]>
Commit | Line | Data |
---|---|---|
c1d7c514 | 1 | // SPDX-License-Identifier: GPL-2.0 |
53b381b3 DW |
2 | /* |
3 | * Copyright (C) 2012 Fusion-io All rights reserved. | |
4 | * Copyright (C) 2012 Intel Corp. All rights reserved. | |
53b381b3 | 5 | */ |
c1d7c514 | 6 | |
53b381b3 | 7 | #include <linux/sched.h> |
53b381b3 DW |
8 | #include <linux/bio.h> |
9 | #include <linux/slab.h> | |
53b381b3 | 10 | #include <linux/blkdev.h> |
53b381b3 DW |
11 | #include <linux/raid/pq.h> |
12 | #include <linux/hash.h> | |
13 | #include <linux/list_sort.h> | |
14 | #include <linux/raid/xor.h> | |
818e010b | 15 | #include <linux/mm.h> |
53b381b3 | 16 | #include "ctree.h" |
53b381b3 | 17 | #include "disk-io.h" |
53b381b3 DW |
18 | #include "volumes.h" |
19 | #include "raid56.h" | |
20 | #include "async-thread.h" | |
53b381b3 DW |
21 | |
22 | /* set when additional merges to this rbio are not allowed */ | |
23 | #define RBIO_RMW_LOCKED_BIT 1 | |
24 | ||
4ae10b3a CM |
25 | /* |
26 | * set when this rbio is sitting in the hash, but it is just a cache | |
27 | * of past RMW | |
28 | */ | |
29 | #define RBIO_CACHE_BIT 2 | |
30 | ||
31 | /* | |
32 | * set when it is safe to trust the stripe_pages for caching | |
33 | */ | |
34 | #define RBIO_CACHE_READY_BIT 3 | |
35 | ||
4ae10b3a CM |
36 | #define RBIO_CACHE_SIZE 1024 |
37 | ||
1b94b556 | 38 | enum btrfs_rbio_ops { |
b4ee1782 OS |
39 | BTRFS_RBIO_WRITE, |
40 | BTRFS_RBIO_READ_REBUILD, | |
41 | BTRFS_RBIO_PARITY_SCRUB, | |
42 | BTRFS_RBIO_REBUILD_MISSING, | |
1b94b556 MX |
43 | }; |
44 | ||
53b381b3 DW |
45 | struct btrfs_raid_bio { |
46 | struct btrfs_fs_info *fs_info; | |
47 | struct btrfs_bio *bbio; | |
48 | ||
53b381b3 DW |
49 | /* while we're doing rmw on a stripe |
50 | * we put it into a hash table so we can | |
51 | * lock the stripe and merge more rbios | |
52 | * into it. | |
53 | */ | |
54 | struct list_head hash_list; | |
55 | ||
4ae10b3a CM |
56 | /* |
57 | * LRU list for the stripe cache | |
58 | */ | |
59 | struct list_head stripe_cache; | |
60 | ||
53b381b3 DW |
61 | /* |
62 | * for scheduling work in the helper threads | |
63 | */ | |
64 | struct btrfs_work work; | |
65 | ||
66 | /* | |
67 | * bio list and bio_list_lock are used | |
68 | * to add more bios into the stripe | |
69 | * in hopes of avoiding the full rmw | |
70 | */ | |
71 | struct bio_list bio_list; | |
72 | spinlock_t bio_list_lock; | |
73 | ||
6ac0f488 CM |
74 | /* also protected by the bio_list_lock, the |
75 | * plug list is used by the plugging code | |
76 | * to collect partial bios while plugged. The | |
77 | * stripe locking code also uses it to hand off | |
53b381b3 DW |
78 | * the stripe lock to the next pending IO |
79 | */ | |
80 | struct list_head plug_list; | |
81 | ||
82 | /* | |
83 | * flags that tell us if it is safe to | |
84 | * merge with this bio | |
85 | */ | |
86 | unsigned long flags; | |
87 | ||
88 | /* size of each individual stripe on disk */ | |
89 | int stripe_len; | |
90 | ||
91 | /* number of data stripes (no p/q) */ | |
92 | int nr_data; | |
93 | ||
2c8cdd6e MX |
94 | int real_stripes; |
95 | ||
5a6ac9ea | 96 | int stripe_npages; |
53b381b3 DW |
97 | /* |
98 | * set if we're doing a parity rebuild | |
99 | * for a read from higher up, which is handled | |
100 | * differently from a parity rebuild as part of | |
101 | * rmw | |
102 | */ | |
1b94b556 | 103 | enum btrfs_rbio_ops operation; |
53b381b3 DW |
104 | |
105 | /* first bad stripe */ | |
106 | int faila; | |
107 | ||
108 | /* second bad stripe (for raid6 use) */ | |
109 | int failb; | |
110 | ||
5a6ac9ea | 111 | int scrubp; |
53b381b3 DW |
112 | /* |
113 | * number of pages needed to represent the full | |
114 | * stripe | |
115 | */ | |
116 | int nr_pages; | |
117 | ||
118 | /* | |
119 | * size of all the bios in the bio_list. This | |
120 | * helps us decide if the rbio maps to a full | |
121 | * stripe or not | |
122 | */ | |
123 | int bio_list_bytes; | |
124 | ||
4245215d MX |
125 | int generic_bio_cnt; |
126 | ||
dec95574 | 127 | refcount_t refs; |
53b381b3 | 128 | |
b89e1b01 MX |
129 | atomic_t stripes_pending; |
130 | ||
131 | atomic_t error; | |
53b381b3 DW |
132 | /* |
133 | * these are two arrays of pointers. We allocate the | |
134 | * rbio big enough to hold them both and setup their | |
135 | * locations when the rbio is allocated | |
136 | */ | |
137 | ||
138 | /* pointers to pages that we allocated for | |
139 | * reading/writing stripes directly from the disk (including P/Q) | |
140 | */ | |
141 | struct page **stripe_pages; | |
142 | ||
143 | /* | |
144 | * pointers to the pages in the bio_list. Stored | |
145 | * here for faster lookup | |
146 | */ | |
147 | struct page **bio_pages; | |
5a6ac9ea MX |
148 | |
149 | /* | |
150 | * bitmap to record which horizontal stripe has data | |
151 | */ | |
152 | unsigned long *dbitmap; | |
1389053e KC |
153 | |
154 | /* allocated with real_stripes-many pointers for finish_*() calls */ | |
155 | void **finish_pointers; | |
156 | ||
157 | /* allocated with stripe_npages-many bits for finish_*() calls */ | |
158 | unsigned long *finish_pbitmap; | |
53b381b3 DW |
159 | }; |
160 | ||
161 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); | |
162 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); | |
163 | static void rmw_work(struct btrfs_work *work); | |
164 | static void read_rebuild_work(struct btrfs_work *work); | |
53b381b3 DW |
165 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); |
166 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); | |
167 | static void __free_raid_bio(struct btrfs_raid_bio *rbio); | |
168 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); | |
169 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | |
170 | ||
5a6ac9ea MX |
171 | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, |
172 | int need_check); | |
a81b747d | 173 | static void scrub_parity_work(struct btrfs_work *work); |
5a6ac9ea | 174 | |
ac638859 DS |
175 | static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func) |
176 | { | |
177 | btrfs_init_work(&rbio->work, btrfs_rmw_helper, work_func, NULL, NULL); | |
178 | btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); | |
179 | } | |
180 | ||
53b381b3 DW |
181 | /* |
182 | * the stripe hash table is used for locking, and to collect | |
183 | * bios in hopes of making a full stripe | |
184 | */ | |
185 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | |
186 | { | |
187 | struct btrfs_stripe_hash_table *table; | |
188 | struct btrfs_stripe_hash_table *x; | |
189 | struct btrfs_stripe_hash *cur; | |
190 | struct btrfs_stripe_hash *h; | |
191 | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; | |
192 | int i; | |
83c8266a | 193 | int table_size; |
53b381b3 DW |
194 | |
195 | if (info->stripe_hash_table) | |
196 | return 0; | |
197 | ||
83c8266a DS |
198 | /* |
199 | * The table is large, starting with order 4 and can go as high as | |
200 | * order 7 in case lock debugging is turned on. | |
201 | * | |
202 | * Try harder to allocate and fallback to vmalloc to lower the chance | |
203 | * of a failing mount. | |
204 | */ | |
205 | table_size = sizeof(*table) + sizeof(*h) * num_entries; | |
818e010b DS |
206 | table = kvzalloc(table_size, GFP_KERNEL); |
207 | if (!table) | |
208 | return -ENOMEM; | |
53b381b3 | 209 | |
4ae10b3a CM |
210 | spin_lock_init(&table->cache_lock); |
211 | INIT_LIST_HEAD(&table->stripe_cache); | |
212 | ||
53b381b3 DW |
213 | h = table->table; |
214 | ||
215 | for (i = 0; i < num_entries; i++) { | |
216 | cur = h + i; | |
217 | INIT_LIST_HEAD(&cur->hash_list); | |
218 | spin_lock_init(&cur->lock); | |
53b381b3 DW |
219 | } |
220 | ||
221 | x = cmpxchg(&info->stripe_hash_table, NULL, table); | |
f749303b WS |
222 | if (x) |
223 | kvfree(x); | |
53b381b3 DW |
224 | return 0; |
225 | } | |
226 | ||
4ae10b3a CM |
227 | /* |
228 | * caching an rbio means to copy anything from the | |
229 | * bio_pages array into the stripe_pages array. We | |
230 | * use the page uptodate bit in the stripe cache array | |
231 | * to indicate if it has valid data | |
232 | * | |
233 | * once the caching is done, we set the cache ready | |
234 | * bit. | |
235 | */ | |
236 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | |
237 | { | |
238 | int i; | |
239 | char *s; | |
240 | char *d; | |
241 | int ret; | |
242 | ||
243 | ret = alloc_rbio_pages(rbio); | |
244 | if (ret) | |
245 | return; | |
246 | ||
247 | for (i = 0; i < rbio->nr_pages; i++) { | |
248 | if (!rbio->bio_pages[i]) | |
249 | continue; | |
250 | ||
251 | s = kmap(rbio->bio_pages[i]); | |
252 | d = kmap(rbio->stripe_pages[i]); | |
253 | ||
69d24804 | 254 | copy_page(d, s); |
4ae10b3a CM |
255 | |
256 | kunmap(rbio->bio_pages[i]); | |
257 | kunmap(rbio->stripe_pages[i]); | |
258 | SetPageUptodate(rbio->stripe_pages[i]); | |
259 | } | |
260 | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
261 | } | |
262 | ||
53b381b3 DW |
263 | /* |
264 | * we hash on the first logical address of the stripe | |
265 | */ | |
266 | static int rbio_bucket(struct btrfs_raid_bio *rbio) | |
267 | { | |
8e5cfb55 | 268 | u64 num = rbio->bbio->raid_map[0]; |
53b381b3 DW |
269 | |
270 | /* | |
271 | * we shift down quite a bit. We're using byte | |
272 | * addressing, and most of the lower bits are zeros. | |
273 | * This tends to upset hash_64, and it consistently | |
274 | * returns just one or two different values. | |
275 | * | |
276 | * shifting off the lower bits fixes things. | |
277 | */ | |
278 | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | |
279 | } | |
280 | ||
4ae10b3a CM |
281 | /* |
282 | * stealing an rbio means taking all the uptodate pages from the stripe | |
283 | * array in the source rbio and putting them into the destination rbio | |
284 | */ | |
285 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | |
286 | { | |
287 | int i; | |
288 | struct page *s; | |
289 | struct page *d; | |
290 | ||
291 | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | |
292 | return; | |
293 | ||
294 | for (i = 0; i < dest->nr_pages; i++) { | |
295 | s = src->stripe_pages[i]; | |
296 | if (!s || !PageUptodate(s)) { | |
297 | continue; | |
298 | } | |
299 | ||
300 | d = dest->stripe_pages[i]; | |
301 | if (d) | |
302 | __free_page(d); | |
303 | ||
304 | dest->stripe_pages[i] = s; | |
305 | src->stripe_pages[i] = NULL; | |
306 | } | |
307 | } | |
308 | ||
53b381b3 DW |
309 | /* |
310 | * merging means we take the bio_list from the victim and | |
311 | * splice it into the destination. The victim should | |
312 | * be discarded afterwards. | |
313 | * | |
314 | * must be called with dest->rbio_list_lock held | |
315 | */ | |
316 | static void merge_rbio(struct btrfs_raid_bio *dest, | |
317 | struct btrfs_raid_bio *victim) | |
318 | { | |
319 | bio_list_merge(&dest->bio_list, &victim->bio_list); | |
320 | dest->bio_list_bytes += victim->bio_list_bytes; | |
4245215d | 321 | dest->generic_bio_cnt += victim->generic_bio_cnt; |
53b381b3 DW |
322 | bio_list_init(&victim->bio_list); |
323 | } | |
324 | ||
325 | /* | |
4ae10b3a CM |
326 | * used to prune items that are in the cache. The caller |
327 | * must hold the hash table lock. | |
328 | */ | |
329 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | |
330 | { | |
331 | int bucket = rbio_bucket(rbio); | |
332 | struct btrfs_stripe_hash_table *table; | |
333 | struct btrfs_stripe_hash *h; | |
334 | int freeit = 0; | |
335 | ||
336 | /* | |
337 | * check the bit again under the hash table lock. | |
338 | */ | |
339 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
340 | return; | |
341 | ||
342 | table = rbio->fs_info->stripe_hash_table; | |
343 | h = table->table + bucket; | |
344 | ||
345 | /* hold the lock for the bucket because we may be | |
346 | * removing it from the hash table | |
347 | */ | |
348 | spin_lock(&h->lock); | |
349 | ||
350 | /* | |
351 | * hold the lock for the bio list because we need | |
352 | * to make sure the bio list is empty | |
353 | */ | |
354 | spin_lock(&rbio->bio_list_lock); | |
355 | ||
356 | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | |
357 | list_del_init(&rbio->stripe_cache); | |
358 | table->cache_size -= 1; | |
359 | freeit = 1; | |
360 | ||
361 | /* if the bio list isn't empty, this rbio is | |
362 | * still involved in an IO. We take it out | |
363 | * of the cache list, and drop the ref that | |
