]> Git Repo - linux.git/blame - kernel/timer.c
[PATCH] clocksource: replace is_continuous by a flag field
[linux.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
97a41e26 36#include <linux/delay.h>
1da177e4
LT
37
38#include <asm/uaccess.h>
39#include <asm/unistd.h>
40#include <asm/div64.h>
41#include <asm/timex.h>
42#include <asm/io.h>
43
ecea8d19
TG
44u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
45
46EXPORT_SYMBOL(jiffies_64);
47
1da177e4
LT
48/*
49 * per-CPU timer vector definitions:
50 */
1da177e4
LT
51#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
52#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
53#define TVN_SIZE (1 << TVN_BITS)
54#define TVR_SIZE (1 << TVR_BITS)
55#define TVN_MASK (TVN_SIZE - 1)
56#define TVR_MASK (TVR_SIZE - 1)
57
58typedef struct tvec_s {
59 struct list_head vec[TVN_SIZE];
60} tvec_t;
61
62typedef struct tvec_root_s {
63 struct list_head vec[TVR_SIZE];
64} tvec_root_t;
65
66struct tvec_t_base_s {
3691c519
ON
67 spinlock_t lock;
68 struct timer_list *running_timer;
1da177e4 69 unsigned long timer_jiffies;
1da177e4
LT
70 tvec_root_t tv1;
71 tvec_t tv2;
72 tvec_t tv3;
73 tvec_t tv4;
74 tvec_t tv5;
75} ____cacheline_aligned_in_smp;
76
77typedef struct tvec_t_base_s tvec_base_t;
ba6edfcd 78
3691c519
ON
79tvec_base_t boot_tvec_bases;
80EXPORT_SYMBOL(boot_tvec_bases);
51d8c5ed 81static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
1da177e4 82
4c36a5de
AV
83/**
84 * __round_jiffies - function to round jiffies to a full second
85 * @j: the time in (absolute) jiffies that should be rounded
86 * @cpu: the processor number on which the timeout will happen
87 *
72fd4a35 88 * __round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
89 * up or down to (approximately) full seconds. This is useful for timers
90 * for which the exact time they fire does not matter too much, as long as
91 * they fire approximately every X seconds.
92 *
93 * By rounding these timers to whole seconds, all such timers will fire
94 * at the same time, rather than at various times spread out. The goal
95 * of this is to have the CPU wake up less, which saves power.
96 *
97 * The exact rounding is skewed for each processor to avoid all
98 * processors firing at the exact same time, which could lead
99 * to lock contention or spurious cache line bouncing.
100 *
72fd4a35 101 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
102 */
103unsigned long __round_jiffies(unsigned long j, int cpu)
104{
105 int rem;
106 unsigned long original = j;
107
108 /*
109 * We don't want all cpus firing their timers at once hitting the
110 * same lock or cachelines, so we skew each extra cpu with an extra
111 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
112 * already did this.
113 * The skew is done by adding 3*cpunr, then round, then subtract this
114 * extra offset again.
115 */
116 j += cpu * 3;
117
118 rem = j % HZ;
119
120 /*
121 * If the target jiffie is just after a whole second (which can happen
122 * due to delays of the timer irq, long irq off times etc etc) then
123 * we should round down to the whole second, not up. Use 1/4th second
124 * as cutoff for this rounding as an extreme upper bound for this.
125 */
126 if (rem < HZ/4) /* round down */
127 j = j - rem;
128 else /* round up */
129 j = j - rem + HZ;
130
131 /* now that we have rounded, subtract the extra skew again */
132 j -= cpu * 3;
133
134 if (j <= jiffies) /* rounding ate our timeout entirely; */
135 return original;
136 return j;
137}
138EXPORT_SYMBOL_GPL(__round_jiffies);
139
140/**
141 * __round_jiffies_relative - function to round jiffies to a full second
142 * @j: the time in (relative) jiffies that should be rounded
143 * @cpu: the processor number on which the timeout will happen
144 *
72fd4a35 145 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
146 * up or down to (approximately) full seconds. This is useful for timers
147 * for which the exact time they fire does not matter too much, as long as
148 * they fire approximately every X seconds.
149 *
150 * By rounding these timers to whole seconds, all such timers will fire
151 * at the same time, rather than at various times spread out. The goal
152 * of this is to have the CPU wake up less, which saves power.
153 *
154 * The exact rounding is skewed for each processor to avoid all
155 * processors firing at the exact same time, which could lead
156 * to lock contention or spurious cache line bouncing.
157 *
72fd4a35 158 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
159 */
160unsigned long __round_jiffies_relative(unsigned long j, int cpu)
161{
162 /*
163 * In theory the following code can skip a jiffy in case jiffies
164 * increments right between the addition and the later subtraction.
165 * However since the entire point of this function is to use approximate
166 * timeouts, it's entirely ok to not handle that.
167 */
168 return __round_jiffies(j + jiffies, cpu) - jiffies;
169}
170EXPORT_SYMBOL_GPL(__round_jiffies_relative);
171
172/**
173 * round_jiffies - function to round jiffies to a full second
174 * @j: the time in (absolute) jiffies that should be rounded
175 *
72fd4a35 176 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
177 * up or down to (approximately) full seconds. This is useful for timers
178 * for which the exact time they fire does not matter too much, as long as
179 * they fire approximately every X seconds.
180 *
181 * By rounding these timers to whole seconds, all such timers will fire
182 * at the same time, rather than at various times spread out. The goal
183 * of this is to have the CPU wake up less, which saves power.
184 *
72fd4a35 185 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
186 */
187unsigned long round_jiffies(unsigned long j)
188{
189 return __round_jiffies(j, raw_smp_processor_id());
190}
191EXPORT_SYMBOL_GPL(round_jiffies);
192
193/**
194 * round_jiffies_relative - function to round jiffies to a full second
195 * @j: the time in (relative) jiffies that should be rounded
196 *
72fd4a35 197 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
201 *
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
205 *
72fd4a35 206 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
207 */
208unsigned long round_jiffies_relative(unsigned long j)
209{
210 return __round_jiffies_relative(j, raw_smp_processor_id());
211}
212EXPORT_SYMBOL_GPL(round_jiffies_relative);
213
214
1da177e4
LT
215static inline void set_running_timer(tvec_base_t *base,
216 struct timer_list *timer)
217{
218#ifdef CONFIG_SMP
3691c519 219 base->running_timer = timer;
1da177e4
LT
220#endif
221}
222
1da177e4
LT
223static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
224{
225 unsigned long expires = timer->expires;
226 unsigned long idx = expires - base->timer_jiffies;
227 struct list_head *vec;
228
229 if (idx < TVR_SIZE) {
230 int i = expires & TVR_MASK;
231 vec = base->tv1.vec + i;
232 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
233 int i = (expires >> TVR_BITS) & TVN_MASK;
234 vec = base->tv2.vec + i;
235 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
236 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
237 vec = base->tv3.vec + i;
238 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
239 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
240 vec = base->tv4.vec + i;
241 } else if ((signed long) idx < 0) {
242 /*
243 * Can happen if you add a timer with expires == jiffies,
244 * or you set a timer to go off in the past
245 */
246 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
247 } else {
248 int i;
249 /* If the timeout is larger than 0xffffffff on 64-bit
250 * architectures then we use the maximum timeout:
251 */
252 if (idx > 0xffffffffUL) {
253 idx = 0xffffffffUL;
254 expires = idx + base->timer_jiffies;
255 }
256 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
257 vec = base->tv5.vec + i;
258 }
259 /*
260 * Timers are FIFO:
261 */
262 list_add_tail(&timer->entry, vec);
263}
264
2aae4a10 265/**
55c888d6
ON
266 * init_timer - initialize a timer.
