]>
Commit | Line | Data |
---|---|---|
40b0b3f8 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
2965faa5 DY |
2 | /* |
3 | * kexec.c - kexec system call core code. | |
4 | * Copyright (C) 2002-2004 Eric Biederman <[email protected]> | |
2965faa5 DY |
5 | */ |
6 | ||
de90a6bc | 7 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
2965faa5 DY |
8 | |
9 | #include <linux/capability.h> | |
10 | #include <linux/mm.h> | |
11 | #include <linux/file.h> | |
12 | #include <linux/slab.h> | |
13 | #include <linux/fs.h> | |
14 | #include <linux/kexec.h> | |
15 | #include <linux/mutex.h> | |
16 | #include <linux/list.h> | |
17 | #include <linux/highmem.h> | |
18 | #include <linux/syscalls.h> | |
19 | #include <linux/reboot.h> | |
20 | #include <linux/ioport.h> | |
21 | #include <linux/hardirq.h> | |
22 | #include <linux/elf.h> | |
23 | #include <linux/elfcore.h> | |
24 | #include <linux/utsname.h> | |
25 | #include <linux/numa.h> | |
26 | #include <linux/suspend.h> | |
27 | #include <linux/device.h> | |
28 | #include <linux/freezer.h> | |
f39650de | 29 | #include <linux/panic_notifier.h> |
2965faa5 DY |
30 | #include <linux/pm.h> |
31 | #include <linux/cpu.h> | |
32 | #include <linux/uaccess.h> | |
33 | #include <linux/io.h> | |
34 | #include <linux/console.h> | |
35 | #include <linux/vmalloc.h> | |
36 | #include <linux/swap.h> | |
37 | #include <linux/syscore_ops.h> | |
38 | #include <linux/compiler.h> | |
39 | #include <linux/hugetlb.h> | |
00089c04 | 40 | #include <linux/objtool.h> |
b2075dbb | 41 | #include <linux/kmsg_dump.h> |
2965faa5 DY |
42 | |
43 | #include <asm/page.h> | |
44 | #include <asm/sections.h> | |
45 | ||
46 | #include <crypto/hash.h> | |
2965faa5 DY |
47 | #include "kexec_internal.h" |
48 | ||
49 | DEFINE_MUTEX(kexec_mutex); | |
50 | ||
51 | /* Per cpu memory for storing cpu states in case of system crash. */ | |
52 | note_buf_t __percpu *crash_notes; | |
53 | ||
2965faa5 DY |
54 | /* Flag to indicate we are going to kexec a new kernel */ |
55 | bool kexec_in_progress = false; | |
56 | ||
57 | ||
58 | /* Location of the reserved area for the crash kernel */ | |
59 | struct resource crashk_res = { | |
60 | .name = "Crash kernel", | |
61 | .start = 0, | |
62 | .end = 0, | |
1a085d07 TK |
63 | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, |
64 | .desc = IORES_DESC_CRASH_KERNEL | |
2965faa5 DY |
65 | }; |
66 | struct resource crashk_low_res = { | |
67 | .name = "Crash kernel", | |
68 | .start = 0, | |
69 | .end = 0, | |
1a085d07 TK |
70 | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, |
71 | .desc = IORES_DESC_CRASH_KERNEL | |
2965faa5 DY |
72 | }; |
73 | ||
74 | int kexec_should_crash(struct task_struct *p) | |
75 | { | |
76 | /* | |
77 | * If crash_kexec_post_notifiers is enabled, don't run | |
78 | * crash_kexec() here yet, which must be run after panic | |
79 | * notifiers in panic(). | |
80 | */ | |
81 | if (crash_kexec_post_notifiers) | |
82 | return 0; | |
83 | /* | |
05ea0424 | 84 | * There are 4 panic() calls in make_task_dead() path, each of which |
2965faa5 DY |
85 | * corresponds to each of these 4 conditions. |
86 | */ | |
87 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) | |
88 | return 1; | |
89 | return 0; | |
90 | } | |
91 | ||
21db79e8 PT |
92 | int kexec_crash_loaded(void) |
93 | { | |
94 | return !!kexec_crash_image; | |
95 | } | |
96 | EXPORT_SYMBOL_GPL(kexec_crash_loaded); | |
97 | ||
2965faa5 DY |
98 | /* |
99 | * When kexec transitions to the new kernel there is a one-to-one | |
100 | * mapping between physical and virtual addresses. On processors | |
101 | * where you can disable the MMU this is trivial, and easy. For | |
102 | * others it is still a simple predictable page table to setup. | |
103 | * | |
104 | * In that environment kexec copies the new kernel to its final | |
105 | * resting place. This means I can only support memory whose | |
106 | * physical address can fit in an unsigned long. In particular | |
107 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | |
108 | * If the assembly stub has more restrictive requirements | |
109 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | |
110 | * defined more restrictively in <asm/kexec.h>. | |
111 | * | |
112 | * The code for the transition from the current kernel to the | |
7b7b8a2c | 113 | * new kernel is placed in the control_code_buffer, whose size |
2965faa5 DY |
114 | * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single |
115 | * page of memory is necessary, but some architectures require more. | |
116 | * Because this memory must be identity mapped in the transition from | |
117 | * virtual to physical addresses it must live in the range | |
118 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | |
119 | * modifiable. | |
120 | * | |
121 | * The assembly stub in the control code buffer is passed a linked list | |
122 | * of descriptor pages detailing the source pages of the new kernel, | |
123 | * and the destination addresses of those source pages. As this data | |
124 | * structure is not used in the context of the current OS, it must | |
125 | * be self-contained. | |
126 | * | |
127 | * The code has been made to work with highmem pages and will use a | |
128 | * destination page in its final resting place (if it happens | |
129 | * to allocate it). The end product of this is that most of the | |
130 | * physical address space, and most of RAM can be used. | |
131 | * | |
132 | * Future directions include: | |
