]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * mm/truncate.c - code for taking down pages from address_spaces | |
4 | * | |
5 | * Copyright (C) 2002, Linus Torvalds | |
6 | * | |
e1f8e874 | 7 | * 10Sep2002 Andrew Morton |
1da177e4 LT |
8 | * Initial version. |
9 | */ | |
10 | ||
11 | #include <linux/kernel.h> | |
4af3c9cc | 12 | #include <linux/backing-dev.h> |
f9fe48be | 13 | #include <linux/dax.h> |
5a0e3ad6 | 14 | #include <linux/gfp.h> |
1da177e4 | 15 | #include <linux/mm.h> |
0fd0e6b0 | 16 | #include <linux/swap.h> |
b95f1b31 | 17 | #include <linux/export.h> |
1da177e4 | 18 | #include <linux/pagemap.h> |
01f2705d | 19 | #include <linux/highmem.h> |
1da177e4 | 20 | #include <linux/pagevec.h> |
e08748ce | 21 | #include <linux/task_io_accounting_ops.h> |
1da177e4 | 22 | #include <linux/buffer_head.h> /* grr. try_to_release_page, |
aaa4059b | 23 | do_invalidatepage */ |
3a4f8a0b | 24 | #include <linux/shmem_fs.h> |
c515e1fd | 25 | #include <linux/cleancache.h> |
90a80202 | 26 | #include <linux/rmap.h> |
ba470de4 | 27 | #include "internal.h" |
1da177e4 | 28 | |
f2187599 MG |
29 | /* |
30 | * Regular page slots are stabilized by the page lock even without the tree | |
31 | * itself locked. These unlocked entries need verification under the tree | |
32 | * lock. | |
33 | */ | |
34 | static inline void __clear_shadow_entry(struct address_space *mapping, | |
35 | pgoff_t index, void *entry) | |
0cd6144a | 36 | { |
69b6c131 | 37 | XA_STATE(xas, &mapping->i_pages, index); |
449dd698 | 38 | |
69b6c131 MW |
39 | xas_set_update(&xas, workingset_update_node); |
40 | if (xas_load(&xas) != entry) | |
f2187599 | 41 | return; |
69b6c131 | 42 | xas_store(&xas, NULL); |
f2187599 MG |
43 | } |
44 | ||
45 | static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, | |
46 | void *entry) | |
47 | { | |
b93b0163 | 48 | xa_lock_irq(&mapping->i_pages); |
f2187599 | 49 | __clear_shadow_entry(mapping, index, entry); |
b93b0163 | 50 | xa_unlock_irq(&mapping->i_pages); |
0cd6144a | 51 | } |
1da177e4 | 52 | |
c6dcf52c | 53 | /* |
f2187599 MG |
54 | * Unconditionally remove exceptional entries. Usually called from truncate |
55 | * path. Note that the pagevec may be altered by this function by removing | |
56 | * exceptional entries similar to what pagevec_remove_exceptionals does. | |
c6dcf52c | 57 | */ |
f2187599 | 58 | static void truncate_exceptional_pvec_entries(struct address_space *mapping, |
31d270fd | 59 | struct pagevec *pvec, pgoff_t *indices) |
c6dcf52c | 60 | { |
f2187599 | 61 | int i, j; |
31d270fd | 62 | bool dax; |
f2187599 | 63 | |
c6dcf52c JK |
64 | /* Handled by shmem itself */ |
65 | if (shmem_mapping(mapping)) | |
66 | return; | |
67 | ||
f2187599 | 68 | for (j = 0; j < pagevec_count(pvec); j++) |
3159f943 | 69 | if (xa_is_value(pvec->pages[j])) |
f2187599 MG |
70 | break; |
71 | ||
72 | if (j == pagevec_count(pvec)) | |
c6dcf52c | 73 | return; |
f2187599 MG |
74 | |
75 | dax = dax_mapping(mapping); | |
31d270fd | 76 | if (!dax) |
b93b0163 | 77 | xa_lock_irq(&mapping->i_pages); |
f2187599 MG |
78 | |
79 | for (i = j; i < pagevec_count(pvec); i++) { | |
80 | struct page *page = pvec->pages[i]; | |
81 | pgoff_t index = indices[i]; | |
82 | ||
3159f943 | 83 | if (!xa_is_value(page)) { |
f2187599 MG |
84 | pvec->pages[j++] = page; |
85 | continue; | |
86 | } | |
87 | ||
f2187599 MG |
88 | if (unlikely(dax)) { |
89 | dax_delete_mapping_entry(mapping, index); | |
90 | continue; | |
91 | } | |
92 | ||
93 | __clear_shadow_entry(mapping, index, page); | |
c6dcf52c | 94 | } |
f2187599 | 95 | |
31d270fd | 96 | if (!dax) |
b93b0163 | 97 | xa_unlock_irq(&mapping->i_pages); |
f2187599 | 98 | pvec->nr = j; |
c6dcf52c JK |
99 | } |
100 | ||
101 | /* | |
102 | * Invalidate exceptional entry if easily possible. This handles exceptional | |
4636e70b | 103 | * entries for invalidate_inode_pages(). |
c6dcf52c JK |
104 | */ |
105 | static int invalidate_exceptional_entry(struct address_space *mapping, | |
106 | pgoff_t index, void *entry) | |
107 | { | |
4636e70b RZ |
108 | /* Handled by shmem itself, or for DAX we do nothing. */ |
109 | if (shmem_mapping(mapping) || dax_mapping(mapping)) | |
c6dcf52c | 110 | return 1; |
c6dcf52c JK |
111 | clear_shadow_entry(mapping, index, entry); |
112 | return 1; | |
113 | } | |
114 | ||
115 | /* | |
116 | * Invalidate exceptional entry if clean. This handles exceptional entries for | |
117 | * invalidate_inode_pages2() so for DAX it evicts only clean entries. | |
118 | */ | |
119 | static int invalidate_exceptional_entry2(struct address_space *mapping, | |