267 * @timer: the timer to be initialized
268 *
269 * init_timer() must be done to a timer prior calling *any* of the
270 * other timer functions.
271 */
272void fastcall init_timer(struct timer_list *timer)
273{
274 timer->entry.next = NULL;
bfe5d834 275 timer->base = __raw_get_cpu_var(tvec_bases);
55c888d6
ON
276}
277EXPORT_SYMBOL(init_timer);
278
279static inline void detach_timer(struct timer_list *timer,
280 int clear_pending)
281{
282 struct list_head *entry = &timer->entry;
283
284 __list_del(entry->prev, entry->next);
285 if (clear_pending)
286 entry->next = NULL;
287 entry->prev = LIST_POISON2;
288}
289
290/*
3691c519 291 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
292 * means that all timers which are tied to this base via timer->base are
293 * locked, and the base itself is locked too.
294 *
295 * So __run_timers/migrate_timers can safely modify all timers which could
296 * be found on ->tvX lists.
297 *
298 * When the timer's base is locked, and the timer removed from list, it is
299 * possible to set timer->base = NULL and drop the lock: the timer remains
300 * locked.
301 */
3691c519 302static tvec_base_t *lock_timer_base(struct timer_list *timer,
55c888d6 303 unsigned long *flags)
89e7e374 304 __acquires(timer->base->lock)
55c888d6 305{
3691c519 306 tvec_base_t *base;
55c888d6
ON
307
308 for (;;) {
309 base = timer->base;
310 if (likely(base != NULL)) {
311 spin_lock_irqsave(&base->lock, *flags);
312 if (likely(base == timer->base))
313 return base;
314 /* The timer has migrated to another CPU */
315 spin_unlock_irqrestore(&base->lock, *flags);
316 }
317 cpu_relax();
318 }
319}
320
1da177e4
LT
321int __mod_timer(struct timer_list *timer, unsigned long expires)
322{
3691c519 323 tvec_base_t *base, *new_base;
1da177e4
LT
324 unsigned long flags;
325 int ret = 0;
326
327 BUG_ON(!timer->function);
1da177e4 328
55c888d6
ON
329 base = lock_timer_base(timer, &flags);
330
331 if (timer_pending(timer)) {
332 detach_timer(timer, 0);
333 ret = 1;
334 }
335
a4a6198b 336 new_base = __get_cpu_var(tvec_bases);
1da177e4 337
3691c519 338 if (base != new_base) {
1da177e4 339 /*
55c888d6
ON
340 * We are trying to schedule the timer on the local CPU.
341 * However we can't change timer's base while it is running,
342 * otherwise del_timer_sync() can't detect that the timer's
343 * handler yet has not finished. This also guarantees that
344 * the timer is serialized wrt itself.
1da177e4 345 */
a2c348fe 346 if (likely(base->running_timer != timer)) {
55c888d6
ON
347 /* See the comment in lock_timer_base() */
348 timer->base = NULL;
349 spin_unlock(&base->lock);
a2c348fe
ON
350 base = new_base;
351 spin_lock(&base->lock);
352 timer->base = base;
1da177e4
LT
353 }
354 }
355
1da177e4 356 timer->expires = expires;
a2c348fe
ON
357 internal_add_timer(base, timer);
358 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
359
360 return ret;
361}
362
363EXPORT_SYMBOL(__mod_timer);
364
2aae4a10 365/**
1da177e4
LT
366 * add_timer_on - start a timer on a particular CPU
367 * @timer: the timer to be added
368 * @cpu: the CPU to start it on
369 *
370 * This is not very scalable on SMP. Double adds are not possible.
371 */
372void add_timer_on(struct timer_list *timer, int cpu)
373{
a4a6198b 374 tvec_base_t *base = per_cpu(tvec_bases, cpu);
1da177e4 375 unsigned long flags;
55c888d6 376
1da177e4 377 BUG_ON(timer_pending(timer) || !timer->function);
3691c519
ON
378 spin_lock_irqsave(&base->lock, flags);
379 timer->base = base;
1da177e4 380 internal_add_timer(base, timer);
3691c519 381 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
382}
383
384
2aae4a10 385/**
1da177e4
LT
386 * mod_timer - modify a timer's timeout
387 * @timer: the timer to be modified
2aae4a10 388 * @expires: new timeout in jiffies
1da177e4 389 *
72fd4a35 390 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
391 * active timer (if the timer is inactive it will be activated)
392 *
393 * mod_timer(timer, expires) is equivalent to:
394 *
395 * del_timer(timer); timer->expires = expires; add_timer(timer);
396 *
397 * Note that if there are multiple unserialized concurrent users of the
398 * same timer, then mod_timer() is the only safe way to modify the timeout,
399 * since add_timer() cannot modify an already running timer.
400 *
401 * The function returns whether it has modified a pending timer or not.
402 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
403 * active timer returns 1.)
404 */
405int mod_timer(struct timer_list *timer, unsigned long expires)
406{
407 BUG_ON(!timer->function);
408
1da177e4
LT
409 /*
410 * This is a common optimization triggered by the
411 * networking code - if the timer is re-modified
412 * to be the same thing then just return:
413 */
414 if (timer->expires == expires && timer_pending(timer))
415 return 1;
416
417 return __mod_timer(timer, expires);
418}
419
420EXPORT_SYMBOL(mod_timer);
421
2aae4a10 422/**
1da177e4
LT
423 * del_timer - deactive a timer.
424 * @timer: the timer to be deactivated
425 *
426 * del_timer() deactivates a timer - this works on both active and inactive
427 * timers.
428 *
429 * The function returns whether it has deactivated a pending timer or not.
430 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
431 * active timer returns 1.)
432 */
433int del_timer(struct timer_list *timer)
434{
3691c519 435 tvec_base_t *base;
1da177e4 436 unsigned long flags;
55c888d6 437 int ret = 0;
1da177e4 438
55c888d6
ON
439 if (timer_pending(timer)) {
440 base = lock_timer_base(timer, &flags);
441 if (timer_pending(timer)) {
442 detach_timer(timer, 1);
443 ret = 1;
444 }
1da177e4 445 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 446 }
1da177e4 447
55c888d6 448 return ret;
1da177e4
LT
449}
450
451EXPORT_SYMBOL(del_timer);
452
453#ifdef CONFIG_SMP
2aae4a10
REB
454/**
455 * try_to_del_timer_sync - Try to deactivate a timer
456 * @timer: timer do del
457 *
fd450b73
ON
458 * This function tries to deactivate a timer. Upon successful (ret >= 0)
459 * exit the timer is not queued and the handler is not running on any CPU.
460 *
461 * It must not be called from interrupt contexts.
462 */
463int try_to_del_timer_sync(struct timer_list *timer)
464{
3691c519 465 tvec_base_t *base;
fd450b73
ON
466 unsigned long flags;
467 int ret = -1;
468
469 base = lock_timer_base(timer, &flags);
470
471 if (base->running_timer == timer)
472 goto out;
473
474 ret = 0;
475 if (timer_pending(timer)) {
476 detach_timer(timer, 1);
477 ret = 1;
478 }
479out:
480 spin_unlock_irqrestore(&base->lock, flags);
481
482 return ret;
483}
484
2aae4a10 485/**
1da177e4
LT
486 * del_timer_sync - deactivate a timer and wait for the handler to finish.
487 * @timer: the timer to be deactivated
488 *
489 * This function only differs from del_timer() on SMP: besides deactivating
490 * the timer it also makes sure the handler has finished executing on other
491 * CPUs.
492 *
72fd4a35 493 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
494 * otherwise this function is meaningless. It must not be called from
495 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
496 * completion of the timer's handler. The timer's handler must not call
497 * add_timer_on(). Upon exit the timer is not queued and the handler is
498 * not running on any CPU.
