]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | |
3 | */ | |
4 | ||
1da177e4 LT |
5 | #include <linux/time.h> |
6 | #include <linux/reiserfs_fs.h> | |
7 | #include <linux/reiserfs_acl.h> | |
8 | #include <linux/reiserfs_xattr.h> | |
9 | #include <linux/smp_lock.h> | |
10 | #include <asm/uaccess.h> | |
11 | #include <linux/pagemap.h> | |
12 | #include <linux/swap.h> | |
13 | #include <linux/writeback.h> | |
14 | #include <linux/blkdev.h> | |
15 | #include <linux/buffer_head.h> | |
16 | #include <linux/quotaops.h> | |
17 | ||
18 | /* | |
19 | ** We pack the tails of files on file close, not at the time they are written. | |
20 | ** This implies an unnecessary copy of the tail and an unnecessary indirect item | |
21 | ** insertion/balancing, for files that are written in one write. | |
22 | ** It avoids unnecessary tail packings (balances) for files that are written in | |
23 | ** multiple writes and are small enough to have tails. | |
24 | ** | |
25 | ** file_release is called by the VFS layer when the file is closed. If | |
26 | ** this is the last open file descriptor, and the file | |
27 | ** small enough to have a tail, and the tail is currently in an | |
28 | ** unformatted node, the tail is converted back into a direct item. | |
29 | ** | |
30 | ** We use reiserfs_truncate_file to pack the tail, since it already has | |
31 | ** all the conditions coded. | |
32 | */ | |
bd4c625c | 33 | static int reiserfs_file_release(struct inode *inode, struct file *filp) |
1da177e4 LT |
34 | { |
35 | ||
bd4c625c LT |
36 | struct reiserfs_transaction_handle th; |
37 | int err; | |
38 | int jbegin_failure = 0; | |
1da177e4 | 39 | |
bd4c625c LT |
40 | if (!S_ISREG(inode->i_mode)) |
41 | BUG(); | |
1da177e4 | 42 | |
bd4c625c LT |
43 | /* fast out for when nothing needs to be done */ |
44 | if ((atomic_read(&inode->i_count) > 1 || | |
45 | !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) || | |
46 | !tail_has_to_be_packed(inode)) && | |
47 | REISERFS_I(inode)->i_prealloc_count <= 0) { | |
48 | return 0; | |
49 | } | |
1da177e4 | 50 | |
bd4c625c | 51 | reiserfs_write_lock(inode->i_sb); |
1b1dcc1b | 52 | mutex_lock(&inode->i_mutex); |
bd4c625c LT |
53 | /* freeing preallocation only involves relogging blocks that |
54 | * are already in the current transaction. preallocation gets | |
55 | * freed at the end of each transaction, so it is impossible for | |
56 | * us to log any additional blocks (including quota blocks) | |
57 | */ | |
58 | err = journal_begin(&th, inode->i_sb, 1); | |
1da177e4 | 59 | if (err) { |
bd4c625c LT |
60 | /* uh oh, we can't allow the inode to go away while there |
61 | * is still preallocation blocks pending. Try to join the | |
62 | * aborted transaction | |
63 | */ | |
64 | jbegin_failure = err; | |
65 | err = journal_join_abort(&th, inode->i_sb, 1); | |
66 | ||
67 | if (err) { | |
68 | /* hmpf, our choices here aren't good. We can pin the inode | |
69 | * which will disallow unmount from every happening, we can | |
70 | * do nothing, which will corrupt random memory on unmount, | |
71 | * or we can forcibly remove the file from the preallocation | |
72 | * list, which will leak blocks on disk. Lets pin the inode | |
73 | * and let the admin know what is going on. | |
74 | */ | |
75 | igrab(inode); | |
76 | reiserfs_warning(inode->i_sb, | |
77 | "pinning inode %lu because the " | |
78 | "preallocation can't be freed"); | |
79 | goto out; | |
80 | } | |
1da177e4 | 81 | } |
bd4c625c | 82 | reiserfs_update_inode_transaction(inode); |
1da177e4 LT |
83 | |
84 | #ifdef REISERFS_PREALLOCATE | |
bd4c625c | 85 | reiserfs_discard_prealloc(&th, inode); |
1da177e4 | 86 | #endif |
bd4c625c LT |
87 | err = journal_end(&th, inode->i_sb, 1); |
88 | ||
89 | /* copy back the error code from journal_begin */ | |
90 | if (!err) | |
91 | err = jbegin_failure; | |
92 | ||
93 | if (!err && atomic_read(&inode->i_count) <= 1 && | |
94 | (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) && | |
95 | tail_has_to_be_packed(inode)) { | |
96 | /* if regular file is released by last holder and it has been | |
97 | appended (we append by unformatted node only) or its direct | |
98 | item(s) had to be converted, then it may have to be | |
99 | indirect2direct converted */ | |
100 | err = reiserfs_truncate_file(inode, 0); | |
101 | } | |
102 | out: | |
1b1dcc1b | 103 | mutex_unlock(&inode->i_mutex); |
bd4c625c LT |
104 | reiserfs_write_unlock(inode->i_sb); |
105 | return err; | |
1da177e4 LT |
106 | } |
107 | ||
bd4c625c LT |
108 | static void reiserfs_vfs_truncate_file(struct inode *inode) |
109 | { | |
110 | reiserfs_truncate_file(inode, 1); | |
1da177e4 LT |
111 | } |
112 | ||
113 | /* Sync a reiserfs file. */ | |
114 | ||
115 | /* | |
116 | * FIXME: sync_mapping_buffers() never has anything to sync. Can | |
117 | * be removed... | |
118 | */ | |
119 | ||
bd4c625c LT |
120 | static int reiserfs_sync_file(struct file *p_s_filp, |
121 | struct dentry *p_s_dentry, int datasync) | |
122 | { | |
123 | struct inode *p_s_inode = p_s_dentry->d_inode; | |
124 | int n_err; | |
125 | int barrier_done; | |
126 | ||
127 | if (!S_ISREG(p_s_inode->i_mode)) | |
128 | BUG(); | |
129 | n_err = sync_mapping_buffers(p_s_inode->i_mapping); | |
130 | reiserfs_write_lock(p_s_inode->i_sb); | |
131 | barrier_done = reiserfs_commit_for_inode(p_s_inode); | |
132 | reiserfs_write_unlock(p_s_inode->i_sb); | |
133 | if (barrier_done != 1) | |
134 | blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL); | |
135 | if (barrier_done < 0) | |
136 | return barrier_done; | |
137 | return (n_err < 0) ? -EIO : 0; | |
1da177e4 LT |
138 | } |
139 | ||
140 | /* I really do not want to play with memory shortage right now, so | |
141 | to simplify the code, we are not going to write more than this much pages at | |
142 | a time. This still should considerably improve performance compared to 4k | |
143 | at a time case. This is 32 pages of 4k size. */ | |
144 | #define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE | |
145 | ||
146 | /* Allocates blocks for a file to fulfil write request. | |
147 | Maps all unmapped but prepared pages from the list. | |
148 | Updates metadata with newly allocated blocknumbers as needed */ | |
bd4c625c LT |
149 | static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */ |
150 | loff_t pos, /* Writing position */ | |
151 | int num_pages, /* number of pages write going | |
152 | to touch */ | |
153 | int write_bytes, /* amount of bytes to write */ | |
154 | struct page **prepared_pages, /* array of | |
155 | prepared pages | |
156 | */ | |
157 | int blocks_to_allocate /* Amount of blocks we | |
158 | need to allocate to | |
159 | fit the data into file | |
160 | */ | |
161 | ) | |
1da177e4 | 162 | { |
bd4c625c LT |
163 | struct cpu_key key; // cpu key of item that we are going to deal with |
164 | struct item_head *ih; // pointer to item head that we are going to deal with | |
165 | struct buffer_head *bh; // Buffer head that contains items that we are going to deal with | |
166 | __le32 *item; // pointer to item we are going to deal with | |
167 | INITIALIZE_PATH(path); // path to item, that we are going to deal with. | |
168 | b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored. | |
169 | reiserfs_blocknr_hint_t hint; // hint structure for block allocator. | |
170 | size_t res; // return value of various functions that we call. | |
171 | int curr_block; // current block used to keep track of unmapped blocks. | |
172 | int i; // loop counter | |
173 | int itempos; // position in item | |
174 | unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in | |
175 | // first page | |
176 | unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */ | |
177 | __u64 hole_size; // amount of blocks for a file hole, if it needed to be created. | |
178 | int modifying_this_item = 0; // Flag for items traversal code to keep track | |
179 | // of the fact that we already prepared | |
180 | // current block for journal | |
181 | int will_prealloc = 0; | |
182 | RFALSE(!blocks_to_allocate, | |
183 | "green-9004: tried to allocate zero blocks?"); | |
184 | ||
185 | /* only preallocate if this is a small write */ | |
186 | if (REISERFS_I(inode)->i_prealloc_count || | |
187 | (!(write_bytes & (inode->i_sb->s_blocksize - 1)) && | |