364 | * was held for the list. | |
365 | * | |
366 | * If the bio_list was empty, we also remove | |
367 | * the rbio from the hash_table, and drop | |
368 | * the corresponding ref | |
369 | */ | |
370 | if (bio_list_empty(&rbio->bio_list)) { | |
371 | if (!list_empty(&rbio->hash_list)) { | |
372 | list_del_init(&rbio->hash_list); | |
dec95574 | 373 | refcount_dec(&rbio->refs); |
4ae10b3a CM |
374 | BUG_ON(!list_empty(&rbio->plug_list)); |
375 | } | |
376 | } | |
377 | } | |
378 | ||
379 | spin_unlock(&rbio->bio_list_lock); | |
380 | spin_unlock(&h->lock); | |
381 | ||
382 | if (freeit) | |
383 | __free_raid_bio(rbio); | |
384 | } | |
385 | ||
386 | /* | |
387 | * prune a given rbio from the cache | |
388 | */ | |
389 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | |
390 | { | |
391 | struct btrfs_stripe_hash_table *table; | |
392 | unsigned long flags; | |
393 | ||
394 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
395 | return; | |
396 | ||
397 | table = rbio->fs_info->stripe_hash_table; | |
398 | ||
399 | spin_lock_irqsave(&table->cache_lock, flags); | |
400 | __remove_rbio_from_cache(rbio); | |
401 | spin_unlock_irqrestore(&table->cache_lock, flags); | |
402 | } | |
403 | ||
404 | /* | |
405 | * remove everything in the cache | |
406 | */ | |
48a3b636 | 407 | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) |
4ae10b3a CM |
408 | { |
409 | struct btrfs_stripe_hash_table *table; | |
410 | unsigned long flags; | |
411 | struct btrfs_raid_bio *rbio; | |
412 | ||
413 | table = info->stripe_hash_table; | |
414 | ||
415 | spin_lock_irqsave(&table->cache_lock, flags); | |
416 | while (!list_empty(&table->stripe_cache)) { | |
417 | rbio = list_entry(table->stripe_cache.next, | |
418 | struct btrfs_raid_bio, | |
419 | stripe_cache); | |
420 | __remove_rbio_from_cache(rbio); | |
421 | } | |
422 | spin_unlock_irqrestore(&table->cache_lock, flags); | |
423 | } | |
424 | ||
425 | /* | |
426 | * remove all cached entries and free the hash table | |
427 | * used by unmount | |
53b381b3 DW |
428 | */ |
429 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | |
430 | { | |
431 | if (!info->stripe_hash_table) | |
432 | return; | |
4ae10b3a | 433 | btrfs_clear_rbio_cache(info); |
f749303b | 434 | kvfree(info->stripe_hash_table); |
53b381b3 DW |
435 | info->stripe_hash_table = NULL; |
436 | } | |
437 | ||
4ae10b3a CM |
438 | /* |
439 | * insert an rbio into the stripe cache. It | |
440 | * must have already been prepared by calling | |
441 | * cache_rbio_pages | |
442 | * | |
443 | * If this rbio was already cached, it gets | |
444 | * moved to the front of the lru. | |
445 | * | |
446 | * If the size of the rbio cache is too big, we | |
447 | * prune an item. | |
448 | */ | |
449 | static void cache_rbio(struct btrfs_raid_bio *rbio) | |
450 | { | |
451 | struct btrfs_stripe_hash_table *table; | |
452 | unsigned long flags; | |
453 | ||
454 | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | |
455 | return; | |
456 | ||
457 | table = rbio->fs_info->stripe_hash_table; | |
458 | ||
459 | spin_lock_irqsave(&table->cache_lock, flags); | |
460 | spin_lock(&rbio->bio_list_lock); | |
461 | ||
462 | /* bump our ref if we were not in the list before */ | |
463 | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
dec95574 | 464 | refcount_inc(&rbio->refs); |
4ae10b3a CM |
465 | |
466 | if (!list_empty(&rbio->stripe_cache)){ | |
467 | list_move(&rbio->stripe_cache, &table->stripe_cache); | |
468 | } else { | |
469 | list_add(&rbio->stripe_cache, &table->stripe_cache); | |
470 | table->cache_size += 1; | |
471 | } | |
472 | ||
473 | spin_unlock(&rbio->bio_list_lock); | |
474 | ||
475 | if (table->cache_size > RBIO_CACHE_SIZE) { | |
476 | struct btrfs_raid_bio *found; | |
477 | ||
478 | found = list_entry(table->stripe_cache.prev, | |
479 | struct btrfs_raid_bio, | |
480 | stripe_cache); | |
481 | ||
482 | if (found != rbio) | |
483 | __remove_rbio_from_cache(found); | |
484 | } | |
485 | ||
486 | spin_unlock_irqrestore(&table->cache_lock, flags); | |
4ae10b3a CM |
487 | } |
488 | ||
53b381b3 DW |
489 | /* |
490 | * helper function to run the xor_blocks api. It is only | |
491 | * able to do MAX_XOR_BLOCKS at a time, so we need to | |
492 | * loop through. | |
493 | */ | |
494 | static void run_xor(void **pages, int src_cnt, ssize_t len) | |
495 | { | |
496 | int src_off = 0; | |
497 | int xor_src_cnt = 0; | |
498 | void *dest = pages[src_cnt]; | |
499 | ||
500 | while(src_cnt > 0) { | |
501 | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | |
502 | xor_blocks(xor_src_cnt, len, dest, pages + src_off); | |
503 | ||
504 | src_cnt -= xor_src_cnt; | |
505 | src_off += xor_src_cnt; | |
506 | } | |
507 | } | |
508 | ||
509 | /* | |
176571a1 DS |
510 | * Returns true if the bio list inside this rbio covers an entire stripe (no |
511 | * rmw required). | |
53b381b3 | 512 | */ |
176571a1 | 513 | static int rbio_is_full(struct btrfs_raid_bio *rbio) |
53b381b3 | 514 | { |
176571a1 | 515 | unsigned long flags; |
53b381b3 DW |
516 | unsigned long size = rbio->bio_list_bytes; |
517 | int ret = 1; | |
518 | ||
176571a1 | 519 | spin_lock_irqsave(&rbio->bio_list_lock, flags); |
53b381b3 DW |
520 | if (size != rbio->nr_data * rbio->stripe_len) |
521 | ret = 0; | |
53b381b3 | 522 | BUG_ON(size > rbio->nr_data * rbio->stripe_len); |
53b381b3 | 523 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); |
176571a1 | 524 | |
53b381b3 DW |
525 | return ret; |
526 | } | |
527 | ||
528 | /* | |
529 | * returns 1 if it is safe to merge two rbios together. | |
530 | * The merging is safe if the two rbios correspond to | |
531 | * the same stripe and if they are both going in the same | |
532 | * direction (read vs write), and if neither one is | |
533 | * locked for final IO | |
534 | * | |
535 | * The caller is responsible for locking such that | |
536 | * rmw_locked is safe to test | |
537 | */ | |
538 | static int rbio_can_merge(struct btrfs_raid_bio *last, | |
539 | struct btrfs_raid_bio *cur) | |
540 | { | |
541 | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | |
542 | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | |
543 | return 0; | |
544 | ||
4ae10b3a CM |
545 | /* |
546 | * we can't merge with cached rbios, since the | |
547 | * idea is that when we merge the destination | |
548 | * rbio is going to run our IO for us. We can | |
01327610 | 549 | * steal from cached rbios though, other functions |
4ae10b3a CM |
550 | * handle that. |
551 | */ | |
552 | if (test_bit(RBIO_CACHE_BIT, &last->flags) || | |
553 | test_bit(RBIO_CACHE_BIT, &cur->flags)) | |
554 | return 0; | |
555 | ||
8e5cfb55 ZL |
556 | if (last->bbio->raid_map[0] != |
557 | cur->bbio->raid_map[0]) | |
53b381b3 DW |
558 | return 0; |
559 | ||
5a6ac9ea MX |
560 | /* we can't merge with different operations */ |
561 | if (last->operation != cur->operation) | |
562 | return 0; | |
563 | /* | |
564 | * We've need read the full stripe from the drive. | |
565 | * check and repair the parity and write the new results. | |
566 | * | |
567 | * We're not allowed to add any new bios to the | |
568 | * bio list here, anyone else that wants to | |
569 | * change this stripe needs to do their own rmw. | |
570 | */ | |
db34be19 | 571 | if (last->operation == BTRFS_RBIO_PARITY_SCRUB) |
53b381b3 | 572 | return 0; |
53b381b3 | 573 | |
db34be19 | 574 | if (last->operation == BTRFS_RBIO_REBUILD_MISSING) |
b4ee1782 OS |
575 | return 0; |
576 | ||
cc54ff62 LB |
577 | if (last->operation == BTRFS_RBIO_READ_REBUILD) { |
578 | int fa = last->faila; | |
579 | int fb = last->failb; | |
580 | int cur_fa = cur->faila; | |
581 | int cur_fb = cur->failb; | |
582 | ||
583 | if (last->faila >= last->failb) { | |
584 | fa = last->failb; | |
585 | fb = last->faila; | |
586 | } | |
587 | ||
588 | if (cur->faila >= cur->failb) { | |
589 | cur_fa = cur->failb; | |
590 | cur_fb = cur->faila; | |
591 | } | |
592 | ||
593 | if (fa != cur_fa || fb != cur_fb) | |
594 | return 0; | |
595 | } | |
53b381b3 DW |
596 | return 1; |
597 | } | |
598 | ||
b7178a5f ZL |
599 | static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, |
600 | int index) | |
601 | { | |
602 | return stripe * rbio->stripe_npages + index; | |
603 | } | |
604 | ||
605 | /* | |
606 | * these are just the pages from the rbio array, not from anything | |
607 | * the FS sent down to us | |
608 | */ | |
609 | static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, | |
610 | int index) | |
611 | { | |
612 | return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; | |
613 | } | |
614 | ||
53b381b3 DW |
615 | /* |
616 | * helper to index into the pstripe | |
617 | */ | |
618 | static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) | |
619 | { | |
b7178a5f | 620 | return rbio_stripe_page(rbio, rbio->nr_data, index); |
53b381b3 DW |
621 | } |
622 | ||
623 | /* | |
624 | * helper to index into the qstripe, returns null | |
625 | * if there is no qstripe | |
626 | */ | |
627 | static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) | |
628 | { | |
2c8cdd6e | 629 | if (rbio->nr_data + 1 == rbio->real_stripes) |
53b381b3 | 630 | return NULL; |
b7178a5f | 631 | return rbio_stripe_page(rbio, rbio->nr_data + 1, index); |
53b381b3 DW |
632 | } |
633 | ||
634 | /* | |
635 | * The first stripe in the table for a logical address | |
636 | * has the lock. rbios are added in one of three ways: | |
637 | * | |
638 | * 1) Nobody has the stripe locked yet. The rbio is given | |
639 | * the lock and 0 is returned. The caller must start the IO | |
640 | * themselves. | |
641 | * | |
642 | * 2) Someone has the stripe locked, but we're able to merge | |
643 | * with the lock owner. The rbio is freed and the IO will | |
644 | * start automatically along with the existing rbio. 1 is returned. | |
645 | * | |
646 | * 3) Someone has the stripe locked, but we're not able to merge. | |
647 | * The rbio is added to the lock owner's plug list, or merged into | |
648 | * an rbio already on the plug list. When the lock owner unlocks, | |
649 | * the next rbio on the list is run and the IO is started automatically. | |
650 | * 1 is returned | |
651 | * | |
652 | * If we return 0, the caller still owns the rbio and must continue with | |
653 | * IO submission. If we return 1, the caller must assume the rbio has | |
654 | * already been freed. | |
655 | */ | |
656 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | |
657 | { | |
658 | int bucket = rbio_bucket(rbio); | |
659 | struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; | |
660 | struct btrfs_raid_bio *cur; | |
661 | struct btrfs_raid_bio *pending; | |
662 | unsigned long flags; | |
53b381b3 | 663 | struct btrfs_raid_bio *freeit = NULL; |
4ae10b3a | 664 | struct btrfs_raid_bio *cache_drop = NULL; |
53b381b3 | 665 | int ret = 0; |
53b381b3 DW |
666 | |
667 | spin_lock_irqsave(&h->lock, flags); | |
668 | list_for_each_entry(cur, &h->hash_list, hash_list) { | |
8e5cfb55 | 669 | if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { |
53b381b3 DW |
670 | spin_lock(&cur->bio_list_lock); |
671 | ||
4ae10b3a CM |
672 | /* can we steal this cached rbio's pages? */ |
673 | if (bio_list_empty(&cur->bio_list) && | |
674 | list_empty(&cur->plug_list) && | |
675 | test_bit(RBIO_CACHE_BIT, &cur->flags) && | |
676 | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | |
677 | list_del_init(&cur->hash_list); | |
dec95574 | 678 | refcount_dec(&cur->refs); |
4ae10b3a CM |
679 | |
680 | steal_rbio(cur, rbio); | |
681 | cache_drop = cur; | |
682 | spin_unlock(&cur->bio_list_lock); | |
683 | ||
684 | goto lockit; | |
685 | } | |
686 | ||
53b381b3 DW |
687 | /* can we merge into the lock owner? */ |
688 | if (rbio_can_merge(cur, rbio)) { | |
689 | merge_rbio(cur, rbio); | |
690 | spin_unlock(&cur->bio_list_lock); | |
691 | freeit = rbio; | |
692 | ret = 1; | |
693 | goto out; | |
694 | } | |
695 | ||
4ae10b3a | 696 | |
53b381b3 DW |
697 | /* |
698 | * we couldn't merge with the running | |
699 | * rbio, see if we can merge with the | |
700 | * pending ones. We don't have to | |
701 | * check for rmw_locked because there | |
702 | * is no way they are inside finish_rmw | |
703 | * right now | |
704 | */ | |
705 | list_for_each_entry(pending, &cur->plug_list, | |
706 | plug_list) { | |
707 | if (rbio_can_merge(pending, rbio)) { | |
708 | merge_rbio(pending, rbio); | |
