]>
Commit | Line | Data |
---|---|---|
86039bd3 AA |
1 | /* |
2 | * fs/userfaultfd.c | |
3 | * | |
4 | * Copyright (C) 2007 Davide Libenzi <[email protected]> | |
5 | * Copyright (C) 2008-2009 Red Hat, Inc. | |
6 | * Copyright (C) 2015 Red Hat, Inc. | |
7 | * | |
8 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
9 | * the COPYING file in the top-level directory. | |
10 | * | |
11 | * Some part derived from fs/eventfd.c (anon inode setup) and | |
12 | * mm/ksm.c (mm hashing). | |
13 | */ | |
14 | ||
9cd75c3c | 15 | #include <linux/list.h> |
86039bd3 AA |
16 | #include <linux/hashtable.h> |
17 | #include <linux/sched.h> | |
18 | #include <linux/mm.h> | |
19 | #include <linux/poll.h> | |
20 | #include <linux/slab.h> | |
21 | #include <linux/seq_file.h> | |
22 | #include <linux/file.h> | |
23 | #include <linux/bug.h> | |
24 | #include <linux/anon_inodes.h> | |
25 | #include <linux/syscalls.h> | |
26 | #include <linux/userfaultfd_k.h> | |
27 | #include <linux/mempolicy.h> | |
28 | #include <linux/ioctl.h> | |
29 | #include <linux/security.h> | |
cab350af | 30 | #include <linux/hugetlb.h> |
86039bd3 | 31 | |
3004ec9c AA |
32 | static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; |
33 | ||
86039bd3 AA |
34 | enum userfaultfd_state { |
35 | UFFD_STATE_WAIT_API, | |
36 | UFFD_STATE_RUNNING, | |
37 | }; | |
38 | ||
3004ec9c AA |
39 | /* |
40 | * Start with fault_pending_wqh and fault_wqh so they're more likely | |
41 | * to be in the same cacheline. | |
42 | */ | |
86039bd3 | 43 | struct userfaultfd_ctx { |
15b726ef AA |
44 | /* waitqueue head for the pending (i.e. not read) userfaults */ |
45 | wait_queue_head_t fault_pending_wqh; | |
46 | /* waitqueue head for the userfaults */ | |
86039bd3 AA |
47 | wait_queue_head_t fault_wqh; |
48 | /* waitqueue head for the pseudo fd to wakeup poll/read */ | |
49 | wait_queue_head_t fd_wqh; | |
9cd75c3c PE |
50 | /* waitqueue head for events */ |
51 | wait_queue_head_t event_wqh; | |
2c5b7e1b AA |
52 | /* a refile sequence protected by fault_pending_wqh lock */ |
53 | struct seqcount refile_seq; | |
3004ec9c AA |
54 | /* pseudo fd refcounting */ |
55 | atomic_t refcount; | |
86039bd3 AA |
56 | /* userfaultfd syscall flags */ |
57 | unsigned int flags; | |
9cd75c3c PE |
58 | /* features requested from the userspace */ |
59 | unsigned int features; | |
86039bd3 AA |
60 | /* state machine */ |
61 | enum userfaultfd_state state; | |
62 | /* released */ | |
63 | bool released; | |
64 | /* mm with one ore more vmas attached to this userfaultfd_ctx */ | |
65 | struct mm_struct *mm; | |
66 | }; | |
67 | ||
893e26e6 PE |
68 | struct userfaultfd_fork_ctx { |
69 | struct userfaultfd_ctx *orig; | |
70 | struct userfaultfd_ctx *new; | |
71 | struct list_head list; | |
72 | }; | |
73 | ||
897ab3e0 MR |
74 | struct userfaultfd_unmap_ctx { |
75 | struct userfaultfd_ctx *ctx; | |
76 | unsigned long start; | |
77 | unsigned long end; | |
78 | struct list_head list; | |
79 | }; | |
80 | ||
86039bd3 | 81 | struct userfaultfd_wait_queue { |
a9b85f94 | 82 | struct uffd_msg msg; |
86039bd3 | 83 | wait_queue_t wq; |
86039bd3 | 84 | struct userfaultfd_ctx *ctx; |
15a77c6f | 85 | bool waken; |
86039bd3 AA |
86 | }; |
87 | ||
88 | struct userfaultfd_wake_range { | |
89 | unsigned long start; | |
90 | unsigned long len; | |
91 | }; | |
92 | ||
93 | static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, | |
94 | int wake_flags, void *key) | |
95 | { | |
96 | struct userfaultfd_wake_range *range = key; | |
97 | int ret; | |
98 | struct userfaultfd_wait_queue *uwq; | |
99 | unsigned long start, len; | |
100 | ||
101 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
102 | ret = 0; | |
86039bd3 AA |
103 | /* len == 0 means wake all */ |
104 | start = range->start; | |
105 | len = range->len; | |
a9b85f94 AA |
106 | if (len && (start > uwq->msg.arg.pagefault.address || |
107 | start + len <= uwq->msg.arg.pagefault.address)) | |
86039bd3 | 108 | goto out; |
15a77c6f AA |
109 | WRITE_ONCE(uwq->waken, true); |
110 | /* | |
111 | * The implicit smp_mb__before_spinlock in try_to_wake_up() | |
112 | * renders uwq->waken visible to other CPUs before the task is | |
113 | * waken. | |
114 | */ | |
86039bd3 AA |
115 | ret = wake_up_state(wq->private, mode); |
116 | if (ret) | |
117 | /* | |
118 | * Wake only once, autoremove behavior. | |
119 | * | |
120 | * After the effect of list_del_init is visible to the | |
121 | * other CPUs, the waitqueue may disappear from under | |
122 | * us, see the !list_empty_careful() in | |
123 | * handle_userfault(). try_to_wake_up() has an | |
124 | * implicit smp_mb__before_spinlock, and the | |
125 | * wq->private is read before calling the extern | |
126 | * function "wake_up_state" (which in turns calls | |
127 | * try_to_wake_up). While the spin_lock;spin_unlock; | |
128 | * wouldn't be enough, the smp_mb__before_spinlock is | |
129 | * enough to avoid an explicit smp_mb() here. | |
130 | */ | |
131 | list_del_init(&wq->task_list); | |
132 | out: | |
133 | return ret; | |
134 | } | |
135 | ||
136 | /** | |
137 | * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd | |
138 | * context. | |
139 | * @ctx: [in] Pointer to the userfaultfd context. | |
140 | * | |
141 | * Returns: In case of success, returns not zero. | |
142 | */ | |
143 | static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) | |
144 | { | |
145 | if (!atomic_inc_not_zero(&ctx->refcount)) | |
146 | BUG(); | |
147 | } | |
148 | ||
149 | /** | |
150 | * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd | |
151 | * context. | |
152 | * @ctx: [in] Pointer to userfaultfd context. | |
153 | * | |
154 | * The userfaultfd context reference must have been previously acquired either | |
155 | * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). | |
156 | */ | |
157 | static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) | |
158 | { | |
159 | if (atomic_dec_and_test(&ctx->refcount)) { | |
160 | VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); | |
161 | VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); | |
162 | VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); | |
163 | VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); | |
9cd75c3c PE |
164 | VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); |
165 | VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); | |
86039bd3 AA |
166 | VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); |
167 | VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); | |
d2005e3f | 168 | mmdrop(ctx->mm); |
3004ec9c | 169 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
86039bd3 AA |
170 | } |
171 | } | |
172 | ||
a9b85f94 | 173 | static inline void msg_init(struct uffd_msg *msg) |
86039bd3 | 174 | { |
a9b85f94 AA |
175 | BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); |
176 | /* | |
177 | * Must use memset to zero out the paddings or kernel data is | |
178 | * leaked to userland. | |
179 | */ | |
180 | memset(msg, 0, sizeof(struct uffd_msg)); | |
181 | } | |
182 | ||
183 | static inline struct uffd_msg userfault_msg(unsigned long address, | |
184 | unsigned int flags, | |
185 | unsigned long reason) | |
186 | { | |
187 | struct uffd_msg msg; | |
188 | msg_init(&msg); | |
189 | msg.event = UFFD_EVENT_PAGEFAULT; | |
190 | msg.arg.pagefault.address = address; | |
86039bd3 AA |
191 | if (flags & FAULT_FLAG_WRITE) |
192 | /* | |
a4605a61 | 193 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
a9b85f94 AA |
194 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE |
195 | * was not set in a UFFD_EVENT_PAGEFAULT, it means it | |
196 | * was a read fault, otherwise if set it means it's | |
197 | * a write fault. | |
86039bd3 | 198 | */ |
a9b85f94 | 199 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; |
86039bd3 AA |
200 | if (reason & VM_UFFD_WP) |
201 | /* | |
a9b85f94 AA |
202 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
203 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was | |
204 | * not set in a UFFD_EVENT_PAGEFAULT, it means it was | |
205 | * a missing fault, otherwise if set it means it's a | |
206 | * write protect fault. | |
86039bd3 | 207 | */ |
a9b85f94 AA |
208 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; |
209 | return msg; | |
86039bd3 AA |
210 | } |
211 | ||
369cd212 MK |
212 | #ifdef CONFIG_HUGETLB_PAGE |
213 | /* | |
214 | * Same functionality as userfaultfd_must_wait below with modifications for | |
215 | * hugepmd ranges. | |
216 | */ | |
217 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | |
218 | unsigned long address, | |
