]>
Commit | Line | Data |
---|---|---|
0b61f8a4 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
87c199c2 | 3 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
7b718769 | 4 | * All Rights Reserved. |
1da177e4 | 5 | */ |
1da177e4 | 6 | #include "xfs.h" |
a844f451 | 7 | #include "xfs_fs.h" |
70a9883c | 8 | #include "xfs_shared.h" |
239880ef DC |
9 | #include "xfs_format.h" |
10 | #include "xfs_log_format.h" | |
11 | #include "xfs_trans_resv.h" | |
a844f451 | 12 | #include "xfs_bit.h" |
a844f451 | 13 | #include "xfs_sb.h" |
1da177e4 | 14 | #include "xfs_mount.h" |
50995582 | 15 | #include "xfs_defer.h" |
57062787 | 16 | #include "xfs_da_format.h" |
9a2cc41c | 17 | #include "xfs_da_btree.h" |
1da177e4 | 18 | #include "xfs_inode.h" |
239880ef | 19 | #include "xfs_trans.h" |
239880ef | 20 | #include "xfs_log.h" |
1da177e4 | 21 | #include "xfs_log_priv.h" |
1da177e4 | 22 | #include "xfs_log_recover.h" |
a4fbe6ab | 23 | #include "xfs_inode_item.h" |
1da177e4 LT |
24 | #include "xfs_extfree_item.h" |
25 | #include "xfs_trans_priv.h" | |
a4fbe6ab DC |
26 | #include "xfs_alloc.h" |
27 | #include "xfs_ialloc.h" | |
1da177e4 | 28 | #include "xfs_quota.h" |
0e446be4 | 29 | #include "xfs_cksum.h" |
0b1b213f | 30 | #include "xfs_trace.h" |
33479e05 | 31 | #include "xfs_icache.h" |
a4fbe6ab | 32 | #include "xfs_bmap_btree.h" |
a4fbe6ab | 33 | #include "xfs_error.h" |
2b9ab5ab | 34 | #include "xfs_dir2.h" |
9e88b5d8 | 35 | #include "xfs_rmap_item.h" |
60a4a222 | 36 | #include "xfs_buf_item.h" |
f997ee21 | 37 | #include "xfs_refcount_item.h" |
77d61fe4 | 38 | #include "xfs_bmap_item.h" |
1da177e4 | 39 | |
fc06c6d0 DC |
40 | #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) |
41 | ||
9a8d2fdb MT |
42 | STATIC int |
43 | xlog_find_zeroed( | |
44 | struct xlog *, | |
45 | xfs_daddr_t *); | |
46 | STATIC int | |
47 | xlog_clear_stale_blocks( | |
48 | struct xlog *, | |
49 | xfs_lsn_t); | |
1da177e4 | 50 | #if defined(DEBUG) |
9a8d2fdb MT |
51 | STATIC void |
52 | xlog_recover_check_summary( | |
53 | struct xlog *); | |
1da177e4 LT |
54 | #else |
55 | #define xlog_recover_check_summary(log) | |
1da177e4 | 56 | #endif |
7088c413 BF |
57 | STATIC int |
58 | xlog_do_recovery_pass( | |
59 | struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); | |
1da177e4 | 60 | |
d5689eaa CH |
61 | /* |
62 | * This structure is used during recovery to record the buf log items which | |
63 | * have been canceled and should not be replayed. | |
64 | */ | |
65 | struct xfs_buf_cancel { | |
66 | xfs_daddr_t bc_blkno; | |
67 | uint bc_len; | |
68 | int bc_refcount; | |
69 | struct list_head bc_list; | |
70 | }; | |
71 | ||
1da177e4 LT |
72 | /* |
73 | * Sector aligned buffer routines for buffer create/read/write/access | |
74 | */ | |
75 | ||
ff30a622 | 76 | /* |
99c26595 BF |
77 | * Verify the log-relative block number and length in basic blocks are valid for |
78 | * an operation involving the given XFS log buffer. Returns true if the fields | |
79 | * are valid, false otherwise. | |
ff30a622 | 80 | */ |
99c26595 BF |
81 | static inline bool |
82 | xlog_verify_bp( | |
9a8d2fdb | 83 | struct xlog *log, |
99c26595 | 84 | xfs_daddr_t blk_no, |
ff30a622 AE |
85 | int bbcount) |
86 | { | |
99c26595 BF |
87 | if (blk_no < 0 || blk_no >= log->l_logBBsize) |
88 | return false; | |
89 | if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) | |
90 | return false; | |
91 | return true; | |
ff30a622 AE |
92 | } |
93 | ||
36adecff AE |
94 | /* |
95 | * Allocate a buffer to hold log data. The buffer needs to be able | |
96 | * to map to a range of nbblks basic blocks at any valid (basic | |
97 | * block) offset within the log. | |
98 | */ | |
5d77c0dc | 99 | STATIC xfs_buf_t * |
1da177e4 | 100 | xlog_get_bp( |
9a8d2fdb | 101 | struct xlog *log, |
3228149c | 102 | int nbblks) |
1da177e4 | 103 | { |
c8da0faf CH |
104 | struct xfs_buf *bp; |
105 | ||
99c26595 BF |
106 | /* |
107 | * Pass log block 0 since we don't have an addr yet, buffer will be | |
108 | * verified on read. | |
109 | */ | |
110 | if (!xlog_verify_bp(log, 0, nbblks)) { | |
a0fa2b67 | 111 | xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", |
ff30a622 AE |
112 | nbblks); |
113 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); | |
3228149c DC |
114 | return NULL; |
115 | } | |
1da177e4 | 116 | |
36adecff AE |
117 | /* |
118 | * We do log I/O in units of log sectors (a power-of-2 | |
119 | * multiple of the basic block size), so we round up the | |
25985edc | 120 | * requested size to accommodate the basic blocks required |
36adecff AE |
121 | * for complete log sectors. |
122 | * | |
123 | * In addition, the buffer may be used for a non-sector- | |
124 | * aligned block offset, in which case an I/O of the | |
125 | * requested size could extend beyond the end of the | |
126 | * buffer. If the requested size is only 1 basic block it | |
127 | * will never straddle a sector boundary, so this won't be | |
128 | * an issue. Nor will this be a problem if the log I/O is | |
129 | * done in basic blocks (sector size 1). But otherwise we | |
130 | * extend the buffer by one extra log sector to ensure | |
25985edc | 131 | * there's space to accommodate this possibility. |
36adecff | 132 | */ |
69ce58f0 AE |
133 | if (nbblks > 1 && log->l_sectBBsize > 1) |
134 | nbblks += log->l_sectBBsize; | |
135 | nbblks = round_up(nbblks, log->l_sectBBsize); | |
36adecff | 136 | |
e70b73f8 | 137 | bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); |
c8da0faf CH |
138 | if (bp) |
139 | xfs_buf_unlock(bp); | |
140 | return bp; | |
1da177e4 LT |
141 | } |
142 | ||
5d77c0dc | 143 | STATIC void |
1da177e4 LT |
144 | xlog_put_bp( |
145 | xfs_buf_t *bp) | |
146 | { | |
147 | xfs_buf_free(bp); | |
148 | } | |
149 | ||
48389ef1 AE |
150 | /* |
151 | * Return the address of the start of the given block number's data | |
152 | * in a log buffer. The buffer covers a log sector-aligned region. | |
153 | */ | |
b2a922cd | 154 | STATIC char * |
076e6acb | 155 | xlog_align( |
9a8d2fdb | 156 | struct xlog *log, |
076e6acb CH |
157 | xfs_daddr_t blk_no, |
158 | int nbblks, | |
9a8d2fdb | 159 | struct xfs_buf *bp) |
076e6acb | 160 | { |
fdc07f44 | 161 | xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); |
076e6acb | 162 | |
4e94b71b | 163 | ASSERT(offset + nbblks <= bp->b_length); |
62926044 | 164 | return bp->b_addr + BBTOB(offset); |
076e6acb CH |
165 | } |
166 | ||
1da177e4 LT |
167 | |
168 | /* | |
169 | * nbblks should be uint, but oh well. Just want to catch that 32-bit length. | |
170 | */ | |
076e6acb CH |
171 | STATIC int |
172 | xlog_bread_noalign( | |
9a8d2fdb | 173 | struct xlog *log, |
1da177e4 LT |
174 | xfs_daddr_t blk_no, |
175 | int nbblks, | |
9a8d2fdb | 176 | struct xfs_buf *bp) |
1da177e4 LT |
177 | { |
178 | int error; | |
179 | ||
99c26595 BF |
180 | if (!xlog_verify_bp(log, blk_no, nbblks)) { |
181 | xfs_warn(log->l_mp, | |
182 | "Invalid log block/length (0x%llx, 0x%x) for buffer", | |
183 | blk_no, nbblks); | |
ff30a622 | 184 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); |
2451337d | 185 | return -EFSCORRUPTED; |
3228149c DC |
186 | } |
187 | ||
69ce58f0 AE |
188 | blk_no = round_down(blk_no, log->l_sectBBsize); |
189 | nbblks = round_up(nbblks, log->l_sectBBsize); | |
1da177e4 LT |
190 | |
191 | ASSERT(nbblks > 0); | |
4e94b71b | 192 | ASSERT(nbblks <= bp->b_length); |
1da177e4 LT |
193 | |
194 | XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); | |
0cac682f | 195 | bp->b_flags |= XBF_READ; |
aa0e8833 | 196 | bp->b_io_length = nbblks; |
0e95f19a | 197 | bp->b_error = 0; |
1da177e4 | 198 | |
6af88cda | 199 | error = xfs_buf_submit(bp); |
595bff75 | 200 | if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) |
901796af | 201 | xfs_buf_ioerror_alert(bp, __func__); |
1da177e4 LT |
202 | return error; |
203 | } | |
204 | ||
076e6acb CH |
205 | STATIC int |
206 | xlog_bread( | |
9a8d2fdb | 207 | struct xlog *log, |
076e6acb CH |
208 | xfs_daddr_t blk_no, |
209 | int nbblks, | |
9a8d2fdb | 210 | struct xfs_buf *bp, |
b2a922cd | 211 | char **offset) |
076e6acb CH |
212 | { |
213 | int error; | |
214 | ||
215 | error = xlog_bread_noalign(log, blk_no, nbblks, bp); | |
216 | if (error) | |
217 | return error; | |
218 | ||
219 | *offset = xlog_align(log, blk_no, nbblks, bp); | |
220 | return 0; | |
221 | } | |
222 | ||
44396476 DC |
223 | /* |
224 | * Read at an offset into the buffer. Returns with the buffer in it's original | |
225 | * state regardless of the result of the read. | |
226 | */ | |
227 | STATIC int | |
228 | xlog_bread_offset( | |
9a8d2fdb | 229 | struct xlog *log, |
44396476 DC |
230 | xfs_daddr_t blk_no, /* block to read from */ |
231 | int nbblks, /* blocks to read */ | |
9a8d2fdb | 232 | struct xfs_buf *bp, |
b2a922cd | 233 | char *offset) |
44396476 | 234 | { |
b2a922cd | 235 | char *orig_offset = bp->b_addr; |
4e94b71b | 236 | int orig_len = BBTOB(bp->b_length); |
44396476 DC |
237 | int error, error2; |
238 | ||
02fe03d9 | 239 | error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); |
44396476 DC |
240 | if (error) |
241 | return error; | |
242 | ||
243 | error = xlog_bread_noalign(log, blk_no, nbblks, bp); | |
244 | ||
245 | /* must reset buffer pointer even on error */ | |
02fe03d9 | 246 | error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); |
44396476 DC |
247 | if (error) |
248 | return error; | |
249 | return error2; | |
250 | } | |
251 | ||
1da177e4 LT |
252 | /* |
253 | * Write out the buffer at the given block for the given number of blocks. | |
254 | * The buffer is kept locked across the write and is returned locked. | |
255 | * This can only be used for synchronous log writes. | |
256 | */ | |
ba0f32d4 | 257 | STATIC int |
1da177e4 | 258 | xlog_bwrite( |
9a8d2fdb | 259 | struct xlog *log, |
1da177e4 LT |
260 | xfs_daddr_t blk_no, |
261 | int nbblks, | |
9a8d2fdb | 262 | struct xfs_buf *bp) |
1da177e4 LT |
263 | { |
264 | int error; | |
265 | ||
99c26595 BF |
266 | if (!xlog_verify_bp(log, blk_no, nbblks)) { |
267 | xfs_warn(log->l_mp, | |
268 | "Invalid log block/length (0x%llx, 0x%x) for buffer", | |
269 | blk_no, nbblks); | |
ff30a622 | 270 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); |
2451337d | 271 | return -EFSCORRUPTED; |
3228149c DC |
272 | } |
273 | ||
69ce58f0 AE |
274 | blk_no = round_down(blk_no, log->l_sectBBsize); |
275 | nbblks = round_up(nbblks, log->l_sectBBsize); | |
1da177e4 LT |
276 | |
277 | ASSERT(nbblks > 0); | |
4e94b71b | 278 | ASSERT(nbblks <= bp->b_length); |
1da177e4 LT |
279 | |
280 | XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); | |
72790aa1 | 281 | xfs_buf_hold(bp); |
0c842ad4 | 282 | xfs_buf_lock(bp); |
aa0e8833 | 283 | bp->b_io_length = nbblks; |
0e95f19a | 284 | bp->b_error = 0; |
1da177e4 | 285 | |
c2b006c1 | 286 | error = xfs_bwrite(bp); |
901796af CH |
287 | if (error) |
288 | xfs_buf_ioerror_alert(bp, __func__); | |
c2b006c1 | 289 | xfs_buf_relse(bp); |
1da177e4 LT |
290 | return error; |
291 | } | |
292 | ||
1da177e4 LT |
293 | #ifdef DEBUG |
294 | /* | |
295 | * dump debug superblock and log record information | |
296 | */ | |
297 | STATIC void | |
298 | xlog_header_check_dump( | |
299 | xfs_mount_t *mp, | |
300 | xlog_rec_header_t *head) | |
301 | { | |
08e96e1a | 302 | xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", |
03daa57c | 303 | __func__, &mp->m_sb.sb_uuid, XLOG_FMT); |
08e96e1a | 304 | xfs_debug(mp, " log : uuid = %pU, fmt = %d", |
03daa57c | 305 | &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); |
1da177e4 LT |
306 | } |
307 | #else | |
308 | #define xlog_header_check_dump(mp, head) | |
309 | #endif | |
310 | ||
311 | /* | |
312 | * check log record header for recovery | |
313 | */ | |
314 | STATIC int | |
315 | xlog_header_check_recover( | |
316 | xfs_mount_t *mp, | |
317 | xlog_rec_header_t *head) | |
318 | { | |
69ef921b | 319 | ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); |
1da177e4 LT |
320 | |
321 | /* | |
322 | * IRIX doesn't write the h_fmt field and leaves it zeroed | |
323 | * (XLOG_FMT_UNKNOWN). This stops us from trying to recover | |
324 | * a dirty log created in IRIX. | |
325 | */ | |
69ef921b | 326 | if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { |
a0fa2b67 DC |
327 | xfs_warn(mp, |
328 | "dirty log written in incompatible format - can't recover"); | |
1da177e4 LT |
329 | xlog_header_check_dump(mp, head); |
330 | XFS_ERROR_REPORT("xlog_header_check_recover(1)", | |
331 | XFS_ERRLEVEL_HIGH, mp); | |
2451337d | 332 | return -EFSCORRUPTED; |
1da177e4 | 333 | } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { |
a0fa2b67 DC |
334 | xfs_warn(mp, |
335 | "dirty log entry has mismatched uuid - can't recover"); | |
1da177e4 LT |
336 | xlog_header_check_dump(mp, head); |
337 | XFS_ERROR_REPORT("xlog_header_check_recover(2)", | |
338 | XFS_ERRLEVEL_HIGH, mp); | |
2451337d | 339 | return -EFSCORRUPTED; |
1da177e4 LT |
340 | } |
341 | return 0; | |
342 | } | |
343 | ||
344 | /* | |
345 | * read the head block of the log and check the header | |
346 | */ | |
347 | STATIC int | |
348 | xlog_header_check_mount( | |
349 | xfs_mount_t *mp, | |
350 | xlog_rec_header_t *head) | |
351 | { | |
69ef921b | 352 | ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); |
1da177e4 | 353 | |
d905fdaa | 354 | if (uuid_is_null(&head->h_fs_uuid)) { |
1da177e4 LT |
355 | /* |
356 | * IRIX doesn't write the h_fs_uuid or h_fmt fields. If | |
d905fdaa | 357 | * h_fs_uuid is null, we assume this log was last mounted |
1da177e4 LT |
358 | * by IRIX and continue. |
359 | */ | |
d905fdaa | 360 | xfs_warn(mp, "null uuid in log - IRIX style log"); |
1da177e4 | 361 | } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { |
a0fa2b67 | 362 | xfs_warn(mp, "log has mismatched uuid - can't recover"); |
1da177e4 LT |
363 | xlog_header_check_dump(mp, head); |
364 | XFS_ERROR_REPORT("xlog_header_check_mount", | |
365 | XFS_ERRLEVEL_HIGH, mp); | |
2451337d | 366 | return -EFSCORRUPTED; |
1da177e4 LT |
367 | } |
368 | return 0; | |
369 | } | |
370 | ||
371 | STATIC void | |
372 | xlog_recover_iodone( | |
373 | struct xfs_buf *bp) | |
374 | { | |
5a52c2a5 | 375 | if (bp->b_error) { |
1da177e4 LT |
376 | /* |
377 | * We're not going to bother about retrying | |
378 | * this during recovery. One strike! | |
379 | */ | |
595bff75 DC |
380 | if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { |
381 | xfs_buf_ioerror_alert(bp, __func__); | |
382 | xfs_force_shutdown(bp->b_target->bt_mount, | |
383 | SHUTDOWN_META_IO_ERROR); | |
384 | } | |
1da177e4 | 385 | } |
60a4a222 BF |
386 | |
387 | /* | |
388 | * On v5 supers, a bli could be attached to update the metadata LSN. | |
389 | * Clean it up. | |
390 | */ | |
fb1755a6 | 391 | if (bp->b_log_item) |
60a4a222 | 392 | xfs_buf_item_relse(bp); |
fb1755a6 | 393 | ASSERT(bp->b_log_item == NULL); |
60a4a222 | 394 | |
cb669ca5 | 395 | bp->b_iodone = NULL; |
e8aaba9a | 396 | xfs_buf_ioend(bp); |
1da177e4 LT |
397 | } |
398 | ||
399 | /* | |
400 | * This routine finds (to an approximation) the first block in the physical | |
401 | * log which contains the given cycle. It uses a binary search algorithm. | |
402 | * Note that the algorithm can not be perfect because the disk will not | |
403 | * necessarily be perfect. | |
404 | */ | |
a8272ce0 | 405 | STATIC int |
1da177e4 | 406 | xlog_find_cycle_start( |
9a8d2fdb MT |
407 | struct xlog *log, |
408 | struct xfs_buf *bp, | |
1da177e4 LT |
409 | xfs_daddr_t first_blk, |
410 | xfs_daddr_t *last_blk, | |
411 | uint cycle) | |
412 | { | |
b2a922cd | 413 | char *offset; |
1da177e4 | 414 | xfs_daddr_t mid_blk; |
e3bb2e30 | 415 | xfs_daddr_t end_blk; |
1da177e4 LT |
416 | uint mid_cycle; |
417 | int error; | |
418 | ||
e3bb2e30 AE |
419 | end_blk = *last_blk; |
420 | mid_blk = BLK_AVG(first_blk, end_blk); | |
421 | while (mid_blk != first_blk && mid_blk != end_blk) { | |
076e6acb CH |
422 | error = xlog_bread(log, mid_blk, 1, bp, &offset); |
423 | if (error) | |
1da177e4 | 424 | return error; |
03bea6fe | 425 | mid_cycle = xlog_get_cycle(offset); |
e3bb2e30 AE |
426 | if (mid_cycle == cycle) |
427 | end_blk = mid_blk; /* last_half_cycle == mid_cycle */ | |
428 | else | |
429 | first_blk = mid_blk; /* first_half_cycle == mid_cycle */ | |
430 | mid_blk = BLK_AVG(first_blk, end_blk); | |
1da177e4 | 431 | } |
e3bb2e30 AE |
432 | ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || |
433 | (mid_blk == end_blk && mid_blk-1 == first_blk)); | |
434 | ||
435 | *last_blk = end_blk; | |
1da177e4 LT |
436 | |
437 | return 0; | |
438 | } | |
439 | ||
440 | /* | |
3f943d85 AE |
441 | * Check that a range of blocks does not contain stop_on_cycle_no. |
442 | * Fill in *new_blk with the block offset where such a block is | |
443 | * found, or with -1 (an invalid block number) if there is no such | |
444 | * block in the range. The scan needs to occur from front to back | |
445 | * and the pointer into the region must be updated since a later | |
446 | * routine will need to perform another test. | |
1da177e4 LT |
447 | */ |
448 | STATIC int | |
449 | xlog_find_verify_cycle( | |
9a8d2fdb | 450 | struct xlog *log, |
1da177e4 LT |
451 | xfs_daddr_t start_blk, |
452 | int nbblks, | |
453 | uint stop_on_cycle_no, | |
454 | xfs_daddr_t *new_blk) | |
455 | { | |
456 | xfs_daddr_t i, j; | |
457 | uint cycle; | |
458 | xfs_buf_t *bp; | |
459 | xfs_daddr_t bufblks; | |
b2a922cd | 460 | char *buf = NULL; |
1da177e4 LT |
461 | int error = 0; |
462 | ||
6881a229 AE |
463 | /* |
464 | * Greedily allocate a buffer big enough to handle the full | |
465 | * range of basic blocks we'll be examining. If that fails, | |
466 | * try a smaller size. We need to be able to read at least | |
467 | * a log sector, or we're out of luck. | |
468 | */ | |
1da177e4 | 469 | bufblks = 1 << ffs(nbblks); |
81158e0c DC |
470 | while (bufblks > log->l_logBBsize) |
471 | bufblks >>= 1; | |
1da177e4 | 472 | while (!(bp = xlog_get_bp(log, bufblks))) { |
1da177e4 | 473 | bufblks >>= 1; |
69ce58f0 | 474 | if (bufblks < log->l_sectBBsize) |
2451337d | 475 | return -ENOMEM; |
1da177e4 LT |
476 | } |
477 | ||
478 | for (i = start_blk; i < start_blk + nbblks; i += bufblks) { | |
479 | int bcount; | |
480 | ||
481 | bcount = min(bufblks, (start_blk + nbblks - i)); | |
482 | ||
076e6acb CH |
483 | error = xlog_bread(log, i, bcount, bp, &buf); |
484 | if (error) | |
1da177e4 LT |
485 | goto out; |
486 | ||
1da177e4 | 487 | for (j = 0; j < bcount; j++) { |
03bea6fe | 488 | cycle = xlog_get_cycle(buf); |
1da177e4 LT |
489 | if (cycle == stop_on_cycle_no) { |
490 | *new_blk = i+j; | |
491 | goto out; | |
492 | } | |
493 | ||
494 | buf += BBSIZE; | |
495 | } | |
496 | } | |
497 | ||
498 | *new_blk = -1; | |
499 | ||
500 | out: | |
501 | xlog_put_bp(bp); | |
502 | return error; | |
503 | } | |
504 | ||
505 | /* | |
506 | * Potentially backup over partial log record write. | |
507 | * | |
508 | * In the typical case, last_blk is the number of the block directly after | |
509 | * a good log record. Therefore, we subtract one to get the block number | |
510 | * of the last block in the given buffer. extra_bblks contains the number | |
511 | * of blocks we would have read on a previous read. This happens when the | |
512 | * last log record is split over the end of the physical log. | |
513 | * | |
514 | * extra_bblks is the number of blocks potentially verified on a previous | |
515 | * call to this routine. | |
516 | */ | |
517 | STATIC int | |
518 | xlog_find_verify_log_record( | |
9a8d2fdb | 519 | struct xlog *log, |
1da177e4 LT |
520 | xfs_daddr_t start_blk, |
521 | xfs_daddr_t *last_blk, | |
522 | int extra_bblks) | |
523 | { | |
524 | xfs_daddr_t i; | |
525 | xfs_buf_t *bp; | |
b2a922cd | 526 | char *offset = NULL; |
1da177e4 LT |
527 | xlog_rec_header_t *head = NULL; |
528 | int error = 0; | |
529 | int smallmem = 0; | |
530 | int num_blks = *last_blk - start_blk; | |
531 | int xhdrs; | |
532 | ||
533 | ASSERT(start_blk != 0 || *last_blk != start_blk); | |
534 | ||
535 | if (!(bp = xlog_get_bp(log, num_blks))) { | |
536 | if (!(bp = xlog_get_bp(log, 1))) | |
2451337d | 537 | return -ENOMEM; |
1da177e4 LT |
538 | smallmem = 1; |
539 | } else { | |
076e6acb CH |
540 | error = xlog_bread(log, start_blk, num_blks, bp, &offset); |
541 | if (error) | |
1da177e4 | 542 | goto out; |
1da177e4 LT |
543 | offset += ((num_blks - 1) << BBSHIFT); |
544 | } | |
545 | ||
546 | for (i = (*last_blk) - 1; i >= 0; i--) { | |
547 | if (i < start_blk) { | |
548 | /* valid log record not found */ | |
a0fa2b67 DC |
549 | xfs_warn(log->l_mp, |
550 | "Log inconsistent (didn't find previous header)"); | |
1da177e4 | 551 | ASSERT(0); |
2451337d | 552 | error = -EIO; |
1da177e4 LT |
553 | goto out; |
554 | } | |
555 | ||
556 | if (smallmem) { | |
076e6acb CH |
557 | error = xlog_bread(log, i, 1, bp, &offset); |
558 | if (error) | |
1da177e4 | 559 | goto out; |
1da177e4 LT |
560 | } |
561 | ||
562 | head = (xlog_rec_header_t *)offset; | |
563 | ||
69ef921b | 564 | if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) |
1da177e4 LT |
565 | break; |
566 | ||
567 | if (!smallmem) | |
568 | offset -= BBSIZE; | |
569 | } | |
570 | ||
571 | /* | |
572 | * We hit the beginning of the physical log & still no header. Return | |
573 | * to caller. If caller can handle a return of -1, then this routine | |
574 | * will be called again for the end of the physical log. | |
575 | */ | |
576 | if (i == -1) { | |
2451337d | 577 | error = 1; |
1da177e4 LT |
578 | goto out; |
579 | } | |
580 | ||
581 | /* | |
582 | * We have the final block of the good log (the first block | |
583 | * of the log record _before_ the head. So we check the uuid. | |
584 | */ | |
585 | if ((error = xlog_header_check_mount(log->l_mp, head))) | |
586 | goto out; | |
587 | ||
588 | /* | |
589 | * We may have found a log record header before we expected one. | |
590 | * last_blk will be the 1st block # with a given cycle #. We may end | |
591 | * up reading an entire log record. In this case, we don't want to | |
592 | * reset last_blk. Only when last_blk points in the middle of a log | |
593 | * record do we update last_blk. | |
594 | */ | |
62118709 | 595 | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { |
b53e675d | 596 | uint h_size = be32_to_cpu(head->h_size); |
1da177e4 LT |
597 | |
598 | xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; | |
599 | if (h_size % XLOG_HEADER_CYCLE_SIZE) | |
600 | xhdrs++; | |
601 | } else { | |
602 | xhdrs = 1; | |
603 | } | |
604 | ||
b53e675d CH |
605 | if (*last_blk - i + extra_bblks != |
606 | BTOBB(be32_to_cpu(head->h_len)) + xhdrs) | |
1da177e4 LT |
607 | *last_blk = i; |
608 | ||
609 | out: | |
610 | xlog_put_bp(bp); | |
611 | return error; | |
612 | } | |
613 | ||
614 | /* | |
615 | * Head is defined to be the point of the log where the next log write | |