120 | pgoff_t index, void *entry) | |
121 | { | |
122 | /* Handled by shmem itself */ | |
123 | if (shmem_mapping(mapping)) | |
124 | return 1; | |
125 | if (dax_mapping(mapping)) | |
126 | return dax_invalidate_mapping_entry_sync(mapping, index); | |
127 | clear_shadow_entry(mapping, index, entry); | |
128 | return 1; | |
129 | } | |
130 | ||
cf9a2ae8 | 131 | /** |
28bc44d7 | 132 | * do_invalidatepage - invalidate part or all of a page |
cf9a2ae8 | 133 | * @page: the page which is affected |
d47992f8 LC |
134 | * @offset: start of the range to invalidate |
135 | * @length: length of the range to invalidate | |
cf9a2ae8 DH |
136 | * |
137 | * do_invalidatepage() is called when all or part of the page has become | |
138 | * invalidated by a truncate operation. | |
139 | * | |
140 | * do_invalidatepage() does not have to release all buffers, but it must | |
141 | * ensure that no dirty buffer is left outside @offset and that no I/O | |
142 | * is underway against any of the blocks which are outside the truncation | |
143 | * point. Because the caller is about to free (and possibly reuse) those | |
144 | * blocks on-disk. | |
145 | */ | |
d47992f8 LC |
146 | void do_invalidatepage(struct page *page, unsigned int offset, |
147 | unsigned int length) | |
cf9a2ae8 | 148 | { |
d47992f8 LC |
149 | void (*invalidatepage)(struct page *, unsigned int, unsigned int); |
150 | ||
cf9a2ae8 | 151 | invalidatepage = page->mapping->a_ops->invalidatepage; |
9361401e | 152 | #ifdef CONFIG_BLOCK |
cf9a2ae8 DH |
153 | if (!invalidatepage) |
154 | invalidatepage = block_invalidatepage; | |
9361401e | 155 | #endif |
cf9a2ae8 | 156 | if (invalidatepage) |
d47992f8 | 157 | (*invalidatepage)(page, offset, length); |
cf9a2ae8 DH |
158 | } |
159 | ||
1da177e4 LT |
160 | /* |
161 | * If truncate cannot remove the fs-private metadata from the page, the page | |
62e1c553 | 162 | * becomes orphaned. It will be left on the LRU and may even be mapped into |
54cb8821 | 163 | * user pagetables if we're racing with filemap_fault(). |
1da177e4 | 164 | * |
fc3a5ac5 | 165 | * We need to bail out if page->mapping is no longer equal to the original |
1da177e4 | 166 | * mapping. This happens a) when the VM reclaimed the page while we waited on |
fc0ecff6 | 167 | * its lock, b) when a concurrent invalidate_mapping_pages got there first and |
1da177e4 LT |
168 | * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. |
169 | */ | |
22061a1f | 170 | static void truncate_cleanup_page(struct page *page) |
1da177e4 | 171 | { |
22061a1f HD |
172 | if (page_mapped(page)) |
173 | unmap_mapping_page(page); | |
1da177e4 | 174 | |
266cf658 | 175 | if (page_has_private(page)) |
fc3a5ac5 | 176 | do_invalidatepage(page, 0, thp_size(page)); |
1da177e4 | 177 | |
b9ea2515 KK |
178 | /* |
179 | * Some filesystems seem to re-dirty the page even after | |
180 | * the VM has canceled the dirty bit (eg ext3 journaling). | |
181 | * Hence dirty accounting check is placed after invalidation. | |
182 | */ | |
11f81bec | 183 | cancel_dirty_page(page); |
1da177e4 | 184 | ClearPageMappedToDisk(page); |
1da177e4 LT |
185 | } |
186 | ||
187 | /* | |
fc0ecff6 | 188 | * This is for invalidate_mapping_pages(). That function can be called at |
1da177e4 | 189 | * any time, and is not supposed to throw away dirty pages. But pages can |
0fd0e6b0 NP |
190 | * be marked dirty at any time too, so use remove_mapping which safely |
191 | * discards clean, unused pages. | |
1da177e4 LT |
192 | * |
193 | * Returns non-zero if the page was successfully invalidated. | |
194 | */ | |
195 | static int | |
196 | invalidate_complete_page(struct address_space *mapping, struct page *page) | |
197 | { | |
0fd0e6b0 NP |
198 | int ret; |
199 | ||
1da177e4 LT |
200 | if (page->mapping != mapping) |
201 | return 0; | |
202 | ||
266cf658 | 203 | if (page_has_private(page) && !try_to_release_page(page, 0)) |
1da177e4 LT |
204 | return 0; |
205 | ||
0fd0e6b0 | 206 | ret = remove_mapping(mapping, page); |
0fd0e6b0 NP |
207 | |
208 | return ret; | |
1da177e4 LT |
209 | } |
210 | ||
750b4987 NP |
211 | int truncate_inode_page(struct address_space *mapping, struct page *page) |
212 | { | |
fc127da0 KS |
213 | VM_BUG_ON_PAGE(PageTail(page), page); |
214 | ||
9f4e41f4 JK |
215 | if (page->mapping != mapping) |
216 | return -EIO; | |
217 | ||
22061a1f | 218 | truncate_cleanup_page(page); |
9f4e41f4 JK |
219 | delete_from_page_cache(page); |
220 | return 0; | |
750b4987 NP |
221 | } |
222 | ||
25718736 AK |
223 | /* |