219 | unsigned long flags, | |
220 | unsigned long reason) | |
221 | { | |
222 | struct mm_struct *mm = ctx->mm; | |
223 | pte_t *pte; | |
224 | bool ret = true; | |
225 | ||
226 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
227 | ||
228 | pte = huge_pte_offset(mm, address); | |
229 | if (!pte) | |
230 | goto out; | |
231 | ||
232 | ret = false; | |
233 | ||
234 | /* | |
235 | * Lockless access: we're in a wait_event so it's ok if it | |
236 | * changes under us. | |
237 | */ | |
238 | if (huge_pte_none(*pte)) | |
239 | ret = true; | |
240 | if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) | |
241 | ret = true; | |
242 | out: | |
243 | return ret; | |
244 | } | |
245 | #else | |
246 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | |
247 | unsigned long address, | |
248 | unsigned long flags, | |
249 | unsigned long reason) | |
250 | { | |
251 | return false; /* should never get here */ | |
252 | } | |
253 | #endif /* CONFIG_HUGETLB_PAGE */ | |
254 | ||
8d2afd96 AA |
255 | /* |
256 | * Verify the pagetables are still not ok after having reigstered into | |
257 | * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any | |
258 | * userfault that has already been resolved, if userfaultfd_read and | |
259 | * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different | |
260 | * threads. | |
261 | */ | |
262 | static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, | |
263 | unsigned long address, | |
264 | unsigned long flags, | |
265 | unsigned long reason) | |
266 | { | |
267 | struct mm_struct *mm = ctx->mm; | |
268 | pgd_t *pgd; | |
269 | pud_t *pud; | |
270 | pmd_t *pmd, _pmd; | |
271 | pte_t *pte; | |
272 | bool ret = true; | |
273 | ||
274 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
275 | ||
276 | pgd = pgd_offset(mm, address); | |
277 | if (!pgd_present(*pgd)) | |
278 | goto out; | |
279 | pud = pud_offset(pgd, address); | |
280 | if (!pud_present(*pud)) | |
281 | goto out; | |
282 | pmd = pmd_offset(pud, address); | |
283 | /* | |
284 | * READ_ONCE must function as a barrier with narrower scope | |
285 | * and it must be equivalent to: | |
286 | * _pmd = *pmd; barrier(); | |
287 | * | |
288 | * This is to deal with the instability (as in | |
289 | * pmd_trans_unstable) of the pmd. | |
290 | */ | |
291 | _pmd = READ_ONCE(*pmd); | |
292 | if (!pmd_present(_pmd)) | |
293 | goto out; | |
294 | ||
295 | ret = false; | |
296 | if (pmd_trans_huge(_pmd)) | |
297 | goto out; | |
298 | ||
299 | /* | |
300 | * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it | |
301 | * and use the standard pte_offset_map() instead of parsing _pmd. | |
302 | */ | |
303 | pte = pte_offset_map(pmd, address); | |
304 | /* | |
305 | * Lockless access: we're in a wait_event so it's ok if it | |
306 | * changes under us. | |
307 | */ | |
308 | if (pte_none(*pte)) | |
309 | ret = true; | |
310 | pte_unmap(pte); | |
311 | ||
312 | out: | |
313 | return ret; | |
314 | } | |
315 | ||
86039bd3 AA |
316 | /* |
317 | * The locking rules involved in returning VM_FAULT_RETRY depending on | |
318 | * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and | |
319 | * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" | |
320 | * recommendation in __lock_page_or_retry is not an understatement. | |
321 | * | |
322 | * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released | |
323 | * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is | |
324 | * not set. | |
325 | * | |
326 | * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not | |
327 | * set, VM_FAULT_RETRY can still be returned if and only if there are | |
328 | * fatal_signal_pending()s, and the mmap_sem must be released before | |
329 | * returning it. | |
330 | */ | |
82b0f8c3 | 331 | int handle_userfault(struct vm_fault *vmf, unsigned long reason) |
86039bd3 | 332 | { |
82b0f8c3 | 333 | struct mm_struct *mm = vmf->vma->vm_mm; |
86039bd3 AA |
334 | struct userfaultfd_ctx *ctx; |
335 | struct userfaultfd_wait_queue uwq; | |
ba85c702 | 336 | int ret; |
dfa37dc3 | 337 | bool must_wait, return_to_userland; |
15a77c6f | 338 | long blocking_state; |
86039bd3 AA |
339 | |
340 | BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
341 | ||
ba85c702 | 342 | ret = VM_FAULT_SIGBUS; |
82b0f8c3 | 343 | ctx = vmf->vma->vm_userfaultfd_ctx.ctx; |
86039bd3 | 344 | if (!ctx) |
ba85c702 | 345 | goto out; |
86039bd3 AA |
346 | |
347 | BUG_ON(ctx->mm != mm); | |
348 | ||
349 | VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); | |
350 | VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); | |
351 | ||
352 | /* | |
353 | * If it's already released don't get it. This avoids to loop | |
354 | * in __get_user_pages if userfaultfd_release waits on the | |
355 | * caller of handle_userfault to release the mmap_sem. | |
356 | */ | |
357 | if (unlikely(ACCESS_ONCE(ctx->released))) | |
ba85c702 | 358 | goto out; |
86039bd3 | 359 | |
39680f50 LT |
360 | /* |
361 | * We don't do userfault handling for the final child pid update. | |
362 | */ | |
363 | if (current->flags & PF_EXITING) | |
364 | goto out; | |
365 | ||
86039bd3 AA |
366 | /* |
367 | * Check that we can return VM_FAULT_RETRY. | |
368 | * | |
369 | * NOTE: it should become possible to return VM_FAULT_RETRY | |
370 | * even if FAULT_FLAG_TRIED is set without leading to gup() | |
371 | * -EBUSY failures, if the userfaultfd is to be extended for | |
372 | * VM_UFFD_WP tracking and we intend to arm the userfault | |
373 | * without first stopping userland access to the memory. For | |
374 | * VM_UFFD_MISSING userfaults this is enough for now. | |
375 | */ | |
82b0f8c3 | 376 | if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { |
86039bd3 AA |
377 | /* |
378 | * Validate the invariant that nowait must allow retry | |
379 | * to be sure not to return SIGBUS erroneously on | |
380 | * nowait invocations. | |
381 | */ | |
82b0f8c3 | 382 | BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); |
86039bd3 AA |
383 | #ifdef CONFIG_DEBUG_VM |
384 | if (printk_ratelimit()) { | |
385 | printk(KERN_WARNING | |
82b0f8c3 JK |
386 | "FAULT_FLAG_ALLOW_RETRY missing %x\n", |
387 | vmf->flags); | |
86039bd3 AA |
388 | dump_stack(); |
389 | } | |
390 | #endif | |
ba85c702 | 391 | goto out; |
86039bd3 AA |
392 | } |
393 | ||
394 | /* | |
395 | * Handle nowait, not much to do other than tell it to retry | |
396 | * and wait. | |
397 | */ | |
ba85c702 | 398 | ret = VM_FAULT_RETRY; |
82b0f8c3 | 399 | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) |
ba85c702 | 400 | goto out; |
86039bd3 AA |
401 | |
402 | /* take the reference before dropping the mmap_sem */ | |
403 | userfaultfd_ctx_get(ctx); | |
404 | ||
86039bd3 AA |
405 | init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); |
406 | uwq.wq.private = current; | |
82b0f8c3 | 407 | uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); |
86039bd3 | 408 | uwq.ctx = ctx; |
15a77c6f | 409 | uwq.waken = false; |
86039bd3 | 410 | |
bae473a4 | 411 | return_to_userland = |
82b0f8c3 | 412 | (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == |
dfa37dc3 | 413 | (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); |
15a77c6f AA |
414 | blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : |
415 | TASK_KILLABLE; | |
dfa37dc3 | 416 | |
15b726ef | 417 | spin_lock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
418 | /* |
419 | * After the __add_wait_queue the uwq is visible to userland | |
420 | * through poll/read(). | |
421 | */ | |
15b726ef AA |
422 | __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); |
423 | /* | |
424 | * The smp_mb() after __set_current_state prevents the reads | |
425 | * following the spin_unlock to happen before the list_add in | |
426 | * __add_wait_queue. | |
427 | */ | |
15a77c6f | 428 | set_current_state(blocking_state); |
15b726ef | 429 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 | 430 | |
369cd212 MK |
431 | if (!is_vm_hugetlb_page(vmf->vma)) |
432 | must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, | |
433 | reason); | |
434 | else | |
435 | must_wait = userfaultfd_huge_must_wait(ctx, vmf->address, | |
436 | vmf->flags, reason); | |
8d2afd96 AA |
437 | up_read(&mm->mmap_sem); |
438 | ||
439 | if (likely(must_wait && !ACCESS_ONCE(ctx->released) && | |
dfa37dc3 AA |
440 | (return_to_userland ? !signal_pending(current) : |
441 | !fatal_signal_pending(current)))) { | |
86039bd3 AA |
442 | wake_up_poll(&ctx->fd_wqh, POLLIN); |
443 | schedule(); | |
ba85c702 | 444 | ret |= VM_FAULT_MAJOR; |
15a77c6f AA |
445 | |
446 | /* | |
447 | * False wakeups can orginate even from rwsem before | |