188 | blocks_to_allocate < | |
189 | REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize)) | |
190 | will_prealloc = | |
191 | REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize; | |
192 | ||
193 | allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) * | |
194 | sizeof(b_blocknr_t), GFP_NOFS); | |
e5dd259f DC |
195 | if (!allocated_blocks) |
196 | return -ENOMEM; | |
bd4c625c LT |
197 | |
198 | /* First we compose a key to point at the writing position, we want to do | |
199 | that outside of any locking region. */ | |
200 | make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ ); | |
201 | ||
202 | /* If we came here, it means we absolutely need to open a transaction, | |
203 | since we need to allocate some blocks */ | |
204 | reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that. | |
205 | res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough | |
206 | if (res) | |
1da177e4 | 207 | goto error_exit; |
bd4c625c | 208 | reiserfs_update_inode_transaction(inode); |
1da177e4 | 209 | |
bd4c625c LT |
210 | /* Look for the in-tree position of our write, need path for block allocator */ |
211 | res = search_for_position_by_key(inode->i_sb, &key, &path); | |
212 | if (res == IO_ERROR) { | |
213 | res = -EIO; | |
1da177e4 | 214 | goto error_exit; |
1da177e4 | 215 | } |
1da177e4 | 216 | |
bd4c625c LT |
217 | /* Allocate blocks */ |
218 | /* First fill in "hint" structure for block allocator */ | |
219 | hint.th = th; // transaction handle. | |
220 | hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine. | |
221 | hint.inode = inode; // Inode is needed by block allocator too. | |
222 | hint.search_start = 0; // We have no hint on where to search free blocks for block allocator. | |
223 | hint.key = key.on_disk_key; // on disk key of file. | |
224 | hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); // Number of disk blocks this file occupies already. | |
225 | hint.formatted_node = 0; // We are allocating blocks for unformatted node. | |
226 | hint.preallocate = will_prealloc; | |
227 | ||
228 | /* Call block allocator to allocate blocks */ | |
229 | res = | |
230 | reiserfs_allocate_blocknrs(&hint, allocated_blocks, | |
231 | blocks_to_allocate, blocks_to_allocate); | |
232 | if (res != CARRY_ON) { | |
233 | if (res == NO_DISK_SPACE) { | |
234 | /* We flush the transaction in case of no space. This way some | |
235 | blocks might become free */ | |
236 | SB_JOURNAL(inode->i_sb)->j_must_wait = 1; | |
237 | res = restart_transaction(th, inode, &path); | |
238 | if (res) | |
239 | goto error_exit; | |
240 | ||
241 | /* We might have scheduled, so search again */ | |
242 | res = | |
243 | search_for_position_by_key(inode->i_sb, &key, | |
244 | &path); | |
245 | if (res == IO_ERROR) { | |
246 | res = -EIO; | |
247 | goto error_exit; | |
248 | } | |
1da177e4 | 249 | |
bd4c625c LT |
250 | /* update changed info for hint structure. */ |
251 | res = | |
252 | reiserfs_allocate_blocknrs(&hint, allocated_blocks, | |
253 | blocks_to_allocate, | |
254 | blocks_to_allocate); | |
255 | if (res != CARRY_ON) { | |
0ad74ffa | 256 | res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC; |
bd4c625c LT |
257 | pathrelse(&path); |
258 | goto error_exit; | |
259 | } | |
260 | } else { | |
0ad74ffa | 261 | res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC; |
bd4c625c LT |
262 | pathrelse(&path); |
263 | goto error_exit; | |
264 | } | |
265 | } | |
266 | #ifdef __BIG_ENDIAN | |
267 | // Too bad, I have not found any way to convert a given region from | |
268 | // cpu format to little endian format | |
1da177e4 | 269 | { |
bd4c625c LT |
270 | int i; |
271 | for (i = 0; i < blocks_to_allocate; i++) | |
272 | allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]); | |
1da177e4 | 273 | } |
bd4c625c | 274 | #endif |
1da177e4 | 275 | |
bd4c625c LT |
276 | /* Blocks allocating well might have scheduled and tree might have changed, |
277 | let's search the tree again */ | |
278 | /* find where in the tree our write should go */ | |
279 | res = search_for_position_by_key(inode->i_sb, &key, &path); | |
280 | if (res == IO_ERROR) { | |
281 | res = -EIO; | |
1da177e4 | 282 | goto error_exit_free_blocks; |
bd4c625c LT |
283 | } |
284 | ||
285 | bh = get_last_bh(&path); // Get a bufferhead for last element in path. | |
286 | ih = get_ih(&path); // Get a pointer to last item head in path. | |
287 | item = get_item(&path); // Get a pointer to last item in path | |
288 | ||
289 | /* Let's see what we have found */ | |
290 | if (res != POSITION_FOUND) { /* position not found, this means that we | |
291 | might need to append file with holes | |
292 | first */ | |
293 | // Since we are writing past the file's end, we need to find out if | |
294 | // there is a hole that needs to be inserted before our writing | |
295 | // position, and how many blocks it is going to cover (we need to | |
296 | // populate pointers to file blocks representing the hole with zeros) | |
297 | ||
298 | { | |
299 | int item_offset = 1; | |
300 | /* | |
301 | * if ih is stat data, its offset is 0 and we don't want to | |
302 | * add 1 to pos in the hole_size calculation | |
303 | */ | |
304 | if (is_statdata_le_ih(ih)) | |
305 | item_offset = 0; | |
306 | hole_size = (pos + item_offset - | |
307 | (le_key_k_offset | |
308 | (get_inode_item_key_version(inode), | |
309 | &(ih->ih_key)) + op_bytes_number(ih, | |
310 | inode-> | |
311 | i_sb-> | |
312 | s_blocksize))) | |
313 | >> inode->i_sb->s_blocksize_bits; | |
314 | } | |
315 | ||
316 | if (hole_size > 0) { | |
317 | int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE); // How much data to insert first time. | |
318 | /* area filled with zeroes, to supply as list of zero blocknumbers | |
319 | We allocate it outside of loop just in case loop would spin for | |
320 | several iterations. */ | |
321 | char *zeros = kmalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway. | |
322 | if (!zeros) { | |
323 | res = -ENOMEM; | |
324 | goto error_exit_free_blocks; | |
1da177e4 | 325 | } |
bd4c625c LT |
326 | memset(zeros, 0, to_paste * UNFM_P_SIZE); |
327 | do { | |
328 | to_paste = | |
329 | min_t(__u64, hole_size, | |
330 | MAX_ITEM_LEN(inode->i_sb-> | |
331 | s_blocksize) / | |
332 | UNFM_P_SIZE); | |
333 | if (is_indirect_le_ih(ih)) { | |
334 | /* Ok, there is existing indirect item already. Need to append it */ | |
335 | /* Calculate position past inserted item */ | |
336 | make_cpu_key(&key, inode, | |
337 | le_key_k_offset | |
338 | (get_inode_item_key_version | |
339 | (inode), | |
340 | &(ih->ih_key)) + | |
341 | op_bytes_number(ih, | |
342 | inode-> | |
343 | i_sb-> | |
344 | s_blocksize), | |
345 | TYPE_INDIRECT, 3); | |
346 | res = | |
347 | reiserfs_paste_into_item(th, &path, | |
348 | &key, | |
349 | inode, | |
350 | (char *) | |
351 | zeros, | |
352 | UNFM_P_SIZE | |
353 | * | |
354 | to_paste); | |
355 | if (res) { | |
356 | kfree(zeros); | |
357 | goto error_exit_free_blocks; | |
358 | } | |
359 | } else if (is_statdata_le_ih(ih)) { | |
360 | /* No existing item, create it */ | |
361 | /* item head for new item */ | |
362 | struct item_head ins_ih; | |
363 | ||
364 | /* create a key for our new item */ | |
365 | make_cpu_key(&key, inode, 1, | |
366 | TYPE_INDIRECT, 3); | |
367 | ||
368 | /* Create new item head for our new item */ | |
369 | make_le_item_head(&ins_ih, &key, | |
370 | key.version, 1, | |
371 | TYPE_INDIRECT, | |
372 | to_paste * | |
373 | UNFM_P_SIZE, | |
374 | 0 /* free space */ ); | |
375 | ||
376 | /* Find where such item should live in the tree */ | |
377 | res = | |
378 | search_item(inode->i_sb, &key, | |
379 | &path); | |
380 | if (res != ITEM_NOT_FOUND) { | |
381 | /* item should not exist, otherwise we have error */ | |
382 | if (res != -ENOSPC) { | |
383 | reiserfs_warning(inode-> | |
384 | i_sb, | |
385 | "green-9008: search_by_key (%K) returned %d", | |
386 | &key, | |
387 | res); | |
388 | } | |
389 | res = -EIO; | |
390 | kfree(zeros); | |
391 | goto error_exit_free_blocks; | |
392 | } | |
393 | res = | |
394 | reiserfs_insert_item(th, &path, | |
395 | &key, &ins_ih, | |
396 | inode, | |
397 | (char *)zeros); | |
398 | } else { | |
399 | reiserfs_panic(inode->i_sb, | |
400 | "green-9011: Unexpected key type %K\n", | |
401 | &key); | |