0a94da24 | 616 | * could go. This means that incomplete LR writes at the end are |
1da177e4 LT |
617 | * eliminated when calculating the head. We aren't guaranteed that previous |
618 | * LR have complete transactions. We only know that a cycle number of | |
619 | * current cycle number -1 won't be present in the log if we start writing | |
620 | * from our current block number. | |
621 | * | |
622 | * last_blk contains the block number of the first block with a given | |
623 | * cycle number. | |
624 | * | |
625 | * Return: zero if normal, non-zero if error. | |
626 | */ | |
ba0f32d4 | 627 | STATIC int |
1da177e4 | 628 | xlog_find_head( |
9a8d2fdb | 629 | struct xlog *log, |
1da177e4 LT |
630 | xfs_daddr_t *return_head_blk) |
631 | { | |
632 | xfs_buf_t *bp; | |
b2a922cd | 633 | char *offset; |
1da177e4 LT |
634 | xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; |
635 | int num_scan_bblks; | |
636 | uint first_half_cycle, last_half_cycle; | |
637 | uint stop_on_cycle; | |
638 | int error, log_bbnum = log->l_logBBsize; | |
639 | ||
640 | /* Is the end of the log device zeroed? */ | |
2451337d DC |
641 | error = xlog_find_zeroed(log, &first_blk); |
642 | if (error < 0) { | |
643 | xfs_warn(log->l_mp, "empty log check failed"); | |
644 | return error; | |
645 | } | |
646 | if (error == 1) { | |
1da177e4 LT |
647 | *return_head_blk = first_blk; |
648 | ||
649 | /* Is the whole lot zeroed? */ | |
650 | if (!first_blk) { | |
651 | /* Linux XFS shouldn't generate totally zeroed logs - | |
652 | * mkfs etc write a dummy unmount record to a fresh | |
653 | * log so we can store the uuid in there | |
654 | */ | |
a0fa2b67 | 655 | xfs_warn(log->l_mp, "totally zeroed log"); |
1da177e4 LT |
656 | } |
657 | ||
658 | return 0; | |
1da177e4 LT |
659 | } |
660 | ||
661 | first_blk = 0; /* get cycle # of 1st block */ | |
662 | bp = xlog_get_bp(log, 1); | |
663 | if (!bp) | |
2451337d | 664 | return -ENOMEM; |
076e6acb CH |
665 | |
666 | error = xlog_bread(log, 0, 1, bp, &offset); | |
667 | if (error) | |
1da177e4 | 668 | goto bp_err; |
076e6acb | 669 | |
03bea6fe | 670 | first_half_cycle = xlog_get_cycle(offset); |
1da177e4 LT |
671 | |
672 | last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ | |
076e6acb CH |
673 | error = xlog_bread(log, last_blk, 1, bp, &offset); |
674 | if (error) | |
1da177e4 | 675 | goto bp_err; |
076e6acb | 676 | |
03bea6fe | 677 | last_half_cycle = xlog_get_cycle(offset); |
1da177e4 LT |
678 | ASSERT(last_half_cycle != 0); |
679 | ||
680 | /* | |
681 | * If the 1st half cycle number is equal to the last half cycle number, | |
682 | * then the entire log is stamped with the same cycle number. In this | |
683 | * case, head_blk can't be set to zero (which makes sense). The below | |
684 | * math doesn't work out properly with head_blk equal to zero. Instead, | |
685 | * we set it to log_bbnum which is an invalid block number, but this | |
686 | * value makes the math correct. If head_blk doesn't changed through | |
687 | * all the tests below, *head_blk is set to zero at the very end rather | |
688 | * than log_bbnum. In a sense, log_bbnum and zero are the same block | |
689 | * in a circular file. | |
690 | */ | |
691 | if (first_half_cycle == last_half_cycle) { | |
692 | /* | |
693 | * In this case we believe that the entire log should have | |
694 | * cycle number last_half_cycle. We need to scan backwards | |
695 | * from the end verifying that there are no holes still | |
696 | * containing last_half_cycle - 1. If we find such a hole, | |
697 | * then the start of that hole will be the new head. The | |
698 | * simple case looks like | |
699 | * x | x ... | x - 1 | x | |
700 | * Another case that fits this picture would be | |
701 | * x | x + 1 | x ... | x | |
c41564b5 | 702 | * In this case the head really is somewhere at the end of the |
1da177e4 LT |
703 | * log, as one of the latest writes at the beginning was |
704 | * incomplete. | |
705 | * One more case is | |
706 | * x | x + 1 | x ... | x - 1 | x | |
707 | * This is really the combination of the above two cases, and | |
708 | * the head has to end up at the start of the x-1 hole at the | |
709 | * end of the log. | |
710 | * | |
711 | * In the 256k log case, we will read from the beginning to the | |
712 | * end of the log and search for cycle numbers equal to x-1. | |
713 | * We don't worry about the x+1 blocks that we encounter, | |
714 | * because we know that they cannot be the head since the log | |
715 | * started with x. | |
716 | */ | |
717 | head_blk = log_bbnum; | |
718 | stop_on_cycle = last_half_cycle - 1; | |
719 | } else { | |
720 | /* | |
721 | * In this case we want to find the first block with cycle | |
722 | * number matching last_half_cycle. We expect the log to be | |
723 | * some variation on | |
3f943d85 | 724 | * x + 1 ... | x ... | x |
1da177e4 LT |
725 | * The first block with cycle number x (last_half_cycle) will |
726 | * be where the new head belongs. First we do a binary search | |
727 | * for the first occurrence of last_half_cycle. The binary | |
728 | * search may not be totally accurate, so then we scan back | |
729 | * from there looking for occurrences of last_half_cycle before | |
730 | * us. If that backwards scan wraps around the beginning of | |
731 | * the log, then we look for occurrences of last_half_cycle - 1 | |
732 | * at the end of the log. The cases we're looking for look | |
733 | * like | |
3f943d85 AE |
734 | * v binary search stopped here |
735 | * x + 1 ... | x | x + 1 | x ... | x | |
736 | * ^ but we want to locate this spot | |
1da177e4 | 737 | * or |
1da177e4 | 738 | * <---------> less than scan distance |
3f943d85 AE |
739 | * x + 1 ... | x ... | x - 1 | x |
740 | * ^ we want to locate this spot | |
1da177e4 LT |
741 | */ |
742 | stop_on_cycle = last_half_cycle; | |
743 | if ((error = xlog_find_cycle_start(log, bp, first_blk, | |
744 | &head_blk, last_half_cycle))) | |
745 | goto bp_err; | |
746 | } | |
747 | ||
748 | /* | |
749 | * Now validate the answer. Scan back some number of maximum possible | |
750 | * blocks and make sure each one has the expected cycle number. The | |
751 | * maximum is determined by the total possible amount of buffering | |
752 | * in the in-core log. The following number can be made tighter if | |
753 | * we actually look at the block size of the filesystem. | |
754 | */ | |
9f2a4505 | 755 | num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); |
1da177e4 LT |
756 | if (head_blk >= num_scan_bblks) { |
757 | /* | |
758 | * We are guaranteed that the entire check can be performed | |
759 | * in one buffer. | |
760 | */ | |
761 | start_blk = head_blk - num_scan_bblks; | |
762 | if ((error = xlog_find_verify_cycle(log, | |
763 | start_blk, num_scan_bblks, | |
764 | stop_on_cycle, &new_blk))) | |
765 | goto bp_err; | |
766 | if (new_blk != -1) | |
767 | head_blk = new_blk; | |
768 | } else { /* need to read 2 parts of log */ | |
769 | /* | |
770 | * We are going to scan backwards in the log in two parts. | |
771 | * First we scan the physical end of the log. In this part | |
772 | * of the log, we are looking for blocks with cycle number | |
773 | * last_half_cycle - 1. | |
774 | * If we find one, then we know that the log starts there, as | |
775 | * we've found a hole that didn't get written in going around | |
776 | * the end of the physical log. The simple case for this is | |
777 | * x + 1 ... | x ... | x - 1 | x | |
778 | * <---------> less than scan distance | |
779 | * If all of the blocks at the end of the log have cycle number | |
780 | * last_half_cycle, then we check the blocks at the start of | |
781 | * the log looking for occurrences of last_half_cycle. If we | |
782 | * find one, then our current estimate for the location of the | |
783 | * first occurrence of last_half_cycle is wrong and we move | |
784 | * back to the hole we've found. This case looks like | |
785 | * x + 1 ... | x | x + 1 | x ... | |
786 | * ^ binary search stopped here | |
787 | * Another case we need to handle that only occurs in 256k | |
788 | * logs is | |
789 | * x + 1 ... | x ... | x+1 | x ... | |
790 | * ^ binary search stops here | |
791 | * In a 256k log, the scan at the end of the log will see the | |
792 | * x + 1 blocks. We need to skip past those since that is | |
793 | * certainly not the head of the log. By searching for | |
794 | * last_half_cycle-1 we accomplish that. | |
795 | */ | |
1da177e4 | 796 | ASSERT(head_blk <= INT_MAX && |
3f943d85 AE |
797 | (xfs_daddr_t) num_scan_bblks >= head_blk); |
798 | start_blk = log_bbnum - (num_scan_bblks - head_blk); | |
1da177e4 LT |
799 | if ((error = xlog_find_verify_cycle(log, start_blk, |
800 | num_scan_bblks - (int)head_blk, | |
801 | (stop_on_cycle - 1), &new_blk))) | |
802 | goto bp_err; | |
803 | if (new_blk != -1) { | |
804 | head_blk = new_blk; | |
9db127ed | 805 | goto validate_head; |
1da177e4 LT |
806 | } |
807 | ||
808 | /* | |
809 | * Scan beginning of log now. The last part of the physical | |
810 | * log is good. This scan needs to verify that it doesn't find | |
811 | * the last_half_cycle. | |
812 | */ | |
813 | start_blk = 0; | |
814 | ASSERT(head_blk <= INT_MAX); | |
815 | if ((error = xlog_find_verify_cycle(log, | |
816 | start_blk, (int)head_blk, | |
817 | stop_on_cycle, &new_blk))) | |
818 | goto bp_err; | |
819 | if (new_blk != -1) | |
820 | head_blk = new_blk; | |
821 | } | |
822 | ||
9db127ed | 823 | validate_head: |
1da177e4 LT |
824 | /* |
825 | * Now we need to make sure head_blk is not pointing to a block in | |
826 | * the middle of a log record. | |
827 | */ | |
828 | num_scan_bblks = XLOG_REC_SHIFT(log); | |
829 | if (head_blk >= num_scan_bblks) { | |
830 | start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ | |
831 | ||
832 | /* start ptr at last block ptr before head_blk */ | |
2451337d DC |
833 | error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); |
834 | if (error == 1) | |
835 | error = -EIO; | |
836 | if (error) | |
1da177e4 LT |
837 | goto bp_err; |
838 | } else { | |
839 | start_blk = 0; | |
840 | ASSERT(head_blk <= INT_MAX); | |
2451337d DC |
841 | error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); |
842 | if (error < 0) | |
843 | goto bp_err; | |
844 | if (error == 1) { | |
1da177e4 | 845 | /* We hit the beginning of the log during our search */ |
3f943d85 | 846 | start_blk = log_bbnum - (num_scan_bblks - head_blk); |
1da177e4 LT |
847 | new_blk = log_bbnum; |
848 | ASSERT(start_blk <= INT_MAX && | |
849 | (xfs_daddr_t) log_bbnum-start_blk >= 0); | |
850 | ASSERT(head_blk <= INT_MAX); | |
2451337d DC |
851 | error = xlog_find_verify_log_record(log, start_blk, |
852 | &new_blk, (int)head_blk); | |
853 | if (error == 1) | |
854 | error = -EIO; | |
855 | if (error) | |
1da177e4 LT |
856 | goto bp_err; |
857 | if (new_blk != log_bbnum) | |
858 | head_blk = new_blk; | |
859 | } else if (error) | |
860 | goto bp_err; | |
861 | } | |
862 | ||
863 | xlog_put_bp(bp); | |
864 | if (head_blk == log_bbnum) | |
865 | *return_head_blk = 0; | |
866 | else | |
867 | *return_head_blk = head_blk; | |
868 | /* | |
869 | * When returning here, we have a good block number. Bad block | |
870 | * means that during a previous crash, we didn't have a clean break | |
871 | * from cycle number N to cycle number N-1. In this case, we need | |
872 | * to find the first block with cycle number N-1. | |
873 | */ | |
874 | return 0; | |
875 | ||
876 | bp_err: | |
877 | xlog_put_bp(bp); | |
878 | ||
879 | if (error) | |
a0fa2b67 | 880 | xfs_warn(log->l_mp, "failed to find log head"); |
1da177e4 LT |
881 | return error; |
882 | } | |
883 | ||
eed6b462 BF |
884 | /* |
885 | * Seek backwards in the log for log record headers. | |
886 | * | |
887 | * Given a starting log block, walk backwards until we find the provided number | |
888 | * of records or hit the provided tail block. The return value is the number of | |
889 | * records encountered or a negative error code. The log block and buffer | |
890 | * pointer of the last record seen are returned in rblk and rhead respectively. | |
891 | */ | |
892 | STATIC int | |
893 | xlog_rseek_logrec_hdr( | |
894 | struct xlog *log, | |
895 | xfs_daddr_t head_blk, | |
896 | xfs_daddr_t tail_blk, | |
897 | int count, | |
898 | struct xfs_buf *bp, | |
899 | xfs_daddr_t *rblk, | |
900 | struct xlog_rec_header **rhead, | |
901 | bool *wrapped) | |
902 | { | |
903 | int i; | |
904 | int error; | |
905 | int found = 0; | |
906 | char *offset = NULL; | |
907 | xfs_daddr_t end_blk; | |
908 | ||
909 | *wrapped = false; | |
910 | ||
911 | /* | |
912 | * Walk backwards from the head block until we hit the tail or the first | |
913 | * block in the log. | |
914 | */ | |
915 | end_blk = head_blk > tail_blk ? tail_blk : 0; | |
916 | for (i = (int) head_blk - 1; i >= end_blk; i--) { | |
917 | error = xlog_bread(log, i, 1, bp, &offset); | |
918 | if (error) | |
919 | goto out_error; | |
920 | ||
921 | if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { | |
922 | *rblk = i; | |
923 | *rhead = (struct xlog_rec_header *) offset; | |
924 | if (++found == count) | |
925 | break; | |
926 | } | |
927 | } | |
928 | ||
929 | /* | |
930 | * If we haven't hit the tail block or the log record header count, | |
931 | * start looking again from the end of the physical log. Note that | |
932 | * callers can pass head == tail if the tail is not yet known. | |
933 | */ | |
934 | if (tail_blk >= head_blk && found != count) { | |
935 | for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { | |
936 | error = xlog_bread(log, i, 1, bp, &offset); | |
937 | if (error) | |
938 | goto out_error; | |
939 | ||
940 | if (*(__be32 *)offset == | |
941 | cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { | |
942 | *wrapped = true; | |
943 | *rblk = i; | |
944 | *rhead = (struct xlog_rec_header *) offset; | |
945 | if (++found == count) | |
946 | break; | |
947 | } | |
948 | } | |
949 | } | |
950 | ||
951 | return found; | |
952 | ||
953 | out_error: | |
954 | return error; | |
955 | } | |
956 | ||
7088c413 BF |
957 | /* |
958 | * Seek forward in the log for log record headers. | |
959 | * | |
960 | * Given head and tail blocks, walk forward from the tail block until we find | |
961 | * the provided number of records or hit the head block. The return value is the | |
962 | * number of records encountered or a negative error code. The log block and | |
963 | * buffer pointer of the last record seen are returned in rblk and rhead | |
964 | * respectively. | |
965 | */ | |
966 | STATIC int | |
967 | xlog_seek_logrec_hdr( | |
968 | struct xlog *log, | |
969 | xfs_daddr_t head_blk, | |
970 | xfs_daddr_t tail_blk, | |
971 | int count, | |
972 | struct xfs_buf *bp, | |
973 | xfs_daddr_t *rblk, | |
974 | struct xlog_rec_header **rhead, | |
975 | bool *wrapped) | |
976 | { | |
977 | int i; | |
978 | int error; | |
979 | int found = 0; | |
980 | char *offset = NULL; | |
981 | xfs_daddr_t end_blk; | |
982 | ||
983 | *wrapped = false; | |
984 | ||
985 | /* | |
986 | * Walk forward from the tail block until we hit the head or the last | |
987 | * block in the log. | |
988 | */ | |
989 | end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; | |
990 | for (i = (int) tail_blk; i <= end_blk; i++) { | |
991 | error = xlog_bread(log, i, 1, bp, &offset); | |
992 | if (error) | |
993 | goto out_error; | |
994 | ||
995 | if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { | |
996 | *rblk = i; | |
997 | *rhead = (struct xlog_rec_header *) offset; | |
998 | if (++found == count) | |
999 | break; | |
1000 | } | |
1001 | } | |
1002 | ||
1003 | /* | |
1004 | * If we haven't hit the head block or the log record header count, | |
1005 | * start looking again from the start of the physical log. | |
1006 | */ | |
1007 | if (tail_blk > head_blk && found != count) { | |
1008 | for (i = 0; i < (int) head_blk; i++) { | |
1009 | error = xlog_bread(log, i, 1, bp, &offset); | |
1010 | if (error) | |
1011 | goto out_error; | |
1012 | ||
1013 | if (*(__be32 *)offset == | |
1014 | cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { | |
1015 | *wrapped = true; | |
1016 | *rblk = i; | |
1017 | *rhead = (struct xlog_rec_header *) offset; | |
1018 | if (++found == count) | |
1019 | break; | |
1020 | } | |
1021 | } | |
1022 | } | |
1023 | ||
1024 | return found; | |
1025 | ||
1026 | out_error: | |
1027 | return error; | |
1028 | } | |
1029 | ||
1030 | /* | |
4a4f66ea BF |
1031 | * Calculate distance from head to tail (i.e., unused space in the log). |
1032 | */ | |
1033 | static inline int | |
1034 | xlog_tail_distance( | |
1035 | struct xlog *log, | |
1036 | xfs_daddr_t head_blk, | |
1037 | xfs_daddr_t tail_blk) | |
1038 | { | |
1039 | if (head_blk < tail_blk) | |
1040 | return tail_blk - head_blk; | |
1041 | ||
1042 | return tail_blk + (log->l_logBBsize - head_blk); | |
1043 | } | |
1044 | ||
1045 | /* | |
1046 | * Verify the log tail. This is particularly important when torn or incomplete | |
1047 | * writes have been detected near the front of the log and the head has been | |
1048 | * walked back accordingly. | |
1049 | * | |
1050 | * We also have to handle the case where the tail was pinned and the head | |
1051 | * blocked behind the tail right before a crash. If the tail had been pushed | |
1052 | * immediately prior to the crash and the subsequent checkpoint was only | |
1053 | * partially written, it's possible it overwrote the last referenced tail in the | |
1054 | * log with garbage. This is not a coherency problem because the tail must have | |
1055 | * been pushed before it can be overwritten, but appears as log corruption to | |
1056 | * recovery because we have no way to know the tail was updated if the | |
1057 | * subsequent checkpoint didn't write successfully. | |
7088c413 | 1058 | * |
4a4f66ea BF |
1059 | * Therefore, CRC check the log from tail to head. If a failure occurs and the |
1060 | * offending record is within max iclog bufs from the head, walk the tail | |
1061 | * forward and retry until a valid tail is found or corruption is detected out | |
1062 | * of the range of a possible overwrite. | |
7088c413 BF |
1063 | */ |
1064 | STATIC int | |
1065 | xlog_verify_tail( | |
1066 | struct xlog *log, | |
1067 | xfs_daddr_t head_blk, | |
4a4f66ea BF |
1068 | xfs_daddr_t *tail_blk, |
1069 | int hsize) | |
7088c413 BF |
1070 | { |
1071 | struct xlog_rec_header *thead; | |
1072 | struct xfs_buf *bp; | |
1073 | xfs_daddr_t first_bad; | |
7088c413 BF |
1074 | int error = 0; |
1075 | bool wrapped; | |
4a4f66ea BF |
1076 | xfs_daddr_t tmp_tail; |
1077 | xfs_daddr_t orig_tail = *tail_blk; | |
7088c413 BF |
1078 | |
1079 | bp = xlog_get_bp(log, 1); | |
1080 | if (!bp) | |
1081 | return -ENOMEM; | |
1082 | ||
1083 | /* | |
4a4f66ea BF |
1084 | * Make sure the tail points to a record (returns positive count on |
1085 | * success). | |
7088c413 | 1086 | */ |
4a4f66ea BF |
1087 | error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp, |
1088 | &tmp_tail, &thead, &wrapped); | |
1089 | if (error < 0) | |
7088c413 | 1090 | goto out; |
4a4f66ea BF |
1091 | if (*tail_blk != tmp_tail) |
1092 | *tail_blk = tmp_tail; | |
7088c413 BF |
1093 | |
1094 | /* | |
4a4f66ea BF |
1095 | * Run a CRC check from the tail to the head. We can't just check |
1096 | * MAX_ICLOGS records past the tail because the tail may point to stale | |
1097 | * blocks cleared during the search for the head/tail. These blocks are | |
1098 | * overwritten with zero-length records and thus record count is not a | |
1099 | * reliable indicator of the iclog state before a crash. | |
7088c413 | 1100 | */ |
4a4f66ea BF |
1101 | first_bad = 0; |
1102 | error = xlog_do_recovery_pass(log, head_blk, *tail_blk, | |
7088c413 | 1103 | XLOG_RECOVER_CRCPASS, &first_bad); |
a4c9b34d | 1104 | while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { |
4a4f66ea BF |
1105 | int tail_distance; |
1106 | ||
1107 | /* | |
1108 | * Is corruption within range of the head? If so, retry from | |
1109 | * the next record. Otherwise return an error. | |
1110 | */ | |
1111 | tail_distance = xlog_tail_distance(log, head_blk, first_bad); | |
1112 | if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) | |
1113 | break; | |
7088c413 | 1114 | |
4a4f66ea BF |
1115 | /* skip to the next record; returns positive count on success */ |
1116 | error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp, | |
1117 | &tmp_tail, &thead, &wrapped); | |
1118 | if (error < 0) | |
1119 | goto out; | |
1120 | ||
1121 | *tail_blk = tmp_tail; | |
1122 | first_bad = 0; | |
1123 | error = xlog_do_recovery_pass(log, head_blk, *tail_blk, | |
1124 | XLOG_RECOVER_CRCPASS, &first_bad); | |
1125 | } | |
1126 | ||
1127 | if (!error && *tail_blk != orig_tail) | |
1128 | xfs_warn(log->l_mp, | |
1129 | "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", | |
1130 | orig_tail, *tail_blk); | |
7088c413 BF |
1131 | out: |
1132 | xlog_put_bp(bp); | |
1133 | return error; | |
1134 | } | |
1135 | ||
1136 | /* | |
1137 | * Detect and trim torn writes from the head of the log. | |
1138 | * | |
1139 | * Storage without sector atomicity guarantees can result in torn writes in the | |
1140 | * log in the event of a crash. Our only means to detect this scenario is via | |
1141 | * CRC verification. While we can't always be certain that CRC verification | |
1142 | * failure is due to a torn write vs. an unrelated corruption, we do know that | |
1143 | * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at | |
1144 | * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of | |
1145 | * the log and treat failures in this range as torn writes as a matter of | |
1146 | * policy. In the event of CRC failure, the head is walked back to the last good | |
1147 | * record in the log and the tail is updated from that record and verified. | |
1148 | */ | |
1149 | STATIC int | |
1150 | xlog_verify_head( | |
1151 | struct xlog *log, | |
1152 | xfs_daddr_t *head_blk, /* in/out: unverified head */ | |
1153 | xfs_daddr_t *tail_blk, /* out: tail block */ | |
1154 | struct xfs_buf *bp, | |
1155 | xfs_daddr_t *rhead_blk, /* start blk of last record */ | |
1156 | struct xlog_rec_header **rhead, /* ptr to last record */ | |
1157 | bool *wrapped) /* last rec. wraps phys. log */ | |
1158 | { | |
1159 | struct xlog_rec_header *tmp_rhead; | |
1160 | struct xfs_buf *tmp_bp; | |
1161 | xfs_daddr_t first_bad; | |
1162 | xfs_daddr_t tmp_rhead_blk; | |
1163 | int found; | |
1164 | int error; | |
1165 | bool tmp_wrapped; | |
1166 | ||
1167 | /* | |
82ff6cc2 BF |
1168 | * Check the head of the log for torn writes. Search backwards from the |
1169 | * head until we hit the tail or the maximum number of log record I/Os | |
1170 | * that could have been in flight at one time. Use a temporary buffer so | |