448 | * up_read() however userfaults will wait either for a | |
449 | * targeted wakeup on the specific uwq waitqueue from | |
450 | * wake_userfault() or for signals or for uffd | |
451 | * release. | |
452 | */ | |
453 | while (!READ_ONCE(uwq.waken)) { | |
454 | /* | |
455 | * This needs the full smp_store_mb() | |
456 | * guarantee as the state write must be | |
457 | * visible to other CPUs before reading | |
458 | * uwq.waken from other CPUs. | |
459 | */ | |
460 | set_current_state(blocking_state); | |
461 | if (READ_ONCE(uwq.waken) || | |
462 | READ_ONCE(ctx->released) || | |
463 | (return_to_userland ? signal_pending(current) : | |
464 | fatal_signal_pending(current))) | |
465 | break; | |
466 | schedule(); | |
467 | } | |
ba85c702 | 468 | } |
86039bd3 | 469 | |
ba85c702 | 470 | __set_current_state(TASK_RUNNING); |
15b726ef | 471 | |
dfa37dc3 AA |
472 | if (return_to_userland) { |
473 | if (signal_pending(current) && | |
474 | !fatal_signal_pending(current)) { | |
475 | /* | |
476 | * If we got a SIGSTOP or SIGCONT and this is | |
477 | * a normal userland page fault, just let | |
478 | * userland return so the signal will be | |
479 | * handled and gdb debugging works. The page | |
480 | * fault code immediately after we return from | |
481 | * this function is going to release the | |
482 | * mmap_sem and it's not depending on it | |
483 | * (unlike gup would if we were not to return | |
484 | * VM_FAULT_RETRY). | |
485 | * | |
486 | * If a fatal signal is pending we still take | |
487 | * the streamlined VM_FAULT_RETRY failure path | |
488 | * and there's no need to retake the mmap_sem | |
489 | * in such case. | |
490 | */ | |
491 | down_read(&mm->mmap_sem); | |
492 | ret = 0; | |
493 | } | |
494 | } | |
495 | ||
15b726ef AA |
496 | /* |
497 | * Here we race with the list_del; list_add in | |
498 | * userfaultfd_ctx_read(), however because we don't ever run | |
499 | * list_del_init() to refile across the two lists, the prev | |
500 | * and next pointers will never point to self. list_add also | |
501 | * would never let any of the two pointers to point to | |
502 | * self. So list_empty_careful won't risk to see both pointers | |
503 | * pointing to self at any time during the list refile. The | |
504 | * only case where list_del_init() is called is the full | |
505 | * removal in the wake function and there we don't re-list_add | |
506 | * and it's fine not to block on the spinlock. The uwq on this | |
507 | * kernel stack can be released after the list_del_init. | |
508 | */ | |
ba85c702 | 509 | if (!list_empty_careful(&uwq.wq.task_list)) { |
15b726ef AA |
510 | spin_lock(&ctx->fault_pending_wqh.lock); |
511 | /* | |
512 | * No need of list_del_init(), the uwq on the stack | |
513 | * will be freed shortly anyway. | |
514 | */ | |
515 | list_del(&uwq.wq.task_list); | |
516 | spin_unlock(&ctx->fault_pending_wqh.lock); | |
86039bd3 | 517 | } |
86039bd3 AA |
518 | |
519 | /* | |
520 | * ctx may go away after this if the userfault pseudo fd is | |
521 | * already released. | |
522 | */ | |
523 | userfaultfd_ctx_put(ctx); | |
524 | ||
ba85c702 AA |
525 | out: |
526 | return ret; | |
86039bd3 AA |
527 | } |
528 | ||
893e26e6 PE |
529 | static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, |
530 | struct userfaultfd_wait_queue *ewq) | |
9cd75c3c PE |
531 | { |
532 | int ret = 0; | |
533 | ||
534 | ewq->ctx = ctx; | |
535 | init_waitqueue_entry(&ewq->wq, current); | |
536 | ||
537 | spin_lock(&ctx->event_wqh.lock); | |
538 | /* | |
539 | * After the __add_wait_queue the uwq is visible to userland | |
540 | * through poll/read(). | |
541 | */ | |
542 | __add_wait_queue(&ctx->event_wqh, &ewq->wq); | |
543 | for (;;) { | |
544 | set_current_state(TASK_KILLABLE); | |
545 | if (ewq->msg.event == 0) | |
546 | break; | |
547 | if (ACCESS_ONCE(ctx->released) || | |
548 | fatal_signal_pending(current)) { | |
549 | ret = -1; | |
550 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); | |
551 | break; | |
552 | } | |
553 | ||
554 | spin_unlock(&ctx->event_wqh.lock); | |
555 | ||
556 | wake_up_poll(&ctx->fd_wqh, POLLIN); | |
557 | schedule(); | |
558 | ||
559 | spin_lock(&ctx->event_wqh.lock); | |
560 | } | |
561 | __set_current_state(TASK_RUNNING); | |
562 | spin_unlock(&ctx->event_wqh.lock); | |
563 | ||
564 | /* | |
565 | * ctx may go away after this if the userfault pseudo fd is | |
566 | * already released. | |
567 | */ | |
568 | ||
569 | userfaultfd_ctx_put(ctx); | |
570 | return ret; | |
571 | } | |
572 | ||
573 | static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, | |
574 | struct userfaultfd_wait_queue *ewq) | |
575 | { | |
576 | ewq->msg.event = 0; | |
577 | wake_up_locked(&ctx->event_wqh); | |
578 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); | |
579 | } | |
580 | ||
893e26e6 PE |
581 | int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) |
582 | { | |
583 | struct userfaultfd_ctx *ctx = NULL, *octx; | |
584 | struct userfaultfd_fork_ctx *fctx; | |
585 | ||
586 | octx = vma->vm_userfaultfd_ctx.ctx; | |
587 | if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { | |
588 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
589 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); | |
590 | return 0; | |
591 | } | |
592 | ||
593 | list_for_each_entry(fctx, fcs, list) | |
594 | if (fctx->orig == octx) { | |
595 | ctx = fctx->new; | |
596 | break; | |
597 | } | |
598 | ||
599 | if (!ctx) { | |
600 | fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); | |
601 | if (!fctx) | |
602 | return -ENOMEM; | |
603 | ||
604 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); | |
605 | if (!ctx) { | |
606 | kfree(fctx); | |
607 | return -ENOMEM; | |
608 | } | |
609 | ||
610 | atomic_set(&ctx->refcount, 1); | |
611 | ctx->flags = octx->flags; | |
612 | ctx->state = UFFD_STATE_RUNNING; | |
613 | ctx->features = octx->features; | |
614 | ctx->released = false; | |
615 | ctx->mm = vma->vm_mm; | |
d3aadc8e | 616 | atomic_inc(&ctx->mm->mm_count); |
893e26e6 PE |
617 | |
618 | userfaultfd_ctx_get(octx); | |
619 | fctx->orig = octx; | |
620 | fctx->new = ctx; | |
621 | list_add_tail(&fctx->list, fcs); | |
622 | } | |
623 | ||
624 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
625 | return 0; | |
626 | } | |
627 | ||
628 | static int dup_fctx(struct userfaultfd_fork_ctx *fctx) | |
629 | { | |
630 | struct userfaultfd_ctx *ctx = fctx->orig; | |
631 | struct userfaultfd_wait_queue ewq; | |
632 | ||
633 | msg_init(&ewq.msg); | |
634 | ||
635 | ewq.msg.event = UFFD_EVENT_FORK; | |
636 | ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; | |
637 | ||
638 | return userfaultfd_event_wait_completion(ctx, &ewq); | |
639 | } | |
640 | ||
641 | void dup_userfaultfd_complete(struct list_head *fcs) | |
642 | { | |
643 | int ret = 0; | |
644 | struct userfaultfd_fork_ctx *fctx, *n; | |
645 | ||
646 | list_for_each_entry_safe(fctx, n, fcs, list) { | |
647 | if (!ret) | |
648 | ret = dup_fctx(fctx); | |
649 | list_del(&fctx->list); | |
650 | kfree(fctx); | |
651 | } | |
652 | } | |
653 | ||
72f87654 PE |
654 | void mremap_userfaultfd_prep(struct vm_area_struct *vma, |
655 | struct vm_userfaultfd_ctx *vm_ctx) | |
656 | { | |
657 | struct userfaultfd_ctx *ctx; | |
658 | ||
659 | ctx = vma->vm_userfaultfd_ctx.ctx; | |
660 | if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { | |
661 | vm_ctx->ctx = ctx; | |
662 | userfaultfd_ctx_get(ctx); | |
663 | } | |
664 | } | |
665 | ||
90794bf1 | 666 | void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, |
72f87654 PE |
667 | unsigned long from, unsigned long to, |
668 | unsigned long len) | |
669 | { | |
90794bf1 | 670 | struct userfaultfd_ctx *ctx = vm_ctx->ctx; |
72f87654 PE |
671 | struct userfaultfd_wait_queue ewq; |
672 | ||
673 | if (!ctx) | |
674 | return; | |
675 | ||
676 | if (to & ~PAGE_MASK) { | |
677 | userfaultfd_ctx_put(ctx); | |
678 | return; | |
679 | } | |
680 | ||
681 | msg_init(&ewq.msg); | |
682 | ||
683 | ewq.msg.event = UFFD_EVENT_REMAP; | |
684 | ewq.msg.arg.remap.from = from; | |
685 | ewq.msg.arg.remap.to = to; | |
686 | ewq.msg.arg.remap.len = len; | |
687 | ||
688 | userfaultfd_event_wait_completion(ctx, &ewq); | |
689 | } | |
690 | ||
d811914d MR |
691 | void userfaultfd_remove(struct vm_area_struct *vma, |
692 | struct vm_area_struct **prev, | |
693 | unsigned long start, unsigned long end) | |
05ce7724 PE |
694 | { |
695 | struct mm_struct *mm = vma->vm_mm; | |
696 | struct userfaultfd_ctx *ctx; | |
697 | struct userfaultfd_wait_queue ewq; | |
698 | ||
699 | ctx = vma->vm_userfaultfd_ctx.ctx; | |