1da177e4
LT
499 *
500 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
501 */
502int del_timer_sync(struct timer_list *timer)
503{
fd450b73
ON
504 for (;;) {
505 int ret = try_to_del_timer_sync(timer);
506 if (ret >= 0)
507 return ret;
a0009652 508 cpu_relax();
fd450b73 509 }
1da177e4 510}
1da177e4 511
55c888d6 512EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
513#endif
514
515static int cascade(tvec_base_t *base, tvec_t *tv, int index)
516{
517 /* cascade all the timers from tv up one level */
3439dd86
P
518 struct timer_list *timer, *tmp;
519 struct list_head tv_list;
520
521 list_replace_init(tv->vec + index, &tv_list);
1da177e4 522
1da177e4 523 /*
3439dd86
P
524 * We are removing _all_ timers from the list, so we
525 * don't have to detach them individually.
1da177e4 526 */
3439dd86
P
527 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
528 BUG_ON(timer->base != base);
529 internal_add_timer(base, timer);
1da177e4 530 }
1da177e4
LT
531
532 return index;
533}
534
2aae4a10
REB
535#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
536
537/**
1da177e4
LT
538 * __run_timers - run all expired timers (if any) on this CPU.
539 * @base: the timer vector to be processed.
540 *
541 * This function cascades all vectors and executes all expired timer
542 * vectors.
543 */
1da177e4
LT
544static inline void __run_timers(tvec_base_t *base)
545{
546 struct timer_list *timer;
547
3691c519 548 spin_lock_irq(&base->lock);
1da177e4 549 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 550 struct list_head work_list;
1da177e4
LT
551 struct list_head *head = &work_list;
552 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 553
1da177e4
LT
554 /*
555 * Cascade timers:
556 */
557 if (!index &&
558 (!cascade(base, &base->tv2, INDEX(0))) &&
559 (!cascade(base, &base->tv3, INDEX(1))) &&
560 !cascade(base, &base->tv4, INDEX(2)))
561 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
562 ++base->timer_jiffies;
563 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 564 while (!list_empty(head)) {
1da177e4
LT
565 void (*fn)(unsigned long);
566 unsigned long data;
567
568 timer = list_entry(head->next,struct timer_list,entry);
569 fn = timer->function;
570 data = timer->data;
571
1da177e4 572 set_running_timer(base, timer);
55c888d6 573 detach_timer(timer, 1);
3691c519 574 spin_unlock_irq(&base->lock);
1da177e4 575 {
be5b4fbd 576 int preempt_count = preempt_count();
1da177e4
LT
577 fn(data);
578 if (preempt_count != preempt_count()) {
be5b4fbd
JJ
579 printk(KERN_WARNING "huh, entered %p "
580 "with preempt_count %08x, exited"
581 " with %08x?\n",
582 fn, preempt_count,
583 preempt_count());
1da177e4
LT
584 BUG();
585 }
586 }
3691c519 587 spin_lock_irq(&base->lock);
1da177e4
LT
588 }
589 }
590 set_running_timer(base, NULL);
3691c519 591 spin_unlock_irq(&base->lock);
1da177e4
LT
592}
593
594#ifdef CONFIG_NO_IDLE_HZ
595/*
596 * Find out when the next timer event is due to happen. This
597 * is used on S/390 to stop all activity when a cpus is idle.
598 * This functions needs to be called disabled.
599 */
600unsigned long next_timer_interrupt(void)
601{
602 tvec_base_t *base;
603 struct list_head *list;
604 struct timer_list *nte;
605 unsigned long expires;
69239749
TL
606 unsigned long hr_expires = MAX_JIFFY_OFFSET;
607 ktime_t hr_delta;
1da177e4
LT
608 tvec_t *varray[4];
609 int i, j;
610
69239749
TL
611 hr_delta = hrtimer_get_next_event();
612 if (hr_delta.tv64 != KTIME_MAX) {
613 struct timespec tsdelta;
614 tsdelta = ktime_to_timespec(hr_delta);
615 hr_expires = timespec_to_jiffies(&tsdelta);
616 if (hr_expires < 3)
617 return hr_expires + jiffies;
618 }
619 hr_expires += jiffies;
620
a4a6198b 621 base = __get_cpu_var(tvec_bases);
3691c519 622 spin_lock(&base->lock);
1da177e4 623 expires = base->timer_jiffies + (LONG_MAX >> 1);
53f087fe 624 list = NULL;
1da177e4
LT
625
626 /* Look for timer events in tv1. */
627 j = base->timer_jiffies & TVR_MASK;
628 do {
629 list_for_each_entry(nte, base->tv1.vec + j, entry) {
630 expires = nte->expires;
631 if (j < (base->timer_jiffies & TVR_MASK))
632 list = base->tv2.vec + (INDEX(0));
633 goto found;
634 }
635 j = (j + 1) & TVR_MASK;
636 } while (j != (base->timer_jiffies & TVR_MASK));
637
638 /* Check tv2-tv5. */
639 varray[0] = &base->tv2;
640 varray[1] = &base->tv3;
641 varray[2] = &base->tv4;
642 varray[3] = &base->tv5;
643 for (i = 0; i < 4; i++) {
644 j = INDEX(i);
645 do {
646 if (list_empty(varray[i]->vec + j)) {
647 j = (j + 1) & TVN_MASK;
648 continue;
649 }
650 list_for_each_entry(nte, varray[i]->vec + j, entry)
651 if (time_before(nte->expires, expires))
652 expires = nte->expires;
653 if (j < (INDEX(i)) && i < 3)
654 list = varray[i + 1]->vec + (INDEX(i + 1));
655 goto found;
656 } while (j != (INDEX(i)));
657 }
658found:
659 if (list) {
660 /*
661 * The search wrapped. We need to look at the next list
662 * from next tv element that would cascade into tv element
663 * where we found the timer element.
664 */
665 list_for_each_entry(nte, list, entry) {
666 if (time_before(nte->expires, expires))
667 expires = nte->expires;
668 }
669 }
3691c519 670 spin_unlock(&base->lock);
69239749 671
0662b713
ZA
672 /*
673 * It can happen that other CPUs service timer IRQs and increment
674 * jiffies, but we have not yet got a local timer tick to process
675 * the timer wheels. In that case, the expiry time can be before
676 * jiffies, but since the high-resolution timer here is relative to
677 * jiffies, the default expression when high-resolution timers are
678 * not active,
679 *
680 * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
681 *
682 * would falsely evaluate to true. If that is the case, just
683 * return jiffies so that we can immediately fire the local timer
684 */
685 if (time_before(expires, jiffies))
686 return jiffies;
687
69239749
TL
688 if (time_before(hr_expires, expires))
689 return hr_expires;
690
1da177e4
LT
691 return expires;
692}
693#endif
694
695/******************************************************************/
696
1da177e4
LT
697/*
698 * The current time
699 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
700 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
701 * at zero at system boot time, so wall_to_monotonic will be negative,
702 * however, we will ALWAYS keep the tv_nsec part positive so we can use
703 * the usual normalization.