402 | } | |
403 | if (res) { | |
404 | kfree(zeros); | |
405 | goto error_exit_free_blocks; | |
406 | } | |
407 | /* Now we want to check if transaction is too full, and if it is | |
408 | we restart it. This will also free the path. */ | |
409 | if (journal_transaction_should_end | |
410 | (th, th->t_blocks_allocated)) { | |
411 | res = | |
412 | restart_transaction(th, inode, | |
413 | &path); | |
414 | if (res) { | |
415 | pathrelse(&path); | |
416 | kfree(zeros); | |
417 | goto error_exit; | |
418 | } | |
419 | } | |
420 | ||
421 | /* Well, need to recalculate path and stuff */ | |
422 | set_cpu_key_k_offset(&key, | |
423 | cpu_key_k_offset(&key) + | |
424 | (to_paste << inode-> | |
425 | i_blkbits)); | |
426 | res = | |
427 | search_for_position_by_key(inode->i_sb, | |
428 | &key, &path); | |
429 | if (res == IO_ERROR) { | |
430 | res = -EIO; | |
431 | kfree(zeros); | |
432 | goto error_exit_free_blocks; | |
433 | } | |
434 | bh = get_last_bh(&path); | |
435 | ih = get_ih(&path); | |
436 | item = get_item(&path); | |
437 | hole_size -= to_paste; | |
438 | } while (hole_size); | |
439 | kfree(zeros); | |
1da177e4 | 440 | } |
bd4c625c LT |
441 | } |
442 | // Go through existing indirect items first | |
443 | // replace all zeroes with blocknumbers from list | |
444 | // Note that if no corresponding item was found, by previous search, | |
445 | // it means there are no existing in-tree representation for file area | |
446 | // we are going to overwrite, so there is nothing to scan through for holes. | |
447 | for (curr_block = 0, itempos = path.pos_in_item; | |
448 | curr_block < blocks_to_allocate && res == POSITION_FOUND;) { | |
449 | retry: | |
450 | ||
451 | if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) { | |
452 | /* We run out of data in this indirect item, let's look for another | |
453 | one. */ | |
454 | /* First if we are already modifying current item, log it */ | |
455 | if (modifying_this_item) { | |
456 | journal_mark_dirty(th, inode->i_sb, bh); | |
457 | modifying_this_item = 0; | |
458 | } | |
459 | /* Then set the key to look for a new indirect item (offset of old | |
460 | item is added to old item length */ | |
461 | set_cpu_key_k_offset(&key, | |
462 | le_key_k_offset | |
463 | (get_inode_item_key_version(inode), | |
464 | &(ih->ih_key)) + | |
465 | op_bytes_number(ih, | |
466 | inode->i_sb-> | |
467 | s_blocksize)); | |
468 | /* Search ofor position of new key in the tree. */ | |
469 | res = | |
470 | search_for_position_by_key(inode->i_sb, &key, | |
471 | &path); | |
472 | if (res == IO_ERROR) { | |
473 | res = -EIO; | |
474 | goto error_exit_free_blocks; | |
475 | } | |
476 | bh = get_last_bh(&path); | |
477 | ih = get_ih(&path); | |
478 | item = get_item(&path); | |
479 | itempos = path.pos_in_item; | |
480 | continue; // loop to check all kinds of conditions and so on. | |
1da177e4 | 481 | } |
bd4c625c LT |
482 | /* Ok, we have correct position in item now, so let's see if it is |
483 | representing file hole (blocknumber is zero) and fill it if needed */ | |
484 | if (!item[itempos]) { | |
485 | /* Ok, a hole. Now we need to check if we already prepared this | |
486 | block to be journaled */ | |
487 | while (!modifying_this_item) { // loop until succeed | |
488 | /* Well, this item is not journaled yet, so we must prepare | |
489 | it for journal first, before we can change it */ | |
490 | struct item_head tmp_ih; // We copy item head of found item, | |
491 | // here to detect if fs changed under | |
492 | // us while we were preparing for | |
493 | // journal. | |
494 | int fs_gen; // We store fs generation here to find if someone | |
495 | // changes fs under our feet | |
496 | ||
497 | copy_item_head(&tmp_ih, ih); // Remember itemhead | |
498 | fs_gen = get_generation(inode->i_sb); // remember fs generation | |
499 | reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing. | |
500 | if (fs_changed(fs_gen, inode->i_sb) | |
501 | && item_moved(&tmp_ih, &path)) { | |
502 | // Sigh, fs was changed under us, we need to look for new | |
503 | // location of item we are working with | |
504 | ||
505 | /* unmark prepaerd area as journaled and search for it's | |
506 | new position */ | |
507 | reiserfs_restore_prepared_buffer(inode-> | |
508 | i_sb, | |
509 | bh); | |
510 | res = | |
511 | search_for_position_by_key(inode-> | |
512 | i_sb, | |
513 | &key, | |
514 | &path); | |
515 | if (res == IO_ERROR) { | |
516 | res = -EIO; | |
517 | goto error_exit_free_blocks; | |
518 | } | |
519 | bh = get_last_bh(&path); | |
520 | ih = get_ih(&path); | |
521 | item = get_item(&path); | |
522 | itempos = path.pos_in_item; | |
523 | goto retry; | |
524 | } | |
525 | modifying_this_item = 1; | |
526 | } | |
527 | item[itempos] = allocated_blocks[curr_block]; // Assign new block | |
528 | curr_block++; | |
1da177e4 | 529 | } |
bd4c625c | 530 | itempos++; |
1da177e4 | 531 | } |
bd4c625c LT |
532 | |
533 | if (modifying_this_item) { // We need to log last-accessed block, if it | |
534 | // was modified, but not logged yet. | |
535 | journal_mark_dirty(th, inode->i_sb, bh); | |
1da177e4 | 536 | } |
bd4c625c LT |
537 | |
538 | if (curr_block < blocks_to_allocate) { | |
539 | // Oh, well need to append to indirect item, or to create indirect item | |
540 | // if there weren't any | |
541 | if (is_indirect_le_ih(ih)) { | |
542 | // Existing indirect item - append. First calculate key for append | |
543 | // position. We do not need to recalculate path as it should | |
544 | // already point to correct place. | |
545 | make_cpu_key(&key, inode, | |
546 | le_key_k_offset(get_inode_item_key_version | |
547 | (inode), | |
548 | &(ih->ih_key)) + | |
549 | op_bytes_number(ih, | |
550 | inode->i_sb->s_blocksize), | |
551 | TYPE_INDIRECT, 3); | |
552 | res = | |
553 | reiserfs_paste_into_item(th, &path, &key, inode, | |
554 | (char *)(allocated_blocks + | |
555 | curr_block), | |
556 | UNFM_P_SIZE * | |
557 | (blocks_to_allocate - | |
558 | curr_block)); | |
559 | if (res) { | |
560 | goto error_exit_free_blocks; | |
561 | } | |
562 | } else if (is_statdata_le_ih(ih)) { | |
563 | // Last found item was statdata. That means we need to create indirect item. | |
564 | struct item_head ins_ih; /* itemhead for new item */ | |
565 | ||
566 | /* create a key for our new item */ | |
567 | make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one, | |
568 | // because that's | |
569 | // where first | |
570 | // indirect item | |
571 | // begins | |
572 | /* Create new item head for our new item */ | |
573 | make_le_item_head(&ins_ih, &key, key.version, 1, | |
574 | TYPE_INDIRECT, | |
575 | (blocks_to_allocate - | |
576 | curr_block) * UNFM_P_SIZE, | |
577 | 0 /* free space */ ); | |
578 | /* Find where such item should live in the tree */ | |
579 | res = search_item(inode->i_sb, &key, &path); | |
580 | if (res != ITEM_NOT_FOUND) { | |
581 | /* Well, if we have found such item already, or some error | |
582 | occured, we need to warn user and return error */ | |
583 | if (res != -ENOSPC) { | |
584 | reiserfs_warning(inode->i_sb, | |
585 | "green-9009: search_by_key (%K) " | |
586 | "returned %d", &key, | |
587 | res); | |
588 | } | |
589 | res = -EIO; | |
590 | goto error_exit_free_blocks; | |
591 | } | |
592 | /* Insert item into the tree with the data as its body */ | |
593 | res = | |
594 | reiserfs_insert_item(th, &path, &key, &ins_ih, | |
595 | inode, | |
596 | (char *)(allocated_blocks + | |
597 | curr_block)); | |
598 | } else { | |
599 | reiserfs_panic(inode->i_sb, | |
600 | "green-9010: unexpected item type for key %K\n", | |
601 | &key); | |
1da177e4 | 602 | } |
1da177e4 | 603 | } |
bd4c625c LT |
604 | // the caller is responsible for closing the transaction |
605 | // unless we return an error, they are also responsible for logging | |
606 | // the inode. | |
607 | // | |
608 | pathrelse(&path); | |
609 | /* | |
610 | * cleanup prellocation from previous writes | |
611 | * if this is a partial block write | |
612 | */ | |
613 | if (write_bytes & (inode->i_sb->s_blocksize - 1)) | |
614 | reiserfs_discard_prealloc(th, inode); | |
615 | reiserfs_write_unlock(inode->i_sb); | |
616 | ||
617 | // go through all the pages/buffers and map the buffers to newly allocated | |
