]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * Kernel support for the ptrace() and syscall tracing interfaces. | |
4 | * | |
5 | * Copyright (C) 1999-2005 Hewlett-Packard Co | |
6 | * David Mosberger-Tang <[email protected]> | |
c70f8f68 SL |
7 | * Copyright (C) 2006 Intel Co |
8 | * 2006-08-12 - IA64 Native Utrace implementation support added by | |
9 | * Anil S Keshavamurthy <[email protected]> | |
1da177e4 LT |
10 | * |
11 | * Derived from the x86 and Alpha versions. | |
12 | */ | |
1da177e4 LT |
13 | #include <linux/kernel.h> |
14 | #include <linux/sched.h> | |
29930025 | 15 | #include <linux/sched/task.h> |
68db0cf1 | 16 | #include <linux/sched/task_stack.h> |
1da177e4 LT |
17 | #include <linux/mm.h> |
18 | #include <linux/errno.h> | |
19 | #include <linux/ptrace.h> | |
1da177e4 LT |
20 | #include <linux/user.h> |
21 | #include <linux/security.h> | |
22 | #include <linux/audit.h> | |
7ed20e1a | 23 | #include <linux/signal.h> |
c70f8f68 SL |
24 | #include <linux/regset.h> |
25 | #include <linux/elf.h> | |
f14488cc | 26 | #include <linux/tracehook.h> |
1da177e4 | 27 | |
1da177e4 LT |
28 | #include <asm/processor.h> |
29 | #include <asm/ptrace_offsets.h> | |
30 | #include <asm/rse.h> | |
7c0f6ba6 | 31 | #include <linux/uaccess.h> |
1da177e4 | 32 | #include <asm/unwind.h> |
1da177e4 LT |
33 | |
34 | #include "entry.h" | |
35 | ||
36 | /* | |
37 | * Bits in the PSR that we allow ptrace() to change: | |
38 | * be, up, ac, mfl, mfh (the user mask; five bits total) | |
39 | * db (debug breakpoint fault; one bit) | |
40 | * id (instruction debug fault disable; one bit) | |
41 | * dd (data debug fault disable; one bit) | |
42 | * ri (restart instruction; two bits) | |
43 | * is (instruction set; one bit) | |
44 | */ | |
45 | #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \ | |
46 | | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI) | |
47 | ||
48 | #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */ | |
49 | #define PFM_MASK MASK(38) | |
50 | ||
51 | #define PTRACE_DEBUG 0 | |
52 | ||
53 | #if PTRACE_DEBUG | |
54 | # define dprintk(format...) printk(format) | |
55 | # define inline | |
56 | #else | |
57 | # define dprintk(format...) | |
58 | #endif | |
59 | ||
60 | /* Return TRUE if PT was created due to kernel-entry via a system-call. */ | |
61 | ||
62 | static inline int | |
63 | in_syscall (struct pt_regs *pt) | |
64 | { | |
65 | return (long) pt->cr_ifs >= 0; | |
66 | } | |
67 | ||
68 | /* | |
69 | * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT | |
70 | * bitset where bit i is set iff the NaT bit of register i is set. | |
71 | */ | |
72 | unsigned long | |
73 | ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat) | |
74 | { | |
75 | # define GET_BITS(first, last, unat) \ | |
76 | ({ \ | |
77 | unsigned long bit = ia64_unat_pos(&pt->r##first); \ | |
78 | unsigned long nbits = (last - first + 1); \ | |
79 | unsigned long mask = MASK(nbits) << first; \ | |
80 | unsigned long dist; \ | |
81 | if (bit < first) \ | |
82 | dist = 64 + bit - first; \ | |
83 | else \ | |
84 | dist = bit - first; \ | |
85 | ia64_rotr(unat, dist) & mask; \ | |
86 | }) | |
87 | unsigned long val; | |
88 | ||
89 | /* | |
90 | * Registers that are stored consecutively in struct pt_regs | |
91 | * can be handled in parallel. If the register order in | |
92 | * struct_pt_regs changes, this code MUST be updated. | |
93 | */ | |
94 | val = GET_BITS( 1, 1, scratch_unat); | |
95 | val |= GET_BITS( 2, 3, scratch_unat); | |
96 | val |= GET_BITS(12, 13, scratch_unat); | |
97 | val |= GET_BITS(14, 14, scratch_unat); | |
98 | val |= GET_BITS(15, 15, scratch_unat); | |
99 | val |= GET_BITS( 8, 11, scratch_unat); | |
100 | val |= GET_BITS(16, 31, scratch_unat); | |
101 | return val; | |
102 | ||
103 | # undef GET_BITS | |
104 | } | |
105 | ||
106 | /* | |
107 | * Set the NaT bits for the scratch registers according to NAT and | |
108 | * return the resulting unat (assuming the scratch registers are | |
109 | * stored in PT). | |
110 | */ | |
111 | unsigned long | |
112 | ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat) | |
113 | { | |
114 | # define PUT_BITS(first, last, nat) \ | |
115 | ({ \ | |
116 | unsigned long bit = ia64_unat_pos(&pt->r##first); \ | |
117 | unsigned long nbits = (last - first + 1); \ | |
118 | unsigned long mask = MASK(nbits) << first; \ | |
119 | long dist; \ | |
120 | if (bit < first) \ | |
121 | dist = 64 + bit - first; \ | |
122 | else \ | |
123 | dist = bit - first; \ | |
124 | ia64_rotl(nat & mask, dist); \ | |
125 | }) | |
126 | unsigned long scratch_unat; | |
127 | ||
128 | /* | |
129 | * Registers that are stored consecutively in struct pt_regs | |
130 | * can be handled in parallel. If the register order in | |
131 | * struct_pt_regs changes, this code MUST be updated. | |
132 | */ | |
133 | scratch_unat = PUT_BITS( 1, 1, nat); | |
134 | scratch_unat |= PUT_BITS( 2, 3, nat); | |
135 | scratch_unat |= PUT_BITS(12, 13, nat); | |
136 | scratch_unat |= PUT_BITS(14, 14, nat); | |
137 | scratch_unat |= PUT_BITS(15, 15, nat); | |
138 | scratch_unat |= PUT_BITS( 8, 11, nat); | |
139 | scratch_unat |= PUT_BITS(16, 31, nat); | |
140 | ||
141 | return scratch_unat; | |
142 | ||
143 | # undef PUT_BITS | |
144 | } | |
145 | ||
146 | #define IA64_MLX_TEMPLATE 0x2 | |
147 | #define IA64_MOVL_OPCODE 6 | |
148 | ||
149 | void | |
150 | ia64_increment_ip (struct pt_regs *regs) | |
151 | { | |
152 | unsigned long w0, ri = ia64_psr(regs)->ri + 1; | |
153 | ||
154 | if (ri > 2) { | |
155 | ri = 0; | |
156 | regs->cr_iip += 16; | |
157 | } else if (ri == 2) { | |
158 | get_user(w0, (char __user *) regs->cr_iip + 0); | |
159 | if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { | |
160 | /* | |
161 | * rfi'ing to slot 2 of an MLX bundle causes | |
162 | * an illegal operation fault. We don't want | |
163 | * that to happen... | |
164 | */ | |
165 | ri = 0; | |
166 | regs->cr_iip += 16; | |
167 | } | |
168 | } | |
169 | ia64_psr(regs)->ri = ri; | |
170 | } | |
171 | ||
172 | void | |
173 | ia64_decrement_ip (struct pt_regs *regs) | |
174 | { | |
175 | unsigned long w0, ri = ia64_psr(regs)->ri - 1; | |
176 | ||
177 | if (ia64_psr(regs)->ri == 0) { | |
178 | regs->cr_iip -= 16; | |
179 | ri = 2; | |
180 | get_user(w0, (char __user *) regs->cr_iip + 0); | |
181 | if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { | |
182 | /* | |
183 | * rfi'ing to slot 2 of an MLX bundle causes | |
184 | * an illegal operation fault. We don't want | |
185 | * that to happen... | |
186 | */ | |
187 | ri = 1; | |
188 | } | |
189 | } | |
190 | ia64_psr(regs)->ri = ri; | |
191 | } | |
192 | ||
193 | /* | |
194 | * This routine is used to read an rnat bits that are stored on the | |
195 | * kernel backing store. Since, in general, the alignment of the user | |
196 | * and kernel are different, this is not completely trivial. In | |
197 | * essence, we need to construct the user RNAT based on up to two | |
198 | * kernel RNAT values and/or the RNAT value saved in the child's | |
199 | * pt_regs. | |
200 | * | |
201 | * user rbs | |
202 | * | |
203 | * +--------+ <-- lowest address | |
204 | * | slot62 | | |
205 | * +--------+ | |
206 | * | rnat | 0x....1f8 | |
207 | * +--------+ | |
208 | * | slot00 | \ | |
209 | * +--------+ | | |
210 | * | slot01 | > child_regs->ar_rnat | |
211 | * +--------+ | | |
212 | * | slot02 | / kernel rbs | |
213 | * +--------+ +--------+ | |
214 | * <- child_regs->ar_bspstore | slot61 | <-- krbs | |
215 | * +- - - - + +--------+ | |
216 | * | slot62 | | |
217 | * +- - - - + +--------+ | |
218 | * | rnat | | |
219 | * +- - - - + +--------+ | |
220 | * vrnat | slot00 | | |
221 | * +- - - - + +--------+ | |
222 | * = = | |
223 | * +--------+ | |
224 | * | slot00 | \ | |
225 | * +--------+ | | |
226 | * | slot01 | > child_stack->ar_rnat | |
227 | * +--------+ | | |
228 | * | slot02 | / | |
229 | * +--------+ | |
230 | * <--- child_stack->ar_bspstore | |
231 | * | |
232 | * The way to think of this code is as follows: bit 0 in the user rnat | |
233 | * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat | |
234 | * value. The kernel rnat value holding this bit is stored in | |
235 | * variable rnat0. rnat1 is loaded with the kernel rnat value that | |
236 | * form the upper bits of the user rnat value. | |
237 | * | |
238 | * Boundary cases: | |
239 | * | |
240 | * o when reading the rnat "below" the first rnat slot on the kernel | |
241 | * backing store, rnat0/rnat1 are set to 0 and the low order bits are | |
242 | * merged in from pt->ar_rnat. | |
243 | * | |
244 | * o when reading the rnat "above" the last rnat slot on the kernel | |
245 | * backing store, rnat0/rnat1 gets its value from sw->ar_rnat. | |
246 | */ | |
247 | static unsigned long | |
248 | get_rnat (struct task_struct *task, struct switch_stack *sw, | |
249 | unsigned long *krbs, unsigned long *urnat_addr, | |
250 | unsigned long *urbs_end) | |
251 | { | |
252 | unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr; | |
253 | unsigned long umask = 0, mask, m; | |
254 | unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; | |
255 | long num_regs, nbits; | |
256 | struct pt_regs *pt; | |
257 | ||
6450578f | 258 | pt = task_pt_regs(task); |
1da177e4 LT |
259 | kbsp = (unsigned long *) sw->ar_bspstore; |
