]>
Commit | Line | Data |
---|---|---|
fcd8b7c0 AG |
1 | /* |
2 | * Copyright (c) 2006 Oracle. All rights reserved. | |
3 | * | |
4 | * This software is available to you under a choice of one of two | |
5 | * licenses. You may choose to be licensed under the terms of the GNU | |
6 | * General Public License (GPL) Version 2, available from the file | |
7 | * COPYING in the main directory of this source tree, or the | |
8 | * OpenIB.org BSD license below: | |
9 | * | |
10 | * Redistribution and use in source and binary forms, with or | |
11 | * without modification, are permitted provided that the following | |
12 | * conditions are met: | |
13 | * | |
14 | * - Redistributions of source code must retain the above | |
15 | * copyright notice, this list of conditions and the following | |
16 | * disclaimer. | |
17 | * | |
18 | * - Redistributions in binary form must reproduce the above | |
19 | * copyright notice, this list of conditions and the following | |
20 | * disclaimer in the documentation and/or other materials | |
21 | * provided with the distribution. | |
22 | * | |
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
30 | * SOFTWARE. | |
31 | * | |
32 | */ | |
33 | #include <linux/kernel.h> | |
34 | ||
35 | #include "rds.h" | |
36 | #include "rdma.h" | |
37 | #include "iw.h" | |
38 | ||
39 | ||
40 | /* | |
41 | * This is stored as mr->r_trans_private. | |
42 | */ | |
43 | struct rds_iw_mr { | |
44 | struct rds_iw_device *device; | |
45 | struct rds_iw_mr_pool *pool; | |
46 | struct rdma_cm_id *cm_id; | |
47 | ||
48 | struct ib_mr *mr; | |
49 | struct ib_fast_reg_page_list *page_list; | |
50 | ||
51 | struct rds_iw_mapping mapping; | |
52 | unsigned char remap_count; | |
53 | }; | |
54 | ||
55 | /* | |
56 | * Our own little MR pool | |
57 | */ | |
58 | struct rds_iw_mr_pool { | |
59 | struct rds_iw_device *device; /* back ptr to the device that owns us */ | |
60 | ||
61 | struct mutex flush_lock; /* serialize fmr invalidate */ | |
62 | struct work_struct flush_worker; /* flush worker */ | |
63 | ||
64 | spinlock_t list_lock; /* protect variables below */ | |
65 | atomic_t item_count; /* total # of MRs */ | |
66 | atomic_t dirty_count; /* # dirty of MRs */ | |
67 | struct list_head dirty_list; /* dirty mappings */ | |
68 | struct list_head clean_list; /* unused & unamapped MRs */ | |
69 | atomic_t free_pinned; /* memory pinned by free MRs */ | |
70 | unsigned long max_message_size; /* in pages */ | |
71 | unsigned long max_items; | |
72 | unsigned long max_items_soft; | |
73 | unsigned long max_free_pinned; | |
74 | int max_pages; | |
75 | }; | |
76 | ||
77 | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all); | |
78 | static void rds_iw_mr_pool_flush_worker(struct work_struct *work); | |
79 | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | |
80 | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, | |
81 | struct rds_iw_mr *ibmr, | |
82 | struct scatterlist *sg, unsigned int nents); | |
83 | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | |
84 | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, | |
85 | struct list_head *unmap_list, | |
86 | struct list_head *kill_list); | |
87 | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | |
88 | ||
89 | static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id) | |
90 | { | |
91 | struct rds_iw_device *iwdev; | |
92 | struct rds_iw_cm_id *i_cm_id; | |
93 | ||
94 | *rds_iwdev = NULL; | |
95 | *cm_id = NULL; | |
96 | ||
97 | list_for_each_entry(iwdev, &rds_iw_devices, list) { | |
98 | spin_lock_irq(&iwdev->spinlock); | |
99 | list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) { | |
100 | struct sockaddr_in *src_addr, *dst_addr; | |
101 | ||
102 | src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr; | |
103 | dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr; | |
104 | ||
105 | rdsdebug("local ipaddr = %x port %d, " | |
106 | "remote ipaddr = %x port %d" | |