618 | // blocks (so that system knows where to write these pages later). | |
619 | curr_block = 0; | |
620 | for (i = 0; i < num_pages; i++) { | |
621 | struct page *page = prepared_pages[i]; //current page | |
622 | struct buffer_head *head = page_buffers(page); // first buffer for a page | |
623 | int block_start, block_end; // in-page offsets for buffers. | |
624 | ||
625 | if (!page_buffers(page)) | |
626 | reiserfs_panic(inode->i_sb, | |
627 | "green-9005: No buffers for prepared page???"); | |
628 | ||
629 | /* For each buffer in page */ | |
630 | for (bh = head, block_start = 0; bh != head || !block_start; | |
631 | block_start = block_end, bh = bh->b_this_page) { | |
632 | if (!bh) | |
633 | reiserfs_panic(inode->i_sb, | |
634 | "green-9006: Allocated but absent buffer for a page?"); | |
635 | block_end = block_start + inode->i_sb->s_blocksize; | |
636 | if (i == 0 && block_end <= from) | |
637 | /* if this buffer is before requested data to map, skip it */ | |
638 | continue; | |
639 | if (i == num_pages - 1 && block_start >= to) | |
640 | /* If this buffer is after requested data to map, abort | |
641 | processing of current page */ | |
642 | break; | |
643 | ||
644 | if (!buffer_mapped(bh)) { // Ok, unmapped buffer, need to map it | |
645 | map_bh(bh, inode->i_sb, | |
646 | le32_to_cpu(allocated_blocks | |
647 | [curr_block])); | |
648 | curr_block++; | |
649 | set_buffer_new(bh); | |
650 | } | |
1da177e4 | 651 | } |
1da177e4 | 652 | } |
1da177e4 | 653 | |
bd4c625c LT |
654 | RFALSE(curr_block > blocks_to_allocate, |
655 | "green-9007: Used too many blocks? weird"); | |
1da177e4 | 656 | |
bd4c625c LT |
657 | kfree(allocated_blocks); |
658 | return 0; | |
1da177e4 LT |
659 | |
660 | // Need to deal with transaction here. | |
bd4c625c LT |
661 | error_exit_free_blocks: |
662 | pathrelse(&path); | |
663 | // free blocks | |
664 | for (i = 0; i < blocks_to_allocate; i++) | |
665 | reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]), | |
666 | 1); | |
667 | ||
668 | error_exit: | |
669 | if (th->t_trans_id) { | |
670 | int err; | |
671 | // update any changes we made to blk count | |
9f03783c | 672 | mark_inode_dirty(inode); |
bd4c625c LT |
673 | err = |
674 | journal_end(th, inode->i_sb, | |
675 | JOURNAL_PER_BALANCE_CNT * 3 + 1 + | |
676 | 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); | |
677 | if (err) | |
678 | res = err; | |
679 | } | |
680 | reiserfs_write_unlock(inode->i_sb); | |
681 | kfree(allocated_blocks); | |
682 | ||
683 | return res; | |
1da177e4 LT |
684 | } |
685 | ||
686 | /* Unlock pages prepared by reiserfs_prepare_file_region_for_write */ | |
bd4c625c LT |
687 | static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */ |
688 | size_t num_pages /* amount of pages */ ) | |
689 | { | |
690 | int i; // loop counter | |
1da177e4 | 691 | |
bd4c625c LT |
692 | for (i = 0; i < num_pages; i++) { |
693 | struct page *page = prepared_pages[i]; | |
1da177e4 | 694 | |
bd4c625c LT |
695 | try_to_free_buffers(page); |
696 | unlock_page(page); | |
697 | page_cache_release(page); | |
698 | } | |
1da177e4 LT |
699 | } |
700 | ||
701 | /* This function will copy data from userspace to specified pages within | |
702 | supplied byte range */ | |
bd4c625c LT |
703 | static int reiserfs_copy_from_user_to_file_region(loff_t pos, /* In-file position */ |
704 | int num_pages, /* Number of pages affected */ | |
705 | int write_bytes, /* Amount of bytes to write */ | |
706 | struct page **prepared_pages, /* pointer to | |
707 | array to | |
708 | prepared pages | |
709 | */ | |
710 | const char __user * buf /* Pointer to user-supplied | |
711 | data */ | |
712 | ) | |
1da177e4 | 713 | { |
bd4c625c LT |
714 | long page_fault = 0; // status of copy_from_user. |
715 | int i; // loop counter. | |
716 | int offset; // offset in page | |
717 | ||
718 | for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; | |
719 | i++, offset = 0) { | |
720 | size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page | |
721 | struct page *page = prepared_pages[i]; // Current page we process. | |
722 | ||
723 | fault_in_pages_readable(buf, count); | |
724 | ||
725 | /* Copy data from userspace to the current page */ | |
726 | kmap(page); | |
727 | page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data. | |
728 | /* Flush processor's dcache for this page */ | |
729 | flush_dcache_page(page); | |
730 | kunmap(page); | |
731 | buf += count; | |
732 | write_bytes -= count; | |
733 | ||
734 | if (page_fault) | |
735 | break; // Was there a fault? abort. | |
736 | } | |
737 | ||
738 | return page_fault ? -EFAULT : 0; | |
1da177e4 LT |
739 | } |
740 | ||
741 | /* taken fs/buffer.c:__block_commit_write */ | |
742 | int reiserfs_commit_page(struct inode *inode, struct page *page, | |
bd4c625c | 743 | unsigned from, unsigned to) |
1da177e4 | 744 | { |
bd4c625c LT |
745 | unsigned block_start, block_end; |
746 | int partial = 0; | |
747 | unsigned blocksize; | |
748 | struct buffer_head *bh, *head; | |
749 | unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT; | |
750 | int new; | |
751 | int logit = reiserfs_file_data_log(inode); | |
752 | struct super_block *s = inode->i_sb; | |
753 | int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; | |
754 | struct reiserfs_transaction_handle th; | |
755 | int ret = 0; | |
756 | ||
757 | th.t_trans_id = 0; | |
758 | blocksize = 1 << inode->i_blkbits; | |
759 | ||
760 | if (logit) { | |
761 | reiserfs_write_lock(s); | |
762 | ret = journal_begin(&th, s, bh_per_page + 1); | |
763 | if (ret) | |
764 | goto drop_write_lock; | |
765 | reiserfs_update_inode_transaction(inode); | |
766 | } | |
767 | for (bh = head = page_buffers(page), block_start = 0; | |
768 | bh != head || !block_start; | |
769 | block_start = block_end, bh = bh->b_this_page) { | |
770 | ||
771 | new = buffer_new(bh); | |
772 | clear_buffer_new(bh); | |
773 | block_end = block_start + blocksize; | |
774 | if (block_end <= from || block_start >= to) { | |
775 | if (!buffer_uptodate(bh)) | |
776 | partial = 1; | |
777 | } else { | |
778 | set_buffer_uptodate(bh); | |
779 | if (logit) { | |
780 | reiserfs_prepare_for_journal(s, bh, 1); | |
781 | journal_mark_dirty(&th, s, bh); | |
782 | } else if (!buffer_dirty(bh)) { | |
783 | mark_buffer_dirty(bh); | |
784 | /* do data=ordered on any page past the end | |
785 | * of file and any buffer marked BH_New. | |
786 | */ | |
787 | if (reiserfs_data_ordered(inode->i_sb) && | |
788 | (new || page->index >= i_size_index)) { | |
789 | reiserfs_add_ordered_list(inode, bh); | |
790 | } | |
791 | } | |
792 | } | |
1da177e4 | 793 | } |
bd4c625c LT |
794 | if (logit) { |
795 | ret = journal_end(&th, s, bh_per_page + 1); | |
796 | drop_write_lock: | |
797 | reiserfs_write_unlock(s); | |
798 | } | |
799 | /* | |
800 | * If this is a partial write which happened to make all buffers | |
801 | * uptodate then we can optimize away a bogus readpage() for | |
802 | * the next read(). Here we 'discover' whether the page went | |
803 | * uptodate as a result of this (potentially partial) write. | |
804 | */ | |
805 | if (!partial) | |
806 | SetPageUptodate(page); | |
807 | return ret; | |
1da177e4 LT |
808 | } |
809 | ||
1da177e4 LT |
810 | /* Submit pages for write. This was separated from actual file copying |
811 | because we might want to allocate block numbers in-between. | |
812 | This function assumes that caller will adjust file size to correct value. */ | |
bd4c625c LT |
813 | static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos, /* Writing position offset */ |
814 | size_t num_pages, /* Number of pages to write */ | |
815 | size_t write_bytes, /* number of bytes to write */ | |
816 | struct page **prepared_pages /* list of pages */ | |
817 | ) | |
1da177e4 | 818 | { |
bd4c625c LT |
819 | int status; // return status of block_commit_write. |
820 | int retval = 0; // Return value we are going to return. | |
821 | int i; // loop counter | |
822 | int offset; // Writing offset in page. | |
823 | int orig_write_bytes = write_bytes; | |
824 | int sd_update = 0; | |
825 | ||
826 | for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; | |
827 | i++, offset = 0) { | |
828 | int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page | |
829 | struct page *page = prepared_pages[i]; // Current page we process. | |