133 | * - allocating a page table with the control code buffer identity | |
134 | * mapped, to simplify machine_kexec and make kexec_on_panic more | |
135 | * reliable. | |
136 | */ | |
137 | ||
138 | /* | |
139 | * KIMAGE_NO_DEST is an impossible destination address..., for | |
140 | * allocating pages whose destination address we do not care about. | |
141 | */ | |
142 | #define KIMAGE_NO_DEST (-1UL) | |
1730f146 | 143 | #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) |
2965faa5 DY |
144 | |
145 | static struct page *kimage_alloc_page(struct kimage *image, | |
146 | gfp_t gfp_mask, | |
147 | unsigned long dest); | |
148 | ||
149 | int sanity_check_segment_list(struct kimage *image) | |
150 | { | |
4caf9615 | 151 | int i; |
2965faa5 | 152 | unsigned long nr_segments = image->nr_segments; |
1730f146 | 153 | unsigned long total_pages = 0; |
ca79b0c2 | 154 | unsigned long nr_pages = totalram_pages(); |
2965faa5 DY |
155 | |
156 | /* | |
157 | * Verify we have good destination addresses. The caller is | |
158 | * responsible for making certain we don't attempt to load | |
159 | * the new image into invalid or reserved areas of RAM. This | |
160 | * just verifies it is an address we can use. | |
161 | * | |
162 | * Since the kernel does everything in page size chunks ensure | |
163 | * the destination addresses are page aligned. Too many | |
164 | * special cases crop of when we don't do this. The most | |
165 | * insidious is getting overlapping destination addresses | |
166 | * simply because addresses are changed to page size | |
167 | * granularity. | |
168 | */ | |
2965faa5 DY |
169 | for (i = 0; i < nr_segments; i++) { |
170 | unsigned long mstart, mend; | |
171 | ||
172 | mstart = image->segment[i].mem; | |
173 | mend = mstart + image->segment[i].memsz; | |
465d3777 RK |
174 | if (mstart > mend) |
175 | return -EADDRNOTAVAIL; | |
2965faa5 | 176 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) |
4caf9615 | 177 | return -EADDRNOTAVAIL; |
2965faa5 | 178 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) |
4caf9615 | 179 | return -EADDRNOTAVAIL; |
2965faa5 DY |
180 | } |
181 | ||
182 | /* Verify our destination addresses do not overlap. | |
183 | * If we alloed overlapping destination addresses | |
184 | * through very weird things can happen with no | |
185 | * easy explanation as one segment stops on another. | |
186 | */ | |
2965faa5 DY |
187 | for (i = 0; i < nr_segments; i++) { |
188 | unsigned long mstart, mend; | |
189 | unsigned long j; | |
190 | ||
191 | mstart = image->segment[i].mem; | |
192 | mend = mstart + image->segment[i].memsz; | |
193 | for (j = 0; j < i; j++) { | |
194 | unsigned long pstart, pend; | |
195 | ||
196 | pstart = image->segment[j].mem; | |
197 | pend = pstart + image->segment[j].memsz; | |
198 | /* Do the segments overlap ? */ | |
199 | if ((mend > pstart) && (mstart < pend)) | |
4caf9615 | 200 | return -EINVAL; |
2965faa5 DY |
201 | } |
202 | } | |
203 | ||
204 | /* Ensure our buffer sizes are strictly less than | |
205 | * our memory sizes. This should always be the case, | |
206 | * and it is easier to check up front than to be surprised | |
207 | * later on. | |
208 | */ | |
2965faa5 DY |
209 | for (i = 0; i < nr_segments; i++) { |
210 | if (image->segment[i].bufsz > image->segment[i].memsz) | |
4caf9615 | 211 | return -EINVAL; |
2965faa5 DY |
212 | } |
213 | ||
1730f146 | 214 | /* |
215 | * Verify that no more than half of memory will be consumed. If the | |
216 | * request from userspace is too large, a large amount of time will be | |
217 | * wasted allocating pages, which can cause a soft lockup. | |
218 | */ | |
219 | for (i = 0; i < nr_segments; i++) { | |
3d6357de | 220 | if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) |
1730f146 | 221 | return -EINVAL; |
222 | ||
223 | total_pages += PAGE_COUNT(image->segment[i].memsz); | |
224 | } | |
225 | ||
3d6357de | 226 | if (total_pages > nr_pages / 2) |
1730f146 | 227 | return -EINVAL; |
228 | ||
2965faa5 DY |
229 | /* |
230 | * Verify we have good destination addresses. Normally | |
231 | * the caller is responsible for making certain we don't | |
232 | * attempt to load the new image into invalid or reserved | |
233 | * areas of RAM. But crash kernels are preloaded into a | |
234 | * reserved area of ram. We must ensure the addresses | |
235 | * are in the reserved area otherwise preloading the | |
236 | * kernel could corrupt things. | |
237 | */ | |
238 | ||
239 | if (image->type == KEXEC_TYPE_CRASH) { | |
2965faa5 DY |
240 | for (i = 0; i < nr_segments; i++) { |
241 | unsigned long mstart, mend; | |
242 | ||
243 | mstart = image->segment[i].mem; | |
244 | mend = mstart + image->segment[i].memsz - 1; | |
245 | /* Ensure we are within the crash kernel limits */ | |
43546d86 RK |
246 | if ((mstart < phys_to_boot_phys(crashk_res.start)) || |
247 | (mend > phys_to_boot_phys(crashk_res.end))) | |
4caf9615 | 248 | return -EADDRNOTAVAIL; |
2965faa5 DY |
249 | } |
250 | } | |
251 | ||
252 | return 0; | |
253 | } | |
254 | ||
255 | struct kimage *do_kimage_alloc_init(void) | |
256 | { | |
257 | struct kimage *image; | |
258 | ||
259 | /* Allocate a controlling structure */ | |
260 | image = kzalloc(sizeof(*image), GFP_KERNEL); | |
261 | if (!image) | |
262 | return NULL; | |
263 | ||
264 | image->head = 0; | |
265 | image->entry = &image->head; | |
266 | image->last_entry = &image->head; | |
267 | image->control_page = ~0; /* By default this does not apply */ | |