224 | * Used to get rid of pages on hardware memory corruption. | |
225 | */ | |
226 | int generic_error_remove_page(struct address_space *mapping, struct page *page) | |
227 | { | |
228 | if (!mapping) | |
229 | return -EINVAL; | |
230 | /* | |
231 | * Only punch for normal data pages for now. | |
232 | * Handling other types like directories would need more auditing. | |
233 | */ | |
234 | if (!S_ISREG(mapping->host->i_mode)) | |
235 | return -EIO; | |
236 | return truncate_inode_page(mapping, page); | |
237 | } | |
238 | EXPORT_SYMBOL(generic_error_remove_page); | |
239 | ||
83f78668 WF |
240 | /* |
241 | * Safely invalidate one page from its pagecache mapping. | |
242 | * It only drops clean, unused pages. The page must be locked. | |
243 | * | |
244 | * Returns 1 if the page is successfully invalidated, otherwise 0. | |
245 | */ | |
246 | int invalidate_inode_page(struct page *page) | |
247 | { | |
248 | struct address_space *mapping = page_mapping(page); | |
249 | if (!mapping) | |
250 | return 0; | |
251 | if (PageDirty(page) || PageWriteback(page)) | |
252 | return 0; | |
253 | if (page_mapped(page)) | |
254 | return 0; | |
255 | return invalidate_complete_page(mapping, page); | |
256 | } | |
257 | ||
1da177e4 | 258 | /** |
73c1e204 | 259 | * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets |
1da177e4 LT |
260 | * @mapping: mapping to truncate |
261 | * @lstart: offset from which to truncate | |
5a720394 | 262 | * @lend: offset to which to truncate (inclusive) |
1da177e4 | 263 | * |
d7339071 | 264 | * Truncate the page cache, removing the pages that are between |
5a720394 LC |
265 | * specified offsets (and zeroing out partial pages |
266 | * if lstart or lend + 1 is not page aligned). | |
1da177e4 LT |
267 | * |
268 | * Truncate takes two passes - the first pass is nonblocking. It will not | |
269 | * block on page locks and it will not block on writeback. The second pass | |
270 | * will wait. This is to prevent as much IO as possible in the affected region. | |
271 | * The first pass will remove most pages, so the search cost of the second pass | |
272 | * is low. | |
273 | * | |
1da177e4 LT |
274 | * We pass down the cache-hot hint to the page freeing code. Even if the |
275 | * mapping is large, it is probably the case that the final pages are the most | |
276 | * recently touched, and freeing happens in ascending file offset order. | |
5a720394 LC |
277 | * |
278 | * Note that since ->invalidatepage() accepts range to invalidate | |
279 | * truncate_inode_pages_range is able to handle cases where lend + 1 is not | |
280 | * page aligned properly. | |
1da177e4 | 281 | */ |
d7339071 HR |
282 | void truncate_inode_pages_range(struct address_space *mapping, |
283 | loff_t lstart, loff_t lend) | |
1da177e4 | 284 | { |
5a720394 LC |
285 | pgoff_t start; /* inclusive */ |
286 | pgoff_t end; /* exclusive */ | |
287 | unsigned int partial_start; /* inclusive */ | |
288 | unsigned int partial_end; /* exclusive */ | |
289 | struct pagevec pvec; | |
0cd6144a | 290 | pgoff_t indices[PAGEVEC_SIZE]; |
5a720394 LC |
291 | pgoff_t index; |
292 | int i; | |
1da177e4 | 293 | |
7716506a | 294 | if (mapping_empty(mapping)) |
34ccb69e | 295 | goto out; |
1da177e4 | 296 | |
5a720394 | 297 | /* Offsets within partial pages */ |
09cbfeaf KS |
298 | partial_start = lstart & (PAGE_SIZE - 1); |
299 | partial_end = (lend + 1) & (PAGE_SIZE - 1); | |
5a720394 LC |
300 | |
301 | /* | |
302 | * 'start' and 'end' always covers the range of pages to be fully | |
303 | * truncated. Partial pages are covered with 'partial_start' at the | |
304 | * start of the range and 'partial_end' at the end of the range. | |
305 | * Note that 'end' is exclusive while 'lend' is inclusive. | |
306 | */ | |
09cbfeaf | 307 | start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; |
5a720394 LC |
308 | if (lend == -1) |
309 | /* | |
310 | * lend == -1 indicates end-of-file so we have to set 'end' | |
311 | * to the highest possible pgoff_t and since the type is | |
312 | * unsigned we're using -1. | |
313 | */ | |
314 | end = -1; | |
315 | else | |
09cbfeaf | 316 | end = (lend + 1) >> PAGE_SHIFT; |
d7339071 | 317 | |
86679820 | 318 | pagevec_init(&pvec); |
b85e0eff | 319 | index = start; |
5c211ba2 MWO |
320 | while (index < end && find_lock_entries(mapping, index, end - 1, |
321 | &pvec, indices)) { | |
322 | index = indices[pagevec_count(&pvec) - 1] + 1; | |
31d270fd | 323 | truncate_exceptional_pvec_entries(mapping, &pvec, indices); |
5c211ba2 | 324 | for (i = 0; i < pagevec_count(&pvec); i++) |