830 | ||
831 | status = | |
832 | reiserfs_commit_page(inode, page, offset, offset + count); | |
833 | if (status) | |
834 | retval = status; // To not overcomplicate matters We are going to | |
835 | // submit all the pages even if there was error. | |
836 | // we only remember error status to report it on | |
837 | // exit. | |
838 | write_bytes -= count; | |
839 | } | |
840 | /* now that we've gotten all the ordered buffers marked dirty, | |
841 | * we can safely update i_size and close any running transaction | |
842 | */ | |
843 | if (pos + orig_write_bytes > inode->i_size) { | |
844 | inode->i_size = pos + orig_write_bytes; // Set new size | |
845 | /* If the file have grown so much that tail packing is no | |
846 | * longer possible, reset "need to pack" flag */ | |
847 | if ((have_large_tails(inode->i_sb) && | |
848 | inode->i_size > i_block_size(inode) * 4) || | |
849 | (have_small_tails(inode->i_sb) && | |
850 | inode->i_size > i_block_size(inode))) | |
851 | REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; | |
852 | else if ((have_large_tails(inode->i_sb) && | |
853 | inode->i_size < i_block_size(inode) * 4) || | |
854 | (have_small_tails(inode->i_sb) && | |
855 | inode->i_size < i_block_size(inode))) | |
856 | REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; | |
857 | ||
858 | if (th->t_trans_id) { | |
859 | reiserfs_write_lock(inode->i_sb); | |
9f03783c CM |
860 | // this sets the proper flags for O_SYNC to trigger a commit |
861 | mark_inode_dirty(inode); | |
bd4c625c LT |
862 | reiserfs_write_unlock(inode->i_sb); |
863 | } else | |
9f03783c | 864 | mark_inode_dirty(inode); |
bd4c625c LT |
865 | |
866 | sd_update = 1; | |
867 | } | |
1da177e4 | 868 | if (th->t_trans_id) { |
bd4c625c LT |
869 | reiserfs_write_lock(inode->i_sb); |
870 | if (!sd_update) | |
9f03783c | 871 | mark_inode_dirty(inode); |
bd4c625c LT |
872 | status = journal_end(th, th->t_super, th->t_blocks_allocated); |
873 | if (status) | |
874 | retval = status; | |
875 | reiserfs_write_unlock(inode->i_sb); | |
876 | } | |
877 | th->t_trans_id = 0; | |
1da177e4 | 878 | |
bd4c625c LT |
879 | /* |
880 | * we have to unlock the pages after updating i_size, otherwise | |
881 | * we race with writepage | |
882 | */ | |
883 | for (i = 0; i < num_pages; i++) { | |
884 | struct page *page = prepared_pages[i]; | |
885 | unlock_page(page); | |
886 | mark_page_accessed(page); | |
887 | page_cache_release(page); | |
888 | } | |
889 | return retval; | |
1da177e4 LT |
890 | } |
891 | ||
892 | /* Look if passed writing region is going to touch file's tail | |
893 | (if it is present). And if it is, convert the tail to unformatted node */ | |
bd4c625c LT |
894 | static int reiserfs_check_for_tail_and_convert(struct inode *inode, /* inode to deal with */ |
895 | loff_t pos, /* Writing position */ | |
896 | int write_bytes /* amount of bytes to write */ | |
897 | ) | |
1da177e4 | 898 | { |
bd4c625c LT |
899 | INITIALIZE_PATH(path); // needed for search_for_position |
900 | struct cpu_key key; // Key that would represent last touched writing byte. | |
901 | struct item_head *ih; // item header of found block; | |
902 | int res; // Return value of various functions we call. | |
903 | int cont_expand_offset; // We will put offset for generic_cont_expand here | |
904 | // This can be int just because tails are created | |
905 | // only for small files. | |
906 | ||
1da177e4 | 907 | /* this embodies a dependency on a particular tail policy */ |
bd4c625c LT |
908 | if (inode->i_size >= inode->i_sb->s_blocksize * 4) { |
909 | /* such a big files do not have tails, so we won't bother ourselves | |
910 | to look for tails, simply return */ | |
911 | return 0; | |
912 | } | |
1da177e4 | 913 | |
bd4c625c LT |
914 | reiserfs_write_lock(inode->i_sb); |
915 | /* find the item containing the last byte to be written, or if | |
916 | * writing past the end of the file then the last item of the | |
917 | * file (and then we check its type). */ | |
918 | make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY, | |
919 | 3 /*key length */ ); | |
920 | res = search_for_position_by_key(inode->i_sb, &key, &path); | |
921 | if (res == IO_ERROR) { | |
922 | reiserfs_write_unlock(inode->i_sb); | |
923 | return -EIO; | |
924 | } | |
925 | ih = get_ih(&path); | |
926 | res = 0; | |
927 | if (is_direct_le_ih(ih)) { | |
928 | /* Ok, closest item is file tail (tails are stored in "direct" | |
929 | * items), so we need to unpack it. */ | |
930 | /* To not overcomplicate matters, we just call generic_cont_expand | |
931 | which will in turn call other stuff and finally will boil down to | |
932 | reiserfs_get_block() that would do necessary conversion. */ | |
933 | cont_expand_offset = | |
934 | le_key_k_offset(get_inode_item_key_version(inode), | |
935 | &(ih->ih_key)); | |
936 | pathrelse(&path); | |
937 | res = generic_cont_expand(inode, cont_expand_offset); | |
938 | } else | |
939 | pathrelse(&path); | |
940 | ||
941 | reiserfs_write_unlock(inode->i_sb); | |
942 | return res; | |
1da177e4 LT |
943 | } |
944 | ||
945 | /* This function locks pages starting from @pos for @inode. | |
946 | @num_pages pages are locked and stored in | |
947 | @prepared_pages array. Also buffers are allocated for these pages. | |
948 | First and last page of the region is read if it is overwritten only | |
949 | partially. If last page did not exist before write (file hole or file | |
950 | append), it is zeroed, then. | |
951 | Returns number of unallocated blocks that should be allocated to cover | |
952 | new file data.*/ | |
bd4c625c LT |
953 | static int reiserfs_prepare_file_region_for_write(struct inode *inode |
954 | /* Inode of the file */ , | |
955 | loff_t pos, /* position in the file */ | |
956 | size_t num_pages, /* number of pages to | |
957 | prepare */ | |
958 | size_t write_bytes, /* Amount of bytes to be | |
959 | overwritten from | |
960 | @pos */ | |
961 | struct page **prepared_pages /* pointer to array | |
962 | where to store | |
963 | prepared pages */ | |
964 | ) | |
1da177e4 | 965 | { |
bd4c625c LT |
966 | int res = 0; // Return values of different functions we call. |
967 | unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages. | |
968 | int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page | |
969 | int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; | |
970 | /* offset of last modified byte in last | |
971 | page */ | |
972 | struct address_space *mapping = inode->i_mapping; // Pages are mapped here. | |
973 | int i; // Simple counter | |
974 | int blocks = 0; /* Return value (blocks that should be allocated) */ | |
975 | struct buffer_head *bh, *head; // Current bufferhead and first bufferhead | |
976 | // of a page. | |
977 | unsigned block_start, block_end; // Starting and ending offsets of current | |
978 | // buffer in the page. | |
979 | struct buffer_head *wait[2], **wait_bh = wait; // Buffers for page, if | |
980 | // Page appeared to be not up | |
981 | // to date. Note how we have | |
982 | // at most 2 buffers, this is | |
983 | // because we at most may | |
984 | // partially overwrite two | |
985 | // buffers for one page. One at // the beginning of write area | |
986 | // and one at the end. | |
987 | // Everything inthe middle gets // overwritten totally. | |
988 | ||
989 | struct cpu_key key; // cpu key of item that we are going to deal with | |
990 | struct item_head *ih = NULL; // pointer to item head that we are going to deal with | |
991 | struct buffer_head *itembuf = NULL; // Buffer head that contains items that we are going to deal with | |
992 | INITIALIZE_PATH(path); // path to item, that we are going to deal with. | |
993 | __le32 *item = NULL; // pointer to item we are going to deal with | |
994 | int item_pos = -1; /* Position in indirect item */ | |
995 | ||
996 | if (num_pages < 1) { | |
997 | reiserfs_warning(inode->i_sb, | |
998 | "green-9001: reiserfs_prepare_file_region_for_write " | |
999 | "called with zero number of pages to process"); | |
1000 | return -EFAULT; | |
1da177e4 LT |
1001 | } |
1002 | ||
bd4c625c LT |
1003 | /* We have 2 loops for pages. In first loop we grab and lock the pages, so |
1004 | that nobody would touch these until we release the pages. Then | |