d811914d | 700 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) |
05ce7724 PE |
701 | return; |
702 | ||
703 | userfaultfd_ctx_get(ctx); | |
704 | up_read(&mm->mmap_sem); | |
705 | ||
706 | *prev = NULL; /* We wait for ACK w/o the mmap semaphore */ | |
707 | ||
708 | msg_init(&ewq.msg); | |
709 | ||
d811914d MR |
710 | ewq.msg.event = UFFD_EVENT_REMOVE; |
711 | ewq.msg.arg.remove.start = start; | |
712 | ewq.msg.arg.remove.end = end; | |
05ce7724 PE |
713 | |
714 | userfaultfd_event_wait_completion(ctx, &ewq); | |
715 | ||
716 | down_read(&mm->mmap_sem); | |
717 | } | |
718 | ||
897ab3e0 MR |
719 | static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, |
720 | unsigned long start, unsigned long end) | |
721 | { | |
722 | struct userfaultfd_unmap_ctx *unmap_ctx; | |
723 | ||
724 | list_for_each_entry(unmap_ctx, unmaps, list) | |
725 | if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && | |
726 | unmap_ctx->end == end) | |
727 | return true; | |
728 | ||
729 | return false; | |
730 | } | |
731 | ||
732 | int userfaultfd_unmap_prep(struct vm_area_struct *vma, | |
733 | unsigned long start, unsigned long end, | |
734 | struct list_head *unmaps) | |
735 | { | |
736 | for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { | |
737 | struct userfaultfd_unmap_ctx *unmap_ctx; | |
738 | struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; | |
739 | ||
740 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || | |
741 | has_unmap_ctx(ctx, unmaps, start, end)) | |
742 | continue; | |
743 | ||
744 | unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); | |
745 | if (!unmap_ctx) | |
746 | return -ENOMEM; | |
747 | ||
748 | userfaultfd_ctx_get(ctx); | |
749 | unmap_ctx->ctx = ctx; | |
750 | unmap_ctx->start = start; | |
751 | unmap_ctx->end = end; | |
752 | list_add_tail(&unmap_ctx->list, unmaps); | |
753 | } | |
754 | ||
755 | return 0; | |
756 | } | |
757 | ||
758 | void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) | |
759 | { | |
760 | struct userfaultfd_unmap_ctx *ctx, *n; | |
761 | struct userfaultfd_wait_queue ewq; | |
762 | ||
763 | list_for_each_entry_safe(ctx, n, uf, list) { | |
764 | msg_init(&ewq.msg); | |
765 | ||
766 | ewq.msg.event = UFFD_EVENT_UNMAP; | |
767 | ewq.msg.arg.remove.start = ctx->start; | |
768 | ewq.msg.arg.remove.end = ctx->end; | |
769 | ||
770 | userfaultfd_event_wait_completion(ctx->ctx, &ewq); | |
771 | ||
772 | list_del(&ctx->list); | |
773 | kfree(ctx); | |
774 | } | |
775 | } | |
776 | ||
ca49ca71 MR |
777 | void userfaultfd_exit(struct mm_struct *mm) |
778 | { | |
779 | struct vm_area_struct *vma = mm->mmap; | |
780 | ||
781 | /* | |
782 | * We can do the vma walk without locking because the caller | |
783 | * (exit_mm) knows it now has exclusive access | |
784 | */ | |
785 | while (vma) { | |
786 | struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; | |
787 | ||
788 | if (ctx && (ctx->features & UFFD_FEATURE_EVENT_EXIT)) { | |
789 | struct userfaultfd_wait_queue ewq; | |
790 | ||
791 | userfaultfd_ctx_get(ctx); | |
792 | ||
793 | msg_init(&ewq.msg); | |
794 | ewq.msg.event = UFFD_EVENT_EXIT; | |
795 | ||
796 | userfaultfd_event_wait_completion(ctx, &ewq); | |
797 | ||
798 | ctx->features &= ~UFFD_FEATURE_EVENT_EXIT; | |
799 | } | |
800 | ||
801 | vma = vma->vm_next; | |
802 | } | |
803 | } | |
804 | ||
86039bd3 AA |
805 | static int userfaultfd_release(struct inode *inode, struct file *file) |
806 | { | |
807 | struct userfaultfd_ctx *ctx = file->private_data; | |
808 | struct mm_struct *mm = ctx->mm; | |
809 | struct vm_area_struct *vma, *prev; | |
810 | /* len == 0 means wake all */ | |
811 | struct userfaultfd_wake_range range = { .len = 0, }; | |
812 | unsigned long new_flags; | |
813 | ||
814 | ACCESS_ONCE(ctx->released) = true; | |
815 | ||
d2005e3f ON |
816 | if (!mmget_not_zero(mm)) |
817 | goto wakeup; | |
818 | ||
86039bd3 AA |
819 | /* |
820 | * Flush page faults out of all CPUs. NOTE: all page faults | |
821 | * must be retried without returning VM_FAULT_SIGBUS if | |
822 | * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx | |
823 | * changes while handle_userfault released the mmap_sem. So | |
824 | * it's critical that released is set to true (above), before | |
825 | * taking the mmap_sem for writing. | |
826 | */ | |
827 | down_write(&mm->mmap_sem); | |
828 | prev = NULL; | |
829 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
830 | cond_resched(); | |
831 | BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ | |
832 | !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
833 | if (vma->vm_userfaultfd_ctx.ctx != ctx) { | |
834 | prev = vma; | |
835 | continue; | |
836 | } | |
837 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | |
838 | prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, | |
839 | new_flags, vma->anon_vma, | |
840 | vma->vm_file, vma->vm_pgoff, | |
841 | vma_policy(vma), | |
842 | NULL_VM_UFFD_CTX); | |
843 | if (prev) | |
844 | vma = prev; | |
845 | else | |
846 | prev = vma; | |
847 | vma->vm_flags = new_flags; | |
848 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
849 | } | |
850 | up_write(&mm->mmap_sem); | |
d2005e3f ON |
851 | mmput(mm); |
852 | wakeup: | |
86039bd3 | 853 | /* |
15b726ef | 854 | * After no new page faults can wait on this fault_*wqh, flush |
86039bd3 | 855 | * the last page faults that may have been already waiting on |
15b726ef | 856 | * the fault_*wqh. |
86039bd3 | 857 | */ |
15b726ef | 858 | spin_lock(&ctx->fault_pending_wqh.lock); |
ac5be6b4 AA |
859 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); |
860 | __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); | |
15b726ef | 861 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
862 | |
863 | wake_up_poll(&ctx->fd_wqh, POLLHUP); | |
864 | userfaultfd_ctx_put(ctx); | |
865 | return 0; | |
866 | } | |
867 | ||
15b726ef | 868 | /* fault_pending_wqh.lock must be hold by the caller */ |
6dcc27fd PE |
869 | static inline struct userfaultfd_wait_queue *find_userfault_in( |
870 | wait_queue_head_t *wqh) | |
86039bd3 AA |
871 | { |
872 | wait_queue_t *wq; | |
15b726ef | 873 | struct userfaultfd_wait_queue *uwq; |
86039bd3 | 874 | |
6dcc27fd | 875 | VM_BUG_ON(!spin_is_locked(&wqh->lock)); |
86039bd3 | 876 | |
15b726ef | 877 | uwq = NULL; |
6dcc27fd | 878 | if (!waitqueue_active(wqh)) |
15b726ef AA |
879 | goto out; |
880 | /* walk in reverse to provide FIFO behavior to read userfaults */ | |
6dcc27fd | 881 | wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list); |
15b726ef AA |
882 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); |
883 | out: | |
884 | return uwq; | |
86039bd3 | 885 | } |
6dcc27fd PE |
886 | |
887 | static inline struct userfaultfd_wait_queue *find_userfault( | |
888 | struct userfaultfd_ctx *ctx) | |
889 | { | |
890 | return find_userfault_in(&ctx->fault_pending_wqh); | |
891 | } | |
86039bd3 | 892 | |
9cd75c3c PE |
893 | static inline struct userfaultfd_wait_queue *find_userfault_evt( |
894 | struct userfaultfd_ctx *ctx) | |
895 | { | |
896 | return find_userfault_in(&ctx->event_wqh); | |
897 | } | |
898 | ||
86039bd3 AA |
899 | static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) |
900 | { | |
901 | struct userfaultfd_ctx *ctx = file->private_data; | |
902 | unsigned int ret; | |
903 | ||
904 | poll_wait(file, &ctx->fd_wqh, wait); | |
905 | ||
906 | switch (ctx->state) { | |
907 | case UFFD_STATE_WAIT_API: | |
908 | return POLLERR; | |
909 | case UFFD_STATE_RUNNING: | |
ba85c702 AA |
910 | /* |
911 | * poll() never guarantees that read won't block. | |
912 | * userfaults can be waken before they're read(). | |
913 | */ | |
914 | if (unlikely(!(file->f_flags & O_NONBLOCK))) | |
915 | return POLLERR; | |
15b726ef AA |
916 | /* |
917 | * lockless access to see if there are pending faults | |
918 | * __pollwait last action is the add_wait_queue but | |
919 | * the spin_unlock would allow the waitqueue_active to | |
920 | * pass above the actual list_add inside | |
921 | * add_wait_queue critical section. So use a full | |
922 | * memory barrier to serialize the list_add write of | |
923 | * add_wait_queue() with the waitqueue_active read | |
924 | * below. | |
925 | */ | |
926 | ret = 0; | |
927 | smp_mb(); | |
928 | if (waitqueue_active(&ctx->fault_pending_wqh)) | |
929 | ret = POLLIN; | |
9cd75c3c PE |
930 | else if (waitqueue_active(&ctx->event_wqh)) |
931 | ret = POLLIN; | |
932 | ||
86039bd3 AA |
933 | return ret; |
934 | default: | |
8474901a AA |
935 | WARN_ON_ONCE(1); |
936 | return POLLERR; | |
86039bd3 AA |
937 | } |
