.
963 *
964 */
965int
966xfs_dir_ialloc(
967 xfs_trans_t **tpp, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t *dp, /* directory within whose allocate
970 the inode. */
971 umode_t mode,
972 xfs_nlink_t nlink,
66f36464 973 dev_t rdev,
e546cb79 974 prid_t prid, /* project id */
c959025e 975 xfs_inode_t **ipp) /* pointer to inode; it will be
e546cb79 976 locked. */
e546cb79
DC
977{
978 xfs_trans_t *tp;
e546cb79
DC
979 xfs_inode_t *ip;
980 xfs_buf_t *ialloc_context = NULL;
981 int code;
e546cb79
DC
982 void *dqinfo;
983 uint tflags;
984
985 tp = *tpp;
986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
987
988 /*
989 * xfs_ialloc will return a pointer to an incore inode if
990 * the Space Manager has an available inode on the free
991 * list. Otherwise, it will do an allocation and replenish
992 * the freelist. Since we can only do one allocation per
993 * transaction without deadlocks, we will need to commit the
994 * current transaction and start a new one. We will then
995 * need to call xfs_ialloc again to get the inode.
996 *
997 * If xfs_ialloc did an allocation to replenish the freelist,
998 * it returns the bp containing the head of the freelist as
999 * ialloc_context. We will hold a lock on it across the
1000 * transaction commit so that no other process can steal
1001 * the inode(s) that we've just allocated.
1002 */
f59cf5c2
CH
1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004 &ip);
e546cb79
DC
1005
1006 /*
1007 * Return an error if we were unable to allocate a new inode.
1008 * This should only happen if we run out of space on disk or
1009 * encounter a disk error.
1010 */
1011 if (code) {
1012 *ipp = NULL;
1013 return code;
1014 }
1015 if (!ialloc_context && !ip) {
1016 *ipp = NULL;
2451337d 1017 return -ENOSPC;
e546cb79
DC
1018 }
1019
1020 /*
1021 * If the AGI buffer is non-NULL, then we were unable to get an
1022 * inode in one operation. We need to commit the current
1023 * transaction and call xfs_ialloc() again. It is guaranteed
1024 * to succeed the second time.
1025 */
1026 if (ialloc_context) {
1027 /*
1028 * Normally, xfs_trans_commit releases all the locks.
1029 * We call bhold to hang on to the ialloc_context across
1030 * the commit. Holding this buffer prevents any other
1031 * processes from doing any allocations in this
1032 * allocation group.
1033 */
1034 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1035
1036 /*
1037 * We want the quota changes to be associated with the next
1038 * transaction, NOT this one. So, detach the dqinfo from this
1039 * and attach it to the next transaction.
1040 */
1041 dqinfo = NULL;
1042 tflags = 0;
1043 if (tp->t_dqinfo) {
1044 dqinfo = (void *)tp->t_dqinfo;
1045 tp->t_dqinfo = NULL;
1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048 }
1049
411350df 1050 code = xfs_trans_roll(&tp);
3d3c8b52 1051
e546cb79
DC
1052 /*
1053 * Re-attach the quota info that we detached from prev trx.
1054 */
1055 if (dqinfo) {
1056 tp->t_dqinfo = dqinfo;
1057 tp->t_flags |= tflags;
1058 }
1059
1060 if (code) {
1061 xfs_buf_relse(ialloc_context);
2e6db6c4 1062 *tpp = tp;
e546cb79
DC
1063 *ipp = NULL;
1064 return code;
1065 }
1066 xfs_trans_bjoin(tp, ialloc_context);
1067
1068 /*
1069 * Call ialloc again. Since we've locked out all
1070 * other allocations in this allocation group,
1071 * this call should always succeed.
1072 */
1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
f59cf5c2 1074 &ialloc_context, &ip);
e546cb79
DC
1075
1076 /*
1077 * If we get an error at this point, return to the caller
1078 * so that the current transaction can be aborted.
1079 */
1080 if (code) {
1081 *tpp = tp;
1082 *ipp = NULL;
1083 return code;
1084 }
1085 ASSERT(!ialloc_context && ip);
1086
e546cb79
DC
1087 }
1088
1089 *ipp = ip;
1090 *tpp = tp;
1091
1092 return 0;
1093}
1094
1095/*
54d7b5c1
DC
1096 * Decrement the link count on an inode & log the change. If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1099 */
0d5a75e9 1100static int /* error */
e546cb79
DC
1101xfs_droplink(
1102 xfs_trans_t *tp,
1103 xfs_inode_t *ip)
1104{
e546cb79
DC
1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
e546cb79
DC
1107 drop_nlink(VFS_I(ip));
1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
54d7b5c1
DC
1110 if (VFS_I(ip)->i_nlink)
1111 return 0;
1112
1113 return xfs_iunlink(tp, ip);
e546cb79
DC
1114}
1115
e546cb79
DC
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
0d5a75e9 1119static int
e546cb79
DC
1120xfs_bumplink(
1121 xfs_trans_t *tp,
1122 xfs_inode_t *ip)
1123{
1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
263997a6 1126 ASSERT(ip->i_d.di_version > 1);
e546cb79 1127 inc_nlink(VFS_I(ip));
e546cb79
DC
1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129 return 0;
1130}
1131
c24b5dfa
DC
1132int
1133xfs_create(
1134 xfs_inode_t *dp,
1135 struct xfs_name *name,
1136 umode_t mode,
66f36464 1137 dev_t rdev,
c24b5dfa
DC
1138 xfs_inode_t **ipp)
1139{
1140 int is_dir = S_ISDIR(mode);
1141 struct xfs_mount *mp = dp->i_mount;
1142 struct xfs_inode *ip = NULL;
1143 struct xfs_trans *tp = NULL;
1144 int error;
2c3234d1 1145 struct xfs_defer_ops dfops;
c24b5dfa
DC
1146 xfs_fsblock_t first_block;
1147 bool unlock_dp_on_error = false;
c24b5dfa
DC
1148 prid_t prid;
1149 struct xfs_dquot *udqp = NULL;
1150 struct xfs_dquot *gdqp = NULL;
1151 struct xfs_dquot *pdqp = NULL;
062647a8 1152 struct xfs_trans_res *tres;
c24b5dfa 1153 uint resblks;
c24b5dfa
DC
1154
1155 trace_xfs_create(dp, name);
1156
1157 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1158 return -EIO;
c24b5dfa 1159
163467d3 1160 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1161
1162 /*
1163 * Make sure that we have allocated dquot(s) on disk.
1164 */
7aab1b28
DE
1165 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1166 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1167 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1168 &udqp, &gdqp, &pdqp);
1169 if (error)
1170 return error;
1171
1172 if (is_dir) {
c24b5dfa 1173 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1174 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1175 } else {
1176 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1177 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1178 }
1179
c24b5dfa
DC
1180 /*
1181 * Initially assume that the file does not exist and
1182 * reserve the resources for that case. If that is not
1183 * the case we'll drop the one we have and get a more
1184 * appropriate transaction later.
1185 */
253f4911 1186 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1187 if (error == -ENOSPC) {
c24b5dfa
DC
1188 /* flush outstanding delalloc blocks and retry */
1189 xfs_flush_inodes(mp);
253f4911 1190 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1191 }
4906e215 1192 if (error)
253f4911 1193 goto out_release_inode;
c24b5dfa 1194
65523218 1195 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1196 unlock_dp_on_error = true;
1197
2c3234d1 1198 xfs_defer_init(&dfops, &first_block);
c24b5dfa
DC
1199
1200 /*
1201 * Reserve disk quota and the inode.
1202 */
1203 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1204 pdqp, resblks, 1, 0);
1205 if (error)
1206 goto out_trans_cancel;
1207
c24b5dfa
DC
1208 /*
1209 * A newly created regular or special file just has one directory
1210 * entry pointing to them, but a directory also the "." entry
1211 * pointing to itself.
1212 */
c959025e 1213 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
d6077aa3 1214 if (error)
4906e215 1215 goto out_trans_cancel;
c24b5dfa
DC
1216
1217 /*
1218 * Now we join the directory inode to the transaction. We do not do it
1219 * earlier because xfs_dir_ialloc might commit the previous transaction
1220 * (and release all the locks). An error from here on will result in
1221 * the transaction cancel unlocking dp so don't do it explicitly in the
1222 * error path.
1223 */
65523218 1224 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1225 unlock_dp_on_error = false;
1226
1227 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
2c3234d1 1228 &first_block, &dfops, resblks ?
c24b5dfa
DC
1229 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1230 if (error) {
2451337d 1231 ASSERT(error != -ENOSPC);
4906e215 1232 goto out_trans_cancel;
c24b5dfa
DC
1233 }
1234 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1235 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1236
1237 if (is_dir) {
1238 error = xfs_dir_init(tp, ip, dp);
1239 if (error)
1240 goto out_bmap_cancel;
1241
1242 error = xfs_bumplink(tp, dp);
1243 if (error)
1244 goto out_bmap_cancel;
1245 }
1246
1247 /*
1248 * If this is a synchronous mount, make sure that the
1249 * create transaction goes to disk before returning to
1250 * the user.
1251 */
1252 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1253 xfs_trans_set_sync(tp);
1254
1255 /*
1256 * Attach the dquot(s) to the inodes and modify them incore.
1257 * These ids of the inode couldn't have changed since the new
1258 * inode has been locked ever since it was created.
1259 */
1260 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1261
8ad7c629 1262 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa
DC
1263 if (error)
1264 goto out_bmap_cancel;
1265
70393313 1266 error = xfs_trans_commit(tp);
c24b5dfa
DC
1267 if (error)
1268 goto out_release_inode;
1269
1270 xfs_qm_dqrele(udqp);
1271 xfs_qm_dqrele(gdqp);
1272 xfs_qm_dqrele(pdqp);
1273
1274 *ipp = ip;
1275 return 0;
1276
1277 out_bmap_cancel:
2c3234d1 1278 xfs_defer_cancel(&dfops);
c24b5dfa 1279 out_trans_cancel:
4906e215 1280 xfs_trans_cancel(tp);
c24b5dfa
DC
1281 out_release_inode:
1282 /*
58c90473
DC
1283 * Wait until after the current transaction is aborted to finish the
1284 * setup of the inode and release the inode. This prevents recursive
1285 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1286 */
58c90473
DC
1287 if (ip) {
1288 xfs_finish_inode_setup(ip);
c24b5dfa 1289 IRELE(ip);
58c90473 1290 }
c24b5dfa
DC
1291
1292 xfs_qm_dqrele(udqp);
1293 xfs_qm_dqrele(gdqp);
1294 xfs_qm_dqrele(pdqp);
1295
1296 if (unlock_dp_on_error)
65523218 1297 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1298 return error;
1299}
1300
99b6436b
ZYW
1301int
1302xfs_create_tmpfile(
1303 struct xfs_inode *dp,
330033d6
BF
1304 umode_t mode,
1305 struct xfs_inode **ipp)
99b6436b
ZYW
1306{
1307 struct xfs_mount *mp = dp->i_mount;
1308 struct xfs_inode *ip = NULL;
1309 struct xfs_trans *tp = NULL;
1310 int error;
99b6436b
ZYW
1311 prid_t prid;
1312 struct xfs_dquot *udqp = NULL;
1313 struct xfs_dquot *gdqp = NULL;
1314 struct xfs_dquot *pdqp = NULL;
1315 struct xfs_trans_res *tres;
1316 uint resblks;
1317
1318 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1319 return -EIO;
99b6436b
ZYW
1320
1321 prid = xfs_get_initial_prid(dp);
1322
1323 /*
1324 * Make sure that we have allocated dquot(s) on disk.