22061a1f | 325 | truncate_cleanup_page(pvec.pages[i]); |
5c211ba2 MWO |
326 | delete_from_page_cache_batch(mapping, &pvec); |
327 | for (i = 0; i < pagevec_count(&pvec); i++) | |
328 | unlock_page(pvec.pages[i]); | |
1da177e4 LT |
329 | pagevec_release(&pvec); |
330 | cond_resched(); | |
331 | } | |
5c211ba2 | 332 | |
5a720394 | 333 | if (partial_start) { |
1da177e4 LT |
334 | struct page *page = find_lock_page(mapping, start - 1); |
335 | if (page) { | |
09cbfeaf | 336 | unsigned int top = PAGE_SIZE; |
5a720394 LC |
337 | if (start > end) { |
338 | /* Truncation within a single page */ | |
339 | top = partial_end; | |
340 | partial_end = 0; | |
341 | } | |
1da177e4 | 342 | wait_on_page_writeback(page); |
5a720394 LC |
343 | zero_user_segment(page, partial_start, top); |
344 | cleancache_invalidate_page(mapping, page); | |
345 | if (page_has_private(page)) | |
346 | do_invalidatepage(page, partial_start, | |
347 | top - partial_start); | |
1da177e4 | 348 | unlock_page(page); |
09cbfeaf | 349 | put_page(page); |
1da177e4 LT |
350 | } |
351 | } | |
5a720394 LC |
352 | if (partial_end) { |
353 | struct page *page = find_lock_page(mapping, end); | |
354 | if (page) { | |
355 | wait_on_page_writeback(page); | |
356 | zero_user_segment(page, 0, partial_end); | |
357 | cleancache_invalidate_page(mapping, page); | |
358 | if (page_has_private(page)) | |
359 | do_invalidatepage(page, 0, | |
360 | partial_end); | |
361 | unlock_page(page); | |
09cbfeaf | 362 | put_page(page); |
5a720394 LC |
363 | } |
364 | } | |
365 | /* | |
366 | * If the truncation happened within a single page no pages | |
367 | * will be released, just zeroed, so we can bail out now. | |
368 | */ | |
369 | if (start >= end) | |
34ccb69e | 370 | goto out; |
1da177e4 | 371 | |
b85e0eff | 372 | index = start; |
1da177e4 LT |
373 | for ( ; ; ) { |
374 | cond_resched(); | |
a656a202 | 375 | if (!find_get_entries(mapping, index, end - 1, &pvec, |
38cefeb3 | 376 | indices)) { |
792ceaef | 377 | /* If all gone from start onwards, we're done */ |
b85e0eff | 378 | if (index == start) |
1da177e4 | 379 | break; |
792ceaef | 380 | /* Otherwise restart to make sure all gone */ |
b85e0eff | 381 | index = start; |
1da177e4 LT |
382 | continue; |
383 | } | |
f2187599 | 384 | |
1da177e4 LT |
385 | for (i = 0; i < pagevec_count(&pvec); i++) { |
386 | struct page *page = pvec.pages[i]; | |
387 | ||
b85e0eff | 388 | /* We rely upon deletion not changing page->index */ |
0cd6144a | 389 | index = indices[i]; |
b85e0eff | 390 | |
3159f943 | 391 | if (xa_is_value(page)) |
0cd6144a | 392 | continue; |
0cd6144a | 393 | |
1da177e4 | 394 | lock_page(page); |
5cbc198a | 395 | WARN_ON(page_to_index(page) != index); |
1da177e4 | 396 | wait_on_page_writeback(page); |
750b4987 | 397 | truncate_inode_page(mapping, page); |
1da177e4 LT |
398 | unlock_page(page); |
399 | } | |
31d270fd | 400 | truncate_exceptional_pvec_entries(mapping, &pvec, indices); |
1da177e4 | 401 | pagevec_release(&pvec); |
b85e0eff | 402 | index++; |
1da177e4 | 403 | } |
34ccb69e AR |
404 | |
405 | out: | |
3167760f | 406 | cleancache_invalidate_inode(mapping); |
1da177e4 | 407 | } |
d7339071 | 408 | EXPORT_SYMBOL(truncate_inode_pages_range); |
1da177e4 | 409 | |
d7339071 HR |
410 | /** |
411 | * truncate_inode_pages - truncate *all* the pages from an offset | |
412 | * @mapping: mapping to truncate | |
413 | * @lstart: offset from which to truncate | |
414 | * | |
1b1dcc1b | 415 | * Called under (and serialised by) inode->i_mutex. |
08142579 JK |
416 | * |
417 | * Note: When this function returns, there can be a page in the process of | |
418 | * deletion (inside __delete_from_page_cache()) in the specified range. Thus | |
419 | * mapping->nrpages can be non-zero when this function returns even after | |
420 | * truncation of the whole mapping. | |
d7339071 HR |
421 | */ |
422 | void truncate_inode_pages(struct address_space *mapping, loff_t lstart) | |
423 | { | |
424 | truncate_inode_pages_range(mapping, lstart, (loff_t)-1); | |
425 | } | |
1da177e4 LT |
426 | EXPORT_SYMBOL(truncate_inode_pages); |
427 | ||
91b0abe3 JW |
428 | /** |
429 | * truncate_inode_pages_final - truncate *all* pages before inode dies | |
430 | * @mapping: mapping to truncate | |
431 | * | |
432 | * Called under (and serialized by) inode->i_mutex. | |
433 | * | |
434 | * Filesystems have to use this in the .evict_inode path to inform the | |
435 | * VM that this is the final truncate and the inode is going away. | |
436 | */ | |
437 | void truncate_inode_pages_final(struct address_space *mapping) | |