1171 | * we don't trash the rhead/bp pointers from the caller. | |
7088c413 BF |
1172 | */ |
1173 | tmp_bp = xlog_get_bp(log, 1); | |
1174 | if (!tmp_bp) | |
1175 | return -ENOMEM; | |
1176 | error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, | |
1177 | XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk, | |
1178 | &tmp_rhead, &tmp_wrapped); | |
1179 | xlog_put_bp(tmp_bp); | |
1180 | if (error < 0) | |
1181 | return error; | |
1182 | ||
1183 | /* | |
1184 | * Now run a CRC verification pass over the records starting at the | |
1185 | * block found above to the current head. If a CRC failure occurs, the | |
1186 | * log block of the first bad record is saved in first_bad. | |
1187 | */ | |
1188 | error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, | |
1189 | XLOG_RECOVER_CRCPASS, &first_bad); | |
a4c9b34d | 1190 | if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { |
7088c413 BF |
1191 | /* |
1192 | * We've hit a potential torn write. Reset the error and warn | |
1193 | * about it. | |
1194 | */ | |
1195 | error = 0; | |
1196 | xfs_warn(log->l_mp, | |
1197 | "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", | |
1198 | first_bad, *head_blk); | |
1199 | ||
1200 | /* | |
1201 | * Get the header block and buffer pointer for the last good | |
1202 | * record before the bad record. | |
1203 | * | |
1204 | * Note that xlog_find_tail() clears the blocks at the new head | |
1205 | * (i.e., the records with invalid CRC) if the cycle number | |
1206 | * matches the the current cycle. | |
1207 | */ | |
1208 | found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp, | |
1209 | rhead_blk, rhead, wrapped); | |
1210 | if (found < 0) | |
1211 | return found; | |
1212 | if (found == 0) /* XXX: right thing to do here? */ | |
1213 | return -EIO; | |
1214 | ||
1215 | /* | |
1216 | * Reset the head block to the starting block of the first bad | |
1217 | * log record and set the tail block based on the last good | |
1218 | * record. | |
1219 | * | |
1220 | * Bail out if the updated head/tail match as this indicates | |
1221 | * possible corruption outside of the acceptable | |
1222 | * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... | |
1223 | */ | |
1224 | *head_blk = first_bad; | |
1225 | *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); | |
1226 | if (*head_blk == *tail_blk) { | |
1227 | ASSERT(0); | |
1228 | return 0; | |
1229 | } | |
7088c413 | 1230 | } |
5297ac1f BF |
1231 | if (error) |
1232 | return error; | |
7088c413 | 1233 | |
4a4f66ea BF |
1234 | return xlog_verify_tail(log, *head_blk, tail_blk, |
1235 | be32_to_cpu((*rhead)->h_size)); | |
7088c413 BF |
1236 | } |
1237 | ||
0703a8e1 DC |
1238 | /* |
1239 | * We need to make sure we handle log wrapping properly, so we can't use the | |
1240 | * calculated logbno directly. Make sure it wraps to the correct bno inside the | |
1241 | * log. | |
1242 | * | |
1243 | * The log is limited to 32 bit sizes, so we use the appropriate modulus | |
1244 | * operation here and cast it back to a 64 bit daddr on return. | |
1245 | */ | |
1246 | static inline xfs_daddr_t | |
1247 | xlog_wrap_logbno( | |
1248 | struct xlog *log, | |
1249 | xfs_daddr_t bno) | |
1250 | { | |
1251 | int mod; | |
1252 | ||
1253 | div_s64_rem(bno, log->l_logBBsize, &mod); | |
1254 | return mod; | |
1255 | } | |
1256 | ||
65b99a08 BF |
1257 | /* |
1258 | * Check whether the head of the log points to an unmount record. In other | |
1259 | * words, determine whether the log is clean. If so, update the in-core state | |
1260 | * appropriately. | |
1261 | */ | |
1262 | static int | |
1263 | xlog_check_unmount_rec( | |
1264 | struct xlog *log, | |
1265 | xfs_daddr_t *head_blk, | |
1266 | xfs_daddr_t *tail_blk, | |
1267 | struct xlog_rec_header *rhead, | |
1268 | xfs_daddr_t rhead_blk, | |
1269 | struct xfs_buf *bp, | |
1270 | bool *clean) | |
1271 | { | |
1272 | struct xlog_op_header *op_head; | |
1273 | xfs_daddr_t umount_data_blk; | |
1274 | xfs_daddr_t after_umount_blk; | |
1275 | int hblks; | |
1276 | int error; | |
1277 | char *offset; | |
1278 | ||
1279 | *clean = false; | |
1280 | ||
1281 | /* | |
1282 | * Look for unmount record. If we find it, then we know there was a | |
1283 | * clean unmount. Since 'i' could be the last block in the physical | |
1284 | * log, we convert to a log block before comparing to the head_blk. | |
1285 | * | |
1286 | * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() | |
1287 | * below. We won't want to clear the unmount record if there is one, so | |
1288 | * we pass the lsn of the unmount record rather than the block after it. | |
1289 | */ | |
1290 | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { | |
1291 | int h_size = be32_to_cpu(rhead->h_size); | |
1292 | int h_version = be32_to_cpu(rhead->h_version); | |
1293 | ||
1294 | if ((h_version & XLOG_VERSION_2) && | |
1295 | (h_size > XLOG_HEADER_CYCLE_SIZE)) { | |
1296 | hblks = h_size / XLOG_HEADER_CYCLE_SIZE; | |
1297 | if (h_size % XLOG_HEADER_CYCLE_SIZE) | |
1298 | hblks++; | |
1299 | } else { | |
1300 | hblks = 1; | |
1301 | } | |
1302 | } else { | |
1303 | hblks = 1; | |
1304 | } | |
0703a8e1 DC |
1305 | |
1306 | after_umount_blk = xlog_wrap_logbno(log, | |
1307 | rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); | |
1308 | ||
65b99a08 BF |
1309 | if (*head_blk == after_umount_blk && |
1310 | be32_to_cpu(rhead->h_num_logops) == 1) { | |
0703a8e1 | 1311 | umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); |
65b99a08 BF |
1312 | error = xlog_bread(log, umount_data_blk, 1, bp, &offset); |
1313 | if (error) | |
1314 | return error; | |
1315 | ||
1316 | op_head = (struct xlog_op_header *)offset; | |
1317 | if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { | |
1318 | /* | |
1319 | * Set tail and last sync so that newly written log | |
1320 | * records will point recovery to after the current | |
1321 | * unmount record. | |
1322 | */ | |
1323 | xlog_assign_atomic_lsn(&log->l_tail_lsn, | |
1324 | log->l_curr_cycle, after_umount_blk); | |
1325 | xlog_assign_atomic_lsn(&log->l_last_sync_lsn, | |
1326 | log->l_curr_cycle, after_umount_blk); | |
1327 | *tail_blk = after_umount_blk; | |
1328 | ||
1329 | *clean = true; | |
1330 | } | |
1331 | } | |
1332 | ||
1333 | return 0; | |
1334 | } | |
1335 | ||
717bc0eb BF |
1336 | static void |
1337 | xlog_set_state( | |
1338 | struct xlog *log, | |
1339 | xfs_daddr_t head_blk, | |
1340 | struct xlog_rec_header *rhead, | |
1341 | xfs_daddr_t rhead_blk, | |
1342 | bool bump_cycle) | |
1343 | { | |
1344 | /* | |
1345 | * Reset log values according to the state of the log when we | |
1346 | * crashed. In the case where head_blk == 0, we bump curr_cycle | |
1347 | * one because the next write starts a new cycle rather than | |
1348 | * continuing the cycle of the last good log record. At this | |
1349 | * point we have guaranteed that all partial log records have been | |
1350 | * accounted for. Therefore, we know that the last good log record | |
1351 | * written was complete and ended exactly on the end boundary | |
1352 | * of the physical log. | |
1353 | */ | |
1354 | log->l_prev_block = rhead_blk; | |
1355 | log->l_curr_block = (int)head_blk; | |
1356 | log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); | |
1357 | if (bump_cycle) | |
1358 | log->l_curr_cycle++; | |
1359 | atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); | |
1360 | atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); | |
1361 | xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, | |
1362 | BBTOB(log->l_curr_block)); | |
1363 | xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, | |
1364 | BBTOB(log->l_curr_block)); | |
1365 | } | |
1366 | ||
1da177e4 LT |
1367 | /* |
1368 | * Find the sync block number or the tail of the log. | |
1369 | * | |
1370 | * This will be the block number of the last record to have its | |
1371 | * associated buffers synced to disk. Every log record header has | |
1372 | * a sync lsn embedded in it. LSNs hold block numbers, so it is easy | |
1373 | * to get a sync block number. The only concern is to figure out which | |
1374 | * log record header to believe. | |
1375 | * | |
1376 | * The following algorithm uses the log record header with the largest | |
1377 | * lsn. The entire log record does not need to be valid. We only care | |
1378 | * that the header is valid. | |
1379 | * | |
1380 | * We could speed up search by using current head_blk buffer, but it is not | |
1381 | * available. | |
1382 | */ | |
5d77c0dc | 1383 | STATIC int |
1da177e4 | 1384 | xlog_find_tail( |
9a8d2fdb | 1385 | struct xlog *log, |
1da177e4 | 1386 | xfs_daddr_t *head_blk, |
65be6054 | 1387 | xfs_daddr_t *tail_blk) |
1da177e4 LT |
1388 | { |
1389 | xlog_rec_header_t *rhead; | |
b2a922cd | 1390 | char *offset = NULL; |
1da177e4 | 1391 | xfs_buf_t *bp; |
7088c413 | 1392 | int error; |
7088c413 | 1393 | xfs_daddr_t rhead_blk; |
1da177e4 | 1394 | xfs_lsn_t tail_lsn; |
eed6b462 | 1395 | bool wrapped = false; |
65b99a08 | 1396 | bool clean = false; |
1da177e4 LT |
1397 | |
1398 | /* | |
1399 | * Find previous log record | |
1400 | */ | |
1401 | if ((error = xlog_find_head(log, head_blk))) | |
1402 | return error; | |
82ff6cc2 | 1403 | ASSERT(*head_blk < INT_MAX); |
1da177e4 LT |
1404 | |
1405 | bp = xlog_get_bp(log, 1); | |
1406 | if (!bp) | |
2451337d | 1407 | return -ENOMEM; |
1da177e4 | 1408 | if (*head_blk == 0) { /* special case */ |
076e6acb CH |
1409 | error = xlog_bread(log, 0, 1, bp, &offset); |
1410 | if (error) | |
9db127ed | 1411 | goto done; |
076e6acb | 1412 | |
03bea6fe | 1413 | if (xlog_get_cycle(offset) == 0) { |
1da177e4 LT |
1414 | *tail_blk = 0; |
1415 | /* leave all other log inited values alone */ | |
9db127ed | 1416 | goto done; |
1da177e4 LT |
1417 | } |
1418 | } | |
1419 | ||
1420 | /* | |
82ff6cc2 BF |
1421 | * Search backwards through the log looking for the log record header |
1422 | * block. This wraps all the way back around to the head so something is | |
1423 | * seriously wrong if we can't find it. | |
1da177e4 | 1424 | */ |
82ff6cc2 BF |
1425 | error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, |
1426 | &rhead_blk, &rhead, &wrapped); | |
1427 | if (error < 0) | |
1428 | return error; | |
1429 | if (!error) { | |
1430 | xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); | |
1431 | return -EIO; | |
1432 | } | |
1433 | *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); | |
1da177e4 LT |
1434 | |
1435 | /* | |
717bc0eb | 1436 | * Set the log state based on the current head record. |
1da177e4 | 1437 | */ |
717bc0eb | 1438 | xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); |
65b99a08 | 1439 | tail_lsn = atomic64_read(&log->l_tail_lsn); |
1da177e4 LT |
1440 | |
1441 | /* | |
65b99a08 BF |
1442 | * Look for an unmount record at the head of the log. This sets the log |
1443 | * state to determine whether recovery is necessary. | |
1da177e4 | 1444 | */ |
65b99a08 BF |
1445 | error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, |
1446 | rhead_blk, bp, &clean); | |
1447 | if (error) | |
1448 | goto done; | |
1da177e4 LT |
1449 | |
1450 | /* | |
7f6aff3a BF |
1451 | * Verify the log head if the log is not clean (e.g., we have anything |
1452 | * but an unmount record at the head). This uses CRC verification to | |
1453 | * detect and trim torn writes. If discovered, CRC failures are | |
1454 | * considered torn writes and the log head is trimmed accordingly. | |
1da177e4 | 1455 | * |
7f6aff3a BF |
1456 | * Note that we can only run CRC verification when the log is dirty |
1457 | * because there's no guarantee that the log data behind an unmount | |
1458 | * record is compatible with the current architecture. | |
1da177e4 | 1459 | */ |
7f6aff3a BF |
1460 | if (!clean) { |
1461 | xfs_daddr_t orig_head = *head_blk; | |
1da177e4 | 1462 | |
7f6aff3a BF |
1463 | error = xlog_verify_head(log, head_blk, tail_blk, bp, |
1464 | &rhead_blk, &rhead, &wrapped); | |
076e6acb | 1465 | if (error) |
9db127ed | 1466 | goto done; |
076e6acb | 1467 | |
7f6aff3a BF |
1468 | /* update in-core state again if the head changed */ |
1469 | if (*head_blk != orig_head) { | |
1470 | xlog_set_state(log, *head_blk, rhead, rhead_blk, | |
1471 | wrapped); | |
1472 | tail_lsn = atomic64_read(&log->l_tail_lsn); | |
1473 | error = xlog_check_unmount_rec(log, head_blk, tail_blk, | |
1474 | rhead, rhead_blk, bp, | |
1475 | &clean); | |
1476 | if (error) | |
1477 | goto done; | |
1da177e4 LT |
1478 | } |
1479 | } | |
1480 | ||
65b99a08 BF |
1481 | /* |
1482 | * Note that the unmount was clean. If the unmount was not clean, we | |
1483 | * need to know this to rebuild the superblock counters from the perag | |
1484 | * headers if we have a filesystem using non-persistent counters. | |
1485 | */ | |
1486 | if (clean) | |
1487 | log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; | |
1da177e4 LT |
1488 | |
1489 | /* | |
1490 | * Make sure that there are no blocks in front of the head | |
1491 | * with the same cycle number as the head. This can happen | |
1492 | * because we allow multiple outstanding log writes concurrently, | |
1493 | * and the later writes might make it out before earlier ones. | |
1494 | * | |
1495 | * We use the lsn from before modifying it so that we'll never | |
1496 | * overwrite the unmount record after a clean unmount. | |
1497 | * | |
1498 | * Do this only if we are going to recover the filesystem | |
1499 | * | |
1500 | * NOTE: This used to say "if (!readonly)" | |
1501 | * However on Linux, we can & do recover a read-only filesystem. | |
1502 | * We only skip recovery if NORECOVERY is specified on mount, | |
1503 | * in which case we would not be here. | |
1504 | * | |
1505 | * But... if the -device- itself is readonly, just skip this. | |
1506 | * We can't recover this device anyway, so it won't matter. | |
1507 | */ | |
9db127ed | 1508 | if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) |
1da177e4 | 1509 | error = xlog_clear_stale_blocks(log, tail_lsn); |
1da177e4 | 1510 | |
9db127ed | 1511 | done: |
1da177e4 LT |
1512 | xlog_put_bp(bp); |
1513 | ||
1514 | if (error) | |
a0fa2b67 | 1515 | xfs_warn(log->l_mp, "failed to locate log tail"); |
1da177e4 LT |
1516 | return error; |
1517 | } | |
1518 | ||
1519 | /* | |
1520 | * Is the log zeroed at all? | |
1521 | * | |
1522 | * The last binary search should be changed to perform an X block read | |
1523 | * once X becomes small enough. You can then search linearly through | |
1524 | * the X blocks. This will cut down on the number of reads we need to do. | |
1525 | * | |
1526 | * If the log is partially zeroed, this routine will pass back the blkno | |
1527 | * of the first block with cycle number 0. It won't have a complete LR | |
1528 | * preceding it. | |
1529 | * | |
1530 | * Return: | |
1531 | * 0 => the log is completely written to | |
2451337d DC |
1532 | * 1 => use *blk_no as the first block of the log |
1533 | * <0 => error has occurred | |
1da177e4 | 1534 | */ |
a8272ce0 | 1535 | STATIC int |
1da177e4 | 1536 | xlog_find_zeroed( |
9a8d2fdb | 1537 | struct xlog *log, |
1da177e4 LT |
1538 | xfs_daddr_t *blk_no) |
1539 | { | |
1540 | xfs_buf_t *bp; | |
b2a922cd | 1541 | char *offset; |
1da177e4 LT |
1542 | uint first_cycle, last_cycle; |
1543 | xfs_daddr_t new_blk, last_blk, start_blk; | |
1544 | xfs_daddr_t num_scan_bblks; | |
1545 | int error, log_bbnum = log->l_logBBsize; | |
1546 | ||
6fdf8ccc NS |
1547 | *blk_no = 0; |
1548 | ||
1da177e4 LT |
1549 | /* check totally zeroed log */ |
1550 | bp = xlog_get_bp(log, 1); | |
1551 | if (!bp) | |
2451337d | 1552 | return -ENOMEM; |
076e6acb CH |
1553 | error = xlog_bread(log, 0, 1, bp, &offset); |
1554 | if (error) | |
1da177e4 | 1555 | goto bp_err; |
076e6acb | 1556 | |
03bea6fe | 1557 | first_cycle = xlog_get_cycle(offset); |
1da177e4 LT |
1558 | if (first_cycle == 0) { /* completely zeroed log */ |
1559 | *blk_no = 0; | |
1560 | xlog_put_bp(bp); | |
2451337d | 1561 | return 1; |
1da177e4 LT |
1562 | } |
1563 | ||
1564 | /* check partially zeroed log */ | |
076e6acb CH |
1565 | error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); |
1566 | if (error) | |
1da177e4 | 1567 | goto bp_err; |
076e6acb | 1568 | |
03bea6fe | 1569 | last_cycle = xlog_get_cycle(offset); |
1da177e4 LT |
1570 | if (last_cycle != 0) { /* log completely written to */ |
1571 | xlog_put_bp(bp); | |
1572 | return 0; | |
1da177e4 LT |
1573 | } |
1574 | ||
1575 | /* we have a partially zeroed log */ | |
1576 | last_blk = log_bbnum-1; | |
1577 | if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) | |
1578 | goto bp_err; | |
1579 | ||
1580 | /* | |
1581 | * Validate the answer. Because there is no way to guarantee that | |
1582 | * the entire log is made up of log records which are the same size, | |
1583 | * we scan over the defined maximum blocks. At this point, the maximum | |
1584 | * is not chosen to mean anything special. XXXmiken | |
1585 | */ | |
1586 | num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); | |
1587 | ASSERT(num_scan_bblks <= INT_MAX); | |
1588 | ||
1589 | if (last_blk < num_scan_bblks) | |
1590 | num_scan_bblks = last_blk; | |
1591 | start_blk = last_blk - num_scan_bblks; | |
1592 | ||
1593 | /* | |
1594 | * We search for any instances of cycle number 0 that occur before | |
1595 | * our current estimate of the head. What we're trying to detect is | |
1596 | * 1 ... | 0 | 1 | 0... | |
1597 | * ^ binary search ends here | |
1598 | */ | |
1599 | if ((error = xlog_find_verify_cycle(log, start_blk, | |
1600 | (int)num_scan_bblks, 0, &new_blk))) | |
1601 | goto bp_err; | |
1602 | if (new_blk != -1) | |
1603 | last_blk = new_blk; | |
1604 | ||
1605 | /* | |
1606 | * Potentially backup over partial log record write. We don't need | |
1607 | * to search the end of the log because we know it is zero. | |
1608 | */ | |
2451337d DC |
1609 | error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); |
1610 | if (error == 1) | |
1611 | error = -EIO; | |
1612 | if (error) | |
1613 | goto bp_err; | |
1da177e4 LT |
1614 | |
1615 | *blk_no = last_blk; | |
1616 | bp_err: | |
1617 | xlog_put_bp(bp); | |
1618 | if (error) | |
1619 | return error; | |
2451337d | 1620 | return 1; |
1da177e4 LT |
1621 | } |
1622 | ||
1623 | /* | |
1624 | * These are simple subroutines used by xlog_clear_stale_blocks() below | |
1625 | * to initialize a buffer full of empty log record headers and write | |
1626 | * them into the log. | |
1627 | */ | |
1628 | STATIC void | |
1629 | xlog_add_record( | |
9a8d2fdb | 1630 | struct xlog *log, |
b2a922cd | 1631 | char *buf, |
1da177e4 LT |
1632 | int cycle, |
1633 | int block, | |
1634 | int tail_cycle, | |
1635 | int tail_block) | |
1636 | { | |
1637 | xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; | |
1638 | ||
1639 | memset(buf, 0, BBSIZE); | |
b53e675d CH |
1640 | recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); |
1641 | recp->h_cycle = cpu_to_be32(cycle); | |
1642 | recp->h_version = cpu_to_be32( | |
62118709 | 1643 | xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); |
b53e675d CH |
1644 | recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); |
1645 | recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); | |
1646 | recp->h_fmt = cpu_to_be32(XLOG_FMT); | |
1da177e4 LT |
1647 | memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); |
1648 | } | |
1649 | ||
1650 | STATIC int | |
1651 | xlog_write_log_records( | |
9a8d2fdb | 1652 | struct xlog *log, |
1da177e4 LT |
1653 | int cycle, |
1654 | int start_block, | |
1655 | int blocks, | |
1656 | int tail_cycle, | |
1657 | int tail_block) | |
1658 | { | |
b2a922cd | 1659 | char *offset; |
1da177e4 LT |
1660 | xfs_buf_t *bp; |
1661 | int balign, ealign; | |
69ce58f0 | 1662 | int sectbb = log->l_sectBBsize; |
1da177e4 LT |
1663 | int end_block = start_block + blocks; |
1664 | int bufblks; | |
1665 | int error = 0; | |
1666 | int i, j = 0; | |
1667 | ||
6881a229 AE |
1668 | /* |
1669 | * Greedily allocate a buffer big enough to handle the full | |
1670 | * range of basic blocks to be written. If that fails, try | |
1671 | * a smaller size. We need to be able to write at least a | |
1672 | * log sector, or we're out of luck. | |
1673 | */ | |
1da177e4 | 1674 | bufblks = 1 << ffs(blocks); |
81158e0c DC |
1675 | while (bufblks > log->l_logBBsize) |
1676 | bufblks >>= 1; | |
1da177e4 LT |
1677 | while (!(bp = xlog_get_bp(log, bufblks))) { |
1678 | bufblks >>= 1; | |
69ce58f0 | 1679 | if (bufblks < sectbb) |
2451337d | 1680 | return -ENOMEM; |
1da177e4 LT |
1681 | } |
1682 | ||
1683 | /* We may need to do a read at the start to fill in part of | |
1684 | * the buffer in the starting sector not covered by the first | |
1685 | * write below. | |
1686 | */ | |
5c17f533 | 1687 | balign = round_down(start_block, sectbb); |
1da177e4 | 1688 | if (balign != start_block) { |
076e6acb CH |
1689 | error = xlog_bread_noalign(log, start_block, 1, bp); |
1690 | if (error) | |
1691 | goto out_put_bp; | |
1692 | ||
1da177e4 LT |
1693 | j = start_block - balign; |
1694 | } | |
1695 | ||
1696 | for (i = start_block; i < end_block; i += bufblks) { | |
1697 | int bcount, endcount; | |
1698 | ||
1699 | bcount = min(bufblks, end_block - start_block); | |
1700 | endcount = bcount - j; | |
1701 | ||
1702 | /* We may need to do a read at the end to fill in part of | |
1703 | * the buffer in the final sector not covered by the write. | |
1704 | * If this is the same sector as the above read, skip it. | |
1705 | */ | |
5c17f533 | 1706 | ealign = round_down(end_block, sectbb); |
1da177e4 | 1707 | if (j == 0 && (start_block + endcount > ealign)) { |
62926044 | 1708 | offset = bp->b_addr + BBTOB(ealign - start_block); |
44396476 DC |
1709 | error = xlog_bread_offset(log, ealign, sectbb, |
1710 | bp, offset); | |
076e6acb CH |
1711 | if (error) |
1712 | break; | |
1713 | ||
1da177e4 LT |
1714 | } |
1715 | ||
1716 | offset = xlog_align(log, start_block, endcount, bp); | |
1717 | for (; j < endcount; j++) { | |
1718 | xlog_add_record(log, offset, cycle, i+j, | |
1719 | tail_cycle, tail_block); | |
1720 | offset += BBSIZE; | |
1721 | } | |
1722 | error = xlog_bwrite(log, start_block, endcount, bp); | |
1723 | if (error) | |
1724 | break; | |
1725 | start_block += endcount; | |
1726 | j = 0; | |
1727 | } | |
076e6acb CH |
1728 | |
1729 | out_put_bp: | |
1da177e4 LT |
1730 | xlog_put_bp(bp); |
1731 | return error; | |
1732 | } | |
1733 | ||
1734 | /* | |
1735 | * This routine is called to blow away any incomplete log writes out | |
1736 | * in front of the log head. We do this so that we won't become confused | |
1737 | * if we come up, write only a little bit more, and then crash again. | |
1738 | * If we leave the partial log records out there, this situation could | |
1739 | * cause us to think those partial writes are valid blocks since they | |