709 | spin_unlock(&cur->bio_list_lock); | |
710 | freeit = rbio; | |
711 | ret = 1; | |
712 | goto out; | |
713 | } | |
714 | } | |
715 | ||
716 | /* no merging, put us on the tail of the plug list, | |
717 | * our rbio will be started with the currently | |
718 | * running rbio unlocks | |
719 | */ | |
720 | list_add_tail(&rbio->plug_list, &cur->plug_list); | |
721 | spin_unlock(&cur->bio_list_lock); | |
722 | ret = 1; | |
723 | goto out; | |
724 | } | |
725 | } | |
4ae10b3a | 726 | lockit: |
dec95574 | 727 | refcount_inc(&rbio->refs); |
53b381b3 DW |
728 | list_add(&rbio->hash_list, &h->hash_list); |
729 | out: | |
730 | spin_unlock_irqrestore(&h->lock, flags); | |
4ae10b3a CM |
731 | if (cache_drop) |
732 | remove_rbio_from_cache(cache_drop); | |
53b381b3 DW |
733 | if (freeit) |
734 | __free_raid_bio(freeit); | |
735 | return ret; | |
736 | } | |
737 | ||
738 | /* | |
739 | * called as rmw or parity rebuild is completed. If the plug list has more | |
740 | * rbios waiting for this stripe, the next one on the list will be started | |
741 | */ | |
742 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | |
743 | { | |
744 | int bucket; | |
745 | struct btrfs_stripe_hash *h; | |
746 | unsigned long flags; | |
4ae10b3a | 747 | int keep_cache = 0; |
53b381b3 DW |
748 | |
749 | bucket = rbio_bucket(rbio); | |
750 | h = rbio->fs_info->stripe_hash_table->table + bucket; | |
751 | ||
4ae10b3a CM |
752 | if (list_empty(&rbio->plug_list)) |
753 | cache_rbio(rbio); | |
754 | ||
53b381b3 DW |
755 | spin_lock_irqsave(&h->lock, flags); |
756 | spin_lock(&rbio->bio_list_lock); | |
757 | ||
758 | if (!list_empty(&rbio->hash_list)) { | |
4ae10b3a CM |
759 | /* |
760 | * if we're still cached and there is no other IO | |
761 | * to perform, just leave this rbio here for others | |
762 | * to steal from later | |
763 | */ | |
764 | if (list_empty(&rbio->plug_list) && | |
765 | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | |
766 | keep_cache = 1; | |
767 | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | |
768 | BUG_ON(!bio_list_empty(&rbio->bio_list)); | |
769 | goto done; | |
770 | } | |
53b381b3 DW |
771 | |
772 | list_del_init(&rbio->hash_list); | |
dec95574 | 773 | refcount_dec(&rbio->refs); |
53b381b3 DW |
774 | |
775 | /* | |
776 | * we use the plug list to hold all the rbios | |
777 | * waiting for the chance to lock this stripe. | |
778 | * hand the lock over to one of them. | |
779 | */ | |
780 | if (!list_empty(&rbio->plug_list)) { | |
781 | struct btrfs_raid_bio *next; | |
782 | struct list_head *head = rbio->plug_list.next; | |
783 | ||
784 | next = list_entry(head, struct btrfs_raid_bio, | |
785 | plug_list); | |
786 | ||
787 | list_del_init(&rbio->plug_list); | |
788 | ||
789 | list_add(&next->hash_list, &h->hash_list); | |
dec95574 | 790 | refcount_inc(&next->refs); |
53b381b3 DW |
791 | spin_unlock(&rbio->bio_list_lock); |
792 | spin_unlock_irqrestore(&h->lock, flags); | |
793 | ||
1b94b556 | 794 | if (next->operation == BTRFS_RBIO_READ_REBUILD) |
e66d8d5a | 795 | start_async_work(next, read_rebuild_work); |
b4ee1782 OS |
796 | else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { |
797 | steal_rbio(rbio, next); | |
e66d8d5a | 798 | start_async_work(next, read_rebuild_work); |
b4ee1782 | 799 | } else if (next->operation == BTRFS_RBIO_WRITE) { |
4ae10b3a | 800 | steal_rbio(rbio, next); |
cf6a4a75 | 801 | start_async_work(next, rmw_work); |
5a6ac9ea MX |
802 | } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { |
803 | steal_rbio(rbio, next); | |
a81b747d | 804 | start_async_work(next, scrub_parity_work); |
4ae10b3a | 805 | } |
53b381b3 DW |
806 | |
807 | goto done_nolock; | |
53b381b3 DW |
808 | } |
809 | } | |
4ae10b3a | 810 | done: |
53b381b3 DW |
811 | spin_unlock(&rbio->bio_list_lock); |
812 | spin_unlock_irqrestore(&h->lock, flags); | |
813 | ||
814 | done_nolock: | |
4ae10b3a CM |
815 | if (!keep_cache) |
816 | remove_rbio_from_cache(rbio); | |
53b381b3 DW |
817 | } |
818 | ||
819 | static void __free_raid_bio(struct btrfs_raid_bio *rbio) | |
820 | { | |
821 | int i; | |
822 | ||
dec95574 | 823 | if (!refcount_dec_and_test(&rbio->refs)) |
53b381b3 DW |
824 | return; |
825 | ||
4ae10b3a | 826 | WARN_ON(!list_empty(&rbio->stripe_cache)); |
53b381b3 DW |
827 | WARN_ON(!list_empty(&rbio->hash_list)); |
828 | WARN_ON(!bio_list_empty(&rbio->bio_list)); | |
829 | ||
830 | for (i = 0; i < rbio->nr_pages; i++) { | |
831 | if (rbio->stripe_pages[i]) { | |
832 | __free_page(rbio->stripe_pages[i]); | |
833 | rbio->stripe_pages[i] = NULL; | |
834 | } | |
835 | } | |
af8e2d1d | 836 | |
6e9606d2 | 837 | btrfs_put_bbio(rbio->bbio); |
53b381b3 DW |
838 | kfree(rbio); |
839 | } | |
840 | ||
7583d8d0 | 841 | static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) |
53b381b3 | 842 | { |
7583d8d0 LB |
843 | struct bio *next; |
844 | ||
845 | while (cur) { | |
846 | next = cur->bi_next; | |
847 | cur->bi_next = NULL; | |
848 | cur->bi_status = err; | |
849 | bio_endio(cur); | |
850 | cur = next; | |
851 | } | |
53b381b3 DW |
852 | } |
853 | ||
854 | /* | |
855 | * this frees the rbio and runs through all the bios in the | |
856 | * bio_list and calls end_io on them | |
857 | */ | |
4e4cbee9 | 858 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) |
53b381b3 DW |
859 | { |
860 | struct bio *cur = bio_list_get(&rbio->bio_list); | |
7583d8d0 | 861 | struct bio *extra; |
4245215d MX |
862 | |
863 | if (rbio->generic_bio_cnt) | |
864 | btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); | |
865 | ||
7583d8d0 LB |
866 | /* |
867 | * At this moment, rbio->bio_list is empty, however since rbio does not | |
868 | * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the | |
869 | * hash list, rbio may be merged with others so that rbio->bio_list | |
870 | * becomes non-empty. | |
871 | * Once unlock_stripe() is done, rbio->bio_list will not be updated any | |
872 | * more and we can call bio_endio() on all queued bios. | |
873 | */ | |
874 | unlock_stripe(rbio); | |
875 | extra = bio_list_get(&rbio->bio_list); | |
876 | __free_raid_bio(rbio); | |
53b381b3 | 877 | |
7583d8d0 LB |
878 | rbio_endio_bio_list(cur, err); |
879 | if (extra) | |
880 | rbio_endio_bio_list(extra, err); | |
53b381b3 DW |
881 | } |
882 | ||
883 | /* | |
884 | * end io function used by finish_rmw. When we finally | |
885 | * get here, we've written a full stripe | |
886 | */ | |
4246a0b6 | 887 | static void raid_write_end_io(struct bio *bio) |
53b381b3 DW |
888 | { |
889 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
4e4cbee9 | 890 | blk_status_t err = bio->bi_status; |
a6111d11 | 891 | int max_errors; |
53b381b3 DW |
892 | |
893 | if (err) | |
894 | fail_bio_stripe(rbio, bio); | |
895 | ||
896 | bio_put(bio); | |
897 | ||
b89e1b01 | 898 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
53b381b3 DW |
899 | return; |
900 | ||
58efbc9f | 901 | err = BLK_STS_OK; |
53b381b3 DW |
902 | |
903 | /* OK, we have read all the stripes we need to. */ | |
a6111d11 ZL |
904 | max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? |
905 | 0 : rbio->bbio->max_errors; | |
906 | if (atomic_read(&rbio->error) > max_errors) | |
4e4cbee9 | 907 | err = BLK_STS_IOERR; |
53b381b3 | 908 | |
4246a0b6 | 909 | rbio_orig_end_io(rbio, err); |
53b381b3 DW |
910 | } |
911 | ||
912 | /* | |
913 | * the read/modify/write code wants to use the original bio for | |
914 | * any pages it included, and then use the rbio for everything | |
915 | * else. This function decides if a given index (stripe number) | |
916 | * and page number in that stripe fall inside the original bio | |
917 | * or the rbio. | |
918 | * | |
919 | * if you set bio_list_only, you'll get a NULL back for any ranges | |
920 | * that are outside the bio_list | |
921 | * | |
922 | * This doesn't take any refs on anything, you get a bare page pointer | |
923 | * and the caller must bump refs as required. | |
924 | * | |
925 | * You must call index_rbio_pages once before you can trust | |
926 | * the answers from this function. | |
927 | */ | |
928 | static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, | |
929 | int index, int pagenr, int bio_list_only) | |
930 | { | |
931 | int chunk_page; | |
932 | struct page *p = NULL; | |
933 | ||
934 | chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; | |
935 | ||
936 | spin_lock_irq(&rbio->bio_list_lock); | |
937 | p = rbio->bio_pages[chunk_page]; | |
938 | spin_unlock_irq(&rbio->bio_list_lock); | |
939 | ||
940 | if (p || bio_list_only) | |
941 | return p; | |
942 | ||
943 | return rbio->stripe_pages[chunk_page]; | |
944 | } | |
945 | ||
946 | /* | |
947 | * number of pages we need for the entire stripe across all the | |
948 | * drives | |
949 | */ | |
950 | static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) | |
951 | { | |
09cbfeaf | 952 | return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; |
53b381b3 DW |
953 | } |
954 | ||
955 | /* | |
956 | * allocation and initial setup for the btrfs_raid_bio. Not | |
957 | * this does not allocate any pages for rbio->pages. | |
958 | */ | |
2ff7e61e JM |
959 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, |
960 | struct btrfs_bio *bbio, | |
961 | u64 stripe_len) | |
53b381b3 DW |
962 | { |
963 | struct btrfs_raid_bio *rbio; | |
964 | int nr_data = 0; | |
2c8cdd6e MX |
965 | int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; |
966 | int num_pages = rbio_nr_pages(stripe_len, real_stripes); | |
5a6ac9ea | 967 | int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); |
53b381b3 DW |
968 | void *p; |
969 | ||
1389053e KC |
970 | rbio = kzalloc(sizeof(*rbio) + |
971 | sizeof(*rbio->stripe_pages) * num_pages + | |
972 | sizeof(*rbio->bio_pages) * num_pages + | |
973 | sizeof(*rbio->finish_pointers) * real_stripes + | |
974 | sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) + | |
975 | sizeof(*rbio->finish_pbitmap) * | |
976 | BITS_TO_LONGS(stripe_npages), | |
977 | GFP_NOFS); | |
af8e2d1d | 978 | if (!rbio) |
53b381b3 | 979 | return ERR_PTR(-ENOMEM); |
53b381b3 DW |
980 | |
981 | bio_list_init(&rbio->bio_list); | |
982 | INIT_LIST_HEAD(&rbio->plug_list); | |
983 | spin_lock_init(&rbio->bio_list_lock); | |
4ae10b3a | 984 | INIT_LIST_HEAD(&rbio->stripe_cache); |
53b381b3 DW |
985 | INIT_LIST_HEAD(&rbio->hash_list); |
986 | rbio->bbio = bbio; | |
2ff7e61e | 987 | rbio->fs_info = fs_info; |
53b381b3 DW |
988 | rbio->stripe_len = stripe_len; |
989 | rbio->nr_pages = num_pages; | |
2c8cdd6e | 990 | rbio->real_stripes = real_stripes; |
5a6ac9ea | 991 | rbio->stripe_npages = stripe_npages; |
53b381b3 DW |
992 | rbio->faila = -1; |
993 | rbio->failb = -1; | |
dec95574 | 994 | refcount_set(&rbio->refs, 1); |
b89e1b01 MX |
995 | atomic_set(&rbio->error, 0); |
996 | atomic_set(&rbio->stripes_pending, 0); | |
53b381b3 DW |
997 | |
998 | /* | |
1389053e | 999 | * the stripe_pages, bio_pages, etc arrays point to the extra |
53b381b3 DW |
1000 | * memory we allocated past the end of the rbio |
1001 | */ | |
1002 | p = rbio + 1; | |
1389053e KC |
1003 | #define CONSUME_ALLOC(ptr, count) do { \ |
1004 | ptr = p; \ | |
1005 | p = (unsigned char *)p + sizeof(*(ptr)) * (count); \ | |
1006 | } while (0) | |
1007 | CONSUME_ALLOC(rbio->stripe_pages, num_pages); | |
1008 | CONSUME_ALLOC(rbio->bio_pages, num_pages); | |
1009 | CONSUME_ALLOC(rbio->finish_pointers, real_stripes); | |
1010 | CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages)); | |
1011 | CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages)); | |
1012 | #undef CONSUME_ALLOC | |
53b381b3 | 1013 | |
10f11900 ZL |
1014 | if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) |
1015 | nr_data = real_stripes - 1; | |
1016 | else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) | |
2c8cdd6e | 1017 | nr_data = real_stripes - 2; |
53b381b3 | 1018 | else |
10f11900 | 1019 | BUG(); |
53b381b3 DW |
1020 | |
1021 | rbio->nr_data = nr_data; | |
1022 | return rbio; | |
1023 | } | |
1024 | ||
1025 | /* allocate pages for all the stripes in the bio, including parity */ | |
1026 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | |
1027 | { | |
1028 | int i; | |
1029 | struct page *page; | |
1030 | ||
1031 | for (i = 0; i < rbio->nr_pages; i++) { | |
1032 | if (rbio->stripe_pages[i]) | |
1033 | continue; | |
1034 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