1325 */
1326 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1327 xfs_kgid_to_gid(current_fsgid()), prid,
1328 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1329 &udqp, &gdqp, &pdqp);
1330 if (error)
1331 return error;
1332
1333 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1334 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1335
1336 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
4906e215 1337 if (error)
253f4911 1338 goto out_release_inode;
99b6436b
ZYW
1339
1340 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1341 pdqp, resblks, 1, 0);
1342 if (error)
1343 goto out_trans_cancel;
1344
c959025e 1345 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
d6077aa3 1346 if (error)
4906e215 1347 goto out_trans_cancel;
99b6436b
ZYW
1348
1349 if (mp->m_flags & XFS_MOUNT_WSYNC)
1350 xfs_trans_set_sync(tp);
1351
1352 /*
1353 * Attach the dquot(s) to the inodes and modify them incore.
1354 * These ids of the inode couldn't have changed since the new
1355 * inode has been locked ever since it was created.
1356 */
1357 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1358
99b6436b
ZYW
1359 error = xfs_iunlink(tp, ip);
1360 if (error)
4906e215 1361 goto out_trans_cancel;
99b6436b 1362
70393313 1363 error = xfs_trans_commit(tp);
99b6436b
ZYW
1364 if (error)
1365 goto out_release_inode;
1366
1367 xfs_qm_dqrele(udqp);
1368 xfs_qm_dqrele(gdqp);
1369 xfs_qm_dqrele(pdqp);
1370
330033d6 1371 *ipp = ip;
99b6436b
ZYW
1372 return 0;
1373
99b6436b 1374 out_trans_cancel:
4906e215 1375 xfs_trans_cancel(tp);
99b6436b
ZYW
1376 out_release_inode:
1377 /*
58c90473
DC
1378 * Wait until after the current transaction is aborted to finish the
1379 * setup of the inode and release the inode. This prevents recursive
1380 * transactions and deadlocks from xfs_inactive.
99b6436b 1381 */
58c90473
DC
1382 if (ip) {
1383 xfs_finish_inode_setup(ip);
99b6436b 1384 IRELE(ip);
58c90473 1385 }
99b6436b
ZYW
1386
1387 xfs_qm_dqrele(udqp);
1388 xfs_qm_dqrele(gdqp);
1389 xfs_qm_dqrele(pdqp);
1390
1391 return error;
1392}
1393
c24b5dfa
DC
1394int
1395xfs_link(
1396 xfs_inode_t *tdp,
1397 xfs_inode_t *sip,
1398 struct xfs_name *target_name)
1399{
1400 xfs_mount_t *mp = tdp->i_mount;
1401 xfs_trans_t *tp;
1402 int error;
2c3234d1 1403 struct xfs_defer_ops dfops;
c24b5dfa 1404 xfs_fsblock_t first_block;
c24b5dfa
DC
1405 int resblks;
1406
1407 trace_xfs_link(tdp, target_name);
1408
c19b3b05 1409 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1410
1411 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1412 return -EIO;
c24b5dfa
DC
1413
1414 error = xfs_qm_dqattach(sip, 0);
1415 if (error)
1416 goto std_return;
1417
1418 error = xfs_qm_dqattach(tdp, 0);
1419 if (error)
1420 goto std_return;
1421
c24b5dfa 1422 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1423 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1424 if (error == -ENOSPC) {
c24b5dfa 1425 resblks = 0;
253f4911 1426 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1427 }
4906e215 1428 if (error)
253f4911 1429 goto std_return;
c24b5dfa 1430
7c2d238a 1431 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1432
1433 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1434 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1435
1436 /*
1437 * If we are using project inheritance, we only allow hard link
1438 * creation in our tree when the project IDs are the same; else
1439 * the tree quota mechanism could be circumvented.
1440 */
1441 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1442 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1443 error = -EXDEV;
c24b5dfa
DC
1444 goto error_return;
1445 }
1446
94f3cad5
ES
1447 if (!resblks) {
1448 error = xfs_dir_canenter(tp, tdp, target_name);
1449 if (error)
1450 goto error_return;
1451 }
c24b5dfa 1452
2c3234d1 1453 xfs_defer_init(&dfops, &first_block);
c24b5dfa 1454
54d7b5c1
DC
1455 /*
1456 * Handle initial link state of O_TMPFILE inode
1457 */
1458 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1459 error = xfs_iunlink_remove(tp, sip);
1460 if (error)
4906e215 1461 goto error_return;
ab297431
ZYW
1462 }
1463
c24b5dfa 1464 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
2c3234d1 1465 &first_block, &dfops, resblks);
c24b5dfa 1466 if (error)
4906e215 1467 goto error_return;
c24b5dfa
DC
1468 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1469 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1470
1471 error = xfs_bumplink(tp, sip);
1472 if (error)
4906e215 1473 goto error_return;
c24b5dfa
DC
1474
1475 /*
1476 * If this is a synchronous mount, make sure that the
1477 * link transaction goes to disk before returning to
1478 * the user.
1479 */
f6106efa 1480 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1481 xfs_trans_set_sync(tp);
c24b5dfa 1482
8ad7c629 1483 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa 1484 if (error) {
2c3234d1 1485 xfs_defer_cancel(&dfops);
4906e215 1486 goto error_return;
c24b5dfa
DC
1487 }
1488
70393313 1489 return xfs_trans_commit(tp);
c24b5dfa 1490
c24b5dfa 1491 error_return:
4906e215 1492 xfs_trans_cancel(tp);
c24b5dfa
DC
1493 std_return:
1494 return error;
1495}
1496
363e59ba
DW
1497/* Clear the reflink flag and the cowblocks tag if possible. */
1498static void
1499xfs_itruncate_clear_reflink_flags(
1500 struct xfs_inode *ip)
1501{
1502 struct xfs_ifork *dfork;
1503 struct xfs_ifork *cfork;
1504
1505 if (!xfs_is_reflink_inode(ip))
1506 return;
1507 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1508 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1509 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1510 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1511 if (cfork->if_bytes == 0)
1512 xfs_inode_clear_cowblocks_tag(ip);
1513}
1514
1da177e4 1515/*
8f04c47a
CH
1516 * Free up the underlying blocks past new_size. The new size must be smaller
1517 * than the current size. This routine can be used both for the attribute and
1518 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1519 *
f6485057
DC
1520 * The transaction passed to this routine must have made a permanent log
1521 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1522 * given transaction and start new ones, so make sure everything involved in
1523 * the transaction is tidy before calling here. Some transaction will be
1524 * returned to the caller to be committed. The incoming transaction must
1525 * already include the inode, and both inode locks must be held exclusively.
1526 * The inode must also be "held" within the transaction. On return the inode
1527 * will be "held" within the returned transaction. This routine does NOT
1528 * require any disk space to be reserved for it within the transaction.
1da177e4 1529 *
f6485057
DC
1530 * If we get an error, we must return with the inode locked and linked into the
1531 * current transaction. This keeps things simple for the higher level code,
1532 * because it always knows that the inode is locked and held in the transaction
1533 * that returns to it whether errors occur or not. We don't mark the inode
1534 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1535 */
1536int
8f04c47a
CH
1537xfs_itruncate_extents(
1538 struct xfs_trans **tpp,
1539 struct xfs_inode *ip,
1540 int whichfork,
1541 xfs_fsize_t new_size)
1da177e4 1542{
8f04c47a
CH
1543 struct xfs_mount *mp = ip->i_mount;
1544 struct xfs_trans *tp = *tpp;
2c3234d1 1545 struct xfs_defer_ops dfops;
8f04c47a
CH
1546 xfs_fsblock_t first_block;
1547 xfs_fileoff_t first_unmap_block;
1548 xfs_fileoff_t last_block;
1549 xfs_filblks_t unmap_len;
8f04c47a
CH
1550 int error = 0;
1551 int done = 0;
1da177e4 1552
0b56185b
CH
1553 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1554 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1555 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1556 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1557 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1558 ASSERT(ip->i_itemp != NULL);
898621d5 1559 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1560 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1561
673e8e59
CH
1562 trace_xfs_itruncate_extents_start(ip, new_size);
1563
1da177e4
LT
1564 /*
1565 * Since it is possible for space to become allocated beyond
1566 * the end of the file (in a crash where the space is allocated
1567 * but the inode size is not yet updated), simply remove any
1568 * blocks which show up between the new EOF and the maximum
1569 * possible file size. If the first block to be removed is
1570 * beyond the maximum file size (ie it is the same as last_block),
1571 * then there is nothing to do.
1572 */
8f04c47a 1573 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1574 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1575 if (first_unmap_block == last_block)
1576 return 0;
1577
1578 ASSERT(first_unmap_block < last_block);
1579 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1580 while (!done) {
2c3234d1 1581 xfs_defer_init(&dfops, &first_block);
8f04c47a 1582 error = xfs_bunmapi(tp, ip,
3e57ecf6 1583 first_unmap_block, unmap_len,
8f04c47a 1584 xfs_bmapi_aflag(whichfork),
1da177e4 1585 XFS_ITRUNC_MAX_EXTENTS,
2c3234d1 1586 &first_block, &dfops,
b4e9181e 1587 &done);
8f04c47a
CH
1588 if (error)
1589 goto out_bmap_cancel;
1da177e4
LT
1590
1591 /*
1592 * Duplicate the transaction that has the permanent
1593 * reservation and commit the old transaction.
1594 */
8ad7c629
CH
1595 xfs_defer_ijoin(&dfops, ip);
1596 error = xfs_defer_finish(&tp, &dfops);
8f04c47a
CH
1597 if (error)
1598 goto out_bmap_cancel;
1da177e4 1599
411350df 1600 error = xfs_trans_roll_inode(&tp, ip);
f6485057 1601 if (error)
8f04c47a 1602 goto out;
1da177e4 1603 }
8f04c47a 1604
4919d42a
DW
1605 if (whichfork == XFS_DATA_FORK) {
1606 /* Remove all pending CoW reservations. */
1607 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1608 first_unmap_block, last_block, true);
1609 if (error)
1610 goto out;
aa8968f2 1611
4919d42a
DW
1612 xfs_itruncate_clear_reflink_flags(ip);
1613 }
aa8968f2 1614
673e8e59
CH
1615 /*
1616 * Always re-log the inode so that our permanent transaction can keep
1617 * on rolling it forward in the log.
1618 */
1619 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1620
1621 trace_xfs_itruncate_extents_end(ip, new_size);
1622
8f04c47a
CH
1623out:
1624 *tpp = tp;
1625 return error;
1626out_bmap_cancel:
1da177e4 1627 /*
8f04c47a
CH
1628 * If the bunmapi call encounters an error, return to the caller where
1629 * the transaction can be properly aborted. We just need to make sure
1630 * we're not holding any resources that we were not when we came in.
1da177e4 1631 */
2c3234d1 1632 xfs_defer_cancel(&dfops);
8f04c47a
CH
1633 goto out;
1634}
1635
c24b5dfa
DC
1636int
1637xfs_release(
1638 xfs_inode_t *ip)
1639{
1640 xfs_mount_t *mp = ip->i_mount;
1641 int error;
1642
c19b3b05 1643 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1644 return 0;
1645
1646 /* If this is a read-only mount, don't do this (would generate I/O) */
1647 if (mp->m_flags & XFS_MOUNT_RDONLY)
1648 return 0;
1649
1650 if (!XFS_FORCED_SHUTDOWN(mp)) {
1651 int truncated;
1652
c24b5dfa
DC
1653 /*
1654 * If we previously truncated this file and removed old data
1655 * in the process, we want to initiate "early" writeout on
1656 * the last close. This is an attempt to combat the notorious
1657 * NULL files problem which is particularly noticeable from a
1658 * truncate down, buffered (re-)write (delalloc), followed by
1659 * a crash. What we are effectively doing here is
1660 * significantly reducing the time window where we'd otherwise
1661 * be exposed to that problem.