268 | image->type = KEXEC_TYPE_DEFAULT; | |
269 | ||
270 | /* Initialize the list of control pages */ | |
271 | INIT_LIST_HEAD(&image->control_pages); | |
272 | ||
273 | /* Initialize the list of destination pages */ | |
274 | INIT_LIST_HEAD(&image->dest_pages); | |
275 | ||
276 | /* Initialize the list of unusable pages */ | |
277 | INIT_LIST_HEAD(&image->unusable_pages); | |
278 | ||
279 | return image; | |
280 | } | |
281 | ||
282 | int kimage_is_destination_range(struct kimage *image, | |
283 | unsigned long start, | |
284 | unsigned long end) | |
285 | { | |
286 | unsigned long i; | |
287 | ||
288 | for (i = 0; i < image->nr_segments; i++) { | |
289 | unsigned long mstart, mend; | |
290 | ||
291 | mstart = image->segment[i].mem; | |
292 | mend = mstart + image->segment[i].memsz; | |
293 | if ((end > mstart) && (start < mend)) | |
294 | return 1; | |
295 | } | |
296 | ||
297 | return 0; | |
298 | } | |
299 | ||
300 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) | |
301 | { | |
302 | struct page *pages; | |
303 | ||
7c3a6aed TH |
304 | if (fatal_signal_pending(current)) |
305 | return NULL; | |
bba4ed01 | 306 | pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); |
2965faa5 DY |
307 | if (pages) { |
308 | unsigned int count, i; | |
309 | ||
310 | pages->mapping = NULL; | |
311 | set_page_private(pages, order); | |
312 | count = 1 << order; | |
313 | for (i = 0; i < count; i++) | |
314 | SetPageReserved(pages + i); | |
bba4ed01 TL |
315 | |
316 | arch_kexec_post_alloc_pages(page_address(pages), count, | |
317 | gfp_mask); | |
318 | ||
319 | if (gfp_mask & __GFP_ZERO) | |
320 | for (i = 0; i < count; i++) | |
321 | clear_highpage(pages + i); | |
2965faa5 DY |
322 | } |
323 | ||
324 | return pages; | |
325 | } | |
326 | ||
327 | static void kimage_free_pages(struct page *page) | |
328 | { | |
329 | unsigned int order, count, i; | |
330 | ||
331 | order = page_private(page); | |
332 | count = 1 << order; | |
bba4ed01 TL |
333 | |
334 | arch_kexec_pre_free_pages(page_address(page), count); | |
335 | ||
2965faa5 DY |
336 | for (i = 0; i < count; i++) |
337 | ClearPageReserved(page + i); | |
338 | __free_pages(page, order); | |
339 | } | |
340 | ||
341 | void kimage_free_page_list(struct list_head *list) | |
342 | { | |
2b24692b | 343 | struct page *page, *next; |
2965faa5 | 344 | |
2b24692b | 345 | list_for_each_entry_safe(page, next, list, lru) { |
2965faa5 DY |
346 | list_del(&page->lru); |
347 | kimage_free_pages(page); | |
348 | } | |
349 | } | |
350 | ||
351 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, | |
352 | unsigned int order) | |
353 | { | |
354 | /* Control pages are special, they are the intermediaries | |
355 | * that are needed while we copy the rest of the pages | |
356 | * to their final resting place. As such they must | |
357 | * not conflict with either the destination addresses | |
358 | * or memory the kernel is already using. | |
359 | * | |
360 | * The only case where we really need more than one of | |
361 | * these are for architectures where we cannot disable | |
362 | * the MMU and must instead generate an identity mapped | |
363 | * page table for all of the memory. | |
364 | * | |
365 | * At worst this runs in O(N) of the image size. | |
366 | */ | |
367 | struct list_head extra_pages; | |
368 | struct page *pages; | |
369 | unsigned int count; | |
370 | ||
371 | count = 1 << order; | |
372 | INIT_LIST_HEAD(&extra_pages); | |
373 | ||
374 | /* Loop while I can allocate a page and the page allocated | |
375 | * is a destination page. | |
376 | */ | |
377 | do { | |
378 | unsigned long pfn, epfn, addr, eaddr; | |
379 | ||
380 | pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); | |
381 | if (!pages) | |
382 | break; | |
43546d86 | 383 | pfn = page_to_boot_pfn(pages); |
2965faa5 DY |
384 | epfn = pfn + count; |
385 | addr = pfn << PAGE_SHIFT; | |
386 | eaddr = epfn << PAGE_SHIFT; | |
387 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | |
388 | kimage_is_destination_range(image, addr, eaddr)) { | |
389 | list_add(&pages->lru, &extra_pages); | |
390 | pages = NULL; | |
391 | } | |
392 | } while (!pages); | |
393 | ||
394 | if (pages) { | |
395 | /* Remember the allocated page... */ | |
396 | list_add(&pages->lru, &image->control_pages); | |
397 | ||
398 | /* Because the page is already in it's destination | |
399 | * location we will never allocate another page at | |
400 | * that address. Therefore kimage_alloc_pages | |
401 | * will not return it (again) and we don't need | |
402 | * to give it an entry in image->segment[]. | |
403 | */ | |
404 | } | |
405 | /* Deal with the destination pages I have inadvertently allocated. | |
406 | * | |
407 | * Ideally I would convert multi-page allocations into single | |
408 | * page allocations, and add everything to image->dest_pages. | |
409 | * | |
410 | * For now it is simpler to just free the pages. | |
411 | */ | |
412 | kimage_free_page_list(&extra_pages); | |
413 | ||
414 | return pages; | |
415 | } | |
416 | ||
417 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, | |
418 | unsigned int order) | |
419 | { | |
420 | /* Control pages are special, they are the intermediaries | |
421 | * that are needed while we copy the rest of the pages | |
422 | * to their final resting place. As such they must | |
423 | * not conflict with either the destination addresses | |
424 | * or memory the kernel is already using. | |