1035 | if (!page) | |
1036 | return -ENOMEM; | |
1037 | rbio->stripe_pages[i] = page; | |
53b381b3 DW |
1038 | } |
1039 | return 0; | |
1040 | } | |
1041 | ||
b7178a5f | 1042 | /* only allocate pages for p/q stripes */ |
53b381b3 DW |
1043 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) |
1044 | { | |
1045 | int i; | |
1046 | struct page *page; | |
1047 | ||
b7178a5f | 1048 | i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); |
53b381b3 DW |
1049 | |
1050 | for (; i < rbio->nr_pages; i++) { | |
1051 | if (rbio->stripe_pages[i]) | |
1052 | continue; | |
1053 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
1054 | if (!page) | |
1055 | return -ENOMEM; | |
1056 | rbio->stripe_pages[i] = page; | |
1057 | } | |
1058 | return 0; | |
1059 | } | |
1060 | ||
1061 | /* | |
1062 | * add a single page from a specific stripe into our list of bios for IO | |
1063 | * this will try to merge into existing bios if possible, and returns | |
1064 | * zero if all went well. | |
1065 | */ | |
48a3b636 ES |
1066 | static int rbio_add_io_page(struct btrfs_raid_bio *rbio, |
1067 | struct bio_list *bio_list, | |
1068 | struct page *page, | |
1069 | int stripe_nr, | |
1070 | unsigned long page_index, | |
1071 | unsigned long bio_max_len) | |
53b381b3 DW |
1072 | { |
1073 | struct bio *last = bio_list->tail; | |
1074 | u64 last_end = 0; | |
1075 | int ret; | |
1076 | struct bio *bio; | |
1077 | struct btrfs_bio_stripe *stripe; | |
1078 | u64 disk_start; | |
1079 | ||
1080 | stripe = &rbio->bbio->stripes[stripe_nr]; | |
09cbfeaf | 1081 | disk_start = stripe->physical + (page_index << PAGE_SHIFT); |
53b381b3 DW |
1082 | |
1083 | /* if the device is missing, just fail this stripe */ | |
1084 | if (!stripe->dev->bdev) | |
1085 | return fail_rbio_index(rbio, stripe_nr); | |
1086 | ||
1087 | /* see if we can add this page onto our existing bio */ | |
1088 | if (last) { | |
4f024f37 KO |
1089 | last_end = (u64)last->bi_iter.bi_sector << 9; |
1090 | last_end += last->bi_iter.bi_size; | |
53b381b3 DW |
1091 | |
1092 | /* | |
1093 | * we can't merge these if they are from different | |
1094 | * devices or if they are not contiguous | |
1095 | */ | |
1096 | if (last_end == disk_start && stripe->dev->bdev && | |
4e4cbee9 | 1097 | !last->bi_status && |
74d46992 CH |
1098 | last->bi_disk == stripe->dev->bdev->bd_disk && |
1099 | last->bi_partno == stripe->dev->bdev->bd_partno) { | |
09cbfeaf KS |
1100 | ret = bio_add_page(last, page, PAGE_SIZE, 0); |
1101 | if (ret == PAGE_SIZE) | |
53b381b3 DW |
1102 | return 0; |
1103 | } | |
1104 | } | |
1105 | ||
1106 | /* put a new bio on the list */ | |
c5e4c3d7 | 1107 | bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); |
4f024f37 | 1108 | bio->bi_iter.bi_size = 0; |
74d46992 | 1109 | bio_set_dev(bio, stripe->dev->bdev); |
4f024f37 | 1110 | bio->bi_iter.bi_sector = disk_start >> 9; |
53b381b3 | 1111 | |
09cbfeaf | 1112 | bio_add_page(bio, page, PAGE_SIZE, 0); |
53b381b3 DW |
1113 | bio_list_add(bio_list, bio); |
1114 | return 0; | |
1115 | } | |
1116 | ||
1117 | /* | |
1118 | * while we're doing the read/modify/write cycle, we could | |
1119 | * have errors in reading pages off the disk. This checks | |
1120 | * for errors and if we're not able to read the page it'll | |
1121 | * trigger parity reconstruction. The rmw will be finished | |
1122 | * after we've reconstructed the failed stripes | |
1123 | */ | |
1124 | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) | |
1125 | { | |
1126 | if (rbio->faila >= 0 || rbio->failb >= 0) { | |
2c8cdd6e | 1127 | BUG_ON(rbio->faila == rbio->real_stripes - 1); |
53b381b3 DW |
1128 | __raid56_parity_recover(rbio); |
1129 | } else { | |
1130 | finish_rmw(rbio); | |
1131 | } | |
1132 | } | |
1133 | ||
53b381b3 DW |
1134 | /* |
1135 | * helper function to walk our bio list and populate the bio_pages array with | |
1136 | * the result. This seems expensive, but it is faster than constantly | |
1137 | * searching through the bio list as we setup the IO in finish_rmw or stripe | |
1138 | * reconstruction. | |
1139 | * | |
1140 | * This must be called before you trust the answers from page_in_rbio | |
1141 | */ | |
1142 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | |
1143 | { | |
1144 | struct bio *bio; | |
1145 | u64 start; | |
1146 | unsigned long stripe_offset; | |
1147 | unsigned long page_index; | |
53b381b3 DW |
1148 | |
1149 | spin_lock_irq(&rbio->bio_list_lock); | |
1150 | bio_list_for_each(bio, &rbio->bio_list) { | |
6592e58c FM |
1151 | struct bio_vec bvec; |
1152 | struct bvec_iter iter; | |
1153 | int i = 0; | |
1154 | ||
4f024f37 | 1155 | start = (u64)bio->bi_iter.bi_sector << 9; |
8e5cfb55 | 1156 | stripe_offset = start - rbio->bbio->raid_map[0]; |
09cbfeaf | 1157 | page_index = stripe_offset >> PAGE_SHIFT; |
53b381b3 | 1158 | |
6592e58c FM |
1159 | if (bio_flagged(bio, BIO_CLONED)) |
1160 | bio->bi_iter = btrfs_io_bio(bio)->iter; | |
1161 | ||
1162 | bio_for_each_segment(bvec, bio, iter) { | |
1163 | rbio->bio_pages[page_index + i] = bvec.bv_page; | |
1164 | i++; | |
1165 | } | |
53b381b3 DW |
1166 | } |
1167 | spin_unlock_irq(&rbio->bio_list_lock); | |
1168 | } | |
1169 | ||
1170 | /* | |
1171 | * this is called from one of two situations. We either | |
1172 | * have a full stripe from the higher layers, or we've read all | |
1173 | * the missing bits off disk. | |
1174 | * | |
1175 | * This will calculate the parity and then send down any | |
1176 | * changed blocks. | |
1177 | */ | |
1178 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) | |
1179 | { | |
1180 | struct btrfs_bio *bbio = rbio->bbio; | |
1389053e | 1181 | void **pointers = rbio->finish_pointers; |
53b381b3 DW |
1182 | int nr_data = rbio->nr_data; |
1183 | int stripe; | |
1184 | int pagenr; | |
1185 | int p_stripe = -1; | |
1186 | int q_stripe = -1; | |
1187 | struct bio_list bio_list; | |
1188 | struct bio *bio; | |
53b381b3 DW |
1189 | int ret; |
1190 | ||
1191 | bio_list_init(&bio_list); | |
1192 | ||
2c8cdd6e MX |
1193 | if (rbio->real_stripes - rbio->nr_data == 1) { |
1194 | p_stripe = rbio->real_stripes - 1; | |
1195 | } else if (rbio->real_stripes - rbio->nr_data == 2) { | |
1196 | p_stripe = rbio->real_stripes - 2; | |
1197 | q_stripe = rbio->real_stripes - 1; | |
53b381b3 DW |
1198 | } else { |
1199 | BUG(); | |
1200 | } | |
1201 | ||
1202 | /* at this point we either have a full stripe, | |
1203 | * or we've read the full stripe from the drive. | |
1204 | * recalculate the parity and write the new results. | |
1205 | * | |
1206 | * We're not allowed to add any new bios to the | |
1207 | * bio list here, anyone else that wants to | |
1208 | * change this stripe needs to do their own rmw. | |
1209 | */ | |
1210 | spin_lock_irq(&rbio->bio_list_lock); | |
1211 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | |
1212 | spin_unlock_irq(&rbio->bio_list_lock); | |
1213 | ||
b89e1b01 | 1214 | atomic_set(&rbio->error, 0); |
53b381b3 DW |
1215 | |
1216 | /* | |
1217 | * now that we've set rmw_locked, run through the | |
1218 | * bio list one last time and map the page pointers | |
4ae10b3a CM |
1219 | * |
1220 | * We don't cache full rbios because we're assuming | |
1221 | * the higher layers are unlikely to use this area of | |
1222 | * the disk again soon. If they do use it again, | |
1223 | * hopefully they will send another full bio. | |
53b381b3 DW |
1224 | */ |
1225 | index_rbio_pages(rbio); | |
4ae10b3a CM |
1226 | if (!rbio_is_full(rbio)) |
1227 | cache_rbio_pages(rbio); | |
1228 | else | |
1229 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
53b381b3 | 1230 | |
915e2290 | 1231 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
53b381b3 DW |
1232 | struct page *p; |
1233 | /* first collect one page from each data stripe */ | |
1234 | for (stripe = 0; stripe < nr_data; stripe++) { | |
1235 | p = page_in_rbio(rbio, stripe, pagenr, 0); | |
1236 | pointers[stripe] = kmap(p); | |
1237 | } | |
1238 | ||
1239 | /* then add the parity stripe */ | |
1240 | p = rbio_pstripe_page(rbio, pagenr); | |
1241 | SetPageUptodate(p); | |
1242 | pointers[stripe++] = kmap(p); | |
1243 | ||
1244 | if (q_stripe != -1) { | |
1245 | ||
1246 | /* | |
1247 | * raid6, add the qstripe and call the | |
1248 | * library function to fill in our p/q | |
1249 | */ | |
1250 | p = rbio_qstripe_page(rbio, pagenr); | |
1251 | SetPageUptodate(p); | |
1252 | pointers[stripe++] = kmap(p); | |
1253 | ||
2c8cdd6e | 1254 | raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, |
53b381b3 DW |
1255 | pointers); |
1256 | } else { | |
1257 | /* raid5 */ | |
69d24804 | 1258 | copy_page(pointers[nr_data], pointers[0]); |
09cbfeaf | 1259 | run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); |
53b381b3 DW |
1260 | } |
1261 | ||
1262 | ||
2c8cdd6e | 1263 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) |
53b381b3 DW |
1264 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
1265 | } | |
1266 | ||
1267 | /* | |
1268 | * time to start writing. Make bios for everything from the | |
1269 | * higher layers (the bio_list in our rbio) and our p/q. Ignore | |
1270 | * everything else. | |
1271 | */ | |
2c8cdd6e | 1272 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
915e2290 | 1273 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
53b381b3 DW |
1274 | struct page *page; |
1275 | if (stripe < rbio->nr_data) { | |
1276 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
1277 | if (!page) | |
1278 | continue; | |
1279 | } else { | |
1280 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1281 | } | |
1282 | ||
1283 | ret = rbio_add_io_page(rbio, &bio_list, | |
1284 | page, stripe, pagenr, rbio->stripe_len); | |
1285 | if (ret) | |
1286 | goto cleanup; | |
1287 | } | |
1288 | } | |
1289 | ||
2c8cdd6e MX |
1290 | if (likely(!bbio->num_tgtdevs)) |
1291 | goto write_data; | |
1292 | ||
1293 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | |
1294 | if (!bbio->tgtdev_map[stripe]) | |
1295 | continue; | |
1296 | ||
915e2290 | 1297 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
2c8cdd6e MX |
1298 | struct page *page; |
1299 | if (stripe < rbio->nr_data) { | |
1300 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
1301 | if (!page) | |
1302 | continue; | |
1303 | } else { | |
1304 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1305 | } | |
1306 | ||
1307 | ret = rbio_add_io_page(rbio, &bio_list, page, | |
1308 | rbio->bbio->tgtdev_map[stripe], | |
1309 | pagenr, rbio->stripe_len); | |
1310 | if (ret) | |
1311 | goto cleanup; | |
1312 | } | |
1313 | } | |
1314 | ||
1315 | write_data: | |
b89e1b01 MX |
1316 | atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); |
1317 | BUG_ON(atomic_read(&rbio->stripes_pending) == 0); | |
53b381b3 DW |
1318 | |
1319 | while (1) { | |
1320 | bio = bio_list_pop(&bio_list); | |
1321 | if (!bio) | |
1322 | break; | |
1323 | ||
1324 | bio->bi_private = rbio; | |
1325 | bio->bi_end_io = raid_write_end_io; | |
ebcc3263 | 1326 | bio->bi_opf = REQ_OP_WRITE; |
4e49ea4a MC |
1327 | |
1328 | submit_bio(bio); | |
53b381b3 DW |
1329 | } |
1330 | return; | |
1331 | ||
1332 | cleanup: | |
58efbc9f | 1333 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
785884fc LB |
1334 | |
1335 | while ((bio = bio_list_pop(&bio_list))) | |
1336 | bio_put(bio); | |
53b381b3 DW |
1337 | } |
1338 | ||
1339 | /* | |
1340 | * helper to find the stripe number for a given bio. Used to figure out which | |
1341 | * stripe has failed. This expects the bio to correspond to a physical disk, | |
1342 | * so it looks up based on physical sector numbers. | |
1343 | */ | |
1344 | static int find_bio_stripe(struct btrfs_raid_bio *rbio, | |
1345 | struct bio *bio) | |
1346 | { | |
4f024f37 | 1347 | u64 physical = bio->bi_iter.bi_sector; |
53b381b3 DW |
1348 | u64 stripe_start; |
1349 | int i; | |
1350 | struct btrfs_bio_stripe *stripe; | |
1351 | ||
1352 | physical <<= 9; | |
1353 | ||
1354 | for (i = 0; i < rbio->bbio->num_stripes; i++) { | |
1355 | stripe = &rbio->bbio->stripes[i]; | |
1356 | stripe_start = stripe->physical; | |
1357 | if (physical >= stripe_start && | |
2c8cdd6e | 1358 | physical < stripe_start + rbio->stripe_len && |
047fdea6 | 1359 | stripe->dev->bdev && |
74d46992 CH |
1360 | bio->bi_disk == stripe->dev->bdev->bd_disk && |
1361 | bio->bi_partno == stripe->dev->bdev->bd_partno) { | |
53b381b3 DW |