1662 */
1663 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1664 if (truncated) {
1665 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1666 if (ip->i_delayed_blks > 0) {
2451337d 1667 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1668 if (error)
1669 return error;
1670 }
1671 }
1672 }
1673
54d7b5c1 1674 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1675 return 0;
1676
1677 if (xfs_can_free_eofblocks(ip, false)) {
1678
a36b9261
BF
1679 /*
1680 * Check if the inode is being opened, written and closed
1681 * frequently and we have delayed allocation blocks outstanding
1682 * (e.g. streaming writes from the NFS server), truncating the
1683 * blocks past EOF will cause fragmentation to occur.
1684 *
1685 * In this case don't do the truncation, but we have to be
1686 * careful how we detect this case. Blocks beyond EOF show up as
1687 * i_delayed_blks even when the inode is clean, so we need to
1688 * truncate them away first before checking for a dirty release.
1689 * Hence on the first dirty close we will still remove the
1690 * speculative allocation, but after that we will leave it in
1691 * place.
1692 */
1693 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1694 return 0;
c24b5dfa
DC
1695 /*
1696 * If we can't get the iolock just skip truncating the blocks
1697 * past EOF because we could deadlock with the mmap_sem
a36b9261 1698 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1699 * last reference to the inode is dropped, so we'll never leak
1700 * blocks permanently.
c24b5dfa 1701 */
a36b9261
BF
1702 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1703 error = xfs_free_eofblocks(ip);
1704 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1705 if (error)
1706 return error;
1707 }
c24b5dfa
DC
1708
1709 /* delalloc blocks after truncation means it really is dirty */
1710 if (ip->i_delayed_blks)
1711 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1712 }
1713 return 0;
1714}
1715
f7be2d7f
BF
1716/*
1717 * xfs_inactive_truncate
1718 *
1719 * Called to perform a truncate when an inode becomes unlinked.
1720 */
1721STATIC int
1722xfs_inactive_truncate(
1723 struct xfs_inode *ip)
1724{
1725 struct xfs_mount *mp = ip->i_mount;
1726 struct xfs_trans *tp;
1727 int error;
1728
253f4911 1729 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1730 if (error) {
1731 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1732 return error;
1733 }
1734
1735 xfs_ilock(ip, XFS_ILOCK_EXCL);
1736 xfs_trans_ijoin(tp, ip, 0);
1737
1738 /*
1739 * Log the inode size first to prevent stale data exposure in the event
1740 * of a system crash before the truncate completes. See the related
69bca807 1741 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1742 */
1743 ip->i_d.di_size = 0;
1744 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1745
1746 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1747 if (error)
1748 goto error_trans_cancel;
1749
1750 ASSERT(ip->i_d.di_nextents == 0);
1751
70393313 1752 error = xfs_trans_commit(tp);
f7be2d7f
BF
1753 if (error)
1754 goto error_unlock;
1755
1756 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1757 return 0;
1758
1759error_trans_cancel:
4906e215 1760 xfs_trans_cancel(tp);
f7be2d7f
BF
1761error_unlock:
1762 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763 return error;
1764}
1765
88877d2b
BF
1766/*
1767 * xfs_inactive_ifree()
1768 *
1769 * Perform the inode free when an inode is unlinked.
1770 */
1771STATIC int
1772xfs_inactive_ifree(
1773 struct xfs_inode *ip)
1774{
2c3234d1 1775 struct xfs_defer_ops dfops;
88877d2b 1776 xfs_fsblock_t first_block;
88877d2b
BF
1777 struct xfs_mount *mp = ip->i_mount;
1778 struct xfs_trans *tp;
1779 int error;
1780
9d43b180 1781 /*
76d771b4
CH
1782 * We try to use a per-AG reservation for any block needed by the finobt
1783 * tree, but as the finobt feature predates the per-AG reservation
1784 * support a degraded file system might not have enough space for the
1785 * reservation at mount time. In that case try to dip into the reserved
1786 * pool and pray.
9d43b180
BF
1787 *
1788 * Send a warning if the reservation does happen to fail, as the inode
1789 * now remains allocated and sits on the unlinked list until the fs is
1790 * repaired.
1791 */
76d771b4
CH
1792 if (unlikely(mp->m_inotbt_nores)) {
1793 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1794 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1795 &tp);
1796 } else {
1797 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1798 }
88877d2b 1799 if (error) {
2451337d 1800 if (error == -ENOSPC) {
9d43b180
BF
1801 xfs_warn_ratelimited(mp,
1802 "Failed to remove inode(s) from unlinked list. "
1803 "Please free space, unmount and run xfs_repair.");
1804 } else {
1805 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1806 }
88877d2b
BF
1807 return error;
1808 }
1809
1810 xfs_ilock(ip, XFS_ILOCK_EXCL);
1811 xfs_trans_ijoin(tp, ip, 0);
1812
2c3234d1
DW
1813 xfs_defer_init(&dfops, &first_block);
1814 error = xfs_ifree(tp, ip, &dfops);
88877d2b
BF
1815 if (error) {
1816 /*
1817 * If we fail to free the inode, shut down. The cancel
1818 * might do that, we need to make sure. Otherwise the
1819 * inode might be lost for a long time or forever.
1820 */
1821 if (!XFS_FORCED_SHUTDOWN(mp)) {
1822 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1823 __func__, error);
1824 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1825 }
4906e215 1826 xfs_trans_cancel(tp);
88877d2b
BF
1827 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1828 return error;
1829 }
1830
1831 /*
1832 * Credit the quota account(s). The inode is gone.
1833 */
1834 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1835
1836 /*
d4a97a04
BF
1837 * Just ignore errors at this point. There is nothing we can do except
1838 * to try to keep going. Make sure it's not a silent error.
88877d2b 1839 */
8ad7c629 1840 error = xfs_defer_finish(&tp, &dfops);
d4a97a04 1841 if (error) {
310a75a3 1842 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
88877d2b 1843 __func__, error);
2c3234d1 1844 xfs_defer_cancel(&dfops);
d4a97a04 1845 }
70393313 1846 error = xfs_trans_commit(tp);
88877d2b
BF
1847 if (error)
1848 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1849 __func__, error);
1850
1851 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1852 return 0;
1853}
1854
c24b5dfa
DC
1855/*
1856 * xfs_inactive
1857 *
1858 * This is called when the vnode reference count for the vnode
1859 * goes to zero. If the file has been unlinked, then it must
1860 * now be truncated. Also, we clear all of the read-ahead state
1861 * kept for the inode here since the file is now closed.
1862 */
74564fb4 1863void
c24b5dfa
DC
1864xfs_inactive(
1865 xfs_inode_t *ip)
1866{
3d3c8b52 1867 struct xfs_mount *mp;
6231848c 1868 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
3d3c8b52
JL
1869 int error;
1870 int truncate = 0;
c24b5dfa
DC
1871
1872 /*
1873 * If the inode is already free, then there can be nothing
1874 * to clean up here.
1875 */
c19b3b05 1876 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa
DC
1877 ASSERT(ip->i_df.if_real_bytes == 0);
1878 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1879 return;
c24b5dfa
DC
1880 }
1881
1882 mp = ip->i_mount;
17c12bcd 1883 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1884
c24b5dfa
DC
1885 /* If this is a read-only mount, don't do this (would generate I/O) */
1886 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1887 return;
c24b5dfa 1888
6231848c
DW
1889 /* Try to clean out the cow blocks if there are any. */
1890 if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1891 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1892
54d7b5c1 1893 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1894 /*
1895 * force is true because we are evicting an inode from the
1896 * cache. Post-eof blocks must be freed, lest we end up with
1897 * broken free space accounting.
3b4683c2
BF
1898 *
1899 * Note: don't bother with iolock here since lockdep complains
1900 * about acquiring it in reclaim context. We have the only
1901 * reference to the inode at this point anyways.
c24b5dfa 1902 */
3b4683c2 1903 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1904 xfs_free_eofblocks(ip);
74564fb4
BF
1905
1906 return;
c24b5dfa
DC
1907 }
1908
c19b3b05 1909 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa
DC
1910 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1911 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1912 truncate = 1;
1913
1914 error = xfs_qm_dqattach(ip, 0);
1915 if (error)
74564fb4 1916 return;
c24b5dfa 1917
c19b3b05 1918 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1919 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1920 else if (truncate)
1921 error = xfs_inactive_truncate(ip);
1922 if (error)
74564fb4 1923 return;
c24b5dfa
DC
1924
1925 /*
1926 * If there are attributes associated with the file then blow them away
1927 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1928 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1929 */
6dfe5a04 1930 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1931 error = xfs_attr_inactive(ip);
1932 if (error)
74564fb4 1933 return;
c24b5dfa
DC
1934 }
1935
6dfe5a04 1936 ASSERT(!ip->i_afp);
c24b5dfa 1937 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1938 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1939
1940 /*
1941 * Free the inode.
1942 */
88877d2b
BF
1943 error = xfs_inactive_ifree(ip);
1944 if (error)
74564fb4 1945 return;
c24b5dfa
DC
1946
1947 /*
1948 * Release the dquots held by inode, if any.
1949 */
1950 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1951}
1952
1da177e4 1953/*
54d7b5c1
DC
1954 * This is called when the inode's link count goes to 0 or we are creating a
1955 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1956 * set to true as the link count is dropped to zero by the VFS after we've
1957 * created the file successfully, so we have to add it to the unlinked list
1958 * while the link count is non-zero.
1959 *
1960 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1961 * list when the inode is freed.
1da177e4 1962 */
54d7b5c1 1963STATIC int
1da177e4 1964xfs_iunlink(
54d7b5c1
DC
1965 struct xfs_trans *tp,
1966 struct xfs_inode *ip)
1da177e4 1967{
54d7b5c1 1968 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1969 xfs_agi_t *agi;
1970 xfs_dinode_t *dip;
1971 xfs_buf_t *agibp;
1972 xfs_buf_t *ibp;
1da177e4
LT
1973 xfs_agino_t agino;
1974 short bucket_index;
1975 int offset;
1976 int error;
1da177e4 1977
c19b3b05 1978 ASSERT(VFS_I(ip)->i_mode != 0);
1da177e4 1979
1da177e4
LT
1980 /*
1981 * Get the agi buffer first. It ensures lock ordering
1982 * on the list.
1983 */
5e1be0fb 1984 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1985 if (error)
1da177e4 1986 return error;
1da177e4 1987 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1988
1da177e4
LT
1989 /*
1990 * Get the index into the agi hash table for the
1991 * list this inode will go on.
1992 */
1993 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1994 ASSERT(agino != 0);
1995 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1996 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1997 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1998
69ef921b 1999 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
2000 /*
2001 * There is already another inode in the bucket we need
2002 * to add ourselves to. Add us at the front of the list.
2003 * Here we put the head pointer into our next pointer,
2004 * and then we fall through to point the head at us.
2005 */
475ee413
CH
2006 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2007 0, 0);
c319b58b
VA
2008 if (error)
2009 return error;
2010
69ef921b 2011 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2012 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2013 offset = ip->i_imap.im_boffset +
1da177e4 2014 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2015
2016 /* need to recalc the inode CRC if appropriate */
2017 xfs_dinode_calc_crc(mp, dip);
2018
1da177e4
LT
2019 xfs_trans_inode_buf(tp, ibp);
2020 xfs_trans_log_buf(tp, ibp, offset,
2021 (offset + sizeof(xfs_agino_t) - 1));
2022 xfs_inobp_check(mp, ibp);
2023 }
2024
2025 /*
2026 * Point the bucket head pointer at the inode being inserted.