107 | "..looking for %x port %d, " | |
108 | "remote ipaddr = %x port %d\n", | |
109 | src_addr->sin_addr.s_addr, | |
110 | src_addr->sin_port, | |
111 | dst_addr->sin_addr.s_addr, | |
112 | dst_addr->sin_port, | |
113 | rs->rs_bound_addr, | |
114 | rs->rs_bound_port, | |
115 | rs->rs_conn_addr, | |
116 | rs->rs_conn_port); | |
117 | #ifdef WORKING_TUPLE_DETECTION | |
118 | if (src_addr->sin_addr.s_addr == rs->rs_bound_addr && | |
119 | src_addr->sin_port == rs->rs_bound_port && | |
120 | dst_addr->sin_addr.s_addr == rs->rs_conn_addr && | |
121 | dst_addr->sin_port == rs->rs_conn_port) { | |
122 | #else | |
123 | /* FIXME - needs to compare the local and remote | |
124 | * ipaddr/port tuple, but the ipaddr is the only | |
125 | * available infomation in the rds_sock (as the rest are | |
126 | * zero'ed. It doesn't appear to be properly populated | |
127 | * during connection setup... | |
128 | */ | |
129 | if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) { | |
130 | #endif | |
131 | spin_unlock_irq(&iwdev->spinlock); | |
132 | *rds_iwdev = iwdev; | |
133 | *cm_id = i_cm_id->cm_id; | |
134 | return 0; | |
135 | } | |
136 | } | |
137 | spin_unlock_irq(&iwdev->spinlock); | |
138 | } | |
139 | ||
140 | return 1; | |
141 | } | |
142 | ||
143 | static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | |
144 | { | |
145 | struct rds_iw_cm_id *i_cm_id; | |
146 | ||
147 | i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL); | |
148 | if (!i_cm_id) | |
149 | return -ENOMEM; | |
150 | ||
151 | i_cm_id->cm_id = cm_id; | |
152 | ||
153 | spin_lock_irq(&rds_iwdev->spinlock); | |
154 | list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list); | |
155 | spin_unlock_irq(&rds_iwdev->spinlock); | |
156 | ||
157 | return 0; | |
158 | } | |
159 | ||
160 | void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | |
161 | { | |
162 | struct rds_iw_cm_id *i_cm_id; | |
163 | ||
164 | spin_lock_irq(&rds_iwdev->spinlock); | |
165 | list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) { | |
166 | if (i_cm_id->cm_id == cm_id) { | |
167 | list_del(&i_cm_id->list); | |
168 | kfree(i_cm_id); | |
169 | break; | |
170 | } | |
171 | } | |
172 | spin_unlock_irq(&rds_iwdev->spinlock); | |
173 | } | |
174 | ||
175 | ||
176 | int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | |
177 | { | |
178 | struct sockaddr_in *src_addr, *dst_addr; | |
179 | struct rds_iw_device *rds_iwdev_old; | |
180 | struct rds_sock rs; | |
181 | struct rdma_cm_id *pcm_id; | |
182 | int rc; | |
183 | ||
184 | src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr; | |
185 | dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr; | |
186 | ||
187 | rs.rs_bound_addr = src_addr->sin_addr.s_addr; | |
188 | rs.rs_bound_port = src_addr->sin_port; | |
189 | rs.rs_conn_addr = dst_addr->sin_addr.s_addr; | |
190 | rs.rs_conn_port = dst_addr->sin_port; | |
191 | ||
192 | rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id); | |
193 | if (rc) | |
194 | rds_iw_remove_cm_id(rds_iwdev, cm_id); | |
195 | ||
196 | return rds_iw_add_cm_id(rds_iwdev, cm_id); | |
197 | } | |
198 | ||
745cbcca | 199 | void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) |
fcd8b7c0 AG |
200 | { |
201 | struct rds_iw_connection *ic = conn->c_transport_data; | |
202 | ||
203 | /* conn was previously on the nodev_conns_list */ | |
204 | spin_lock_irq(&iw_nodev_conns_lock); | |
205 | BUG_ON(list_empty(&iw_nodev_conns)); | |
206 | BUG_ON(list_empty(&ic->iw_node)); | |
207 | list_del(&ic->iw_node); | |
fcd8b7c0 AG |
208 | |
209 | spin_lock_irq(&rds_iwdev->spinlock); | |
210 | list_add_tail(&ic->iw_node, &rds_iwdev->conn_list); | |
211 | spin_unlock_irq(&rds_iwdev->spinlock); | |
745cbcca | 212 | spin_unlock_irq(&iw_nodev_conns_lock); |
fcd8b7c0 AG |
213 | |
214 | ic->rds_iwdev = rds_iwdev; | |
fcd8b7c0 AG |
215 | } |
216 | ||
745cbcca | 217 | void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) |
fcd8b7c0 | 218 | { |