1362 | return i; |
1363 | } | |
1364 | } | |
1365 | return -1; | |
1366 | } | |
1367 | ||
1368 | /* | |
1369 | * helper to find the stripe number for a given | |
1370 | * bio (before mapping). Used to figure out which stripe has | |
1371 | * failed. This looks up based on logical block numbers. | |
1372 | */ | |
1373 | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, | |
1374 | struct bio *bio) | |
1375 | { | |
4f024f37 | 1376 | u64 logical = bio->bi_iter.bi_sector; |
53b381b3 DW |
1377 | u64 stripe_start; |
1378 | int i; | |
1379 | ||
1380 | logical <<= 9; | |
1381 | ||
1382 | for (i = 0; i < rbio->nr_data; i++) { | |
8e5cfb55 | 1383 | stripe_start = rbio->bbio->raid_map[i]; |
53b381b3 DW |
1384 | if (logical >= stripe_start && |
1385 | logical < stripe_start + rbio->stripe_len) { | |
1386 | return i; | |
1387 | } | |
1388 | } | |
1389 | return -1; | |
1390 | } | |
1391 | ||
1392 | /* | |
1393 | * returns -EIO if we had too many failures | |
1394 | */ | |
1395 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) | |
1396 | { | |
1397 | unsigned long flags; | |
1398 | int ret = 0; | |
1399 | ||
1400 | spin_lock_irqsave(&rbio->bio_list_lock, flags); | |
1401 | ||
1402 | /* we already know this stripe is bad, move on */ | |
1403 | if (rbio->faila == failed || rbio->failb == failed) | |
1404 | goto out; | |
1405 | ||
1406 | if (rbio->faila == -1) { | |
1407 | /* first failure on this rbio */ | |
1408 | rbio->faila = failed; | |
b89e1b01 | 1409 | atomic_inc(&rbio->error); |
53b381b3 DW |
1410 | } else if (rbio->failb == -1) { |
1411 | /* second failure on this rbio */ | |
1412 | rbio->failb = failed; | |
b89e1b01 | 1413 | atomic_inc(&rbio->error); |
53b381b3 DW |
1414 | } else { |
1415 | ret = -EIO; | |
1416 | } | |
1417 | out: | |
1418 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | |
1419 | ||
1420 | return ret; | |
1421 | } | |
1422 | ||
1423 | /* | |
1424 | * helper to fail a stripe based on a physical disk | |
1425 | * bio. | |
1426 | */ | |
1427 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, | |
1428 | struct bio *bio) | |
1429 | { | |
1430 | int failed = find_bio_stripe(rbio, bio); | |
1431 | ||
1432 | if (failed < 0) | |
1433 | return -EIO; | |
1434 | ||
1435 | return fail_rbio_index(rbio, failed); | |
1436 | } | |
1437 | ||
1438 | /* | |
1439 | * this sets each page in the bio uptodate. It should only be used on private | |
1440 | * rbio pages, nothing that comes in from the higher layers | |
1441 | */ | |
1442 | static void set_bio_pages_uptodate(struct bio *bio) | |
1443 | { | |
0198e5b7 LB |
1444 | struct bio_vec *bvec; |
1445 | int i; | |
6592e58c | 1446 | |
0198e5b7 | 1447 | ASSERT(!bio_flagged(bio, BIO_CLONED)); |
53b381b3 | 1448 | |
0198e5b7 LB |
1449 | bio_for_each_segment_all(bvec, bio, i) |
1450 | SetPageUptodate(bvec->bv_page); | |
53b381b3 DW |
1451 | } |
1452 | ||
1453 | /* | |
1454 | * end io for the read phase of the rmw cycle. All the bios here are physical | |
1455 | * stripe bios we've read from the disk so we can recalculate the parity of the | |
1456 | * stripe. | |
1457 | * | |
1458 | * This will usually kick off finish_rmw once all the bios are read in, but it | |
1459 | * may trigger parity reconstruction if we had any errors along the way | |
1460 | */ | |
4246a0b6 | 1461 | static void raid_rmw_end_io(struct bio *bio) |
53b381b3 DW |
1462 | { |
1463 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
1464 | ||
4e4cbee9 | 1465 | if (bio->bi_status) |
53b381b3 DW |
1466 | fail_bio_stripe(rbio, bio); |
1467 | else | |
1468 | set_bio_pages_uptodate(bio); | |
1469 | ||
1470 | bio_put(bio); | |
1471 | ||
b89e1b01 | 1472 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
53b381b3 DW |
1473 | return; |
1474 | ||
b89e1b01 | 1475 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
53b381b3 DW |
1476 | goto cleanup; |
1477 | ||
1478 | /* | |
1479 | * this will normally call finish_rmw to start our write | |
1480 | * but if there are any failed stripes we'll reconstruct | |
1481 | * from parity first | |
1482 | */ | |
1483 | validate_rbio_for_rmw(rbio); | |
1484 | return; | |
1485 | ||
1486 | cleanup: | |
1487 | ||
58efbc9f | 1488 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
53b381b3 DW |
1489 | } |
1490 | ||
53b381b3 DW |
1491 | /* |
1492 | * the stripe must be locked by the caller. It will | |
1493 | * unlock after all the writes are done | |
1494 | */ | |
1495 | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) | |
1496 | { | |
1497 | int bios_to_read = 0; | |
53b381b3 DW |
1498 | struct bio_list bio_list; |
1499 | int ret; | |
53b381b3 DW |
1500 | int pagenr; |
1501 | int stripe; | |
1502 | struct bio *bio; | |
1503 | ||
1504 | bio_list_init(&bio_list); | |
1505 | ||
1506 | ret = alloc_rbio_pages(rbio); | |
1507 | if (ret) | |
1508 | goto cleanup; | |
1509 | ||
1510 | index_rbio_pages(rbio); | |
1511 | ||
b89e1b01 | 1512 | atomic_set(&rbio->error, 0); |
53b381b3 DW |
1513 | /* |
1514 | * build a list of bios to read all the missing parts of this | |
1515 | * stripe | |
1516 | */ | |
1517 | for (stripe = 0; stripe < rbio->nr_data; stripe++) { | |
915e2290 | 1518 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
53b381b3 DW |
1519 | struct page *page; |
1520 | /* | |
1521 | * we want to find all the pages missing from | |
1522 | * the rbio and read them from the disk. If | |
1523 | * page_in_rbio finds a page in the bio list | |
1524 | * we don't need to read it off the stripe. | |
1525 | */ | |
1526 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
1527 | if (page) | |
1528 | continue; | |
1529 | ||
1530 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
4ae10b3a CM |
1531 | /* |
1532 | * the bio cache may have handed us an uptodate | |
1533 | * page. If so, be happy and use it | |
1534 | */ | |
1535 | if (PageUptodate(page)) | |
1536 | continue; | |
1537 | ||
53b381b3 DW |
1538 | ret = rbio_add_io_page(rbio, &bio_list, page, |
1539 | stripe, pagenr, rbio->stripe_len); | |
1540 | if (ret) | |
1541 | goto cleanup; | |
1542 | } | |
1543 | } | |
1544 | ||
1545 | bios_to_read = bio_list_size(&bio_list); | |
1546 | if (!bios_to_read) { | |
1547 | /* | |
1548 | * this can happen if others have merged with | |
1549 | * us, it means there is nothing left to read. | |
1550 | * But if there are missing devices it may not be | |
1551 | * safe to do the full stripe write yet. | |
1552 | */ | |
1553 | goto finish; | |
1554 | } | |
1555 | ||
1556 | /* | |
1557 | * the bbio may be freed once we submit the last bio. Make sure | |
1558 | * not to touch it after that | |
1559 | */ | |
b89e1b01 | 1560 | atomic_set(&rbio->stripes_pending, bios_to_read); |
53b381b3 DW |
1561 | while (1) { |
1562 | bio = bio_list_pop(&bio_list); | |
1563 | if (!bio) | |
1564 | break; | |
1565 | ||
1566 | bio->bi_private = rbio; | |
1567 | bio->bi_end_io = raid_rmw_end_io; | |
ebcc3263 | 1568 | bio->bi_opf = REQ_OP_READ; |
53b381b3 | 1569 | |
0b246afa | 1570 | btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
53b381b3 | 1571 | |
4e49ea4a | 1572 | submit_bio(bio); |
53b381b3 DW |
1573 | } |
1574 | /* the actual write will happen once the reads are done */ | |
1575 | return 0; | |
1576 | ||
1577 | cleanup: | |
58efbc9f | 1578 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
785884fc LB |
1579 | |
1580 | while ((bio = bio_list_pop(&bio_list))) | |
1581 | bio_put(bio); | |
1582 | ||
53b381b3 DW |
1583 | return -EIO; |
1584 | ||
1585 | finish: | |
1586 | validate_rbio_for_rmw(rbio); | |
1587 | return 0; | |
1588 | } | |
1589 | ||
1590 | /* | |
1591 | * if the upper layers pass in a full stripe, we thank them by only allocating | |
1592 | * enough pages to hold the parity, and sending it all down quickly. | |
1593 | */ | |
1594 | static int full_stripe_write(struct btrfs_raid_bio *rbio) | |
1595 | { | |
1596 | int ret; | |
1597 | ||
1598 | ret = alloc_rbio_parity_pages(rbio); | |
3cd846d1 MX |
1599 | if (ret) { |
1600 | __free_raid_bio(rbio); | |
53b381b3 | 1601 | return ret; |
3cd846d1 | 1602 | } |
53b381b3 DW |
1603 | |
1604 | ret = lock_stripe_add(rbio); | |
1605 | if (ret == 0) | |
1606 | finish_rmw(rbio); | |
1607 | return 0; | |
1608 | } | |
1609 | ||
1610 | /* | |
1611 | * partial stripe writes get handed over to async helpers. | |
1612 | * We're really hoping to merge a few more writes into this | |
1613 | * rbio before calculating new parity | |
1614 | */ | |
1615 | static int partial_stripe_write(struct btrfs_raid_bio *rbio) | |
1616 | { | |
1617 | int ret; | |
1618 | ||
1619 | ret = lock_stripe_add(rbio); | |
1620 | if (ret == 0) | |
cf6a4a75 | 1621 | start_async_work(rbio, rmw_work); |
53b381b3 DW |
1622 | return 0; |
1623 | } | |
1624 | ||
1625 | /* | |
1626 | * sometimes while we were reading from the drive to | |
1627 | * recalculate parity, enough new bios come into create | |
1628 | * a full stripe. So we do a check here to see if we can | |
1629 | * go directly to finish_rmw | |
1630 | */ | |
1631 | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) | |
1632 | { | |
1633 | /* head off into rmw land if we don't have a full stripe */ | |
1634 | if (!rbio_is_full(rbio)) | |
1635 | return partial_stripe_write(rbio); | |
1636 | return full_stripe_write(rbio); | |
1637 | } | |
1638 | ||
6ac0f488 CM |
1639 | /* |
1640 | * We use plugging call backs to collect full stripes. | |
1641 | * Any time we get a partial stripe write while plugged | |
1642 | * we collect it into a list. When the unplug comes down, | |
1643 | * we sort the list by logical block number and merge | |
1644 | * everything we can into the same rbios | |
1645 | */ | |
1646 | struct btrfs_plug_cb { | |
1647 | struct blk_plug_cb cb; | |
1648 | struct btrfs_fs_info *info; | |
1649 | struct list_head rbio_list; | |
1650 | struct btrfs_work work; | |
1651 | }; | |
1652 | ||
1653 | /* | |
1654 | * rbios on the plug list are sorted for easier merging. | |
1655 | */ | |
1656 | static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) | |
1657 | { | |
1658 | struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, | |
1659 | plug_list); | |
1660 | struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | |
1661 | plug_list); | |
4f024f37 KO |
1662 | u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; |
1663 | u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; | |
6ac0f488 CM |
1664 | |
1665 | if (a_sector < b_sector) | |
1666 | return -1; | |
1667 | if (a_sector > b_sector) | |
1668 | return 1; | |
1669 | return 0; | |
1670 | } | |
1671 | ||
1672 | static void run_plug(struct btrfs_plug_cb *plug) | |
1673 | { | |
1674 | struct btrfs_raid_bio *cur; | |
1675 | struct btrfs_raid_bio *last = NULL; | |
1676 | ||
1677 | /* | |
1678 | * sort our plug list then try to merge | |
1679 | * everything we can in hopes of creating full | |
1680 | * stripes. | |
1681 | */ | |
1682 | list_sort(NULL, &plug->rbio_list, plug_cmp); | |
1683 | while (!list_empty(&plug->rbio_list)) { | |
1684 | cur = list_entry(plug->rbio_list.next, | |
1685 | struct btrfs_raid_bio, plug_list); | |
1686 | list_del_init(&cur->plug_list); | |
1687 | ||
1688 | if (rbio_is_full(cur)) { | |
c7b562c5 DS |
1689 | int ret; |
1690 | ||
6ac0f488 | 1691 | /* we have a full stripe, send it down */ |
c7b562c5 DS |
1692 | ret = full_stripe_write(cur); |
1693 | BUG_ON(ret); | |
6ac0f488 CM |
1694 | continue; |
1695 | } | |
1696 | if (last) { | |
1697 | if (rbio_can_merge(last, cur)) { | |
1698 | merge_rbio(last, cur); | |
1699 | __free_raid_bio(cur); | |
1700 | continue; | |
1701 | ||
1702 | } | |
1703 | __raid56_parity_write(last); | |
1704 | } | |
1705 | last = cur; | |
1706 | } | |
1707 | if (last) { | |
1708 | __raid56_parity_write(last); | |
1709 | } | |
1710 | kfree(plug); | |
1711 | } | |
1712 | ||
1713 | /* | |
1714 | * if the unplug comes from schedule, we have to push the | |
1715 | * work off to a helper thread | |
1716 | */ | |
1717 | static void unplug_work(struct btrfs_work *work) | |
1718 | { | |
1719 | struct btrfs_plug_cb *plug; | |
1720 | plug = container_of(work, struct btrfs_plug_cb, work); | |
1721 | run_plug(plug); | |
1722 | } | |
1723 | ||
1724 | static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) | |
1725 | { | |
1726 | struct btrfs_plug_cb *plug; | |
1727 | plug = container_of(cb, struct btrfs_plug_cb, cb); | |
1728 | ||
1729 | if (from_schedule) { | |
9e0af237 LB |