704 */
705struct timespec xtime __attribute__ ((aligned (16)));
706struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
707
708EXPORT_SYMBOL(xtime);
709
726c14bf 710
ad596171
JS
711/* XXX - all of this timekeeping code should be later moved to time.c */
712#include <linux/clocksource.h>
713static struct clocksource *clock; /* pointer to current clocksource */
cf3c769b
JS
714
715#ifdef CONFIG_GENERIC_TIME
716/**
717 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
718 *
719 * private function, must hold xtime_lock lock when being
720 * called. Returns the number of nanoseconds since the
721 * last call to update_wall_time() (adjusted by NTP scaling)
722 */
723static inline s64 __get_nsec_offset(void)
724{
725 cycle_t cycle_now, cycle_delta;
726 s64 ns_offset;
727
728 /* read clocksource: */
a2752549 729 cycle_now = clocksource_read(clock);
cf3c769b
JS
730
731 /* calculate the delta since the last update_wall_time: */
19923c19 732 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
cf3c769b
JS
733
734 /* convert to nanoseconds: */
735 ns_offset = cyc2ns(clock, cycle_delta);
736
737 return ns_offset;
738}
739
740/**
741 * __get_realtime_clock_ts - Returns the time of day in a timespec
742 * @ts: pointer to the timespec to be set
743 *
744 * Returns the time of day in a timespec. Used by
745 * do_gettimeofday() and get_realtime_clock_ts().
746 */
747static inline void __get_realtime_clock_ts(struct timespec *ts)
748{
749 unsigned long seq;
750 s64 nsecs;
751
752 do {
753 seq = read_seqbegin(&xtime_lock);
754
755 *ts = xtime;
756 nsecs = __get_nsec_offset();
757
758 } while (read_seqretry(&xtime_lock, seq));
759
760 timespec_add_ns(ts, nsecs);
761}
762
763/**
a2752549 764 * getnstimeofday - Returns the time of day in a timespec
cf3c769b
JS
765 * @ts: pointer to the timespec to be set
766 *
767 * Returns the time of day in a timespec.
768 */
769void getnstimeofday(struct timespec *ts)
770{
771 __get_realtime_clock_ts(ts);
772}
773
774EXPORT_SYMBOL(getnstimeofday);
775
776/**
777 * do_gettimeofday - Returns the time of day in a timeval
778 * @tv: pointer to the timeval to be set
779 *
780 * NOTE: Users should be converted to using get_realtime_clock_ts()
781 */
782void do_gettimeofday(struct timeval *tv)
783{
784 struct timespec now;
785
786 __get_realtime_clock_ts(&now);
787 tv->tv_sec = now.tv_sec;
788 tv->tv_usec = now.tv_nsec/1000;
789}
790
791EXPORT_SYMBOL(do_gettimeofday);
792/**
793 * do_settimeofday - Sets the time of day
794 * @tv: pointer to the timespec variable containing the new time
795 *
796 * Sets the time of day to the new time and update NTP and notify hrtimers
797 */
798int do_settimeofday(struct timespec *tv)
799{
800 unsigned long flags;
801 time_t wtm_sec, sec = tv->tv_sec;
802 long wtm_nsec, nsec = tv->tv_nsec;
803
804 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
805 return -EINVAL;
806
807 write_seqlock_irqsave(&xtime_lock, flags);
808
809 nsec -= __get_nsec_offset();
810
811 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
812 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
813
814 set_normalized_timespec(&xtime, sec, nsec);
815 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
816
e154ff3d 817 clock->error = 0;
cf3c769b
JS
818 ntp_clear();
819
820 write_sequnlock_irqrestore(&xtime_lock, flags);
821
822 /* signal hrtimers about time change */
823 clock_was_set();
824
825 return 0;
826}
827
828EXPORT_SYMBOL(do_settimeofday);
829
830/**
831 * change_clocksource - Swaps clocksources if a new one is available
832 *
833 * Accumulates current time interval and initializes new clocksource
834 */
835static int change_clocksource(void)
836{
837 struct clocksource *new;
838 cycle_t now;
839 u64 nsec;
a2752549 840 new = clocksource_get_next();
cf3c769b 841 if (clock != new) {
a2752549 842 now = clocksource_read(new);
cf3c769b
JS
843 nsec = __get_nsec_offset();
844 timespec_add_ns(&xtime, nsec);
845
846 clock = new;
19923c19 847 clock->cycle_last = now;
cf3c769b 848 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
f5f1a24a 849 clock->name);
cf3c769b
JS
850 return 1;
851 } else if (clock->update_callback) {
852 return clock->update_callback();
853 }
854 return 0;
855}
856#else
f5f1a24a
DW
857static inline int change_clocksource(void)
858{
859 return 0;
860}
cf3c769b
JS
861#endif
862
863/**
864 * timeofday_is_continuous - check to see if timekeeping is free running
865 */
866int timekeeping_is_continuous(void)
867{
868 unsigned long seq;
869 int ret;
870
871 do {
872 seq = read_seqbegin(&xtime_lock);
873
73b08d2a 874 ret = clock->flags & CLOCK_SOURCE_IS_CONTINUOUS;
cf3c769b
JS
875
876 } while (read_seqretry(&xtime_lock, seq));
877
878 return ret;
879}
880
411187fb
JS
881/**
882 * read_persistent_clock - Return time in seconds from the persistent clock.
883 *
884 * Weak dummy function for arches that do not yet support it.
885 * Returns seconds from epoch using the battery backed persistent clock.
886 * Returns zero if unsupported.
887 *
888 * XXX - Do be sure to remove it once all arches implement it.
889 */
890unsigned long __attribute__((weak)) read_persistent_clock(void)
891{
892 return 0;
893}
894
1da177e4 895/*
ad596171 896 * timekeeping_init - Initializes the clocksource and common timekeeping values
1da177e4 897 */
ad596171 898void __init timekeeping_init(void)
1da177e4 899{
ad596171 900 unsigned long flags;
411187fb 901 unsigned long sec = read_persistent_clock();
ad596171
JS
902
903 write_seqlock_irqsave(&xtime_lock, flags);
b0ee7556
RZ
904
905 ntp_clear();
906
a2752549 907 clock = clocksource_get_next();
f4304ab2 908 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
19923c19 909 clock->cycle_last = clocksource_read(clock);
b0ee7556 910
411187fb
JS
911 xtime.tv_sec = sec;
912 xtime.tv_nsec = 0;
913 set_normalized_timespec(&wall_to_monotonic,
914 -xtime.tv_sec, -xtime.tv_nsec);
915
ad596171
JS
916 write_sequnlock_irqrestore(&xtime_lock, flags);
917}
918
919
411187fb 920/* flag for if timekeeping is suspended */
3e143475 921static int timekeeping_suspended;
411187fb
JS
922/* time in seconds when suspend began */
923static unsigned long timekeeping_suspend_time;
924
2aae4a10 925/**
ad596171
JS
926 * timekeeping_resume - Resumes the generic timekeeping subsystem.
927 * @dev: unused
928 *
929 * This is for the generic clocksource timekeeping.
8ef38609 930 * xtime/wall_to_monotonic/jiffies/etc are
ad596171
JS
931 * still managed by arch specific suspend/resume code.
932 */
933static int timekeeping_resume(struct sys_device *dev)
934{
935 unsigned long flags;
411187fb 936 unsigned long now = read_persistent_clock();
ad596171
JS
937
938 write_seqlock_irqsave(&xtime_lock, flags);
411187fb
JS
939
940 if (now && (now > timekeeping_suspend_time)) {
941 unsigned long sleep_length = now - timekeeping_suspend_time;
942
943 xtime.tv_sec += sleep_length;
944 wall_to_monotonic.tv_sec -= sleep_length;
945 }
946 /* re-base the last cycle value */
19923c19 947 clock->cycle_last = clocksource_read(clock);
3e143475
JS
948 clock->error = 0;
949 timekeeping_suspended = 0;
950 write_sequnlock_irqrestore(&xtime_lock, flags);
411187fb
JS
951
952 touch_softlockup_watchdog();
953 hrtimer_notify_resume();
954
3e143475
JS
955 return 0;
956}
957
958static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
959{
960 unsigned long flags;
961
962 write_seqlock_irqsave(&xtime_lock, flags);
963 timekeeping_suspended = 1;
411187fb 964 timekeeping_suspend_time = read_persistent_clock();
ad596171
JS
965 write_sequnlock_irqrestore(&xtime_lock, flags);
966 return 0;
967}
968
969/* sysfs resume/suspend bits for timekeeping */
970static struct sysdev_class timekeeping_sysclass = {
971 .resume = timekeeping_resume,
3e143475 972 .suspend = timekeeping_suspend,
ad596171
JS
973 set_kset_name("timekeeping"),
974};
975
976static struct sys_device device_timer = {
977 .id = 0,
978 .cls = &timekeeping_sysclass,
979};
980
981static int __init timekeeping_init_device(void)
982{
983 int error = sysdev_class_register(&timekeeping_sysclass);
984 if (!error)
985 error = sysdev_register(&device_timer);
986 return error;
987}
988
989device_initcall(timekeeping_init_device);
990
19923c19 991/*
e154ff3d 992 * If the error is already larger, we look ahead even further
19923c19
RZ
993 * to compensate for late or lost adjustments.