438 | { | |
91b0abe3 JW |
439 | /* |
440 | * Page reclaim can not participate in regular inode lifetime | |
441 | * management (can't call iput()) and thus can race with the | |
442 | * inode teardown. Tell it when the address space is exiting, | |
443 | * so that it does not install eviction information after the | |
444 | * final truncate has begun. | |
445 | */ | |
446 | mapping_set_exiting(mapping); | |
447 | ||
7716506a | 448 | if (!mapping_empty(mapping)) { |
91b0abe3 JW |
449 | /* |
450 | * As truncation uses a lockless tree lookup, cycle | |
451 | * the tree lock to make sure any ongoing tree | |
452 | * modification that does not see AS_EXITING is | |
453 | * completed before starting the final truncate. | |
454 | */ | |
b93b0163 MW |
455 | xa_lock_irq(&mapping->i_pages); |
456 | xa_unlock_irq(&mapping->i_pages); | |
91b0abe3 | 457 | } |
6ff38bd4 PT |
458 | |
459 | /* | |
460 | * Cleancache needs notification even if there are no pages or shadow | |
461 | * entries. | |
462 | */ | |
463 | truncate_inode_pages(mapping, 0); | |
91b0abe3 JW |
464 | } |
465 | EXPORT_SYMBOL(truncate_inode_pages_final); | |
466 | ||
a77eedbc | 467 | static unsigned long __invalidate_mapping_pages(struct address_space *mapping, |
eb1d7a65 | 468 | pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) |
1da177e4 | 469 | { |
0cd6144a | 470 | pgoff_t indices[PAGEVEC_SIZE]; |
1da177e4 | 471 | struct pagevec pvec; |
b85e0eff | 472 | pgoff_t index = start; |
31560180 MK |
473 | unsigned long ret; |
474 | unsigned long count = 0; | |
1da177e4 LT |
475 | int i; |
476 | ||
86679820 | 477 | pagevec_init(&pvec); |
5c211ba2 | 478 | while (find_lock_entries(mapping, index, end, &pvec, indices)) { |
1da177e4 LT |
479 | for (i = 0; i < pagevec_count(&pvec); i++) { |
480 | struct page *page = pvec.pages[i]; | |
e0f23603 | 481 | |
b85e0eff | 482 | /* We rely upon deletion not changing page->index */ |
0cd6144a | 483 | index = indices[i]; |
e0f23603 | 484 | |
3159f943 | 485 | if (xa_is_value(page)) { |
c6dcf52c JK |
486 | invalidate_exceptional_entry(mapping, index, |
487 | page); | |
0cd6144a JW |
488 | continue; |
489 | } | |
5c211ba2 | 490 | index += thp_nr_pages(page) - 1; |
fc127da0 | 491 | |
31560180 | 492 | ret = invalidate_inode_page(page); |
1da177e4 | 493 | unlock_page(page); |
31560180 MK |
494 | /* |
495 | * Invalidation is a hint that the page is no longer | |
496 | * of interest and try to speed up its reclaim. | |
497 | */ | |
eb1d7a65 | 498 | if (!ret) { |
cc5993bd | 499 | deactivate_file_page(page); |
eb1d7a65 YS |
500 | /* It is likely on the pagevec of a remote CPU */ |
501 | if (nr_pagevec) | |
502 | (*nr_pagevec)++; | |
503 | } | |
31560180 | 504 | count += ret; |
1da177e4 | 505 | } |
0cd6144a | 506 | pagevec_remove_exceptionals(&pvec); |
1da177e4 | 507 | pagevec_release(&pvec); |
28697355 | 508 | cond_resched(); |
b85e0eff | 509 | index++; |
1da177e4 | 510 | } |
31560180 | 511 | return count; |
1da177e4 | 512 | } |
eb1d7a65 YS |
513 | |
514 | /** | |
515 | * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode | |
516 | * @mapping: the address_space which holds the pages to invalidate | |
517 | * @start: the offset 'from' which to invalidate | |
518 | * @end: the offset 'to' which to invalidate (inclusive) | |
519 | * | |
520 | * This function only removes the unlocked pages, if you want to | |
521 | * remove all the pages of one inode, you must call truncate_inode_pages. | |
522 | * | |
523 | * invalidate_mapping_pages() will not block on IO activity. It will not | |
524 | * invalidate pages which are dirty, locked, under writeback or mapped into | |
525 | * pagetables. | |
526 | * | |
527 | * Return: the number of the pages that were invalidated | |
528 | */ | |
529 | unsigned long invalidate_mapping_pages(struct address_space *mapping, | |
530 | pgoff_t start, pgoff_t end) | |
531 | { | |
532 | return __invalidate_mapping_pages(mapping, start, end, NULL); | |
533 | } | |
54bc4855 | 534 | EXPORT_SYMBOL(invalidate_mapping_pages); |
1da177e4 | 535 | |
eb1d7a65 | 536 | /** |
649c6dfe AS |
537 | * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode |
538 | * @mapping: the address_space which holds the pages to invalidate | |
539 | * @start: the offset 'from' which to invalidate | |
540 | * @end: the offset 'to' which to invalidate (inclusive) | |
541 | * @nr_pagevec: invalidate failed page number for caller | |
542 | * | |
a00cda3f MCC |
543 | * This helper is similar to invalidate_mapping_pages(), except that it accounts |