260 | ubspstore = (unsigned long *) pt->ar_bspstore; | |
261 | ||
262 | if (urbs_end < urnat_addr) | |
263 | nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end); | |
264 | else | |
265 | nbits = 63; | |
266 | mask = MASK(nbits); | |
267 | /* | |
268 | * First, figure out which bit number slot 0 in user-land maps | |
269 | * to in the kernel rnat. Do this by figuring out how many | |
270 | * register slots we're beyond the user's backingstore and | |
271 | * then computing the equivalent address in kernel space. | |
272 | */ | |
273 | num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); | |
274 | slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); | |
275 | shift = ia64_rse_slot_num(slot0_kaddr); | |
276 | rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); | |
277 | rnat0_kaddr = rnat1_kaddr - 64; | |
278 | ||
279 | if (ubspstore + 63 > urnat_addr) { | |
280 | /* some bits need to be merged in from pt->ar_rnat */ | |
281 | umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; | |
282 | urnat = (pt->ar_rnat & umask); | |
283 | mask &= ~umask; | |
284 | if (!mask) | |
285 | return urnat; | |
286 | } | |
287 | ||
288 | m = mask << shift; | |
289 | if (rnat0_kaddr >= kbsp) | |
290 | rnat0 = sw->ar_rnat; | |
291 | else if (rnat0_kaddr > krbs) | |
292 | rnat0 = *rnat0_kaddr; | |
293 | urnat |= (rnat0 & m) >> shift; | |
294 | ||
295 | m = mask >> (63 - shift); | |
296 | if (rnat1_kaddr >= kbsp) | |
297 | rnat1 = sw->ar_rnat; | |
298 | else if (rnat1_kaddr > krbs) | |
299 | rnat1 = *rnat1_kaddr; | |
300 | urnat |= (rnat1 & m) << (63 - shift); | |
301 | return urnat; | |
302 | } | |
303 | ||
304 | /* | |
305 | * The reverse of get_rnat. | |
306 | */ | |
307 | static void | |
308 | put_rnat (struct task_struct *task, struct switch_stack *sw, | |
309 | unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat, | |
310 | unsigned long *urbs_end) | |
311 | { | |
312 | unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m; | |
313 | unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; | |
314 | long num_regs, nbits; | |
315 | struct pt_regs *pt; | |
316 | unsigned long cfm, *urbs_kargs; | |
317 | ||
6450578f | 318 | pt = task_pt_regs(task); |
1da177e4 LT |
319 | kbsp = (unsigned long *) sw->ar_bspstore; |
320 | ubspstore = (unsigned long *) pt->ar_bspstore; | |
321 | ||
322 | urbs_kargs = urbs_end; | |
323 | if (in_syscall(pt)) { | |
324 | /* | |
325 | * If entered via syscall, don't allow user to set rnat bits | |
326 | * for syscall args. | |
327 | */ | |
328 | cfm = pt->cr_ifs; | |
329 | urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f)); | |
330 | } | |
331 | ||
332 | if (urbs_kargs >= urnat_addr) | |
333 | nbits = 63; | |
334 | else { | |
335 | if ((urnat_addr - 63) >= urbs_kargs) | |
336 | return; | |
337 | nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs); | |
338 | } | |
339 | mask = MASK(nbits); | |
340 | ||
341 | /* | |
342 | * First, figure out which bit number slot 0 in user-land maps | |
343 | * to in the kernel rnat. Do this by figuring out how many | |
344 | * register slots we're beyond the user's backingstore and | |
345 | * then computing the equivalent address in kernel space. | |
346 | */ | |
347 | num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); | |
348 | slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); | |
349 | shift = ia64_rse_slot_num(slot0_kaddr); | |
350 | rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); | |
351 | rnat0_kaddr = rnat1_kaddr - 64; | |
352 | ||
353 | if (ubspstore + 63 > urnat_addr) { | |
354 | /* some bits need to be place in pt->ar_rnat: */ | |
355 | umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; | |
356 | pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask); | |
357 | mask &= ~umask; | |
358 | if (!mask) | |
359 | return; | |
360 | } | |
361 | /* | |
362 | * Note: Section 11.1 of the EAS guarantees that bit 63 of an | |
363 | * rnat slot is ignored. so we don't have to clear it here. | |
364 | */ | |
365 | rnat0 = (urnat << shift); | |
366 | m = mask << shift; | |
367 | if (rnat0_kaddr >= kbsp) | |
368 | sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m); | |
369 | else if (rnat0_kaddr > krbs) | |
370 | *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m)); | |
371 | ||
372 | rnat1 = (urnat >> (63 - shift)); | |
373 | m = mask >> (63 - shift); | |
374 | if (rnat1_kaddr >= kbsp) | |
375 | sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m); | |
376 | else if (rnat1_kaddr > krbs) | |
377 | *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m)); | |
378 | } | |
379 | ||
380 | static inline int | |
381 | on_kernel_rbs (unsigned long addr, unsigned long bspstore, | |
382 | unsigned long urbs_end) | |
383 | { | |
384 | unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *) | |
385 | urbs_end); | |
386 | return (addr >= bspstore && addr <= (unsigned long) rnat_addr); | |
387 | } | |
388 | ||
389 | /* | |
390 | * Read a word from the user-level backing store of task CHILD. ADDR | |
391 | * is the user-level address to read the word from, VAL a pointer to | |
392 | * the return value, and USER_BSP gives the end of the user-level | |
393 | * backing store (i.e., it's the address that would be in ar.bsp after | |
394 | * the user executed a "cover" instruction). | |
395 | * | |
396 | * This routine takes care of accessing the kernel register backing | |
397 | * store for those registers that got spilled there. It also takes | |
398 | * care of calculating the appropriate RNaT collection words. | |
399 | */ | |
400 | long | |
401 | ia64_peek (struct task_struct *child, struct switch_stack *child_stack, | |
402 | unsigned long user_rbs_end, unsigned long addr, long *val) | |
403 | { | |
404 | unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; | |
405 | struct pt_regs *child_regs; | |
406 | size_t copied; | |
407 | long ret; | |
408 | ||
409 | urbs_end = (long *) user_rbs_end; | |
410 | laddr = (unsigned long *) addr; | |
6450578f | 411 | child_regs = task_pt_regs(child); |
1da177e4 LT |
412 | bspstore = (unsigned long *) child_regs->ar_bspstore; |
413 | krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; | |
414 | if (on_kernel_rbs(addr, (unsigned long) bspstore, | |
415 | (unsigned long) urbs_end)) | |
416 | { | |
417 | /* | |
418 | * Attempt to read the RBS in an area that's actually | |
419 | * on the kernel RBS => read the corresponding bits in | |
420 | * the kernel RBS. | |
421 | */ | |
422 | rnat_addr = ia64_rse_rnat_addr(laddr); | |
423 | ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end); | |
424 | ||
425 | if (laddr == rnat_addr) { | |
426 | /* return NaT collection word itself */ | |
427 | *val = ret; | |
428 | return 0; | |
429 | } | |
430 | ||
431 | if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { | |
432 | /* | |
433 | * It is implementation dependent whether the | |
434 | * data portion of a NaT value gets saved on a | |
435 | * st8.spill or RSE spill (e.g., see EAS 2.6, | |
436 | * 4.4.4.6 Register Spill and Fill). To get | |
437 | * consistent behavior across all possible | |
438 | * IA-64 implementations, we return zero in | |
439 | * this case. | |
440 | */ | |
441 | *val = 0; | |
442 | return 0; | |
443 | } | |
444 | ||
445 | if (laddr < urbs_end) { | |
446 | /* | |
447 | * The desired word is on the kernel RBS and | |
448 | * is not a NaT. | |
449 | */ | |
450 | regnum = ia64_rse_num_regs(bspstore, laddr); | |
451 | *val = *ia64_rse_skip_regs(krbs, regnum); | |
452 | return 0; | |
453 | } | |
454 | } | |
f307ab6d | 455 | copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE); |
1da177e4 LT |
456 | if (copied != sizeof(ret)) |
457 | return -EIO; | |
458 | *val = ret; | |
459 | return 0; | |
460 | } | |
461 | ||
462 | long | |
463 | ia64_poke (struct task_struct *child, struct switch_stack *child_stack, | |
464 | unsigned long user_rbs_end, unsigned long addr, long val) | |
465 | { | |
466 | unsigned long *bspstore, *krbs, regnum, *laddr; | |
467 | unsigned long *urbs_end = (long *) user_rbs_end; | |
468 | struct pt_regs *child_regs; | |
469 | ||
470 | laddr = (unsigned long *) addr; | |
6450578f | 471 | child_regs = task_pt_regs(child); |
1da177e4 LT |
472 | bspstore = (unsigned long *) child_regs->ar_bspstore; |
473 | krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; | |
474 | if (on_kernel_rbs(addr, (unsigned long) bspstore, | |
475 | (unsigned long) urbs_end)) | |
476 | { | |
477 | /* | |
478 | * Attempt to write the RBS in an area that's actually | |
479 | * on the kernel RBS => write the corresponding bits | |
480 | * in the kernel RBS. | |
481 | */ | |
482 | if (ia64_rse_is_rnat_slot(laddr)) | |
483 | put_rnat(child, child_stack, krbs, laddr, val, | |
484 | urbs_end); | |
485 | else { | |
486 | if (laddr < urbs_end) { | |
487 | regnum = ia64_rse_num_regs(bspstore, laddr); | |
488 | *ia64_rse_skip_regs(krbs, regnum) = val; | |
489 | } | |
490 | } | |
f307ab6d LS |
491 | } else if (access_process_vm(child, addr, &val, sizeof(val), |
492 | FOLL_FORCE | FOLL_WRITE) | |
1da177e4 LT |
493 | != sizeof(val)) |
494 | return -EIO; | |
495 | return 0; | |
496 | } | |
497 | ||
498 | /* | |
499 | * Calculate the address of the end of the user-level register backing | |
500 | * store. This is the address that would have been stored in ar.bsp | |