1730 | btrfs_init_work(&plug->work, btrfs_rmw_helper, |
1731 | unplug_work, NULL, NULL); | |
d05a33ac QW |
1732 | btrfs_queue_work(plug->info->rmw_workers, |
1733 | &plug->work); | |
6ac0f488 CM |
1734 | return; |
1735 | } | |
1736 | run_plug(plug); | |
1737 | } | |
1738 | ||
53b381b3 DW |
1739 | /* |
1740 | * our main entry point for writes from the rest of the FS. | |
1741 | */ | |
2ff7e61e | 1742 | int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, |
8e5cfb55 | 1743 | struct btrfs_bio *bbio, u64 stripe_len) |
53b381b3 DW |
1744 | { |
1745 | struct btrfs_raid_bio *rbio; | |
6ac0f488 CM |
1746 | struct btrfs_plug_cb *plug = NULL; |
1747 | struct blk_plug_cb *cb; | |
4245215d | 1748 | int ret; |
53b381b3 | 1749 | |
2ff7e61e | 1750 | rbio = alloc_rbio(fs_info, bbio, stripe_len); |
af8e2d1d | 1751 | if (IS_ERR(rbio)) { |
6e9606d2 | 1752 | btrfs_put_bbio(bbio); |
53b381b3 | 1753 | return PTR_ERR(rbio); |
af8e2d1d | 1754 | } |
53b381b3 | 1755 | bio_list_add(&rbio->bio_list, bio); |
4f024f37 | 1756 | rbio->bio_list_bytes = bio->bi_iter.bi_size; |
1b94b556 | 1757 | rbio->operation = BTRFS_RBIO_WRITE; |
6ac0f488 | 1758 | |
0b246afa | 1759 | btrfs_bio_counter_inc_noblocked(fs_info); |
4245215d MX |
1760 | rbio->generic_bio_cnt = 1; |
1761 | ||
6ac0f488 CM |
1762 | /* |
1763 | * don't plug on full rbios, just get them out the door | |
1764 | * as quickly as we can | |
1765 | */ | |
4245215d MX |
1766 | if (rbio_is_full(rbio)) { |
1767 | ret = full_stripe_write(rbio); | |
1768 | if (ret) | |
0b246afa | 1769 | btrfs_bio_counter_dec(fs_info); |
4245215d MX |
1770 | return ret; |
1771 | } | |
6ac0f488 | 1772 | |
0b246afa | 1773 | cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); |
6ac0f488 CM |
1774 | if (cb) { |
1775 | plug = container_of(cb, struct btrfs_plug_cb, cb); | |
1776 | if (!plug->info) { | |
0b246afa | 1777 | plug->info = fs_info; |
6ac0f488 CM |
1778 | INIT_LIST_HEAD(&plug->rbio_list); |
1779 | } | |
1780 | list_add_tail(&rbio->plug_list, &plug->rbio_list); | |
4245215d | 1781 | ret = 0; |
6ac0f488 | 1782 | } else { |
4245215d MX |
1783 | ret = __raid56_parity_write(rbio); |
1784 | if (ret) | |
0b246afa | 1785 | btrfs_bio_counter_dec(fs_info); |
6ac0f488 | 1786 | } |
4245215d | 1787 | return ret; |
53b381b3 DW |
1788 | } |
1789 | ||
1790 | /* | |
1791 | * all parity reconstruction happens here. We've read in everything | |
1792 | * we can find from the drives and this does the heavy lifting of | |
1793 | * sorting the good from the bad. | |
1794 | */ | |
1795 | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) | |
1796 | { | |
1797 | int pagenr, stripe; | |
1798 | void **pointers; | |
1799 | int faila = -1, failb = -1; | |
53b381b3 | 1800 | struct page *page; |
58efbc9f | 1801 | blk_status_t err; |
53b381b3 DW |
1802 | int i; |
1803 | ||
31e818fe | 1804 | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
53b381b3 | 1805 | if (!pointers) { |
58efbc9f | 1806 | err = BLK_STS_RESOURCE; |
53b381b3 DW |
1807 | goto cleanup_io; |
1808 | } | |
1809 | ||
1810 | faila = rbio->faila; | |
1811 | failb = rbio->failb; | |
1812 | ||
b4ee1782 OS |
1813 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
1814 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | |
53b381b3 DW |
1815 | spin_lock_irq(&rbio->bio_list_lock); |
1816 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | |
1817 | spin_unlock_irq(&rbio->bio_list_lock); | |
1818 | } | |
1819 | ||
1820 | index_rbio_pages(rbio); | |
1821 | ||
915e2290 | 1822 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
5a6ac9ea MX |
1823 | /* |
1824 | * Now we just use bitmap to mark the horizontal stripes in | |
1825 | * which we have data when doing parity scrub. | |
1826 | */ | |
1827 | if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && | |
1828 | !test_bit(pagenr, rbio->dbitmap)) | |
1829 | continue; | |
1830 | ||
53b381b3 DW |
1831 | /* setup our array of pointers with pages |
1832 | * from each stripe | |
1833 | */ | |
2c8cdd6e | 1834 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
53b381b3 DW |
1835 | /* |
1836 | * if we're rebuilding a read, we have to use | |
1837 | * pages from the bio list | |
1838 | */ | |
b4ee1782 OS |
1839 | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || |
1840 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | |
53b381b3 DW |
1841 | (stripe == faila || stripe == failb)) { |
1842 | page = page_in_rbio(rbio, stripe, pagenr, 0); | |
1843 | } else { | |
1844 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1845 | } | |
1846 | pointers[stripe] = kmap(page); | |
1847 | } | |
1848 | ||
1849 | /* all raid6 handling here */ | |
10f11900 | 1850 | if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { |
53b381b3 DW |
1851 | /* |
1852 | * single failure, rebuild from parity raid5 | |
1853 | * style | |
1854 | */ | |
1855 | if (failb < 0) { | |
1856 | if (faila == rbio->nr_data) { | |
1857 | /* | |
1858 | * Just the P stripe has failed, without | |
1859 | * a bad data or Q stripe. | |
1860 | * TODO, we should redo the xor here. | |
1861 | */ | |
58efbc9f | 1862 | err = BLK_STS_IOERR; |
53b381b3 DW |
1863 | goto cleanup; |
1864 | } | |
1865 | /* | |
1866 | * a single failure in raid6 is rebuilt | |
1867 | * in the pstripe code below | |
1868 | */ | |
1869 | goto pstripe; | |
1870 | } | |
1871 | ||
1872 | /* make sure our ps and qs are in order */ | |
1873 | if (faila > failb) { | |
1874 | int tmp = failb; | |
1875 | failb = faila; | |
1876 | faila = tmp; | |
1877 | } | |
1878 | ||
1879 | /* if the q stripe is failed, do a pstripe reconstruction | |
1880 | * from the xors. | |
1881 | * If both the q stripe and the P stripe are failed, we're | |
1882 | * here due to a crc mismatch and we can't give them the | |
1883 | * data they want | |
1884 | */ | |
8e5cfb55 ZL |
1885 | if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { |
1886 | if (rbio->bbio->raid_map[faila] == | |
1887 | RAID5_P_STRIPE) { | |
58efbc9f | 1888 | err = BLK_STS_IOERR; |
53b381b3 DW |
1889 | goto cleanup; |
1890 | } | |
1891 | /* | |
1892 | * otherwise we have one bad data stripe and | |
1893 | * a good P stripe. raid5! | |
1894 | */ | |
1895 | goto pstripe; | |
1896 | } | |
1897 | ||
8e5cfb55 | 1898 | if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { |
2c8cdd6e | 1899 | raid6_datap_recov(rbio->real_stripes, |
53b381b3 DW |
1900 | PAGE_SIZE, faila, pointers); |
1901 | } else { | |
2c8cdd6e | 1902 | raid6_2data_recov(rbio->real_stripes, |
53b381b3 DW |
1903 | PAGE_SIZE, faila, failb, |
1904 | pointers); | |
1905 | } | |
1906 | } else { | |
1907 | void *p; | |
1908 | ||
1909 | /* rebuild from P stripe here (raid5 or raid6) */ | |
1910 | BUG_ON(failb != -1); | |
1911 | pstripe: | |
1912 | /* Copy parity block into failed block to start with */ | |
69d24804 | 1913 | copy_page(pointers[faila], pointers[rbio->nr_data]); |
53b381b3 DW |
1914 | |
1915 | /* rearrange the pointer array */ | |
1916 | p = pointers[faila]; | |
1917 | for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) | |
1918 | pointers[stripe] = pointers[stripe + 1]; | |
1919 | pointers[rbio->nr_data - 1] = p; | |
1920 | ||
1921 | /* xor in the rest */ | |
09cbfeaf | 1922 | run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); |
53b381b3 DW |
1923 | } |
1924 | /* if we're doing this rebuild as part of an rmw, go through | |
1925 | * and set all of our private rbio pages in the | |
1926 | * failed stripes as uptodate. This way finish_rmw will | |
1927 | * know they can be trusted. If this was a read reconstruction, | |
1928 | * other endio functions will fiddle the uptodate bits | |
1929 | */ | |
1b94b556 | 1930 | if (rbio->operation == BTRFS_RBIO_WRITE) { |
915e2290 | 1931 | for (i = 0; i < rbio->stripe_npages; i++) { |
53b381b3 DW |
1932 | if (faila != -1) { |
1933 | page = rbio_stripe_page(rbio, faila, i); | |
1934 | SetPageUptodate(page); | |
1935 | } | |
1936 | if (failb != -1) { | |
1937 | page = rbio_stripe_page(rbio, failb, i); | |
1938 | SetPageUptodate(page); | |
1939 | } | |
1940 | } | |
1941 | } | |
2c8cdd6e | 1942 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
53b381b3 DW |
1943 | /* |
1944 | * if we're rebuilding a read, we have to use | |
1945 | * pages from the bio list | |
1946 | */ | |
b4ee1782 OS |
1947 | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || |
1948 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | |
53b381b3 DW |
1949 | (stripe == faila || stripe == failb)) { |
1950 | page = page_in_rbio(rbio, stripe, pagenr, 0); | |
1951 | } else { | |
1952 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1953 | } | |
1954 | kunmap(page); | |
1955 | } | |
1956 | } | |
1957 | ||
58efbc9f | 1958 | err = BLK_STS_OK; |
53b381b3 DW |
1959 | cleanup: |
1960 | kfree(pointers); | |
1961 | ||
1962 | cleanup_io: | |
580c6efa LB |
1963 | /* |
1964 | * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a | |
1965 | * valid rbio which is consistent with ondisk content, thus such a | |
1966 | * valid rbio can be cached to avoid further disk reads. | |
1967 | */ | |
1968 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || | |
1969 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | |
44ac474d LB |
1970 | /* |
1971 | * - In case of two failures, where rbio->failb != -1: | |
1972 | * | |
1973 | * Do not cache this rbio since the above read reconstruction | |
1974 | * (raid6_datap_recov() or raid6_2data_recov()) may have | |
1975 | * changed some content of stripes which are not identical to | |
1976 | * on-disk content any more, otherwise, a later write/recover | |
1977 | * may steal stripe_pages from this rbio and end up with | |
1978 | * corruptions or rebuild failures. | |
1979 | * | |
1980 | * - In case of single failure, where rbio->failb == -1: | |
1981 | * | |
1982 | * Cache this rbio iff the above read reconstruction is | |
52042d8e | 1983 | * executed without problems. |
44ac474d LB |
1984 | */ |
1985 | if (err == BLK_STS_OK && rbio->failb < 0) | |
4ae10b3a CM |
1986 | cache_rbio_pages(rbio); |
1987 | else | |
1988 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
1989 | ||
4246a0b6 | 1990 | rbio_orig_end_io(rbio, err); |
58efbc9f | 1991 | } else if (err == BLK_STS_OK) { |
53b381b3 DW |
1992 | rbio->faila = -1; |
1993 | rbio->failb = -1; | |
5a6ac9ea MX |
1994 | |
1995 | if (rbio->operation == BTRFS_RBIO_WRITE) | |
1996 | finish_rmw(rbio); | |
1997 | else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) | |
1998 | finish_parity_scrub(rbio, 0); | |
1999 | else | |
2000 | BUG(); | |
53b381b3 | 2001 | } else { |
4246a0b6 | 2002 | rbio_orig_end_io(rbio, err); |
53b381b3 DW |
2003 | } |
2004 | } | |
2005 | ||
2006 | /* | |
2007 | * This is called only for stripes we've read from disk to | |
2008 | * reconstruct the parity. | |
2009 | */ | |
4246a0b6 | 2010 | static void raid_recover_end_io(struct bio *bio) |
53b381b3 DW |
2011 | { |
2012 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
2013 | ||
2014 | /* | |
2015 | * we only read stripe pages off the disk, set them | |
2016 | * up to date if there were no errors | |
2017 | */ | |
4e4cbee9 | 2018 | if (bio->bi_status) |
53b381b3 DW |
2019 | fail_bio_stripe(rbio, bio); |
2020 | else | |
2021 | set_bio_pages_uptodate(bio); | |
2022 | bio_put(bio); | |
2023 | ||
b89e1b01 | 2024 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
53b381b3 DW |
2025 | return; |
2026 | ||
b89e1b01 | 2027 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
58efbc9f | 2028 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
53b381b3 DW |
2029 | else |
2030 | __raid_recover_end_io(rbio); | |
2031 | } | |
2032 | ||
2033 | /* | |
2034 | * reads everything we need off the disk to reconstruct | |
2035 | * the parity. endio handlers trigger final reconstruction | |
2036 | * when the IO is done. | |
2037 | * | |
2038 | * This is used both for reads from the higher layers and for | |
2039 | * parity construction required to finish a rmw cycle. | |
2040 | */ | |
2041 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) | |
2042 | { | |
2043 | int bios_to_read = 0; | |
53b381b3 DW |
2044 | struct bio_list bio_list; |
2045 | int ret; | |
53b381b3 DW |
2046 | int pagenr; |
2047 | int stripe; | |
2048 | struct bio *bio; | |
2049 | ||
2050 | bio_list_init(&bio_list); | |
2051 | ||
2052 | ret = alloc_rbio_pages(rbio); | |
2053 | if (ret) | |
2054 | goto cleanup; | |