544 | * for pages that are likely on a pagevec and counts them in @nr_pagevec, which | |
545 | * will be used by the caller. | |
eb1d7a65 YS |
546 | */ |
547 | void invalidate_mapping_pagevec(struct address_space *mapping, | |
548 | pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) | |
549 | { | |
550 | __invalidate_mapping_pages(mapping, start, end, nr_pagevec); | |
551 | } | |
552 | ||
bd4c8ce4 AM |
553 | /* |
554 | * This is like invalidate_complete_page(), except it ignores the page's | |
555 | * refcount. We do this because invalidate_inode_pages2() needs stronger | |
556 | * invalidation guarantees, and cannot afford to leave pages behind because | |
2706a1b8 AB |
557 | * shrink_page_list() has a temp ref on them, or because they're transiently |
558 | * sitting in the lru_cache_add() pagevecs. | |
bd4c8ce4 AM |
559 | */ |
560 | static int | |
561 | invalidate_complete_page2(struct address_space *mapping, struct page *page) | |
562 | { | |
c4843a75 GT |
563 | unsigned long flags; |
564 | ||
bd4c8ce4 AM |
565 | if (page->mapping != mapping) |
566 | return 0; | |
567 | ||
266cf658 | 568 | if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) |
bd4c8ce4 AM |
569 | return 0; |
570 | ||
b93b0163 | 571 | xa_lock_irqsave(&mapping->i_pages, flags); |
bd4c8ce4 AM |
572 | if (PageDirty(page)) |
573 | goto failed; | |
574 | ||
266cf658 | 575 | BUG_ON(page_has_private(page)); |
62cccb8c | 576 | __delete_from_page_cache(page, NULL); |
b93b0163 | 577 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
6072d13c LT |
578 | |
579 | if (mapping->a_ops->freepage) | |
580 | mapping->a_ops->freepage(page); | |
581 | ||
09cbfeaf | 582 | put_page(page); /* pagecache ref */ |
bd4c8ce4 AM |
583 | return 1; |
584 | failed: | |
b93b0163 | 585 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
bd4c8ce4 AM |
586 | return 0; |
587 | } | |
588 | ||
e3db7691 TM |
589 | static int do_launder_page(struct address_space *mapping, struct page *page) |
590 | { | |
591 | if (!PageDirty(page)) | |
592 | return 0; | |
593 | if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) | |
594 | return 0; | |
595 | return mapping->a_ops->launder_page(page); | |
596 | } | |
597 | ||
1da177e4 LT |
598 | /** |
599 | * invalidate_inode_pages2_range - remove range of pages from an address_space | |
67be2dd1 | 600 | * @mapping: the address_space |
1da177e4 LT |
601 | * @start: the page offset 'from' which to invalidate |
602 | * @end: the page offset 'to' which to invalidate (inclusive) | |
603 | * | |
604 | * Any pages which are found to be mapped into pagetables are unmapped prior to | |
605 | * invalidation. | |
606 | * | |
a862f68a | 607 | * Return: -EBUSY if any pages could not be invalidated. |
1da177e4 LT |
608 | */ |
609 | int invalidate_inode_pages2_range(struct address_space *mapping, | |
610 | pgoff_t start, pgoff_t end) | |
611 | { | |
0cd6144a | 612 | pgoff_t indices[PAGEVEC_SIZE]; |
1da177e4 | 613 | struct pagevec pvec; |
b85e0eff | 614 | pgoff_t index; |
1da177e4 LT |
615 | int i; |
616 | int ret = 0; | |
0dd1334f | 617 | int ret2 = 0; |
1da177e4 | 618 | int did_range_unmap = 0; |
1da177e4 | 619 | |
7716506a | 620 | if (mapping_empty(mapping)) |
34ccb69e | 621 | goto out; |
32691f0f | 622 | |
86679820 | 623 | pagevec_init(&pvec); |
b85e0eff | 624 | index = start; |
a656a202 | 625 | while (find_get_entries(mapping, index, end, &pvec, indices)) { |
7b965e08 | 626 | for (i = 0; i < pagevec_count(&pvec); i++) { |
1da177e4 | 627 | struct page *page = pvec.pages[i]; |
b85e0eff HD |
628 | |
629 | /* We rely upon deletion not changing page->index */ | |
0cd6144a | 630 | index = indices[i]; |
1da177e4 | 631 | |
3159f943 | 632 | if (xa_is_value(page)) { |
c6dcf52c JK |
633 | if (!invalidate_exceptional_entry2(mapping, |
634 | index, page)) | |
635 | ret = -EBUSY; | |
0cd6144a JW |
636 | continue; |
637 | } | |
638 | ||
22061a1f HD |
639 | if (!did_range_unmap && page_mapped(page)) { |
640 | /* | |
641 | * If page is mapped, before taking its lock, | |
642 | * zap the rest of the file in one hit. | |
643 | */ | |
644 | unmap_mapping_pages(mapping, index, | |
645 | (1 + end - index), false); | |
646 | did_range_unmap = 1; | |
647 | } | |
648 | ||
1da177e4 | 649 | lock_page(page); |
5cbc198a | 650 | WARN_ON(page_to_index(page) != index); |
1da177e4 LT |
651 | if (page->mapping != mapping) { |
652 | unlock_page(page); | |
653 | continue; | |
654 | } | |
1da177e4 | 655 | wait_on_page_writeback(page); |
22061a1f HD |
656 | |
657 | if (page_mapped(page)) | |
658 | unmap_mapping_page(page); | |