745cbcca | 219 | struct rds_iw_connection *ic = conn->c_transport_data; |
fcd8b7c0 | 220 | |
745cbcca AG |
221 | /* place conn on nodev_conns_list */ |
222 | spin_lock(&iw_nodev_conns_lock); | |
fcd8b7c0 | 223 | |
745cbcca AG |
224 | spin_lock_irq(&rds_iwdev->spinlock); |
225 | BUG_ON(list_empty(&ic->iw_node)); | |
226 | list_del(&ic->iw_node); | |
227 | spin_unlock_irq(&rds_iwdev->spinlock); | |
228 | ||
229 | list_add_tail(&ic->iw_node, &iw_nodev_conns); | |
230 | ||
231 | spin_unlock(&iw_nodev_conns_lock); | |
232 | ||
233 | rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id); | |
234 | ic->rds_iwdev = NULL; | |
fcd8b7c0 AG |
235 | } |
236 | ||
745cbcca | 237 | void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock) |
fcd8b7c0 AG |
238 | { |
239 | struct rds_iw_connection *ic, *_ic; | |
240 | LIST_HEAD(tmp_list); | |
241 | ||
242 | /* avoid calling conn_destroy with irqs off */ | |
745cbcca AG |
243 | spin_lock_irq(list_lock); |
244 | list_splice(list, &tmp_list); | |
245 | INIT_LIST_HEAD(list); | |
246 | spin_unlock_irq(list_lock); | |
fcd8b7c0 | 247 | |
433d308d | 248 | list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) |
fcd8b7c0 | 249 | rds_conn_destroy(ic->conn); |
fcd8b7c0 AG |
250 | } |
251 | ||
252 | static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg, | |
253 | struct scatterlist *list, unsigned int sg_len) | |
254 | { | |
255 | sg->list = list; | |
256 | sg->len = sg_len; | |
257 | sg->dma_len = 0; | |
258 | sg->dma_npages = 0; | |
259 | sg->bytes = 0; | |
260 | } | |
261 | ||
262 | static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev, | |
404bb72a | 263 | struct rds_iw_scatterlist *sg) |
fcd8b7c0 AG |
264 | { |
265 | struct ib_device *dev = rds_iwdev->dev; | |
266 | u64 *dma_pages = NULL; | |
fcd8b7c0 AG |
267 | int i, j, ret; |
268 | ||
fcd8b7c0 AG |
269 | WARN_ON(sg->dma_len); |
270 | ||
271 | sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL); | |
272 | if (unlikely(!sg->dma_len)) { | |
273 | printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n"); | |
274 | return ERR_PTR(-EBUSY); | |
275 | } | |
276 | ||
277 | sg->bytes = 0; | |
278 | sg->dma_npages = 0; | |
279 | ||
280 | ret = -EINVAL; | |
281 | for (i = 0; i < sg->dma_len; ++i) { | |
282 | unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); | |
283 | u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); | |
284 | u64 end_addr; | |
285 | ||
286 | sg->bytes += dma_len; | |
287 | ||
288 | end_addr = dma_addr + dma_len; | |
404bb72a | 289 | if (dma_addr & PAGE_MASK) { |
fcd8b7c0 AG |
290 | if (i > 0) |
291 | goto out_unmap; | |
404bb72a | 292 | dma_addr &= ~PAGE_MASK; |
fcd8b7c0 | 293 | } |
404bb72a | 294 | if (end_addr & PAGE_MASK) { |
fcd8b7c0 AG |
295 | if (i < sg->dma_len - 1) |
296 | goto out_unmap; | |
404bb72a | 297 | end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK; |
fcd8b7c0 AG |
298 | } |
299 | ||
404bb72a | 300 | sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT; |
fcd8b7c0 AG |
301 | } |
302 | ||
303 | /* Now gather the dma addrs into one list */ | |
304 | if (sg->dma_npages > fastreg_message_size) | |
305 | goto out_unmap; | |
306 | ||
307 | dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC); | |
308 | if (!dma_pages) { | |
309 | ret = -ENOMEM; | |
310 | goto out_unmap; | |
311 | } | |
312 | ||
313 | for (i = j = 0; i < sg->dma_len; ++i) { | |
314 | unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); | |
315 | u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); | |
316 | u64 end_addr; | |
317 | ||
318 | end_addr = dma_addr + dma_len; | |
404bb72a AG |
319 | dma_addr &= ~PAGE_MASK; |
320 | for (; dma_addr < end_addr; dma_addr += PAGE_SIZE) | |
fcd8b7c0 AG |
321 | dma_pages[j++] = dma_addr; |
322 | BUG_ON(j > sg->dma_npages); | |
323 | } | |
324 | ||
325 | return dma_pages; | |
326 | ||
327 | out_unmap: | |
328 | ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL); | |