938 | } | |
939 | ||
893e26e6 PE |
940 | static const struct file_operations userfaultfd_fops; |
941 | ||
942 | static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, | |
943 | struct userfaultfd_ctx *new, | |
944 | struct uffd_msg *msg) | |
945 | { | |
946 | int fd; | |
947 | struct file *file; | |
948 | unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; | |
949 | ||
950 | fd = get_unused_fd_flags(flags); | |
951 | if (fd < 0) | |
952 | return fd; | |
953 | ||
954 | file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, | |
955 | O_RDWR | flags); | |
956 | if (IS_ERR(file)) { | |
957 | put_unused_fd(fd); | |
958 | return PTR_ERR(file); | |
959 | } | |
960 | ||
961 | fd_install(fd, file); | |
962 | msg->arg.reserved.reserved1 = 0; | |
963 | msg->arg.fork.ufd = fd; | |
964 | ||
965 | return 0; | |
966 | } | |
967 | ||
86039bd3 | 968 | static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, |
a9b85f94 | 969 | struct uffd_msg *msg) |
86039bd3 AA |
970 | { |
971 | ssize_t ret; | |
972 | DECLARE_WAITQUEUE(wait, current); | |
15b726ef | 973 | struct userfaultfd_wait_queue *uwq; |
893e26e6 PE |
974 | /* |
975 | * Handling fork event requires sleeping operations, so | |
976 | * we drop the event_wqh lock, then do these ops, then | |
977 | * lock it back and wake up the waiter. While the lock is | |
978 | * dropped the ewq may go away so we keep track of it | |
979 | * carefully. | |
980 | */ | |
981 | LIST_HEAD(fork_event); | |
982 | struct userfaultfd_ctx *fork_nctx = NULL; | |
86039bd3 | 983 | |
15b726ef | 984 | /* always take the fd_wqh lock before the fault_pending_wqh lock */ |
86039bd3 AA |
985 | spin_lock(&ctx->fd_wqh.lock); |
986 | __add_wait_queue(&ctx->fd_wqh, &wait); | |
987 | for (;;) { | |
988 | set_current_state(TASK_INTERRUPTIBLE); | |
15b726ef AA |
989 | spin_lock(&ctx->fault_pending_wqh.lock); |
990 | uwq = find_userfault(ctx); | |
991 | if (uwq) { | |
2c5b7e1b AA |
992 | /* |
993 | * Use a seqcount to repeat the lockless check | |
994 | * in wake_userfault() to avoid missing | |
995 | * wakeups because during the refile both | |
996 | * waitqueue could become empty if this is the | |
997 | * only userfault. | |
998 | */ | |
999 | write_seqcount_begin(&ctx->refile_seq); | |
1000 | ||
86039bd3 | 1001 | /* |
15b726ef AA |
1002 | * The fault_pending_wqh.lock prevents the uwq |
1003 | * to disappear from under us. | |
1004 | * | |
1005 | * Refile this userfault from | |
1006 | * fault_pending_wqh to fault_wqh, it's not | |
1007 | * pending anymore after we read it. | |
1008 | * | |
1009 | * Use list_del() by hand (as | |
1010 | * userfaultfd_wake_function also uses | |
1011 | * list_del_init() by hand) to be sure nobody | |
1012 | * changes __remove_wait_queue() to use | |
1013 | * list_del_init() in turn breaking the | |
1014 | * !list_empty_careful() check in | |
1015 | * handle_userfault(). The uwq->wq.task_list | |
1016 | * must never be empty at any time during the | |
1017 | * refile, or the waitqueue could disappear | |
1018 | * from under us. The "wait_queue_head_t" | |
1019 | * parameter of __remove_wait_queue() is unused | |
1020 | * anyway. | |
86039bd3 | 1021 | */ |
15b726ef AA |
1022 | list_del(&uwq->wq.task_list); |
1023 | __add_wait_queue(&ctx->fault_wqh, &uwq->wq); | |
1024 | ||
2c5b7e1b AA |
1025 | write_seqcount_end(&ctx->refile_seq); |
1026 | ||
a9b85f94 AA |
1027 | /* careful to always initialize msg if ret == 0 */ |
1028 | *msg = uwq->msg; | |
15b726ef | 1029 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1030 | ret = 0; |
1031 | break; | |
1032 | } | |
15b726ef | 1033 | spin_unlock(&ctx->fault_pending_wqh.lock); |
9cd75c3c PE |
1034 | |
1035 | spin_lock(&ctx->event_wqh.lock); | |
1036 | uwq = find_userfault_evt(ctx); | |
1037 | if (uwq) { | |
1038 | *msg = uwq->msg; | |
1039 | ||
893e26e6 PE |
1040 | if (uwq->msg.event == UFFD_EVENT_FORK) { |
1041 | fork_nctx = (struct userfaultfd_ctx *) | |
1042 | (unsigned long) | |
1043 | uwq->msg.arg.reserved.reserved1; | |
1044 | list_move(&uwq->wq.task_list, &fork_event); | |
1045 | spin_unlock(&ctx->event_wqh.lock); | |
1046 | ret = 0; | |
1047 | break; | |
1048 | } | |
1049 | ||
9cd75c3c PE |
1050 | userfaultfd_event_complete(ctx, uwq); |
1051 | spin_unlock(&ctx->event_wqh.lock); | |
1052 | ret = 0; | |
1053 | break; | |
1054 | } | |
1055 | spin_unlock(&ctx->event_wqh.lock); | |
1056 | ||
86039bd3 AA |
1057 | if (signal_pending(current)) { |
1058 | ret = -ERESTARTSYS; | |
1059 | break; | |
1060 | } | |
1061 | if (no_wait) { | |
1062 | ret = -EAGAIN; | |
1063 | break; | |
1064 | } | |
1065 | spin_unlock(&ctx->fd_wqh.lock); | |
1066 | schedule(); | |
1067 | spin_lock(&ctx->fd_wqh.lock); | |
1068 | } | |
1069 | __remove_wait_queue(&ctx->fd_wqh, &wait); | |
1070 | __set_current_state(TASK_RUNNING); | |
1071 | spin_unlock(&ctx->fd_wqh.lock); | |
1072 | ||
893e26e6 PE |
1073 | if (!ret && msg->event == UFFD_EVENT_FORK) { |
1074 | ret = resolve_userfault_fork(ctx, fork_nctx, msg); | |
1075 | ||
1076 | if (!ret) { | |
1077 | spin_lock(&ctx->event_wqh.lock); | |
1078 | if (!list_empty(&fork_event)) { | |
1079 | uwq = list_first_entry(&fork_event, | |
1080 | typeof(*uwq), | |
1081 | wq.task_list); | |
1082 | list_del(&uwq->wq.task_list); | |
1083 | __add_wait_queue(&ctx->event_wqh, &uwq->wq); | |
1084 | userfaultfd_event_complete(ctx, uwq); | |
1085 | } | |
1086 | spin_unlock(&ctx->event_wqh.lock); | |
1087 | } | |
1088 | } | |
1089 | ||
86039bd3 AA |
1090 | return ret; |
1091 | } | |
1092 | ||
1093 | static ssize_t userfaultfd_read(struct file *file, char __user *buf, | |
1094 | size_t count, loff_t *ppos) | |
1095 | { | |
1096 | struct userfaultfd_ctx *ctx = file->private_data; | |
1097 | ssize_t _ret, ret = 0; | |
a9b85f94 | 1098 | struct uffd_msg msg; |
86039bd3 AA |
1099 | int no_wait = file->f_flags & O_NONBLOCK; |
1100 | ||
1101 | if (ctx->state == UFFD_STATE_WAIT_API) | |
1102 | return -EINVAL; | |
86039bd3 AA |
1103 | |
1104 | for (;;) { | |
a9b85f94 | 1105 | if (count < sizeof(msg)) |
86039bd3 | 1106 | return ret ? ret : -EINVAL; |
a9b85f94 | 1107 | _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); |
86039bd3 AA |
1108 | if (_ret < 0) |
1109 | return ret ? ret : _ret; | |
a9b85f94 | 1110 | if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) |
86039bd3 | 1111 | return ret ? ret : -EFAULT; |
a9b85f94 AA |
1112 | ret += sizeof(msg); |
1113 | buf += sizeof(msg); | |
1114 | count -= sizeof(msg); | |
86039bd3 AA |
1115 | /* |
1116 | * Allow to read more than one fault at time but only | |
1117 | * block if waiting for the very first one. | |
1118 | */ | |
1119 | no_wait = O_NONBLOCK; | |
1120 | } | |
1121 | } | |
1122 | ||
1123 | static void __wake_userfault(struct userfaultfd_ctx *ctx, | |
1124 | struct userfaultfd_wake_range *range) | |
1125 | { | |
1126 | unsigned long start, end; | |
1127 | ||
1128 | start = range->start; | |
1129 | end = range->start + range->len; | |
1130 | ||
15b726ef | 1131 | spin_lock(&ctx->fault_pending_wqh.lock); |
86039bd3 | 1132 | /* wake all in the range and autoremove */ |
15b726ef | 1133 | if (waitqueue_active(&ctx->fault_pending_wqh)) |
ac5be6b4 | 1134 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, |
15b726ef AA |
1135 | range); |
1136 | if (waitqueue_active(&ctx->fault_wqh)) | |
ac5be6b4 | 1137 | __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); |
15b726ef | 1138 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1139 | } |
1140 | ||
1141 | static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, | |
1142 | struct userfaultfd_wake_range *range) | |
1143 | { | |
2c5b7e1b AA |
1144 | unsigned seq; |
1145 | bool need_wakeup; | |
1146 | ||
86039bd3 AA |
1147 | /* |
1148 | * To be sure waitqueue_active() is not reordered by the CPU | |
1149 | * before the pagetable update, use an explicit SMP memory | |
1150 | * barrier here. PT lock release or up_read(mmap_sem) still | |
1151 | * have release semantics that can allow the | |
1152 | * waitqueue_active() to be reordered before the pte update. | |
1153 | */ | |
1154 | smp_mb(); | |
1155 | ||
1156 | /* | |
1157 | * Use waitqueue_active because it's very frequent to | |
1158 | * change the address space atomically even if there are no | |
1159 | * userfaults yet. So we take the spinlock only when we're | |
1160 | * sure we've userfaults to wake. | |
1161 | */ | |
2c5b7e1b AA |
1162 | do { |
1163 | seq = read_seqcount_begin(&ctx->refile_seq); | |
1164 | need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || | |
1165 | waitqueue_active(&ctx->fault_wqh); | |
1166 | cond_resched(); | |