501 | * if the user had executed a "cover" instruction right before | |
502 | * entering the kernel. If CFMP is not NULL, it is used to return the | |
503 | * "current frame mask" that was active at the time the kernel was | |
504 | * entered. | |
505 | */ | |
506 | unsigned long | |
507 | ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, | |
508 | unsigned long *cfmp) | |
509 | { | |
510 | unsigned long *krbs, *bspstore, cfm = pt->cr_ifs; | |
511 | long ndirty; | |
512 | ||
513 | krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; | |
514 | bspstore = (unsigned long *) pt->ar_bspstore; | |
515 | ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); | |
516 | ||
517 | if (in_syscall(pt)) | |
518 | ndirty += (cfm & 0x7f); | |
519 | else | |
520 | cfm &= ~(1UL << 63); /* clear valid bit */ | |
521 | ||
522 | if (cfmp) | |
523 | *cfmp = cfm; | |
524 | return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty); | |
525 | } | |
526 | ||
527 | /* | |
528 | * Synchronize (i.e, write) the RSE backing store living in kernel | |
529 | * space to the VM of the CHILD task. SW and PT are the pointers to | |
530 | * the switch_stack and pt_regs structures, respectively. | |
531 | * USER_RBS_END is the user-level address at which the backing store | |
532 | * ends. | |
533 | */ | |
534 | long | |
535 | ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, | |
536 | unsigned long user_rbs_start, unsigned long user_rbs_end) | |
537 | { | |
538 | unsigned long addr, val; | |
539 | long ret; | |
540 | ||
541 | /* now copy word for word from kernel rbs to user rbs: */ | |
542 | for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { | |
543 | ret = ia64_peek(child, sw, user_rbs_end, addr, &val); | |
544 | if (ret < 0) | |
545 | return ret; | |
f307ab6d LS |
546 | if (access_process_vm(child, addr, &val, sizeof(val), |
547 | FOLL_FORCE | FOLL_WRITE) | |
1da177e4 LT |
548 | != sizeof(val)) |
549 | return -EIO; | |
550 | } | |
551 | return 0; | |
552 | } | |
553 | ||
3b2ce0b1 PT |
554 | static long |
555 | ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw, | |
556 | unsigned long user_rbs_start, unsigned long user_rbs_end) | |
557 | { | |
558 | unsigned long addr, val; | |
559 | long ret; | |
560 | ||
561 | /* now copy word for word from user rbs to kernel rbs: */ | |
562 | for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { | |
f307ab6d LS |
563 | if (access_process_vm(child, addr, &val, sizeof(val), |
564 | FOLL_FORCE) | |
3b2ce0b1 PT |
565 | != sizeof(val)) |
566 | return -EIO; | |
567 | ||
568 | ret = ia64_poke(child, sw, user_rbs_end, addr, val); | |
569 | if (ret < 0) | |
570 | return ret; | |
571 | } | |
572 | return 0; | |
573 | } | |
574 | ||
575 | typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *, | |
576 | unsigned long, unsigned long); | |
577 | ||
578 | static void do_sync_rbs(struct unw_frame_info *info, void *arg) | |
579 | { | |
580 | struct pt_regs *pt; | |
581 | unsigned long urbs_end; | |
582 | syncfunc_t fn = arg; | |
583 | ||
584 | if (unw_unwind_to_user(info) < 0) | |
585 | return; | |
586 | pt = task_pt_regs(info->task); | |
587 | urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL); | |
588 | ||
589 | fn(info->task, info->sw, pt->ar_bspstore, urbs_end); | |
590 | } | |
591 | ||
592 | /* | |
593 | * when a thread is stopped (ptraced), debugger might change thread's user | |
594 | * stack (change memory directly), and we must avoid the RSE stored in kernel | |
595 | * to override user stack (user space's RSE is newer than kernel's in the | |
596 | * case). To workaround the issue, we copy kernel RSE to user RSE before the | |
597 | * task is stopped, so user RSE has updated data. we then copy user RSE to | |
598 | * kernel after the task is resummed from traced stop and kernel will use the | |
599 | * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need | |
600 | * synchronize user RSE to kernel. | |
601 | */ | |
602 | void ia64_ptrace_stop(void) | |
603 | { | |
604 | if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE)) | |
605 | return; | |
f14488cc | 606 | set_notify_resume(current); |
3b2ce0b1 PT |
607 | unw_init_running(do_sync_rbs, ia64_sync_user_rbs); |
608 | } | |
609 | ||
610 | /* | |
611 | * This is called to read back the register backing store. | |
612 | */ | |
613 | void ia64_sync_krbs(void) | |
614 | { | |
615 | clear_tsk_thread_flag(current, TIF_RESTORE_RSE); | |
3b2ce0b1 PT |
616 | |
617 | unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs); | |
618 | } | |
619 | ||
aa91a2e9 PT |
620 | /* |
621 | * After PTRACE_ATTACH, a thread's register backing store area in user | |
622 | * space is assumed to contain correct data whenever the thread is | |
623 | * stopped. arch_ptrace_stop takes care of this on tracing stops. | |
624 | * But if the child was already stopped for job control when we attach | |
625 | * to it, then it might not ever get into ptrace_stop by the time we | |
626 | * want to examine the user memory containing the RBS. | |
627 | */ | |
628 | void | |
629 | ptrace_attach_sync_user_rbs (struct task_struct *child) | |
630 | { | |
631 | int stopped = 0; | |
632 | struct unw_frame_info info; | |
633 | ||
634 | /* | |
635 | * If the child is in TASK_STOPPED, we need to change that to | |
636 | * TASK_TRACED momentarily while we operate on it. This ensures | |
637 | * that the child won't be woken up and return to user mode while | |
638 | * we are doing the sync. (It can only be woken up for SIGKILL.) | |
639 | */ | |
640 | ||
641 | read_lock(&tasklist_lock); | |
ffdf9185 | 642 | if (child->sighand) { |
aa91a2e9 PT |
643 | spin_lock_irq(&child->sighand->siglock); |
644 | if (child->state == TASK_STOPPED && | |
645 | !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) { | |
f14488cc | 646 | set_notify_resume(child); |
aa91a2e9 PT |
647 | |
648 | child->state = TASK_TRACED; | |
649 | stopped = 1; | |
650 | } | |
651 | spin_unlock_irq(&child->sighand->siglock); | |
652 | } | |
653 | read_unlock(&tasklist_lock); | |
654 | ||
655 | if (!stopped) | |
656 | return; | |
657 | ||
658 | unw_init_from_blocked_task(&info, child); | |
659 | do_sync_rbs(&info, ia64_sync_user_rbs); | |
660 | ||
661 | /* | |
662 | * Now move the child back into TASK_STOPPED if it should be in a | |
663 | * job control stop, so that SIGCONT can be used to wake it up. | |
664 | */ | |
665 | read_lock(&tasklist_lock); | |
ffdf9185 | 666 | if (child->sighand) { |
aa91a2e9 PT |
667 | spin_lock_irq(&child->sighand->siglock); |
668 | if (child->state == TASK_TRACED && | |
669 | (child->signal->flags & SIGNAL_STOP_STOPPED)) { | |
670 | child->state = TASK_STOPPED; | |
671 | } | |
672 | spin_unlock_irq(&child->sighand->siglock); | |
673 | } | |
674 | read_unlock(&tasklist_lock); | |
675 | } | |
676 | ||
1da177e4 LT |
677 | /* |
678 | * Write f32-f127 back to task->thread.fph if it has been modified. | |
679 | */ | |
680 | inline void | |
681 | ia64_flush_fph (struct task_struct *task) | |
682 | { | |
6450578f | 683 | struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); |
1da177e4 | 684 | |
05062d96 PC |
685 | /* |
686 | * Prevent migrating this task while | |
687 | * we're fiddling with the FPU state | |
688 | */ | |
689 | preempt_disable(); | |
1da177e4 LT |
690 | if (ia64_is_local_fpu_owner(task) && psr->mfh) { |
691 | psr->mfh = 0; | |
692 | task->thread.flags |= IA64_THREAD_FPH_VALID; | |
693 | ia64_save_fpu(&task->thread.fph[0]); | |
694 | } | |
05062d96 | 695 | preempt_enable(); |
1da177e4 LT |
696 | } |
697 | ||
698 | /* | |
699 | * Sync the fph state of the task so that it can be manipulated | |
700 | * through thread.fph. If necessary, f32-f127 are written back to | |
701 | * thread.fph or, if the fph state hasn't been used before, thread.fph | |
702 | * is cleared to zeroes. Also, access to f32-f127 is disabled to | |
703 | * ensure that the task picks up the state from thread.fph when it | |
704 | * executes again. | |
705 | */ | |
706 | void | |
707 | ia64_sync_fph (struct task_struct *task) | |
708 | { | |
6450578f | 709 | struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); |
1da177e4 LT |
710 | |
711 | ia64_flush_fph(task); | |
712 | if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) { | |
713 | task->thread.flags |= IA64_THREAD_FPH_VALID; | |
714 | memset(&task->thread.fph, 0, sizeof(task->thread.fph)); | |
715 | } | |
716 | ia64_drop_fpu(task); | |
717 | psr->dfh = 1; | |
718 | } | |
719 | ||
1da177e4 LT |
720 | /* |
721 | * Change the machine-state of CHILD such that it will return via the normal | |
722 | * kernel exit-path, rather than the syscall-exit path. | |
723 | */ | |
724 | static void | |
725 | convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt, | |
726 | unsigned long cfm) | |
727 | { | |
728 | struct unw_frame_info info, prev_info; | |
02a017a9 | 729 | unsigned long ip, sp, pr; |
1da177e4 LT |
730 | |
731 | unw_init_from_blocked_task(&info, child); | |
732 | while (1) { | |
733 | prev_info = info; | |
734 | if (unw_unwind(&info) < 0) | |
735 | return; | |
02a017a9 DMT |
736 | |
737 | unw_get_sp(&info, &sp); | |
738 | if ((long)((unsigned long)child + IA64_STK_OFFSET - sp) | |
739 | < IA64_PT_REGS_SIZE) { | |
740 | dprintk("ptrace.%s: ran off the top of the kernel " | |