2027 */
2028 ASSERT(agino != 0);
16259e7d 2029 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2030 offset = offsetof(xfs_agi_t, agi_unlinked) +
2031 (sizeof(xfs_agino_t) * bucket_index);
2032 xfs_trans_log_buf(tp, agibp, offset,
2033 (offset + sizeof(xfs_agino_t) - 1));
2034 return 0;
2035}
2036
2037/*
2038 * Pull the on-disk inode from the AGI unlinked list.
2039 */
2040STATIC int
2041xfs_iunlink_remove(
2042 xfs_trans_t *tp,
2043 xfs_inode_t *ip)
2044{
2045 xfs_ino_t next_ino;
2046 xfs_mount_t *mp;
2047 xfs_agi_t *agi;
2048 xfs_dinode_t *dip;
2049 xfs_buf_t *agibp;
2050 xfs_buf_t *ibp;
2051 xfs_agnumber_t agno;
1da177e4
LT
2052 xfs_agino_t agino;
2053 xfs_agino_t next_agino;
2054 xfs_buf_t *last_ibp;
6fdf8ccc 2055 xfs_dinode_t *last_dip = NULL;
1da177e4 2056 short bucket_index;
6fdf8ccc 2057 int offset, last_offset = 0;
1da177e4 2058 int error;
1da177e4 2059
1da177e4 2060 mp = tp->t_mountp;
1da177e4 2061 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2062
2063 /*
2064 * Get the agi buffer first. It ensures lock ordering
2065 * on the list.
2066 */
5e1be0fb
CH
2067 error = xfs_read_agi(mp, tp, agno, &agibp);
2068 if (error)
1da177e4 2069 return error;
5e1be0fb 2070
1da177e4 2071 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2072
1da177e4
LT
2073 /*
2074 * Get the index into the agi hash table for the
2075 * list this inode will go on.
2076 */
2077 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2078 ASSERT(agino != 0);
2079 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2080 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2081 ASSERT(agi->agi_unlinked[bucket_index]);
2082
16259e7d 2083 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2084 /*
475ee413
CH
2085 * We're at the head of the list. Get the inode's on-disk
2086 * buffer to see if there is anyone after us on the list.
2087 * Only modify our next pointer if it is not already NULLAGINO.
2088 * This saves us the overhead of dealing with the buffer when
2089 * there is no need to change it.
1da177e4 2090 */
475ee413
CH
2091 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2092 0, 0);
1da177e4 2093 if (error) {
475ee413 2094 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2095 __func__, error);
1da177e4
LT
2096 return error;
2097 }
347d1c01 2098 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2099 ASSERT(next_agino != 0);
2100 if (next_agino != NULLAGINO) {
347d1c01 2101 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2102 offset = ip->i_imap.im_boffset +
1da177e4 2103 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2104
2105 /* need to recalc the inode CRC if appropriate */
2106 xfs_dinode_calc_crc(mp, dip);
2107
1da177e4
LT
2108 xfs_trans_inode_buf(tp, ibp);
2109 xfs_trans_log_buf(tp, ibp, offset,
2110 (offset + sizeof(xfs_agino_t) - 1));
2111 xfs_inobp_check(mp, ibp);
2112 } else {
2113 xfs_trans_brelse(tp, ibp);
2114 }
2115 /*
2116 * Point the bucket head pointer at the next inode.
2117 */
2118 ASSERT(next_agino != 0);
2119 ASSERT(next_agino != agino);
16259e7d 2120 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2121 offset = offsetof(xfs_agi_t, agi_unlinked) +
2122 (sizeof(xfs_agino_t) * bucket_index);
2123 xfs_trans_log_buf(tp, agibp, offset,
2124 (offset + sizeof(xfs_agino_t) - 1));
2125 } else {
2126 /*
2127 * We need to search the list for the inode being freed.
2128 */
16259e7d 2129 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2130 last_ibp = NULL;
2131 while (next_agino != agino) {
129dbc9a
CH
2132 struct xfs_imap imap;
2133
2134 if (last_ibp)
1da177e4 2135 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2136
2137 imap.im_blkno = 0;
1da177e4 2138 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2139
2140 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2141 if (error) {
2142 xfs_warn(mp,
2143 "%s: xfs_imap returned error %d.",
2144 __func__, error);
2145 return error;
2146 }
2147
2148 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2149 &last_ibp, 0, 0);
1da177e4 2150 if (error) {
0b932ccc 2151 xfs_warn(mp,
129dbc9a 2152 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2153 __func__, error);
1da177e4
LT
2154 return error;
2155 }
129dbc9a
CH
2156
2157 last_offset = imap.im_boffset;
347d1c01 2158 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2159 ASSERT(next_agino != NULLAGINO);
2160 ASSERT(next_agino != 0);
2161 }
475ee413 2162
1da177e4 2163 /*
475ee413
CH
2164 * Now last_ibp points to the buffer previous to us on the
2165 * unlinked list. Pull us from the list.
1da177e4 2166 */
475ee413
CH
2167 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2168 0, 0);
1da177e4 2169 if (error) {
475ee413 2170 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2171 __func__, error);
1da177e4
LT
2172 return error;
2173 }
347d1c01 2174 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2175 ASSERT(next_agino != 0);
2176 ASSERT(next_agino != agino);
2177 if (next_agino != NULLAGINO) {
347d1c01 2178 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2179 offset = ip->i_imap.im_boffset +
1da177e4 2180 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2181
2182 /* need to recalc the inode CRC if appropriate */
2183 xfs_dinode_calc_crc(mp, dip);
2184
1da177e4
LT
2185 xfs_trans_inode_buf(tp, ibp);
2186 xfs_trans_log_buf(tp, ibp, offset,
2187 (offset + sizeof(xfs_agino_t) - 1));
2188 xfs_inobp_check(mp, ibp);
2189 } else {
2190 xfs_trans_brelse(tp, ibp);
2191 }
2192 /*
2193 * Point the previous inode on the list to the next inode.
2194 */
347d1c01 2195 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2196 ASSERT(next_agino != 0);
2197 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2198
2199 /* need to recalc the inode CRC if appropriate */
2200 xfs_dinode_calc_crc(mp, last_dip);
2201
1da177e4
LT
2202 xfs_trans_inode_buf(tp, last_ibp);
2203 xfs_trans_log_buf(tp, last_ibp, offset,
2204 (offset + sizeof(xfs_agino_t) - 1));
2205 xfs_inobp_check(mp, last_ibp);
2206 }
2207 return 0;
2208}
2209
5b3eed75 2210/*
0b8182db 2211 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2212 * inodes that are in memory - they all must be marked stale and attached to
2213 * the cluster buffer.
2214 */
2a30f36d 2215STATIC int
1da177e4 2216xfs_ifree_cluster(
09b56604
BF
2217 xfs_inode_t *free_ip,
2218 xfs_trans_t *tp,
2219 struct xfs_icluster *xic)
1da177e4
LT
2220{
2221 xfs_mount_t *mp = free_ip->i_mount;
2222 int blks_per_cluster;
982e939e 2223 int inodes_per_cluster;
1da177e4 2224 int nbufs;
5b257b4a 2225 int i, j;
3cdaa189 2226 int ioffset;
1da177e4
LT
2227 xfs_daddr_t blkno;
2228 xfs_buf_t *bp;
5b257b4a 2229 xfs_inode_t *ip;
1da177e4 2230 xfs_inode_log_item_t *iip;
643c8c05 2231 struct xfs_log_item *lip;
5017e97d 2232 struct xfs_perag *pag;
09b56604 2233 xfs_ino_t inum;
1da177e4 2234
09b56604 2235 inum = xic->first_ino;
5017e97d 2236 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2237 blks_per_cluster = xfs_icluster_size_fsb(mp);
2238 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2239 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2240
982e939e 2241 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2242 /*
2243 * The allocation bitmap tells us which inodes of the chunk were
2244 * physically allocated. Skip the cluster if an inode falls into
2245 * a sparse region.
2246 */
3cdaa189
BF
2247 ioffset = inum - xic->first_ino;
2248 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2249 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2250 continue;
2251 }
2252
1da177e4
LT
2253 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2254 XFS_INO_TO_AGBNO(mp, inum));
2255
5b257b4a
DC
2256 /*
2257 * We obtain and lock the backing buffer first in the process
2258 * here, as we have to ensure that any dirty inode that we
2259 * can't get the flush lock on is attached to the buffer.
2260 * If we scan the in-memory inodes first, then buffer IO can
2261 * complete before we get a lock on it, and hence we may fail
2262 * to mark all the active inodes on the buffer stale.
2263 */
2264 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2265 mp->m_bsize * blks_per_cluster,
2266 XBF_UNMAPPED);
5b257b4a 2267
2a30f36d 2268 if (!bp)
2451337d 2269 return -ENOMEM;
b0f539de
DC
2270
2271 /*
2272 * This buffer may not have been correctly initialised as we
2273 * didn't read it from disk. That's not important because we are
2274 * only using to mark the buffer as stale in the log, and to
2275 * attach stale cached inodes on it. That means it will never be
2276 * dispatched for IO. If it is, we want to know about it, and we
2277 * want it to fail. We can acheive this by adding a write
2278 * verifier to the buffer.
2279 */
1813dd64 2280 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2281
5b257b4a
DC
2282 /*
2283 * Walk the inodes already attached to the buffer and mark them
2284 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2285 * in-memory inode walk can't lock them. By marking them all
2286 * stale first, we will not attempt to lock them in the loop
2287 * below as the XFS_ISTALE flag will be set.
5b257b4a 2288 */
643c8c05 2289 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
5b257b4a
DC
2290 if (lip->li_type == XFS_LI_INODE) {
2291 iip = (xfs_inode_log_item_t *)lip;
2292 ASSERT(iip->ili_logged == 1);
ca30b2a7 2293 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2294 xfs_trans_ail_copy_lsn(mp->m_ail,
2295 &iip->ili_flush_lsn,
2296 &iip->ili_item.li_lsn);
2297 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a 2298 }
5b257b4a 2299 }
1da177e4 2300
5b3eed75 2301
1da177e4 2302 /*
5b257b4a
DC
2303 * For each inode in memory attempt to add it to the inode
2304 * buffer and set it up for being staled on buffer IO
2305 * completion. This is safe as we've locked out tail pushing
2306 * and flushing by locking the buffer.
1da177e4 2307 *
5b257b4a
DC
2308 * We have already marked every inode that was part of a
2309 * transaction stale above, which means there is no point in
2310 * even trying to lock them.
1da177e4 2311 */
982e939e 2312 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2313retry:
1a3e8f3d 2314 rcu_read_lock();
da353b0d
DC
2315 ip = radix_tree_lookup(&pag->pag_ici_root,
2316 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2317
1a3e8f3d
DC
2318 /* Inode not in memory, nothing to do */
2319 if (!ip) {
2320 rcu_read_unlock();
1da177e4
LT
2321 continue;
2322 }
2323
1a3e8f3d
DC
2324 /*
2325 * because this is an RCU protected lookup, we could
2326 * find a recently freed or even reallocated inode
2327 * during the lookup. We need to check under the
2328 * i_flags_lock for a valid inode here. Skip it if it
2329 * is not valid, the wrong inode or stale.