1167 | } while (read_seqcount_retry(&ctx->refile_seq, seq)); | |
1168 | if (need_wakeup) | |
86039bd3 AA |
1169 | __wake_userfault(ctx, range); |
1170 | } | |
1171 | ||
1172 | static __always_inline int validate_range(struct mm_struct *mm, | |
1173 | __u64 start, __u64 len) | |
1174 | { | |
1175 | __u64 task_size = mm->task_size; | |
1176 | ||
1177 | if (start & ~PAGE_MASK) | |
1178 | return -EINVAL; | |
1179 | if (len & ~PAGE_MASK) | |
1180 | return -EINVAL; | |
1181 | if (!len) | |
1182 | return -EINVAL; | |
1183 | if (start < mmap_min_addr) | |
1184 | return -EINVAL; | |
1185 | if (start >= task_size) | |
1186 | return -EINVAL; | |
1187 | if (len > task_size - start) | |
1188 | return -EINVAL; | |
1189 | return 0; | |
1190 | } | |
1191 | ||
ba6907db MR |
1192 | static inline bool vma_can_userfault(struct vm_area_struct *vma) |
1193 | { | |
cac67329 MR |
1194 | return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || |
1195 | vma_is_shmem(vma); | |
ba6907db MR |
1196 | } |
1197 | ||
86039bd3 AA |
1198 | static int userfaultfd_register(struct userfaultfd_ctx *ctx, |
1199 | unsigned long arg) | |
1200 | { | |
1201 | struct mm_struct *mm = ctx->mm; | |
1202 | struct vm_area_struct *vma, *prev, *cur; | |
1203 | int ret; | |
1204 | struct uffdio_register uffdio_register; | |
1205 | struct uffdio_register __user *user_uffdio_register; | |
1206 | unsigned long vm_flags, new_flags; | |
1207 | bool found; | |
cac67329 | 1208 | bool non_anon_pages; |
86039bd3 AA |
1209 | unsigned long start, end, vma_end; |
1210 | ||
1211 | user_uffdio_register = (struct uffdio_register __user *) arg; | |
1212 | ||
1213 | ret = -EFAULT; | |
1214 | if (copy_from_user(&uffdio_register, user_uffdio_register, | |
1215 | sizeof(uffdio_register)-sizeof(__u64))) | |
1216 | goto out; | |
1217 | ||
1218 | ret = -EINVAL; | |
1219 | if (!uffdio_register.mode) | |
1220 | goto out; | |
1221 | if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| | |
1222 | UFFDIO_REGISTER_MODE_WP)) | |
1223 | goto out; | |
1224 | vm_flags = 0; | |
1225 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) | |
1226 | vm_flags |= VM_UFFD_MISSING; | |
1227 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { | |
1228 | vm_flags |= VM_UFFD_WP; | |
1229 | /* | |
1230 | * FIXME: remove the below error constraint by | |
1231 | * implementing the wprotect tracking mode. | |
1232 | */ | |
1233 | ret = -EINVAL; | |
1234 | goto out; | |
1235 | } | |
1236 | ||
1237 | ret = validate_range(mm, uffdio_register.range.start, | |
1238 | uffdio_register.range.len); | |
1239 | if (ret) | |
1240 | goto out; | |
1241 | ||
1242 | start = uffdio_register.range.start; | |
1243 | end = start + uffdio_register.range.len; | |
1244 | ||
d2005e3f ON |
1245 | ret = -ENOMEM; |
1246 | if (!mmget_not_zero(mm)) | |
1247 | goto out; | |
1248 | ||
86039bd3 AA |
1249 | down_write(&mm->mmap_sem); |
1250 | vma = find_vma_prev(mm, start, &prev); | |
86039bd3 AA |
1251 | if (!vma) |
1252 | goto out_unlock; | |
1253 | ||
1254 | /* check that there's at least one vma in the range */ | |
1255 | ret = -EINVAL; | |
1256 | if (vma->vm_start >= end) | |
1257 | goto out_unlock; | |
1258 | ||
cab350af MK |
1259 | /* |
1260 | * If the first vma contains huge pages, make sure start address | |
1261 | * is aligned to huge page size. | |
1262 | */ | |
1263 | if (is_vm_hugetlb_page(vma)) { | |
1264 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | |
1265 | ||
1266 | if (start & (vma_hpagesize - 1)) | |
1267 | goto out_unlock; | |
1268 | } | |
1269 | ||
86039bd3 AA |
1270 | /* |
1271 | * Search for not compatible vmas. | |
86039bd3 AA |
1272 | */ |
1273 | found = false; | |
cac67329 | 1274 | non_anon_pages = false; |
86039bd3 AA |
1275 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { |
1276 | cond_resched(); | |
1277 | ||
1278 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
1279 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
1280 | ||
1281 | /* check not compatible vmas */ | |
1282 | ret = -EINVAL; | |
ba6907db | 1283 | if (!vma_can_userfault(cur)) |
86039bd3 | 1284 | goto out_unlock; |
cab350af MK |
1285 | /* |
1286 | * If this vma contains ending address, and huge pages | |
1287 | * check alignment. | |
1288 | */ | |
1289 | if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && | |
1290 | end > cur->vm_start) { | |
1291 | unsigned long vma_hpagesize = vma_kernel_pagesize(cur); | |
1292 | ||
1293 | ret = -EINVAL; | |
1294 | ||
1295 | if (end & (vma_hpagesize - 1)) | |
1296 | goto out_unlock; | |
1297 | } | |
86039bd3 AA |
1298 | |
1299 | /* | |
1300 | * Check that this vma isn't already owned by a | |
1301 | * different userfaultfd. We can't allow more than one | |
1302 | * userfaultfd to own a single vma simultaneously or we | |
1303 | * wouldn't know which one to deliver the userfaults to. | |
1304 | */ | |
1305 | ret = -EBUSY; | |
1306 | if (cur->vm_userfaultfd_ctx.ctx && | |
1307 | cur->vm_userfaultfd_ctx.ctx != ctx) | |
1308 | goto out_unlock; | |
1309 | ||
cab350af MK |
1310 | /* |
1311 | * Note vmas containing huge pages | |
1312 | */ | |
cac67329 MR |
1313 | if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur)) |
1314 | non_anon_pages = true; | |
cab350af | 1315 | |
86039bd3 AA |
1316 | found = true; |
1317 | } | |
1318 | BUG_ON(!found); | |
1319 | ||
1320 | if (vma->vm_start < start) | |
1321 | prev = vma; | |
1322 | ||
1323 | ret = 0; | |
1324 | do { | |
1325 | cond_resched(); | |
1326 | ||
ba6907db | 1327 | BUG_ON(!vma_can_userfault(vma)); |
86039bd3 AA |
1328 | BUG_ON(vma->vm_userfaultfd_ctx.ctx && |
1329 | vma->vm_userfaultfd_ctx.ctx != ctx); | |
1330 | ||
1331 | /* | |
1332 | * Nothing to do: this vma is already registered into this | |
1333 | * userfaultfd and with the right tracking mode too. | |
1334 | */ | |
1335 | if (vma->vm_userfaultfd_ctx.ctx == ctx && | |
1336 | (vma->vm_flags & vm_flags) == vm_flags) | |
1337 | goto skip; | |
1338 | ||
1339 | if (vma->vm_start > start) | |
1340 | start = vma->vm_start; | |
1341 | vma_end = min(end, vma->vm_end); | |
1342 | ||
1343 | new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; | |
1344 | prev = vma_merge(mm, prev, start, vma_end, new_flags, | |
1345 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
1346 | vma_policy(vma), | |
1347 | ((struct vm_userfaultfd_ctx){ ctx })); | |
1348 | if (prev) { | |
1349 | vma = prev; | |
1350 | goto next; | |
1351 | } | |
1352 | if (vma->vm_start < start) { | |
1353 | ret = split_vma(mm, vma, start, 1); | |
1354 | if (ret) | |
1355 | break; | |
1356 | } | |
1357 | if (vma->vm_end > end) { | |
1358 | ret = split_vma(mm, vma, end, 0); | |
1359 | if (ret) | |
1360 | break; | |
1361 | } | |
1362 | next: | |
1363 | /* | |
1364 | * In the vma_merge() successful mprotect-like case 8: | |
1365 | * the next vma was merged into the current one and | |
1366 | * the current one has not been updated yet. | |
1367 | */ | |
1368 | vma->vm_flags = new_flags; | |
1369 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
1370 | ||
1371 | skip: | |
1372 | prev = vma; | |
1373 | start = vma->vm_end; | |
1374 | vma = vma->vm_next; | |
1375 | } while (vma && vma->vm_start < end); | |
1376 | out_unlock: | |
1377 | up_write(&mm->mmap_sem); | |
d2005e3f | 1378 | mmput(mm); |
86039bd3 AA |
1379 | if (!ret) { |
1380 | /* | |
1381 | * Now that we scanned all vmas we can already tell | |
1382 | * userland which ioctls methods are guaranteed to | |
1383 | * succeed on this range. | |
1384 | */ | |
cac67329 | 1385 | if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC : |
cab350af | 1386 | UFFD_API_RANGE_IOCTLS, |
86039bd3 AA |
1387 | &user_uffdio_register->ioctls)) |
1388 | ret = -EFAULT; | |
1389 | } | |
1390 | out: | |
1391 | return ret; | |
1392 | } | |
1393 | ||
1394 | static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, | |
1395 | unsigned long arg) | |
1396 | { | |
1397 | struct mm_struct *mm = ctx->mm; | |
1398 | struct vm_area_struct *vma, *prev, *cur; | |
1399 | int ret; | |
1400 | struct uffdio_range uffdio_unregister; | |
1401 | unsigned long new_flags; | |
1402 | bool found; | |
1403 | unsigned long start, end, vma_end; | |
1404 | const void __user *buf = (void __user *)arg; | |
1405 | ||
1406 | ret = -EFAULT; | |
1407 | if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) | |
1408 | goto out; | |
1409 | ||
1410 | ret = validate_range(mm, uffdio_unregister.start, | |
1411 | uffdio_unregister.len); | |
1412 | if (ret) | |
1413 | goto out; | |
1414 | ||
1415 | start = uffdio_unregister.start; | |
1416 | end = start + uffdio_unregister.len; | |
1417 | ||
d2005e3f ON |