329 | sg->dma_len = 0; | |
330 | kfree(dma_pages); | |
331 | return ERR_PTR(ret); | |
332 | } | |
333 | ||
334 | ||
335 | struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev) | |
336 | { | |
337 | struct rds_iw_mr_pool *pool; | |
338 | ||
339 | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | |
340 | if (!pool) { | |
341 | printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n"); | |
342 | return ERR_PTR(-ENOMEM); | |
343 | } | |
344 | ||
345 | pool->device = rds_iwdev; | |
346 | INIT_LIST_HEAD(&pool->dirty_list); | |
347 | INIT_LIST_HEAD(&pool->clean_list); | |
348 | mutex_init(&pool->flush_lock); | |
349 | spin_lock_init(&pool->list_lock); | |
350 | INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker); | |
351 | ||
352 | pool->max_message_size = fastreg_message_size; | |
353 | pool->max_items = fastreg_pool_size; | |
354 | pool->max_free_pinned = pool->max_items * pool->max_message_size / 4; | |
355 | pool->max_pages = fastreg_message_size; | |
356 | ||
357 | /* We never allow more than max_items MRs to be allocated. | |
358 | * When we exceed more than max_items_soft, we start freeing | |
359 | * items more aggressively. | |
360 | * Make sure that max_items > max_items_soft > max_items / 2 | |
361 | */ | |
362 | pool->max_items_soft = pool->max_items * 3 / 4; | |
363 | ||
364 | return pool; | |
365 | } | |
366 | ||
367 | void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo) | |
368 | { | |
369 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | |
370 | ||
371 | iinfo->rdma_mr_max = pool->max_items; | |
372 | iinfo->rdma_mr_size = pool->max_pages; | |
373 | } | |
374 | ||
375 | void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool) | |
376 | { | |
377 | flush_workqueue(rds_wq); | |
378 | rds_iw_flush_mr_pool(pool, 1); | |
379 | BUG_ON(atomic_read(&pool->item_count)); | |
380 | BUG_ON(atomic_read(&pool->free_pinned)); | |
381 | kfree(pool); | |
382 | } | |
383 | ||
384 | static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool) | |
385 | { | |
386 | struct rds_iw_mr *ibmr = NULL; | |
387 | unsigned long flags; | |
388 | ||
389 | spin_lock_irqsave(&pool->list_lock, flags); | |
390 | if (!list_empty(&pool->clean_list)) { | |
391 | ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list); | |
392 | list_del_init(&ibmr->mapping.m_list); | |
393 | } | |
394 | spin_unlock_irqrestore(&pool->list_lock, flags); | |
395 | ||
396 | return ibmr; | |
397 | } | |
398 | ||
399 | static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev) | |
400 | { | |
401 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | |
402 | struct rds_iw_mr *ibmr = NULL; | |
403 | int err = 0, iter = 0; | |
404 | ||
405 | while (1) { | |
406 | ibmr = rds_iw_reuse_fmr(pool); | |
407 | if (ibmr) | |
408 | return ibmr; | |
409 | ||
410 | /* No clean MRs - now we have the choice of either | |
411 | * allocating a fresh MR up to the limit imposed by the | |
412 | * driver, or flush any dirty unused MRs. | |
413 | * We try to avoid stalling in the send path if possible, | |
414 | * so we allocate as long as we're allowed to. | |
415 | * | |
416 | * We're fussy with enforcing the FMR limit, though. If the driver | |
417 | * tells us we can't use more than N fmrs, we shouldn't start | |
418 | * arguing with it */ | |
419 | if (atomic_inc_return(&pool->item_count) <= pool->max_items) | |
420 | break; | |
421 | ||
422 | atomic_dec(&pool->item_count); | |
423 | ||
424 | if (++iter > 2) { | |
425 | rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted); | |
426 | return ERR_PTR(-EAGAIN); | |
427 | } | |
428 | ||
429 | /* We do have some empty MRs. Flush them out. */ | |
430 | rds_iw_stats_inc(s_iw_rdma_mr_pool_wait); | |
431 | rds_iw_flush_mr_pool(pool, 0); | |
432 | } | |
433 | ||
434 | ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); | |
435 | if (!ibmr) { | |
436 | err = -ENOMEM; | |
437 | goto out_no_cigar; | |
438 | } | |
439 | ||