2330 */
2331 spin_lock(&ip->i_flags_lock);
2332 if (ip->i_ino != inum + i ||
2333 __xfs_iflags_test(ip, XFS_ISTALE)) {
2334 spin_unlock(&ip->i_flags_lock);
2335 rcu_read_unlock();
2336 continue;
2337 }
2338 spin_unlock(&ip->i_flags_lock);
2339
5b3eed75
DC
2340 /*
2341 * Don't try to lock/unlock the current inode, but we
2342 * _cannot_ skip the other inodes that we did not find
2343 * in the list attached to the buffer and are not
2344 * already marked stale. If we can't lock it, back off
2345 * and retry.
2346 */
f2e9ad21
OS
2347 if (ip != free_ip) {
2348 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2349 rcu_read_unlock();
2350 delay(1);
2351 goto retry;
2352 }
2353
2354 /*
2355 * Check the inode number again in case we're
2356 * racing with freeing in xfs_reclaim_inode().
2357 * See the comments in that function for more
2358 * information as to why the initial check is
2359 * not sufficient.
2360 */
2361 if (ip->i_ino != inum + i) {
2362 xfs_iunlock(ip, XFS_ILOCK_EXCL);
962cc1ad 2363 rcu_read_unlock();
f2e9ad21
OS
2364 continue;
2365 }
1da177e4 2366 }
1a3e8f3d 2367 rcu_read_unlock();
1da177e4 2368
5b3eed75 2369 xfs_iflock(ip);
5b257b4a 2370 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2371
5b3eed75
DC
2372 /*
2373 * we don't need to attach clean inodes or those only
2374 * with unlogged changes (which we throw away, anyway).
2375 */
1da177e4 2376 iip = ip->i_itemp;
5b3eed75 2377 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2378 ASSERT(ip != free_ip);
1da177e4
LT
2379 xfs_ifunlock(ip);
2380 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2381 continue;
2382 }
2383
f5d8d5c4
CH
2384 iip->ili_last_fields = iip->ili_fields;
2385 iip->ili_fields = 0;
fc0561ce 2386 iip->ili_fsync_fields = 0;
1da177e4 2387 iip->ili_logged = 1;
7b2e2a31
DC
2388 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2389 &iip->ili_item.li_lsn);
1da177e4 2390
ca30b2a7
CH
2391 xfs_buf_attach_iodone(bp, xfs_istale_done,
2392 &iip->ili_item);
5b257b4a
DC
2393
2394 if (ip != free_ip)
1da177e4 2395 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2396 }
2397
5b3eed75 2398 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2399 xfs_trans_binval(tp, bp);
2400 }
2401
5017e97d 2402 xfs_perag_put(pag);
2a30f36d 2403 return 0;
1da177e4
LT
2404}
2405
98c4f78d
DW
2406/*
2407 * Free any local-format buffers sitting around before we reset to
2408 * extents format.
2409 */
2410static inline void
2411xfs_ifree_local_data(
2412 struct xfs_inode *ip,
2413 int whichfork)
2414{
2415 struct xfs_ifork *ifp;
2416
2417 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2418 return;
2419
2420 ifp = XFS_IFORK_PTR(ip, whichfork);
2421 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2422}
2423
1da177e4
LT
2424/*
2425 * This is called to return an inode to the inode free list.
2426 * The inode should already be truncated to 0 length and have
2427 * no pages associated with it. This routine also assumes that
2428 * the inode is already a part of the transaction.
2429 *
2430 * The on-disk copy of the inode will have been added to the list
2431 * of unlinked inodes in the AGI. We need to remove the inode from
2432 * that list atomically with respect to freeing it here.
2433 */
2434int
2435xfs_ifree(
2436 xfs_trans_t *tp,
2437 xfs_inode_t *ip,
2c3234d1 2438 struct xfs_defer_ops *dfops)
1da177e4
LT
2439{
2440 int error;
09b56604 2441 struct xfs_icluster xic = { 0 };
1da177e4 2442
579aa9ca 2443 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2444 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2445 ASSERT(ip->i_d.di_nextents == 0);
2446 ASSERT(ip->i_d.di_anextents == 0);
c19b3b05 2447 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2448 ASSERT(ip->i_d.di_nblocks == 0);
2449
2450 /*
2451 * Pull the on-disk inode from the AGI unlinked list.
2452 */
2453 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2454 if (error)
1da177e4 2455 return error;
1da177e4 2456
2c3234d1 2457 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
1baaed8f 2458 if (error)
1da177e4 2459 return error;
1baaed8f 2460
98c4f78d
DW
2461 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2462 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2463
c19b3b05 2464 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4 2465 ip->i_d.di_flags = 0;
beaae8cd 2466 ip->i_d.di_flags2 = 0;
1da177e4
LT
2467 ip->i_d.di_dmevmask = 0;
2468 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2469 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2470 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
dc1baa71
ES
2471
2472 /* Don't attempt to replay owner changes for a deleted inode */
2473 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2474
1da177e4
LT
2475 /*
2476 * Bump the generation count so no one will be confused
2477 * by reincarnations of this inode.
2478 */
9e9a2674 2479 VFS_I(ip)->i_generation++;
1da177e4
LT
2480 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2481
09b56604
BF
2482 if (xic.deleted)
2483 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2484
2a30f36d 2485 return error;
1da177e4
LT
2486}
2487
1da177e4 2488/*
60ec6783
CH
2489 * This is called to unpin an inode. The caller must have the inode locked
2490 * in at least shared mode so that the buffer cannot be subsequently pinned
2491 * once someone is waiting for it to be unpinned.
1da177e4 2492 */
60ec6783 2493static void
f392e631 2494xfs_iunpin(
60ec6783 2495 struct xfs_inode *ip)
1da177e4 2496{
579aa9ca 2497 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2498
4aaf15d1
DC
2499 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2500
a3f74ffb 2501 /* Give the log a push to start the unpinning I/O */
656de4ff 2502 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
a14a348b 2503
a3f74ffb 2504}
1da177e4 2505
f392e631
CH
2506static void
2507__xfs_iunpin_wait(
2508 struct xfs_inode *ip)
2509{
2510 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2511 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2512
2513 xfs_iunpin(ip);
2514
2515 do {
21417136 2516 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2517 if (xfs_ipincount(ip))
2518 io_schedule();
2519 } while (xfs_ipincount(ip));
21417136 2520 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2521}
2522
777df5af 2523void
a3f74ffb 2524xfs_iunpin_wait(
60ec6783 2525 struct xfs_inode *ip)
a3f74ffb 2526{
f392e631
CH
2527 if (xfs_ipincount(ip))
2528 __xfs_iunpin_wait(ip);
1da177e4
LT
2529}
2530
27320369
DC
2531/*
2532 * Removing an inode from the namespace involves removing the directory entry
2533 * and dropping the link count on the inode. Removing the directory entry can
2534 * result in locking an AGF (directory blocks were freed) and removing a link
2535 * count can result in placing the inode on an unlinked list which results in
2536 * locking an AGI.
2537 *
2538 * The big problem here is that we have an ordering constraint on AGF and AGI
2539 * locking - inode allocation locks the AGI, then can allocate a new extent for
2540 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2541 * removes the inode from the unlinked list, requiring that we lock the AGI
2542 * first, and then freeing the inode can result in an inode chunk being freed
2543 * and hence freeing disk space requiring that we lock an AGF.
2544 *
2545 * Hence the ordering that is imposed by other parts of the code is AGI before
2546 * AGF. This means we cannot remove the directory entry before we drop the inode
2547 * reference count and put it on the unlinked list as this results in a lock
2548 * order of AGF then AGI, and this can deadlock against inode allocation and
2549 * freeing. Therefore we must drop the link counts before we remove the
2550 * directory entry.
2551 *
2552 * This is still safe from a transactional point of view - it is not until we
310a75a3 2553 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2554 * transactions in this operation. Hence as long as we remove the directory
2555 * entry and drop the link count in the first transaction of the remove
2556 * operation, there are no transactional constraints on the ordering here.
2557 */
c24b5dfa
DC
2558int
2559xfs_remove(
2560 xfs_inode_t *dp,
2561 struct xfs_name *name,
2562 xfs_inode_t *ip)
2563{
2564 xfs_mount_t *mp = dp->i_mount;
2565 xfs_trans_t *tp = NULL;
c19b3b05 2566 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2567 int error = 0;
2c3234d1 2568 struct xfs_defer_ops dfops;
c24b5dfa 2569 xfs_fsblock_t first_block;
c24b5dfa 2570 uint resblks;
c24b5dfa
DC
2571
2572 trace_xfs_remove(dp, name);
2573
2574 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2575 return -EIO;
c24b5dfa
DC
2576
2577 error = xfs_qm_dqattach(dp, 0);
2578 if (error)
2579 goto std_return;
2580
2581 error = xfs_qm_dqattach(ip, 0);
2582 if (error)
2583 goto std_return;
2584
c24b5dfa
DC
2585 /*
2586 * We try to get the real space reservation first,
2587 * allowing for directory btree deletion(s) implying
2588 * possible bmap insert(s). If we can't get the space
2589 * reservation then we use 0 instead, and avoid the bmap
2590 * btree insert(s) in the directory code by, if the bmap
2591 * insert tries to happen, instead trimming the LAST
2592 * block from the directory.
2593 */
2594 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2595 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2596 if (error == -ENOSPC) {
c24b5dfa 2597 resblks = 0;
253f4911
CH
2598 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2599 &tp);
c24b5dfa
DC
2600 }
2601 if (error) {
2451337d 2602 ASSERT(error != -ENOSPC);
253f4911 2603 goto std_return;
c24b5dfa
DC
2604 }
2605
7c2d238a 2606 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
c24b5dfa 2607
65523218 2608 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2609 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2610
2611 /*
2612 * If we're removing a directory perform some additional validation.
2613 */
2614 if (is_dir) {
54d7b5c1
DC
2615 ASSERT(VFS_I(ip)->i_nlink >= 2);
2616 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2617 error = -ENOTEMPTY;
c24b5dfa
DC
2618 goto out_trans_cancel;
2619 }
2620 if (!xfs_dir_isempty(ip)) {
2451337d 2621 error = -ENOTEMPTY;
c24b5dfa
DC
2622 goto out_trans_cancel;
2623 }
c24b5dfa 2624
27320369 2625 /* Drop the link from ip's "..". */
c24b5dfa
DC
2626 error = xfs_droplink(tp, dp);
2627 if (error)
27320369 2628 goto out_trans_cancel;
c24b5dfa 2629
27320369 2630 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2631 error = xfs_droplink(tp, ip);
2632 if (error)
27320369 2633 goto out_trans_cancel;
c24b5dfa
DC
2634 } else {
2635 /*
2636 * When removing a non-directory we need to log the parent
2637 * inode here. For a directory this is done implicitly
2638 * by the xfs_droplink call for the ".." entry.
2639 */
2640 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2641 }
27320369 2642 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2643
27320369 2644 /* Drop the link from dp to ip. */
c24b5dfa
DC
2645 error = xfs_droplink(tp, ip);
2646 if (error)
27320369 2647 goto out_trans_cancel;
c24b5dfa 2648
2c3234d1 2649 xfs_defer_init(&dfops, &first_block);
27320369 2650 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2c3234d1 2651 &first_block, &dfops, resblks);
27320369 2652 if (error) {
2451337d 2653 ASSERT(error != -ENOENT);
27320369
DC
2654 goto out_bmap_cancel;
2655 }
2656
c24b5dfa
DC
2657 /*
2658 * If this is a synchronous mount, make sure that the
2659 * remove transaction goes to disk before returning to
2660 * the user.