d4ed8084 | 741 | "stack\n", __func__); |
02a017a9 DMT |
742 | return; |
743 | } | |
744 | if (unw_get_pr (&prev_info, &pr) < 0) { | |
745 | unw_get_rp(&prev_info, &ip); | |
746 | dprintk("ptrace.%s: failed to read " | |
747 | "predicate register (ip=0x%lx)\n", | |
d4ed8084 | 748 | __func__, ip); |
1da177e4 | 749 | return; |
02a017a9 DMT |
750 | } |
751 | if (unw_is_intr_frame(&info) | |
752 | && (pr & (1UL << PRED_USER_STACK))) | |
1da177e4 LT |
753 | break; |
754 | } | |
755 | ||
7f9eaedf DMT |
756 | /* |
757 | * Note: at the time of this call, the target task is blocked | |
758 | * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL | |
759 | * (aka, "pLvSys") we redirect execution from | |
760 | * .work_pending_syscall_end to .work_processed_kernel. | |
761 | */ | |
1da177e4 | 762 | unw_get_pr(&prev_info, &pr); |
7f9eaedf | 763 | pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL)); |
1da177e4 LT |
764 | pr |= (1UL << PRED_NON_SYSCALL); |
765 | unw_set_pr(&prev_info, pr); | |
766 | ||
767 | pt->cr_ifs = (1UL << 63) | cfm; | |
7f9eaedf DMT |
768 | /* |
769 | * Clear the memory that is NOT written on syscall-entry to | |
770 | * ensure we do not leak kernel-state to user when execution | |
771 | * resumes. | |
772 | */ | |
773 | pt->r2 = 0; | |
774 | pt->r3 = 0; | |
775 | pt->r14 = 0; | |
776 | memset(&pt->r16, 0, 16*8); /* clear r16-r31 */ | |
777 | memset(&pt->f6, 0, 6*16); /* clear f6-f11 */ | |
778 | pt->b7 = 0; | |
779 | pt->ar_ccv = 0; | |
780 | pt->ar_csd = 0; | |
781 | pt->ar_ssd = 0; | |
1da177e4 LT |
782 | } |
783 | ||
784 | static int | |
785 | access_nat_bits (struct task_struct *child, struct pt_regs *pt, | |
786 | struct unw_frame_info *info, | |
787 | unsigned long *data, int write_access) | |
788 | { | |
789 | unsigned long regnum, nat_bits, scratch_unat, dummy = 0; | |
790 | char nat = 0; | |
791 | ||
792 | if (write_access) { | |
793 | nat_bits = *data; | |
794 | scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits); | |
795 | if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) { | |
796 | dprintk("ptrace: failed to set ar.unat\n"); | |
797 | return -1; | |
798 | } | |
799 | for (regnum = 4; regnum <= 7; ++regnum) { | |
800 | unw_get_gr(info, regnum, &dummy, &nat); | |
801 | unw_set_gr(info, regnum, dummy, | |
802 | (nat_bits >> regnum) & 1); | |
803 | } | |
804 | } else { | |
805 | if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) { | |
806 | dprintk("ptrace: failed to read ar.unat\n"); | |
807 | return -1; | |
808 | } | |
809 | nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat); | |
810 | for (regnum = 4; regnum <= 7; ++regnum) { | |
811 | unw_get_gr(info, regnum, &dummy, &nat); | |
812 | nat_bits |= (nat != 0) << regnum; | |
813 | } | |
814 | *data = nat_bits; | |
815 | } | |
816 | return 0; | |
817 | } | |
818 | ||
819 | static int | |
77f9c902 AV |
820 | access_elf_reg(struct task_struct *target, struct unw_frame_info *info, |
821 | unsigned long addr, unsigned long *data, int write_access); | |
1da177e4 LT |
822 | |
823 | static long | |
824 | ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) | |
825 | { | |
826 | unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val; | |
827 | struct unw_frame_info info; | |
828 | struct ia64_fpreg fpval; | |
829 | struct switch_stack *sw; | |
830 | struct pt_regs *pt; | |
831 | long ret, retval = 0; | |
832 | char nat = 0; | |
833 | int i; | |
834 | ||
96d4f267 | 835 | if (!access_ok(ppr, sizeof(struct pt_all_user_regs))) |
1da177e4 LT |
836 | return -EIO; |
837 | ||
6450578f | 838 | pt = task_pt_regs(child); |
1da177e4 LT |
839 | sw = (struct switch_stack *) (child->thread.ksp + 16); |
840 | unw_init_from_blocked_task(&info, child); | |
841 | if (unw_unwind_to_user(&info) < 0) { | |
842 | return -EIO; | |
843 | } | |
844 | ||
845 | if (((unsigned long) ppr & 0x7) != 0) { | |
846 | dprintk("ptrace:unaligned register address %p\n", ppr); | |
847 | return -EIO; | |
848 | } | |
849 | ||
77f9c902 AV |
850 | if (access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 0) < 0 || |
851 | access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 0) < 0 || | |
852 | access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 0) < 0 || | |
853 | access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 0) < 0 || | |
854 | access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 0) < 0 || | |
855 | access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 0) < 0 || | |
856 | access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 0) < 0) | |
1da177e4 LT |
857 | return -EIO; |
858 | ||
859 | /* control regs */ | |
860 | ||
861 | retval |= __put_user(pt->cr_iip, &ppr->cr_iip); | |
862 | retval |= __put_user(psr, &ppr->cr_ipsr); | |
863 | ||
864 | /* app regs */ | |
865 | ||
866 | retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); | |
867 | retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]); | |
868 | retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); | |
869 | retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); | |
870 | retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); | |
871 | retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); | |
872 | ||
873 | retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]); | |
874 | retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]); | |
875 | retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]); | |
876 | retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]); | |
877 | retval |= __put_user(cfm, &ppr->cfm); | |
878 | ||
879 | /* gr1-gr3 */ | |
880 | ||
881 | retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long)); | |
882 | retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2); | |
883 | ||
884 | /* gr4-gr7 */ | |
885 | ||
886 | for (i = 4; i < 8; i++) { | |
887 | if (unw_access_gr(&info, i, &val, &nat, 0) < 0) | |
888 | return -EIO; | |
889 | retval |= __put_user(val, &ppr->gr[i]); | |
890 | } | |
891 | ||
892 | /* gr8-gr11 */ | |
893 | ||
894 | retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4); | |
895 | ||
896 | /* gr12-gr15 */ | |
897 | ||
898 | retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2); | |
899 | retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long)); | |
900 | retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long)); | |
901 | ||
902 | /* gr16-gr31 */ | |
903 | ||
904 | retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16); | |
905 | ||
906 | /* b0 */ | |
907 | ||
908 | retval |= __put_user(pt->b0, &ppr->br[0]); | |
909 | ||
910 | /* b1-b5 */ | |
911 | ||
912 | for (i = 1; i < 6; i++) { | |
913 | if (unw_access_br(&info, i, &val, 0) < 0) | |
914 | return -EIO; | |
915 | __put_user(val, &ppr->br[i]); | |
916 | } | |
917 | ||
918 | /* b6-b7 */ | |
919 | ||
920 | retval |= __put_user(pt->b6, &ppr->br[6]); | |
921 | retval |= __put_user(pt->b7, &ppr->br[7]); | |
922 | ||
923 | /* fr2-fr5 */ | |
924 | ||
925 | for (i = 2; i < 6; i++) { | |
926 | if (unw_get_fr(&info, i, &fpval) < 0) | |
927 | return -EIO; | |
928 | retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); | |
929 | } | |
930 | ||
931 | /* fr6-fr11 */ | |
932 | ||
933 | retval |= __copy_to_user(&ppr->fr[6], &pt->f6, | |
934 | sizeof(struct ia64_fpreg) * 6); | |
935 | ||
936 | /* fp scratch regs(12-15) */ | |
937 | ||
938 | retval |= __copy_to_user(&ppr->fr[12], &sw->f12, | |
939 | sizeof(struct ia64_fpreg) * 4); | |
940 | ||
941 | /* fr16-fr31 */ | |
942 | ||
943 | for (i = 16; i < 32; i++) { | |
944 | if (unw_get_fr(&info, i, &fpval) < 0) | |
945 | return -EIO; | |
946 | retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); | |
947 | } | |
948 | ||
949 | /* fph */ | |
950 | ||
951 | ia64_flush_fph(child); | |
952 | retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, | |
953 | sizeof(ppr->fr[32]) * 96); | |
954 | ||
955 | /* preds */ | |
956 | ||
957 | retval |= __put_user(pt->pr, &ppr->pr); | |
958 | ||
959 | /* nat bits */ | |
960 | ||
961 | retval |= __put_user(nat_bits, &ppr->nat); | |
962 | ||
963 | ret = retval ? -EIO : 0; | |
964 | return ret; | |
965 | } | |
966 | ||
967 | static long | |
968 | ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) | |
969 | { | |
4ea78729 | 970 | unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0; |
1da177e4 LT |
971 | struct unw_frame_info info; |
972 | struct switch_stack *sw; | |
973 | struct ia64_fpreg fpval; | |
974 | struct pt_regs *pt; | |
77f9c902 | 975 | long retval = 0; |
1da177e4 LT |
976 | int i; |
977 | ||
978 | memset(&fpval, 0, sizeof(fpval)); | |
979 | ||
96d4f267 | 980 | if (!access_ok(ppr, sizeof(struct pt_all_user_regs))) |
1da177e4 LT |
981 | return -EIO; |
982 | ||
6450578f | 983 | pt = task_pt_regs(child); |
1da177e4 LT |
984 | sw = (struct switch_stack *) (child->thread.ksp + 16); |
985 | unw_init_from_blocked_task(&info, child); | |
986 | if (unw_unwind_to_user(&info) < 0) { | |
987 | return -EIO; | |
988 | } | |
989 | ||
990 | if (((unsigned long) ppr & 0x7) != 0) { | |
991 | dprintk("ptrace:unaligned register address %p\n", ppr); | |
992 | return -EIO; | |
993 | } | |
994 | ||
995 | /* control regs */ | |
996 | ||
997 | retval |= __get_user(pt->cr_iip, &ppr->cr_iip); | |
998 | retval |= __get_user(psr, &ppr->cr_ipsr); | |
999 | ||
1000 | /* app regs */ | |
1001 | ||
