]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/arch/arm/mach-sa1100/cpu-sa1110.c | |
3 | * | |
4 | * Copyright (C) 2001 Russell King | |
5 | * | |
1da177e4 LT |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU General Public License version 2 as | |
8 | * published by the Free Software Foundation. | |
9 | * | |
10 | * Note: there are two erratas that apply to the SA1110 here: | |
11 | * 7 - SDRAM auto-power-up failure (rev A0) | |
12 | * 13 - Corruption of internal register reads/writes following | |
13 | * SDRAM reads (rev A0, B0, B1) | |
14 | * | |
15 | * We ignore rev. A0 and B0 devices; I don't think they're worth supporting. | |
ba532011 RK |
16 | * |
17 | * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type | |
1da177e4 | 18 | */ |
1da177e4 LT |
19 | #include <linux/cpufreq.h> |
20 | #include <linux/delay.h> | |
21 | #include <linux/init.h> | |
3169663a | 22 | #include <linux/io.h> |
9f15d2ca MRJ |
23 | #include <linux/kernel.h> |
24 | #include <linux/moduleparam.h> | |
25 | #include <linux/types.h> | |
1da177e4 | 26 | |
0ba8b9b2 | 27 | #include <asm/cputype.h> |
1da177e4 | 28 | #include <asm/mach-types.h> |
9f15d2ca | 29 | |
59a2e613 | 30 | #include <mach/generic.h> |
9f15d2ca | 31 | #include <mach/hardware.h> |
1da177e4 | 32 | |
1da177e4 LT |
33 | #undef DEBUG |
34 | ||
1da177e4 | 35 | struct sdram_params { |
9f15d2ca | 36 | const char name[20]; |
1da177e4 LT |
37 | u_char rows; /* bits */ |
38 | u_char cas_latency; /* cycles */ | |
39 | u_char tck; /* clock cycle time (ns) */ | |
40 | u_char trcd; /* activate to r/w (ns) */ | |
41 | u_char trp; /* precharge to activate (ns) */ | |
42 | u_char twr; /* write recovery time (ns) */ | |
43 | u_short refresh; /* refresh time for array (us) */ | |
44 | }; | |
45 | ||
46 | struct sdram_info { | |
47 | u_int mdcnfg; | |
48 | u_int mdrefr; | |
49 | u_int mdcas[3]; | |
50 | }; | |
51 | ||
ba532011 RK |
52 | static struct sdram_params sdram_tbl[] __initdata = { |
53 | { /* Toshiba TC59SM716 CL2 */ | |
54 | .name = "TC59SM716-CL2", | |
55 | .rows = 12, | |
56 | .tck = 10, | |
57 | .trcd = 20, | |
58 | .trp = 20, | |
59 | .twr = 10, | |
60 | .refresh = 64000, | |
61 | .cas_latency = 2, | |
62 | }, { /* Toshiba TC59SM716 CL3 */ | |
63 | .name = "TC59SM716-CL3", | |
64 | .rows = 12, | |
65 | .tck = 8, | |
66 | .trcd = 20, | |
67 | .trp = 20, | |
68 | .twr = 8, | |
69 | .refresh = 64000, | |
70 | .cas_latency = 3, | |
71 | }, { /* Samsung K4S641632D TC75 */ | |
72 | .name = "K4S641632D", | |
73 | .rows = 14, | |
74 | .tck = 9, | |
75 | .trcd = 27, | |
76 | .trp = 20, | |
77 | .twr = 9, | |
78 | .refresh = 64000, | |
79 | .cas_latency = 3, | |
93982535 KE |
80 | }, { /* Samsung K4S281632B-1H */ |
81 | .name = "K4S281632B-1H", | |
82 | .rows = 12, | |
83 | .tck = 10, | |
84 | .trp = 20, | |
85 | .twr = 10, | |
86 | .refresh = 64000, | |
87 | .cas_latency = 3, | |
ba532011 RK |
88 | }, { /* Samsung KM416S4030CT */ |
89 | .name = "KM416S4030CT", | |
90 | .rows = 13, | |
91 | .tck = 8, | |
92 | .trcd = 24, /* 3 CLKs */ | |
93 | .trp = 24, /* 3 CLKs */ | |
94 | .twr = 16, /* Trdl: 2 CLKs */ | |
95 | .refresh = 64000, | |
96 | .cas_latency = 3, | |
97 | }, { /* Winbond W982516AH75L CL3 */ | |
98 | .name = "W982516AH75L", | |