440 | spin_lock_init(&ibmr->mapping.m_lock); | |
441 | INIT_LIST_HEAD(&ibmr->mapping.m_list); | |
442 | ibmr->mapping.m_mr = ibmr; | |
443 | ||
444 | err = rds_iw_init_fastreg(pool, ibmr); | |
445 | if (err) | |
446 | goto out_no_cigar; | |
447 | ||
448 | rds_iw_stats_inc(s_iw_rdma_mr_alloc); | |
449 | return ibmr; | |
450 | ||
451 | out_no_cigar: | |
452 | if (ibmr) { | |
453 | rds_iw_destroy_fastreg(pool, ibmr); | |
454 | kfree(ibmr); | |
455 | } | |
456 | atomic_dec(&pool->item_count); | |
457 | return ERR_PTR(err); | |
458 | } | |
459 | ||
460 | void rds_iw_sync_mr(void *trans_private, int direction) | |
461 | { | |
462 | struct rds_iw_mr *ibmr = trans_private; | |
463 | struct rds_iw_device *rds_iwdev = ibmr->device; | |
464 | ||
465 | switch (direction) { | |
466 | case DMA_FROM_DEVICE: | |
467 | ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list, | |
468 | ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); | |
469 | break; | |
470 | case DMA_TO_DEVICE: | |
471 | ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list, | |
472 | ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); | |
473 | break; | |
474 | } | |
475 | } | |
476 | ||
477 | static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all) | |
478 | { | |
479 | unsigned int item_count; | |
480 | ||
481 | item_count = atomic_read(&pool->item_count); | |
482 | if (free_all) | |
483 | return item_count; | |
484 | ||
485 | return 0; | |
486 | } | |
487 | ||
488 | /* | |
489 | * Flush our pool of MRs. | |
490 | * At a minimum, all currently unused MRs are unmapped. | |
491 | * If the number of MRs allocated exceeds the limit, we also try | |
492 | * to free as many MRs as needed to get back to this limit. | |
493 | */ | |
494 | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all) | |
495 | { | |
496 | struct rds_iw_mr *ibmr, *next; | |
497 | LIST_HEAD(unmap_list); | |
498 | LIST_HEAD(kill_list); | |
499 | unsigned long flags; | |
500 | unsigned int nfreed = 0, ncleaned = 0, free_goal; | |
501 | int ret = 0; | |
502 | ||
503 | rds_iw_stats_inc(s_iw_rdma_mr_pool_flush); | |
504 | ||
505 | mutex_lock(&pool->flush_lock); | |
506 | ||
507 | spin_lock_irqsave(&pool->list_lock, flags); | |
508 | /* Get the list of all mappings to be destroyed */ | |
509 | list_splice_init(&pool->dirty_list, &unmap_list); | |
510 | if (free_all) | |
511 | list_splice_init(&pool->clean_list, &kill_list); | |
512 | spin_unlock_irqrestore(&pool->list_lock, flags); | |
513 | ||
514 | free_goal = rds_iw_flush_goal(pool, free_all); | |
515 | ||
516 | /* Batched invalidate of dirty MRs. | |
517 | * For FMR based MRs, the mappings on the unmap list are | |
518 | * actually members of an ibmr (ibmr->mapping). They either | |
519 | * migrate to the kill_list, or have been cleaned and should be | |
520 | * moved to the clean_list. | |
521 | * For fastregs, they will be dynamically allocated, and | |
522 | * will be destroyed by the unmap function. | |
523 | */ | |
524 | if (!list_empty(&unmap_list)) { | |
525 | ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list); | |
526 | /* If we've been asked to destroy all MRs, move those | |
527 | * that were simply cleaned to the kill list */ | |
528 | if (free_all) | |
529 | list_splice_init(&unmap_list, &kill_list); | |
530 | } | |
531 | ||
532 | /* Destroy any MRs that are past their best before date */ | |
533 | list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) { | |
534 | rds_iw_stats_inc(s_iw_rdma_mr_free); | |
535 | list_del(&ibmr->mapping.m_list); | |
536 | rds_iw_destroy_fastreg(pool, ibmr); | |
537 | kfree(ibmr); | |
538 | nfreed++; | |
539 | } | |
540 | ||
541 | /* Anything that remains are laundered ibmrs, which we can add | |
542 | * back to the clean list. */ | |
543 | if (!list_empty(&unmap_list)) { | |
544 | spin_lock_irqsave(&pool->list_lock, flags); | |
545 | list_splice(&unmap_list, &pool->clean_list); | |
546 | spin_unlock_irqrestore(&pool->list_lock, flags); | |