994 */
f5f1a24a
DW
995static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
996 s64 *offset)
19923c19 997{
e154ff3d
RZ
998 s64 tick_error, i;
999 u32 look_ahead, adj;
1000 s32 error2, mult;
19923c19
RZ
1001
1002 /*
e154ff3d
RZ
1003 * Use the current error value to determine how much to look ahead.
1004 * The larger the error the slower we adjust for it to avoid problems
1005 * with losing too many ticks, otherwise we would overadjust and
1006 * produce an even larger error. The smaller the adjustment the
1007 * faster we try to adjust for it, as lost ticks can do less harm
1008 * here. This is tuned so that an error of about 1 msec is adusted
1009 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
19923c19 1010 */
e154ff3d
RZ
1011 error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
1012 error2 = abs(error2);
1013 for (look_ahead = 0; error2 > 0; look_ahead++)
1014 error2 >>= 2;
19923c19
RZ
1015
1016 /*
e154ff3d
RZ
1017 * Now calculate the error in (1 << look_ahead) ticks, but first
1018 * remove the single look ahead already included in the error.
19923c19 1019 */
f5f1a24a
DW
1020 tick_error = current_tick_length() >>
1021 (TICK_LENGTH_SHIFT - clock->shift + 1);
e154ff3d
RZ
1022 tick_error -= clock->xtime_interval >> 1;
1023 error = ((error - tick_error) >> look_ahead) + tick_error;
1024
1025 /* Finally calculate the adjustment shift value. */
1026 i = *interval;
1027 mult = 1;
1028 if (error < 0) {
1029 error = -error;
1030 *interval = -*interval;
1031 *offset = -*offset;
1032 mult = -1;
19923c19 1033 }
e154ff3d
RZ
1034 for (adj = 0; error > i; adj++)
1035 error >>= 1;
19923c19
RZ
1036
1037 *interval <<= adj;
1038 *offset <<= adj;
e154ff3d 1039 return mult << adj;
19923c19
RZ
1040}
1041
1042/*
1043 * Adjust the multiplier to reduce the error value,
1044 * this is optimized for the most common adjustments of -1,0,1,
1045 * for other values we can do a bit more work.
1046 */
1047static void clocksource_adjust(struct clocksource *clock, s64 offset)
1048{
1049 s64 error, interval = clock->cycle_interval;
1050 int adj;
1051
1052 error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
1053 if (error > interval) {
e154ff3d
RZ
1054 error >>= 2;
1055 if (likely(error <= interval))
1056 adj = 1;
1057 else
1058 adj = clocksource_bigadjust(error, &interval, &offset);
19923c19 1059 } else if (error < -interval) {
e154ff3d
RZ
1060 error >>= 2;
1061 if (likely(error >= -interval)) {
1062 adj = -1;
1063 interval = -interval;
1064 offset = -offset;
1065 } else
1066 adj = clocksource_bigadjust(error, &interval, &offset);
19923c19
RZ
1067 } else
1068 return;
1069
1070 clock->mult += adj;
1071 clock->xtime_interval += interval;
1072 clock->xtime_nsec -= offset;
f5f1a24a
DW
1073 clock->error -= (interval - offset) <<
1074 (TICK_LENGTH_SHIFT - clock->shift);
19923c19
RZ
1075}
1076
2aae4a10 1077/**
ad596171
JS
1078 * update_wall_time - Uses the current clocksource to increment the wall time
1079 *
1080 * Called from the timer interrupt, must hold a write on xtime_lock.
1081 */
1082static void update_wall_time(void)
1083{
19923c19 1084 cycle_t offset;
ad596171 1085
3e143475
JS
1086 /* Make sure we're fully resumed: */
1087 if (unlikely(timekeeping_suspended))
1088 return;
5eb6d205 1089
19923c19
RZ
1090#ifdef CONFIG_GENERIC_TIME
1091 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
1092#else
1093 offset = clock->cycle_interval;
1094#endif
3e143475 1095 clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
ad596171
JS
1096
1097 /* normally this loop will run just once, however in the
1098 * case of lost or late ticks, it will accumulate correctly.
1099 */
19923c19 1100 while (offset >= clock->cycle_interval) {
ad596171 1101 /* accumulate one interval */
19923c19
RZ
1102 clock->xtime_nsec += clock->xtime_interval;
1103 clock->cycle_last += clock->cycle_interval;
1104 offset -= clock->cycle_interval;
1105
1106 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
1107 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
1108 xtime.tv_sec++;
1109 second_overflow();
1110 }
ad596171 1111
5eb6d205 1112 /* interpolator bits */
19923c19 1113 time_interpolator_update(clock->xtime_interval
5eb6d205 1114 >> clock->shift);
5eb6d205
JS
1115
1116 /* accumulate error between NTP and clock interval */
19923c19
RZ
1117 clock->error += current_tick_length();
1118 clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
1119 }
5eb6d205 1120
19923c19
RZ
1121 /* correct the clock when NTP error is too big */
1122 clocksource_adjust(clock, offset);
5eb6d205 1123
5eb6d205 1124 /* store full nanoseconds into xtime */
e154ff3d 1125 xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
19923c19 1126 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
cf3c769b
JS
1127
1128 /* check to see if there is a new clocksource to use */
1129 if (change_clocksource()) {
19923c19
RZ
1130 clock->error = 0;
1131 clock->xtime_nsec = 0;
f4304ab2 1132 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
cf3c769b 1133 }
1da177e4
LT
1134}
1135
1136/*
1137 * Called from the timer interrupt handler to charge one tick to the current
1138 * process. user_tick is 1 if the tick is user time, 0 for system.
1139 */
1140void update_process_times(int user_tick)
1141{
1142 struct task_struct *p = current;
1143 int cpu = smp_processor_id();
1144
1145 /* Note: this timer irq context must be accounted for as well. */
1146 if (user_tick)
1147 account_user_time(p, jiffies_to_cputime(1));
1148 else
1149 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1150 run_local_timers();
1151 if (rcu_pending(cpu))
1152 rcu_check_callbacks(cpu, user_tick);
1153 scheduler_tick();
1154 run_posix_cpu_timers(p);
1155}
1156
1157/*
1158 * Nr of active tasks - counted in fixed-point numbers
1159 */
1160static unsigned long count_active_tasks(void)
1161{
db1b1fef 1162 return nr_active() * FIXED_1;
1da177e4
LT
1163}
1164
1165/*
1166 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1167 * imply that avenrun[] is the standard name for this kind of thing.
1168 * Nothing else seems to be standardized: the fractional size etc
1169 * all seem to differ on different machines.
1170 *
1171 * Requires xtime_lock to access.
1172 */
1173unsigned long avenrun[3];
1174
1175EXPORT_SYMBOL(avenrun);
1176
1177/*
1178 * calc_load - given tick count, update the avenrun load estimates.