2661 */
2662 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2663 xfs_trans_set_sync(tp);
2664
8ad7c629 2665 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa
DC
2666 if (error)
2667 goto out_bmap_cancel;
2668
70393313 2669 error = xfs_trans_commit(tp);
c24b5dfa
DC
2670 if (error)
2671 goto std_return;
2672
2cd2ef6a 2673 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2674 xfs_filestream_deassociate(ip);
2675
2676 return 0;
2677
2678 out_bmap_cancel:
2c3234d1 2679 xfs_defer_cancel(&dfops);
c24b5dfa 2680 out_trans_cancel:
4906e215 2681 xfs_trans_cancel(tp);
c24b5dfa
DC
2682 std_return:
2683 return error;
2684}
2685
f6bba201
DC
2686/*
2687 * Enter all inodes for a rename transaction into a sorted array.
2688 */
95afcf5c 2689#define __XFS_SORT_INODES 5
f6bba201
DC
2690STATIC void
2691xfs_sort_for_rename(
95afcf5c
DC
2692 struct xfs_inode *dp1, /* in: old (source) directory inode */
2693 struct xfs_inode *dp2, /* in: new (target) directory inode */
2694 struct xfs_inode *ip1, /* in: inode of old entry */
2695 struct xfs_inode *ip2, /* in: inode of new entry */
2696 struct xfs_inode *wip, /* in: whiteout inode */
2697 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2698 int *num_inodes) /* in/out: inodes in array */
f6bba201 2699{
f6bba201
DC
2700 int i, j;
2701
95afcf5c
DC
2702 ASSERT(*num_inodes == __XFS_SORT_INODES);
2703 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2704
f6bba201
DC
2705 /*
2706 * i_tab contains a list of pointers to inodes. We initialize
2707 * the table here & we'll sort it. We will then use it to
2708 * order the acquisition of the inode locks.
2709 *
2710 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2711 */
95afcf5c
DC
2712 i = 0;
2713 i_tab[i++] = dp1;
2714 i_tab[i++] = dp2;
2715 i_tab[i++] = ip1;
2716 if (ip2)
2717 i_tab[i++] = ip2;
2718 if (wip)
2719 i_tab[i++] = wip;
2720 *num_inodes = i;
f6bba201
DC
2721
2722 /*
2723 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2724 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2725 */
2726 for (i = 0; i < *num_inodes; i++) {
2727 for (j = 1; j < *num_inodes; j++) {
2728 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2729 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2730 i_tab[j] = i_tab[j-1];
2731 i_tab[j-1] = temp;
2732 }
2733 }
2734 }
2735}
2736
310606b0
DC
2737static int
2738xfs_finish_rename(
2739 struct xfs_trans *tp,
2c3234d1 2740 struct xfs_defer_ops *dfops)
310606b0 2741{
310606b0
DC
2742 int error;
2743
2744 /*
2745 * If this is a synchronous mount, make sure that the rename transaction
2746 * goes to disk before returning to the user.
2747 */
2748 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2749 xfs_trans_set_sync(tp);
2750
8ad7c629 2751 error = xfs_defer_finish(&tp, dfops);
310606b0 2752 if (error) {
2c3234d1 2753 xfs_defer_cancel(dfops);
4906e215 2754 xfs_trans_cancel(tp);
310606b0
DC
2755 return error;
2756 }
2757
70393313 2758 return xfs_trans_commit(tp);
310606b0
DC
2759}
2760
d31a1825
CM
2761/*
2762 * xfs_cross_rename()
2763 *
2764 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2765 */
2766STATIC int
2767xfs_cross_rename(
2768 struct xfs_trans *tp,
2769 struct xfs_inode *dp1,
2770 struct xfs_name *name1,
2771 struct xfs_inode *ip1,
2772 struct xfs_inode *dp2,
2773 struct xfs_name *name2,
2774 struct xfs_inode *ip2,
2c3234d1 2775 struct xfs_defer_ops *dfops,
d31a1825
CM
2776 xfs_fsblock_t *first_block,
2777 int spaceres)
2778{
2779 int error = 0;
2780 int ip1_flags = 0;
2781 int ip2_flags = 0;
2782 int dp2_flags = 0;
2783
2784 /* Swap inode number for dirent in first parent */
2785 error = xfs_dir_replace(tp, dp1, name1,
2786 ip2->i_ino,
2c3234d1 2787 first_block, dfops, spaceres);
d31a1825 2788 if (error)
eeacd321 2789 goto out_trans_abort;
d31a1825
CM
2790
2791 /* Swap inode number for dirent in second parent */
2792 error = xfs_dir_replace(tp, dp2, name2,
2793 ip1->i_ino,
2c3234d1 2794 first_block, dfops, spaceres);
d31a1825 2795 if (error)
eeacd321 2796 goto out_trans_abort;
d31a1825
CM
2797
2798 /*
2799 * If we're renaming one or more directories across different parents,
2800 * update the respective ".." entries (and link counts) to match the new
2801 * parents.
2802 */
2803 if (dp1 != dp2) {
2804 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805
c19b3b05 2806 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2807 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2808 dp1->i_ino, first_block,
2c3234d1 2809 dfops, spaceres);
d31a1825 2810 if (error)
eeacd321 2811 goto out_trans_abort;
d31a1825
CM
2812
2813 /* transfer ip2 ".." reference to dp1 */
c19b3b05 2814 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2815 error = xfs_droplink(tp, dp2);
2816 if (error)
eeacd321 2817 goto out_trans_abort;
d31a1825
CM
2818 error = xfs_bumplink(tp, dp1);
2819 if (error)
eeacd321 2820 goto out_trans_abort;
d31a1825
CM
2821 }
2822
2823 /*
2824 * Although ip1 isn't changed here, userspace needs
2825 * to be warned about the change, so that applications
2826 * relying on it (like backup ones), will properly
2827 * notify the change
2828 */
2829 ip1_flags |= XFS_ICHGTIME_CHG;
2830 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2831 }
2832
c19b3b05 2833 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2834 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2835 dp2->i_ino, first_block,
2c3234d1 2836 dfops, spaceres);
d31a1825 2837 if (error)
eeacd321 2838 goto out_trans_abort;
d31a1825
CM
2839
2840 /* transfer ip1 ".." reference to dp2 */
c19b3b05 2841 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2842 error = xfs_droplink(tp, dp1);
2843 if (error)
eeacd321 2844 goto out_trans_abort;
d31a1825
CM
2845 error = xfs_bumplink(tp, dp2);
2846 if (error)
eeacd321 2847 goto out_trans_abort;
d31a1825
CM
2848 }
2849
2850 /*
2851 * Although ip2 isn't changed here, userspace needs
2852 * to be warned about the change, so that applications
2853 * relying on it (like backup ones), will properly
2854 * notify the change
2855 */
2856 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2857 ip2_flags |= XFS_ICHGTIME_CHG;
2858 }
2859 }
2860
2861 if (ip1_flags) {
2862 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2863 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2864 }
2865 if (ip2_flags) {
2866 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2867 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2868 }
2869 if (dp2_flags) {
2870 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2871 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2872 }
2873 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2874 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2c3234d1 2875 return xfs_finish_rename(tp, dfops);
eeacd321
DC
2876
2877out_trans_abort:
2c3234d1 2878 xfs_defer_cancel(dfops);
4906e215 2879 xfs_trans_cancel(tp);
d31a1825
CM
2880 return error;
2881}
2882
7dcf5c3e
DC
2883/*
2884 * xfs_rename_alloc_whiteout()
2885 *
2886 * Return a referenced, unlinked, unlocked inode that that can be used as a
2887 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2888 * crash between allocating the inode and linking it into the rename transaction
2889 * recovery will free the inode and we won't leak it.
2890 */
2891static int
2892xfs_rename_alloc_whiteout(
2893 struct xfs_inode *dp,
2894 struct xfs_inode **wip)
2895{
2896 struct xfs_inode *tmpfile;
2897 int error;
2898
a1f69417 2899 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
7dcf5c3e
DC
2900 if (error)
2901 return error;
2902
22419ac9
BF
2903 /*
2904 * Prepare the tmpfile inode as if it were created through the VFS.
2905 * Otherwise, the link increment paths will complain about nlink 0->1.
2906 * Drop the link count as done by d_tmpfile(), complete the inode setup
2907 * and flag it as linkable.
2908 */
2909 drop_nlink(VFS_I(tmpfile));
2b3d1d41 2910 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
2911 xfs_finish_inode_setup(tmpfile);
2912 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2913
2914 *wip = tmpfile;
2915 return 0;
2916}
2917
f6bba201
DC
2918/*
2919 * xfs_rename
2920 */
2921int
2922xfs_rename(
7dcf5c3e
DC
2923 struct xfs_inode *src_dp,
2924 struct xfs_name *src_name,
2925 struct xfs_inode *src_ip,
2926 struct xfs_inode *target_dp,
2927 struct xfs_name *target_name,
2928 struct xfs_inode *target_ip,
2929 unsigned int flags)
f6bba201 2930{
7dcf5c3e
DC
2931 struct xfs_mount *mp = src_dp->i_mount;
2932 struct xfs_trans *tp;
2c3234d1 2933 struct xfs_defer_ops dfops;
7dcf5c3e
DC
2934 xfs_fsblock_t first_block;
2935 struct xfs_inode *wip = NULL; /* whiteout inode */
2936 struct xfs_inode *inodes[__XFS_SORT_INODES];
2937 int num_inodes = __XFS_SORT_INODES;
2b93681f 2938 bool new_parent = (src_dp != target_dp);
c19b3b05 2939 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
2940 int spaceres;
2941 int error;
f6bba201
DC
2942
2943 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2944
eeacd321
DC
2945 if ((flags & RENAME_EXCHANGE) && !target_ip)
2946 return -EINVAL;
2947
7dcf5c3e
DC
2948 /*
2949 * If we are doing a whiteout operation, allocate the whiteout inode
2950 * we will be placing at the target and ensure the type is set
2951 * appropriately.
2952 */
2953 if (flags & RENAME_WHITEOUT) {
2954 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2955 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2956 if (error)
2957 return error;
2958
2959 /* setup target dirent info as whiteout */
2960 src_name->type = XFS_DIR3_FT_CHRDEV;
2961 }
f6bba201 2962
7dcf5c3e 2963 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2964 inodes, &num_inodes);
2965
f6bba201 2966 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 2967 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 2968 if (error == -ENOSPC) {
f6bba201 2969 spaceres = 0;
253f4911
CH
2970 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2971 &tp);
f6bba201 2972 }
445883e8 2973 if (error)
253f4911 2974 goto out_release_wip;
f6bba201
DC
2975
2976 /*
2977 * Attach the dquots to the inodes
2978 */
2979 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2980 if (error)
2981 goto out_trans_cancel;
f6bba201
DC
2982
2983 /*
2984 * Lock all the participating inodes. Depending upon whether
2985 * the target_name exists in the target directory, and
2986 * whether the target directory is the same as the source
2987 * directory, we can lock from 2 to 4 inodes.
2988 */
2989 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2990
2991 /*
2992 * Join all the inodes to the transaction. From this point on,
2993 * we can rely on either trans_commit or trans_cancel to unlock
2994 * them.
2995 */
65523218 2996 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 2997 if (new_parent)
65523218 2998 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
2999 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3000 if (target_ip)
3001 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
3002 if (wip)
3003 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
3004
3005 /*
3006 * If we are using project inheritance, we only allow renames
3007 * into our tree when the project IDs are the same; else the
3008 * tree quota mechanism would be circumvented.