547 | } | |
548 | ||
549 | atomic_sub(ncleaned, &pool->dirty_count); | |
550 | atomic_sub(nfreed, &pool->item_count); | |
551 | ||
552 | mutex_unlock(&pool->flush_lock); | |
553 | return ret; | |
554 | } | |
555 | ||
556 | static void rds_iw_mr_pool_flush_worker(struct work_struct *work) | |
557 | { | |
558 | struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker); | |
559 | ||
560 | rds_iw_flush_mr_pool(pool, 0); | |
561 | } | |
562 | ||
563 | void rds_iw_free_mr(void *trans_private, int invalidate) | |
564 | { | |
565 | struct rds_iw_mr *ibmr = trans_private; | |
566 | struct rds_iw_mr_pool *pool = ibmr->device->mr_pool; | |
567 | ||
568 | rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len); | |
569 | if (!pool) | |
570 | return; | |
571 | ||
572 | /* Return it to the pool's free list */ | |
573 | rds_iw_free_fastreg(pool, ibmr); | |
574 | ||
575 | /* If we've pinned too many pages, request a flush */ | |
f64f9e71 JP |
576 | if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || |
577 | atomic_read(&pool->dirty_count) >= pool->max_items / 10) | |
fcd8b7c0 AG |
578 | queue_work(rds_wq, &pool->flush_worker); |
579 | ||
580 | if (invalidate) { | |
581 | if (likely(!in_interrupt())) { | |
582 | rds_iw_flush_mr_pool(pool, 0); | |
583 | } else { | |
584 | /* We get here if the user created a MR marked | |
585 | * as use_once and invalidate at the same time. */ | |
586 | queue_work(rds_wq, &pool->flush_worker); | |
587 | } | |
588 | } | |
589 | } | |
590 | ||
591 | void rds_iw_flush_mrs(void) | |
592 | { | |
593 | struct rds_iw_device *rds_iwdev; | |
594 | ||
595 | list_for_each_entry(rds_iwdev, &rds_iw_devices, list) { | |
596 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | |
597 | ||
598 | if (pool) | |
599 | rds_iw_flush_mr_pool(pool, 0); | |
600 | } | |
601 | } | |
602 | ||
603 | void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents, | |
604 | struct rds_sock *rs, u32 *key_ret) | |
605 | { | |
606 | struct rds_iw_device *rds_iwdev; | |
607 | struct rds_iw_mr *ibmr = NULL; | |
608 | struct rdma_cm_id *cm_id; | |
609 | int ret; | |
610 | ||
611 | ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id); | |
612 | if (ret || !cm_id) { | |
613 | ret = -ENODEV; | |
614 | goto out; | |
615 | } | |
616 | ||
617 | if (!rds_iwdev->mr_pool) { | |
618 | ret = -ENODEV; | |
619 | goto out; | |
620 | } | |
621 | ||
622 | ibmr = rds_iw_alloc_mr(rds_iwdev); | |
623 | if (IS_ERR(ibmr)) | |
624 | return ibmr; | |
625 | ||
626 | ibmr->cm_id = cm_id; | |
627 | ibmr->device = rds_iwdev; | |
628 | ||
629 | ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents); | |
630 | if (ret == 0) | |
631 | *key_ret = ibmr->mr->rkey; | |
632 | else | |
633 | printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret); | |
634 | ||
635 | out: | |
636 | if (ret) { | |
637 | if (ibmr) | |
638 | rds_iw_free_mr(ibmr, 0); | |
639 | ibmr = ERR_PTR(ret); | |
640 | } | |
641 | return ibmr; | |
642 | } | |
643 | ||
644 | /* | |
645 | * iWARP fastreg handling | |
646 | * | |
647 | * The life cycle of a fastreg registration is a bit different from | |
648 | * FMRs. | |
649 | * The idea behind fastreg is to have one MR, to which we bind different | |
650 | * mappings over time. To avoid stalling on the expensive map and invalidate | |
651 | * operations, these operations are pipelined on the same send queue on | |
652 | * which we want to send the message containing the r_key. | |
653 | * | |
654 | * This creates a bit of a problem for us, as we do not have the destination | |
655 | * IP in GET_MR, so the connection must be setup prior to the GET_MR call for | |
656 | * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit | |
657 | * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request | |
658 | * before queuing the SEND. When completions for these arrive, they are | |
659 | * dispatched to the MR has a bit set showing that RDMa can be performed. | |