d00806b1 | 659 | BUG_ON(page_mapped(page)); |
22061a1f | 660 | |
0dd1334f HH |
661 | ret2 = do_launder_page(mapping, page); |
662 | if (ret2 == 0) { | |
663 | if (!invalidate_complete_page2(mapping, page)) | |
6ccfa806 | 664 | ret2 = -EBUSY; |
0dd1334f HH |
665 | } |
666 | if (ret2 < 0) | |
667 | ret = ret2; | |
1da177e4 LT |
668 | unlock_page(page); |
669 | } | |
0cd6144a | 670 | pagevec_remove_exceptionals(&pvec); |
1da177e4 LT |
671 | pagevec_release(&pvec); |
672 | cond_resched(); | |
b85e0eff | 673 | index++; |
1da177e4 | 674 | } |
cd656375 | 675 | /* |
69b6c131 | 676 | * For DAX we invalidate page tables after invalidating page cache. We |
cd656375 JK |
677 | * could invalidate page tables while invalidating each entry however |
678 | * that would be expensive. And doing range unmapping before doesn't | |
69b6c131 | 679 | * work as we have no cheap way to find whether page cache entry didn't |
cd656375 JK |
680 | * get remapped later. |
681 | */ | |
682 | if (dax_mapping(mapping)) { | |
977fbdcd | 683 | unmap_mapping_pages(mapping, start, end - start + 1, false); |
cd656375 | 684 | } |
34ccb69e | 685 | out: |
3167760f | 686 | cleancache_invalidate_inode(mapping); |
1da177e4 LT |
687 | return ret; |
688 | } | |
689 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); | |
690 | ||
691 | /** | |
692 | * invalidate_inode_pages2 - remove all pages from an address_space | |
67be2dd1 | 693 | * @mapping: the address_space |
1da177e4 LT |
694 | * |
695 | * Any pages which are found to be mapped into pagetables are unmapped prior to | |
696 | * invalidation. | |
697 | * | |
a862f68a | 698 | * Return: -EBUSY if any pages could not be invalidated. |
1da177e4 LT |
699 | */ |
700 | int invalidate_inode_pages2(struct address_space *mapping) | |
701 | { | |
702 | return invalidate_inode_pages2_range(mapping, 0, -1); | |
703 | } | |
704 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2); | |
25d9e2d1 NP |
705 | |
706 | /** | |
707 | * truncate_pagecache - unmap and remove pagecache that has been truncated | |
708 | * @inode: inode | |
8a549bea | 709 | * @newsize: new file size |
25d9e2d1 NP |
710 | * |
711 | * inode's new i_size must already be written before truncate_pagecache | |
712 | * is called. | |
713 | * | |
714 | * This function should typically be called before the filesystem | |
715 | * releases resources associated with the freed range (eg. deallocates | |
716 | * blocks). This way, pagecache will always stay logically coherent | |
717 | * with on-disk format, and the filesystem would not have to deal with | |
718 | * situations such as writepage being called for a page that has already | |
719 | * had its underlying blocks deallocated. | |
720 | */ | |
7caef267 | 721 | void truncate_pagecache(struct inode *inode, loff_t newsize) |
25d9e2d1 | 722 | { |
cedabed4 | 723 | struct address_space *mapping = inode->i_mapping; |
8a549bea | 724 | loff_t holebegin = round_up(newsize, PAGE_SIZE); |
cedabed4 OH |
725 | |
726 | /* | |
727 | * unmap_mapping_range is called twice, first simply for | |
728 | * efficiency so that truncate_inode_pages does fewer | |
729 | * single-page unmaps. However after this first call, and | |
730 | * before truncate_inode_pages finishes, it is possible for | |
731 | * private pages to be COWed, which remain after | |
732 | * truncate_inode_pages finishes, hence the second | |
733 | * unmap_mapping_range call must be made for correctness. | |
734 | */ | |
8a549bea HD |
735 | unmap_mapping_range(mapping, holebegin, 0, 1); |
736 | truncate_inode_pages(mapping, newsize); | |
737 | unmap_mapping_range(mapping, holebegin, 0, 1); | |
25d9e2d1 NP |
738 | } |
739 | EXPORT_SYMBOL(truncate_pagecache); | |
740 | ||
2c27c65e CH |
741 | /** |
742 | * truncate_setsize - update inode and pagecache for a new file size | |
743 | * @inode: inode | |
744 | * @newsize: new file size | |
745 | * | |
382e27da JK |
746 | * truncate_setsize updates i_size and performs pagecache truncation (if |
747 | * necessary) to @newsize. It will be typically be called from the filesystem's | |
748 | * setattr function when ATTR_SIZE is passed in. | |
2c27c65e | 749 | * |
77783d06 JK |
750 | * Must be called with a lock serializing truncates and writes (generally |
751 | * i_mutex but e.g. xfs uses a different lock) and before all filesystem | |
752 | * specific block truncation has been performed. | |
2c27c65e CH |
753 | */ |
754 | void truncate_setsize(struct inode *inode, loff_t newsize) | |
755 | { | |
90a80202 JK |
756 | loff_t oldsize = inode->i_size; |
757 | ||