425 | * | |
426 | * Control pages are also the only pags we must allocate | |
427 | * when loading a crash kernel. All of the other pages | |
428 | * are specified by the segments and we just memcpy | |
429 | * into them directly. | |
430 | * | |
431 | * The only case where we really need more than one of | |
432 | * these are for architectures where we cannot disable | |
433 | * the MMU and must instead generate an identity mapped | |
434 | * page table for all of the memory. | |
435 | * | |
436 | * Given the low demand this implements a very simple | |
437 | * allocator that finds the first hole of the appropriate | |
438 | * size in the reserved memory region, and allocates all | |
439 | * of the memory up to and including the hole. | |
440 | */ | |
441 | unsigned long hole_start, hole_end, size; | |
442 | struct page *pages; | |
443 | ||
444 | pages = NULL; | |
445 | size = (1 << order) << PAGE_SHIFT; | |
446 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | |
447 | hole_end = hole_start + size - 1; | |
448 | while (hole_end <= crashk_res.end) { | |
449 | unsigned long i; | |
450 | ||
8e53c073 | 451 | cond_resched(); |
452 | ||
2965faa5 DY |
453 | if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) |
454 | break; | |
455 | /* See if I overlap any of the segments */ | |
456 | for (i = 0; i < image->nr_segments; i++) { | |
457 | unsigned long mstart, mend; | |
458 | ||
459 | mstart = image->segment[i].mem; | |
460 | mend = mstart + image->segment[i].memsz - 1; | |
461 | if ((hole_end >= mstart) && (hole_start <= mend)) { | |
462 | /* Advance the hole to the end of the segment */ | |
463 | hole_start = (mend + (size - 1)) & ~(size - 1); | |
464 | hole_end = hole_start + size - 1; | |
465 | break; | |
466 | } | |
467 | } | |
468 | /* If I don't overlap any segments I have found my hole! */ | |
469 | if (i == image->nr_segments) { | |
470 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | |
04e9949b | 471 | image->control_page = hole_end; |
2965faa5 DY |
472 | break; |
473 | } | |
474 | } | |
2965faa5 | 475 | |
9cf38d55 LJ |
476 | /* Ensure that these pages are decrypted if SME is enabled. */ |
477 | if (pages) | |
478 | arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); | |
479 | ||
2965faa5 DY |
480 | return pages; |
481 | } | |
482 | ||
483 | ||
484 | struct page *kimage_alloc_control_pages(struct kimage *image, | |
485 | unsigned int order) | |
486 | { | |
487 | struct page *pages = NULL; | |
488 | ||
489 | switch (image->type) { | |
490 | case KEXEC_TYPE_DEFAULT: | |
491 | pages = kimage_alloc_normal_control_pages(image, order); | |
492 | break; | |
493 | case KEXEC_TYPE_CRASH: | |
494 | pages = kimage_alloc_crash_control_pages(image, order); | |
495 | break; | |
496 | } | |
497 | ||
498 | return pages; | |
499 | } | |
500 | ||
1229384f XP |
501 | int kimage_crash_copy_vmcoreinfo(struct kimage *image) |
502 | { | |
503 | struct page *vmcoreinfo_page; | |
504 | void *safecopy; | |
505 | ||
506 | if (image->type != KEXEC_TYPE_CRASH) | |
507 | return 0; | |
508 | ||
509 | /* | |
510 | * For kdump, allocate one vmcoreinfo safe copy from the | |
511 | * crash memory. as we have arch_kexec_protect_crashkres() | |
512 | * after kexec syscall, we naturally protect it from write | |
513 | * (even read) access under kernel direct mapping. But on | |
514 | * the other hand, we still need to operate it when crash | |
515 | * happens to generate vmcoreinfo note, hereby we rely on | |
516 | * vmap for this purpose. | |
517 | */ | |
518 | vmcoreinfo_page = kimage_alloc_control_pages(image, 0); | |
519 | if (!vmcoreinfo_page) { | |
520 | pr_warn("Could not allocate vmcoreinfo buffer\n"); | |
521 | return -ENOMEM; | |
522 | } | |
523 | safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); | |
524 | if (!safecopy) { | |
525 | pr_warn("Could not vmap vmcoreinfo buffer\n"); | |
526 | return -ENOMEM; | |
527 | } | |
528 | ||
529 | image->vmcoreinfo_data_copy = safecopy; | |
530 | crash_update_vmcoreinfo_safecopy(safecopy); | |
531 | ||
532 | return 0; | |
533 | } | |
534 | ||
2965faa5 DY |
535 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) |
536 | { | |
537 | if (*image->entry != 0) | |
538 | image->entry++; | |
539 | ||
540 | if (image->entry == image->last_entry) { | |
541 | kimage_entry_t *ind_page; | |
542 | struct page *page; | |
543 | ||
544 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); | |
545 | if (!page) | |
546 | return -ENOMEM; | |
547 | ||
548 | ind_page = page_address(page); | |
43546d86 | 549 | *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; |
2965faa5 DY |
550 | image->entry = ind_page; |
551 | image->last_entry = ind_page + | |
552 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | |
553 | } | |
554 | *image->entry = entry; | |
555 | image->entry++; | |
556 | *image->entry = 0; | |
557 | ||
558 | return 0; | |
559 | } | |
560 | ||
561 | static int kimage_set_destination(struct kimage *image, | |
562 | unsigned long destination) | |
563 | { | |
564 | int result; | |
565 | ||
566 | destination &= PAGE_MASK; | |
567 | result = kimage_add_entry(image, destination | IND_DESTINATION); | |
568 | ||
569 | return result; | |
570 | } | |
571 | ||
572 | ||
573 | static int kimage_add_page(struct kimage *image, unsigned long page) | |
574 | { | |
575 | int result; | |
576 | ||
577 | page &= PAGE_MASK; | |
578 | result = kimage_add_entry(image, page | IND_SOURCE); | |
579 | ||
580 | return result; | |