2055 | ||
b89e1b01 | 2056 | atomic_set(&rbio->error, 0); |
53b381b3 DW |
2057 | |
2058 | /* | |
4ae10b3a CM |
2059 | * read everything that hasn't failed. Thanks to the |
2060 | * stripe cache, it is possible that some or all of these | |
2061 | * pages are going to be uptodate. | |
53b381b3 | 2062 | */ |
2c8cdd6e | 2063 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
5588383e | 2064 | if (rbio->faila == stripe || rbio->failb == stripe) { |
b89e1b01 | 2065 | atomic_inc(&rbio->error); |
53b381b3 | 2066 | continue; |
5588383e | 2067 | } |
53b381b3 | 2068 | |
915e2290 | 2069 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
53b381b3 DW |
2070 | struct page *p; |
2071 | ||
2072 | /* | |
2073 | * the rmw code may have already read this | |
2074 | * page in | |
2075 | */ | |
2076 | p = rbio_stripe_page(rbio, stripe, pagenr); | |
2077 | if (PageUptodate(p)) | |
2078 | continue; | |
2079 | ||
2080 | ret = rbio_add_io_page(rbio, &bio_list, | |
2081 | rbio_stripe_page(rbio, stripe, pagenr), | |
2082 | stripe, pagenr, rbio->stripe_len); | |
2083 | if (ret < 0) | |
2084 | goto cleanup; | |
2085 | } | |
2086 | } | |
2087 | ||
2088 | bios_to_read = bio_list_size(&bio_list); | |
2089 | if (!bios_to_read) { | |
2090 | /* | |
2091 | * we might have no bios to read just because the pages | |
2092 | * were up to date, or we might have no bios to read because | |
2093 | * the devices were gone. | |
2094 | */ | |
b89e1b01 | 2095 | if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { |
53b381b3 DW |
2096 | __raid_recover_end_io(rbio); |
2097 | goto out; | |
2098 | } else { | |
2099 | goto cleanup; | |
2100 | } | |
2101 | } | |
2102 | ||
2103 | /* | |
2104 | * the bbio may be freed once we submit the last bio. Make sure | |
2105 | * not to touch it after that | |
2106 | */ | |
b89e1b01 | 2107 | atomic_set(&rbio->stripes_pending, bios_to_read); |
53b381b3 DW |
2108 | while (1) { |
2109 | bio = bio_list_pop(&bio_list); | |
2110 | if (!bio) | |
2111 | break; | |
2112 | ||
2113 | bio->bi_private = rbio; | |
2114 | bio->bi_end_io = raid_recover_end_io; | |
ebcc3263 | 2115 | bio->bi_opf = REQ_OP_READ; |
53b381b3 | 2116 | |
0b246afa | 2117 | btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
53b381b3 | 2118 | |
4e49ea4a | 2119 | submit_bio(bio); |
53b381b3 DW |
2120 | } |
2121 | out: | |
2122 | return 0; | |
2123 | ||
2124 | cleanup: | |
b4ee1782 OS |
2125 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
2126 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) | |
58efbc9f | 2127 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
785884fc LB |
2128 | |
2129 | while ((bio = bio_list_pop(&bio_list))) | |
2130 | bio_put(bio); | |
2131 | ||
53b381b3 DW |
2132 | return -EIO; |
2133 | } | |
2134 | ||
2135 | /* | |
2136 | * the main entry point for reads from the higher layers. This | |
2137 | * is really only called when the normal read path had a failure, | |
2138 | * so we assume the bio they send down corresponds to a failed part | |
2139 | * of the drive. | |
2140 | */ | |
2ff7e61e | 2141 | int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, |
8e5cfb55 ZL |
2142 | struct btrfs_bio *bbio, u64 stripe_len, |
2143 | int mirror_num, int generic_io) | |
53b381b3 DW |
2144 | { |
2145 | struct btrfs_raid_bio *rbio; | |
2146 | int ret; | |
2147 | ||
abad60c6 LB |
2148 | if (generic_io) { |
2149 | ASSERT(bbio->mirror_num == mirror_num); | |
2150 | btrfs_io_bio(bio)->mirror_num = mirror_num; | |
2151 | } | |
2152 | ||
2ff7e61e | 2153 | rbio = alloc_rbio(fs_info, bbio, stripe_len); |
af8e2d1d | 2154 | if (IS_ERR(rbio)) { |
6e9606d2 ZL |
2155 | if (generic_io) |
2156 | btrfs_put_bbio(bbio); | |
53b381b3 | 2157 | return PTR_ERR(rbio); |
af8e2d1d | 2158 | } |
53b381b3 | 2159 | |
1b94b556 | 2160 | rbio->operation = BTRFS_RBIO_READ_REBUILD; |
53b381b3 | 2161 | bio_list_add(&rbio->bio_list, bio); |
4f024f37 | 2162 | rbio->bio_list_bytes = bio->bi_iter.bi_size; |
53b381b3 DW |
2163 | |
2164 | rbio->faila = find_logical_bio_stripe(rbio, bio); | |
2165 | if (rbio->faila == -1) { | |
0b246afa | 2166 | btrfs_warn(fs_info, |
e46a28ca LB |
2167 | "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", |
2168 | __func__, (u64)bio->bi_iter.bi_sector << 9, | |
2169 | (u64)bio->bi_iter.bi_size, bbio->map_type); | |
6e9606d2 ZL |
2170 | if (generic_io) |
2171 | btrfs_put_bbio(bbio); | |
53b381b3 DW |
2172 | kfree(rbio); |
2173 | return -EIO; | |
2174 | } | |
2175 | ||
4245215d | 2176 | if (generic_io) { |
0b246afa | 2177 | btrfs_bio_counter_inc_noblocked(fs_info); |
4245215d MX |
2178 | rbio->generic_bio_cnt = 1; |
2179 | } else { | |
6e9606d2 | 2180 | btrfs_get_bbio(bbio); |
4245215d MX |
2181 | } |
2182 | ||
53b381b3 | 2183 | /* |
8810f751 LB |
2184 | * Loop retry: |
2185 | * for 'mirror == 2', reconstruct from all other stripes. | |
2186 | * for 'mirror_num > 2', select a stripe to fail on every retry. | |
53b381b3 | 2187 | */ |
8810f751 LB |
2188 | if (mirror_num > 2) { |
2189 | /* | |
2190 | * 'mirror == 3' is to fail the p stripe and | |
2191 | * reconstruct from the q stripe. 'mirror > 3' is to | |
2192 | * fail a data stripe and reconstruct from p+q stripe. | |
2193 | */ | |
2194 | rbio->failb = rbio->real_stripes - (mirror_num - 1); | |
2195 | ASSERT(rbio->failb > 0); | |
2196 | if (rbio->failb <= rbio->faila) | |
2197 | rbio->failb--; | |
2198 | } | |
53b381b3 DW |
2199 | |
2200 | ret = lock_stripe_add(rbio); | |
2201 | ||
2202 | /* | |
2203 | * __raid56_parity_recover will end the bio with | |
2204 | * any errors it hits. We don't want to return | |
2205 | * its error value up the stack because our caller | |
2206 | * will end up calling bio_endio with any nonzero | |
2207 | * return | |
2208 | */ | |
2209 | if (ret == 0) | |
2210 | __raid56_parity_recover(rbio); | |
2211 | /* | |
2212 | * our rbio has been added to the list of | |
2213 | * rbios that will be handled after the | |
2214 | * currently lock owner is done | |
2215 | */ | |
2216 | return 0; | |
2217 | ||
2218 | } | |
2219 | ||
2220 | static void rmw_work(struct btrfs_work *work) | |
2221 | { | |
2222 | struct btrfs_raid_bio *rbio; | |
2223 | ||
2224 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
2225 | raid56_rmw_stripe(rbio); | |
2226 | } | |
2227 | ||
2228 | static void read_rebuild_work(struct btrfs_work *work) | |
2229 | { | |
2230 | struct btrfs_raid_bio *rbio; | |
2231 | ||
2232 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
2233 | __raid56_parity_recover(rbio); | |
2234 | } | |
5a6ac9ea MX |
2235 | |
2236 | /* | |
2237 | * The following code is used to scrub/replace the parity stripe | |
2238 | * | |
ae6529c3 QW |
2239 | * Caller must have already increased bio_counter for getting @bbio. |
2240 | * | |
5a6ac9ea MX |
2241 | * Note: We need make sure all the pages that add into the scrub/replace |
2242 | * raid bio are correct and not be changed during the scrub/replace. That | |
2243 | * is those pages just hold metadata or file data with checksum. | |
2244 | */ | |
2245 | ||
2246 | struct btrfs_raid_bio * | |
2ff7e61e | 2247 | raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, |
8e5cfb55 ZL |
2248 | struct btrfs_bio *bbio, u64 stripe_len, |
2249 | struct btrfs_device *scrub_dev, | |
5a6ac9ea MX |
2250 | unsigned long *dbitmap, int stripe_nsectors) |
2251 | { | |
2252 | struct btrfs_raid_bio *rbio; | |
2253 | int i; | |
2254 | ||
2ff7e61e | 2255 | rbio = alloc_rbio(fs_info, bbio, stripe_len); |
5a6ac9ea MX |
2256 | if (IS_ERR(rbio)) |
2257 | return NULL; | |
2258 | bio_list_add(&rbio->bio_list, bio); | |
2259 | /* | |
2260 | * This is a special bio which is used to hold the completion handler | |
2261 | * and make the scrub rbio is similar to the other types | |
2262 | */ | |
2263 | ASSERT(!bio->bi_iter.bi_size); | |
2264 | rbio->operation = BTRFS_RBIO_PARITY_SCRUB; | |
2265 | ||
9cd3a7eb LB |
2266 | /* |
2267 | * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted | |
2268 | * to the end position, so this search can start from the first parity | |
2269 | * stripe. | |
2270 | */ | |
2271 | for (i = rbio->nr_data; i < rbio->real_stripes; i++) { | |
5a6ac9ea MX |
2272 | if (bbio->stripes[i].dev == scrub_dev) { |
2273 | rbio->scrubp = i; | |
2274 | break; | |
2275 | } | |
2276 | } | |
9cd3a7eb | 2277 | ASSERT(i < rbio->real_stripes); |
5a6ac9ea MX |
2278 | |
2279 | /* Now we just support the sectorsize equals to page size */ | |
0b246afa | 2280 | ASSERT(fs_info->sectorsize == PAGE_SIZE); |
5a6ac9ea MX |
2281 | ASSERT(rbio->stripe_npages == stripe_nsectors); |
2282 | bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); | |
2283 | ||
ae6529c3 QW |
2284 | /* |
2285 | * We have already increased bio_counter when getting bbio, record it | |
2286 | * so we can free it at rbio_orig_end_io(). | |
2287 | */ | |
2288 | rbio->generic_bio_cnt = 1; | |
2289 | ||
5a6ac9ea MX |
2290 | return rbio; |
2291 | } | |
2292 | ||
b4ee1782 OS |
2293 | /* Used for both parity scrub and missing. */ |
2294 | void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, | |
2295 | u64 logical) | |
5a6ac9ea MX |
2296 | { |
2297 | int stripe_offset; | |
2298 | int index; | |
2299 | ||
8e5cfb55 ZL |
2300 | ASSERT(logical >= rbio->bbio->raid_map[0]); |
2301 | ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + | |
5a6ac9ea | 2302 | rbio->stripe_len * rbio->nr_data); |
8e5cfb55 | 2303 | stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); |
09cbfeaf | 2304 | index = stripe_offset >> PAGE_SHIFT; |
5a6ac9ea MX |
2305 | rbio->bio_pages[index] = page; |
2306 | } | |
2307 | ||
2308 | /* | |
2309 | * We just scrub the parity that we have correct data on the same horizontal, | |
2310 | * so we needn't allocate all pages for all the stripes. | |
2311 | */ | |
2312 | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) | |
2313 | { | |
2314 | int i; | |
2315 | int bit; | |
2316 | int index; | |
2317 | struct page *page; | |
2318 | ||
2319 | for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { | |
2c8cdd6e | 2320 | for (i = 0; i < rbio->real_stripes; i++) { |
5a6ac9ea MX |
2321 | index = i * rbio->stripe_npages + bit; |
2322 | if (rbio->stripe_pages[index]) | |
2323 | continue; | |
2324 | ||
2325 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
2326 | if (!page) | |
2327 | return -ENOMEM; | |
2328 | rbio->stripe_pages[index] = page; | |
5a6ac9ea MX |
2329 | } |
2330 | } | |
2331 | return 0; | |
2332 | } | |
2333 | ||
5a6ac9ea MX |
2334 | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, |
2335 | int need_check) | |
2336 | { | |
76035976 | 2337 | struct btrfs_bio *bbio = rbio->bbio; |
1389053e KC |
2338 | void **pointers = rbio->finish_pointers; |
2339 | unsigned long *pbitmap = rbio->finish_pbitmap; | |
5a6ac9ea MX |
2340 | int nr_data = rbio->nr_data; |
2341 | int stripe; | |
2342 | int pagenr; | |
2343 | int p_stripe = -1; | |
2344 | int q_stripe = -1; | |
2345 | struct page *p_page = NULL; | |
2346 | struct page *q_page = NULL; | |
2347 | struct bio_list bio_list; | |
2348 | struct bio *bio; | |
76035976 | 2349 | int is_replace = 0; |
5a6ac9ea MX |
2350 | int ret; |
2351 | ||
2352 | bio_list_init(&bio_list); | |
2353 | ||
2c8cdd6e MX |
2354 | if (rbio->real_stripes - rbio->nr_data == 1) { |
2355 | p_stripe = rbio->real_stripes - 1; | |
2356 | } else if (rbio->real_stripes - rbio->nr_data == 2) { | |
2357 | p_stripe = rbio->real_stripes - 2; | |
2358 | q_stripe = rbio->real_stripes - 1; | |
5a6ac9ea MX |
2359 | } else { |
2360 | BUG(); | |
2361 | } | |
2362 | ||
76035976 MX |
2363 | if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { |
2364 | is_replace = 1; | |
2365 | bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); | |
2366 | } | |
2367 | ||
5a6ac9ea MX |
2368 | /* |
2369 | * Because the higher layers(scrubber) are unlikely to | |
2370 | * use this area of the disk again soon, so don't cache | |
2371 | * it. | |
2372 | */ | |
2373 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
2374 | ||
2375 | if (!need_check) | |
2376 | goto writeback; | |
2377 | ||
2378 | p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
2379 | if (!p_page) | |
2380 | goto cleanup; | |
2381 | SetPageUptodate(p_page); | |
2382 | ||
2383 | if (q_stripe != -1) { | |
2384 | q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
2385 | if (!q_page) { | |
2386 | __free_page(p_page); | |
2387 | goto cleanup; | |
2388 | } | |