1179 * This is called while holding a write_lock on xtime_lock.
1180 */
1181static inline void calc_load(unsigned long ticks)
1182{
1183 unsigned long active_tasks; /* fixed-point */
1184 static int count = LOAD_FREQ;
1185
cd7175ed
ED
1186 count -= ticks;
1187 if (unlikely(count < 0)) {
1188 active_tasks = count_active_tasks();
1189 do {
1190 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1191 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1192 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1193 count += LOAD_FREQ;
1194 } while (count < 0);
1da177e4
LT
1195 }
1196}
1197
1da177e4
LT
1198/*
1199 * This read-write spinlock protects us from races in SMP while
1200 * playing with xtime and avenrun.
1201 */
5809f9d4 1202__attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
1da177e4
LT
1203
1204EXPORT_SYMBOL(xtime_lock);
1da177e4
LT
1205
1206/*
1207 * This function runs timers and the timer-tq in bottom half context.
1208 */
1209static void run_timer_softirq(struct softirq_action *h)
1210{
a4a6198b 1211 tvec_base_t *base = __get_cpu_var(tvec_bases);
1da177e4 1212
c0a31329 1213 hrtimer_run_queues();
1da177e4
LT
1214 if (time_after_eq(jiffies, base->timer_jiffies))
1215 __run_timers(base);
1216}
1217
1218/*
1219 * Called by the local, per-CPU timer interrupt on SMP.
1220 */
1221void run_local_timers(void)
1222{
1223 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1224 softlockup_tick();
1da177e4
LT
1225}
1226
1227/*
1228 * Called by the timer interrupt. xtime_lock must already be taken
1229 * by the timer IRQ!
1230 */
3171a030 1231static inline void update_times(unsigned long ticks)
1da177e4 1232{
ad596171 1233 update_wall_time();
1da177e4
LT
1234 calc_load(ticks);
1235}
1236
1237/*
1238 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1239 * without sampling the sequence number in xtime_lock.
1240 * jiffies is defined in the linker script...
1241 */
1242
3171a030 1243void do_timer(unsigned long ticks)
1da177e4 1244{
3171a030
AN
1245 jiffies_64 += ticks;
1246 update_times(ticks);
1da177e4
LT
1247}
1248
1249#ifdef __ARCH_WANT_SYS_ALARM
1250
1251/*
1252 * For backwards compatibility? This can be done in libc so Alpha
1253 * and all newer ports shouldn't need it.
1254 */
1255asmlinkage unsigned long sys_alarm(unsigned int seconds)
1256{
c08b8a49 1257 return alarm_setitimer(seconds);
1da177e4
LT
1258}
1259
1260#endif
1261
1262#ifndef __alpha__
1263
1264/*
1265 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1266 * should be moved into arch/i386 instead?
1267 */
1268
1269/**
1270 * sys_getpid - return the thread group id of the current process
1271 *
1272 * Note, despite the name, this returns the tgid not the pid. The tgid and
1273 * the pid are identical unless CLONE_THREAD was specified on clone() in
1274 * which case the tgid is the same in all threads of the same group.
1275 *
1276 * This is SMP safe as current->tgid does not change.
1277 */
1278asmlinkage long sys_getpid(void)
1279{
1280 return current->tgid;
1281}
1282
1283/*
6997a6fa
KK
1284 * Accessing ->real_parent is not SMP-safe, it could
1285 * change from under us. However, we can use a stale
1286 * value of ->real_parent under rcu_read_lock(), see
1287 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4
LT
1288 */
1289asmlinkage long sys_getppid(void)
1290{
1291 int pid;
1da177e4 1292
6997a6fa
KK
1293 rcu_read_lock();
1294 pid = rcu_dereference(current->real_parent)->tgid;
1295 rcu_read_unlock();
1da177e4 1296
1da177e4
LT
1297 return pid;
1298}
1299
1300asmlinkage long sys_getuid(void)
1301{
1302 /* Only we change this so SMP safe */
1303 return current->uid;
1304}
1305
1306asmlinkage long sys_geteuid(void)
1307{
1308 /* Only we change this so SMP safe */
1309 return current->euid;
1310}
1311
1312asmlinkage long sys_getgid(void)
1313{
1314 /* Only we change this so SMP safe */
1315 return current->gid;
1316}
1317
1318asmlinkage long sys_getegid(void)
1319{
1320 /* Only we change this so SMP safe */
1321 return current->egid;
1322}
1323
1324#endif
1325
1326static void process_timeout(unsigned long __data)
1327{
36c8b586 1328 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1329}
1330
1331/**
1332 * schedule_timeout - sleep until timeout
1333 * @timeout: timeout value in jiffies
1334 *
1335 * Make the current task sleep until @timeout jiffies have
1336 * elapsed. The routine will return immediately unless
1337 * the current task state has been set (see set_current_state()).
1338 *
1339 * You can set the task state as follows -
1340 *
1341 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1342 * pass before the routine returns. The routine will return 0
1343 *
1344 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1345 * delivered to the current task. In this case the remaining time
1346 * in jiffies will be returned, or 0 if the timer expired in time
1347 *
1348 * The current task state is guaranteed to be TASK_RUNNING when this
1349 * routine returns.
1350 *
1351 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1352 * the CPU away without a bound on the timeout. In this case the return
1353 * value will be %MAX_SCHEDULE_TIMEOUT.
1354 *
1355 * In all cases the return value is guaranteed to be non-negative.
1356 */
1357fastcall signed long __sched schedule_timeout(signed long timeout)
1358{
1359 struct timer_list timer;
1360 unsigned long expire;
1361
1362 switch (timeout)
1363 {
1364 case MAX_SCHEDULE_TIMEOUT:
1365 /*
1366 * These two special cases are useful to be comfortable
1367 * in the caller. Nothing more. We could take
1368 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1369 * but I' d like to return a valid offset (>=0) to allow
1370 * the caller to do everything it want with the retval.
1371 */
1372 schedule();
1373 goto out;
1374 default:
1375 /*
1376 * Another bit of PARANOID. Note that the retval will be
1377 * 0 since no piece of kernel is supposed to do a check
1378 * for a negative retval of schedule_timeout() (since it
1379 * should never happens anyway). You just have the printk()
1380 * that will tell you if something is gone wrong and where.
1381 */
5b149bcc 1382 if (timeout < 0) {
1da177e4 1383 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1384 "value %lx\n", timeout);
1385 dump_stack();
1da177e4
LT
1386 current->state = TASK_RUNNING;
1387 goto out;
1388 }
1389 }
1390
1391 expire = timeout + jiffies;
1392
a8db2db1
ON
1393 setup_timer(&timer, process_timeout, (unsigned long)current);
1394 __mod_timer(&timer, expire);
1da177e4
LT
1395 schedule();
1396 del_singleshot_timer_sync(&timer);
1397
1398 timeout = expire - jiffies;
1399
1400 out:
1401 return timeout < 0 ? 0 : timeout;
1402}
1da177e4
LT
1403EXPORT_SYMBOL(schedule_timeout);
1404
8a1c1757
AM
1405/*
1406 * We can use __set_current_state() here because schedule_timeout() calls
1407 * schedule() unconditionally.