660 | * | |
661 | * There is another interesting aspect that's related to invalidation. | |
662 | * The application can request that a mapping is invalidated in FREE_MR. | |
663 | * The expectation there is that this invalidation step includes ALL | |
664 | * PREVIOUSLY FREED MRs. | |
665 | */ | |
666 | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, | |
667 | struct rds_iw_mr *ibmr) | |
668 | { | |
669 | struct rds_iw_device *rds_iwdev = pool->device; | |
670 | struct ib_fast_reg_page_list *page_list = NULL; | |
671 | struct ib_mr *mr; | |
672 | int err; | |
673 | ||
674 | mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size); | |
675 | if (IS_ERR(mr)) { | |
676 | err = PTR_ERR(mr); | |
677 | ||
678 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err); | |
679 | return err; | |
680 | } | |
681 | ||
682 | /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages | |
683 | * is not filled in. | |
684 | */ | |
685 | page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size); | |
686 | if (IS_ERR(page_list)) { | |
687 | err = PTR_ERR(page_list); | |
688 | ||
689 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err); | |
690 | ib_dereg_mr(mr); | |
691 | return err; | |
692 | } | |
693 | ||
694 | ibmr->page_list = page_list; | |
695 | ibmr->mr = mr; | |
696 | return 0; | |
697 | } | |
698 | ||
699 | static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping) | |
700 | { | |
701 | struct rds_iw_mr *ibmr = mapping->m_mr; | |
702 | struct ib_send_wr f_wr, *failed_wr; | |
703 | int ret; | |
704 | ||
705 | /* | |
706 | * Perform a WR for the fast_reg_mr. Each individual page | |
707 | * in the sg list is added to the fast reg page list and placed | |
708 | * inside the fast_reg_mr WR. The key used is a rolling 8bit | |
709 | * counter, which should guarantee uniqueness. | |
710 | */ | |
711 | ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++); | |
712 | mapping->m_rkey = ibmr->mr->rkey; | |
713 | ||
714 | memset(&f_wr, 0, sizeof(f_wr)); | |
715 | f_wr.wr_id = RDS_IW_FAST_REG_WR_ID; | |
716 | f_wr.opcode = IB_WR_FAST_REG_MR; | |
717 | f_wr.wr.fast_reg.length = mapping->m_sg.bytes; | |
718 | f_wr.wr.fast_reg.rkey = mapping->m_rkey; | |
719 | f_wr.wr.fast_reg.page_list = ibmr->page_list; | |
720 | f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len; | |
404bb72a | 721 | f_wr.wr.fast_reg.page_shift = PAGE_SHIFT; |
fcd8b7c0 AG |
722 | f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE | |
723 | IB_ACCESS_REMOTE_READ | | |
724 | IB_ACCESS_REMOTE_WRITE; | |
725 | f_wr.wr.fast_reg.iova_start = 0; | |
726 | f_wr.send_flags = IB_SEND_SIGNALED; | |
727 | ||
728 | failed_wr = &f_wr; | |
729 | ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr); | |
730 | BUG_ON(failed_wr != &f_wr); | |
731 | if (ret && printk_ratelimit()) | |
732 | printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", | |
733 | __func__, __LINE__, ret); | |
734 | return ret; | |
735 | } | |
736 | ||
737 | static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr) | |
738 | { | |
739 | struct ib_send_wr s_wr, *failed_wr; | |
740 | int ret = 0; | |
741 | ||
742 | if (!ibmr->cm_id->qp || !ibmr->mr) | |
743 | goto out; | |
744 | ||
745 | memset(&s_wr, 0, sizeof(s_wr)); | |
746 | s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID; | |
747 | s_wr.opcode = IB_WR_LOCAL_INV; | |
748 | s_wr.ex.invalidate_rkey = ibmr->mr->rkey; | |
749 | s_wr.send_flags = IB_SEND_SIGNALED; | |
750 | ||
751 | failed_wr = &s_wr; | |
752 | ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr); | |
753 | if (ret && printk_ratelimit()) { | |
754 | printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", | |
755 | __func__, __LINE__, ret); | |
756 | goto out; | |
757 | } | |
758 | out: | |
759 | return ret; | |
760 | } | |
761 | ||
762 | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, | |
763 | struct rds_iw_mr *ibmr, | |
764 | struct scatterlist *sg, | |