1418 | ret = -ENOMEM; |
1419 | if (!mmget_not_zero(mm)) | |
1420 | goto out; | |
1421 | ||
86039bd3 AA |
1422 | down_write(&mm->mmap_sem); |
1423 | vma = find_vma_prev(mm, start, &prev); | |
86039bd3 AA |
1424 | if (!vma) |
1425 | goto out_unlock; | |
1426 | ||
1427 | /* check that there's at least one vma in the range */ | |
1428 | ret = -EINVAL; | |
1429 | if (vma->vm_start >= end) | |
1430 | goto out_unlock; | |
1431 | ||
cab350af MK |
1432 | /* |
1433 | * If the first vma contains huge pages, make sure start address | |
1434 | * is aligned to huge page size. | |
1435 | */ | |
1436 | if (is_vm_hugetlb_page(vma)) { | |
1437 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | |
1438 | ||
1439 | if (start & (vma_hpagesize - 1)) | |
1440 | goto out_unlock; | |
1441 | } | |
1442 | ||
86039bd3 AA |
1443 | /* |
1444 | * Search for not compatible vmas. | |
86039bd3 AA |
1445 | */ |
1446 | found = false; | |
1447 | ret = -EINVAL; | |
1448 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | |
1449 | cond_resched(); | |
1450 | ||
1451 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
1452 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
1453 | ||
1454 | /* | |
1455 | * Check not compatible vmas, not strictly required | |
1456 | * here as not compatible vmas cannot have an | |
1457 | * userfaultfd_ctx registered on them, but this | |
1458 | * provides for more strict behavior to notice | |
1459 | * unregistration errors. | |
1460 | */ | |
ba6907db | 1461 | if (!vma_can_userfault(cur)) |
86039bd3 AA |
1462 | goto out_unlock; |
1463 | ||
1464 | found = true; | |
1465 | } | |
1466 | BUG_ON(!found); | |
1467 | ||
1468 | if (vma->vm_start < start) | |
1469 | prev = vma; | |
1470 | ||
1471 | ret = 0; | |
1472 | do { | |
1473 | cond_resched(); | |
1474 | ||
ba6907db | 1475 | BUG_ON(!vma_can_userfault(vma)); |
86039bd3 AA |
1476 | |
1477 | /* | |
1478 | * Nothing to do: this vma is already registered into this | |
1479 | * userfaultfd and with the right tracking mode too. | |
1480 | */ | |
1481 | if (!vma->vm_userfaultfd_ctx.ctx) | |
1482 | goto skip; | |
1483 | ||
1484 | if (vma->vm_start > start) | |
1485 | start = vma->vm_start; | |
1486 | vma_end = min(end, vma->vm_end); | |
1487 | ||
09fa5296 AA |
1488 | if (userfaultfd_missing(vma)) { |
1489 | /* | |
1490 | * Wake any concurrent pending userfault while | |
1491 | * we unregister, so they will not hang | |
1492 | * permanently and it avoids userland to call | |
1493 | * UFFDIO_WAKE explicitly. | |
1494 | */ | |
1495 | struct userfaultfd_wake_range range; | |
1496 | range.start = start; | |
1497 | range.len = vma_end - start; | |
1498 | wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); | |
1499 | } | |
1500 | ||
86039bd3 AA |
1501 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); |
1502 | prev = vma_merge(mm, prev, start, vma_end, new_flags, | |
1503 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
1504 | vma_policy(vma), | |
1505 | NULL_VM_UFFD_CTX); | |
1506 | if (prev) { | |
1507 | vma = prev; | |
1508 | goto next; | |
1509 | } | |
1510 | if (vma->vm_start < start) { | |
1511 | ret = split_vma(mm, vma, start, 1); | |
1512 | if (ret) | |
1513 | break; | |
1514 | } | |
1515 | if (vma->vm_end > end) { | |
1516 | ret = split_vma(mm, vma, end, 0); | |
1517 | if (ret) | |
1518 | break; | |
1519 | } | |
1520 | next: | |
1521 | /* | |
1522 | * In the vma_merge() successful mprotect-like case 8: | |
1523 | * the next vma was merged into the current one and | |
1524 | * the current one has not been updated yet. | |
1525 | */ | |
1526 | vma->vm_flags = new_flags; | |
1527 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
1528 | ||
1529 | skip: | |
1530 | prev = vma; | |
1531 | start = vma->vm_end; | |
1532 | vma = vma->vm_next; | |
1533 | } while (vma && vma->vm_start < end); | |
1534 | out_unlock: | |
1535 | up_write(&mm->mmap_sem); | |
d2005e3f | 1536 | mmput(mm); |
86039bd3 AA |
1537 | out: |
1538 | return ret; | |
1539 | } | |
1540 | ||
1541 | /* | |
ba85c702 AA |
1542 | * userfaultfd_wake may be used in combination with the |
1543 | * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. | |
86039bd3 AA |
1544 | */ |
1545 | static int userfaultfd_wake(struct userfaultfd_ctx *ctx, | |
1546 | unsigned long arg) | |
1547 | { | |
1548 | int ret; | |
1549 | struct uffdio_range uffdio_wake; | |
1550 | struct userfaultfd_wake_range range; | |
1551 | const void __user *buf = (void __user *)arg; | |
1552 | ||
1553 | ret = -EFAULT; | |
1554 | if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) | |
1555 | goto out; | |
1556 | ||
1557 | ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); | |
1558 | if (ret) | |
1559 | goto out; | |
1560 | ||
1561 | range.start = uffdio_wake.start; | |
1562 | range.len = uffdio_wake.len; | |
1563 | ||
1564 | /* | |
1565 | * len == 0 means wake all and we don't want to wake all here, | |
1566 | * so check it again to be sure. | |
1567 | */ | |
1568 | VM_BUG_ON(!range.len); | |
1569 | ||
1570 | wake_userfault(ctx, &range); | |
1571 | ret = 0; | |
1572 | ||
1573 | out: | |
1574 | return ret; | |
1575 | } | |
1576 | ||
ad465cae AA |
1577 | static int userfaultfd_copy(struct userfaultfd_ctx *ctx, |
1578 | unsigned long arg) | |
1579 | { | |
1580 | __s64 ret; | |
1581 | struct uffdio_copy uffdio_copy; | |
1582 | struct uffdio_copy __user *user_uffdio_copy; | |
1583 | struct userfaultfd_wake_range range; | |
1584 | ||
1585 | user_uffdio_copy = (struct uffdio_copy __user *) arg; | |
1586 | ||
1587 | ret = -EFAULT; | |
1588 | if (copy_from_user(&uffdio_copy, user_uffdio_copy, | |
1589 | /* don't copy "copy" last field */ | |
1590 | sizeof(uffdio_copy)-sizeof(__s64))) | |
1591 | goto out; | |
1592 | ||
1593 | ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); | |
1594 | if (ret) | |
1595 | goto out; | |
1596 | /* | |
1597 | * double check for wraparound just in case. copy_from_user() | |
1598 | * will later check uffdio_copy.src + uffdio_copy.len to fit | |
1599 | * in the userland range. | |
1600 | */ | |
1601 | ret = -EINVAL; | |
1602 | if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) | |
1603 | goto out; | |
1604 | if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) | |
1605 | goto out; | |
d2005e3f ON |
1606 | if (mmget_not_zero(ctx->mm)) { |
1607 | ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, | |
1608 | uffdio_copy.len); | |
1609 | mmput(ctx->mm); | |
96333187 MR |
1610 | } else { |
1611 | return -ENOSPC; | |
d2005e3f | 1612 | } |
ad465cae AA |
1613 | if (unlikely(put_user(ret, &user_uffdio_copy->copy))) |
1614 | return -EFAULT; | |
1615 | if (ret < 0) | |
1616 | goto out; | |
1617 | BUG_ON(!ret); | |
1618 | /* len == 0 would wake all */ | |
1619 | range.len = ret; | |
1620 | if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { | |
1621 | range.start = uffdio_copy.dst; | |
1622 | wake_userfault(ctx, &range); | |
1623 | } | |
1624 | ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; | |
1625 | out: | |
1626 | return ret; | |
1627 | } | |
1628 | ||
1629 | static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, | |
1630 | unsigned long arg) | |
1631 | { | |
1632 | __s64 ret; | |
1633 | struct uffdio_zeropage uffdio_zeropage; | |
1634 | struct uffdio_zeropage __user *user_uffdio_zeropage; | |
1635 | struct userfaultfd_wake_range range; | |
1636 | ||
1637 | user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; | |
1638 | ||
1639 | ret = -EFAULT; | |
1640 | if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, | |
1641 | /* don't copy "zeropage" last field */ | |
1642 | sizeof(uffdio_zeropage)-sizeof(__s64))) | |
1643 | goto out; | |
1644 | ||
1645 | ret = validate_range(ctx->mm, uffdio_zeropage.range.start, | |
1646 | uffdio_zeropage.range.len); | |
1647 | if (ret) | |
1648 | goto out; | |
1649 | ret = -EINVAL; | |
1650 | if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) | |
1651 | goto out; | |
1652 | ||
d2005e3f ON |
1653 | if (mmget_not_zero(ctx->mm)) { |
1654 | ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, | |
1655 | uffdio_zeropage.range.len); | |
1656 | mmput(ctx->mm); | |
1657 | } | |
ad465cae AA |
1658 | if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) |
1659 | return -EFAULT; | |
1660 | if (ret < 0) | |
1661 | goto out; | |
1662 | /* len == 0 would wake all */ | |
1663 | BUG_ON(!ret); | |
1664 | range.len = ret; | |
1665 | if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { | |
1666 | range.start = uffdio_zeropage.range.start; | |
1667 | wake_userfault(ctx, &range); | |
1668 | } | |
1669 | ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; | |