1002 | retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); | |
4ea78729 | 1003 | retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]); |
1da177e4 LT |
1004 | retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); |
1005 | retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); | |
1006 | retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); | |
1007 | retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); | |
1008 | ||
1009 | retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]); | |
1010 | retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]); | |
1011 | retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]); | |
1012 | retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]); | |
1013 | retval |= __get_user(cfm, &ppr->cfm); | |
1014 | ||
1015 | /* gr1-gr3 */ | |
1016 | ||
1017 | retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long)); | |
1018 | retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2); | |
1019 | ||
1020 | /* gr4-gr7 */ | |
1021 | ||
1022 | for (i = 4; i < 8; i++) { | |
1023 | retval |= __get_user(val, &ppr->gr[i]); | |
1024 | /* NaT bit will be set via PT_NAT_BITS: */ | |
1025 | if (unw_set_gr(&info, i, val, 0) < 0) | |
1026 | return -EIO; | |
1027 | } | |
1028 | ||
1029 | /* gr8-gr11 */ | |
1030 | ||
1031 | retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4); | |
1032 | ||
1033 | /* gr12-gr15 */ | |
1034 | ||
1035 | retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2); | |
1036 | retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long)); | |
1037 | retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long)); | |
1038 | ||
1039 | /* gr16-gr31 */ | |
1040 | ||
1041 | retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16); | |
1042 | ||
1043 | /* b0 */ | |
1044 | ||
1045 | retval |= __get_user(pt->b0, &ppr->br[0]); | |
1046 | ||
1047 | /* b1-b5 */ | |
1048 | ||
1049 | for (i = 1; i < 6; i++) { | |
1050 | retval |= __get_user(val, &ppr->br[i]); | |
1051 | unw_set_br(&info, i, val); | |
1052 | } | |
1053 | ||
1054 | /* b6-b7 */ | |
1055 | ||
1056 | retval |= __get_user(pt->b6, &ppr->br[6]); | |
1057 | retval |= __get_user(pt->b7, &ppr->br[7]); | |
1058 | ||
1059 | /* fr2-fr5 */ | |
1060 | ||
1061 | for (i = 2; i < 6; i++) { | |
1062 | retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval)); | |
1063 | if (unw_set_fr(&info, i, fpval) < 0) | |
1064 | return -EIO; | |
1065 | } | |
1066 | ||
1067 | /* fr6-fr11 */ | |
1068 | ||
1069 | retval |= __copy_from_user(&pt->f6, &ppr->fr[6], | |
1070 | sizeof(ppr->fr[6]) * 6); | |
1071 | ||
1072 | /* fp scratch regs(12-15) */ | |
1073 | ||
1074 | retval |= __copy_from_user(&sw->f12, &ppr->fr[12], | |
1075 | sizeof(ppr->fr[12]) * 4); | |
1076 | ||
1077 | /* fr16-fr31 */ | |
1078 | ||
1079 | for (i = 16; i < 32; i++) { | |
1080 | retval |= __copy_from_user(&fpval, &ppr->fr[i], | |
1081 | sizeof(fpval)); | |
1082 | if (unw_set_fr(&info, i, fpval) < 0) | |
1083 | return -EIO; | |
1084 | } | |
1085 | ||
1086 | /* fph */ | |
1087 | ||
1088 | ia64_sync_fph(child); | |
1089 | retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], | |
1090 | sizeof(ppr->fr[32]) * 96); | |
1091 | ||
1092 | /* preds */ | |
1093 | ||
1094 | retval |= __get_user(pt->pr, &ppr->pr); | |
1095 | ||
1096 | /* nat bits */ | |
1097 | ||
1098 | retval |= __get_user(nat_bits, &ppr->nat); | |
1099 | ||
77f9c902 AV |
1100 | retval |= access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 1); |
1101 | retval |= access_elf_reg(child, &info, ELF_AR_RSC_OFFSET, &rsc, 1); | |
1102 | retval |= access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 1); | |
1103 | retval |= access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 1); | |
1104 | retval |= access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 1); | |
1105 | retval |= access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 1); | |
1106 | retval |= access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 1); | |
1107 | retval |= access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 1); | |
1da177e4 | 1108 | |
77f9c902 | 1109 | return retval ? -EIO : 0; |
1da177e4 LT |
1110 | } |
1111 | ||
8db3f525 PT |
1112 | void |
1113 | user_enable_single_step (struct task_struct *child) | |
1114 | { | |
1115 | struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); | |
1116 | ||
1117 | set_tsk_thread_flag(child, TIF_SINGLESTEP); | |
1118 | child_psr->ss = 1; | |
1119 | } | |
1120 | ||
1121 | void | |
1122 | user_enable_block_step (struct task_struct *child) | |
1123 | { | |
1124 | struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); | |
1125 | ||
1126 | set_tsk_thread_flag(child, TIF_SINGLESTEP); | |
1127 | child_psr->tb = 1; | |
1128 | } | |
1129 | ||
1130 | void | |
1131 | user_disable_single_step (struct task_struct *child) | |
1132 | { | |
1133 | struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); | |
1134 | ||
1135 | /* make sure the single step/taken-branch trap bits are not set: */ | |
1136 | clear_tsk_thread_flag(child, TIF_SINGLESTEP); | |
1137 | child_psr->ss = 0; | |
1138 | child_psr->tb = 0; | |
1139 | } | |
1140 | ||
1da177e4 LT |
1141 | /* |
1142 | * Called by kernel/ptrace.c when detaching.. | |
1143 | * | |
1144 | * Make sure the single step bit is not set. | |
1145 | */ | |
1146 | void | |
1147 | ptrace_disable (struct task_struct *child) | |
1148 | { | |
aa17f6f9 | 1149 | user_disable_single_step(child); |
1da177e4 LT |
1150 | } |
1151 | ||
77f9c902 AV |
1152 | static int |
1153 | access_uarea (struct task_struct *child, unsigned long addr, | |
1154 | unsigned long *data, int write_access); | |
1155 | ||
eac738e6 | 1156 | long |
9b05a69e NK |
1157 | arch_ptrace (struct task_struct *child, long request, |
1158 | unsigned long addr, unsigned long data) | |
1da177e4 | 1159 | { |
1da177e4 | 1160 | switch (request) { |
aa17f6f9 PT |
1161 | case PTRACE_PEEKTEXT: |
1162 | case PTRACE_PEEKDATA: | |
1da177e4 | 1163 | /* read word at location addr */ |
84d77d3f | 1164 | if (ptrace_access_vm(child, addr, &data, sizeof(data), |
f307ab6d | 1165 | FOLL_FORCE) |
aa17f6f9 PT |
1166 | != sizeof(data)) |
1167 | return -EIO; | |
1168 | /* ensure return value is not mistaken for error code */ | |
972559a0 | 1169 | force_successful_syscall_return(); |
aa17f6f9 | 1170 | return data; |
1da177e4 | 1171 | |
972559a0 PT |
1172 | /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled |
1173 | * by the generic ptrace_request(). | |
1174 | */ | |
1da177e4 | 1175 | |
aa17f6f9 | 1176 | case PTRACE_PEEKUSR: |
1da177e4 | 1177 | /* read the word at addr in the USER area */ |
aa17f6f9 PT |
1178 | if (access_uarea(child, addr, &data, 0) < 0) |
1179 | return -EIO; | |
1180 | /* ensure return value is not mistaken for error code */ | |
1da177e4 | 1181 | force_successful_syscall_return(); |
aa17f6f9 | 1182 | return data; |
1da177e4 | 1183 | |
aa17f6f9 | 1184 | case PTRACE_POKEUSR: |
1da177e4 | 1185 | /* write the word at addr in the USER area */ |
aa17f6f9 PT |
1186 | if (access_uarea(child, addr, &data, 1) < 0) |
1187 | return -EIO; | |
1188 | return 0; | |
1da177e4 | 1189 | |
aa17f6f9 | 1190 | case PTRACE_OLD_GETSIGINFO: |
1da177e4 | 1191 | /* for backwards-compatibility */ |
aa17f6f9 | 1192 | return ptrace_request(child, PTRACE_GETSIGINFO, addr, data); |
1da177e4 | 1193 | |
aa17f6f9 | 1194 | case PTRACE_OLD_SETSIGINFO: |
1da177e4 | 1195 | /* for backwards-compatibility */ |
aa17f6f9 PT |
1196 | return ptrace_request(child, PTRACE_SETSIGINFO, addr, data); |
1197 | ||
1198 | case PTRACE_GETREGS: | |
1199 | return ptrace_getregs(child, | |
1200 | (struct pt_all_user_regs __user *) data); | |
1201 | ||
1202 | case PTRACE_SETREGS: | |
1203 | return ptrace_setregs(child, | |
1204 | (struct pt_all_user_regs __user *) data); | |
1205 | ||
1206 | default: | |
1207 | return ptrace_request(child, request, addr, data); | |
1da177e4 | 1208 | } |
1da177e4 LT |
1209 | } |
1210 | ||
1211 | ||
1da177e4 LT |
1212 | /* "asmlinkage" so the input arguments are preserved... */ |
1213 | ||
f14488cc | 1214 | asmlinkage long |
1da177e4 LT |
1215 | syscall_trace_enter (long arg0, long arg1, long arg2, long arg3, |
1216 | long arg4, long arg5, long arg6, long arg7, | |
1217 | struct pt_regs regs) | |
1218 | { | |
f14488cc SL |
1219 | if (test_thread_flag(TIF_SYSCALL_TRACE)) |
1220 | if (tracehook_report_syscall_entry(®s)) | |
1221 | return -ENOSYS; | |
1da177e4 | 1222 | |
3b2ce0b1 PT |
1223 | /* copy user rbs to kernel rbs */ |
1224 | if (test_thread_flag(TIF_RESTORE_RSE)) | |
1225 | ia64_sync_krbs(); | |
1226 | ||
2fd6f58b | 1227 | |
91397401 | 1228 | audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3); |
1da177e4 | 1229 | |
f14488cc | 1230 | return 0; |
1da177e4 LT |
1231 | } |
1232 | ||
1233 | /* "asmlinkage" so the input arguments are preserved... */ | |
1234 | ||
1235 | asmlinkage void | |
1236 | syscall_trace_leave (long arg0, long arg1, long arg2, long arg3, | |
1237 | long arg4, long arg5, long arg6, long arg7, | |
1238 | struct pt_regs regs) | |
1239 | { | |
f14488cc SL |
1240 | int step; |
1241 | ||
d7e7528b | 1242 | audit_syscall_exit(®s); |
1da177e4 | 1243 | |
f14488cc SL |
1244 | step = test_thread_flag(TIF_SINGLESTEP); |
1245 | if (step || test_thread_flag(TIF_SYSCALL_TRACE)) | |
1246 | tracehook_report_syscall_exit(®s, step); | |
3b2ce0b1 PT |