3009 */
3010 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3011 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 3012 error = -EXDEV;
445883e8 3013 goto out_trans_cancel;
f6bba201
DC
3014 }
3015
2c3234d1 3016 xfs_defer_init(&dfops, &first_block);
445883e8 3017
eeacd321
DC
3018 /* RENAME_EXCHANGE is unique from here on. */
3019 if (flags & RENAME_EXCHANGE)
3020 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3021 target_dp, target_name, target_ip,
2c3234d1 3022 &dfops, &first_block, spaceres);
d31a1825 3023
f6bba201
DC
3024 /*
3025 * Set up the target.
3026 */
3027 if (target_ip == NULL) {
3028 /*
3029 * If there's no space reservation, check the entry will
3030 * fit before actually inserting it.
3031 */
94f3cad5
ES
3032 if (!spaceres) {
3033 error = xfs_dir_canenter(tp, target_dp, target_name);
3034 if (error)
445883e8 3035 goto out_trans_cancel;
94f3cad5 3036 }
f6bba201
DC
3037 /*
3038 * If target does not exist and the rename crosses
3039 * directories, adjust the target directory link count
3040 * to account for the ".." reference from the new entry.
3041 */
3042 error = xfs_dir_createname(tp, target_dp, target_name,
3043 src_ip->i_ino, &first_block,
2c3234d1 3044 &dfops, spaceres);
f6bba201 3045 if (error)
4906e215 3046 goto out_bmap_cancel;
f6bba201
DC
3047
3048 xfs_trans_ichgtime(tp, target_dp,
3049 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3050
3051 if (new_parent && src_is_directory) {
3052 error = xfs_bumplink(tp, target_dp);
3053 if (error)
4906e215 3054 goto out_bmap_cancel;
f6bba201
DC
3055 }
3056 } else { /* target_ip != NULL */
3057 /*
3058 * If target exists and it's a directory, check that both
3059 * target and source are directories and that target can be
3060 * destroyed, or that neither is a directory.
3061 */
c19b3b05 3062 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
f6bba201
DC
3063 /*
3064 * Make sure target dir is empty.
3065 */
3066 if (!(xfs_dir_isempty(target_ip)) ||
54d7b5c1 3067 (VFS_I(target_ip)->i_nlink > 2)) {
2451337d 3068 error = -EEXIST;
445883e8 3069 goto out_trans_cancel;
f6bba201
DC
3070 }
3071 }
3072
3073 /*
3074 * Link the source inode under the target name.
3075 * If the source inode is a directory and we are moving
3076 * it across directories, its ".." entry will be
3077 * inconsistent until we replace that down below.
3078 *
3079 * In case there is already an entry with the same
3080 * name at the destination directory, remove it first.
3081 */
3082 error = xfs_dir_replace(tp, target_dp, target_name,
3083 src_ip->i_ino,
2c3234d1 3084 &first_block, &dfops, spaceres);
f6bba201 3085 if (error)
4906e215 3086 goto out_bmap_cancel;
f6bba201
DC
3087
3088 xfs_trans_ichgtime(tp, target_dp,
3089 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3090
3091 /*
3092 * Decrement the link count on the target since the target
3093 * dir no longer points to it.
3094 */
3095 error = xfs_droplink(tp, target_ip);
3096 if (error)
4906e215 3097 goto out_bmap_cancel;
f6bba201
DC
3098
3099 if (src_is_directory) {
3100 /*
3101 * Drop the link from the old "." entry.
3102 */
3103 error = xfs_droplink(tp, target_ip);
3104 if (error)
4906e215 3105 goto out_bmap_cancel;
f6bba201
DC
3106 }
3107 } /* target_ip != NULL */
3108
3109 /*
3110 * Remove the source.
3111 */
3112 if (new_parent && src_is_directory) {
3113 /*
3114 * Rewrite the ".." entry to point to the new
3115 * directory.
3116 */
3117 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3118 target_dp->i_ino,
2c3234d1 3119 &first_block, &dfops, spaceres);
2451337d 3120 ASSERT(error != -EEXIST);
f6bba201 3121 if (error)
4906e215 3122 goto out_bmap_cancel;
f6bba201
DC
3123 }
3124
3125 /*
3126 * We always want to hit the ctime on the source inode.
3127 *
3128 * This isn't strictly required by the standards since the source
3129 * inode isn't really being changed, but old unix file systems did
3130 * it and some incremental backup programs won't work without it.
3131 */
3132 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3133 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3134
3135 /*
3136 * Adjust the link count on src_dp. This is necessary when
3137 * renaming a directory, either within one parent when
3138 * the target existed, or across two parent directories.
3139 */
3140 if (src_is_directory && (new_parent || target_ip != NULL)) {
3141
3142 /*
3143 * Decrement link count on src_directory since the
3144 * entry that's moved no longer points to it.
3145 */
3146 error = xfs_droplink(tp, src_dp);
3147 if (error)
4906e215 3148 goto out_bmap_cancel;
f6bba201
DC
3149 }
3150
7dcf5c3e
DC
3151 /*
3152 * For whiteouts, we only need to update the source dirent with the
3153 * inode number of the whiteout inode rather than removing it
3154 * altogether.
3155 */
3156 if (wip) {
3157 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
2c3234d1 3158 &first_block, &dfops, spaceres);
7dcf5c3e
DC
3159 } else
3160 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2c3234d1 3161 &first_block, &dfops, spaceres);
f6bba201 3162 if (error)
4906e215 3163 goto out_bmap_cancel;
f6bba201
DC
3164
3165 /*
7dcf5c3e
DC
3166 * For whiteouts, we need to bump the link count on the whiteout inode.
3167 * This means that failures all the way up to this point leave the inode
3168 * on the unlinked list and so cleanup is a simple matter of dropping
3169 * the remaining reference to it. If we fail here after bumping the link
3170 * count, we're shutting down the filesystem so we'll never see the
3171 * intermediate state on disk.
f6bba201 3172 */
7dcf5c3e 3173 if (wip) {
54d7b5c1 3174 ASSERT(VFS_I(wip)->i_nlink == 0);
7dcf5c3e
DC
3175 error = xfs_bumplink(tp, wip);
3176 if (error)
4906e215 3177 goto out_bmap_cancel;
7dcf5c3e
DC
3178 error = xfs_iunlink_remove(tp, wip);
3179 if (error)
4906e215 3180 goto out_bmap_cancel;
7dcf5c3e 3181 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3182
7dcf5c3e
DC
3183 /*
3184 * Now we have a real link, clear the "I'm a tmpfile" state
3185 * flag from the inode so it doesn't accidentally get misused in
3186 * future.
3187 */
3188 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3189 }
3190
f6bba201
DC
3191 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3192 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3193 if (new_parent)
3194 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3195
2c3234d1 3196 error = xfs_finish_rename(tp, &dfops);
7dcf5c3e
DC
3197 if (wip)
3198 IRELE(wip);
3199 return error;
f6bba201 3200
445883e8 3201out_bmap_cancel:
2c3234d1 3202 xfs_defer_cancel(&dfops);
445883e8 3203out_trans_cancel:
4906e215 3204 xfs_trans_cancel(tp);
253f4911 3205out_release_wip:
7dcf5c3e
DC
3206 if (wip)
3207 IRELE(wip);
f6bba201
DC
3208 return error;
3209}
3210
5c4d97d0
DC
3211STATIC int
3212xfs_iflush_cluster(
19429363
DC
3213 struct xfs_inode *ip,
3214 struct xfs_buf *bp)
1da177e4 3215{
19429363 3216 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3217 struct xfs_perag *pag;
3218 unsigned long first_index, mask;
3219 unsigned long inodes_per_cluster;
19429363
DC
3220 int cilist_size;
3221 struct xfs_inode **cilist;
3222 struct xfs_inode *cip;
5c4d97d0
DC
3223 int nr_found;
3224 int clcount = 0;
3225 int bufwasdelwri;
1da177e4 3226 int i;
1da177e4 3227
5c4d97d0 3228 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3229
0f49efd8 3230 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
19429363
DC
3231 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3232 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3233 if (!cilist)
5c4d97d0 3234 goto out_put;
1da177e4 3235
0f49efd8 3236 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3237 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3238 rcu_read_lock();
3239 /* really need a gang lookup range call here */
19429363 3240 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
5c4d97d0
DC
3241 first_index, inodes_per_cluster);
3242 if (nr_found == 0)
3243 goto out_free;
3244
3245 for (i = 0; i < nr_found; i++) {
19429363
DC
3246 cip = cilist[i];
3247 if (cip == ip)
bad55843 3248 continue;
1a3e8f3d
DC
3249
3250 /*
3251 * because this is an RCU protected lookup, we could find a
3252 * recently freed or even reallocated inode during the lookup.
3253 * We need to check under the i_flags_lock for a valid inode
3254 * here. Skip it if it is not valid or the wrong inode.
3255 */
19429363
DC
3256 spin_lock(&cip->i_flags_lock);
3257 if (!cip->i_ino ||
3258 __xfs_iflags_test(cip, XFS_ISTALE)) {
3259 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3260 continue;
3261 }
5a90e53e
DC
3262
3263 /*
3264 * Once we fall off the end of the cluster, no point checking
3265 * any more inodes in the list because they will also all be
3266 * outside the cluster.
3267 */
19429363
DC
3268 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3269 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3270 break;
3271 }
19429363 3272 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3273
bad55843
DC
3274 /*
3275 * Do an un-protected check to see if the inode is dirty and
3276 * is a candidate for flushing. These checks will be repeated
3277 * later after the appropriate locks are acquired.
3278 */
19429363 3279 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3280 continue;
bad55843
DC
3281
3282 /*
3283 * Try to get locks. If any are unavailable or it is pinned,
3284 * then this inode cannot be flushed and is skipped.
3285 */
3286
19429363 3287 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3288 continue;
19429363
DC
3289 if (!xfs_iflock_nowait(cip)) {
3290 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3291 continue;
3292 }
19429363
DC
3293 if (xfs_ipincount(cip)) {
3294 xfs_ifunlock(cip);
3295 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3296 continue;
3297 }
3298
8a17d7dd
DC
3299
3300 /*
3301 * Check the inode number again, just to be certain we are not
3302 * racing with freeing in xfs_reclaim_inode(). See the comments
3303 * in that function for more information as to why the initial
3304 * check is not sufficient.
3305 */
19429363
DC
3306 if (!cip->i_ino) {
3307 xfs_ifunlock(cip);
3308 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3309 continue;
3310 }
3311
3312 /*
3313 * arriving here means that this inode can be flushed. First
3314 * re-check that it's dirty before flushing.
3315 */
19429363 3316 if (!xfs_inode_clean(cip)) {
33540408 3317 int error;
19429363 3318 error = xfs_iflush_int(cip, bp);
bad55843 3319 if (error) {
19429363 3320 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3321 goto cluster_corrupt_out;
3322 }
3323 clcount++;
3324 } else {
19429363 3325 xfs_ifunlock(cip);
bad55843 3326 }
19429363 3327 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3328 }
3329
3330 if (clcount) {
ff6d6af2
BD
3331 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3332 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3333 }
3334
3335out_free:
1a3e8f3d 3336 rcu_read_unlock();
19429363 3337 kmem_free(cilist);
44b56e0a
DC
3338out_put:
3339 xfs_perag_put(pag);
bad55843
DC
3340 return 0;
3341
3342
3343cluster_corrupt_out:
3344 /*
3345 * Corruption detected in the clustering loop. Invalidate the
3346 * inode buffer and shut down the filesystem.