99 | .rows = 16, | |
100 | .tck = 8, | |
101 | .trcd = 20, | |
102 | .trp = 20, | |
103 | .twr = 8, | |
104 | .refresh = 64000, | |
105 | .cas_latency = 3, | |
9f15d2ca MRJ |
106 | }, { /* Micron MT48LC8M16A2TG-75 */ |
107 | .name = "MT48LC8M16A2TG-75", | |
108 | .rows = 12, | |
109 | .tck = 8, | |
110 | .trcd = 20, | |
111 | .trp = 20, | |
112 | .twr = 8, | |
113 | .refresh = 64000, | |
114 | .cas_latency = 3, | |
ba532011 | 115 | }, |
1da177e4 LT |
116 | }; |
117 | ||
118 | static struct sdram_params sdram_params; | |
119 | ||
120 | /* | |
121 | * Given a period in ns and frequency in khz, calculate the number of | |
122 | * cycles of frequency in period. Note that we round up to the next | |
123 | * cycle, even if we are only slightly over. | |
124 | */ | |
125 | static inline u_int ns_to_cycles(u_int ns, u_int khz) | |
126 | { | |
127 | return (ns * khz + 999999) / 1000000; | |
128 | } | |
129 | ||
130 | /* | |
131 | * Create the MDCAS register bit pattern. | |
132 | */ | |
133 | static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd) | |
134 | { | |
135 | u_int shift; | |
136 | ||
137 | rcd = 2 * rcd - 1; | |
138 | shift = delayed + 1 + rcd; | |
139 | ||
140 | mdcas[0] = (1 << rcd) - 1; | |
141 | mdcas[0] |= 0x55555555 << shift; | |
142 | mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1); | |
143 | } | |
144 | ||
145 | static void | |
146 | sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz, | |
147 | struct sdram_params *sdram) | |
148 | { | |
149 | u_int mem_khz, sd_khz, trp, twr; | |
150 | ||
151 | mem_khz = cpu_khz / 2; | |
152 | sd_khz = mem_khz; | |
153 | ||
154 | /* | |
155 | * If SDCLK would invalidate the SDRAM timings, | |
156 | * run SDCLK at half speed. | |
157 | * | |
158 | * CPU steppings prior to B2 must either run the memory at | |
159 | * half speed or use delayed read latching (errata 13). | |
160 | */ | |
161 | if ((ns_to_cycles(sdram->tck, sd_khz) > 1) || | |
162 | (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000)) | |
163 | sd_khz /= 2; | |
164 | ||
165 | sd->mdcnfg = MDCNFG & 0x007f007f; | |
166 | ||
167 | twr = ns_to_cycles(sdram->twr, mem_khz); | |
168 | ||
169 | /* trp should always be >1 */ | |
170 | trp = ns_to_cycles(sdram->trp, mem_khz) - 1; | |
171 | if (trp < 1) | |
172 | trp = 1; | |
173 | ||
174 | sd->mdcnfg |= trp << 8; | |
175 | sd->mdcnfg |= trp << 24; | |
176 | sd->mdcnfg |= sdram->cas_latency << 12; | |
177 | sd->mdcnfg |= sdram->cas_latency << 28; | |
178 | sd->mdcnfg |= twr << 14; | |
179 | sd->mdcnfg |= twr << 30; | |
180 | ||
181 | sd->mdrefr = MDREFR & 0xffbffff0; | |
182 | sd->mdrefr |= 7; | |
183 | ||
184 | if (sd_khz != mem_khz) | |
185 | sd->mdrefr |= MDREFR_K1DB2; | |
186 | ||
187 | /* initial number of '1's in MDCAS + 1 */ | |
47bb3b31 MRJ |
188 | set_mdcas(sd->mdcas, sd_khz >= 62000, |
189 | ns_to_cycles(sdram->trcd, mem_khz)); | |
1da177e4 LT |
190 | |
191 | #ifdef DEBUG | |
47bb3b31 MRJ |
192 | printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n", |
193 | sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], | |
194 | sd->mdcas[2]); | |
1da177e4 LT |
195 | #endif |
196 | } | |
197 | ||
198 | /* | |
199 | * Set the SDRAM refresh rate. | |
200 | */ | |