2c27c65e | 758 | i_size_write(inode, newsize); |
90a80202 JK |
759 | if (newsize > oldsize) |
760 | pagecache_isize_extended(inode, oldsize, newsize); | |
7caef267 | 761 | truncate_pagecache(inode, newsize); |
2c27c65e CH |
762 | } |
763 | EXPORT_SYMBOL(truncate_setsize); | |
764 | ||
90a80202 JK |
765 | /** |
766 | * pagecache_isize_extended - update pagecache after extension of i_size | |
767 | * @inode: inode for which i_size was extended | |
768 | * @from: original inode size | |
769 | * @to: new inode size | |
770 | * | |
771 | * Handle extension of inode size either caused by extending truncate or by | |
772 | * write starting after current i_size. We mark the page straddling current | |
773 | * i_size RO so that page_mkwrite() is called on the nearest write access to | |
774 | * the page. This way filesystem can be sure that page_mkwrite() is called on | |
775 | * the page before user writes to the page via mmap after the i_size has been | |
776 | * changed. | |
777 | * | |
778 | * The function must be called after i_size is updated so that page fault | |
779 | * coming after we unlock the page will already see the new i_size. | |
780 | * The function must be called while we still hold i_mutex - this not only | |
781 | * makes sure i_size is stable but also that userspace cannot observe new | |
782 | * i_size value before we are prepared to store mmap writes at new inode size. | |
783 | */ | |
784 | void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) | |
785 | { | |
93407472 | 786 | int bsize = i_blocksize(inode); |
90a80202 JK |
787 | loff_t rounded_from; |
788 | struct page *page; | |
789 | pgoff_t index; | |
790 | ||
90a80202 JK |
791 | WARN_ON(to > inode->i_size); |
792 | ||
09cbfeaf | 793 | if (from >= to || bsize == PAGE_SIZE) |
90a80202 JK |
794 | return; |
795 | /* Page straddling @from will not have any hole block created? */ | |
796 | rounded_from = round_up(from, bsize); | |
09cbfeaf | 797 | if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) |
90a80202 JK |
798 | return; |
799 | ||
09cbfeaf | 800 | index = from >> PAGE_SHIFT; |
90a80202 JK |
801 | page = find_lock_page(inode->i_mapping, index); |
802 | /* Page not cached? Nothing to do */ | |
803 | if (!page) | |
804 | return; | |
805 | /* | |
806 | * See clear_page_dirty_for_io() for details why set_page_dirty() | |
807 | * is needed. | |
808 | */ | |
809 | if (page_mkclean(page)) | |
810 | set_page_dirty(page); | |
811 | unlock_page(page); | |
09cbfeaf | 812 | put_page(page); |
90a80202 JK |
813 | } |
814 | EXPORT_SYMBOL(pagecache_isize_extended); | |
815 | ||
623e3db9 HD |
816 | /** |
817 | * truncate_pagecache_range - unmap and remove pagecache that is hole-punched | |
818 | * @inode: inode | |
819 | * @lstart: offset of beginning of hole | |
820 | * @lend: offset of last byte of hole | |
821 | * | |
822 | * This function should typically be called before the filesystem | |
823 | * releases resources associated with the freed range (eg. deallocates | |
824 | * blocks). This way, pagecache will always stay logically coherent | |
825 | * with on-disk format, and the filesystem would not have to deal with | |
826 | * situations such as writepage being called for a page that has already | |
827 | * had its underlying blocks deallocated. | |
828 | */ | |
829 | void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) | |
830 | { | |
831 | struct address_space *mapping = inode->i_mapping; | |
832 | loff_t unmap_start = round_up(lstart, PAGE_SIZE); | |
833 | loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; | |
834 | /* | |
835 | * This rounding is currently just for example: unmap_mapping_range | |
836 | * expands its hole outwards, whereas we want it to contract the hole | |
837 | * inwards. However, existing callers of truncate_pagecache_range are | |
5a720394 LC |
838 | * doing their own page rounding first. Note that unmap_mapping_range |
839 | * allows holelen 0 for all, and we allow lend -1 for end of file. | |
623e3db9 HD |
840 | */ |
841 | ||
842 | /* | |
843 | * Unlike in truncate_pagecache, unmap_mapping_range is called only | |
844 | * once (before truncating pagecache), and without "even_cows" flag: | |
845 | * hole-punching should not remove private COWed pages from the hole. | |
846 | */ | |
847 | if ((u64)unmap_end > (u64)unmap_start) | |
848 | unmap_mapping_range(mapping, unmap_start, | |
849 | 1 + unmap_end - unmap_start, 0); | |
850 | truncate_inode_pages_range(mapping, lstart, lend); | |
851 | } | |
852 | EXPORT_SYMBOL(truncate_pagecache_range); |