1005 | we'd start to deal with mapping buffers to blocks. */ | |
1006 | for (i = 0; i < num_pages; i++) { | |
1007 | prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page | |
1008 | if (!prepared_pages[i]) { | |
1009 | res = -ENOMEM; | |
1010 | goto failed_page_grabbing; | |
1da177e4 | 1011 | } |
bd4c625c LT |
1012 | if (!page_has_buffers(prepared_pages[i])) |
1013 | create_empty_buffers(prepared_pages[i], | |
1014 | inode->i_sb->s_blocksize, 0); | |
1015 | } | |
1da177e4 | 1016 | |
bd4c625c LT |
1017 | /* Let's count amount of blocks for a case where all the blocks |
1018 | overwritten are new (we will substract already allocated blocks later) */ | |
1019 | if (num_pages > 2) | |
1020 | /* These are full-overwritten pages so we count all the blocks in | |
1021 | these pages are counted as needed to be allocated */ | |
1022 | blocks = | |
1023 | (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits); | |
1024 | ||
1025 | /* count blocks needed for first page (possibly partially written) */ | |
1026 | blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1)); /* roundup */ | |
1027 | ||
1028 | /* Now we account for last page. If last page == first page (we | |
1029 | overwrite only one page), we substract all the blocks past the | |
1030 | last writing position in a page out of already calculated number | |
1031 | of blocks */ | |
1032 | blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - | |
1033 | ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits); | |
1034 | /* Note how we do not roundup here since partial blocks still | |
1035 | should be allocated */ | |
1036 | ||
1037 | /* Now if all the write area lies past the file end, no point in | |
1038 | maping blocks, since there is none, so we just zero out remaining | |
1039 | parts of first and last pages in write area (if needed) */ | |
1040 | if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) { | |
1041 | if (from != 0) { /* First page needs to be partially zeroed */ | |
1042 | char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0); | |
1043 | memset(kaddr, 0, from); | |
1044 | kunmap_atomic(kaddr, KM_USER0); | |
1045 | } | |
1046 | if (to != PAGE_CACHE_SIZE) { /* Last page needs to be partially zeroed */ | |
1047 | char *kaddr = | |
1048 | kmap_atomic(prepared_pages[num_pages - 1], | |
1049 | KM_USER0); | |
1050 | memset(kaddr + to, 0, PAGE_CACHE_SIZE - to); | |
1051 | kunmap_atomic(kaddr, KM_USER0); | |
1da177e4 LT |
1052 | } |
1053 | ||
bd4c625c LT |
1054 | /* Since all blocks are new - use already calculated value */ |
1055 | return blocks; | |
1056 | } | |
1057 | ||
1058 | /* Well, since we write somewhere into the middle of a file, there is | |
1059 | possibility we are writing over some already allocated blocks, so | |
1060 | let's map these blocks and substract number of such blocks out of blocks | |
1061 | we need to allocate (calculated above) */ | |
1062 | /* Mask write position to start on blocksize, we do it out of the | |
1063 | loop for performance reasons */ | |
1064 | pos &= ~((loff_t) inode->i_sb->s_blocksize - 1); | |
1065 | /* Set cpu key to the starting position in a file (on left block boundary) */ | |
1066 | make_cpu_key(&key, inode, | |
1067 | 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)), | |
1068 | TYPE_ANY, 3 /*key length */ ); | |
1069 | ||
1070 | reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key() | |
1071 | for (i = 0; i < num_pages; i++) { | |
1072 | ||
1073 | head = page_buffers(prepared_pages[i]); | |
1074 | /* For each buffer in the page */ | |
1075 | for (bh = head, block_start = 0; bh != head || !block_start; | |
1076 | block_start = block_end, bh = bh->b_this_page) { | |
1077 | if (!bh) | |
1078 | reiserfs_panic(inode->i_sb, | |
1079 | "green-9002: Allocated but absent buffer for a page?"); | |
1080 | /* Find where this buffer ends */ | |
1081 | block_end = block_start + inode->i_sb->s_blocksize; | |
1082 | if (i == 0 && block_end <= from) | |
1083 | /* if this buffer is before requested data to map, skip it */ | |
1084 | continue; | |
1085 | ||
1086 | if (i == num_pages - 1 && block_start >= to) { | |
1087 | /* If this buffer is after requested data to map, abort | |
1088 | processing of current page */ | |
1089 | break; | |
1da177e4 LT |
1090 | } |
1091 | ||
bd4c625c LT |
1092 | if (buffer_mapped(bh) && bh->b_blocknr != 0) { |
1093 | /* This is optimisation for a case where buffer is mapped | |
1094 | and have blocknumber assigned. In case significant amount | |
1095 | of such buffers are present, we may avoid some amount | |
1096 | of search_by_key calls. | |
1097 | Probably it would be possible to move parts of this code | |
1098 | out of BKL, but I afraid that would overcomplicate code | |
1099 | without any noticeable benefit. | |
1100 | */ | |
1101 | item_pos++; | |
1102 | /* Update the key */ | |
1103 | set_cpu_key_k_offset(&key, | |
1104 | cpu_key_k_offset(&key) + | |
1105 | inode->i_sb->s_blocksize); | |
1106 | blocks--; // Decrease the amount of blocks that need to be | |
1107 | // allocated | |
1108 | continue; // Go to the next buffer | |
1109 | } | |
1da177e4 | 1110 | |
bd4c625c LT |
1111 | if (!itembuf || /* if first iteration */ |
1112 | item_pos >= ih_item_len(ih) / UNFM_P_SIZE) { /* or if we progressed past the | |
1113 | current unformatted_item */ | |
1114 | /* Try to find next item */ | |
1115 | res = | |
1116 | search_for_position_by_key(inode->i_sb, | |
1117 | &key, &path); | |
1118 | /* Abort if no more items */ | |
1119 | if (res != POSITION_FOUND) { | |
1120 | /* make sure later loops don't use this item */ | |
1121 | itembuf = NULL; | |
1122 | item = NULL; | |
1123 | break; | |
1124 | } | |
1125 | ||
1126 | /* Update information about current indirect item */ | |
1127 | itembuf = get_last_bh(&path); | |
1128 | ih = get_ih(&path); | |
1129 | item = get_item(&path); | |
1130 | item_pos = path.pos_in_item; | |
1131 | ||
1132 | RFALSE(!is_indirect_le_ih(ih), | |
1133 | "green-9003: indirect item expected"); | |
1134 | } | |
1da177e4 | 1135 | |
bd4c625c LT |
1136 | /* See if there is some block associated with the file |
1137 | at that position, map the buffer to this block */ | |
1138 | if (get_block_num(item, item_pos)) { | |
1139 | map_bh(bh, inode->i_sb, | |
1140 | get_block_num(item, item_pos)); | |
1141 | blocks--; // Decrease the amount of blocks that need to be | |
1142 | // allocated | |
1143 | } | |
1144 | item_pos++; | |
1145 | /* Update the key */ | |
1146 | set_cpu_key_k_offset(&key, | |
1147 | cpu_key_k_offset(&key) + | |
1148 | inode->i_sb->s_blocksize); | |
1da177e4 | 1149 | } |
1da177e4 | 1150 | } |
bd4c625c LT |
1151 | pathrelse(&path); // Free the path |
1152 | reiserfs_write_unlock(inode->i_sb); | |
1da177e4 LT |
1153 | |
1154 | /* Now zero out unmappend buffers for the first and last pages of | |
1155 | write area or issue read requests if page is mapped. */ | |
1156 | /* First page, see if it is not uptodate */ | |
bd4c625c LT |
1157 | if (!PageUptodate(prepared_pages[0])) { |
1158 | head = page_buffers(prepared_pages[0]); | |
1159 | ||
1160 | /* For each buffer in page */ | |
1161 | for (bh = head, block_start = 0; bh != head || !block_start; | |
1162 | block_start = block_end, bh = bh->b_this_page) { | |
1163 | ||
1164 | if (!bh) | |
1165 | reiserfs_panic(inode->i_sb, | |
1166 | "green-9002: Allocated but absent buffer for a page?"); | |
1167 | /* Find where this buffer ends */ | |
1168 | block_end = block_start + inode->i_sb->s_blocksize; | |
1169 | if (block_end <= from) | |
1170 | /* if this buffer is before requested data to map, skip it */ | |
1171 | continue; | |
1172 | if (block_start < from) { /* Aha, our partial buffer */ | |
1173 | if (buffer_mapped(bh)) { /* If it is mapped, we need to | |
1174 | issue READ request for it to | |
1175 | not loose data */ | |
1176 | ll_rw_block(READ, 1, &bh); | |
1177 | *wait_bh++ = bh; | |
1178 | } else { /* Not mapped, zero it */ | |
1179 | char *kaddr = | |
1180 | kmap_atomic(prepared_pages[0], | |
1181 | KM_USER0); | |
1182 | memset(kaddr + block_start, 0, | |
1183 | from - block_start); | |
1184 | kunmap_atomic(kaddr, KM_USER0); | |
1185 | set_buffer_uptodate(bh); | |
1186 | } | |
1187 | } | |
1da177e4 | 1188 | } |
1da177e4 LT |
1189 | } |
1190 | ||
1191 | /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */ | |
bd4c625c LT |
1192 | if (!PageUptodate(prepared_pages[num_pages - 1]) || |
1193 | ((pos + write_bytes) >> PAGE_CACHE_SHIFT) > | |
1194 | (inode->i_size >> PAGE_CACHE_SHIFT)) { | |
1195 | head = page_buffers(prepared_pages[num_pages - 1]); | |
1196 | ||
1197 | /* for each buffer in page */ | |
1198 | for (bh = head, block_start = 0; bh != head || !block_start; | |
1199 | block_start = block_end, bh = bh->b_this_page) { | |
1200 | ||
1201 | if (!bh) | |
1202 | reiserfs_panic(inode->i_sb, | |
1203 | "green-9002: Allocated but absent buffer for a page?"); | |
1204 | /* Find where this buffer ends */ | |
1205 | block_end = block_start + inode->i_sb->s_blocksize; | |
1206 | if (block_start >= to) | |
1207 | /* if this buffer is after requested data to map, skip it */ | |
1208 | break; | |
1209 | if (block_end > to) { /* Aha, our partial buffer */ | |
1210 | if (buffer_mapped(bh)) { /* If it is mapped, we need to | |
1211 | issue READ request for it to | |
1212 | not loose data */ | |
1213 | ll_rw_block(READ, 1, &bh); | |
1214 | *wait_bh++ = bh; | |
1215 | } else { /* Not mapped, zero it */ | |
1216 | char *kaddr = | |
1217 | kmap_atomic(prepared_pages | |
1218 | [num_pages - 1], | |
1219 | KM_USER0); | |
1220 | memset(kaddr + to, 0, block_end - to); | |
1221 | kunmap_atomic(kaddr, KM_USER0); | |
1222 | set_buffer_uptodate(bh); | |
1223 | } | |
1224 | } | |
1da177e4 | 1225 | } |
1da177e4 LT |
1226 | } |
1227 | ||
bd4c625c LT |
1228 | /* Wait for read requests we made to happen, if necessary */ |
1229 | while (wait_bh > wait) { | |
1230 | wait_on_buffer(*--wait_bh); | |
1231 | if (!buffer_uptodate(*wait_bh)) { | |
1232 | res = -EIO; | |
1233 | goto failed_read; | |
1234 | } | |
1da177e4 | 1235 | } |
bd4c625c LT |
1236 | |
1237 | return blocks; | |
1238 | failed_page_grabbing: | |
1239 | num_pages = i; | |
1240 | failed_read: | |
1241 | reiserfs_unprepare_pages(prepared_pages, num_pages); | |
1242 | return res; | |
1da177e4 LT |
1243 | } |
1244 | ||
1245 | /* Write @count bytes at position @ppos in a file indicated by @file | |
1246 | from the buffer @buf. | |
1247 | ||
1248 | generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want | |
1249 | something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was | |
1250 | written for (ext2/3). This is for several reasons: | |
1251 | ||
1252 | * It has no understanding of any filesystem specific optimizations. | |
1253 | ||
1254 | * It enters the filesystem repeatedly for each page that is written. | |
1255 | ||
1256 | * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key | |
1257 | * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time | |
1258 | * to reiserfs which allows for fewer tree traversals. | |
1259 | ||
1260 | * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks. | |
1261 | ||
1262 | * Asking the block allocation code for blocks one at a time is slightly less efficient. | |
1263 | ||
1264 | All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to | |
1265 | use it, but we were in a hurry to make code freeze, and so it couldn't be revised then. This new code should make | |
1266 | things right finally. | |
1267 | ||
1268 | Future Features: providing search_by_key with hints. | |
1269 | ||
1270 | */ | |
bd4c625c LT |
1271 | static ssize_t reiserfs_file_write(struct file *file, /* the file we are going to write into */ |
1272 | const char __user * buf, /* pointer to user supplied data | |
1273 | (in userspace) */ | |
1274 | size_t count, /* amount of bytes to write */ | |
1275 | loff_t * ppos /* pointer to position in file that we start writing at. Should be updated to | |
1276 | * new current position before returning. */ | |
1277 | ) | |
1da177e4 | 1278 | { |
bd4c625c LT |
1279 | size_t already_written = 0; // Number of bytes already written to the file. |
1280 | loff_t pos; // Current position in the file. | |
1281 | ssize_t res; // return value of various functions that we call. | |
1282 | int err = 0; | |
1283 | struct inode *inode = file->f_dentry->d_inode; // Inode of the file that we are writing to. | |
1284 | /* To simplify coding at this time, we store | |
1285 | locked pages in array for now */ | |
1286 | struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME]; | |
1287 | struct reiserfs_transaction_handle th; | |
1288 | th.t_trans_id = 0; | |
1289 | ||
fa385bef JM |
1290 | /* If a filesystem is converted from 3.5 to 3.6, we'll have v3.5 items |
1291 | * lying around (most of the disk, in fact). Despite the filesystem | |
1292 | * now being a v3.6 format, the old items still can't support large | |
1293 | * file sizes. Catch this case here, as the rest of the VFS layer is | |
1294 | * oblivious to the different limitations between old and new items. | |
1295 | * reiserfs_setattr catches this for truncates. This chunk is lifted | |
1296 | * from generic_write_checks. */ | |
1297 | if (get_inode_item_key_version (inode) == KEY_FORMAT_3_5 && | |
1298 | *ppos + count > MAX_NON_LFS) { | |
1299 | if (*ppos >= MAX_NON_LFS) { | |
1300 | send_sig(SIGXFSZ, current, 0); | |
1301 | return -EFBIG; | |
1302 | } | |
1303 | if (count > MAX_NON_LFS - (unsigned long)*ppos) | |
1304 | count = MAX_NON_LFS - (unsigned long)*ppos; | |
1305 | } | |
1306 | ||
bd4c625c LT |
1307 | if (file->f_flags & O_DIRECT) { // Direct IO needs treatment |
1308 | ssize_t result, after_file_end = 0; | |
1309 | if ((*ppos + count >= inode->i_size) | |
1310 | || (file->f_flags & O_APPEND)) { | |
1311 | /* If we are appending a file, we need to put this savelink in here. | |
1312 | If we will crash while doing direct io, finish_unfinished will | |
1313 | cut the garbage from the file end. */ | |
1314 | reiserfs_write_lock(inode->i_sb); | |
1315 | err = | |
1316 | journal_begin(&th, inode->i_sb, | |
1317 | JOURNAL_PER_BALANCE_CNT); | |
1318 | if (err) { | |
1319 | reiserfs_write_unlock(inode->i_sb); | |
1320 | return err; | |
1321 | } | |
1322 | reiserfs_update_inode_transaction(inode); | |
1323 | add_save_link(&th, inode, 1 /* Truncate */ ); | |
1324 | after_file_end = 1; | |
1325 | err = | |
1326 | journal_end(&th, inode->i_sb, | |
1327 | JOURNAL_PER_BALANCE_CNT); | |
1328 | reiserfs_write_unlock(inode->i_sb); | |
1329 | if (err) | |
1330 | return err; | |
1331 | } | |
1332 | result = generic_file_write(file, buf, count, ppos); | |
1333 | ||
1334 | if (after_file_end) { /* Now update i_size and remove the savelink */ | |
1335 | struct reiserfs_transaction_handle th; | |
1336 | reiserfs_write_lock(inode->i_sb); | |
1337 | err = journal_begin(&th, inode->i_sb, 1); | |
1338 | if (err) { | |
1339 | reiserfs_write_unlock(inode->i_sb); | |
1340 | return err; | |
1341 | } | |
1342 | reiserfs_update_inode_transaction(inode); | |
9f03783c | 1343 | mark_inode_dirty(inode); |
bd4c625c LT |
1344 | err = journal_end(&th, inode->i_sb, 1); |
1345 | if (err) { | |
1346 | reiserfs_write_unlock(inode->i_sb); | |
1347 | return err; | |
1348 | } | |
1349 | err = remove_save_link(inode, 1 /* truncate */ ); | |
1350 | reiserfs_write_unlock(inode->i_sb); | |
1351 | if (err) | |
1352 | return err; | |
1353 | } | |
1da177e4 | 1354 | |
bd4c625c LT |
1355 | return result; |
1356 | } | |
1da177e4 | 1357 | |
bd4c625c LT |
1358 | if (unlikely((ssize_t) count < 0)) |
1359 | return -EINVAL; | |
1360 | ||
1361 | if (unlikely(!access_ok(VERIFY_READ, buf, count))) | |
1362 | return -EFAULT; | |
1363 | ||
1b1dcc1b | 1364 | mutex_lock(&inode->i_mutex); // locks the entire file for just us |
bd4c625c LT |
1365 | |
1366 | pos = *ppos; | |
1367 | ||
1368 | /* Check if we can write to specified region of file, file | |
1369 | is not overly big and this kind of stuff. Adjust pos and | |
1370 | count, if needed */ | |
1371 | res = generic_write_checks(file, &pos, &count, 0); | |
1372 | if (res) | |
1373 | goto out; | |
1374 | ||
1375 | if (count == 0) | |
1376 | goto out; | |
1377 | ||
1378 | res = remove_suid(file->f_dentry); | |
1379 | if (res) | |
1380 | goto out; | |
1381 | ||
870f4817 | 1382 | file_update_time(file); |
bd4c625c LT |
1383 | |
1384 | // Ok, we are done with all the checks. | |
1385 | ||
1386 | // Now we should start real work | |
1387 | ||
1388 | /* If we are going to write past the file's packed tail or if we are going | |
1389 | to overwrite part of the tail, we need that tail to be converted into | |