1740 | * have the current cycle number. We get rid of them by overwriting them | |
1741 | * with empty log records with the old cycle number rather than the | |
1742 | * current one. | |
1743 | * | |
1744 | * The tail lsn is passed in rather than taken from | |
1745 | * the log so that we will not write over the unmount record after a | |
1746 | * clean unmount in a 512 block log. Doing so would leave the log without | |
1747 | * any valid log records in it until a new one was written. If we crashed | |
1748 | * during that time we would not be able to recover. | |
1749 | */ | |
1750 | STATIC int | |
1751 | xlog_clear_stale_blocks( | |
9a8d2fdb | 1752 | struct xlog *log, |
1da177e4 LT |
1753 | xfs_lsn_t tail_lsn) |
1754 | { | |
1755 | int tail_cycle, head_cycle; | |
1756 | int tail_block, head_block; | |
1757 | int tail_distance, max_distance; | |
1758 | int distance; | |
1759 | int error; | |
1760 | ||
1761 | tail_cycle = CYCLE_LSN(tail_lsn); | |
1762 | tail_block = BLOCK_LSN(tail_lsn); | |
1763 | head_cycle = log->l_curr_cycle; | |
1764 | head_block = log->l_curr_block; | |
1765 | ||
1766 | /* | |
1767 | * Figure out the distance between the new head of the log | |
1768 | * and the tail. We want to write over any blocks beyond the | |
1769 | * head that we may have written just before the crash, but | |
1770 | * we don't want to overwrite the tail of the log. | |
1771 | */ | |
1772 | if (head_cycle == tail_cycle) { | |
1773 | /* | |
1774 | * The tail is behind the head in the physical log, | |
1775 | * so the distance from the head to the tail is the | |
1776 | * distance from the head to the end of the log plus | |
1777 | * the distance from the beginning of the log to the | |
1778 | * tail. | |
1779 | */ | |
1780 | if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { | |
1781 | XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", | |
1782 | XFS_ERRLEVEL_LOW, log->l_mp); | |
2451337d | 1783 | return -EFSCORRUPTED; |
1da177e4 LT |
1784 | } |
1785 | tail_distance = tail_block + (log->l_logBBsize - head_block); | |
1786 | } else { | |
1787 | /* | |
1788 | * The head is behind the tail in the physical log, | |
1789 | * so the distance from the head to the tail is just | |
1790 | * the tail block minus the head block. | |
1791 | */ | |
1792 | if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ | |
1793 | XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", | |
1794 | XFS_ERRLEVEL_LOW, log->l_mp); | |
2451337d | 1795 | return -EFSCORRUPTED; |
1da177e4 LT |
1796 | } |
1797 | tail_distance = tail_block - head_block; | |
1798 | } | |
1799 | ||
1800 | /* | |
1801 | * If the head is right up against the tail, we can't clear | |
1802 | * anything. | |
1803 | */ | |
1804 | if (tail_distance <= 0) { | |
1805 | ASSERT(tail_distance == 0); | |
1806 | return 0; | |
1807 | } | |
1808 | ||
1809 | max_distance = XLOG_TOTAL_REC_SHIFT(log); | |
1810 | /* | |
1811 | * Take the smaller of the maximum amount of outstanding I/O | |
1812 | * we could have and the distance to the tail to clear out. | |
1813 | * We take the smaller so that we don't overwrite the tail and | |
1814 | * we don't waste all day writing from the head to the tail | |
1815 | * for no reason. | |
1816 | */ | |
9bb54cb5 | 1817 | max_distance = min(max_distance, tail_distance); |
1da177e4 LT |
1818 | |
1819 | if ((head_block + max_distance) <= log->l_logBBsize) { | |
1820 | /* | |
1821 | * We can stomp all the blocks we need to without | |
1822 | * wrapping around the end of the log. Just do it | |
1823 | * in a single write. Use the cycle number of the | |
1824 | * current cycle minus one so that the log will look like: | |
1825 | * n ... | n - 1 ... | |
1826 | */ | |
1827 | error = xlog_write_log_records(log, (head_cycle - 1), | |
1828 | head_block, max_distance, tail_cycle, | |
1829 | tail_block); | |
1830 | if (error) | |
1831 | return error; | |
1832 | } else { | |
1833 | /* | |
1834 | * We need to wrap around the end of the physical log in | |
1835 | * order to clear all the blocks. Do it in two separate | |
1836 | * I/Os. The first write should be from the head to the | |
1837 | * end of the physical log, and it should use the current | |
1838 | * cycle number minus one just like above. | |
1839 | */ | |
1840 | distance = log->l_logBBsize - head_block; | |
1841 | error = xlog_write_log_records(log, (head_cycle - 1), | |
1842 | head_block, distance, tail_cycle, | |
1843 | tail_block); | |
1844 | ||
1845 | if (error) | |
1846 | return error; | |
1847 | ||
1848 | /* | |
1849 | * Now write the blocks at the start of the physical log. | |
1850 | * This writes the remainder of the blocks we want to clear. | |
1851 | * It uses the current cycle number since we're now on the | |
1852 | * same cycle as the head so that we get: | |
1853 | * n ... n ... | n - 1 ... | |
1854 | * ^^^^^ blocks we're writing | |
1855 | */ | |
1856 | distance = max_distance - (log->l_logBBsize - head_block); | |
1857 | error = xlog_write_log_records(log, head_cycle, 0, distance, | |
1858 | tail_cycle, tail_block); | |
1859 | if (error) | |
1860 | return error; | |
1861 | } | |
1862 | ||
1863 | return 0; | |
1864 | } | |
1865 | ||
1866 | /****************************************************************************** | |
1867 | * | |
1868 | * Log recover routines | |
1869 | * | |
1870 | ****************************************************************************** | |
1871 | */ | |
1872 | ||
f0a76953 | 1873 | /* |
a775ad77 DC |
1874 | * Sort the log items in the transaction. |
1875 | * | |
1876 | * The ordering constraints are defined by the inode allocation and unlink | |
1877 | * behaviour. The rules are: | |
1878 | * | |
1879 | * 1. Every item is only logged once in a given transaction. Hence it | |
1880 | * represents the last logged state of the item. Hence ordering is | |
1881 | * dependent on the order in which operations need to be performed so | |
1882 | * required initial conditions are always met. | |
1883 | * | |
1884 | * 2. Cancelled buffers are recorded in pass 1 in a separate table and | |
1885 | * there's nothing to replay from them so we can simply cull them | |
1886 | * from the transaction. However, we can't do that until after we've | |
1887 | * replayed all the other items because they may be dependent on the | |
1888 | * cancelled buffer and replaying the cancelled buffer can remove it | |
1889 | * form the cancelled buffer table. Hence they have tobe done last. | |
1890 | * | |
1891 | * 3. Inode allocation buffers must be replayed before inode items that | |
28c8e41a DC |
1892 | * read the buffer and replay changes into it. For filesystems using the |
1893 | * ICREATE transactions, this means XFS_LI_ICREATE objects need to get | |
1894 | * treated the same as inode allocation buffers as they create and | |
1895 | * initialise the buffers directly. | |
a775ad77 DC |
1896 | * |
1897 | * 4. Inode unlink buffers must be replayed after inode items are replayed. | |
1898 | * This ensures that inodes are completely flushed to the inode buffer | |
1899 | * in a "free" state before we remove the unlinked inode list pointer. | |
1900 | * | |
1901 | * Hence the ordering needs to be inode allocation buffers first, inode items | |
1902 | * second, inode unlink buffers third and cancelled buffers last. | |
1903 | * | |
1904 | * But there's a problem with that - we can't tell an inode allocation buffer | |
1905 | * apart from a regular buffer, so we can't separate them. We can, however, | |
1906 | * tell an inode unlink buffer from the others, and so we can separate them out | |
1907 | * from all the other buffers and move them to last. | |
1908 | * | |
1909 | * Hence, 4 lists, in order from head to tail: | |
28c8e41a DC |
1910 | * - buffer_list for all buffers except cancelled/inode unlink buffers |
1911 | * - item_list for all non-buffer items | |
1912 | * - inode_buffer_list for inode unlink buffers | |
1913 | * - cancel_list for the cancelled buffers | |
1914 | * | |
1915 | * Note that we add objects to the tail of the lists so that first-to-last | |
1916 | * ordering is preserved within the lists. Adding objects to the head of the | |
1917 | * list means when we traverse from the head we walk them in last-to-first | |
1918 | * order. For cancelled buffers and inode unlink buffers this doesn't matter, | |
1919 | * but for all other items there may be specific ordering that we need to | |
1920 | * preserve. | |
f0a76953 | 1921 | */ |
1da177e4 LT |
1922 | STATIC int |
1923 | xlog_recover_reorder_trans( | |
ad223e60 MT |
1924 | struct xlog *log, |
1925 | struct xlog_recover *trans, | |
9abbc539 | 1926 | int pass) |
1da177e4 | 1927 | { |
f0a76953 | 1928 | xlog_recover_item_t *item, *n; |
2a84108f | 1929 | int error = 0; |
f0a76953 | 1930 | LIST_HEAD(sort_list); |
a775ad77 DC |
1931 | LIST_HEAD(cancel_list); |
1932 | LIST_HEAD(buffer_list); | |
1933 | LIST_HEAD(inode_buffer_list); | |
1934 | LIST_HEAD(inode_list); | |
f0a76953 DC |
1935 | |
1936 | list_splice_init(&trans->r_itemq, &sort_list); | |
1937 | list_for_each_entry_safe(item, n, &sort_list, ri_list) { | |
4e0d5f92 | 1938 | xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; |
1da177e4 | 1939 | |
f0a76953 | 1940 | switch (ITEM_TYPE(item)) { |
28c8e41a DC |
1941 | case XFS_LI_ICREATE: |
1942 | list_move_tail(&item->ri_list, &buffer_list); | |
1943 | break; | |
1da177e4 | 1944 | case XFS_LI_BUF: |
a775ad77 | 1945 | if (buf_f->blf_flags & XFS_BLF_CANCEL) { |
9abbc539 DC |
1946 | trace_xfs_log_recover_item_reorder_head(log, |
1947 | trans, item, pass); | |
a775ad77 | 1948 | list_move(&item->ri_list, &cancel_list); |
1da177e4 LT |
1949 | break; |
1950 | } | |
a775ad77 DC |
1951 | if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { |
1952 | list_move(&item->ri_list, &inode_buffer_list); | |
1953 | break; | |
1954 | } | |
1955 | list_move_tail(&item->ri_list, &buffer_list); | |
1956 | break; | |
1da177e4 | 1957 | case XFS_LI_INODE: |
1da177e4 LT |
1958 | case XFS_LI_DQUOT: |
1959 | case XFS_LI_QUOTAOFF: | |
1960 | case XFS_LI_EFD: | |
1961 | case XFS_LI_EFI: | |
9e88b5d8 DW |
1962 | case XFS_LI_RUI: |
1963 | case XFS_LI_RUD: | |
f997ee21 DW |
1964 | case XFS_LI_CUI: |
1965 | case XFS_LI_CUD: | |
77d61fe4 DW |
1966 | case XFS_LI_BUI: |
1967 | case XFS_LI_BUD: | |
9abbc539 DC |
1968 | trace_xfs_log_recover_item_reorder_tail(log, |
1969 | trans, item, pass); | |
a775ad77 | 1970 | list_move_tail(&item->ri_list, &inode_list); |
1da177e4 LT |
1971 | break; |
1972 | default: | |
a0fa2b67 DC |
1973 | xfs_warn(log->l_mp, |
1974 | "%s: unrecognized type of log operation", | |
1975 | __func__); | |
1da177e4 | 1976 | ASSERT(0); |
2a84108f MT |
1977 | /* |
1978 | * return the remaining items back to the transaction | |
1979 | * item list so they can be freed in caller. | |
1980 | */ | |
1981 | if (!list_empty(&sort_list)) | |
1982 | list_splice_init(&sort_list, &trans->r_itemq); | |
2451337d | 1983 | error = -EIO; |
2a84108f | 1984 | goto out; |
1da177e4 | 1985 | } |
f0a76953 | 1986 | } |
2a84108f | 1987 | out: |
f0a76953 | 1988 | ASSERT(list_empty(&sort_list)); |
a775ad77 DC |
1989 | if (!list_empty(&buffer_list)) |
1990 | list_splice(&buffer_list, &trans->r_itemq); | |
1991 | if (!list_empty(&inode_list)) | |
1992 | list_splice_tail(&inode_list, &trans->r_itemq); | |
1993 | if (!list_empty(&inode_buffer_list)) | |
1994 | list_splice_tail(&inode_buffer_list, &trans->r_itemq); | |
1995 | if (!list_empty(&cancel_list)) | |
1996 | list_splice_tail(&cancel_list, &trans->r_itemq); | |
2a84108f | 1997 | return error; |
1da177e4 LT |
1998 | } |
1999 | ||
2000 | /* | |
2001 | * Build up the table of buf cancel records so that we don't replay | |
2002 | * cancelled data in the second pass. For buffer records that are | |
2003 | * not cancel records, there is nothing to do here so we just return. | |
2004 | * | |
2005 | * If we get a cancel record which is already in the table, this indicates | |
2006 | * that the buffer was cancelled multiple times. In order to ensure | |
2007 | * that during pass 2 we keep the record in the table until we reach its | |
2008 | * last occurrence in the log, we keep a reference count in the cancel | |
2009 | * record in the table to tell us how many times we expect to see this | |
2010 | * record during the second pass. | |
2011 | */ | |
c9f71f5f CH |
2012 | STATIC int |
2013 | xlog_recover_buffer_pass1( | |
ad223e60 MT |
2014 | struct xlog *log, |
2015 | struct xlog_recover_item *item) | |
1da177e4 | 2016 | { |
c9f71f5f | 2017 | xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; |
d5689eaa CH |
2018 | struct list_head *bucket; |
2019 | struct xfs_buf_cancel *bcp; | |
1da177e4 LT |
2020 | |
2021 | /* | |
2022 | * If this isn't a cancel buffer item, then just return. | |
2023 | */ | |
e2714bf8 | 2024 | if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { |
9abbc539 | 2025 | trace_xfs_log_recover_buf_not_cancel(log, buf_f); |
c9f71f5f | 2026 | return 0; |
9abbc539 | 2027 | } |
1da177e4 LT |
2028 | |
2029 | /* | |
d5689eaa CH |
2030 | * Insert an xfs_buf_cancel record into the hash table of them. |
2031 | * If there is already an identical record, bump its reference count. | |
1da177e4 | 2032 | */ |
d5689eaa CH |
2033 | bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); |
2034 | list_for_each_entry(bcp, bucket, bc_list) { | |
2035 | if (bcp->bc_blkno == buf_f->blf_blkno && | |
2036 | bcp->bc_len == buf_f->blf_len) { | |
2037 | bcp->bc_refcount++; | |
9abbc539 | 2038 | trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); |
c9f71f5f | 2039 | return 0; |
1da177e4 | 2040 | } |
d5689eaa CH |
2041 | } |
2042 | ||
2043 | bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); | |
2044 | bcp->bc_blkno = buf_f->blf_blkno; | |
2045 | bcp->bc_len = buf_f->blf_len; | |
1da177e4 | 2046 | bcp->bc_refcount = 1; |
d5689eaa CH |
2047 | list_add_tail(&bcp->bc_list, bucket); |
2048 | ||
9abbc539 | 2049 | trace_xfs_log_recover_buf_cancel_add(log, buf_f); |
c9f71f5f | 2050 | return 0; |
1da177e4 LT |
2051 | } |
2052 | ||
2053 | /* | |
2054 | * Check to see whether the buffer being recovered has a corresponding | |
84a5b730 DC |
2055 | * entry in the buffer cancel record table. If it is, return the cancel |
2056 | * buffer structure to the caller. | |
1da177e4 | 2057 | */ |
84a5b730 DC |
2058 | STATIC struct xfs_buf_cancel * |
2059 | xlog_peek_buffer_cancelled( | |
ad223e60 | 2060 | struct xlog *log, |
1da177e4 LT |
2061 | xfs_daddr_t blkno, |
2062 | uint len, | |
755c7bf5 | 2063 | unsigned short flags) |
1da177e4 | 2064 | { |
d5689eaa CH |
2065 | struct list_head *bucket; |
2066 | struct xfs_buf_cancel *bcp; | |
1da177e4 | 2067 | |
84a5b730 DC |
2068 | if (!log->l_buf_cancel_table) { |
2069 | /* empty table means no cancelled buffers in the log */ | |
c1155410 | 2070 | ASSERT(!(flags & XFS_BLF_CANCEL)); |
84a5b730 | 2071 | return NULL; |
1da177e4 LT |
2072 | } |
2073 | ||
d5689eaa CH |
2074 | bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); |
2075 | list_for_each_entry(bcp, bucket, bc_list) { | |
2076 | if (bcp->bc_blkno == blkno && bcp->bc_len == len) | |
84a5b730 | 2077 | return bcp; |
1da177e4 | 2078 | } |
d5689eaa | 2079 | |
1da177e4 | 2080 | /* |
d5689eaa CH |
2081 | * We didn't find a corresponding entry in the table, so return 0 so |
2082 | * that the buffer is NOT cancelled. | |
1da177e4 | 2083 | */ |
c1155410 | 2084 | ASSERT(!(flags & XFS_BLF_CANCEL)); |
84a5b730 DC |
2085 | return NULL; |
2086 | } | |
2087 | ||
2088 | /* | |
2089 | * If the buffer is being cancelled then return 1 so that it will be cancelled, | |
2090 | * otherwise return 0. If the buffer is actually a buffer cancel item | |
2091 | * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the | |
2092 | * table and remove it from the table if this is the last reference. | |
2093 | * | |
2094 | * We remove the cancel record from the table when we encounter its last | |
2095 | * occurrence in the log so that if the same buffer is re-used again after its | |
2096 | * last cancellation we actually replay the changes made at that point. | |
2097 | */ | |
2098 | STATIC int | |
2099 | xlog_check_buffer_cancelled( | |
2100 | struct xlog *log, | |
2101 | xfs_daddr_t blkno, | |
2102 | uint len, | |
755c7bf5 | 2103 | unsigned short flags) |
84a5b730 DC |
2104 | { |
2105 | struct xfs_buf_cancel *bcp; | |
2106 | ||
2107 | bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); | |
2108 | if (!bcp) | |
2109 | return 0; | |
d5689eaa | 2110 | |
d5689eaa CH |
2111 | /* |
2112 | * We've go a match, so return 1 so that the recovery of this buffer | |
2113 | * is cancelled. If this buffer is actually a buffer cancel log | |
2114 | * item, then decrement the refcount on the one in the table and | |
2115 | * remove it if this is the last reference. | |
2116 | */ | |
2117 | if (flags & XFS_BLF_CANCEL) { | |
2118 | if (--bcp->bc_refcount == 0) { | |
2119 | list_del(&bcp->bc_list); | |
2120 | kmem_free(bcp); | |
2121 | } | |
2122 | } | |
2123 | return 1; | |
1da177e4 LT |
2124 | } |
2125 | ||
1da177e4 | 2126 | /* |
e2714bf8 CH |
2127 | * Perform recovery for a buffer full of inodes. In these buffers, the only |
2128 | * data which should be recovered is that which corresponds to the | |
2129 | * di_next_unlinked pointers in the on disk inode structures. The rest of the | |
2130 | * data for the inodes is always logged through the inodes themselves rather | |
2131 | * than the inode buffer and is recovered in xlog_recover_inode_pass2(). | |
1da177e4 | 2132 | * |
e2714bf8 CH |
2133 | * The only time when buffers full of inodes are fully recovered is when the |
2134 | * buffer is full of newly allocated inodes. In this case the buffer will | |
2135 | * not be marked as an inode buffer and so will be sent to | |
2136 | * xlog_recover_do_reg_buffer() below during recovery. | |
1da177e4 LT |
2137 | */ |
2138 | STATIC int | |
2139 | xlog_recover_do_inode_buffer( | |
e2714bf8 | 2140 | struct xfs_mount *mp, |
1da177e4 | 2141 | xlog_recover_item_t *item, |
e2714bf8 | 2142 | struct xfs_buf *bp, |
1da177e4 LT |
2143 | xfs_buf_log_format_t *buf_f) |
2144 | { | |
2145 | int i; | |
e2714bf8 CH |
2146 | int item_index = 0; |
2147 | int bit = 0; | |
2148 | int nbits = 0; | |
2149 | int reg_buf_offset = 0; | |
2150 | int reg_buf_bytes = 0; | |
1da177e4 LT |
2151 | int next_unlinked_offset; |
2152 | int inodes_per_buf; | |
2153 | xfs_agino_t *logged_nextp; | |
2154 | xfs_agino_t *buffer_nextp; | |
1da177e4 | 2155 | |
9abbc539 | 2156 | trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); |
9222a9cf DC |
2157 | |
2158 | /* | |
2159 | * Post recovery validation only works properly on CRC enabled | |
2160 | * filesystems. | |
2161 | */ | |
2162 | if (xfs_sb_version_hascrc(&mp->m_sb)) | |
2163 | bp->b_ops = &xfs_inode_buf_ops; | |
9abbc539 | 2164 | |
aa0e8833 | 2165 | inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; |
1da177e4 LT |
2166 | for (i = 0; i < inodes_per_buf; i++) { |
2167 | next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + | |
2168 | offsetof(xfs_dinode_t, di_next_unlinked); | |
2169 | ||
2170 | while (next_unlinked_offset >= | |
2171 | (reg_buf_offset + reg_buf_bytes)) { | |
2172 | /* | |
2173 | * The next di_next_unlinked field is beyond | |
2174 | * the current logged region. Find the next | |
2175 | * logged region that contains or is beyond | |
2176 | * the current di_next_unlinked field. | |
2177 | */ | |
2178 | bit += nbits; | |
e2714bf8 CH |
2179 | bit = xfs_next_bit(buf_f->blf_data_map, |
2180 | buf_f->blf_map_size, bit); | |
1da177e4 LT |
2181 | |
2182 | /* | |
2183 | * If there are no more logged regions in the | |
2184 | * buffer, then we're done. | |
2185 | */ | |
e2714bf8 | 2186 | if (bit == -1) |
1da177e4 | 2187 | return 0; |
1da177e4 | 2188 | |
e2714bf8 CH |
2189 | nbits = xfs_contig_bits(buf_f->blf_data_map, |
2190 | buf_f->blf_map_size, bit); | |
1da177e4 | 2191 | ASSERT(nbits > 0); |
c1155410 DC |
2192 | reg_buf_offset = bit << XFS_BLF_SHIFT; |
2193 | reg_buf_bytes = nbits << XFS_BLF_SHIFT; | |
1da177e4 LT |
2194 | item_index++; |
2195 | } | |
2196 | ||
2197 | /* | |
2198 | * If the current logged region starts after the current | |
2199 | * di_next_unlinked field, then move on to the next | |
2200 | * di_next_unlinked field. | |
2201 | */ | |
e2714bf8 | 2202 | if (next_unlinked_offset < reg_buf_offset) |
1da177e4 | 2203 | continue; |
1da177e4 LT |
2204 | |
2205 | ASSERT(item->ri_buf[item_index].i_addr != NULL); | |
c1155410 | 2206 | ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); |
aa0e8833 DC |
2207 | ASSERT((reg_buf_offset + reg_buf_bytes) <= |
2208 | BBTOB(bp->b_io_length)); | |
1da177e4 LT |
2209 | |
2210 | /* | |
2211 | * The current logged region contains a copy of the | |
2212 | * current di_next_unlinked field. Extract its value | |
2213 | * and copy it to the buffer copy. | |
2214 | */ | |
4e0d5f92 CH |
2215 | logged_nextp = item->ri_buf[item_index].i_addr + |
2216 | next_unlinked_offset - reg_buf_offset; | |
1da177e4 | 2217 | if (unlikely(*logged_nextp == 0)) { |
a0fa2b67 | 2218 | xfs_alert(mp, |
c9690043 | 2219 | "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " |
a0fa2b67 | 2220 | "Trying to replay bad (0) inode di_next_unlinked field.", |
1da177e4 LT |
2221 | item, bp); |
2222 | XFS_ERROR_REPORT("xlog_recover_do_inode_buf", | |
2223 | XFS_ERRLEVEL_LOW, mp); | |
2451337d | 2224 | return -EFSCORRUPTED; |
1da177e4 LT |
2225 | } |
2226 | ||
88ee2df7 | 2227 | buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); |
87c199c2 | 2228 | *buffer_nextp = *logged_nextp; |
0a32c26e DC |
2229 | |
2230 | /* | |
2231 | * If necessary, recalculate the CRC in the on-disk inode. We | |
2232 | * have to leave the inode in a consistent state for whoever | |
2233 | * reads it next.... | |
2234 | */ | |
88ee2df7 | 2235 | xfs_dinode_calc_crc(mp, |
0a32c26e DC |
2236 | xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); |
2237 | ||
1da177e4 LT |
2238 | } |
2239 | ||
2240 | return 0; | |
2241 | } | |
2242 | ||
50d5c8d8 DC |
2243 | /* |
2244 | * V5 filesystems know the age of the buffer on disk being recovered. We can | |
2245 | * have newer objects on disk than we are replaying, and so for these cases we | |
2246 | * don't want to replay the current change as that will make the buffer contents | |
2247 | * temporarily invalid on disk. | |
2248 | * | |
2249 | * The magic number might not match the buffer type we are going to recover | |
2250 | * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence | |
2251 | * extract the LSN of the existing object in the buffer based on it's current | |
2252 | * magic number. If we don't recognise the magic number in the buffer, then | |
2253 | * return a LSN of -1 so that the caller knows it was an unrecognised block and | |
2254 | * so can recover the buffer. | |
566055d3 DC |
2255 | * |