581 | } | |
582 | ||
583 | ||
584 | static void kimage_free_extra_pages(struct kimage *image) | |
585 | { | |
586 | /* Walk through and free any extra destination pages I may have */ | |
587 | kimage_free_page_list(&image->dest_pages); | |
588 | ||
589 | /* Walk through and free any unusable pages I have cached */ | |
590 | kimage_free_page_list(&image->unusable_pages); | |
591 | ||
592 | } | |
de68e4da PT |
593 | |
594 | int __weak machine_kexec_post_load(struct kimage *image) | |
595 | { | |
596 | return 0; | |
597 | } | |
598 | ||
2965faa5 DY |
599 | void kimage_terminate(struct kimage *image) |
600 | { | |
601 | if (*image->entry != 0) | |
602 | image->entry++; | |
603 | ||
604 | *image->entry = IND_DONE; | |
605 | } | |
606 | ||
607 | #define for_each_kimage_entry(image, ptr, entry) \ | |
608 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | |
609 | ptr = (entry & IND_INDIRECTION) ? \ | |
43546d86 | 610 | boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) |
2965faa5 DY |
611 | |
612 | static void kimage_free_entry(kimage_entry_t entry) | |
613 | { | |
614 | struct page *page; | |
615 | ||
43546d86 | 616 | page = boot_pfn_to_page(entry >> PAGE_SHIFT); |
2965faa5 DY |
617 | kimage_free_pages(page); |
618 | } | |
619 | ||
620 | void kimage_free(struct kimage *image) | |
621 | { | |
622 | kimage_entry_t *ptr, entry; | |
623 | kimage_entry_t ind = 0; | |
624 | ||
625 | if (!image) | |
626 | return; | |
627 | ||
1229384f XP |
628 | if (image->vmcoreinfo_data_copy) { |
629 | crash_update_vmcoreinfo_safecopy(NULL); | |
630 | vunmap(image->vmcoreinfo_data_copy); | |
631 | } | |
632 | ||
2965faa5 DY |
633 | kimage_free_extra_pages(image); |
634 | for_each_kimage_entry(image, ptr, entry) { | |
635 | if (entry & IND_INDIRECTION) { | |
636 | /* Free the previous indirection page */ | |
637 | if (ind & IND_INDIRECTION) | |
638 | kimage_free_entry(ind); | |
639 | /* Save this indirection page until we are | |
640 | * done with it. | |
641 | */ | |
642 | ind = entry; | |
643 | } else if (entry & IND_SOURCE) | |
644 | kimage_free_entry(entry); | |
645 | } | |
646 | /* Free the final indirection page */ | |
647 | if (ind & IND_INDIRECTION) | |
648 | kimage_free_entry(ind); | |
649 | ||
650 | /* Handle any machine specific cleanup */ | |
651 | machine_kexec_cleanup(image); | |
652 | ||
653 | /* Free the kexec control pages... */ | |
654 | kimage_free_page_list(&image->control_pages); | |
655 | ||
656 | /* | |
657 | * Free up any temporary buffers allocated. This might hit if | |
658 | * error occurred much later after buffer allocation. | |
659 | */ | |
660 | if (image->file_mode) | |
661 | kimage_file_post_load_cleanup(image); | |
662 | ||
663 | kfree(image); | |
664 | } | |
665 | ||
666 | static kimage_entry_t *kimage_dst_used(struct kimage *image, | |
667 | unsigned long page) | |
668 | { | |
669 | kimage_entry_t *ptr, entry; | |
670 | unsigned long destination = 0; | |
671 | ||
672 | for_each_kimage_entry(image, ptr, entry) { | |
673 | if (entry & IND_DESTINATION) | |
674 | destination = entry & PAGE_MASK; | |
675 | else if (entry & IND_SOURCE) { | |
676 | if (page == destination) | |
677 | return ptr; | |
678 | destination += PAGE_SIZE; | |
679 | } | |
680 | } | |
681 | ||
682 | return NULL; | |
683 | } | |
684 | ||
685 | static struct page *kimage_alloc_page(struct kimage *image, | |
686 | gfp_t gfp_mask, | |
687 | unsigned long destination) | |
688 | { | |
689 | /* | |
690 | * Here we implement safeguards to ensure that a source page | |
691 | * is not copied to its destination page before the data on | |
692 | * the destination page is no longer useful. | |
693 | * | |
694 | * To do this we maintain the invariant that a source page is | |
695 | * either its own destination page, or it is not a | |
696 | * destination page at all. | |
697 | * | |
698 | * That is slightly stronger than required, but the proof | |
699 | * that no problems will not occur is trivial, and the | |
700 | * implementation is simply to verify. | |
701 | * | |
702 | * When allocating all pages normally this algorithm will run | |
703 | * in O(N) time, but in the worst case it will run in O(N^2) | |
704 | * time. If the runtime is a problem the data structures can | |
705 | * be fixed. | |
706 | */ | |
707 | struct page *page; | |
708 | unsigned long addr; | |
709 | ||
710 | /* | |
711 | * Walk through the list of destination pages, and see if I | |
712 | * have a match. | |
713 | */ | |
714 | list_for_each_entry(page, &image->dest_pages, lru) { | |
43546d86 | 715 | addr = page_to_boot_pfn(page) << PAGE_SHIFT; |
2965faa5 DY |
716 | if (addr == destination) { |
717 | list_del(&page->lru); | |
718 | return page; | |
719 | } | |
720 | } | |
721 | page = NULL; | |
722 | while (1) { | |
723 | kimage_entry_t *old; | |
724 | ||
725 | /* Allocate a page, if we run out of memory give up */ | |
726 | page = kimage_alloc_pages(gfp_mask, 0); | |
727 | if (!page) | |
728 | return NULL; | |
729 | /* If the page cannot be used file it away */ | |
43546d86 | 730 | if (page_to_boot_pfn(page) > |
2965faa5 DY |
731 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { |
732 | list_add(&page->lru, &image->unusable_pages); | |
733 | continue; | |
734 | } | |
43546d86 | 735 | addr = page_to_boot_pfn(page) << PAGE_SHIFT; |
2965faa5 DY |
736 | |
737 | /* If it is the destination page we want use it */ | |
738 | if (addr == destination) | |
739 | break; | |
740 | ||
741 | /* If the page is not a destination page use it */ | |