1390 | unformatted node */ | |
1391 | res = reiserfs_check_for_tail_and_convert(inode, pos, count); | |
1392 | if (res) | |
1393 | goto out; | |
1394 | ||
1395 | while (count > 0) { | |
1396 | /* This is the main loop in which we running until some error occures | |
1397 | or until we write all of the data. */ | |
1398 | size_t num_pages; /* amount of pages we are going to write this iteration */ | |
1399 | size_t write_bytes; /* amount of bytes to write during this iteration */ | |
1400 | size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */ | |
1401 | ||
1402 | /* (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */ | |
1403 | num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial | |
1404 | pages */ | |
1405 | ((count + | |
1406 | (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT); | |
1407 | /* convert size to amount of | |
1408 | pages */ | |
1409 | reiserfs_write_lock(inode->i_sb); | |
1410 | if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME | |
1411 | || num_pages > reiserfs_can_fit_pages(inode->i_sb)) { | |
1412 | /* If we were asked to write more data than we want to or if there | |
1413 | is not that much space, then we shorten amount of data to write | |
1414 | for this iteration. */ | |
1415 | num_pages = | |
1416 | min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME, | |
1417 | reiserfs_can_fit_pages(inode->i_sb)); | |
1418 | /* Also we should not forget to set size in bytes accordingly */ | |
1419 | write_bytes = (num_pages << PAGE_CACHE_SHIFT) - | |
1420 | (pos & (PAGE_CACHE_SIZE - 1)); | |
1421 | /* If position is not on the | |
1422 | start of the page, we need | |
1423 | to substract the offset | |
1424 | within page */ | |
1425 | } else | |
1426 | write_bytes = count; | |
1427 | ||
1428 | /* reserve the blocks to be allocated later, so that later on | |
1429 | we still have the space to write the blocks to */ | |
1430 | reiserfs_claim_blocks_to_be_allocated(inode->i_sb, | |
1431 | num_pages << | |
1432 | (PAGE_CACHE_SHIFT - | |
1433 | inode->i_blkbits)); | |
1434 | reiserfs_write_unlock(inode->i_sb); | |
1435 | ||
1436 | if (!num_pages) { /* If we do not have enough space even for a single page... */ | |
1437 | if (pos > | |
1438 | inode->i_size + inode->i_sb->s_blocksize - | |
1439 | (pos & (inode->i_sb->s_blocksize - 1))) { | |
1440 | res = -ENOSPC; | |
1441 | break; // In case we are writing past the end of the last file block, break. | |
1442 | } | |
1443 | // Otherwise we are possibly overwriting the file, so | |
1444 | // let's set write size to be equal or less than blocksize. | |
1445 | // This way we get it correctly for file holes. | |
1446 | // But overwriting files on absolutelly full volumes would not | |
1447 | // be very efficient. Well, people are not supposed to fill | |
1448 | // 100% of disk space anyway. | |
1449 | write_bytes = | |
1450 | min_t(size_t, count, | |
1451 | inode->i_sb->s_blocksize - | |
1452 | (pos & (inode->i_sb->s_blocksize - 1))); | |
1453 | num_pages = 1; | |
1454 | // No blocks were claimed before, so do it now. | |
1455 | reiserfs_claim_blocks_to_be_allocated(inode->i_sb, | |
1456 | 1 << | |
1457 | (PAGE_CACHE_SHIFT | |
1458 | - | |
1459 | inode-> | |
1460 | i_blkbits)); | |
1461 | } | |
1da177e4 | 1462 | |
bd4c625c LT |
1463 | /* Prepare for writing into the region, read in all the |
1464 | partially overwritten pages, if needed. And lock the pages, | |
1465 | so that nobody else can access these until we are done. | |
1466 | We get number of actual blocks needed as a result. */ | |
c499ec24 VS |
1467 | res = reiserfs_prepare_file_region_for_write(inode, pos, |
1468 | num_pages, | |
1469 | write_bytes, | |
1470 | prepared_pages); | |
1471 | if (res < 0) { | |
bd4c625c LT |
1472 | reiserfs_release_claimed_blocks(inode->i_sb, |
1473 | num_pages << | |
1474 | (PAGE_CACHE_SHIFT - | |
1475 | inode->i_blkbits)); | |
1476 | break; | |
1477 | } | |
1da177e4 | 1478 | |
c499ec24 VS |
1479 | blocks_to_allocate = res; |
1480 | ||
bd4c625c LT |
1481 | /* First we correct our estimate of how many blocks we need */ |
1482 | reiserfs_release_claimed_blocks(inode->i_sb, | |
1483 | (num_pages << | |
1484 | (PAGE_CACHE_SHIFT - | |
1485 | inode->i_sb-> | |
1486 | s_blocksize_bits)) - | |
1487 | blocks_to_allocate); | |
1488 | ||
1489 | if (blocks_to_allocate > 0) { /*We only allocate blocks if we need to */ | |
1490 | /* Fill in all the possible holes and append the file if needed */ | |
1491 | res = | |
1492 | reiserfs_allocate_blocks_for_region(&th, inode, pos, | |
1493 | num_pages, | |
1494 | write_bytes, | |
1495 | prepared_pages, | |
1496 | blocks_to_allocate); | |
1497 | } | |
1da177e4 | 1498 | |
bd4c625c LT |
1499 | /* well, we have allocated the blocks, so it is time to free |
1500 | the reservation we made earlier. */ | |
1501 | reiserfs_release_claimed_blocks(inode->i_sb, | |
1502 | blocks_to_allocate); | |
1503 | if (res) { | |
1504 | reiserfs_unprepare_pages(prepared_pages, num_pages); | |
1505 | break; | |
1506 | } | |
1da177e4 | 1507 | |
bd4c625c LT |
1508 | /* NOTE that allocating blocks and filling blocks can be done in reverse order |
1509 | and probably we would do that just to get rid of garbage in files after a | |
1510 | crash */ | |
1da177e4 | 1511 | |
bd4c625c LT |
1512 | /* Copy data from user-supplied buffer to file's pages */ |
1513 | res = | |
1514 | reiserfs_copy_from_user_to_file_region(pos, num_pages, | |
1515 | write_bytes, | |
1516 | prepared_pages, buf); | |
1517 | if (res) { | |
1518 | reiserfs_unprepare_pages(prepared_pages, num_pages); | |
1519 | break; | |
1520 | } | |
1da177e4 | 1521 | |
bd4c625c LT |
1522 | /* Send the pages to disk and unlock them. */ |
1523 | res = | |
1524 | reiserfs_submit_file_region_for_write(&th, inode, pos, | |
1525 | num_pages, | |
1526 | write_bytes, | |
1527 | prepared_pages); | |
1528 | if (res) | |
1529 | break; | |
1530 | ||
1531 | already_written += write_bytes; | |
1532 | buf += write_bytes; | |
1533 | *ppos = pos += write_bytes; | |
1534 | count -= write_bytes; | |
1535 | balance_dirty_pages_ratelimited(inode->i_mapping); | |
1da177e4 LT |
1536 | } |
1537 | ||
bd4c625c LT |
1538 | /* this is only true on error */ |
1539 | if (th.t_trans_id) { | |
1540 | reiserfs_write_lock(inode->i_sb); | |
1541 | err = journal_end(&th, th.t_super, th.t_blocks_allocated); | |
1542 | reiserfs_write_unlock(inode->i_sb); | |
1543 | if (err) { | |
1544 | res = err; | |
1545 | goto out; | |
1546 | } | |
1da177e4 LT |
1547 | } |
1548 | ||
bd4c625c LT |
1549 | if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) |
1550 | res = | |
1551 | generic_osync_inode(inode, file->f_mapping, | |
1552 | OSYNC_METADATA | OSYNC_DATA); | |
1da177e4 | 1553 | |
1b1dcc1b | 1554 | mutex_unlock(&inode->i_mutex); |
bd4c625c LT |
1555 | reiserfs_async_progress_wait(inode->i_sb); |
1556 | return (already_written != 0) ? already_written : res; | |
1da177e4 | 1557 | |
bd4c625c | 1558 | out: |
1b1dcc1b | 1559 | mutex_unlock(&inode->i_mutex); // unlock the file on exit. |
bd4c625c | 1560 | return res; |
1da177e4 LT |
1561 | } |
1562 | ||
bd4c625c LT |
1563 | static ssize_t reiserfs_aio_write(struct kiocb *iocb, const char __user * buf, |
1564 | size_t count, loff_t pos) | |
1da177e4 | 1565 | { |
bd4c625c | 1566 | return generic_file_aio_write(iocb, buf, count, pos); |
1da177e4 LT |
1567 | } |
1568 | ||
1da177e4 | 1569 | struct file_operations reiserfs_file_operations = { |
bd4c625c LT |
1570 | .read = generic_file_read, |
1571 | .write = reiserfs_file_write, | |
1572 | .ioctl = reiserfs_ioctl, | |
1573 | .mmap = generic_file_mmap, | |
1574 | .release = reiserfs_file_release, | |
1575 | .fsync = reiserfs_sync_file, | |
1576 | .sendfile = generic_file_sendfile, | |
1577 | .aio_read = generic_file_aio_read, | |
1578 | .aio_write = reiserfs_aio_write, | |
1da177e4 LT |
1579 | }; |
1580 | ||
bd4c625c LT |
1581 | struct inode_operations reiserfs_file_inode_operations = { |
1582 | .truncate = reiserfs_vfs_truncate_file, | |
1583 | .setattr = reiserfs_setattr, | |
1584 | .setxattr = reiserfs_setxattr, | |
1585 | .getxattr = reiserfs_getxattr, | |
1586 | .listxattr = reiserfs_listxattr, | |
1587 | .removexattr = reiserfs_removexattr, | |
1588 | .permission = reiserfs_permission, | |
1da177e4 | 1589 | }; |