2389 | SetPageUptodate(q_page); | |
2390 | } | |
2391 | ||
2392 | atomic_set(&rbio->error, 0); | |
2393 | ||
2394 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | |
2395 | struct page *p; | |
2396 | void *parity; | |
2397 | /* first collect one page from each data stripe */ | |
2398 | for (stripe = 0; stripe < nr_data; stripe++) { | |
2399 | p = page_in_rbio(rbio, stripe, pagenr, 0); | |
2400 | pointers[stripe] = kmap(p); | |
2401 | } | |
2402 | ||
2403 | /* then add the parity stripe */ | |
2404 | pointers[stripe++] = kmap(p_page); | |
2405 | ||
2406 | if (q_stripe != -1) { | |
2407 | ||
2408 | /* | |
2409 | * raid6, add the qstripe and call the | |
2410 | * library function to fill in our p/q | |
2411 | */ | |
2412 | pointers[stripe++] = kmap(q_page); | |
2413 | ||
2c8cdd6e | 2414 | raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, |
5a6ac9ea MX |
2415 | pointers); |
2416 | } else { | |
2417 | /* raid5 */ | |
69d24804 | 2418 | copy_page(pointers[nr_data], pointers[0]); |
09cbfeaf | 2419 | run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); |
5a6ac9ea MX |
2420 | } |
2421 | ||
01327610 | 2422 | /* Check scrubbing parity and repair it */ |
5a6ac9ea MX |
2423 | p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); |
2424 | parity = kmap(p); | |
09cbfeaf | 2425 | if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) |
69d24804 | 2426 | copy_page(parity, pointers[rbio->scrubp]); |
5a6ac9ea MX |
2427 | else |
2428 | /* Parity is right, needn't writeback */ | |
2429 | bitmap_clear(rbio->dbitmap, pagenr, 1); | |
2430 | kunmap(p); | |
2431 | ||
2c8cdd6e | 2432 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) |
5a6ac9ea MX |
2433 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
2434 | } | |
2435 | ||
2436 | __free_page(p_page); | |
2437 | if (q_page) | |
2438 | __free_page(q_page); | |
2439 | ||
2440 | writeback: | |
2441 | /* | |
2442 | * time to start writing. Make bios for everything from the | |
2443 | * higher layers (the bio_list in our rbio) and our p/q. Ignore | |
2444 | * everything else. | |
2445 | */ | |
2446 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | |
2447 | struct page *page; | |
2448 | ||
2449 | page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | |
2450 | ret = rbio_add_io_page(rbio, &bio_list, | |
2451 | page, rbio->scrubp, pagenr, rbio->stripe_len); | |
2452 | if (ret) | |
2453 | goto cleanup; | |
2454 | } | |
2455 | ||
76035976 MX |
2456 | if (!is_replace) |
2457 | goto submit_write; | |
2458 | ||
2459 | for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { | |
2460 | struct page *page; | |
2461 | ||
2462 | page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | |
2463 | ret = rbio_add_io_page(rbio, &bio_list, page, | |
2464 | bbio->tgtdev_map[rbio->scrubp], | |
2465 | pagenr, rbio->stripe_len); | |
2466 | if (ret) | |
2467 | goto cleanup; | |
2468 | } | |
2469 | ||
2470 | submit_write: | |
5a6ac9ea MX |
2471 | nr_data = bio_list_size(&bio_list); |
2472 | if (!nr_data) { | |
2473 | /* Every parity is right */ | |
58efbc9f | 2474 | rbio_orig_end_io(rbio, BLK_STS_OK); |
5a6ac9ea MX |
2475 | return; |
2476 | } | |
2477 | ||
2478 | atomic_set(&rbio->stripes_pending, nr_data); | |
2479 | ||
2480 | while (1) { | |
2481 | bio = bio_list_pop(&bio_list); | |
2482 | if (!bio) | |
2483 | break; | |
2484 | ||
2485 | bio->bi_private = rbio; | |
a6111d11 | 2486 | bio->bi_end_io = raid_write_end_io; |
ebcc3263 | 2487 | bio->bi_opf = REQ_OP_WRITE; |
4e49ea4a MC |
2488 | |
2489 | submit_bio(bio); | |
5a6ac9ea MX |
2490 | } |
2491 | return; | |
2492 | ||
2493 | cleanup: | |
58efbc9f | 2494 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
785884fc LB |
2495 | |
2496 | while ((bio = bio_list_pop(&bio_list))) | |
2497 | bio_put(bio); | |
5a6ac9ea MX |
2498 | } |
2499 | ||
2500 | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) | |
2501 | { | |
2502 | if (stripe >= 0 && stripe < rbio->nr_data) | |
2503 | return 1; | |
2504 | return 0; | |
2505 | } | |
2506 | ||
2507 | /* | |
2508 | * While we're doing the parity check and repair, we could have errors | |
2509 | * in reading pages off the disk. This checks for errors and if we're | |
2510 | * not able to read the page it'll trigger parity reconstruction. The | |
2511 | * parity scrub will be finished after we've reconstructed the failed | |
2512 | * stripes | |
2513 | */ | |
2514 | static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) | |
2515 | { | |
2516 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) | |
2517 | goto cleanup; | |
2518 | ||
2519 | if (rbio->faila >= 0 || rbio->failb >= 0) { | |
2520 | int dfail = 0, failp = -1; | |
2521 | ||
2522 | if (is_data_stripe(rbio, rbio->faila)) | |
2523 | dfail++; | |
2524 | else if (is_parity_stripe(rbio->faila)) | |
2525 | failp = rbio->faila; | |
2526 | ||
2527 | if (is_data_stripe(rbio, rbio->failb)) | |
2528 | dfail++; | |
2529 | else if (is_parity_stripe(rbio->failb)) | |
2530 | failp = rbio->failb; | |
2531 | ||
2532 | /* | |
2533 | * Because we can not use a scrubbing parity to repair | |
2534 | * the data, so the capability of the repair is declined. | |
2535 | * (In the case of RAID5, we can not repair anything) | |
2536 | */ | |
2537 | if (dfail > rbio->bbio->max_errors - 1) | |
2538 | goto cleanup; | |
2539 | ||
2540 | /* | |
2541 | * If all data is good, only parity is correctly, just | |
2542 | * repair the parity. | |
2543 | */ | |
2544 | if (dfail == 0) { | |
2545 | finish_parity_scrub(rbio, 0); | |
2546 | return; | |
2547 | } | |
2548 | ||
2549 | /* | |
2550 | * Here means we got one corrupted data stripe and one | |
2551 | * corrupted parity on RAID6, if the corrupted parity | |
01327610 | 2552 | * is scrubbing parity, luckily, use the other one to repair |
5a6ac9ea MX |
2553 | * the data, or we can not repair the data stripe. |
2554 | */ | |
2555 | if (failp != rbio->scrubp) | |
2556 | goto cleanup; | |
2557 | ||
2558 | __raid_recover_end_io(rbio); | |
2559 | } else { | |
2560 | finish_parity_scrub(rbio, 1); | |
2561 | } | |
2562 | return; | |
2563 | ||
2564 | cleanup: | |
58efbc9f | 2565 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
5a6ac9ea MX |
2566 | } |
2567 | ||
2568 | /* | |
2569 | * end io for the read phase of the rmw cycle. All the bios here are physical | |
2570 | * stripe bios we've read from the disk so we can recalculate the parity of the | |
2571 | * stripe. | |
2572 | * | |
2573 | * This will usually kick off finish_rmw once all the bios are read in, but it | |
2574 | * may trigger parity reconstruction if we had any errors along the way | |
2575 | */ | |
4246a0b6 | 2576 | static void raid56_parity_scrub_end_io(struct bio *bio) |
5a6ac9ea MX |
2577 | { |
2578 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
2579 | ||
4e4cbee9 | 2580 | if (bio->bi_status) |
5a6ac9ea MX |
2581 | fail_bio_stripe(rbio, bio); |
2582 | else | |
2583 | set_bio_pages_uptodate(bio); | |
2584 | ||
2585 | bio_put(bio); | |
2586 | ||
2587 | if (!atomic_dec_and_test(&rbio->stripes_pending)) | |
2588 | return; | |
2589 | ||
2590 | /* | |
2591 | * this will normally call finish_rmw to start our write | |
2592 | * but if there are any failed stripes we'll reconstruct | |
2593 | * from parity first | |
2594 | */ | |
2595 | validate_rbio_for_parity_scrub(rbio); | |
2596 | } | |
2597 | ||
2598 | static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) | |
2599 | { | |
2600 | int bios_to_read = 0; | |
5a6ac9ea MX |
2601 | struct bio_list bio_list; |
2602 | int ret; | |
2603 | int pagenr; | |
2604 | int stripe; | |
2605 | struct bio *bio; | |
2606 | ||
785884fc LB |
2607 | bio_list_init(&bio_list); |
2608 | ||
5a6ac9ea MX |
2609 | ret = alloc_rbio_essential_pages(rbio); |
2610 | if (ret) | |
2611 | goto cleanup; | |
2612 | ||
5a6ac9ea MX |
2613 | atomic_set(&rbio->error, 0); |
2614 | /* | |
2615 | * build a list of bios to read all the missing parts of this | |
2616 | * stripe | |
2617 | */ | |
2c8cdd6e | 2618 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
5a6ac9ea MX |
2619 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { |
2620 | struct page *page; | |
2621 | /* | |
2622 | * we want to find all the pages missing from | |
2623 | * the rbio and read them from the disk. If | |
2624 | * page_in_rbio finds a page in the bio list | |
2625 | * we don't need to read it off the stripe. | |
2626 | */ | |
2627 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
2628 | if (page) | |
2629 | continue; | |
2630 | ||
2631 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
2632 | /* | |
2633 | * the bio cache may have handed us an uptodate | |
2634 | * page. If so, be happy and use it | |
2635 | */ | |
2636 | if (PageUptodate(page)) | |
2637 | continue; | |
2638 | ||
2639 | ret = rbio_add_io_page(rbio, &bio_list, page, | |
2640 | stripe, pagenr, rbio->stripe_len); | |
2641 | if (ret) | |
2642 | goto cleanup; | |
2643 | } | |
2644 | } | |
2645 | ||
2646 | bios_to_read = bio_list_size(&bio_list); | |
2647 | if (!bios_to_read) { | |
2648 | /* | |
2649 | * this can happen if others have merged with | |
2650 | * us, it means there is nothing left to read. | |
2651 | * But if there are missing devices it may not be | |
2652 | * safe to do the full stripe write yet. | |
2653 | */ | |
2654 | goto finish; | |
2655 | } | |
2656 | ||
2657 | /* | |
2658 | * the bbio may be freed once we submit the last bio. Make sure | |
2659 | * not to touch it after that | |
2660 | */ | |
2661 | atomic_set(&rbio->stripes_pending, bios_to_read); | |
2662 | while (1) { | |
2663 | bio = bio_list_pop(&bio_list); | |
2664 | if (!bio) | |
2665 | break; | |
2666 | ||
2667 | bio->bi_private = rbio; | |
2668 | bio->bi_end_io = raid56_parity_scrub_end_io; | |
ebcc3263 | 2669 | bio->bi_opf = REQ_OP_READ; |
5a6ac9ea | 2670 | |
0b246afa | 2671 | btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
5a6ac9ea | 2672 | |
4e49ea4a | 2673 | submit_bio(bio); |
5a6ac9ea MX |
2674 | } |
2675 | /* the actual write will happen once the reads are done */ | |
2676 | return; | |
2677 | ||
2678 | cleanup: | |
58efbc9f | 2679 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
785884fc LB |
2680 | |
2681 | while ((bio = bio_list_pop(&bio_list))) | |
2682 | bio_put(bio); | |
2683 | ||
5a6ac9ea MX |
2684 | return; |
2685 | ||
2686 | finish: | |
2687 | validate_rbio_for_parity_scrub(rbio); | |
2688 | } | |
2689 | ||
2690 | static void scrub_parity_work(struct btrfs_work *work) | |
2691 | { | |
2692 | struct btrfs_raid_bio *rbio; | |
2693 | ||
2694 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
2695 | raid56_parity_scrub_stripe(rbio); | |
2696 | } | |
2697 | ||
5a6ac9ea MX |
2698 | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) |
2699 | { | |
2700 | if (!lock_stripe_add(rbio)) | |
a81b747d | 2701 | start_async_work(rbio, scrub_parity_work); |
5a6ac9ea | 2702 | } |
b4ee1782 OS |
2703 | |
2704 | /* The following code is used for dev replace of a missing RAID 5/6 device. */ | |
2705 | ||
2706 | struct btrfs_raid_bio * | |
2ff7e61e | 2707 | raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, |
b4ee1782 OS |
2708 | struct btrfs_bio *bbio, u64 length) |
2709 | { | |
2710 | struct btrfs_raid_bio *rbio; | |
2711 | ||
2ff7e61e | 2712 | rbio = alloc_rbio(fs_info, bbio, length); |
b4ee1782 OS |
2713 | if (IS_ERR(rbio)) |
2714 | return NULL; | |
2715 | ||
2716 | rbio->operation = BTRFS_RBIO_REBUILD_MISSING; | |
2717 | bio_list_add(&rbio->bio_list, bio); | |
2718 | /* | |
2719 | * This is a special bio which is used to hold the completion handler | |
2720 | * and make the scrub rbio is similar to the other types | |
2721 | */ | |
2722 | ASSERT(!bio->bi_iter.bi_size); | |
2723 | ||
2724 | rbio->faila = find_logical_bio_stripe(rbio, bio); | |
2725 | if (rbio->faila == -1) { | |
2726 | BUG(); | |
2727 | kfree(rbio); | |
2728 | return NULL; | |
2729 | } | |
2730 | ||
ae6529c3 QW |
2731 | /* |
2732 | * When we get bbio, we have already increased bio_counter, record it | |
2733 | * so we can free it at rbio_orig_end_io() | |
2734 | */ | |
2735 | rbio->generic_bio_cnt = 1; | |
2736 | ||
b4ee1782 OS |
2737 | return rbio; |
2738 | } | |
2739 | ||
b4ee1782 OS |
2740 | void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) |
2741 | { | |
2742 | if (!lock_stripe_add(rbio)) | |
e66d8d5a | 2743 | start_async_work(rbio, read_rebuild_work); |
b4ee1782 | 2744 | } |