765 | unsigned int sg_len) | |
766 | { | |
767 | struct rds_iw_device *rds_iwdev = pool->device; | |
768 | struct rds_iw_mapping *mapping = &ibmr->mapping; | |
769 | u64 *dma_pages; | |
770 | int i, ret = 0; | |
771 | ||
772 | rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len); | |
773 | ||
404bb72a | 774 | dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg); |
fcd8b7c0 AG |
775 | if (IS_ERR(dma_pages)) { |
776 | ret = PTR_ERR(dma_pages); | |
777 | dma_pages = NULL; | |
778 | goto out; | |
779 | } | |
780 | ||
781 | if (mapping->m_sg.dma_len > pool->max_message_size) { | |
782 | ret = -EMSGSIZE; | |
783 | goto out; | |
784 | } | |
785 | ||
786 | for (i = 0; i < mapping->m_sg.dma_npages; ++i) | |
787 | ibmr->page_list->page_list[i] = dma_pages[i]; | |
788 | ||
789 | ret = rds_iw_rdma_build_fastreg(mapping); | |
790 | if (ret) | |
791 | goto out; | |
792 | ||
793 | rds_iw_stats_inc(s_iw_rdma_mr_used); | |
794 | ||
795 | out: | |
796 | kfree(dma_pages); | |
797 | ||
798 | return ret; | |
799 | } | |
800 | ||
801 | /* | |
802 | * "Free" a fastreg MR. | |
803 | */ | |
804 | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, | |
805 | struct rds_iw_mr *ibmr) | |
806 | { | |
807 | unsigned long flags; | |
808 | int ret; | |
809 | ||
810 | if (!ibmr->mapping.m_sg.dma_len) | |
811 | return; | |
812 | ||
813 | ret = rds_iw_rdma_fastreg_inv(ibmr); | |
814 | if (ret) | |
815 | return; | |
816 | ||
817 | /* Try to post the LOCAL_INV WR to the queue. */ | |
818 | spin_lock_irqsave(&pool->list_lock, flags); | |
819 | ||
820 | list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list); | |
821 | atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned); | |
822 | atomic_inc(&pool->dirty_count); | |
823 | ||
824 | spin_unlock_irqrestore(&pool->list_lock, flags); | |
825 | } | |
826 | ||
827 | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, | |
828 | struct list_head *unmap_list, | |
829 | struct list_head *kill_list) | |
830 | { | |
831 | struct rds_iw_mapping *mapping, *next; | |
832 | unsigned int ncleaned = 0; | |
833 | LIST_HEAD(laundered); | |
834 | ||
835 | /* Batched invalidation of fastreg MRs. | |
836 | * Why do we do it this way, even though we could pipeline unmap | |
837 | * and remap? The reason is the application semantics - when the | |
838 | * application requests an invalidation of MRs, it expects all | |
839 | * previously released R_Keys to become invalid. | |
840 | * | |
841 | * If we implement MR reuse naively, we risk memory corruption | |
842 | * (this has actually been observed). So the default behavior | |
843 | * requires that a MR goes through an explicit unmap operation before | |
844 | * we can reuse it again. | |
845 | * | |
846 | * We could probably improve on this a little, by allowing immediate | |
847 | * reuse of a MR on the same socket (eg you could add small | |
848 | * cache of unused MRs to strct rds_socket - GET_MR could grab one | |
849 | * of these without requiring an explicit invalidate). | |
850 | */ | |
851 | while (!list_empty(unmap_list)) { | |
852 | unsigned long flags; | |
853 | ||
854 | spin_lock_irqsave(&pool->list_lock, flags); | |
855 | list_for_each_entry_safe(mapping, next, unmap_list, m_list) { | |
856 | list_move(&mapping->m_list, &laundered); | |
857 | ncleaned++; | |
858 | } | |
859 | spin_unlock_irqrestore(&pool->list_lock, flags); | |
860 | } | |
861 | ||
862 | /* Move all laundered mappings back to the unmap list. | |
863 | * We do not kill any WRs right now - it doesn't seem the | |
864 | * fastreg API has a max_remap limit. */ | |
865 | list_splice_init(&laundered, unmap_list); | |
866 | ||
867 | return ncleaned; | |
868 | } | |
869 | ||
870 | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, | |
871 | struct rds_iw_mr *ibmr) | |
872 | { | |
873 | if (ibmr->page_list) | |
874 | ib_free_fast_reg_page_list(ibmr->page_list); | |
875 | if (ibmr->mr) | |
876 | ib_dereg_mr(ibmr->mr); | |
877 | } |