742 | if (!kimage_is_destination_range(image, addr, | |
743 | addr + PAGE_SIZE)) | |
744 | break; | |
745 | ||
746 | /* | |
747 | * I know that the page is someones destination page. | |
748 | * See if there is already a source page for this | |
749 | * destination page. And if so swap the source pages. | |
750 | */ | |
751 | old = kimage_dst_used(image, addr); | |
752 | if (old) { | |
753 | /* If so move it */ | |
754 | unsigned long old_addr; | |
755 | struct page *old_page; | |
756 | ||
757 | old_addr = *old & PAGE_MASK; | |
43546d86 | 758 | old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); |
2965faa5 DY |
759 | copy_highpage(page, old_page); |
760 | *old = addr | (*old & ~PAGE_MASK); | |
761 | ||
762 | /* The old page I have found cannot be a | |
763 | * destination page, so return it if it's | |
764 | * gfp_flags honor the ones passed in. | |
765 | */ | |
766 | if (!(gfp_mask & __GFP_HIGHMEM) && | |
767 | PageHighMem(old_page)) { | |
768 | kimage_free_pages(old_page); | |
769 | continue; | |
770 | } | |
771 | addr = old_addr; | |
772 | page = old_page; | |
773 | break; | |
774 | } | |
775 | /* Place the page on the destination list, to be used later */ | |
776 | list_add(&page->lru, &image->dest_pages); | |
777 | } | |
778 | ||
779 | return page; | |
780 | } | |
781 | ||
782 | static int kimage_load_normal_segment(struct kimage *image, | |
783 | struct kexec_segment *segment) | |
784 | { | |
785 | unsigned long maddr; | |
786 | size_t ubytes, mbytes; | |
787 | int result; | |
788 | unsigned char __user *buf = NULL; | |
789 | unsigned char *kbuf = NULL; | |
790 | ||
791 | result = 0; | |
792 | if (image->file_mode) | |
793 | kbuf = segment->kbuf; | |
794 | else | |
795 | buf = segment->buf; | |
796 | ubytes = segment->bufsz; | |
797 | mbytes = segment->memsz; | |
798 | maddr = segment->mem; | |
799 | ||
800 | result = kimage_set_destination(image, maddr); | |
801 | if (result < 0) | |
802 | goto out; | |
803 | ||
804 | while (mbytes) { | |
805 | struct page *page; | |
806 | char *ptr; | |
807 | size_t uchunk, mchunk; | |
808 | ||
809 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); | |
810 | if (!page) { | |
811 | result = -ENOMEM; | |
812 | goto out; | |
813 | } | |
43546d86 | 814 | result = kimage_add_page(image, page_to_boot_pfn(page) |
2965faa5 DY |
815 | << PAGE_SHIFT); |
816 | if (result < 0) | |
817 | goto out; | |
818 | ||
819 | ptr = kmap(page); | |
820 | /* Start with a clear page */ | |
821 | clear_page(ptr); | |
822 | ptr += maddr & ~PAGE_MASK; | |
823 | mchunk = min_t(size_t, mbytes, | |
824 | PAGE_SIZE - (maddr & ~PAGE_MASK)); | |
825 | uchunk = min(ubytes, mchunk); | |
826 | ||
827 | /* For file based kexec, source pages are in kernel memory */ | |
828 | if (image->file_mode) | |
829 | memcpy(ptr, kbuf, uchunk); | |
830 | else | |
831 | result = copy_from_user(ptr, buf, uchunk); | |
832 | kunmap(page); | |
833 | if (result) { | |
834 | result = -EFAULT; | |
835 | goto out; | |
836 | } | |
837 | ubytes -= uchunk; | |
838 | maddr += mchunk; | |
839 | if (image->file_mode) | |
840 | kbuf += mchunk; | |
841 | else | |
842 | buf += mchunk; | |
843 | mbytes -= mchunk; | |
a8311f64 JF |
844 | |
845 | cond_resched(); | |
2965faa5 DY |
846 | } |
847 | out: | |
848 | return result; | |
849 | } | |
850 | ||
851 | static int kimage_load_crash_segment(struct kimage *image, | |
852 | struct kexec_segment *segment) | |
853 | { | |
854 | /* For crash dumps kernels we simply copy the data from | |
855 | * user space to it's destination. | |
856 | * We do things a page at a time for the sake of kmap. | |
857 | */ | |
858 | unsigned long maddr; | |
859 | size_t ubytes, mbytes; | |
860 | int result; | |
861 | unsigned char __user *buf = NULL; | |
862 | unsigned char *kbuf = NULL; | |
863 | ||
864 | result = 0; | |
865 | if (image->file_mode) | |
866 | kbuf = segment->kbuf; | |
867 | else | |
868 | buf = segment->buf; | |
869 | ubytes = segment->bufsz; | |
870 | mbytes = segment->memsz; | |
871 | maddr = segment->mem; | |
872 | while (mbytes) { | |
873 | struct page *page; | |
874 | char *ptr; | |
875 | size_t uchunk, mchunk; | |
876 | ||
43546d86 | 877 | page = boot_pfn_to_page(maddr >> PAGE_SHIFT); |
2965faa5 DY |
878 | if (!page) { |
879 | result = -ENOMEM; | |
880 | goto out; | |
881 | } | |
9cf38d55 | 882 | arch_kexec_post_alloc_pages(page_address(page), 1, 0); |
2965faa5 DY |
883 | ptr = kmap(page); |
884 | ptr += maddr & ~PAGE_MASK; | |
885 | mchunk = min_t(size_t, mbytes, | |
886 | PAGE_SIZE - (maddr & ~PAGE_MASK)); | |
887 | uchunk = min(ubytes, mchunk); | |
888 | if (mchunk > uchunk) { | |
889 | /* Zero the trailing part of the page */ | |
890 | memset(ptr + uchunk, 0, mchunk - uchunk); | |
891 | } | |
892 | ||
893 | /* For file based kexec, source pages are in kernel memory */ | |
894 | if (image->file_mode) | |
895 | memcpy(ptr, kbuf, uchunk); | |
896 | else | |
897 | result = copy_from_user(ptr, buf, uchunk); | |
898 | kexec_flush_icache_page(page); | |
899 | kunmap(page); | |
9cf38d55 | 900 | arch_kexec_pre_free_pages(page_address(page), 1); |
2965faa5 DY |
901 | if (result) { |
902 | result = -EFAULT; | |
903 | goto out; | |
904 | } | |
905 | ubytes -= uchunk; | |
906 | maddr += mchunk; | |
907 | if (image->file_mode) | |
908 | kbuf += mchunk; | |
909 | else | |
910 | buf += mchunk; | |
911 | mbytes -= mchunk; | |
a8311f64 JF |
912 | |
913 | cond_resched(); | |
2965faa5 DY |
914 | } |
915 | out: | |