2256 | * Note: we cannot rely solely on magic number matches to determine that the | |
2257 | * buffer has a valid LSN - we also need to verify that it belongs to this | |
2258 | * filesystem, so we need to extract the object's LSN and compare it to that | |
2259 | * which we read from the superblock. If the UUIDs don't match, then we've got a | |
2260 | * stale metadata block from an old filesystem instance that we need to recover | |
2261 | * over the top of. | |
50d5c8d8 DC |
2262 | */ |
2263 | static xfs_lsn_t | |
2264 | xlog_recover_get_buf_lsn( | |
2265 | struct xfs_mount *mp, | |
2266 | struct xfs_buf *bp) | |
2267 | { | |
c8ce540d DW |
2268 | uint32_t magic32; |
2269 | uint16_t magic16; | |
2270 | uint16_t magicda; | |
50d5c8d8 | 2271 | void *blk = bp->b_addr; |
566055d3 DC |
2272 | uuid_t *uuid; |
2273 | xfs_lsn_t lsn = -1; | |
50d5c8d8 DC |
2274 | |
2275 | /* v4 filesystems always recover immediately */ | |
2276 | if (!xfs_sb_version_hascrc(&mp->m_sb)) | |
2277 | goto recover_immediately; | |
2278 | ||
2279 | magic32 = be32_to_cpu(*(__be32 *)blk); | |
2280 | switch (magic32) { | |
2281 | case XFS_ABTB_CRC_MAGIC: | |
2282 | case XFS_ABTC_CRC_MAGIC: | |
2283 | case XFS_ABTB_MAGIC: | |
2284 | case XFS_ABTC_MAGIC: | |
a650e8f9 | 2285 | case XFS_RMAP_CRC_MAGIC: |
a90c00f0 | 2286 | case XFS_REFC_CRC_MAGIC: |
50d5c8d8 | 2287 | case XFS_IBT_CRC_MAGIC: |
566055d3 DC |
2288 | case XFS_IBT_MAGIC: { |
2289 | struct xfs_btree_block *btb = blk; | |
2290 | ||
2291 | lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); | |
2292 | uuid = &btb->bb_u.s.bb_uuid; | |
2293 | break; | |
2294 | } | |
50d5c8d8 | 2295 | case XFS_BMAP_CRC_MAGIC: |
566055d3 DC |
2296 | case XFS_BMAP_MAGIC: { |
2297 | struct xfs_btree_block *btb = blk; | |
2298 | ||
2299 | lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); | |
2300 | uuid = &btb->bb_u.l.bb_uuid; | |
2301 | break; | |
2302 | } | |
50d5c8d8 | 2303 | case XFS_AGF_MAGIC: |
566055d3 DC |
2304 | lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); |
2305 | uuid = &((struct xfs_agf *)blk)->agf_uuid; | |
2306 | break; | |
50d5c8d8 | 2307 | case XFS_AGFL_MAGIC: |
566055d3 DC |
2308 | lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); |
2309 | uuid = &((struct xfs_agfl *)blk)->agfl_uuid; | |
2310 | break; | |
50d5c8d8 | 2311 | case XFS_AGI_MAGIC: |
566055d3 DC |
2312 | lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); |
2313 | uuid = &((struct xfs_agi *)blk)->agi_uuid; | |
2314 | break; | |
50d5c8d8 | 2315 | case XFS_SYMLINK_MAGIC: |
566055d3 DC |
2316 | lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); |
2317 | uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; | |
2318 | break; | |
50d5c8d8 DC |
2319 | case XFS_DIR3_BLOCK_MAGIC: |
2320 | case XFS_DIR3_DATA_MAGIC: | |
2321 | case XFS_DIR3_FREE_MAGIC: | |
566055d3 DC |
2322 | lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); |
2323 | uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; | |
2324 | break; | |
50d5c8d8 | 2325 | case XFS_ATTR3_RMT_MAGIC: |
e3c32ee9 DC |
2326 | /* |
2327 | * Remote attr blocks are written synchronously, rather than | |
2328 | * being logged. That means they do not contain a valid LSN | |
2329 | * (i.e. transactionally ordered) in them, and hence any time we | |
2330 | * see a buffer to replay over the top of a remote attribute | |
2331 | * block we should simply do so. | |
2332 | */ | |
2333 | goto recover_immediately; | |
50d5c8d8 | 2334 | case XFS_SB_MAGIC: |
fcfbe2c4 DC |
2335 | /* |
2336 | * superblock uuids are magic. We may or may not have a | |
2337 | * sb_meta_uuid on disk, but it will be set in the in-core | |
2338 | * superblock. We set the uuid pointer for verification | |
2339 | * according to the superblock feature mask to ensure we check | |
2340 | * the relevant UUID in the superblock. | |
2341 | */ | |
566055d3 | 2342 | lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); |
fcfbe2c4 DC |
2343 | if (xfs_sb_version_hasmetauuid(&mp->m_sb)) |
2344 | uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; | |
2345 | else | |
2346 | uuid = &((struct xfs_dsb *)blk)->sb_uuid; | |
566055d3 | 2347 | break; |
50d5c8d8 DC |
2348 | default: |
2349 | break; | |
2350 | } | |
2351 | ||
566055d3 | 2352 | if (lsn != (xfs_lsn_t)-1) { |
fcfbe2c4 | 2353 | if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) |
566055d3 DC |
2354 | goto recover_immediately; |
2355 | return lsn; | |
2356 | } | |
2357 | ||
50d5c8d8 DC |
2358 | magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); |
2359 | switch (magicda) { | |
2360 | case XFS_DIR3_LEAF1_MAGIC: | |
2361 | case XFS_DIR3_LEAFN_MAGIC: | |
2362 | case XFS_DA3_NODE_MAGIC: | |
566055d3 DC |
2363 | lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); |
2364 | uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; | |
2365 | break; | |
50d5c8d8 DC |
2366 | default: |
2367 | break; | |
2368 | } | |
2369 | ||
566055d3 DC |
2370 | if (lsn != (xfs_lsn_t)-1) { |
2371 | if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) | |
2372 | goto recover_immediately; | |
2373 | return lsn; | |
2374 | } | |
2375 | ||
50d5c8d8 DC |
2376 | /* |
2377 | * We do individual object checks on dquot and inode buffers as they | |
2378 | * have their own individual LSN records. Also, we could have a stale | |
2379 | * buffer here, so we have to at least recognise these buffer types. | |
2380 | * | |
2381 | * A notd complexity here is inode unlinked list processing - it logs | |
2382 | * the inode directly in the buffer, but we don't know which inodes have | |
2383 | * been modified, and there is no global buffer LSN. Hence we need to | |
2384 | * recover all inode buffer types immediately. This problem will be | |
2385 | * fixed by logical logging of the unlinked list modifications. | |
2386 | */ | |
2387 | magic16 = be16_to_cpu(*(__be16 *)blk); | |
2388 | switch (magic16) { | |
2389 | case XFS_DQUOT_MAGIC: | |
2390 | case XFS_DINODE_MAGIC: | |
2391 | goto recover_immediately; | |
2392 | default: | |
2393 | break; | |
2394 | } | |
2395 | ||
2396 | /* unknown buffer contents, recover immediately */ | |
2397 | ||
2398 | recover_immediately: | |
2399 | return (xfs_lsn_t)-1; | |
2400 | ||
2401 | } | |
2402 | ||
1da177e4 | 2403 | /* |
d75afeb3 DC |
2404 | * Validate the recovered buffer is of the correct type and attach the |
2405 | * appropriate buffer operations to them for writeback. Magic numbers are in a | |
2406 | * few places: | |
2407 | * the first 16 bits of the buffer (inode buffer, dquot buffer), | |
2408 | * the first 32 bits of the buffer (most blocks), | |
2409 | * inside a struct xfs_da_blkinfo at the start of the buffer. | |
1da177e4 | 2410 | */ |
d75afeb3 | 2411 | static void |
50d5c8d8 | 2412 | xlog_recover_validate_buf_type( |
9abbc539 | 2413 | struct xfs_mount *mp, |
e2714bf8 | 2414 | struct xfs_buf *bp, |
22db9af2 BF |
2415 | xfs_buf_log_format_t *buf_f, |
2416 | xfs_lsn_t current_lsn) | |
1da177e4 | 2417 | { |
d75afeb3 | 2418 | struct xfs_da_blkinfo *info = bp->b_addr; |
c8ce540d DW |
2419 | uint32_t magic32; |
2420 | uint16_t magic16; | |
2421 | uint16_t magicda; | |
040c52c0 | 2422 | char *warnmsg = NULL; |
d75afeb3 | 2423 | |
67dc288c DC |
2424 | /* |
2425 | * We can only do post recovery validation on items on CRC enabled | |
2426 | * fielsystems as we need to know when the buffer was written to be able | |
2427 | * to determine if we should have replayed the item. If we replay old | |
2428 | * metadata over a newer buffer, then it will enter a temporarily | |
2429 | * inconsistent state resulting in verification failures. Hence for now | |
2430 | * just avoid the verification stage for non-crc filesystems | |
2431 | */ | |
2432 | if (!xfs_sb_version_hascrc(&mp->m_sb)) | |
2433 | return; | |
2434 | ||
d75afeb3 DC |
2435 | magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); |
2436 | magic16 = be16_to_cpu(*(__be16*)bp->b_addr); | |
2437 | magicda = be16_to_cpu(info->magic); | |
61fe135c DC |
2438 | switch (xfs_blft_from_flags(buf_f)) { |
2439 | case XFS_BLFT_BTREE_BUF: | |
d75afeb3 | 2440 | switch (magic32) { |
ee1a47ab CH |
2441 | case XFS_ABTB_CRC_MAGIC: |
2442 | case XFS_ABTC_CRC_MAGIC: | |
2443 | case XFS_ABTB_MAGIC: | |
2444 | case XFS_ABTC_MAGIC: | |
2445 | bp->b_ops = &xfs_allocbt_buf_ops; | |
2446 | break; | |
2447 | case XFS_IBT_CRC_MAGIC: | |
aafc3c24 | 2448 | case XFS_FIBT_CRC_MAGIC: |
ee1a47ab | 2449 | case XFS_IBT_MAGIC: |
aafc3c24 | 2450 | case XFS_FIBT_MAGIC: |
ee1a47ab CH |
2451 | bp->b_ops = &xfs_inobt_buf_ops; |
2452 | break; | |
2453 | case XFS_BMAP_CRC_MAGIC: | |
2454 | case XFS_BMAP_MAGIC: | |
2455 | bp->b_ops = &xfs_bmbt_buf_ops; | |
2456 | break; | |
a650e8f9 DW |
2457 | case XFS_RMAP_CRC_MAGIC: |
2458 | bp->b_ops = &xfs_rmapbt_buf_ops; | |
2459 | break; | |
a90c00f0 DW |
2460 | case XFS_REFC_CRC_MAGIC: |
2461 | bp->b_ops = &xfs_refcountbt_buf_ops; | |
2462 | break; | |
ee1a47ab | 2463 | default: |
040c52c0 | 2464 | warnmsg = "Bad btree block magic!"; |
ee1a47ab CH |
2465 | break; |
2466 | } | |
2467 | break; | |
61fe135c | 2468 | case XFS_BLFT_AGF_BUF: |
d75afeb3 | 2469 | if (magic32 != XFS_AGF_MAGIC) { |
040c52c0 | 2470 | warnmsg = "Bad AGF block magic!"; |
4e0e6040 DC |
2471 | break; |
2472 | } | |
2473 | bp->b_ops = &xfs_agf_buf_ops; | |
2474 | break; | |
61fe135c | 2475 | case XFS_BLFT_AGFL_BUF: |
d75afeb3 | 2476 | if (magic32 != XFS_AGFL_MAGIC) { |
040c52c0 | 2477 | warnmsg = "Bad AGFL block magic!"; |
77c95bba CH |
2478 | break; |
2479 | } | |
2480 | bp->b_ops = &xfs_agfl_buf_ops; | |
2481 | break; | |
61fe135c | 2482 | case XFS_BLFT_AGI_BUF: |
d75afeb3 | 2483 | if (magic32 != XFS_AGI_MAGIC) { |
040c52c0 | 2484 | warnmsg = "Bad AGI block magic!"; |
983d09ff DC |
2485 | break; |
2486 | } | |
2487 | bp->b_ops = &xfs_agi_buf_ops; | |
2488 | break; | |
61fe135c DC |
2489 | case XFS_BLFT_UDQUOT_BUF: |
2490 | case XFS_BLFT_PDQUOT_BUF: | |
2491 | case XFS_BLFT_GDQUOT_BUF: | |
123887e8 | 2492 | #ifdef CONFIG_XFS_QUOTA |
d75afeb3 | 2493 | if (magic16 != XFS_DQUOT_MAGIC) { |
040c52c0 | 2494 | warnmsg = "Bad DQUOT block magic!"; |
3fe58f30 CH |
2495 | break; |
2496 | } | |
2497 | bp->b_ops = &xfs_dquot_buf_ops; | |
123887e8 DC |
2498 | #else |
2499 | xfs_alert(mp, | |
2500 | "Trying to recover dquots without QUOTA support built in!"); | |
2501 | ASSERT(0); | |
2502 | #endif | |
3fe58f30 | 2503 | break; |
61fe135c | 2504 | case XFS_BLFT_DINO_BUF: |
d75afeb3 | 2505 | if (magic16 != XFS_DINODE_MAGIC) { |
040c52c0 | 2506 | warnmsg = "Bad INODE block magic!"; |
93848a99 CH |
2507 | break; |
2508 | } | |
2509 | bp->b_ops = &xfs_inode_buf_ops; | |
2510 | break; | |
61fe135c | 2511 | case XFS_BLFT_SYMLINK_BUF: |
d75afeb3 | 2512 | if (magic32 != XFS_SYMLINK_MAGIC) { |
040c52c0 | 2513 | warnmsg = "Bad symlink block magic!"; |
f948dd76 DC |
2514 | break; |
2515 | } | |
2516 | bp->b_ops = &xfs_symlink_buf_ops; | |
2517 | break; | |
61fe135c | 2518 | case XFS_BLFT_DIR_BLOCK_BUF: |
d75afeb3 DC |
2519 | if (magic32 != XFS_DIR2_BLOCK_MAGIC && |
2520 | magic32 != XFS_DIR3_BLOCK_MAGIC) { | |
040c52c0 | 2521 | warnmsg = "Bad dir block magic!"; |
d75afeb3 DC |
2522 | break; |
2523 | } | |
2524 | bp->b_ops = &xfs_dir3_block_buf_ops; | |
2525 | break; | |
61fe135c | 2526 | case XFS_BLFT_DIR_DATA_BUF: |
d75afeb3 DC |
2527 | if (magic32 != XFS_DIR2_DATA_MAGIC && |
2528 | magic32 != XFS_DIR3_DATA_MAGIC) { | |
040c52c0 | 2529 | warnmsg = "Bad dir data magic!"; |
d75afeb3 DC |
2530 | break; |
2531 | } | |
2532 | bp->b_ops = &xfs_dir3_data_buf_ops; | |
2533 | break; | |
61fe135c | 2534 | case XFS_BLFT_DIR_FREE_BUF: |
d75afeb3 DC |
2535 | if (magic32 != XFS_DIR2_FREE_MAGIC && |
2536 | magic32 != XFS_DIR3_FREE_MAGIC) { | |
040c52c0 | 2537 | warnmsg = "Bad dir3 free magic!"; |
d75afeb3 DC |
2538 | break; |
2539 | } | |
2540 | bp->b_ops = &xfs_dir3_free_buf_ops; | |
2541 | break; | |
61fe135c | 2542 | case XFS_BLFT_DIR_LEAF1_BUF: |
d75afeb3 DC |
2543 | if (magicda != XFS_DIR2_LEAF1_MAGIC && |
2544 | magicda != XFS_DIR3_LEAF1_MAGIC) { | |
040c52c0 | 2545 | warnmsg = "Bad dir leaf1 magic!"; |
d75afeb3 DC |
2546 | break; |
2547 | } | |
2548 | bp->b_ops = &xfs_dir3_leaf1_buf_ops; | |
2549 | break; | |
61fe135c | 2550 | case XFS_BLFT_DIR_LEAFN_BUF: |
d75afeb3 DC |
2551 | if (magicda != XFS_DIR2_LEAFN_MAGIC && |
2552 | magicda != XFS_DIR3_LEAFN_MAGIC) { | |
040c52c0 | 2553 | warnmsg = "Bad dir leafn magic!"; |
d75afeb3 DC |
2554 | break; |
2555 | } | |
2556 | bp->b_ops = &xfs_dir3_leafn_buf_ops; | |
2557 | break; | |
61fe135c | 2558 | case XFS_BLFT_DA_NODE_BUF: |
d75afeb3 DC |
2559 | if (magicda != XFS_DA_NODE_MAGIC && |
2560 | magicda != XFS_DA3_NODE_MAGIC) { | |
040c52c0 | 2561 | warnmsg = "Bad da node magic!"; |
d75afeb3 DC |
2562 | break; |
2563 | } | |
2564 | bp->b_ops = &xfs_da3_node_buf_ops; | |
2565 | break; | |
61fe135c | 2566 | case XFS_BLFT_ATTR_LEAF_BUF: |
d75afeb3 DC |
2567 | if (magicda != XFS_ATTR_LEAF_MAGIC && |
2568 | magicda != XFS_ATTR3_LEAF_MAGIC) { | |
040c52c0 | 2569 | warnmsg = "Bad attr leaf magic!"; |
d75afeb3 DC |
2570 | break; |
2571 | } | |
2572 | bp->b_ops = &xfs_attr3_leaf_buf_ops; | |
2573 | break; | |
61fe135c | 2574 | case XFS_BLFT_ATTR_RMT_BUF: |
cab09a81 | 2575 | if (magic32 != XFS_ATTR3_RMT_MAGIC) { |
040c52c0 | 2576 | warnmsg = "Bad attr remote magic!"; |
d75afeb3 DC |
2577 | break; |
2578 | } | |
2579 | bp->b_ops = &xfs_attr3_rmt_buf_ops; | |
2580 | break; | |
04a1e6c5 DC |
2581 | case XFS_BLFT_SB_BUF: |
2582 | if (magic32 != XFS_SB_MAGIC) { | |
040c52c0 | 2583 | warnmsg = "Bad SB block magic!"; |
04a1e6c5 DC |
2584 | break; |
2585 | } | |
2586 | bp->b_ops = &xfs_sb_buf_ops; | |
2587 | break; | |
f67ca6ec DC |
2588 | #ifdef CONFIG_XFS_RT |
2589 | case XFS_BLFT_RTBITMAP_BUF: | |
2590 | case XFS_BLFT_RTSUMMARY_BUF: | |
bf85e099 DC |
2591 | /* no magic numbers for verification of RT buffers */ |
2592 | bp->b_ops = &xfs_rtbuf_ops; | |
f67ca6ec DC |
2593 | break; |
2594 | #endif /* CONFIG_XFS_RT */ | |
ee1a47ab | 2595 | default: |
61fe135c DC |
2596 | xfs_warn(mp, "Unknown buffer type %d!", |
2597 | xfs_blft_from_flags(buf_f)); | |
ee1a47ab CH |
2598 | break; |
2599 | } | |
040c52c0 BF |
2600 | |
2601 | /* | |
60a4a222 BF |
2602 | * Nothing else to do in the case of a NULL current LSN as this means |
2603 | * the buffer is more recent than the change in the log and will be | |
2604 | * skipped. | |
040c52c0 | 2605 | */ |
60a4a222 BF |
2606 | if (current_lsn == NULLCOMMITLSN) |
2607 | return; | |
2608 | ||
2609 | if (warnmsg) { | |
040c52c0 BF |
2610 | xfs_warn(mp, warnmsg); |
2611 | ASSERT(0); | |
2612 | } | |
60a4a222 BF |
2613 | |
2614 | /* | |
2615 | * We must update the metadata LSN of the buffer as it is written out to | |
2616 | * ensure that older transactions never replay over this one and corrupt | |
2617 | * the buffer. This can occur if log recovery is interrupted at some | |
2618 | * point after the current transaction completes, at which point a | |
2619 | * subsequent mount starts recovery from the beginning. | |
2620 | * | |
2621 | * Write verifiers update the metadata LSN from log items attached to | |
2622 | * the buffer. Therefore, initialize a bli purely to carry the LSN to | |
2623 | * the verifier. We'll clean it up in our ->iodone() callback. | |
2624 | */ | |
2625 | if (bp->b_ops) { | |
2626 | struct xfs_buf_log_item *bip; | |
2627 | ||
2628 | ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); | |
2629 | bp->b_iodone = xlog_recover_iodone; | |
2630 | xfs_buf_item_init(bp, mp); | |
fb1755a6 | 2631 | bip = bp->b_log_item; |
60a4a222 BF |
2632 | bip->bli_item.li_lsn = current_lsn; |
2633 | } | |
1da177e4 LT |
2634 | } |
2635 | ||
d75afeb3 DC |
2636 | /* |
2637 | * Perform a 'normal' buffer recovery. Each logged region of the | |
2638 | * buffer should be copied over the corresponding region in the | |
2639 | * given buffer. The bitmap in the buf log format structure indicates | |
2640 | * where to place the logged data. | |
2641 | */ | |
2642 | STATIC void | |
2643 | xlog_recover_do_reg_buffer( | |
2644 | struct xfs_mount *mp, | |
2645 | xlog_recover_item_t *item, | |
2646 | struct xfs_buf *bp, | |
22db9af2 BF |
2647 | xfs_buf_log_format_t *buf_f, |
2648 | xfs_lsn_t current_lsn) | |
d75afeb3 DC |
2649 | { |
2650 | int i; | |
2651 | int bit; | |
2652 | int nbits; | |
eebf3cab | 2653 | xfs_failaddr_t fa; |
d75afeb3 DC |
2654 | |
2655 | trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); | |
2656 | ||
2657 | bit = 0; | |
2658 | i = 1; /* 0 is the buf format structure */ | |
2659 | while (1) { | |
2660 | bit = xfs_next_bit(buf_f->blf_data_map, | |
2661 | buf_f->blf_map_size, bit); | |
2662 | if (bit == -1) | |
2663 | break; | |
2664 | nbits = xfs_contig_bits(buf_f->blf_data_map, | |
2665 | buf_f->blf_map_size, bit); | |
2666 | ASSERT(nbits > 0); | |
2667 | ASSERT(item->ri_buf[i].i_addr != NULL); | |
2668 | ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); | |
2669 | ASSERT(BBTOB(bp->b_io_length) >= | |
2670 | ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); | |
2671 | ||
709da6a6 DC |
2672 | /* |
2673 | * The dirty regions logged in the buffer, even though | |
2674 | * contiguous, may span multiple chunks. This is because the | |
2675 | * dirty region may span a physical page boundary in a buffer | |
2676 | * and hence be split into two separate vectors for writing into | |
2677 | * the log. Hence we need to trim nbits back to the length of | |
2678 | * the current region being copied out of the log. | |
2679 | */ | |
2680 | if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) | |
2681 | nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; | |
2682 | ||
d75afeb3 DC |
2683 | /* |
2684 | * Do a sanity check if this is a dquot buffer. Just checking | |
2685 | * the first dquot in the buffer should do. XXXThis is | |
2686 | * probably a good thing to do for other buf types also. | |
2687 | */ | |
eebf3cab | 2688 | fa = NULL; |
d75afeb3 DC |
2689 | if (buf_f->blf_flags & |
2690 | (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { | |
2691 | if (item->ri_buf[i].i_addr == NULL) { | |
2692 | xfs_alert(mp, | |
2693 | "XFS: NULL dquot in %s.", __func__); | |
2694 | goto next; | |
2695 | } | |
2696 | if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { | |
2697 | xfs_alert(mp, | |
2698 | "XFS: dquot too small (%d) in %s.", | |
2699 | item->ri_buf[i].i_len, __func__); | |
2700 | goto next; | |
2701 | } | |
eebf3cab | 2702 | fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, |
e381a0f6 | 2703 | -1, 0); |
eebf3cab DW |
2704 | if (fa) { |
2705 | xfs_alert(mp, | |
2706 | "dquot corrupt at %pS trying to replay into block 0x%llx", | |
2707 | fa, bp->b_bn); | |
d75afeb3 | 2708 | goto next; |
eebf3cab | 2709 | } |
d75afeb3 DC |
2710 | } |
2711 | ||
2712 | memcpy(xfs_buf_offset(bp, | |
2713 | (uint)bit << XFS_BLF_SHIFT), /* dest */ | |
2714 | item->ri_buf[i].i_addr, /* source */ | |
2715 | nbits<<XFS_BLF_SHIFT); /* length */ | |
2716 | next: | |
2717 | i++; | |
2718 | bit += nbits; | |
2719 | } | |
2720 | ||
2721 | /* Shouldn't be any more regions */ | |
2722 | ASSERT(i == item->ri_total); | |
2723 | ||
22db9af2 | 2724 | xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); |
d75afeb3 DC |
2725 | } |
2726 | ||
1da177e4 LT |
2727 | /* |
2728 | * Perform a dquot buffer recovery. | |
8ba701ee | 2729 | * Simple algorithm: if we have found a QUOTAOFF log item of the same type |
1da177e4 LT |
2730 | * (ie. USR or GRP), then just toss this buffer away; don't recover it. |
2731 | * Else, treat it as a regular buffer and do recovery. | |
ad3714b8 DC |
2732 | * |
2733 | * Return false if the buffer was tossed and true if we recovered the buffer to | |
2734 | * indicate to the caller if the buffer needs writing. | |
1da177e4 | 2735 | */ |
ad3714b8 | 2736 | STATIC bool |
1da177e4 | 2737 | xlog_recover_do_dquot_buffer( |
9a8d2fdb MT |
2738 | struct xfs_mount *mp, |
2739 | struct xlog *log, | |
2740 | struct xlog_recover_item *item, | |
2741 | struct xfs_buf *bp, | |
2742 | struct xfs_buf_log_format *buf_f) | |
1da177e4 LT |
2743 | { |
2744 | uint type; | |
2745 | ||
9abbc539 DC |
2746 | trace_xfs_log_recover_buf_dquot_buf(log, buf_f); |
2747 | ||
1da177e4 LT |
2748 | /* |
2749 | * Filesystems are required to send in quota flags at mount time. | |
2750 | */ | |
ad3714b8 DC |
2751 | if (!mp->m_qflags) |
2752 | return false; | |
1da177e4 LT |
2753 | |
2754 | type = 0; | |
c1155410 | 2755 | if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) |
1da177e4 | 2756 | type |= XFS_DQ_USER; |
c1155410 | 2757 | if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) |
c8ad20ff | 2758 | type |= XFS_DQ_PROJ; |
c1155410 | 2759 | if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) |
1da177e4 LT |
2760 | type |= XFS_DQ_GROUP; |
2761 | /* | |
2762 | * This type of quotas was turned off, so ignore this buffer | |
2763 | */ | |
2764 | if (log->l_quotaoffs_flag & type) | |
ad3714b8 | 2765 | return false; |
1da177e4 | 2766 | |
22db9af2 | 2767 | xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); |
ad3714b8 | 2768 | return true; |
1da177e4 LT |
2769 | } |
2770 | ||
2771 | /* | |
2772 | * This routine replays a modification made to a buffer at runtime. | |
2773 | * There are actually two types of buffer, regular and inode, which | |
2774 | * are handled differently. Inode buffers are handled differently | |
2775 | * in that we only recover a specific set of data from them, namely | |
2776 | * the inode di_next_unlinked fields. This is because all other inode | |
2777 | * data is actually logged via inode records and any data we replay | |
2778 | * here which overlaps that may be stale. | |
2779 | * | |
2780 | * When meta-data buffers are freed at run time we log a buffer item | |
c1155410 | 2781 | * with the XFS_BLF_CANCEL bit set to indicate that previous copies |
1da177e4 LT |
2782 | * of the buffer in the log should not be replayed at recovery time. |
2783 | * This is so that if the blocks covered by the buffer are reused for | |
2784 | * file data before we crash we don't end up replaying old, freed | |
2785 | * meta-data into a user's file. | |
2786 | * | |
2787 | * To handle the cancellation of buffer log items, we make two passes | |
2788 | * over the log during recovery. During the first we build a table of | |
2789 | * those buffers which have been cancelled, and during the second we | |
2790 | * only replay those buffers which do not have corresponding cancel | |
34be5ff3 | 2791 | * records in the table. See xlog_recover_buffer_pass[1,2] above |
1da177e4 LT |
2792 | * for more details on the implementation of the table of cancel records. |
2793 | */ | |
2794 | STATIC int | |
c9f71f5f | 2795 | xlog_recover_buffer_pass2( |
9a8d2fdb MT |
2796 | struct xlog *log, |
2797 | struct list_head *buffer_list, | |
50d5c8d8 DC |
2798 | struct xlog_recover_item *item, |
2799 | xfs_lsn_t current_lsn) | |