1247 | |
1248 | /* copy user rbs to kernel rbs */ | |
1249 | if (test_thread_flag(TIF_RESTORE_RSE)) | |
1250 | ia64_sync_krbs(); | |
1da177e4 | 1251 | } |
c70f8f68 SL |
1252 | |
1253 | /* Utrace implementation starts here */ | |
1254 | struct regset_get { | |
1255 | void *kbuf; | |
1256 | void __user *ubuf; | |
1257 | }; | |
1258 | ||
1259 | struct regset_set { | |
1260 | const void *kbuf; | |
1261 | const void __user *ubuf; | |
1262 | }; | |
1263 | ||
1264 | struct regset_getset { | |
1265 | struct task_struct *target; | |
1266 | const struct user_regset *regset; | |
1267 | union { | |
1268 | struct regset_get get; | |
1269 | struct regset_set set; | |
1270 | } u; | |
1271 | unsigned int pos; | |
1272 | unsigned int count; | |
1273 | int ret; | |
1274 | }; | |
1275 | ||
e2115cf3 | 1276 | static const ptrdiff_t pt_offsets[32] = |
4c35bf3a AV |
1277 | { |
1278 | #define R(n) offsetof(struct pt_regs, r##n) | |
1279 | [0] = -1, R(1), R(2), R(3), | |
1280 | [4] = -1, [5] = -1, [6] = -1, [7] = -1, | |
1281 | R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15), | |
e2115cf3 AV |
1282 | R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23), |
1283 | R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31), | |
4c35bf3a AV |
1284 | #undef R |
1285 | }; | |
1286 | ||
c70f8f68 SL |
1287 | static int |
1288 | access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info, | |
1289 | unsigned long addr, unsigned long *data, int write_access) | |
1290 | { | |
4c35bf3a AV |
1291 | struct pt_regs *pt = task_pt_regs(target); |
1292 | unsigned reg = addr / sizeof(unsigned long); | |
1293 | ptrdiff_t d = pt_offsets[reg]; | |
1294 | ||
1295 | if (d >= 0) { | |
1296 | unsigned long *ptr = (void *)pt + d; | |
1297 | if (write_access) | |
1298 | *ptr = *data; | |
1299 | else | |
1300 | *data = *ptr; | |
1301 | return 0; | |
1302 | } else { | |
1303 | char nat = 0; | |
c70f8f68 SL |
1304 | if (write_access) { |
1305 | /* read NaT bit first: */ | |
1306 | unsigned long dummy; | |
4c35bf3a | 1307 | int ret = unw_get_gr(info, reg, &dummy, &nat); |
c70f8f68 SL |
1308 | if (ret < 0) |
1309 | return ret; | |
1310 | } | |
4c35bf3a | 1311 | return unw_access_gr(info, reg, data, &nat, write_access); |
c70f8f68 | 1312 | } |
c70f8f68 SL |
1313 | } |
1314 | ||
1315 | static int | |
1316 | access_elf_breg(struct task_struct *target, struct unw_frame_info *info, | |
1317 | unsigned long addr, unsigned long *data, int write_access) | |
1318 | { | |
1319 | struct pt_regs *pt; | |
1320 | unsigned long *ptr = NULL; | |
1321 | ||
1322 | pt = task_pt_regs(target); | |
1323 | switch (addr) { | |
1324 | case ELF_BR_OFFSET(0): | |
1325 | ptr = &pt->b0; | |
1326 | break; | |
1327 | case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5): | |
1328 | return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8, | |
1329 | data, write_access); | |
1330 | case ELF_BR_OFFSET(6): | |
1331 | ptr = &pt->b6; | |
1332 | break; | |
1333 | case ELF_BR_OFFSET(7): | |
1334 | ptr = &pt->b7; | |
1335 | } | |
1336 | if (write_access) | |
1337 | *ptr = *data; | |
1338 | else | |
1339 | *data = *ptr; | |
1340 | return 0; | |
1341 | } | |
1342 | ||
1343 | static int | |
1344 | access_elf_areg(struct task_struct *target, struct unw_frame_info *info, | |
1345 | unsigned long addr, unsigned long *data, int write_access) | |
1346 | { | |
1347 | struct pt_regs *pt; | |
1348 | unsigned long cfm, urbs_end; | |
1349 | unsigned long *ptr = NULL; | |
1350 | ||
1351 | pt = task_pt_regs(target); | |
1352 | if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) { | |
1353 | switch (addr) { | |
1354 | case ELF_AR_RSC_OFFSET: | |
1355 | /* force PL3 */ | |
1356 | if (write_access) | |
1357 | pt->ar_rsc = *data | (3 << 2); | |
1358 | else | |
1359 | *data = pt->ar_rsc; | |
1360 | return 0; | |
1361 | case ELF_AR_BSP_OFFSET: | |
1362 | /* | |
1363 | * By convention, we use PT_AR_BSP to refer to | |
1364 | * the end of the user-level backing store. | |
1365 | * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) | |
1366 | * to get the real value of ar.bsp at the time | |
1367 | * the kernel was entered. | |
1368 | * | |
1369 | * Furthermore, when changing the contents of | |
1370 | * PT_AR_BSP (or PT_CFM) while the task is | |
1371 | * blocked in a system call, convert the state | |
1372 | * so that the non-system-call exit | |
1373 | * path is used. This ensures that the proper | |
1374 | * state will be picked up when resuming | |
1375 | * execution. However, it *also* means that | |
1376 | * once we write PT_AR_BSP/PT_CFM, it won't be | |
1377 | * possible to modify the syscall arguments of | |
1378 | * the pending system call any longer. This | |
1379 | * shouldn't be an issue because modifying | |
1380 | * PT_AR_BSP/PT_CFM generally implies that | |
1381 | * we're either abandoning the pending system | |
1382 | * call or that we defer it's re-execution | |
1383 | * (e.g., due to GDB doing an inferior | |
1384 | * function call). | |
1385 | */ | |
1386 | urbs_end = ia64_get_user_rbs_end(target, pt, &cfm); | |
1387 | if (write_access) { | |
1388 | if (*data != urbs_end) { | |
1389 | if (in_syscall(pt)) | |
1390 | convert_to_non_syscall(target, | |
1391 | pt, | |
1392 | cfm); | |
1393 | /* | |
1394 | * Simulate user-level write | |
1395 | * of ar.bsp: | |
1396 | */ | |
1397 | pt->loadrs = 0; | |
1398 | pt->ar_bspstore = *data; | |
1399 | } | |
1400 | } else | |
1401 | *data = urbs_end; | |
1402 | return 0; | |
1403 | case ELF_AR_BSPSTORE_OFFSET: | |
1404 | ptr = &pt->ar_bspstore; | |
1405 | break; | |
1406 | case ELF_AR_RNAT_OFFSET: | |
1407 | ptr = &pt->ar_rnat; | |
1408 | break; | |
1409 | case ELF_AR_CCV_OFFSET: | |
1410 | ptr = &pt->ar_ccv; | |
1411 | break; | |
1412 | case ELF_AR_UNAT_OFFSET: | |
1413 | ptr = &pt->ar_unat; | |
1414 | break; | |
1415 | case ELF_AR_FPSR_OFFSET: | |
1416 | ptr = &pt->ar_fpsr; | |
1417 | break; | |
1418 | case ELF_AR_PFS_OFFSET: | |
1419 | ptr = &pt->ar_pfs; | |
1420 | break; | |
1421 | case ELF_AR_LC_OFFSET: | |
1422 | return unw_access_ar(info, UNW_AR_LC, data, | |
1423 | write_access); | |
1424 | case ELF_AR_EC_OFFSET: | |
1425 | return unw_access_ar(info, UNW_AR_EC, data, | |
1426 | write_access); | |
1427 | case ELF_AR_CSD_OFFSET: | |
1428 | ptr = &pt->ar_csd; | |
1429 | break; | |
1430 | case ELF_AR_SSD_OFFSET: | |
1431 | ptr = &pt->ar_ssd; | |
1432 | } | |
1433 | } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) { | |
1434 | switch (addr) { | |
1435 | case ELF_CR_IIP_OFFSET: | |
1436 | ptr = &pt->cr_iip; | |
1437 | break; | |
1438 | case ELF_CFM_OFFSET: | |
1439 | urbs_end = ia64_get_user_rbs_end(target, pt, &cfm); | |
1440 | if (write_access) { | |
1441 | if (((cfm ^ *data) & PFM_MASK) != 0) { | |
1442 | if (in_syscall(pt)) | |
1443 | convert_to_non_syscall(target, | |
1444 | pt, | |
1445 | cfm); | |
1446 | pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK) | |
1447 | | (*data & PFM_MASK)); | |
1448 | } | |
1449 | } else | |
1450 | *data = cfm; | |
1451 | return 0; | |
1452 | case ELF_CR_IPSR_OFFSET: | |
1453 | if (write_access) { | |
1454 | unsigned long tmp = *data; | |
1455 | /* psr.ri==3 is a reserved value: SDM 2:25 */ | |
1456 | if ((tmp & IA64_PSR_RI) == IA64_PSR_RI) | |
1457 | tmp &= ~IA64_PSR_RI; | |
1458 | pt->cr_ipsr = ((tmp & IPSR_MASK) | |
1459 | | (pt->cr_ipsr & ~IPSR_MASK)); | |
1460 | } else | |
1461 | *data = (pt->cr_ipsr & IPSR_MASK); | |
1462 | return 0; | |
1463 | } | |
1464 | } else if (addr == ELF_NAT_OFFSET) | |
1465 | return access_nat_bits(target, pt, info, | |
1466 | data, write_access); | |
1467 | else if (addr == ELF_PR_OFFSET) | |
1468 | ptr = &pt->pr; | |
1469 | else | |
1470 | return -1; | |
1471 | ||
1472 | if (write_access) | |
1473 | *ptr = *data; | |
1474 | else | |
1475 | *data = *ptr; | |
1476 | ||
1477 | return 0; | |
1478 | } | |
1479 | ||
1480 | static int | |
1481 | access_elf_reg(struct task_struct *target, struct unw_frame_info *info, | |
1482 | unsigned long addr, unsigned long *data, int write_access) | |
1483 | { | |
e2115cf3 | 1484 | if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31)) |
c70f8f68 SL |
1485 | return access_elf_gpreg(target, info, addr, data, write_access); |
1486 | else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7)) | |
1487 | return access_elf_breg(target, info, addr, data, write_access); | |
1488 | else | |
1489 | return access_elf_areg(target, info, addr, data, write_access); | |
1490 | } | |
1491 | ||
4ff8a356 AV |
1492 | struct regset_membuf { |
1493 | struct membuf to; | |
1494 | int ret; | |
1495 | }; | |
1496 | ||
3b2d387c | 1497 | static void do_gpregs_get(struct unw_frame_info *info, void *arg) |
c70f8f68 | 1498 | { |
4ff8a356 AV |
1499 | struct regset_membuf *dst = arg; |
1500 | struct membuf to = dst->to; | |
1501 | unsigned int n; | |
1502 | elf_greg_t reg; | |
c70f8f68 SL |
1503 | |
1504 | if (unw_unwind_to_user(info) < 0) | |
1505 | return; | |
1506 | ||
1507 | /* | |
1508 | * coredump format: | |
1509 | * r0-r31 | |
1510 | * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) | |
1511 | * predicate registers (p0-p63) | |
1512 | * b0-b7 | |
1513 | * ip cfm user-mask | |
1514 | * ar.rsc ar.bsp ar.bspstore ar.rnat | |
1515 | * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec | |
1516 | */ | |
1517 | ||