916 | return result; | |
917 | } | |
918 | ||
919 | int kimage_load_segment(struct kimage *image, | |
920 | struct kexec_segment *segment) | |
921 | { | |
922 | int result = -ENOMEM; | |
923 | ||
924 | switch (image->type) { | |
925 | case KEXEC_TYPE_DEFAULT: | |
926 | result = kimage_load_normal_segment(image, segment); | |
927 | break; | |
928 | case KEXEC_TYPE_CRASH: | |
929 | result = kimage_load_crash_segment(image, segment); | |
930 | break; | |
931 | } | |
932 | ||
933 | return result; | |
934 | } | |
935 | ||
936 | struct kimage *kexec_image; | |
937 | struct kimage *kexec_crash_image; | |
938 | int kexec_load_disabled; | |
939 | ||
7bbee5ca HK |
940 | /* |
941 | * No panic_cpu check version of crash_kexec(). This function is called | |
942 | * only when panic_cpu holds the current CPU number; this is the only CPU | |
943 | * which processes crash_kexec routines. | |
944 | */ | |
c207aee4 | 945 | void __noclone __crash_kexec(struct pt_regs *regs) |
2965faa5 DY |
946 | { |
947 | /* Take the kexec_mutex here to prevent sys_kexec_load | |
948 | * running on one cpu from replacing the crash kernel | |
949 | * we are using after a panic on a different cpu. | |
950 | * | |
951 | * If the crash kernel was not located in a fixed area | |
952 | * of memory the xchg(&kexec_crash_image) would be | |
953 | * sufficient. But since I reuse the memory... | |
954 | */ | |
955 | if (mutex_trylock(&kexec_mutex)) { | |
956 | if (kexec_crash_image) { | |
957 | struct pt_regs fixed_regs; | |
958 | ||
959 | crash_setup_regs(&fixed_regs, regs); | |
960 | crash_save_vmcoreinfo(); | |
961 | machine_crash_shutdown(&fixed_regs); | |
962 | machine_kexec(kexec_crash_image); | |
963 | } | |
964 | mutex_unlock(&kexec_mutex); | |
965 | } | |
966 | } | |
c207aee4 | 967 | STACK_FRAME_NON_STANDARD(__crash_kexec); |
2965faa5 | 968 | |
7bbee5ca HK |
969 | void crash_kexec(struct pt_regs *regs) |
970 | { | |
971 | int old_cpu, this_cpu; | |
972 | ||
973 | /* | |
974 | * Only one CPU is allowed to execute the crash_kexec() code as with | |
975 | * panic(). Otherwise parallel calls of panic() and crash_kexec() | |
976 | * may stop each other. To exclude them, we use panic_cpu here too. | |
977 | */ | |
978 | this_cpu = raw_smp_processor_id(); | |
979 | old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); | |
980 | if (old_cpu == PANIC_CPU_INVALID) { | |
981 | /* This is the 1st CPU which comes here, so go ahead. */ | |
982 | __crash_kexec(regs); | |
983 | ||
984 | /* | |
985 | * Reset panic_cpu to allow another panic()/crash_kexec() | |
986 | * call. | |
987 | */ | |
988 | atomic_set(&panic_cpu, PANIC_CPU_INVALID); | |
989 | } | |
990 | } | |
991 | ||
2965faa5 DY |
992 | size_t crash_get_memory_size(void) |
993 | { | |
994 | size_t size = 0; | |
995 | ||
996 | mutex_lock(&kexec_mutex); | |
997 | if (crashk_res.end != crashk_res.start) | |
998 | size = resource_size(&crashk_res); | |
999 | mutex_unlock(&kexec_mutex); | |
1000 | return size; | |
1001 | } | |
1002 | ||
1003 | void __weak crash_free_reserved_phys_range(unsigned long begin, | |
1004 | unsigned long end) | |
1005 | { | |
1006 | unsigned long addr; | |
1007 | ||
1008 | for (addr = begin; addr < end; addr += PAGE_SIZE) | |
43546d86 | 1009 | free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); |
2965faa5 DY |
1010 | } |
1011 | ||
1012 | int crash_shrink_memory(unsigned long new_size) | |
1013 | { | |
1014 | int ret = 0; | |
1015 | unsigned long start, end; | |
1016 | unsigned long old_size; | |
1017 | struct resource *ram_res; | |
1018 | ||
1019 | mutex_lock(&kexec_mutex); | |
1020 | ||
1021 | if (kexec_crash_image) { | |
1022 | ret = -ENOENT; | |
1023 | goto unlock; | |
1024 | } | |
1025 | start = crashk_res.start; | |
1026 | end = crashk_res.end; | |
1027 | old_size = (end == 0) ? 0 : end - start + 1; | |
1028 | if (new_size >= old_size) { | |
1029 | ret = (new_size == old_size) ? 0 : -EINVAL; | |
1030 | goto unlock; | |
1031 | } | |
1032 | ||
1033 | ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); | |
1034 | if (!ram_res) { | |
1035 | ret = -ENOMEM; | |
1036 | goto unlock; | |
1037 | } | |
1038 | ||
1039 | start = roundup(start, KEXEC_CRASH_MEM_ALIGN); | |
1040 | end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); | |
1041 | ||
2965faa5 DY |
1042 | crash_free_reserved_phys_range(end, crashk_res.end); |
1043 | ||
1044 | if ((start == end) && (crashk_res.parent != NULL)) | |
1045 | release_resource(&crashk_res); | |
1046 | ||
1047 | ram_res->start = end; | |
1048 | ram_res->end = crashk_res.end; | |
1a085d07 | 1049 | ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; |
2965faa5 DY |
1050 | ram_res->name = "System RAM"; |
1051 | ||
1052 | crashk_res.end = end - 1; | |
1053 | ||
1054 | insert_resource(&iomem_resource, ram_res); | |
2965faa5 DY |
1055 | |
1056 | unlock: | |
1057 | mutex_unlock(&kexec_mutex); | |
1058 | return ret; | |
1059 | } | |
1060 | ||
2965faa5 DY |
1061 | void crash_save_cpu(struct pt_regs *regs, int cpu) |
1062 | { | |
1063 | struct elf_prstatus prstatus; | |
1064 | u32 *buf; | |
1065 | ||
1066 | if ((cpu < 0) || (cpu >= nr_cpu_ids)) | |
1067 | return; | |
1068 | ||
1069 | /* Using ELF notes here is opportunistic. | |
1070 | * I need a well defined structure format | |
1071 | * for the data I pass, and I need tags | |
1072 | * on the data to indicate what information I have | |
1073 | * squirrelled away. ELF notes happen to provide | |