1da177e4 | 2800 | { |
4e0d5f92 | 2801 | xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; |
e2714bf8 | 2802 | xfs_mount_t *mp = log->l_mp; |
1da177e4 LT |
2803 | xfs_buf_t *bp; |
2804 | int error; | |
6ad112bf | 2805 | uint buf_flags; |
50d5c8d8 | 2806 | xfs_lsn_t lsn; |
1da177e4 | 2807 | |
c9f71f5f CH |
2808 | /* |
2809 | * In this pass we only want to recover all the buffers which have | |
2810 | * not been cancelled and are not cancellation buffers themselves. | |
2811 | */ | |
2812 | if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, | |
2813 | buf_f->blf_len, buf_f->blf_flags)) { | |
2814 | trace_xfs_log_recover_buf_cancel(log, buf_f); | |
1da177e4 | 2815 | return 0; |
1da177e4 | 2816 | } |
c9f71f5f | 2817 | |
9abbc539 | 2818 | trace_xfs_log_recover_buf_recover(log, buf_f); |
1da177e4 | 2819 | |
a8acad70 | 2820 | buf_flags = 0; |
611c9946 DC |
2821 | if (buf_f->blf_flags & XFS_BLF_INODE_BUF) |
2822 | buf_flags |= XBF_UNMAPPED; | |
6ad112bf | 2823 | |
e2714bf8 | 2824 | bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, |
c3f8fc73 | 2825 | buf_flags, NULL); |
ac4d6888 | 2826 | if (!bp) |
2451337d | 2827 | return -ENOMEM; |
e5702805 | 2828 | error = bp->b_error; |
5a52c2a5 | 2829 | if (error) { |
901796af | 2830 | xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); |
50d5c8d8 | 2831 | goto out_release; |
1da177e4 LT |
2832 | } |
2833 | ||
50d5c8d8 | 2834 | /* |
67dc288c | 2835 | * Recover the buffer only if we get an LSN from it and it's less than |
50d5c8d8 | 2836 | * the lsn of the transaction we are replaying. |
67dc288c DC |
2837 | * |
2838 | * Note that we have to be extremely careful of readahead here. | |
2839 | * Readahead does not attach verfiers to the buffers so if we don't | |
2840 | * actually do any replay after readahead because of the LSN we found | |
2841 | * in the buffer if more recent than that current transaction then we | |
2842 | * need to attach the verifier directly. Failure to do so can lead to | |
2843 | * future recovery actions (e.g. EFI and unlinked list recovery) can | |
2844 | * operate on the buffers and they won't get the verifier attached. This | |
2845 | * can lead to blocks on disk having the correct content but a stale | |
2846 | * CRC. | |
2847 | * | |
2848 | * It is safe to assume these clean buffers are currently up to date. | |
2849 | * If the buffer is dirtied by a later transaction being replayed, then | |
2850 | * the verifier will be reset to match whatever recover turns that | |
2851 | * buffer into. | |
50d5c8d8 DC |
2852 | */ |
2853 | lsn = xlog_recover_get_buf_lsn(mp, bp); | |
67dc288c | 2854 | if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { |
5cd9cee9 | 2855 | trace_xfs_log_recover_buf_skip(log, buf_f); |
22db9af2 | 2856 | xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); |
50d5c8d8 | 2857 | goto out_release; |
67dc288c | 2858 | } |
50d5c8d8 | 2859 | |
e2714bf8 | 2860 | if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { |
1da177e4 | 2861 | error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); |
ad3714b8 DC |
2862 | if (error) |
2863 | goto out_release; | |
e2714bf8 | 2864 | } else if (buf_f->blf_flags & |
c1155410 | 2865 | (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { |
ad3714b8 DC |
2866 | bool dirty; |
2867 | ||
2868 | dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); | |
2869 | if (!dirty) | |
2870 | goto out_release; | |
1da177e4 | 2871 | } else { |
22db9af2 | 2872 | xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); |
1da177e4 | 2873 | } |
1da177e4 LT |
2874 | |
2875 | /* | |
2876 | * Perform delayed write on the buffer. Asynchronous writes will be | |
2877 | * slower when taking into account all the buffers to be flushed. | |
2878 | * | |
2879 | * Also make sure that only inode buffers with good sizes stay in | |
2880 | * the buffer cache. The kernel moves inodes in buffers of 1 block | |
0f49efd8 | 2881 | * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode |
1da177e4 LT |
2882 | * buffers in the log can be a different size if the log was generated |
2883 | * by an older kernel using unclustered inode buffers or a newer kernel | |
2884 | * running with a different inode cluster size. Regardless, if the | |
9bb54cb5 | 2885 | * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size) |
0f49efd8 | 2886 | * for *our* value of mp->m_inode_cluster_size, then we need to keep |
1da177e4 LT |
2887 | * the buffer out of the buffer cache so that the buffer won't |
2888 | * overlap with future reads of those inodes. | |
2889 | */ | |
2890 | if (XFS_DINODE_MAGIC == | |
b53e675d | 2891 | be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && |
9bb54cb5 | 2892 | (BBTOB(bp->b_io_length) != max(log->l_mp->m_sb.sb_blocksize, |
c8ce540d | 2893 | (uint32_t)log->l_mp->m_inode_cluster_size))) { |
c867cb61 | 2894 | xfs_buf_stale(bp); |
c2b006c1 | 2895 | error = xfs_bwrite(bp); |
1da177e4 | 2896 | } else { |
ebad861b | 2897 | ASSERT(bp->b_target->bt_mount == mp); |
cb669ca5 | 2898 | bp->b_iodone = xlog_recover_iodone; |
43ff2122 | 2899 | xfs_buf_delwri_queue(bp, buffer_list); |
1da177e4 LT |
2900 | } |
2901 | ||
50d5c8d8 | 2902 | out_release: |
c2b006c1 CH |
2903 | xfs_buf_relse(bp); |
2904 | return error; | |
1da177e4 LT |
2905 | } |
2906 | ||
638f4416 DC |
2907 | /* |
2908 | * Inode fork owner changes | |
2909 | * | |
2910 | * If we have been told that we have to reparent the inode fork, it's because an | |
2911 | * extent swap operation on a CRC enabled filesystem has been done and we are | |
2912 | * replaying it. We need to walk the BMBT of the appropriate fork and change the | |
2913 | * owners of it. | |
2914 | * | |
2915 | * The complexity here is that we don't have an inode context to work with, so | |
2916 | * after we've replayed the inode we need to instantiate one. This is where the | |
2917 | * fun begins. | |
2918 | * | |
2919 | * We are in the middle of log recovery, so we can't run transactions. That | |
2920 | * means we cannot use cache coherent inode instantiation via xfs_iget(), as | |
2921 | * that will result in the corresponding iput() running the inode through | |
2922 | * xfs_inactive(). If we've just replayed an inode core that changes the link | |
2923 | * count to zero (i.e. it's been unlinked), then xfs_inactive() will run | |
2924 | * transactions (bad!). | |
2925 | * | |
2926 | * So, to avoid this, we instantiate an inode directly from the inode core we've | |
2927 | * just recovered. We have the buffer still locked, and all we really need to | |
2928 | * instantiate is the inode core and the forks being modified. We can do this | |
2929 | * manually, then run the inode btree owner change, and then tear down the | |
2930 | * xfs_inode without having to run any transactions at all. | |
2931 | * | |
2932 | * Also, because we don't have a transaction context available here but need to | |
2933 | * gather all the buffers we modify for writeback so we pass the buffer_list | |
2934 | * instead for the operation to use. | |
2935 | */ | |
2936 | ||
2937 | STATIC int | |
2938 | xfs_recover_inode_owner_change( | |
2939 | struct xfs_mount *mp, | |
2940 | struct xfs_dinode *dip, | |
2941 | struct xfs_inode_log_format *in_f, | |
2942 | struct list_head *buffer_list) | |
2943 | { | |
2944 | struct xfs_inode *ip; | |
2945 | int error; | |
2946 | ||
2947 | ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); | |
2948 | ||
2949 | ip = xfs_inode_alloc(mp, in_f->ilf_ino); | |
2950 | if (!ip) | |
2451337d | 2951 | return -ENOMEM; |
638f4416 DC |
2952 | |
2953 | /* instantiate the inode */ | |
3987848c | 2954 | xfs_inode_from_disk(ip, dip); |
638f4416 DC |
2955 | ASSERT(ip->i_d.di_version >= 3); |
2956 | ||
2957 | error = xfs_iformat_fork(ip, dip); | |
2958 | if (error) | |
2959 | goto out_free_ip; | |
2960 | ||
9cfb9b47 DW |
2961 | if (!xfs_inode_verify_forks(ip)) { |
2962 | error = -EFSCORRUPTED; | |
2963 | goto out_free_ip; | |
2964 | } | |
638f4416 DC |
2965 | |
2966 | if (in_f->ilf_fields & XFS_ILOG_DOWNER) { | |
2967 | ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); | |
2968 | error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, | |
2969 | ip->i_ino, buffer_list); | |
2970 | if (error) | |
2971 | goto out_free_ip; | |
2972 | } | |
2973 | ||
2974 | if (in_f->ilf_fields & XFS_ILOG_AOWNER) { | |
2975 | ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); | |
2976 | error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, | |
2977 | ip->i_ino, buffer_list); | |
2978 | if (error) | |
2979 | goto out_free_ip; | |
2980 | } | |
2981 | ||
2982 | out_free_ip: | |
2983 | xfs_inode_free(ip); | |
2984 | return error; | |
2985 | } | |
2986 | ||
1da177e4 | 2987 | STATIC int |
c9f71f5f | 2988 | xlog_recover_inode_pass2( |
9a8d2fdb MT |
2989 | struct xlog *log, |
2990 | struct list_head *buffer_list, | |
50d5c8d8 DC |
2991 | struct xlog_recover_item *item, |
2992 | xfs_lsn_t current_lsn) | |
1da177e4 | 2993 | { |
06b11321 | 2994 | struct xfs_inode_log_format *in_f; |
c9f71f5f | 2995 | xfs_mount_t *mp = log->l_mp; |
1da177e4 | 2996 | xfs_buf_t *bp; |
1da177e4 | 2997 | xfs_dinode_t *dip; |
1da177e4 | 2998 | int len; |
b2a922cd CH |
2999 | char *src; |
3000 | char *dest; | |
1da177e4 LT |
3001 | int error; |
3002 | int attr_index; | |
3003 | uint fields; | |
f8d55aa0 | 3004 | struct xfs_log_dinode *ldip; |
93848a99 | 3005 | uint isize; |
6d192a9b | 3006 | int need_free = 0; |
1da177e4 | 3007 | |
06b11321 | 3008 | if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { |
4e0d5f92 | 3009 | in_f = item->ri_buf[0].i_addr; |
6d192a9b | 3010 | } else { |
06b11321 | 3011 | in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP); |
6d192a9b TS |
3012 | need_free = 1; |
3013 | error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); | |
3014 | if (error) | |
3015 | goto error; | |
3016 | } | |
1da177e4 LT |
3017 | |
3018 | /* | |
3019 | * Inode buffers can be freed, look out for it, | |
3020 | * and do not replay the inode. | |
3021 | */ | |
a1941895 CH |
3022 | if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, |
3023 | in_f->ilf_len, 0)) { | |
6d192a9b | 3024 | error = 0; |
9abbc539 | 3025 | trace_xfs_log_recover_inode_cancel(log, in_f); |
6d192a9b TS |
3026 | goto error; |
3027 | } | |
9abbc539 | 3028 | trace_xfs_log_recover_inode_recover(log, in_f); |
1da177e4 | 3029 | |
c3f8fc73 | 3030 | bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, |
93848a99 | 3031 | &xfs_inode_buf_ops); |
ac4d6888 | 3032 | if (!bp) { |
2451337d | 3033 | error = -ENOMEM; |
ac4d6888 CS |
3034 | goto error; |
3035 | } | |
e5702805 | 3036 | error = bp->b_error; |
5a52c2a5 | 3037 | if (error) { |
901796af | 3038 | xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); |
638f4416 | 3039 | goto out_release; |
1da177e4 | 3040 | } |
1da177e4 | 3041 | ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); |
88ee2df7 | 3042 | dip = xfs_buf_offset(bp, in_f->ilf_boffset); |
1da177e4 LT |
3043 | |
3044 | /* | |
3045 | * Make sure the place we're flushing out to really looks | |
3046 | * like an inode! | |
3047 | */ | |
69ef921b | 3048 | if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { |
a0fa2b67 | 3049 | xfs_alert(mp, |
c9690043 | 3050 | "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld", |
a0fa2b67 | 3051 | __func__, dip, bp, in_f->ilf_ino); |
c9f71f5f | 3052 | XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", |
1da177e4 | 3053 | XFS_ERRLEVEL_LOW, mp); |
2451337d | 3054 | error = -EFSCORRUPTED; |
638f4416 | 3055 | goto out_release; |
1da177e4 | 3056 | } |
f8d55aa0 DC |
3057 | ldip = item->ri_buf[1].i_addr; |
3058 | if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { | |
a0fa2b67 | 3059 | xfs_alert(mp, |
c9690043 | 3060 | "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld", |
a0fa2b67 | 3061 | __func__, item, in_f->ilf_ino); |
c9f71f5f | 3062 | XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", |
1da177e4 | 3063 | XFS_ERRLEVEL_LOW, mp); |
2451337d | 3064 | error = -EFSCORRUPTED; |
638f4416 | 3065 | goto out_release; |
1da177e4 LT |
3066 | } |
3067 | ||
50d5c8d8 DC |
3068 | /* |
3069 | * If the inode has an LSN in it, recover the inode only if it's less | |
638f4416 DC |
3070 | * than the lsn of the transaction we are replaying. Note: we still |
3071 | * need to replay an owner change even though the inode is more recent | |
3072 | * than the transaction as there is no guarantee that all the btree | |
3073 | * blocks are more recent than this transaction, too. | |
50d5c8d8 DC |
3074 | */ |
3075 | if (dip->di_version >= 3) { | |
3076 | xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); | |
3077 | ||
3078 | if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { | |
3079 | trace_xfs_log_recover_inode_skip(log, in_f); | |
3080 | error = 0; | |
638f4416 | 3081 | goto out_owner_change; |
50d5c8d8 DC |
3082 | } |
3083 | } | |
3084 | ||
e60896d8 DC |
3085 | /* |
3086 | * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes | |
3087 | * are transactional and if ordering is necessary we can determine that | |
3088 | * more accurately by the LSN field in the V3 inode core. Don't trust | |
3089 | * the inode versions we might be changing them here - use the | |
3090 | * superblock flag to determine whether we need to look at di_flushiter | |
3091 | * to skip replay when the on disk inode is newer than the log one | |
3092 | */ | |
3093 | if (!xfs_sb_version_hascrc(&mp->m_sb) && | |
f8d55aa0 | 3094 | ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { |
1da177e4 LT |
3095 | /* |
3096 | * Deal with the wrap case, DI_MAX_FLUSH is less | |
3097 | * than smaller numbers | |
3098 | */ | |
81591fe2 | 3099 | if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && |
f8d55aa0 | 3100 | ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { |
1da177e4 LT |
3101 | /* do nothing */ |
3102 | } else { | |
9abbc539 | 3103 | trace_xfs_log_recover_inode_skip(log, in_f); |
6d192a9b | 3104 | error = 0; |
638f4416 | 3105 | goto out_release; |
1da177e4 LT |
3106 | } |
3107 | } | |
e60896d8 | 3108 | |
1da177e4 | 3109 | /* Take the opportunity to reset the flush iteration count */ |
f8d55aa0 | 3110 | ldip->di_flushiter = 0; |
1da177e4 | 3111 | |
f8d55aa0 DC |
3112 | if (unlikely(S_ISREG(ldip->di_mode))) { |
3113 | if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && | |
3114 | (ldip->di_format != XFS_DINODE_FMT_BTREE)) { | |
c9f71f5f | 3115 | XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", |
2551a530 DW |
3116 | XFS_ERRLEVEL_LOW, mp, ldip, |
3117 | sizeof(*ldip)); | |
a0fa2b67 | 3118 | xfs_alert(mp, |
c9690043 DW |
3119 | "%s: Bad regular inode log record, rec ptr "PTR_FMT", " |
3120 | "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", | |
a0fa2b67 | 3121 | __func__, item, dip, bp, in_f->ilf_ino); |
2451337d | 3122 | error = -EFSCORRUPTED; |
638f4416 | 3123 | goto out_release; |
1da177e4 | 3124 | } |
f8d55aa0 DC |
3125 | } else if (unlikely(S_ISDIR(ldip->di_mode))) { |
3126 | if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && | |
3127 | (ldip->di_format != XFS_DINODE_FMT_BTREE) && | |
3128 | (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { | |
c9f71f5f | 3129 | XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", |
2551a530 DW |
3130 | XFS_ERRLEVEL_LOW, mp, ldip, |
3131 | sizeof(*ldip)); | |
a0fa2b67 | 3132 | xfs_alert(mp, |
c9690043 DW |
3133 | "%s: Bad dir inode log record, rec ptr "PTR_FMT", " |
3134 | "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", | |
a0fa2b67 | 3135 | __func__, item, dip, bp, in_f->ilf_ino); |
2451337d | 3136 | error = -EFSCORRUPTED; |
638f4416 | 3137 | goto out_release; |
1da177e4 LT |
3138 | } |
3139 | } | |
f8d55aa0 | 3140 | if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ |
c9f71f5f | 3141 | XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", |
2551a530 DW |
3142 | XFS_ERRLEVEL_LOW, mp, ldip, |
3143 | sizeof(*ldip)); | |
a0fa2b67 | 3144 | xfs_alert(mp, |
c9690043 DW |
3145 | "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " |
3146 | "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld", | |
a0fa2b67 | 3147 | __func__, item, dip, bp, in_f->ilf_ino, |
f8d55aa0 DC |
3148 | ldip->di_nextents + ldip->di_anextents, |
3149 | ldip->di_nblocks); | |
2451337d | 3150 | error = -EFSCORRUPTED; |
638f4416 | 3151 | goto out_release; |
1da177e4 | 3152 | } |
f8d55aa0 | 3153 | if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { |
c9f71f5f | 3154 | XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", |
2551a530 DW |
3155 | XFS_ERRLEVEL_LOW, mp, ldip, |
3156 | sizeof(*ldip)); | |
a0fa2b67 | 3157 | xfs_alert(mp, |
c9690043 DW |
3158 | "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " |
3159 | "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__, | |
f8d55aa0 | 3160 | item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); |
2451337d | 3161 | error = -EFSCORRUPTED; |
638f4416 | 3162 | goto out_release; |
1da177e4 | 3163 | } |
f8d55aa0 | 3164 | isize = xfs_log_dinode_size(ldip->di_version); |
93848a99 | 3165 | if (unlikely(item->ri_buf[1].i_len > isize)) { |
c9f71f5f | 3166 | XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", |
2551a530 DW |
3167 | XFS_ERRLEVEL_LOW, mp, ldip, |
3168 | sizeof(*ldip)); | |
a0fa2b67 | 3169 | xfs_alert(mp, |
c9690043 | 3170 | "%s: Bad inode log record length %d, rec ptr "PTR_FMT, |
a0fa2b67 | 3171 | __func__, item->ri_buf[1].i_len, item); |
2451337d | 3172 | error = -EFSCORRUPTED; |
638f4416 | 3173 | goto out_release; |
1da177e4 LT |
3174 | } |
3175 | ||
3987848c DC |
3176 | /* recover the log dinode inode into the on disk inode */ |
3177 | xfs_log_dinode_to_disk(ldip, dip); | |
1da177e4 | 3178 | |
1da177e4 | 3179 | fields = in_f->ilf_fields; |
42b67dc6 | 3180 | if (fields & XFS_ILOG_DEV) |
81591fe2 | 3181 | xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); |
1da177e4 LT |
3182 | |
3183 | if (in_f->ilf_size == 2) | |
638f4416 | 3184 | goto out_owner_change; |
1da177e4 LT |
3185 | len = item->ri_buf[2].i_len; |
3186 | src = item->ri_buf[2].i_addr; | |
3187 | ASSERT(in_f->ilf_size <= 4); | |
3188 | ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); | |
3189 | ASSERT(!(fields & XFS_ILOG_DFORK) || | |
3190 | (len == in_f->ilf_dsize)); | |
3191 | ||
3192 | switch (fields & XFS_ILOG_DFORK) { | |
3193 | case XFS_ILOG_DDATA: | |
3194 | case XFS_ILOG_DEXT: | |
81591fe2 | 3195 | memcpy(XFS_DFORK_DPTR(dip), src, len); |
1da177e4 LT |
3196 | break; |
3197 | ||
3198 | case XFS_ILOG_DBROOT: | |
7cc95a82 | 3199 | xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, |
81591fe2 | 3200 | (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), |
1da177e4 LT |
3201 | XFS_DFORK_DSIZE(dip, mp)); |
3202 | break; | |
3203 | ||
3204 | default: | |
3205 | /* | |
3206 | * There are no data fork flags set. | |
3207 | */ | |
3208 | ASSERT((fields & XFS_ILOG_DFORK) == 0); | |
3209 | break; | |
3210 | } | |
3211 | ||
3212 | /* | |
3213 | * If we logged any attribute data, recover it. There may or | |
3214 | * may not have been any other non-core data logged in this | |
3215 | * transaction. | |
3216 | */ | |
3217 | if (in_f->ilf_fields & XFS_ILOG_AFORK) { | |
3218 | if (in_f->ilf_fields & XFS_ILOG_DFORK) { | |
3219 | attr_index = 3; | |
3220 | } else { | |
3221 | attr_index = 2; | |
3222 | } | |
3223 | len = item->ri_buf[attr_index].i_len; | |
3224 | src = item->ri_buf[attr_index].i_addr; | |
3225 | ASSERT(len == in_f->ilf_asize); | |
3226 | ||
3227 | switch (in_f->ilf_fields & XFS_ILOG_AFORK) { | |
3228 | case XFS_ILOG_ADATA: | |
3229 | case XFS_ILOG_AEXT: | |
3230 | dest = XFS_DFORK_APTR(dip); | |
3231 | ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); | |
3232 | memcpy(dest, src, len); | |
3233 | break; | |
3234 | ||
3235 | case XFS_ILOG_ABROOT: | |
3236 | dest = XFS_DFORK_APTR(dip); | |
7cc95a82 CH |
3237 | xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, |
3238 | len, (xfs_bmdr_block_t*)dest, | |
1da177e4 LT |
3239 | XFS_DFORK_ASIZE(dip, mp)); |
3240 | break; | |
3241 | ||
3242 | default: | |
a0fa2b67 | 3243 | xfs_warn(log->l_mp, "%s: Invalid flag", __func__); |
1da177e4 | 3244 | ASSERT(0); |
2451337d | 3245 | error = -EIO; |
638f4416 | 3246 | goto out_release; |
1da177e4 LT |
3247 | } |
3248 | } | |
3249 | ||
638f4416 | 3250 | out_owner_change: |
dc1baa71 ES |
3251 | /* Recover the swapext owner change unless inode has been deleted */ |
3252 | if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) && | |
3253 | (dip->di_mode != 0)) | |
638f4416 DC |
3254 | error = xfs_recover_inode_owner_change(mp, dip, in_f, |
3255 | buffer_list); | |
93848a99 CH |
3256 | /* re-generate the checksum. */ |
3257 | xfs_dinode_calc_crc(log->l_mp, dip); | |
3258 | ||
ebad861b | 3259 | ASSERT(bp->b_target->bt_mount == mp); |
cb669ca5 | 3260 | bp->b_iodone = xlog_recover_iodone; |
43ff2122 | 3261 | xfs_buf_delwri_queue(bp, buffer_list); |
50d5c8d8 DC |
3262 | |
3263 | out_release: | |
61551f1e | 3264 | xfs_buf_relse(bp); |
6d192a9b TS |
3265 | error: |
3266 | if (need_free) | |
f0e2d93c | 3267 | kmem_free(in_f); |
b474c7ae | 3268 | return error; |
1da177e4 LT |
3269 | } |
3270 | ||
3271 | /* | |
9a8d2fdb | 3272 | * Recover QUOTAOFF records. We simply make a note of it in the xlog |
1da177e4 LT |
3273 | * structure, so that we know not to do any dquot item or dquot buffer recovery, |
3274 | * of that type. | |
3275 | */ | |
3276 | STATIC int | |
c9f71f5f | 3277 | xlog_recover_quotaoff_pass1( |
9a8d2fdb MT |
3278 | struct xlog *log, |
3279 | struct xlog_recover_item *item) | |
1da177e4 | 3280 | { |
c9f71f5f | 3281 | xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; |
1da177e4 LT |
3282 | ASSERT(qoff_f); |
3283 | ||
3284 | /* | |
3285 | * The logitem format's flag tells us if this was user quotaoff, | |
77a7cce4 | 3286 | * group/project quotaoff or both. |
1da177e4 LT |
3287 | */ |
3288 | if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) | |
3289 | log->l_quotaoffs_flag |= XFS_DQ_USER; | |
77a7cce4 NS |
3290 | if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) |
3291 | log->l_quotaoffs_flag |= XFS_DQ_PROJ; | |
1da177e4 LT |
3292 | if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) |
3293 | log->l_quotaoffs_flag |= XFS_DQ_GROUP; | |
3294 | ||
d99831ff | 3295 | return 0; |
1da177e4 LT |
3296 | } |
3297 | ||
3298 | /* | |
3299 | * Recover a dquot record | |
3300 | */ | |
3301 | STATIC int | |
c9f71f5f | 3302 | xlog_recover_dquot_pass2( |
9a8d2fdb MT |
3303 | struct xlog *log, |
3304 | struct list_head *buffer_list, | |
50d5c8d8 DC |
3305 | struct xlog_recover_item *item, |
3306 | xfs_lsn_t current_lsn) | |
1da177e4 | 3307 | { |
c9f71f5f | 3308 | xfs_mount_t *mp = log->l_mp; |
1da177e4 LT |
3309 | xfs_buf_t *bp; |
3310 | struct xfs_disk_dquot *ddq, *recddq; | |
eebf3cab | 3311 | xfs_failaddr_t fa; |
1da177e4 LT |
3312 | int error; |
3313 | xfs_dq_logformat_t *dq_f; | |