201 | static inline void sdram_set_refresh(u_int dri) | |
202 | { | |
203 | MDREFR = (MDREFR & 0xffff000f) | (dri << 4); | |
204 | (void) MDREFR; | |
205 | } | |
206 | ||
207 | /* | |
208 | * Update the refresh period. We do this such that we always refresh | |
209 | * the SDRAMs within their permissible period. The refresh period is | |
210 | * always a multiple of the memory clock (fixed at cpu_clock / 2). | |
211 | * | |
212 | * FIXME: we don't currently take account of burst accesses here, | |
213 | * but neither do Intels DM nor Angel. | |
214 | */ | |
215 | static void | |
216 | sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram) | |
217 | { | |
218 | u_int ns_row = (sdram->refresh * 1000) >> sdram->rows; | |
219 | u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32; | |
220 | ||
221 | #ifdef DEBUG | |
222 | mdelay(250); | |
47bb3b31 | 223 | printk(KERN_DEBUG "new dri value = %d\n", dri); |
1da177e4 LT |
224 | #endif |
225 | ||
226 | sdram_set_refresh(dri); | |
227 | } | |
228 | ||
229 | /* | |
93982535 | 230 | * Ok, set the CPU frequency. |
1da177e4 | 231 | */ |
9c0ebcf7 | 232 | static int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr) |
1da177e4 LT |
233 | { |
234 | struct sdram_params *sdram = &sdram_params; | |
1da177e4 LT |
235 | struct sdram_info sd; |
236 | unsigned long flags; | |
9c0ebcf7 | 237 | unsigned int unused; |
1da177e4 | 238 | |
d4019f0a | 239 | sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram); |
1da177e4 LT |
240 | |
241 | #if 0 | |
242 | /* | |
243 | * These values are wrong according to the SA1110 documentation | |
244 | * and errata, but they seem to work. Need to get a storage | |
245 | * scope on to the SDRAM signals to work out why. | |
246 | */ | |
247 | if (policy->max < 147500) { | |
248 | sd.mdrefr |= MDREFR_K1DB2; | |
249 | sd.mdcas[0] = 0xaaaaaa7f; | |
250 | } else { | |
251 | sd.mdrefr &= ~MDREFR_K1DB2; | |
252 | sd.mdcas[0] = 0xaaaaaa9f; | |
253 | } | |
254 | sd.mdcas[1] = 0xaaaaaaaa; | |
255 | sd.mdcas[2] = 0xaaaaaaaa; | |
256 | #endif | |
257 | ||
1da177e4 LT |
258 | /* |
259 | * The clock could be going away for some time. Set the SDRAMs | |
260 | * to refresh rapidly (every 64 memory clock cycles). To get | |
261 | * through the whole array, we need to wait 262144 mclk cycles. | |
262 | * We wait 20ms to be safe. | |
263 | */ | |
264 | sdram_set_refresh(2); | |
47bb3b31 | 265 | if (!irqs_disabled()) |
db579554 | 266 | msleep(20); |
47bb3b31 | 267 | else |
1da177e4 | 268 | mdelay(20); |
1da177e4 LT |
269 | |
270 | /* | |
271 | * Reprogram the DRAM timings with interrupts disabled, and | |
272 | * ensure that we are doing this within a complete cache line. | |
273 | * This means that we won't access SDRAM for the duration of | |
274 | * the programming. | |
275 | */ | |
276 | local_irq_save(flags); | |
277 | asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0)); | |
278 | udelay(10); | |
47bb3b31 | 279 | __asm__ __volatile__("\n\ |
1da177e4 LT |
280 | b 2f \n\ |
281 | .align 5 \n\ | |
282 | 1: str %3, [%1, #0] @ MDCNFG \n\ | |
283 | str %4, [%1, #28] @ MDREFR \n\ | |
284 | str %5, [%1, #4] @ MDCAS0 \n\ | |
285 | str %6, [%1, #8] @ MDCAS1 \n\ | |
286 | str %7, [%1, #12] @ MDCAS2 \n\ | |