1074 | * all of that, so there is no need to invent something new. | |
1075 | */ | |
1076 | buf = (u32 *)per_cpu_ptr(crash_notes, cpu); | |
1077 | if (!buf) | |
1078 | return; | |
1079 | memset(&prstatus, 0, sizeof(prstatus)); | |
f2485a2d | 1080 | prstatus.common.pr_pid = current->pid; |
2965faa5 DY |
1081 | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); |
1082 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | |
1083 | &prstatus, sizeof(prstatus)); | |
1084 | final_note(buf); | |
1085 | } | |
1086 | ||
1087 | static int __init crash_notes_memory_init(void) | |
1088 | { | |
1089 | /* Allocate memory for saving cpu registers. */ | |
bbb78b8f BH |
1090 | size_t size, align; |
1091 | ||
1092 | /* | |
1093 | * crash_notes could be allocated across 2 vmalloc pages when percpu | |
1094 | * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc | |
1095 | * pages are also on 2 continuous physical pages. In this case the | |
1096 | * 2nd part of crash_notes in 2nd page could be lost since only the | |
1097 | * starting address and size of crash_notes are exported through sysfs. | |
1098 | * Here round up the size of crash_notes to the nearest power of two | |
1099 | * and pass it to __alloc_percpu as align value. This can make sure | |
1100 | * crash_notes is allocated inside one physical page. | |
1101 | */ | |
1102 | size = sizeof(note_buf_t); | |
1103 | align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); | |
1104 | ||
1105 | /* | |
1106 | * Break compile if size is bigger than PAGE_SIZE since crash_notes | |
1107 | * definitely will be in 2 pages with that. | |
1108 | */ | |
1109 | BUILD_BUG_ON(size > PAGE_SIZE); | |
1110 | ||
1111 | crash_notes = __alloc_percpu(size, align); | |
2965faa5 | 1112 | if (!crash_notes) { |
de90a6bc | 1113 | pr_warn("Memory allocation for saving cpu register states failed\n"); |
2965faa5 DY |
1114 | return -ENOMEM; |
1115 | } | |
1116 | return 0; | |
1117 | } | |
1118 | subsys_initcall(crash_notes_memory_init); | |
1119 | ||
1120 | ||
2965faa5 DY |
1121 | /* |
1122 | * Move into place and start executing a preloaded standalone | |
1123 | * executable. If nothing was preloaded return an error. | |
1124 | */ | |
1125 | int kernel_kexec(void) | |
1126 | { | |
1127 | int error = 0; | |
1128 | ||
1129 | if (!mutex_trylock(&kexec_mutex)) | |
1130 | return -EBUSY; | |
1131 | if (!kexec_image) { | |
1132 | error = -EINVAL; | |
1133 | goto Unlock; | |
1134 | } | |
1135 | ||
1136 | #ifdef CONFIG_KEXEC_JUMP | |
1137 | if (kexec_image->preserve_context) { | |
2965faa5 DY |
1138 | pm_prepare_console(); |
1139 | error = freeze_processes(); | |
1140 | if (error) { | |
1141 | error = -EBUSY; | |
1142 | goto Restore_console; | |
1143 | } | |
1144 | suspend_console(); | |
1145 | error = dpm_suspend_start(PMSG_FREEZE); | |
1146 | if (error) | |
1147 | goto Resume_console; | |
1148 | /* At this point, dpm_suspend_start() has been called, | |
1149 | * but *not* dpm_suspend_end(). We *must* call | |
1150 | * dpm_suspend_end() now. Otherwise, drivers for | |
1151 | * some devices (e.g. interrupt controllers) become | |
1152 | * desynchronized with the actual state of the | |
1153 | * hardware at resume time, and evil weirdness ensues. | |
1154 | */ | |
1155 | error = dpm_suspend_end(PMSG_FREEZE); | |
1156 | if (error) | |
1157 | goto Resume_devices; | |
2f1a6fbb | 1158 | error = suspend_disable_secondary_cpus(); |
2965faa5 DY |
1159 | if (error) |
1160 | goto Enable_cpus; | |
1161 | local_irq_disable(); | |
1162 | error = syscore_suspend(); | |
1163 | if (error) | |
1164 | goto Enable_irqs; | |
1165 | } else | |
1166 | #endif | |
1167 | { | |
1168 | kexec_in_progress = true; | |
a119b4e5 | 1169 | kernel_restart_prepare("kexec reboot"); |
2965faa5 DY |
1170 | migrate_to_reboot_cpu(); |
1171 | ||
1172 | /* | |
1173 | * migrate_to_reboot_cpu() disables CPU hotplug assuming that | |
1174 | * no further code needs to use CPU hotplug (which is true in | |
1175 | * the reboot case). However, the kexec path depends on using | |
1176 | * CPU hotplug again; so re-enable it here. | |
1177 | */ | |
1178 | cpu_hotplug_enable(); | |
d42cc530 | 1179 | pr_notice("Starting new kernel\n"); |
2965faa5 DY |
1180 | machine_shutdown(); |
1181 | } | |
1182 | ||
b2075dbb | 1183 | kmsg_dump(KMSG_DUMP_SHUTDOWN); |
2965faa5 DY |
1184 | machine_kexec(kexec_image); |
1185 | ||
1186 | #ifdef CONFIG_KEXEC_JUMP | |
1187 | if (kexec_image->preserve_context) { | |
1188 | syscore_resume(); | |
1189 | Enable_irqs: | |
1190 | local_irq_enable(); | |
1191 | Enable_cpus: | |
2f1a6fbb | 1192 | suspend_enable_secondary_cpus(); |
2965faa5 DY |
1193 | dpm_resume_start(PMSG_RESTORE); |
1194 | Resume_devices: | |
1195 | dpm_resume_end(PMSG_RESTORE); | |
1196 | Resume_console: | |
1197 | resume_console(); | |
1198 | thaw_processes(); | |
1199 | Restore_console: | |
1200 | pm_restore_console(); | |
2965faa5 DY |
1201 | } |
1202 | #endif | |
1203 | ||
1204 | Unlock: | |
1205 | mutex_unlock(&kexec_mutex); | |
1206 | return error; | |
1207 | } | |
1208 | ||
1209 | /* | |
7a0058ec XP |
1210 | * Protection mechanism for crashkernel reserved memory after |
1211 | * the kdump kernel is loaded. | |
2965faa5 DY |
1212 | * |
1213 | * Provide an empty default implementation here -- architecture | |
1214 | * code may override this | |
1215 | */ | |
9b492cf5 XP |
1216 | void __weak arch_kexec_protect_crashkres(void) |
1217 | {} | |
1218 | ||
1219 | void __weak arch_kexec_unprotect_crashkres(void) | |
1220 | {} |