1408 */
64ed93a2
NA
1409signed long __sched schedule_timeout_interruptible(signed long timeout)
1410{
a5a0d52c
AM
1411 __set_current_state(TASK_INTERRUPTIBLE);
1412 return schedule_timeout(timeout);
64ed93a2
NA
1413}
1414EXPORT_SYMBOL(schedule_timeout_interruptible);
1415
1416signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1417{
a5a0d52c
AM
1418 __set_current_state(TASK_UNINTERRUPTIBLE);
1419 return schedule_timeout(timeout);
64ed93a2
NA
1420}
1421EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1422
1da177e4
LT
1423/* Thread ID - the internal kernel "pid" */
1424asmlinkage long sys_gettid(void)
1425{
1426 return current->pid;
1427}
1428
2aae4a10 1429/**
d4d23add 1430 * do_sysinfo - fill in sysinfo struct
2aae4a10 1431 * @info: pointer to buffer to fill
1da177e4 1432 */
d4d23add 1433int do_sysinfo(struct sysinfo *info)
1da177e4 1434{
1da177e4
LT
1435 unsigned long mem_total, sav_total;
1436 unsigned int mem_unit, bitcount;
1437 unsigned long seq;
1438
d4d23add 1439 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1440
1441 do {
1442 struct timespec tp;
1443 seq = read_seqbegin(&xtime_lock);
1444
1445 /*
1446 * This is annoying. The below is the same thing
1447 * posix_get_clock_monotonic() does, but it wants to
1448 * take the lock which we want to cover the loads stuff
1449 * too.
1450 */
1451
1452 getnstimeofday(&tp);
1453 tp.tv_sec += wall_to_monotonic.tv_sec;
1454 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1455 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1456 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1457 tp.tv_sec++;
1458 }
d4d23add 1459 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1460
d4d23add
KM
1461 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1462 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1463 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1464
d4d23add 1465 info->procs = nr_threads;
1da177e4
LT
1466 } while (read_seqretry(&xtime_lock, seq));
1467
d4d23add
KM
1468 si_meminfo(info);
1469 si_swapinfo(info);
1da177e4
LT
1470
1471 /*
1472 * If the sum of all the available memory (i.e. ram + swap)
1473 * is less than can be stored in a 32 bit unsigned long then
1474 * we can be binary compatible with 2.2.x kernels. If not,
1475 * well, in that case 2.2.x was broken anyways...
1476 *
1477 * -Erik Andersen <[email protected]>
1478 */
1479
d4d23add
KM
1480 mem_total = info->totalram + info->totalswap;
1481 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1482 goto out;
1483 bitcount = 0;
d4d23add 1484 mem_unit = info->mem_unit;
1da177e4
LT
1485 while (mem_unit > 1) {
1486 bitcount++;
1487 mem_unit >>= 1;
1488 sav_total = mem_total;
1489 mem_total <<= 1;
1490 if (mem_total < sav_total)
1491 goto out;
1492 }
1493
1494 /*
1495 * If mem_total did not overflow, multiply all memory values by
d4d23add 1496 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1497 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1498 * kernels...
1499 */
1500
d4d23add
KM
1501 info->mem_unit = 1;
1502 info->totalram <<= bitcount;
1503 info->freeram <<= bitcount;
1504 info->sharedram <<= bitcount;
1505 info->bufferram <<= bitcount;
1506 info->totalswap <<= bitcount;
1507 info->freeswap <<= bitcount;
1508 info->totalhigh <<= bitcount;
1509 info->freehigh <<= bitcount;
1510
1511out:
1512 return 0;
1513}
1514
1515asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1516{
1517 struct sysinfo val;
1518
1519 do_sysinfo(&val);
1da177e4 1520
1da177e4
LT
1521 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1522 return -EFAULT;
1523
1524 return 0;
1525}
1526
d730e882
IM
1527/*
1528 * lockdep: we want to track each per-CPU base as a separate lock-class,
1529 * but timer-bases are kmalloc()-ed, so we need to attach separate
1530 * keys to them:
1531 */
1532static struct lock_class_key base_lock_keys[NR_CPUS];
1533
a4a6198b 1534static int __devinit init_timers_cpu(int cpu)
1da177e4
LT
1535{
1536 int j;
1537 tvec_base_t *base;
ba6edfcd 1538 static char __devinitdata tvec_base_done[NR_CPUS];
55c888d6 1539
ba6edfcd 1540 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1541 static char boot_done;
1542
a4a6198b 1543 if (boot_done) {
ba6edfcd
AM
1544 /*
1545 * The APs use this path later in boot
1546 */
a4a6198b
JB
1547 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1548 cpu_to_node(cpu));
1549 if (!base)
1550 return -ENOMEM;
1551 memset(base, 0, sizeof(*base));
ba6edfcd 1552 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1553 } else {
ba6edfcd
AM
1554 /*
1555 * This is for the boot CPU - we use compile-time
1556 * static initialisation because per-cpu memory isn't
1557 * ready yet and because the memory allocators are not
1558 * initialised either.
1559 */
a4a6198b 1560 boot_done = 1;
ba6edfcd 1561 base = &boot_tvec_bases;
a4a6198b 1562 }
ba6edfcd
AM
1563 tvec_base_done[cpu] = 1;
1564 } else {
1565 base = per_cpu(tvec_bases, cpu);
a4a6198b 1566 }
ba6edfcd 1567
3691c519 1568 spin_lock_init(&base->lock);
d730e882
IM
1569 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1570
1da177e4
LT
1571 for (j = 0; j < TVN_SIZE; j++) {
1572 INIT_LIST_HEAD(base->tv5.vec + j);
1573 INIT_LIST_HEAD(base->tv4.vec + j);
1574 INIT_LIST_HEAD(base->tv3.vec + j);
1575 INIT_LIST_HEAD(base->tv2.vec + j);
1576 }
1577 for (j = 0; j < TVR_SIZE; j++)
1578 INIT_LIST_HEAD(base->tv1.vec + j);
1579
1580 base->timer_jiffies = jiffies;
a4a6198b 1581 return 0;
1da177e4
LT
1582}
1583
1584#ifdef CONFIG_HOTPLUG_CPU
55c888d6 1585static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1da177e4
LT
1586{
1587 struct timer_list *timer;
1588
1589 while (!list_empty(head)) {
1590 timer = list_entry(head->next, struct timer_list, entry);
55c888d6 1591 detach_timer(timer, 0);
3691c519 1592 timer->base = new_base;
1da177e4 1593 internal_add_timer(new_base, timer);
1da177e4 1594 }
1da177e4
LT
1595}
1596
1597static void __devinit migrate_timers(int cpu)
1598{
1599 tvec_base_t *old_base;
1600 tvec_base_t *new_base;
1601 int i;
1602
1603 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1604 old_base = per_cpu(tvec_bases, cpu);
1605 new_base = get_cpu_var(tvec_bases);
1da177e4
LT
1606
1607 local_irq_disable();
3691c519
ON
1608 spin_lock(&new_base->lock);
1609 spin_lock(&old_base->lock);
1610
1611 BUG_ON(old_base->running_timer);
1da177e4 1612
1da177e4 1613 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1614 migrate_timer_list(new_base, old_base->tv1.vec + i);
1615 for (i = 0; i < TVN_SIZE; i++) {
1616 migrate_timer_list(new_base, old_base->tv2.vec + i);
1617 migrate_timer_list(new_base, old_base->tv3.vec + i);
1618 migrate_timer_list(new_base, old_base->tv4.vec + i);
1619 migrate_timer_list(new_base, old_base->tv5.vec + i);
1620 }
1621
3691c519
ON
1622 spin_unlock(&old_base->lock);
1623 spin_unlock(&new_base->lock);
1da177e4
LT
1624 local_irq_enable();
1625 put_cpu_var(tvec_bases);
1da177e4
LT
1626}
1627#endif /* CONFIG_HOTPLUG_CPU */
1628
8c78f307 1629static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1630 unsigned long action, void *hcpu)
1631{
1632 long cpu = (long)hcpu;
1633 switch(action) {
1634 case CPU_UP_PREPARE:
a4a6198b
JB
1635 if (init_timers_cpu(cpu) < 0)
1636 return NOTIFY_BAD;
1da177e4
LT
1637 break;
1638#ifdef CONFIG_HOTPLUG_CPU
1639 case CPU_DEAD:
1640 migrate_timers(cpu);
1641 break;
1642#endif
1643 default:
1644 break;
1645 }
1646 return NOTIFY_OK;
1647}
1648
8c78f307 1649static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1650 .notifier_call = timer_cpu_notify,
1651};
1652
1653
1654void __init init_timers(void)
1655{
07dccf33 1656 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1657 (void *)(long)smp_processor_id());
07dccf33
AM
1658
1659 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
1660 register_cpu_notifier(&timers_nb);
1661 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1662}
1663
1664#ifdef CONFIG_TIME_INTERPOLATION
1665
67890d70
CL
1666struct time_interpolator *time_interpolator __read_mostly;
1667static struct time_interpolator *time_interpolator_list __read_mostly;
1da177e4
LT
1668static DEFINE_SPINLOCK(time_interpolator_lock);
1669
3db5db4f 1670static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1da177e4
LT
1671{
1672 unsigned long (*x)(void);
1673
1674 switch (src)
1675 {
1676 case TIME_SOURCE_FUNCTION:
1677 x = time_interpolator->addr;
1678 return x();
1679
1680 case TIME_SOURCE_MMIO64 :
685db65e 1681 return readq_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1682
1683 case TIME_SOURCE_MMIO32 :
685db65e 1684 return readl_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1685
1686 default: return get_cycles();
1687 }
1688}
1689
486d46ae 1690static inline u64 time_interpolator_get_counter(int writelock)
1da177e4
LT
1691{
1692 unsigned int src = time_interpolator->source;
1693
1694 if (time_interpolator->jitter)
1695 {
3db5db4f
HD
1696 cycles_t lcycle;
1697 cycles_t now;
1da177e4
LT
1698
1699 do {
1700 lcycle = time_interpolator->last_cycle;
1701 now = time_interpolator_get_cycles(src);
1702 if (lcycle && time_after(lcycle, now))
1703 return lcycle;
486d46ae
AW
1704
1705 /* When holding the xtime write lock, there's no need
1706 * to add the overhead of the cmpxchg. Readers are
1707 * force to retry until the write lock is released.