1670 | out: | |
1671 | return ret; | |
1672 | } | |
1673 | ||
9cd75c3c PE |
1674 | static inline unsigned int uffd_ctx_features(__u64 user_features) |
1675 | { | |
1676 | /* | |
1677 | * For the current set of features the bits just coincide | |
1678 | */ | |
1679 | return (unsigned int)user_features; | |
1680 | } | |
1681 | ||
86039bd3 AA |
1682 | /* |
1683 | * userland asks for a certain API version and we return which bits | |
1684 | * and ioctl commands are implemented in this kernel for such API | |
1685 | * version or -EINVAL if unknown. | |
1686 | */ | |
1687 | static int userfaultfd_api(struct userfaultfd_ctx *ctx, | |
1688 | unsigned long arg) | |
1689 | { | |
1690 | struct uffdio_api uffdio_api; | |
1691 | void __user *buf = (void __user *)arg; | |
1692 | int ret; | |
65603144 | 1693 | __u64 features; |
86039bd3 AA |
1694 | |
1695 | ret = -EINVAL; | |
1696 | if (ctx->state != UFFD_STATE_WAIT_API) | |
1697 | goto out; | |
1698 | ret = -EFAULT; | |
a9b85f94 | 1699 | if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) |
86039bd3 | 1700 | goto out; |
65603144 AA |
1701 | features = uffdio_api.features; |
1702 | if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { | |
86039bd3 AA |
1703 | memset(&uffdio_api, 0, sizeof(uffdio_api)); |
1704 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1705 | goto out; | |
1706 | ret = -EINVAL; | |
1707 | goto out; | |
1708 | } | |
65603144 AA |
1709 | /* report all available features and ioctls to userland */ |
1710 | uffdio_api.features = UFFD_API_FEATURES; | |
86039bd3 AA |
1711 | uffdio_api.ioctls = UFFD_API_IOCTLS; |
1712 | ret = -EFAULT; | |
1713 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1714 | goto out; | |
1715 | ctx->state = UFFD_STATE_RUNNING; | |
65603144 AA |
1716 | /* only enable the requested features for this uffd context */ |
1717 | ctx->features = uffd_ctx_features(features); | |
86039bd3 AA |
1718 | ret = 0; |
1719 | out: | |
1720 | return ret; | |
1721 | } | |
1722 | ||
1723 | static long userfaultfd_ioctl(struct file *file, unsigned cmd, | |
1724 | unsigned long arg) | |
1725 | { | |
1726 | int ret = -EINVAL; | |
1727 | struct userfaultfd_ctx *ctx = file->private_data; | |
1728 | ||
e6485a47 AA |
1729 | if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) |
1730 | return -EINVAL; | |
1731 | ||
86039bd3 AA |
1732 | switch(cmd) { |
1733 | case UFFDIO_API: | |
1734 | ret = userfaultfd_api(ctx, arg); | |
1735 | break; | |
1736 | case UFFDIO_REGISTER: | |
1737 | ret = userfaultfd_register(ctx, arg); | |
1738 | break; | |
1739 | case UFFDIO_UNREGISTER: | |
1740 | ret = userfaultfd_unregister(ctx, arg); | |
1741 | break; | |
1742 | case UFFDIO_WAKE: | |
1743 | ret = userfaultfd_wake(ctx, arg); | |
1744 | break; | |
ad465cae AA |
1745 | case UFFDIO_COPY: |
1746 | ret = userfaultfd_copy(ctx, arg); | |
1747 | break; | |
1748 | case UFFDIO_ZEROPAGE: | |
1749 | ret = userfaultfd_zeropage(ctx, arg); | |
1750 | break; | |
86039bd3 AA |
1751 | } |
1752 | return ret; | |
1753 | } | |
1754 | ||
1755 | #ifdef CONFIG_PROC_FS | |
1756 | static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) | |
1757 | { | |
1758 | struct userfaultfd_ctx *ctx = f->private_data; | |
1759 | wait_queue_t *wq; | |
1760 | struct userfaultfd_wait_queue *uwq; | |
1761 | unsigned long pending = 0, total = 0; | |
1762 | ||
15b726ef AA |
1763 | spin_lock(&ctx->fault_pending_wqh.lock); |
1764 | list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { | |
1765 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
1766 | pending++; | |
1767 | total++; | |
1768 | } | |
86039bd3 AA |
1769 | list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { |
1770 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
86039bd3 AA |
1771 | total++; |
1772 | } | |
15b726ef | 1773 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1774 | |
1775 | /* | |
1776 | * If more protocols will be added, there will be all shown | |
1777 | * separated by a space. Like this: | |
1778 | * protocols: aa:... bb:... | |
1779 | */ | |
1780 | seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", | |
3f602d27 | 1781 | pending, total, UFFD_API, UFFD_API_FEATURES, |
86039bd3 AA |
1782 | UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); |
1783 | } | |
1784 | #endif | |
1785 | ||
1786 | static const struct file_operations userfaultfd_fops = { | |
1787 | #ifdef CONFIG_PROC_FS | |
1788 | .show_fdinfo = userfaultfd_show_fdinfo, | |
1789 | #endif | |
1790 | .release = userfaultfd_release, | |
1791 | .poll = userfaultfd_poll, | |
1792 | .read = userfaultfd_read, | |
1793 | .unlocked_ioctl = userfaultfd_ioctl, | |
1794 | .compat_ioctl = userfaultfd_ioctl, | |
1795 | .llseek = noop_llseek, | |
1796 | }; | |
1797 | ||
3004ec9c AA |
1798 | static void init_once_userfaultfd_ctx(void *mem) |
1799 | { | |
1800 | struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; | |
1801 | ||
1802 | init_waitqueue_head(&ctx->fault_pending_wqh); | |
1803 | init_waitqueue_head(&ctx->fault_wqh); | |
9cd75c3c | 1804 | init_waitqueue_head(&ctx->event_wqh); |
3004ec9c | 1805 | init_waitqueue_head(&ctx->fd_wqh); |
2c5b7e1b | 1806 | seqcount_init(&ctx->refile_seq); |
3004ec9c AA |
1807 | } |
1808 | ||
86039bd3 | 1809 | /** |
9332ef9d | 1810 | * userfaultfd_file_create - Creates a userfaultfd file pointer. |
86039bd3 AA |
1811 | * @flags: Flags for the userfaultfd file. |
1812 | * | |
9332ef9d | 1813 | * This function creates a userfaultfd file pointer, w/out installing |
86039bd3 AA |
1814 | * it into the fd table. This is useful when the userfaultfd file is |
1815 | * used during the initialization of data structures that require | |
1816 | * extra setup after the userfaultfd creation. So the userfaultfd | |
1817 | * creation is split into the file pointer creation phase, and the | |
1818 | * file descriptor installation phase. In this way races with | |
1819 | * userspace closing the newly installed file descriptor can be | |
9332ef9d | 1820 | * avoided. Returns a userfaultfd file pointer, or a proper error |
86039bd3 AA |
1821 | * pointer. |
1822 | */ | |
1823 | static struct file *userfaultfd_file_create(int flags) | |
1824 | { | |
1825 | struct file *file; | |
1826 | struct userfaultfd_ctx *ctx; | |
1827 | ||
1828 | BUG_ON(!current->mm); | |
1829 | ||
1830 | /* Check the UFFD_* constants for consistency. */ | |
1831 | BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); | |
1832 | BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); | |
1833 | ||
1834 | file = ERR_PTR(-EINVAL); | |
1835 | if (flags & ~UFFD_SHARED_FCNTL_FLAGS) | |
1836 | goto out; | |
1837 | ||
1838 | file = ERR_PTR(-ENOMEM); | |
3004ec9c | 1839 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); |
86039bd3 AA |
1840 | if (!ctx) |
1841 | goto out; | |
1842 | ||
1843 | atomic_set(&ctx->refcount, 1); | |
86039bd3 | 1844 | ctx->flags = flags; |
9cd75c3c | 1845 | ctx->features = 0; |
86039bd3 AA |
1846 | ctx->state = UFFD_STATE_WAIT_API; |
1847 | ctx->released = false; | |
1848 | ctx->mm = current->mm; | |
1849 | /* prevent the mm struct to be freed */ | |
f1f10076 | 1850 | mmgrab(ctx->mm); |
86039bd3 AA |
1851 | |
1852 | file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, | |
1853 | O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); | |
c03e946f | 1854 | if (IS_ERR(file)) { |
d2005e3f | 1855 | mmdrop(ctx->mm); |
3004ec9c | 1856 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
c03e946f | 1857 | } |
86039bd3 AA |
1858 | out: |
1859 | return file; | |
1860 | } | |
1861 | ||
1862 | SYSCALL_DEFINE1(userfaultfd, int, flags) | |
1863 | { | |
1864 | int fd, error; | |
1865 | struct file *file; | |
1866 | ||
1867 | error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); | |
1868 | if (error < 0) | |
1869 | return error; | |
1870 | fd = error; | |
1871 | ||
1872 | file = userfaultfd_file_create(flags); | |
1873 | if (IS_ERR(file)) { | |
1874 | error = PTR_ERR(file); | |
1875 | goto err_put_unused_fd; | |
1876 | } | |
1877 | fd_install(fd, file); | |
1878 | ||
1879 | return fd; | |
1880 | ||
1881 | err_put_unused_fd: | |
1882 | put_unused_fd(fd); | |
1883 | ||
1884 | return error; | |
1885 | } | |
3004ec9c AA |
1886 | |
1887 | static int __init userfaultfd_init(void) | |
1888 | { | |
1889 | userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", | |
1890 | sizeof(struct userfaultfd_ctx), | |
1891 | 0, | |
1892 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | |
1893 | init_once_userfaultfd_ctx); | |
1894 | return 0; | |
1895 | } | |
1896 | __initcall(userfaultfd_init); |