1518 | ||
1519 | /* Skip r0 */ | |
4ff8a356 AV |
1520 | membuf_zero(&to, 8); |
1521 | for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) { | |
1522 | if (access_elf_reg(info->task, info, n, ®, 0) < 0) { | |
1523 | dst->ret = -EIO; | |
c70f8f68 | 1524 | return; |
a79ca8e7 | 1525 | } |
4ff8a356 | 1526 | membuf_store(&to, reg); |
c70f8f68 | 1527 | } |
c70f8f68 SL |
1528 | } |
1529 | ||
3b2d387c | 1530 | static void do_gpregs_set(struct unw_frame_info *info, void *arg) |
c70f8f68 | 1531 | { |
c70f8f68 | 1532 | struct regset_getset *dst = arg; |
c70f8f68 SL |
1533 | |
1534 | if (unw_unwind_to_user(info) < 0) | |
1535 | return; | |
1536 | ||
a79ca8e7 AV |
1537 | if (!dst->count) |
1538 | return; | |
c70f8f68 | 1539 | /* Skip r0 */ |
a79ca8e7 | 1540 | if (dst->pos < ELF_GR_OFFSET(1)) { |
c70f8f68 SL |
1541 | dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count, |
1542 | &dst->u.set.kbuf, | |
1543 | &dst->u.set.ubuf, | |
1544 | 0, ELF_GR_OFFSET(1)); | |
c70f8f68 SL |
1545 | if (dst->ret) |
1546 | return; | |
c70f8f68 SL |
1547 | } |
1548 | ||
a79ca8e7 AV |
1549 | while (dst->count && dst->pos < ELF_AR_END_OFFSET) { |
1550 | unsigned int n, from, to; | |
1551 | elf_greg_t tmp[16]; | |
c70f8f68 | 1552 | |
a79ca8e7 AV |
1553 | from = dst->pos; |
1554 | to = from + sizeof(tmp); | |
1555 | if (to > ELF_AR_END_OFFSET) | |
1556 | to = ELF_AR_END_OFFSET; | |
1557 | /* get up to 16 values */ | |
c70f8f68 SL |
1558 | dst->ret = user_regset_copyin(&dst->pos, &dst->count, |
1559 | &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, | |
a79ca8e7 | 1560 | from, to); |
c70f8f68 SL |
1561 | if (dst->ret) |
1562 | return; | |
a79ca8e7 AV |
1563 | /* now copy them into registers */ |
1564 | for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++) | |
1565 | if (access_elf_reg(dst->target, info, from, | |
1566 | &tmp[n], 1) < 0) { | |
c70f8f68 SL |
1567 | dst->ret = -EIO; |
1568 | return; | |
1569 | } | |
1570 | } | |
1571 | } | |
1572 | ||
1573 | #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t)) | |
1574 | ||
3b2d387c | 1575 | static void do_fpregs_get(struct unw_frame_info *info, void *arg) |
c70f8f68 | 1576 | { |
4ff8a356 AV |
1577 | struct task_struct *task = info->task; |
1578 | struct regset_membuf *dst = arg; | |
1579 | struct membuf to = dst->to; | |
1580 | elf_fpreg_t reg; | |
1581 | unsigned int n; | |
c70f8f68 SL |
1582 | |
1583 | if (unw_unwind_to_user(info) < 0) | |
1584 | return; | |
1585 | ||
1586 | /* Skip pos 0 and 1 */ | |
4ff8a356 | 1587 | membuf_zero(&to, 2 * sizeof(elf_fpreg_t)); |
c70f8f68 SL |
1588 | |
1589 | /* fr2-fr31 */ | |
4ff8a356 AV |
1590 | for (n = 2; to.left && n < 32; n++) { |
1591 | if (unw_get_fr(info, n, ®)) { | |
1592 | dst->ret = -EIO; | |
c70f8f68 | 1593 | return; |
4ff8a356 AV |
1594 | } |
1595 | membuf_write(&to, ®, sizeof(reg)); | |
c70f8f68 SL |
1596 | } |
1597 | ||
1598 | /* fph */ | |
4ff8a356 AV |
1599 | if (!to.left) |
1600 | return; | |
1601 | ||
1602 | ia64_flush_fph(task); | |
1603 | if (task->thread.flags & IA64_THREAD_FPH_VALID) | |
1604 | membuf_write(&to, &task->thread.fph, 96 * sizeof(reg)); | |
1605 | else | |
1606 | membuf_zero(&to, 96 * sizeof(reg)); | |
c70f8f68 SL |
1607 | } |
1608 | ||
3b2d387c | 1609 | static void do_fpregs_set(struct unw_frame_info *info, void *arg) |
c70f8f68 SL |
1610 | { |
1611 | struct regset_getset *dst = arg; | |
1612 | elf_fpreg_t fpreg, tmp[30]; | |
1613 | int index, start, end; | |
1614 | ||
1615 | if (unw_unwind_to_user(info) < 0) | |
1616 | return; | |
1617 | ||
1618 | /* Skip pos 0 and 1 */ | |
1619 | if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) { | |
1620 | dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count, | |
1621 | &dst->u.set.kbuf, | |
1622 | &dst->u.set.ubuf, | |
1623 | 0, ELF_FP_OFFSET(2)); | |
1624 | if (dst->count == 0 || dst->ret) | |
1625 | return; | |
1626 | } | |
1627 | ||
1628 | /* fr2-fr31 */ | |
1629 | if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) { | |
1630 | start = dst->pos; | |
1631 | end = min(((unsigned int)ELF_FP_OFFSET(32)), | |
1632 | dst->pos + dst->count); | |
1633 | dst->ret = user_regset_copyin(&dst->pos, &dst->count, | |
1634 | &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, | |
1635 | ELF_FP_OFFSET(2), ELF_FP_OFFSET(32)); | |
1636 | if (dst->ret) | |
1637 | return; | |
1638 | ||
1639 | if (start & 0xF) { /* only write high part */ | |
1640 | if (unw_get_fr(info, start / sizeof(elf_fpreg_t), | |
1641 | &fpreg)) { | |
1642 | dst->ret = -EIO; | |
1643 | return; | |
1644 | } | |
1645 | tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0] | |
1646 | = fpreg.u.bits[0]; | |
1647 | start &= ~0xFUL; | |
1648 | } | |
1649 | if (end & 0xF) { /* only write low part */ | |
1650 | if (unw_get_fr(info, end / sizeof(elf_fpreg_t), | |
1651 | &fpreg)) { | |
1652 | dst->ret = -EIO; | |
1653 | return; | |
1654 | } | |
1655 | tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1] | |
1656 | = fpreg.u.bits[1]; | |
1657 | end = (end + 0xF) & ~0xFUL; | |
1658 | } | |
1659 | ||
1660 | for ( ; start < end ; start += sizeof(elf_fpreg_t)) { | |
1661 | index = start / sizeof(elf_fpreg_t); | |
1662 | if (unw_set_fr(info, index, tmp[index - 2])) { | |
1663 | dst->ret = -EIO; | |
1664 | return; | |
1665 | } | |
1666 | } | |
1667 | if (dst->ret || dst->count == 0) | |
1668 | return; | |
1669 | } | |
1670 | ||
1671 | /* fph */ | |
1672 | if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) { | |
1673 | ia64_sync_fph(dst->target); | |
1674 | dst->ret = user_regset_copyin(&dst->pos, &dst->count, | |
1675 | &dst->u.set.kbuf, | |
1676 | &dst->u.set.ubuf, | |
1677 | &dst->target->thread.fph, | |
1678 | ELF_FP_OFFSET(32), -1); | |
1679 | } | |
1680 | } | |
1681 | ||
4ff8a356 AV |
1682 | static void |
1683 | unwind_and_call(void (*call)(struct unw_frame_info *, void *), | |
1684 | struct task_struct *target, void *data) | |
1685 | { | |
1686 | if (target == current) | |
1687 | unw_init_running(call, data); | |
1688 | else { | |
1689 | struct unw_frame_info info; | |
1690 | memset(&info, 0, sizeof(info)); | |
1691 | unw_init_from_blocked_task(&info, target); | |
1692 | (*call)(&info, data); | |
1693 | } | |
1694 | } | |
1695 | ||
c70f8f68 SL |
1696 | static int |
1697 | do_regset_call(void (*call)(struct unw_frame_info *, void *), | |
1698 | struct task_struct *target, | |
1699 | const struct user_regset *regset, | |
1700 | unsigned int pos, unsigned int count, | |
1701 | const void *kbuf, const void __user *ubuf) | |
1702 | { | |
1703 | struct regset_getset info = { .target = target, .regset = regset, | |
1704 | .pos = pos, .count = count, | |
1705 | .u.set = { .kbuf = kbuf, .ubuf = ubuf }, | |
1706 | .ret = 0 }; | |
4ff8a356 | 1707 | unwind_and_call(call, target, &info); |
c70f8f68 SL |
1708 | return info.ret; |
1709 | } | |
1710 | ||
1711 | static int | |
1712 | gpregs_get(struct task_struct *target, | |
1713 | const struct user_regset *regset, | |
4ff8a356 | 1714 | struct membuf to) |
c70f8f68 | 1715 | { |
4ff8a356 AV |
1716 | struct regset_membuf info = {.to = to}; |
1717 | unwind_and_call(do_gpregs_get, target, &info); | |
1718 | return info.ret; | |
c70f8f68 SL |
1719 | } |
1720 | ||
1721 | static int gpregs_set(struct task_struct *target, | |
1722 | const struct user_regset *regset, | |
1723 | unsigned int pos, unsigned int count, | |
1724 | const void *kbuf, const void __user *ubuf) | |
1725 | { | |
1726 | return do_regset_call(do_gpregs_set, target, regset, pos, count, | |
1727 | kbuf, ubuf); | |
1728 | } | |
1729 | ||
1730 | static void do_gpregs_writeback(struct unw_frame_info *info, void *arg) | |
1731 | { | |
1732 | do_sync_rbs(info, ia64_sync_user_rbs); | |
1733 | } | |
1734 | ||
1735 | /* | |
1736 | * This is called to write back the register backing store. | |
1737 | * ptrace does this before it stops, so that a tracer reading the user | |
1738 | * memory after the thread stops will get the current register data. | |
1739 | */ | |
1740 | static int | |
1741 | gpregs_writeback(struct task_struct *target, | |
1742 | const struct user_regset *regset, | |
1743 | int now) | |
1744 | { | |
1745 | if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE)) | |
1746 | return 0; | |
f14488cc | 1747 | set_notify_resume(target); |
c70f8f68 SL |
1748 | return do_regset_call(do_gpregs_writeback, target, regset, 0, 0, |
1749 | NULL, NULL); | |
1750 | } | |
1751 | ||
1752 | static int | |
1753 | fpregs_active(struct task_struct *target, const struct user_regset *regset) | |
1754 | { | |
1755 | return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32; | |
1756 | } | |
1757 | ||
1758 | static int fpregs_get(struct task_struct *target, | |
1759 | const struct user_regset *regset, | |
4ff8a356 | 1760 | struct membuf to) |
c70f8f68 | 1761 | { |
4ff8a356 AV |
1762 | struct regset_membuf info = {.to = to}; |
1763 | unwind_and_call(do_fpregs_get, target, &info); | |
1764 | return info.ret; | |
c70f8f68 SL |
1765 | } |
1766 | ||
1767 | static int fpregs_set(struct task_struct *target, | |
1768 | const struct user_regset *regset, | |
1769 | unsigned int pos, unsigned int count, | |
1770 | const void *kbuf, const void __user *ubuf) | |
1771 | { | |
1772 | return do_regset_call(do_fpregs_set, target, regset, pos, count, | |
1773 | kbuf, ubuf); | |
1774 | } | |
1775 | ||