3347 */
1a3e8f3d 3348 rcu_read_unlock();
bad55843 3349 /*
43ff2122 3350 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3351 * brelse can handle it with no problems. If not, shut down the
3352 * filesystem before releasing the buffer.
3353 */
43ff2122 3354 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3355 if (bufwasdelwri)
3356 xfs_buf_relse(bp);
3357
3358 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3359
3360 if (!bufwasdelwri) {
3361 /*
3362 * Just like incore_relse: if we have b_iodone functions,
3363 * mark the buffer as an error and call them. Otherwise
3364 * mark it as stale and brelse.
3365 */
cb669ca5 3366 if (bp->b_iodone) {
b0388bf1 3367 bp->b_flags &= ~XBF_DONE;
c867cb61 3368 xfs_buf_stale(bp);
2451337d 3369 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3370 xfs_buf_ioend(bp);
bad55843 3371 } else {
c867cb61 3372 xfs_buf_stale(bp);
bad55843
DC
3373 xfs_buf_relse(bp);
3374 }
3375 }
3376
3377 /*
3378 * Unlocks the flush lock
3379 */
19429363
DC
3380 xfs_iflush_abort(cip, false);
3381 kmem_free(cilist);
44b56e0a 3382 xfs_perag_put(pag);
2451337d 3383 return -EFSCORRUPTED;
bad55843
DC
3384}
3385
1da177e4 3386/*
4c46819a
CH
3387 * Flush dirty inode metadata into the backing buffer.
3388 *
3389 * The caller must have the inode lock and the inode flush lock held. The
3390 * inode lock will still be held upon return to the caller, and the inode
3391 * flush lock will be released after the inode has reached the disk.
3392 *
3393 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3394 */
3395int
3396xfs_iflush(
4c46819a
CH
3397 struct xfs_inode *ip,
3398 struct xfs_buf **bpp)
1da177e4 3399{
4c46819a 3400 struct xfs_mount *mp = ip->i_mount;
b1438f47 3401 struct xfs_buf *bp = NULL;
4c46819a 3402 struct xfs_dinode *dip;
1da177e4 3403 int error;
1da177e4 3404
ff6d6af2 3405 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3406
579aa9ca 3407 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3408 ASSERT(xfs_isiflocked(ip));
1da177e4 3409 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3410 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3411
4c46819a 3412 *bpp = NULL;
1da177e4 3413
1da177e4
LT
3414 xfs_iunpin_wait(ip);
3415
4b6a4688
DC
3416 /*
3417 * For stale inodes we cannot rely on the backing buffer remaining
3418 * stale in cache for the remaining life of the stale inode and so
475ee413 3419 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3420 * inodes below. We have to check this after ensuring the inode is
3421 * unpinned so that it is safe to reclaim the stale inode after the
3422 * flush call.
3423 */
3424 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3425 xfs_ifunlock(ip);
3426 return 0;
3427 }
3428
1da177e4
LT
3429 /*
3430 * This may have been unpinned because the filesystem is shutting
3431 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3432 * to disk, because the log record didn't make it to disk.
3433 *
3434 * We also have to remove the log item from the AIL in this case,
3435 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3436 */
3437 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3438 error = -EIO;
32ce90a4 3439 goto abort_out;
1da177e4
LT
3440 }
3441
a3f74ffb 3442 /*
b1438f47
DC
3443 * Get the buffer containing the on-disk inode. We are doing a try-lock
3444 * operation here, so we may get an EAGAIN error. In that case, we
3445 * simply want to return with the inode still dirty.
3446 *
3447 * If we get any other error, we effectively have a corruption situation
3448 * and we cannot flush the inode, so we treat it the same as failing
3449 * xfs_iflush_int().
a3f74ffb 3450 */
475ee413
CH
3451 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3452 0);
b1438f47 3453 if (error == -EAGAIN) {
a3f74ffb
DC
3454 xfs_ifunlock(ip);
3455 return error;
3456 }
b1438f47
DC
3457 if (error)
3458 goto corrupt_out;
a3f74ffb 3459
1da177e4
LT
3460 /*
3461 * First flush out the inode that xfs_iflush was called with.
3462 */
3463 error = xfs_iflush_int(ip, bp);
bad55843 3464 if (error)
1da177e4 3465 goto corrupt_out;
1da177e4 3466
a3f74ffb
DC
3467 /*
3468 * If the buffer is pinned then push on the log now so we won't
3469 * get stuck waiting in the write for too long.
3470 */
811e64c7 3471 if (xfs_buf_ispinned(bp))
a14a348b 3472 xfs_log_force(mp, 0);
a3f74ffb 3473
1da177e4
LT
3474 /*
3475 * inode clustering:
3476 * see if other inodes can be gathered into this write
3477 */
bad55843
DC
3478 error = xfs_iflush_cluster(ip, bp);
3479 if (error)
3480 goto cluster_corrupt_out;
1da177e4 3481
4c46819a
CH
3482 *bpp = bp;
3483 return 0;
1da177e4
LT
3484
3485corrupt_out:
b1438f47
DC
3486 if (bp)
3487 xfs_buf_relse(bp);
7d04a335 3488 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3489cluster_corrupt_out:
2451337d 3490 error = -EFSCORRUPTED;
32ce90a4 3491abort_out:
1da177e4
LT
3492 /*
3493 * Unlocks the flush lock
3494 */
04913fdd 3495 xfs_iflush_abort(ip, false);
32ce90a4 3496 return error;
1da177e4
LT
3497}
3498
9cfb9b47
DW
3499/*
3500 * If there are inline format data / attr forks attached to this inode,
3501 * make sure they're not corrupt.
3502 */
3503bool
3504xfs_inode_verify_forks(
3505 struct xfs_inode *ip)
3506{
22431bf3 3507 struct xfs_ifork *ifp;
9cfb9b47
DW
3508 xfs_failaddr_t fa;
3509
3510 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3511 if (fa) {
22431bf3
DW
3512 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3513 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3514 ifp->if_u1.if_data, ifp->if_bytes, fa);
9cfb9b47
DW
3515 return false;
3516 }
3517
3518 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3519 if (fa) {
22431bf3
DW
3520 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3521 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3522 ifp ? ifp->if_u1.if_data : NULL,
3523 ifp ? ifp->if_bytes : 0, fa);
9cfb9b47
DW
3524 return false;
3525 }
3526 return true;
3527}
3528
1da177e4
LT
3529STATIC int
3530xfs_iflush_int(
93848a99
CH
3531 struct xfs_inode *ip,
3532 struct xfs_buf *bp)
1da177e4 3533{
93848a99
CH
3534 struct xfs_inode_log_item *iip = ip->i_itemp;
3535 struct xfs_dinode *dip;
3536 struct xfs_mount *mp = ip->i_mount;
1da177e4 3537
579aa9ca 3538 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3539 ASSERT(xfs_isiflocked(ip));
1da177e4 3540 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3541 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3542 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3543 ASSERT(ip->i_d.di_version > 1);
1da177e4 3544
1da177e4 3545 /* set *dip = inode's place in the buffer */
88ee2df7 3546 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3547
69ef921b 3548 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3549 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939 3550 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3551 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
6a19d939 3552 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3553 goto corrupt_out;
3554 }
c19b3b05 3555 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4
LT
3556 if (XFS_TEST_ERROR(
3557 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3558 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
9e24cfd0 3559 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939 3560 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3561 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
6a19d939 3562 __func__, ip->i_ino, ip);
1da177e4
LT
3563 goto corrupt_out;
3564 }
c19b3b05 3565 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4
LT
3566 if (XFS_TEST_ERROR(
3567 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3568 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3569 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
9e24cfd0 3570 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939 3571 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3572 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
6a19d939 3573 __func__, ip->i_ino, ip);
1da177e4
LT
3574 goto corrupt_out;
3575 }
3576 }
3577 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
9e24cfd0 3578 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3579 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3580 "%s: detected corrupt incore inode %Lu, "
c9690043 3581 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
6a19d939 3582 __func__, ip->i_ino,
1da177e4 3583 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3584 ip->i_d.di_nblocks, ip);
1da177e4
LT
3585 goto corrupt_out;
3586 }
3587 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3588 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939 3589 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3590 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
6a19d939 3591 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3592 goto corrupt_out;
3593 }
e60896d8 3594
1da177e4 3595 /*
263997a6 3596 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3597 * di_flushiter count for correct sequencing. We bump the flush
3598 * iteration count so we can detect flushes which postdate a log record
3599 * during recovery. This is redundant as we now log every change and
3600 * hence this can't happen but we need to still do it to ensure
3601 * backwards compatibility with old kernels that predate logging all
3602 * inode changes.
1da177e4 3603 */
e60896d8
DC
3604 if (ip->i_d.di_version < 3)
3605 ip->i_d.di_flushiter++;
1da177e4 3606
9cfb9b47
DW
3607 /* Check the inline fork data before we write out. */
3608 if (!xfs_inode_verify_forks(ip))
005c5db8
DW
3609 goto corrupt_out;
3610
1da177e4 3611 /*
3987848c
DC
3612 * Copy the dirty parts of the inode into the on-disk inode. We always
3613 * copy out the core of the inode, because if the inode is dirty at all
3614 * the core must be.
1da177e4 3615 */
93f958f9 3616 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3617
3618 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3619 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3620 ip->i_d.di_flushiter = 0;
3621
005c5db8
DW
3622 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3623 if (XFS_IFORK_Q(ip))
3624 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3625 xfs_inobp_check(mp, bp);
3626
3627 /*
f5d8d5c4
CH
3628 * We've recorded everything logged in the inode, so we'd like to clear
3629 * the ili_fields bits so we don't log and flush things unnecessarily.
3630 * However, we can't stop logging all this information until the data
3631 * we've copied into the disk buffer is written to disk. If we did we
3632 * might overwrite the copy of the inode in the log with all the data
3633 * after re-logging only part of it, and in the face of a crash we
3634 * wouldn't have all the data we need to recover.
1da177e4 3635 *
f5d8d5c4
CH
3636 * What we do is move the bits to the ili_last_fields field. When
3637 * logging the inode, these bits are moved back to the ili_fields field.
3638 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3639 * know that the information those bits represent is permanently on
3640 * disk. As long as the flush completes before the inode is logged
3641 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3642 *
f5d8d5c4
CH
3643 * We can play with the ili_fields bits here, because the inode lock
3644 * must be held exclusively in order to set bits there and the flush
3645 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3646 * done routine can tell whether or not to look in the AIL. Also, store
3647 * the current LSN of the inode so that we can tell whether the item has
3648 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3649 * need the AIL lock, because it is a 64 bit value that cannot be read
3650 * atomically.
1da177e4 3651 */
93848a99
CH
3652 iip->ili_last_fields = iip->ili_fields;
3653 iip->ili_fields = 0;
fc0561ce 3654 iip->ili_fsync_fields = 0;
93848a99 3655 iip->ili_logged = 1;
1da177e4 3656
93848a99
CH
3657 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3658 &iip->ili_item.li_lsn);
1da177e4 3659
93848a99
CH
3660 /*
3661 * Attach the function xfs_iflush_done to the inode's
3662 * buffer. This will remove the inode from the AIL
3663 * and unlock the inode's flush lock when the inode is
3664 * completely written to disk.
3665 */
3666 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3667
93848a99
CH
3668 /* generate the checksum. */
3669 xfs_dinode_calc_crc(mp, dip);
1da177e4 3670
643c8c05 3671 ASSERT(!list_empty(&bp->b_li_list));
93848a99 3672 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3673 return 0;
3674
3675corrupt_out:
2451337d 3676 return -EFSCORRUPTED;
1da177e4 3677}
This page took 1.648134 seconds and 4 git commands to generate.