1708 */
1709 if (writelock) {
1710 time_interpolator->last_cycle = now;
1711 return now;
1712 }
1da177e4
LT
1713 /* Keep track of the last timer value returned. The use of cmpxchg here
1714 * will cause contention in an SMP environment.
1715 */
1716 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1717 return now;
1718 }
1719 else
1720 return time_interpolator_get_cycles(src);
1721}
1722
1723void time_interpolator_reset(void)
1724{
1725 time_interpolator->offset = 0;
486d46ae 1726 time_interpolator->last_counter = time_interpolator_get_counter(1);
1da177e4
LT
1727}
1728
1729#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1730
1731unsigned long time_interpolator_get_offset(void)
1732{
1733 /* If we do not have a time interpolator set up then just return zero */
1734 if (!time_interpolator)
1735 return 0;
1736
1737 return time_interpolator->offset +
486d46ae 1738 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1da177e4
LT
1739}
1740
1741#define INTERPOLATOR_ADJUST 65536
1742#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1743
4c7ee8de 1744void time_interpolator_update(long delta_nsec)
1da177e4
LT
1745{
1746 u64 counter;
1747 unsigned long offset;
1748
1749 /* If there is no time interpolator set up then do nothing */
1750 if (!time_interpolator)
1751 return;
1752
a5a0d52c
AM
1753 /*
1754 * The interpolator compensates for late ticks by accumulating the late
1755 * time in time_interpolator->offset. A tick earlier than expected will
1756 * lead to a reset of the offset and a corresponding jump of the clock
1757 * forward. Again this only works if the interpolator clock is running
1758 * slightly slower than the regular clock and the tuning logic insures
1759 * that.
1760 */
1da177e4 1761
486d46ae 1762 counter = time_interpolator_get_counter(1);
a5a0d52c
AM
1763 offset = time_interpolator->offset +
1764 GET_TI_NSECS(counter, time_interpolator);
1da177e4
LT
1765
1766 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1767 time_interpolator->offset = offset - delta_nsec;
1768 else {
1769 time_interpolator->skips++;
1770 time_interpolator->ns_skipped += delta_nsec - offset;
1771 time_interpolator->offset = 0;
1772 }
1773 time_interpolator->last_counter = counter;
1774
1775 /* Tuning logic for time interpolator invoked every minute or so.
1776 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1777 * Increase interpolator clock speed if we skip too much time.
1778 */
1779 if (jiffies % INTERPOLATOR_ADJUST == 0)
1780 {
b20367a6 1781 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1da177e4
LT
1782 time_interpolator->nsec_per_cyc--;
1783 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1784 time_interpolator->nsec_per_cyc++;
1785 time_interpolator->skips = 0;
1786 time_interpolator->ns_skipped = 0;
1787 }
1788}
1789
1790static inline int
1791is_better_time_interpolator(struct time_interpolator *new)
1792{
1793 if (!time_interpolator)
1794 return 1;
1795 return new->frequency > 2*time_interpolator->frequency ||
1796 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1797}
1798
1799void
1800register_time_interpolator(struct time_interpolator *ti)
1801{
1802 unsigned long flags;
1803
1804 /* Sanity check */
9f31252c 1805 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1da177e4
LT
1806
1807 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1808 spin_lock(&time_interpolator_lock);
1809 write_seqlock_irqsave(&xtime_lock, flags);
1810 if (is_better_time_interpolator(ti)) {
1811 time_interpolator = ti;
1812 time_interpolator_reset();
1813 }
1814 write_sequnlock_irqrestore(&xtime_lock, flags);
1815
1816 ti->next = time_interpolator_list;
1817 time_interpolator_list = ti;
1818 spin_unlock(&time_interpolator_lock);
1819}
1820
1821void
1822unregister_time_interpolator(struct time_interpolator *ti)
1823{
1824 struct time_interpolator *curr, **prev;
1825 unsigned long flags;
1826
1827 spin_lock(&time_interpolator_lock);
1828 prev = &time_interpolator_list;
1829 for (curr = *prev; curr; curr = curr->next) {
1830 if (curr == ti) {
1831 *prev = curr->next;
1832 break;
1833 }
1834 prev = &curr->next;
1835 }
1836
1837 write_seqlock_irqsave(&xtime_lock, flags);
1838 if (ti == time_interpolator) {
1839 /* we lost the best time-interpolator: */
1840 time_interpolator = NULL;
1841 /* find the next-best interpolator */
1842 for (curr = time_interpolator_list; curr; curr = curr->next)
1843 if (is_better_time_interpolator(curr))
1844 time_interpolator = curr;
1845 time_interpolator_reset();
1846 }
1847 write_sequnlock_irqrestore(&xtime_lock, flags);
1848 spin_unlock(&time_interpolator_lock);
1849}
1850#endif /* CONFIG_TIME_INTERPOLATION */
1851
1852/**
1853 * msleep - sleep safely even with waitqueue interruptions
1854 * @msecs: Time in milliseconds to sleep for
1855 */
1856void msleep(unsigned int msecs)
1857{
1858 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1859
75bcc8c5
NA
1860 while (timeout)
1861 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1862}
1863
1864EXPORT_SYMBOL(msleep);
1865
1866/**
96ec3efd 1867 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1868 * @msecs: Time in milliseconds to sleep for
1869 */
1870unsigned long msleep_interruptible(unsigned int msecs)
1871{
1872 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1873
75bcc8c5
NA
1874 while (timeout && !signal_pending(current))
1875 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1876 return jiffies_to_msecs(timeout);
1877}
1878
1879EXPORT_SYMBOL(msleep_interruptible);
This page took 0.501136 seconds and 4 git commands to generate.