4cd8dc83 SL |
1776 | static int |
1777 | access_uarea(struct task_struct *child, unsigned long addr, | |
1778 | unsigned long *data, int write_access) | |
1779 | { | |
1780 | unsigned int pos = -1; /* an invalid value */ | |
4cd8dc83 SL |
1781 | unsigned long *ptr, regnum; |
1782 | ||
1783 | if ((addr & 0x7) != 0) { | |
1784 | dprintk("ptrace: unaligned register address 0x%lx\n", addr); | |
1785 | return -1; | |
1786 | } | |
1787 | if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) || | |
1788 | (addr >= PT_R7 + 8 && addr < PT_B1) || | |
1789 | (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) || | |
1790 | (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) { | |
1791 | dprintk("ptrace: rejecting access to register " | |
1792 | "address 0x%lx\n", addr); | |
1793 | return -1; | |
1794 | } | |
1795 | ||
1796 | switch (addr) { | |
1797 | case PT_F32 ... (PT_F127 + 15): | |
1798 | pos = addr - PT_F32 + ELF_FP_OFFSET(32); | |
1799 | break; | |
1800 | case PT_F2 ... (PT_F5 + 15): | |
1801 | pos = addr - PT_F2 + ELF_FP_OFFSET(2); | |
1802 | break; | |
1803 | case PT_F10 ... (PT_F31 + 15): | |
1804 | pos = addr - PT_F10 + ELF_FP_OFFSET(10); | |
1805 | break; | |
1806 | case PT_F6 ... (PT_F9 + 15): | |
1807 | pos = addr - PT_F6 + ELF_FP_OFFSET(6); | |
1808 | break; | |
1809 | } | |
1810 | ||
1811 | if (pos != -1) { | |
e3fdfa37 AV |
1812 | unsigned reg = pos / sizeof(elf_fpreg_t); |
1813 | int which_half = (pos / sizeof(unsigned long)) & 1; | |
1814 | ||
1815 | if (reg < 32) { /* fr2-fr31 */ | |
1816 | struct unw_frame_info info; | |
1817 | elf_fpreg_t fpreg; | |
1818 | ||
1819 | memset(&info, 0, sizeof(info)); | |
1820 | unw_init_from_blocked_task(&info, child); | |
1821 | if (unw_unwind_to_user(&info) < 0) | |
1822 | return 0; | |
1823 | ||
1824 | if (unw_get_fr(&info, reg, &fpreg)) | |
1825 | return -1; | |
1826 | if (write_access) { | |
1827 | fpreg.u.bits[which_half] = *data; | |
1828 | if (unw_set_fr(&info, reg, fpreg)) | |
1829 | return -1; | |
1830 | } else { | |
1831 | *data = fpreg.u.bits[which_half]; | |
1832 | } | |
1833 | } else { /* fph */ | |
1834 | elf_fpreg_t *p = &child->thread.fph[reg - 32]; | |
1835 | unsigned long *bits = &p->u.bits[which_half]; | |
1836 | ||
1837 | ia64_sync_fph(child); | |
1838 | if (write_access) | |
1839 | *bits = *data; | |
1840 | else if (child->thread.flags & IA64_THREAD_FPH_VALID) | |
1841 | *data = *bits; | |
1842 | else | |
1843 | *data = 0; | |
1844 | } | |
4cd8dc83 SL |
1845 | return 0; |
1846 | } | |
1847 | ||
1848 | switch (addr) { | |
1849 | case PT_NAT_BITS: | |
1850 | pos = ELF_NAT_OFFSET; | |
1851 | break; | |
1852 | case PT_R4 ... PT_R7: | |
1853 | pos = addr - PT_R4 + ELF_GR_OFFSET(4); | |
1854 | break; | |
1855 | case PT_B1 ... PT_B5: | |
1856 | pos = addr - PT_B1 + ELF_BR_OFFSET(1); | |
1857 | break; | |
1858 | case PT_AR_EC: | |
1859 | pos = ELF_AR_EC_OFFSET; | |
1860 | break; | |
1861 | case PT_AR_LC: | |
1862 | pos = ELF_AR_LC_OFFSET; | |
1863 | break; | |
1864 | case PT_CR_IPSR: | |
1865 | pos = ELF_CR_IPSR_OFFSET; | |
1866 | break; | |
1867 | case PT_CR_IIP: | |
1868 | pos = ELF_CR_IIP_OFFSET; | |
1869 | break; | |
1870 | case PT_CFM: | |
1871 | pos = ELF_CFM_OFFSET; | |
1872 | break; | |
1873 | case PT_AR_UNAT: | |
1874 | pos = ELF_AR_UNAT_OFFSET; | |
1875 | break; | |
1876 | case PT_AR_PFS: | |
1877 | pos = ELF_AR_PFS_OFFSET; | |
1878 | break; | |
1879 | case PT_AR_RSC: | |
1880 | pos = ELF_AR_RSC_OFFSET; | |
1881 | break; | |
1882 | case PT_AR_RNAT: | |
1883 | pos = ELF_AR_RNAT_OFFSET; | |
1884 | break; | |
1885 | case PT_AR_BSPSTORE: | |
1886 | pos = ELF_AR_BSPSTORE_OFFSET; | |
1887 | break; | |
1888 | case PT_PR: | |
1889 | pos = ELF_PR_OFFSET; | |
1890 | break; | |
1891 | case PT_B6: | |
1892 | pos = ELF_BR_OFFSET(6); | |
1893 | break; | |
1894 | case PT_AR_BSP: | |
1895 | pos = ELF_AR_BSP_OFFSET; | |
1896 | break; | |
1897 | case PT_R1 ... PT_R3: | |
1898 | pos = addr - PT_R1 + ELF_GR_OFFSET(1); | |
1899 | break; | |
1900 | case PT_R12 ... PT_R15: | |
1901 | pos = addr - PT_R12 + ELF_GR_OFFSET(12); | |
1902 | break; | |
1903 | case PT_R8 ... PT_R11: | |
1904 | pos = addr - PT_R8 + ELF_GR_OFFSET(8); | |
1905 | break; | |
1906 | case PT_R16 ... PT_R31: | |
1907 | pos = addr - PT_R16 + ELF_GR_OFFSET(16); | |
1908 | break; | |
1909 | case PT_AR_CCV: | |
1910 | pos = ELF_AR_CCV_OFFSET; | |
1911 | break; | |
1912 | case PT_AR_FPSR: | |
1913 | pos = ELF_AR_FPSR_OFFSET; | |
1914 | break; | |
1915 | case PT_B0: | |
1916 | pos = ELF_BR_OFFSET(0); | |
1917 | break; | |
1918 | case PT_B7: | |
1919 | pos = ELF_BR_OFFSET(7); | |
1920 | break; | |
1921 | case PT_AR_CSD: | |
1922 | pos = ELF_AR_CSD_OFFSET; | |
1923 | break; | |
1924 | case PT_AR_SSD: | |
1925 | pos = ELF_AR_SSD_OFFSET; | |
1926 | break; | |
1927 | } | |
1928 | ||
1929 | if (pos != -1) { | |
6bc4f16c AV |
1930 | struct unw_frame_info info; |
1931 | ||
1932 | memset(&info, 0, sizeof(info)); | |
1933 | unw_init_from_blocked_task(&info, child); | |
1934 | if (unw_unwind_to_user(&info) < 0) | |
1935 | return 0; | |
1936 | ||
1937 | return access_elf_reg(child, &info, pos, data, write_access); | |
4cd8dc83 SL |
1938 | } |
1939 | ||
1940 | /* access debug registers */ | |
1941 | if (addr >= PT_IBR) { | |
1942 | regnum = (addr - PT_IBR) >> 3; | |
1943 | ptr = &child->thread.ibr[0]; | |
1944 | } else { | |
1945 | regnum = (addr - PT_DBR) >> 3; | |
1946 | ptr = &child->thread.dbr[0]; | |
1947 | } | |
1948 | ||
1949 | if (regnum >= 8) { | |
1950 | dprintk("ptrace: rejecting access to register " | |
1951 | "address 0x%lx\n", addr); | |
1952 | return -1; | |
1953 | } | |
4cd8dc83 SL |
1954 | |
1955 | if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { | |
1956 | child->thread.flags |= IA64_THREAD_DBG_VALID; | |
1957 | memset(child->thread.dbr, 0, | |
1958 | sizeof(child->thread.dbr)); | |
1959 | memset(child->thread.ibr, 0, | |
1960 | sizeof(child->thread.ibr)); | |
1961 | } | |
1962 | ||
1963 | ptr += regnum; | |
1964 | ||
1965 | if ((regnum & 1) && write_access) { | |
1966 | /* don't let the user set kernel-level breakpoints: */ | |
1967 | *ptr = *data & ~(7UL << 56); | |
1968 | return 0; | |
1969 | } | |
1970 | if (write_access) | |
1971 | *ptr = *data; | |
1972 | else | |
1973 | *data = *ptr; | |
1974 | return 0; | |
1975 | } | |
1976 | ||
c70f8f68 SL |
1977 | static const struct user_regset native_regsets[] = { |
1978 | { | |
1979 | .core_note_type = NT_PRSTATUS, | |
1980 | .n = ELF_NGREG, | |
1981 | .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t), | |
4ff8a356 | 1982 | .regset_get = gpregs_get, .set = gpregs_set, |
c70f8f68 SL |
1983 | .writeback = gpregs_writeback |
1984 | }, | |
1985 | { | |
1986 | .core_note_type = NT_PRFPREG, | |
1987 | .n = ELF_NFPREG, | |
1988 | .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t), | |
4ff8a356 | 1989 | .regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active |
c70f8f68 SL |
1990 | }, |
1991 | }; | |
1992 | ||
1993 | static const struct user_regset_view user_ia64_view = { | |
1994 | .name = "ia64", | |
1995 | .e_machine = EM_IA_64, | |
1996 | .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets) | |
1997 | }; | |
1998 | ||
1999 | const struct user_regset_view *task_user_regset_view(struct task_struct *tsk) | |
2000 | { | |
2001 | return &user_ia64_view; | |
2002 | } | |
cfb361f1 SL |
2003 | |
2004 | struct syscall_get_set_args { | |
2005 | unsigned int i; | |
2006 | unsigned int n; | |
2007 | unsigned long *args; | |
2008 | struct pt_regs *regs; | |
2009 | int rw; | |
2010 | }; | |
2011 | ||
2012 | static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data) | |
2013 | { | |
2014 | struct syscall_get_set_args *args = data; | |
2015 | struct pt_regs *pt = args->regs; | |
2016 | unsigned long *krbs, cfm, ndirty; | |
2017 | int i, count; | |
2018 | ||
2019 | if (unw_unwind_to_user(info) < 0) | |
2020 | return; | |
2021 | ||
2022 | cfm = pt->cr_ifs; | |
2023 | krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8; | |
2024 | ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); | |
2025 | ||
2026 | count = 0; | |
2027 | if (in_syscall(pt)) | |
2028 | count = min_t(int, args->n, cfm & 0x7f); | |
2029 | ||
2030 | for (i = 0; i < count; i++) { | |
2031 | if (args->rw) | |
2032 | *ia64_rse_skip_regs(krbs, ndirty + i + args->i) = | |
2033 | args->args[i]; | |
2034 | else | |
2035 | args->args[i] = *ia64_rse_skip_regs(krbs, | |
2036 | ndirty + i + args->i); | |
2037 | } | |
2038 | ||
2039 | if (!args->rw) { | |
2040 | while (i < args->n) { | |
2041 | args->args[i] = 0; | |
2042 | i++; | |
2043 | } | |
2044 | } | |
2045 | } | |
2046 | ||
2047 | void ia64_syscall_get_set_arguments(struct task_struct *task, | |
32d92586 | 2048 | struct pt_regs *regs, unsigned long *args, int rw) |
cfb361f1 SL |
2049 | { |
2050 | struct syscall_get_set_args data = { | |
32d92586 SRV |
2051 | .i = 0, |
2052 | .n = 6, | |
cfb361f1 SL |
2053 | .args = args, |
2054 | .regs = regs, | |
2055 | .rw = rw, | |
2056 | }; | |
2057 | ||
2058 | if (task == current) | |
2059 | unw_init_running(syscall_get_set_args_cb, &data); | |
2060 | else { | |
2061 | struct unw_frame_info ufi; | |
2062 | memset(&ufi, 0, sizeof(ufi)); | |
2063 | unw_init_from_blocked_task(&ufi, task); | |
2064 | syscall_get_set_args_cb(&ufi, &data); | |
2065 | } | |
2066 | } |