287 | str %8, [%2, #0] @ PPCR \n\ | |
288 | ldr %0, [%1, #0] \n\ | |
289 | b 3f \n\ | |
290 | 2: b 1b \n\ | |
291 | 3: nop \n\ | |
292 | nop" | |
293 | : "=&r" (unused) | |
294 | : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg), | |
295 | "r" (sd.mdrefr), "r" (sd.mdcas[0]), | |
296 | "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr)); | |
297 | local_irq_restore(flags); | |
298 | ||
299 | /* | |
300 | * Now, return the SDRAM refresh back to normal. | |
301 | */ | |
d4019f0a | 302 | sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram); |
1da177e4 LT |
303 | |
304 | return 0; | |
305 | } | |
306 | ||
307 | static int __init sa1110_cpu_init(struct cpufreq_policy *policy) | |
308 | { | |
9b30367b | 309 | return cpufreq_generic_init(policy, sa11x0_freq_table, CPUFREQ_ETERNAL); |
1da177e4 LT |
310 | } |
311 | ||
9f15d2ca MRJ |
312 | /* sa1110_driver needs __refdata because it must remain after init registers |
313 | * it with cpufreq_register_driver() */ | |
314 | static struct cpufreq_driver sa1110_driver __refdata = { | |
ae6b4271 | 315 | .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK, |
dd9f2639 | 316 | .verify = cpufreq_generic_frequency_table_verify, |
9c0ebcf7 | 317 | .target_index = sa1110_target, |
1da177e4 LT |
318 | .get = sa11x0_getspeed, |
319 | .init = sa1110_cpu_init, | |
320 | .name = "sa1110", | |
321 | }; | |
322 | ||
ba532011 RK |
323 | static struct sdram_params *sa1110_find_sdram(const char *name) |
324 | { | |
325 | struct sdram_params *sdram; | |
326 | ||
47bb3b31 MRJ |
327 | for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl); |
328 | sdram++) | |
ba532011 RK |
329 | if (strcmp(name, sdram->name) == 0) |
330 | return sdram; | |
331 | ||
332 | return NULL; | |
333 | } | |
334 | ||
335 | static char sdram_name[16]; | |
336 | ||
1da177e4 LT |
337 | static int __init sa1110_clk_init(void) |
338 | { | |
ba532011 RK |
339 | struct sdram_params *sdram; |
340 | const char *name = sdram_name; | |
1da177e4 | 341 | |
e5992c05 DA |
342 | if (!cpu_is_sa1110()) |
343 | return -ENODEV; | |
344 | ||
ba532011 RK |
345 | if (!name[0]) { |
346 | if (machine_is_assabet()) | |
347 | name = "TC59SM716-CL3"; | |
ba532011 RK |
348 | if (machine_is_pt_system3()) |
349 | name = "K4S641632D"; | |
ba532011 RK |
350 | if (machine_is_h3100()) |
351 | name = "KM416S4030CT"; | |
97d496bf | 352 | if (machine_is_jornada720() || machine_is_h3600()) |
47bb3b31 | 353 | name = "K4S281632B-1H"; |
9f15d2ca MRJ |
354 | if (machine_is_nanoengine()) |
355 | name = "MT48LC8M16A2TG-75"; | |
ba532011 | 356 | } |
1da177e4 | 357 | |
ba532011 | 358 | sdram = sa1110_find_sdram(name); |
1da177e4 LT |
359 | if (sdram) { |
360 | printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d" | |
361 | " twr: %d refresh: %d cas_latency: %d\n", | |
362 | sdram->tck, sdram->trcd, sdram->trp, | |
363 | sdram->twr, sdram->refresh, sdram->cas_latency); | |
364 | ||
365 | memcpy(&sdram_params, sdram, sizeof(sdram_params)); | |
366 | ||
367 | return cpufreq_register_driver(&sa1110_driver); | |
368 | } | |
369 | ||
370 | return 0; | |
371 | } | |
372 | ||
ba532011 | 373 | module_param_string(sdram, sdram_name, sizeof(sdram_name), 0); |
1da177e4 | 374 | arch_initcall(sa1110_clk_init); |