3314 | uint type; | |
3315 | ||
1da177e4 LT |
3316 | |
3317 | /* | |
3318 | * Filesystems are required to send in quota flags at mount time. | |
3319 | */ | |
3320 | if (mp->m_qflags == 0) | |
d99831ff | 3321 | return 0; |
1da177e4 | 3322 | |
4e0d5f92 CH |
3323 | recddq = item->ri_buf[1].i_addr; |
3324 | if (recddq == NULL) { | |
a0fa2b67 | 3325 | xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); |
2451337d | 3326 | return -EIO; |
0c5e1ce8 | 3327 | } |
8ec6dba2 | 3328 | if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { |
a0fa2b67 | 3329 | xfs_alert(log->l_mp, "dquot too small (%d) in %s.", |
0c5e1ce8 | 3330 | item->ri_buf[1].i_len, __func__); |
2451337d | 3331 | return -EIO; |
0c5e1ce8 CH |
3332 | } |
3333 | ||
1da177e4 LT |
3334 | /* |
3335 | * This type of quotas was turned off, so ignore this record. | |
3336 | */ | |
b53e675d | 3337 | type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); |
1da177e4 LT |
3338 | ASSERT(type); |
3339 | if (log->l_quotaoffs_flag & type) | |
d99831ff | 3340 | return 0; |
1da177e4 LT |
3341 | |
3342 | /* | |
3343 | * At this point we know that quota was _not_ turned off. | |
3344 | * Since the mount flags are not indicating to us otherwise, this | |
3345 | * must mean that quota is on, and the dquot needs to be replayed. | |
3346 | * Remember that we may not have fully recovered the superblock yet, | |
3347 | * so we can't do the usual trick of looking at the SB quota bits. | |
3348 | * | |
3349 | * The other possibility, of course, is that the quota subsystem was | |
3350 | * removed since the last mount - ENOSYS. | |
3351 | */ | |
4e0d5f92 | 3352 | dq_f = item->ri_buf[0].i_addr; |
1da177e4 | 3353 | ASSERT(dq_f); |
e381a0f6 | 3354 | fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0); |
eebf3cab DW |
3355 | if (fa) { |
3356 | xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS", | |
3357 | dq_f->qlf_id, fa); | |
2451337d | 3358 | return -EIO; |
eebf3cab | 3359 | } |
1da177e4 LT |
3360 | ASSERT(dq_f->qlf_len == 1); |
3361 | ||
ad3714b8 DC |
3362 | /* |
3363 | * At this point we are assuming that the dquots have been allocated | |
3364 | * and hence the buffer has valid dquots stamped in it. It should, | |
3365 | * therefore, pass verifier validation. If the dquot is bad, then the | |
3366 | * we'll return an error here, so we don't need to specifically check | |
3367 | * the dquot in the buffer after the verifier has run. | |
3368 | */ | |
7ca790a5 | 3369 | error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, |
c3f8fc73 | 3370 | XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, |
ad3714b8 | 3371 | &xfs_dquot_buf_ops); |
7ca790a5 | 3372 | if (error) |
1da177e4 | 3373 | return error; |
7ca790a5 | 3374 | |
1da177e4 | 3375 | ASSERT(bp); |
88ee2df7 | 3376 | ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); |
1da177e4 | 3377 | |
50d5c8d8 DC |
3378 | /* |
3379 | * If the dquot has an LSN in it, recover the dquot only if it's less | |
3380 | * than the lsn of the transaction we are replaying. | |
3381 | */ | |
3382 | if (xfs_sb_version_hascrc(&mp->m_sb)) { | |
3383 | struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; | |
3384 | xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); | |
3385 | ||
3386 | if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { | |
3387 | goto out_release; | |
3388 | } | |
3389 | } | |
3390 | ||
1da177e4 | 3391 | memcpy(ddq, recddq, item->ri_buf[1].i_len); |
6fcdc59d DC |
3392 | if (xfs_sb_version_hascrc(&mp->m_sb)) { |
3393 | xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), | |
3394 | XFS_DQUOT_CRC_OFF); | |
3395 | } | |
1da177e4 LT |
3396 | |
3397 | ASSERT(dq_f->qlf_size == 2); | |
ebad861b | 3398 | ASSERT(bp->b_target->bt_mount == mp); |
cb669ca5 | 3399 | bp->b_iodone = xlog_recover_iodone; |
43ff2122 | 3400 | xfs_buf_delwri_queue(bp, buffer_list); |
1da177e4 | 3401 | |
50d5c8d8 DC |
3402 | out_release: |
3403 | xfs_buf_relse(bp); | |
3404 | return 0; | |
1da177e4 LT |
3405 | } |
3406 | ||
3407 | /* | |
3408 | * This routine is called to create an in-core extent free intent | |
3409 | * item from the efi format structure which was logged on disk. | |
3410 | * It allocates an in-core efi, copies the extents from the format | |
3411 | * structure into it, and adds the efi to the AIL with the given | |
3412 | * LSN. | |
3413 | */ | |
6d192a9b | 3414 | STATIC int |
c9f71f5f | 3415 | xlog_recover_efi_pass2( |
9a8d2fdb MT |
3416 | struct xlog *log, |
3417 | struct xlog_recover_item *item, | |
3418 | xfs_lsn_t lsn) | |
1da177e4 | 3419 | { |
e32a1d1f BF |
3420 | int error; |
3421 | struct xfs_mount *mp = log->l_mp; | |
3422 | struct xfs_efi_log_item *efip; | |
3423 | struct xfs_efi_log_format *efi_formatp; | |
1da177e4 | 3424 | |
4e0d5f92 | 3425 | efi_formatp = item->ri_buf[0].i_addr; |
1da177e4 | 3426 | |
1da177e4 | 3427 | efip = xfs_efi_init(mp, efi_formatp->efi_nextents); |
e32a1d1f BF |
3428 | error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); |
3429 | if (error) { | |
6d192a9b TS |
3430 | xfs_efi_item_free(efip); |
3431 | return error; | |
3432 | } | |
b199c8a4 | 3433 | atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); |
1da177e4 | 3434 | |
57e80956 | 3435 | spin_lock(&log->l_ailp->ail_lock); |
1da177e4 | 3436 | /* |
e32a1d1f BF |
3437 | * The EFI has two references. One for the EFD and one for EFI to ensure |
3438 | * it makes it into the AIL. Insert the EFI into the AIL directly and | |
3439 | * drop the EFI reference. Note that xfs_trans_ail_update() drops the | |
3440 | * AIL lock. | |
1da177e4 | 3441 | */ |
e6059949 | 3442 | xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); |
e32a1d1f | 3443 | xfs_efi_release(efip); |
6d192a9b | 3444 | return 0; |
1da177e4 LT |
3445 | } |
3446 | ||
3447 | ||
3448 | /* | |
e32a1d1f BF |
3449 | * This routine is called when an EFD format structure is found in a committed |
3450 | * transaction in the log. Its purpose is to cancel the corresponding EFI if it | |
3451 | * was still in the log. To do this it searches the AIL for the EFI with an id | |
3452 | * equal to that in the EFD format structure. If we find it we drop the EFD | |
3453 | * reference, which removes the EFI from the AIL and frees it. | |
1da177e4 | 3454 | */ |
c9f71f5f CH |
3455 | STATIC int |
3456 | xlog_recover_efd_pass2( | |
9a8d2fdb MT |
3457 | struct xlog *log, |
3458 | struct xlog_recover_item *item) | |
1da177e4 | 3459 | { |
1da177e4 LT |
3460 | xfs_efd_log_format_t *efd_formatp; |
3461 | xfs_efi_log_item_t *efip = NULL; | |
3462 | xfs_log_item_t *lip; | |
c8ce540d | 3463 | uint64_t efi_id; |
27d8d5fe | 3464 | struct xfs_ail_cursor cur; |
783a2f65 | 3465 | struct xfs_ail *ailp = log->l_ailp; |
1da177e4 | 3466 | |
4e0d5f92 | 3467 | efd_formatp = item->ri_buf[0].i_addr; |
6d192a9b TS |
3468 | ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + |
3469 | ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || | |
3470 | (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + | |
3471 | ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); | |
1da177e4 LT |
3472 | efi_id = efd_formatp->efd_efi_id; |
3473 | ||
3474 | /* | |
e32a1d1f BF |
3475 | * Search for the EFI with the id in the EFD format structure in the |
3476 | * AIL. | |
1da177e4 | 3477 | */ |
57e80956 | 3478 | spin_lock(&ailp->ail_lock); |
a9c21c1b | 3479 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
1da177e4 LT |
3480 | while (lip != NULL) { |
3481 | if (lip->li_type == XFS_LI_EFI) { | |
3482 | efip = (xfs_efi_log_item_t *)lip; | |
3483 | if (efip->efi_format.efi_id == efi_id) { | |
3484 | /* | |
e32a1d1f BF |
3485 | * Drop the EFD reference to the EFI. This |
3486 | * removes the EFI from the AIL and frees it. | |
1da177e4 | 3487 | */ |
57e80956 | 3488 | spin_unlock(&ailp->ail_lock); |
e32a1d1f | 3489 | xfs_efi_release(efip); |
57e80956 | 3490 | spin_lock(&ailp->ail_lock); |
27d8d5fe | 3491 | break; |
1da177e4 LT |
3492 | } |
3493 | } | |
a9c21c1b | 3494 | lip = xfs_trans_ail_cursor_next(ailp, &cur); |
1da177e4 | 3495 | } |
e32a1d1f | 3496 | |
e4a1e29c | 3497 | xfs_trans_ail_cursor_done(&cur); |
57e80956 | 3498 | spin_unlock(&ailp->ail_lock); |
c9f71f5f CH |
3499 | |
3500 | return 0; | |
1da177e4 LT |
3501 | } |
3502 | ||
9e88b5d8 DW |
3503 | /* |
3504 | * This routine is called to create an in-core extent rmap update | |
3505 | * item from the rui format structure which was logged on disk. | |
3506 | * It allocates an in-core rui, copies the extents from the format | |
3507 | * structure into it, and adds the rui to the AIL with the given | |
3508 | * LSN. | |
3509 | */ | |
3510 | STATIC int | |
3511 | xlog_recover_rui_pass2( | |
3512 | struct xlog *log, | |
3513 | struct xlog_recover_item *item, | |
3514 | xfs_lsn_t lsn) | |
3515 | { | |
3516 | int error; | |
3517 | struct xfs_mount *mp = log->l_mp; | |
3518 | struct xfs_rui_log_item *ruip; | |
3519 | struct xfs_rui_log_format *rui_formatp; | |
3520 | ||
3521 | rui_formatp = item->ri_buf[0].i_addr; | |
3522 | ||
3523 | ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); | |
3524 | error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); | |
3525 | if (error) { | |
3526 | xfs_rui_item_free(ruip); | |
3527 | return error; | |
3528 | } | |
3529 | atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); | |
3530 | ||
57e80956 | 3531 | spin_lock(&log->l_ailp->ail_lock); |
9e88b5d8 DW |
3532 | /* |
3533 | * The RUI has two references. One for the RUD and one for RUI to ensure | |
3534 | * it makes it into the AIL. Insert the RUI into the AIL directly and | |
3535 | * drop the RUI reference. Note that xfs_trans_ail_update() drops the | |
3536 | * AIL lock. | |
3537 | */ | |
3538 | xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); | |
3539 | xfs_rui_release(ruip); | |
3540 | return 0; | |
3541 | } | |
3542 | ||
3543 | ||
3544 | /* | |
3545 | * This routine is called when an RUD format structure is found in a committed | |
3546 | * transaction in the log. Its purpose is to cancel the corresponding RUI if it | |
3547 | * was still in the log. To do this it searches the AIL for the RUI with an id | |
3548 | * equal to that in the RUD format structure. If we find it we drop the RUD | |
3549 | * reference, which removes the RUI from the AIL and frees it. | |
3550 | */ | |
3551 | STATIC int | |
3552 | xlog_recover_rud_pass2( | |
3553 | struct xlog *log, | |
3554 | struct xlog_recover_item *item) | |
3555 | { | |
3556 | struct xfs_rud_log_format *rud_formatp; | |
3557 | struct xfs_rui_log_item *ruip = NULL; | |
3558 | struct xfs_log_item *lip; | |
c8ce540d | 3559 | uint64_t rui_id; |
9e88b5d8 DW |
3560 | struct xfs_ail_cursor cur; |
3561 | struct xfs_ail *ailp = log->l_ailp; | |
3562 | ||
3563 | rud_formatp = item->ri_buf[0].i_addr; | |
722e2517 | 3564 | ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); |
9e88b5d8 DW |
3565 | rui_id = rud_formatp->rud_rui_id; |
3566 | ||
3567 | /* | |
3568 | * Search for the RUI with the id in the RUD format structure in the | |
3569 | * AIL. | |
3570 | */ | |
57e80956 | 3571 | spin_lock(&ailp->ail_lock); |
9e88b5d8 DW |
3572 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
3573 | while (lip != NULL) { | |
3574 | if (lip->li_type == XFS_LI_RUI) { | |
3575 | ruip = (struct xfs_rui_log_item *)lip; | |
3576 | if (ruip->rui_format.rui_id == rui_id) { | |
3577 | /* | |
3578 | * Drop the RUD reference to the RUI. This | |
3579 | * removes the RUI from the AIL and frees it. | |
3580 | */ | |
57e80956 | 3581 | spin_unlock(&ailp->ail_lock); |
9e88b5d8 | 3582 | xfs_rui_release(ruip); |
57e80956 | 3583 | spin_lock(&ailp->ail_lock); |
9e88b5d8 DW |
3584 | break; |
3585 | } | |
3586 | } | |
3587 | lip = xfs_trans_ail_cursor_next(ailp, &cur); | |
3588 | } | |
3589 | ||
3590 | xfs_trans_ail_cursor_done(&cur); | |
57e80956 | 3591 | spin_unlock(&ailp->ail_lock); |
9e88b5d8 DW |
3592 | |
3593 | return 0; | |
3594 | } | |
3595 | ||
f997ee21 DW |
3596 | /* |
3597 | * Copy an CUI format buffer from the given buf, and into the destination | |
3598 | * CUI format structure. The CUI/CUD items were designed not to need any | |
3599 | * special alignment handling. | |
3600 | */ | |
3601 | static int | |
3602 | xfs_cui_copy_format( | |
3603 | struct xfs_log_iovec *buf, | |
3604 | struct xfs_cui_log_format *dst_cui_fmt) | |
3605 | { | |
3606 | struct xfs_cui_log_format *src_cui_fmt; | |
3607 | uint len; | |
3608 | ||
3609 | src_cui_fmt = buf->i_addr; | |
3610 | len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); | |
3611 | ||
3612 | if (buf->i_len == len) { | |
3613 | memcpy(dst_cui_fmt, src_cui_fmt, len); | |
3614 | return 0; | |
3615 | } | |
3616 | return -EFSCORRUPTED; | |
3617 | } | |
3618 | ||
3619 | /* | |
3620 | * This routine is called to create an in-core extent refcount update | |
3621 | * item from the cui format structure which was logged on disk. | |
3622 | * It allocates an in-core cui, copies the extents from the format | |
3623 | * structure into it, and adds the cui to the AIL with the given | |
3624 | * LSN. | |
3625 | */ | |
3626 | STATIC int | |
3627 | xlog_recover_cui_pass2( | |
3628 | struct xlog *log, | |
3629 | struct xlog_recover_item *item, | |
3630 | xfs_lsn_t lsn) | |
3631 | { | |
3632 | int error; | |
3633 | struct xfs_mount *mp = log->l_mp; | |
3634 | struct xfs_cui_log_item *cuip; | |
3635 | struct xfs_cui_log_format *cui_formatp; | |
3636 | ||
3637 | cui_formatp = item->ri_buf[0].i_addr; | |
3638 | ||
3639 | cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); | |
3640 | error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); | |
3641 | if (error) { | |
3642 | xfs_cui_item_free(cuip); | |
3643 | return error; | |
3644 | } | |
3645 | atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); | |
3646 | ||
57e80956 | 3647 | spin_lock(&log->l_ailp->ail_lock); |
f997ee21 DW |
3648 | /* |
3649 | * The CUI has two references. One for the CUD and one for CUI to ensure | |
3650 | * it makes it into the AIL. Insert the CUI into the AIL directly and | |
3651 | * drop the CUI reference. Note that xfs_trans_ail_update() drops the | |
3652 | * AIL lock. | |
3653 | */ | |
3654 | xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); | |
3655 | xfs_cui_release(cuip); | |
3656 | return 0; | |
3657 | } | |
3658 | ||
3659 | ||
3660 | /* | |
3661 | * This routine is called when an CUD format structure is found in a committed | |
3662 | * transaction in the log. Its purpose is to cancel the corresponding CUI if it | |
3663 | * was still in the log. To do this it searches the AIL for the CUI with an id | |
3664 | * equal to that in the CUD format structure. If we find it we drop the CUD | |
3665 | * reference, which removes the CUI from the AIL and frees it. | |
3666 | */ | |
3667 | STATIC int | |
3668 | xlog_recover_cud_pass2( | |
3669 | struct xlog *log, | |
3670 | struct xlog_recover_item *item) | |
3671 | { | |
3672 | struct xfs_cud_log_format *cud_formatp; | |
3673 | struct xfs_cui_log_item *cuip = NULL; | |
3674 | struct xfs_log_item *lip; | |
c8ce540d | 3675 | uint64_t cui_id; |
f997ee21 DW |
3676 | struct xfs_ail_cursor cur; |
3677 | struct xfs_ail *ailp = log->l_ailp; | |
3678 | ||
3679 | cud_formatp = item->ri_buf[0].i_addr; | |
3680 | if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) | |
3681 | return -EFSCORRUPTED; | |
3682 | cui_id = cud_formatp->cud_cui_id; | |
3683 | ||
3684 | /* | |
3685 | * Search for the CUI with the id in the CUD format structure in the | |
3686 | * AIL. | |
3687 | */ | |
57e80956 | 3688 | spin_lock(&ailp->ail_lock); |
f997ee21 DW |
3689 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
3690 | while (lip != NULL) { | |
3691 | if (lip->li_type == XFS_LI_CUI) { | |
3692 | cuip = (struct xfs_cui_log_item *)lip; | |
3693 | if (cuip->cui_format.cui_id == cui_id) { | |
3694 | /* | |
3695 | * Drop the CUD reference to the CUI. This | |
3696 | * removes the CUI from the AIL and frees it. | |
3697 | */ | |
57e80956 | 3698 | spin_unlock(&ailp->ail_lock); |
f997ee21 | 3699 | xfs_cui_release(cuip); |
57e80956 | 3700 | spin_lock(&ailp->ail_lock); |
f997ee21 DW |
3701 | break; |
3702 | } | |
3703 | } | |
3704 | lip = xfs_trans_ail_cursor_next(ailp, &cur); | |
3705 | } | |
3706 | ||
3707 | xfs_trans_ail_cursor_done(&cur); | |
57e80956 | 3708 | spin_unlock(&ailp->ail_lock); |
f997ee21 DW |
3709 | |
3710 | return 0; | |
3711 | } | |
3712 | ||
77d61fe4 DW |
3713 | /* |
3714 | * Copy an BUI format buffer from the given buf, and into the destination | |
3715 | * BUI format structure. The BUI/BUD items were designed not to need any | |
3716 | * special alignment handling. | |
3717 | */ | |
3718 | static int | |
3719 | xfs_bui_copy_format( | |
3720 | struct xfs_log_iovec *buf, | |
3721 | struct xfs_bui_log_format *dst_bui_fmt) | |
3722 | { | |
3723 | struct xfs_bui_log_format *src_bui_fmt; | |
3724 | uint len; | |
3725 | ||
3726 | src_bui_fmt = buf->i_addr; | |
3727 | len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); | |
3728 | ||
3729 | if (buf->i_len == len) { | |
3730 | memcpy(dst_bui_fmt, src_bui_fmt, len); | |
3731 | return 0; | |
3732 | } | |
3733 | return -EFSCORRUPTED; | |
3734 | } | |
3735 | ||
3736 | /* | |
3737 | * This routine is called to create an in-core extent bmap update | |
3738 | * item from the bui format structure which was logged on disk. | |
3739 | * It allocates an in-core bui, copies the extents from the format | |
3740 | * structure into it, and adds the bui to the AIL with the given | |
3741 | * LSN. | |
3742 | */ | |
3743 | STATIC int | |
3744 | xlog_recover_bui_pass2( | |
3745 | struct xlog *log, | |
3746 | struct xlog_recover_item *item, | |
3747 | xfs_lsn_t lsn) | |
3748 | { | |
3749 | int error; | |
3750 | struct xfs_mount *mp = log->l_mp; | |
3751 | struct xfs_bui_log_item *buip; | |
3752 | struct xfs_bui_log_format *bui_formatp; | |
3753 | ||
3754 | bui_formatp = item->ri_buf[0].i_addr; | |
3755 | ||
3756 | if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) | |
3757 | return -EFSCORRUPTED; | |
3758 | buip = xfs_bui_init(mp); | |
3759 | error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); | |
3760 | if (error) { | |
3761 | xfs_bui_item_free(buip); | |
3762 | return error; | |
3763 | } | |
3764 | atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); | |
3765 | ||
57e80956 | 3766 | spin_lock(&log->l_ailp->ail_lock); |
77d61fe4 DW |
3767 | /* |
3768 | * The RUI has two references. One for the RUD and one for RUI to ensure | |
3769 | * it makes it into the AIL. Insert the RUI into the AIL directly and | |
3770 | * drop the RUI reference. Note that xfs_trans_ail_update() drops the | |
3771 | * AIL lock. | |
3772 | */ | |
3773 | xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); | |
3774 | xfs_bui_release(buip); | |
3775 | return 0; | |
3776 | } | |
3777 | ||
3778 | ||
3779 | /* | |
3780 | * This routine is called when an BUD format structure is found in a committed | |
3781 | * transaction in the log. Its purpose is to cancel the corresponding BUI if it | |
3782 | * was still in the log. To do this it searches the AIL for the BUI with an id | |
3783 | * equal to that in the BUD format structure. If we find it we drop the BUD | |
3784 | * reference, which removes the BUI from the AIL and frees it. | |
3785 | */ | |
3786 | STATIC int | |
3787 | xlog_recover_bud_pass2( | |
3788 | struct xlog *log, | |
3789 | struct xlog_recover_item *item) | |
3790 | { | |
3791 | struct xfs_bud_log_format *bud_formatp; | |
3792 | struct xfs_bui_log_item *buip = NULL; | |
3793 | struct xfs_log_item *lip; | |
c8ce540d | 3794 | uint64_t bui_id; |
77d61fe4 DW |
3795 | struct xfs_ail_cursor cur; |
3796 | struct xfs_ail *ailp = log->l_ailp; | |
3797 | ||
3798 | bud_formatp = item->ri_buf[0].i_addr; | |
3799 | if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) | |
3800 | return -EFSCORRUPTED; | |
3801 | bui_id = bud_formatp->bud_bui_id; | |
3802 | ||
3803 | /* | |
3804 | * Search for the BUI with the id in the BUD format structure in the | |
3805 | * AIL. | |
3806 | */ | |
57e80956 | 3807 | spin_lock(&ailp->ail_lock); |
77d61fe4 DW |
3808 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
3809 | while (lip != NULL) { | |
3810 | if (lip->li_type == XFS_LI_BUI) { | |
3811 | buip = (struct xfs_bui_log_item *)lip; | |
3812 | if (buip->bui_format.bui_id == bui_id) { | |
3813 | /* | |
3814 | * Drop the BUD reference to the BUI. This | |
3815 | * removes the BUI from the AIL and frees it. | |
3816 | */ | |
57e80956 | 3817 | spin_unlock(&ailp->ail_lock); |
77d61fe4 | 3818 | xfs_bui_release(buip); |
57e80956 | 3819 | spin_lock(&ailp->ail_lock); |
77d61fe4 DW |
3820 | break; |
3821 | } | |
3822 | } | |
3823 | lip = xfs_trans_ail_cursor_next(ailp, &cur); | |
3824 | } | |
3825 | ||
3826 | xfs_trans_ail_cursor_done(&cur); | |
57e80956 | 3827 | spin_unlock(&ailp->ail_lock); |
77d61fe4 DW |
3828 | |
3829 | return 0; | |
3830 | } | |
3831 | ||
28c8e41a DC |
3832 | /* |
3833 | * This routine is called when an inode create format structure is found in a | |
3834 | * committed transaction in the log. It's purpose is to initialise the inodes | |
3835 | * being allocated on disk. This requires us to get inode cluster buffers that | |
6e7c2b4d | 3836 | * match the range to be initialised, stamped with inode templates and written |
28c8e41a DC |
3837 | * by delayed write so that subsequent modifications will hit the cached buffer |
3838 | * and only need writing out at the end of recovery. | |
3839 | */ | |
3840 | STATIC int | |
3841 | xlog_recover_do_icreate_pass2( | |
3842 | struct xlog *log, | |
3843 | struct list_head *buffer_list, | |
3844 | xlog_recover_item_t *item) | |
3845 | { | |
3846 | struct xfs_mount *mp = log->l_mp; | |
3847 | struct xfs_icreate_log *icl; | |
3848 | xfs_agnumber_t agno; | |
3849 | xfs_agblock_t agbno; | |
3850 | unsigned int count; | |
3851 | unsigned int isize; | |
3852 | xfs_agblock_t length; | |
fc0d1656 BF |
3853 | int blks_per_cluster; |
3854 | int bb_per_cluster; | |
3855 | int cancel_count; | |
3856 | int nbufs; | |
3857 | int i; | |
28c8e41a DC |
3858 | |
3859 | icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; | |
3860 | if (icl->icl_type != XFS_LI_ICREATE) { | |
3861 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); | |
2451337d | 3862 | return -EINVAL; |
28c8e41a DC |
3863 | } |
3864 | ||
3865 | if (icl->icl_size != 1) { | |
3866 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); | |
2451337d | 3867 | return -EINVAL; |
28c8e41a DC |
3868 | } |
3869 | ||
3870 | agno = be32_to_cpu(icl->icl_ag); | |
3871 | if (agno >= mp->m_sb.sb_agcount) { | |
3872 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); | |
2451337d | 3873 | return -EINVAL; |
28c8e41a DC |
3874 | } |
3875 | agbno = be32_to_cpu(icl->icl_agbno); | |
3876 | if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { | |
3877 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); | |
2451337d | 3878 | return -EINVAL; |
28c8e41a DC |
3879 | } |
3880 | isize = be32_to_cpu(icl->icl_isize); | |
3881 | if (isize != mp->m_sb.sb_inodesize) { | |
3882 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); | |
2451337d | 3883 | return -EINVAL; |
28c8e41a DC |
3884 | } |
3885 | count = be32_to_cpu(icl->icl_count); | |
3886 | if (!count) { | |
3887 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); | |
2451337d | 3888 | return -EINVAL; |
28c8e41a DC |
3889 | } |
3890 | length = be32_to_cpu(icl->icl_length); | |
3891 | if (!length || length >= mp->m_sb.sb_agblocks) { | |
3892 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); | |
2451337d | 3893 | return -EINVAL; |
28c8e41a DC |
3894 | } |
3895 | ||
7f43c907 BF |
3896 | /* |
3897 | * The inode chunk is either full or sparse and we only support | |
3898 | * m_ialloc_min_blks sized sparse allocations at this time. | |
3899 | */ | |
3900 | if (length != mp->m_ialloc_blks && | |
3901 | length != mp->m_ialloc_min_blks) { | |
3902 | xfs_warn(log->l_mp, | |
3903 | "%s: unsupported chunk length", __FUNCTION__); | |
3904 | return -EINVAL; | |
3905 | } | |
3906 | ||
3907 | /* verify inode count is consistent with extent length */ | |
3908 | if ((count >> mp->m_sb.sb_inopblog) != length) { | |
3909 | xfs_warn(log->l_mp, | |
3910 | "%s: inconsistent inode count and chunk length", | |
3911 | __FUNCTION__); | |
2451337d | 3912 | return -EINVAL; |
28c8e41a DC |
3913 | } |
3914 | ||
3915 | /* | |
fc0d1656 BF |
3916 | * The icreate transaction can cover multiple cluster buffers and these |
3917 | * buffers could have been freed and reused. Check the individual | |
3918 | * buffers for cancellation so we don't overwrite anything written after | |
3919 | * a cancellation. | |
3920 | */ | |
3921 | blks_per_cluster = xfs_icluster_size_fsb(mp); | |
3922 | bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster); | |
3923 | nbufs = length / blks_per_cluster; | |
3924 | for (i = 0, cancel_count = 0; i < nbufs; i++) { | |
3925 | xfs_daddr_t daddr; | |
3926 | ||
3927 | daddr = XFS_AGB_TO_DADDR(mp, agno, | |
3928 | agbno + i * blks_per_cluster); | |
3929 | if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) | |
3930 | cancel_count++; | |
3931 | } | |
3932 | ||
3933 | /* | |
3934 | * We currently only use icreate for a single allocation at a time. This | |
3935 | * means we should expect either all or none of the buffers to be | |
3936 | * cancelled. Be conservative and skip replay if at least one buffer is | |
3937 | * cancelled, but warn the user that something is awry if the buffers | |
3938 | * are not consistent. | |
28c8e41a | 3939 | * |
fc0d1656 BF |
3940 | * XXX: This must be refined to only skip cancelled clusters once we use |
3941 | * icreate for multiple chunk allocations. | |
28c8e41a | 3942 | */ |
fc0d1656 BF |
3943 | ASSERT(!cancel_count || cancel_count == nbufs); |
3944 | if (cancel_count) { | |
3945 | if (cancel_count != nbufs) | |
3946 | xfs_warn(mp, | |
3947 | "WARNING: partial inode chunk cancellation, skipped icreate."); | |
78d57e45 | 3948 | trace_xfs_log_recover_icreate_cancel(log, icl); |
28c8e41a | 3949 | return 0; |
78d57e45 | 3950 | } |
28c8e41a | 3951 | |
78d57e45 | 3952 | trace_xfs_log_recover_icreate_recover(log, icl); |
fc0d1656 BF |
3953 | return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, |
3954 | length, be32_to_cpu(icl->icl_gen)); | |
28c8e41a DC |
3955 | } |
3956 | ||
00574da1 ZYW |
3957 | STATIC void |
3958 | xlog_recover_buffer_ra_pass2( | |
3959 | struct xlog *log, | |
3960 | struct xlog_recover_item *item) | |
3961 | { | |
3962 | struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; | |
3963 | struct xfs_mount *mp = log->l_mp; | |
3964 | ||
84a5b730 | 3965 | if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, |
00574da1 ZYW |
3966 | buf_f->blf_len, buf_f->blf_flags)) { |
3967 | return; | |
3968 | } | |
3969 | ||
3970 | xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, | |
3971 | buf_f->blf_len, NULL); | |
3972 | } | |
3973 | ||
3974 | STATIC void | |
3975 | xlog_recover_inode_ra_pass2( | |
3976 | struct xlog *log, | |
3977 | struct xlog_recover_item *item) | |
3978 | { | |
3979 | struct xfs_inode_log_format ilf_buf; | |
3980 | struct xfs_inode_log_format *ilfp; | |
3981 | struct xfs_mount *mp = log->l_mp; | |
3982 | int error; | |
3983 | ||
3984 | if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { | |
3985 | ilfp = item->ri_buf[0].i_addr; | |
3986 | } else { | |
3987 | ilfp = &ilf_buf; | |
3988 | memset(ilfp, 0, sizeof(*ilfp)); | |
3989 | error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); | |
3990 | if (error) | |
3991 | return; | |
3992 | } | |
3993 | ||
84a5b730 | 3994 | if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) |
00574da1 ZYW |
3995 | return; |
3996 | ||
3997 | xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, | |
d8914002 | 3998 | ilfp->ilf_len, &xfs_inode_buf_ra_ops); |
00574da1 ZYW |
3999 | } |
4000 | ||
4001 | STATIC void | |
4002 | xlog_recover_dquot_ra_pass2( | |
4003 | struct xlog *log, | |
4004 | struct xlog_recover_item *item) | |
4005 | { | |
4006 | struct xfs_mount *mp = log->l_mp; | |
4007 | struct xfs_disk_dquot *recddq; | |
4008 | struct xfs_dq_logformat *dq_f; | |
4009 | uint type; | |
7d6a13f0 | 4010 | int len; |
00574da1 ZYW |
4011 | |
4012 | ||
4013 | if (mp->m_qflags == 0) | |
4014 | return; | |
4015 | ||
4016 | recddq = item->ri_buf[1].i_addr; | |
4017 | if (recddq == NULL) | |
4018 | return; | |
4019 | if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) | |
4020 | return; | |
4021 | ||
4022 | type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); | |
4023 | ASSERT(type); | |
4024 | if (log->l_quotaoffs_flag & type) | |
4025 | return; | |
4026 | ||
4027 | dq_f = item->ri_buf[0].i_addr; | |
4028 | ASSERT(dq_f); | |
4029 | ASSERT(dq_f->qlf_len == 1); | |
4030 | ||
7d6a13f0 DC |
4031 | len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); |
4032 | if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) | |
4033 | return; | |
4034 | ||
4035 | xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, | |
4036 | &xfs_dquot_buf_ra_ops); | |
00574da1 ZYW |
4037 | } |
4038 | ||
4039 | STATIC void | |
4040 | xlog_recover_ra_pass2( | |
4041 | struct xlog *log, | |
4042 | struct xlog_recover_item *item) | |
4043 | { | |
4044 | switch (ITEM_TYPE(item)) { | |
4045 | case XFS_LI_BUF: | |
4046 | xlog_recover_buffer_ra_pass2(log, item); | |
4047 | break; | |
4048 | case XFS_LI_INODE: | |
4049 | xlog_recover_inode_ra_pass2(log, item); | |
4050 | break; | |
4051 | case XFS_LI_DQUOT: | |
4052 | xlog_recover_dquot_ra_pass2(log, item); | |
4053 | break; | |
4054 | case XFS_LI_EFI: | |
4055 | case XFS_LI_EFD: | |
4056 | case XFS_LI_QUOTAOFF: | |
9e88b5d8 DW |
4057 | case XFS_LI_RUI: |
4058 | case XFS_LI_RUD: | |
f997ee21 DW |
4059 | case XFS_LI_CUI: |
4060 | case XFS_LI_CUD: | |
77d61fe4 DW |
4061 | case XFS_LI_BUI: |
4062 | case XFS_LI_BUD: | |
00574da1 ZYW |
4063 | default: |
4064 | break; | |
4065 | } | |
4066 | } | |
4067 | ||
d0450948 | 4068 | STATIC int |
c9f71f5f | 4069 | xlog_recover_commit_pass1( |
ad223e60 MT |
4070 | struct xlog *log, |
4071 | struct xlog_recover *trans, | |
4072 | struct xlog_recover_item *item) | |
d0450948 | 4073 | { |
c9f71f5f | 4074 | trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); |
d0450948 CH |
4075 | |
4076 | switch (ITEM_TYPE(item)) { | |
4077 | case XFS_LI_BUF: | |
c9f71f5f CH |
4078 | return xlog_recover_buffer_pass1(log, item); |
4079 | case XFS_LI_QUOTAOFF: | |
4080 | return xlog_recover_quotaoff_pass1(log, item); | |
d0450948 | 4081 | case XFS_LI_INODE: |
d0450948 | 4082 | case XFS_LI_EFI: |
d0450948 | 4083 | case XFS_LI_EFD: |
c9f71f5f | 4084 | case XFS_LI_DQUOT: |
28c8e41a | 4085 | case XFS_LI_ICREATE: |
9e88b5d8 DW |
4086 | case XFS_LI_RUI: |
4087 | case XFS_LI_RUD: | |
f997ee21 DW |
4088 | case XFS_LI_CUI: |
4089 | case XFS_LI_CUD: | |
77d61fe4 DW |
4090 | case XFS_LI_BUI: |
4091 | case XFS_LI_BUD: | |
c9f71f5f | 4092 | /* nothing to do in pass 1 */ |
d0450948 | 4093 | return 0; |
c9f71f5f | 4094 | default: |
a0fa2b67 DC |
4095 | xfs_warn(log->l_mp, "%s: invalid item type (%d)", |
4096 | __func__, ITEM_TYPE(item)); | |
c9f71f5f | 4097 | ASSERT(0); |
2451337d | 4098 | return -EIO; |
c9f71f5f CH |
4099 | } |
4100 | } | |
4101 | ||
4102 | STATIC int | |
4103 | xlog_recover_commit_pass2( | |
ad223e60 MT |
4104 | struct xlog *log, |
4105 | struct xlog_recover *trans, | |
4106 | struct list_head *buffer_list, | |
4107 | struct xlog_recover_item *item) | |
c9f71f5f CH |
4108 | { |
4109 | trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); | |
4110 | ||
4111 | switch (ITEM_TYPE(item)) { | |
4112 | case XFS_LI_BUF: | |
50d5c8d8 DC |
4113 | return xlog_recover_buffer_pass2(log, buffer_list, item, |
4114 | trans->r_lsn); | |
c9f71f5f | 4115 | case XFS_LI_INODE: |
50d5c8d8 DC |
4116 | return xlog_recover_inode_pass2(log, buffer_list, item, |
4117 | trans->r_lsn); | |
c9f71f5f CH |
4118 | case XFS_LI_EFI: |
4119 | return xlog_recover_efi_pass2(log, item, trans->r_lsn); | |
4120 | case XFS_LI_EFD: | |
4121 | return xlog_recover_efd_pass2(log, item); | |
9e88b5d8 DW |
4122 | case XFS_LI_RUI: |
4123 | return xlog_recover_rui_pass2(log, item, trans->r_lsn); | |
4124 | case XFS_LI_RUD: | |
4125 | return xlog_recover_rud_pass2(log, item); | |
f997ee21 DW |
4126 | case XFS_LI_CUI: |
4127 | return xlog_recover_cui_pass2(log, item, trans->r_lsn); | |
4128 | case XFS_LI_CUD: | |
4129 | return xlog_recover_cud_pass2(log, item); | |
77d61fe4 DW |
4130 | case XFS_LI_BUI: |
4131 | return xlog_recover_bui_pass2(log, item, trans->r_lsn); | |
4132 | case XFS_LI_BUD: | |
4133 | return xlog_recover_bud_pass2(log, item); | |
d0450948 | 4134 | case XFS_LI_DQUOT: |
50d5c8d8 DC |
4135 | return xlog_recover_dquot_pass2(log, buffer_list, item, |
4136 | trans->r_lsn); | |
28c8e41a DC |
4137 | case XFS_LI_ICREATE: |
4138 | return xlog_recover_do_icreate_pass2(log, buffer_list, item); | |
d0450948 | 4139 | case XFS_LI_QUOTAOFF: |
c9f71f5f CH |
4140 | /* nothing to do in pass2 */ |
4141 | return 0; | |
d0450948 | 4142 | default: |
a0fa2b67 DC |
4143 | xfs_warn(log->l_mp, "%s: invalid item type (%d)", |
4144 | __func__, ITEM_TYPE(item)); | |
d0450948 | 4145 | ASSERT(0); |
2451337d | 4146 | return -EIO; |
d0450948 CH |
4147 | } |
4148 | } | |
4149 | ||
00574da1 ZYW |
4150 | STATIC int |
4151 | xlog_recover_items_pass2( | |
4152 | struct xlog *log, | |
4153 | struct xlog_recover *trans, | |
4154 | struct list_head *buffer_list, | |
4155 | struct list_head *item_list) | |
4156 | { | |
4157 | struct xlog_recover_item *item; | |
4158 | int error = 0; | |
4159 | ||
4160 | list_for_each_entry(item, item_list, ri_list) { | |
4161 | error = xlog_recover_commit_pass2(log, trans, | |
4162 | buffer_list, item); | |
4163 | if (error) | |
4164 | return error; | |
4165 | } | |
4166 | ||
4167 | return error; | |
4168 | } | |
4169 | ||
d0450948 CH |
4170 | /* |
4171 | * Perform the transaction. | |
4172 | * | |
4173 | * If the transaction modifies a buffer or inode, do it now. Otherwise, | |
4174 | * EFIs and EFDs get queued up by adding entries into the AIL for them. | |
4175 | */ | |
1da177e4 LT |
4176 | STATIC int |
4177 | xlog_recover_commit_trans( | |
ad223e60 | 4178 | struct xlog *log, |
d0450948 | 4179 | struct xlog_recover *trans, |
12818d24 BF |
4180 | int pass, |
4181 | struct list_head *buffer_list) | |
1da177e4 | 4182 | { |
00574da1 | 4183 | int error = 0; |
00574da1 ZYW |
4184 | int items_queued = 0; |
4185 | struct xlog_recover_item *item; | |
4186 | struct xlog_recover_item *next; | |
00574da1 ZYW |
4187 | LIST_HEAD (ra_list); |
4188 | LIST_HEAD (done_list); | |
4189 | ||
4190 | #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 | |
1da177e4 | 4191 | |
39775431 | 4192 | hlist_del_init(&trans->r_list); |
d0450948 CH |
4193 | |
4194 | error = xlog_recover_reorder_trans(log, trans, pass); | |
4195 | if (error) | |
1da177e4 | 4196 | return error; |
d0450948 | 4197 | |
00574da1 | 4198 | list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { |
43ff2122 CH |
4199 | switch (pass) { |
4200 | case XLOG_RECOVER_PASS1: | |
c9f71f5f | 4201 | error = xlog_recover_commit_pass1(log, trans, item); |
43ff2122 CH |
4202 | break; |
4203 | case XLOG_RECOVER_PASS2: | |
00574da1 ZYW |
4204 | xlog_recover_ra_pass2(log, item); |
4205 | list_move_tail(&item->ri_list, &ra_list); | |
4206 | items_queued++; | |
4207 | if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { | |
4208 | error = xlog_recover_items_pass2(log, trans, | |
12818d24 | 4209 | buffer_list, &ra_list); |
00574da1 ZYW |
4210 | list_splice_tail_init(&ra_list, &done_list); |
4211 | items_queued = 0; | |
4212 | } | |
4213 | ||
43ff2122 CH |
4214 | break; |
4215 | default: | |
4216 | ASSERT(0); | |
4217 | } | |
4218 | ||
d0450948 | 4219 | if (error) |
43ff2122 | 4220 | goto out; |
d0450948 CH |
4221 | } |
4222 | ||
00574da1 ZYW |
4223 | out: |
4224 | if (!list_empty(&ra_list)) { | |
4225 | if (!error) | |
4226 | error = xlog_recover_items_pass2(log, trans, | |
12818d24 | 4227 | buffer_list, &ra_list); |
00574da1 ZYW |
4228 | list_splice_tail_init(&ra_list, &done_list); |
4229 | } | |
4230 | ||
4231 | if (!list_empty(&done_list)) | |
4232 | list_splice_init(&done_list, &trans->r_itemq); | |
4233 | ||
12818d24 | 4234 | return error; |
1da177e4 LT |
4235 | } |
4236 | ||
76560669 DC |
4237 | STATIC void |
4238 | xlog_recover_add_item( | |
4239 | struct list_head *head) | |
4240 | { | |
4241 | xlog_recover_item_t *item; | |
4242 | ||
4243 | item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); | |
4244 | INIT_LIST_HEAD(&item->ri_list); | |
4245 | list_add_tail(&item->ri_list, head); | |
4246 | } | |
4247 | ||
1da177e4 | 4248 | STATIC int |
76560669 DC |
4249 | xlog_recover_add_to_cont_trans( |
4250 | struct xlog *log, | |
4251 | struct xlog_recover *trans, | |
b2a922cd | 4252 | char *dp, |
76560669 | 4253 | int len) |
1da177e4 | 4254 | { |
76560669 | 4255 | xlog_recover_item_t *item; |
b2a922cd | 4256 | char *ptr, *old_ptr; |
76560669 DC |
4257 | int old_len; |
4258 | ||
89cebc84 BF |
4259 | /* |
4260 | * If the transaction is empty, the header was split across this and the | |
4261 | * previous record. Copy the rest of the header. | |
4262 | */ | |
76560669 | 4263 | if (list_empty(&trans->r_itemq)) { |
848ccfc8 | 4264 | ASSERT(len <= sizeof(struct xfs_trans_header)); |
89cebc84 BF |
4265 | if (len > sizeof(struct xfs_trans_header)) { |
4266 | xfs_warn(log->l_mp, "%s: bad header length", __func__); | |
4267 | return -EIO; | |
4268 | } | |
4269 | ||
76560669 | 4270 | xlog_recover_add_item(&trans->r_itemq); |
b2a922cd | 4271 | ptr = (char *)&trans->r_theader + |
89cebc84 | 4272 | sizeof(struct xfs_trans_header) - len; |
76560669 DC |
4273 | memcpy(ptr, dp, len); |
4274 | return 0; | |
4275 | } | |
89cebc84 | 4276 | |
76560669 DC |
4277 | /* take the tail entry */ |
4278 | item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); | |
4279 | ||
4280 | old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; | |
4281 | old_len = item->ri_buf[item->ri_cnt-1].i_len; | |
4282 | ||
664b60f6 | 4283 | ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP); |
76560669 DC |
4284 | memcpy(&ptr[old_len], dp, len); |
4285 | item->ri_buf[item->ri_cnt-1].i_len += len; | |
4286 | item->ri_buf[item->ri_cnt-1].i_addr = ptr; | |
4287 | trace_xfs_log_recover_item_add_cont(log, trans, item, 0); | |
1da177e4 LT |
4288 | return 0; |
4289 | } | |
4290 | ||
76560669 DC |
4291 | /* |
4292 | * The next region to add is the start of a new region. It could be | |
4293 | * a whole region or it could be the first part of a new region. Because | |
4294 | * of this, the assumption here is that the type and size fields of all | |
4295 | * format structures fit into the first 32 bits of the structure. | |
4296 | * | |
4297 | * This works because all regions must be 32 bit aligned. Therefore, we | |
4298 | * either have both fields or we have neither field. In the case we have | |
4299 | * neither field, the data part of the region is zero length. We only have | |
4300 | * a log_op_header and can throw away the header since a new one will appear | |
4301 | * later. If we have at least 4 bytes, then we can determine how many regions | |
4302 | * will appear in the current log item. | |
4303 | */ | |
4304 | STATIC int | |
4305 | xlog_recover_add_to_trans( | |
4306 | struct xlog *log, | |
4307 | struct xlog_recover *trans, | |
b2a922cd | 4308 | char *dp, |
76560669 DC |
4309 | int len) |
4310 | { | |
06b11321 | 4311 | struct xfs_inode_log_format *in_f; /* any will do */ |
76560669 | 4312 | xlog_recover_item_t *item; |
b2a922cd | 4313 | char *ptr; |
76560669 DC |
4314 | |
4315 | if (!len) | |
4316 | return 0; | |
4317 | if (list_empty(&trans->r_itemq)) { | |
4318 | /* we need to catch log corruptions here */ | |
4319 | if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { | |
4320 | xfs_warn(log->l_mp, "%s: bad header magic number", | |
4321 | __func__); | |
4322 | ASSERT(0); | |
4323 | return -EIO; | |
4324 | } | |
89cebc84 BF |
4325 | |
4326 | if (len > sizeof(struct xfs_trans_header)) { | |
4327 | xfs_warn(log->l_mp, "%s: bad header length", __func__); | |
4328 | ASSERT(0); | |
4329 | return -EIO; | |
4330 | } | |
4331 | ||
4332 | /* | |
4333 | * The transaction header can be arbitrarily split across op | |
4334 | * records. If we don't have the whole thing here, copy what we | |
4335 | * do have and handle the rest in the next record. | |
4336 | */ | |
4337 | if (len == sizeof(struct xfs_trans_header)) | |
76560669 DC |
4338 | xlog_recover_add_item(&trans->r_itemq); |
4339 | memcpy(&trans->r_theader, dp, len); | |
4340 | return 0; | |
4341 | } | |
4342 | ||
4343 | ptr = kmem_alloc(len, KM_SLEEP); | |
4344 | memcpy(ptr, dp, len); | |
06b11321 | 4345 | in_f = (struct xfs_inode_log_format *)ptr; |
76560669 DC |
4346 | |
4347 | /* take the tail entry */ | |
4348 | item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); | |
4349 | if (item->ri_total != 0 && | |
4350 | item->ri_total == item->ri_cnt) { | |
4351 | /* tail item is in use, get a new one */ | |
4352 | xlog_recover_add_item(&trans->r_itemq); | |
4353 | item = list_entry(trans->r_itemq.prev, | |
4354 | xlog_recover_item_t, ri_list); | |
4355 | } | |
4356 | ||
4357 | if (item->ri_total == 0) { /* first region to be added */ | |
4358 | if (in_f->ilf_size == 0 || | |
4359 | in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { | |
4360 | xfs_warn(log->l_mp, | |
4361 | "bad number of regions (%d) in inode log format", | |
4362 | in_f->ilf_size); | |
4363 | ASSERT(0); | |
4364 | kmem_free(ptr); | |
4365 | return -EIO; | |
4366 | } | |
4367 | ||
4368 | item->ri_total = in_f->ilf_size; | |
4369 | item->ri_buf = | |
4370 | kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), | |
4371 | KM_SLEEP); | |
4372 | } | |
4373 | ASSERT(item->ri_total > item->ri_cnt); | |
4374 | /* Description region is ri_buf[0] */ | |
4375 | item->ri_buf[item->ri_cnt].i_addr = ptr; | |
4376 | item->ri_buf[item->ri_cnt].i_len = len; | |
4377 | item->ri_cnt++; | |
4378 | trace_xfs_log_recover_item_add(log, trans, item, 0); | |
4379 | return 0; | |
4380 | } | |
b818cca1 | 4381 | |
76560669 DC |
4382 | /* |
4383 | * Free up any resources allocated by the transaction | |
4384 | * | |
4385 | * Remember that EFIs, EFDs, and IUNLINKs are handled later. | |
4386 | */ | |
4387 | STATIC void | |
4388 | xlog_recover_free_trans( | |
4389 | struct xlog_recover *trans) | |
4390 | { | |
4391 | xlog_recover_item_t *item, *n; | |
4392 | int i; | |
4393 | ||
39775431 BF |
4394 | hlist_del_init(&trans->r_list); |
4395 | ||
76560669 DC |
4396 | list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { |
4397 | /* Free the regions in the item. */ | |
4398 | list_del(&item->ri_list); | |
4399 | for (i = 0; i < item->ri_cnt; i++) | |
4400 | kmem_free(item->ri_buf[i].i_addr); | |
4401 | /* Free the item itself */ | |
4402 | kmem_free(item->ri_buf); | |
4403 | kmem_free(item); | |
4404 | } | |
4405 | /* Free the transaction recover structure */ | |
4406 | kmem_free(trans); | |
4407 | } | |
4408 | ||
e9131e50 DC |
4409 | /* |
4410 | * On error or completion, trans is freed. | |
4411 | */ | |
1da177e4 | 4412 | STATIC int |
eeb11688 DC |
4413 | xlog_recovery_process_trans( |
4414 | struct xlog *log, | |
4415 | struct xlog_recover *trans, | |
b2a922cd | 4416 | char *dp, |
eeb11688 DC |
4417 | unsigned int len, |
4418 | unsigned int flags, | |
12818d24 BF |
4419 | int pass, |
4420 | struct list_head *buffer_list) | |
1da177e4 | 4421 | { |
e9131e50 DC |
4422 | int error = 0; |
4423 | bool freeit = false; | |
eeb11688 DC |
4424 | |
4425 | /* mask off ophdr transaction container flags */ | |
4426 | flags &= ~XLOG_END_TRANS; | |
4427 | if (flags & XLOG_WAS_CONT_TRANS) | |
4428 | flags &= ~XLOG_CONTINUE_TRANS; | |
4429 | ||
88b863db DC |
4430 | /* |
4431 | * Callees must not free the trans structure. We'll decide if we need to | |
4432 | * free it or not based on the operation being done and it's result. | |
4433 | */ | |
eeb11688 DC |
4434 | switch (flags) { |
4435 | /* expected flag values */ | |
4436 | case 0: | |
4437 | case XLOG_CONTINUE_TRANS: | |
4438 | error = xlog_recover_add_to_trans(log, trans, dp, len); | |
4439 | break; | |
4440 | case XLOG_WAS_CONT_TRANS: | |
4441 | error = xlog_recover_add_to_cont_trans(log, trans, dp, len); | |
4442 | break; | |
4443 | case XLOG_COMMIT_TRANS: | |
12818d24 BF |
4444 | error = xlog_recover_commit_trans(log, trans, pass, |
4445 | buffer_list); | |
88b863db DC |
4446 | /* success or fail, we are now done with this transaction. */ |
4447 | freeit = true; | |
eeb11688 DC |
4448 | break; |
4449 | ||
4450 | /* unexpected flag values */ | |
4451 | case XLOG_UNMOUNT_TRANS: | |
e9131e50 | 4452 | /* just skip trans */ |
eeb11688 | 4453 | xfs_warn(log->l_mp, "%s: Unmount LR", __func__); |
e9131e50 | 4454 | freeit = true; |
eeb11688 DC |
4455 | break; |
4456 | case XLOG_START_TRANS: | |
eeb11688 DC |
4457 | default: |
4458 | xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); | |
4459 | ASSERT(0); | |
e9131e50 | 4460 | error = -EIO; |
eeb11688 DC |
4461 | break; |
4462 | } | |
e9131e50 DC |
4463 | if (error || freeit) |
4464 | xlog_recover_free_trans(trans); | |
eeb11688 DC |
4465 | return error; |
4466 | } | |
4467 | ||
b818cca1 DC |
4468 | /* |
4469 | * Lookup the transaction recovery structure associated with the ID in the | |
4470 | * current ophdr. If the transaction doesn't exist and the start flag is set in | |
4471 | * the ophdr, then allocate a new transaction for future ID matches to find. | |
4472 | * Either way, return what we found during the lookup - an existing transaction | |
4473 | * or nothing. | |
4474 | */ | |
eeb11688 DC |
4475 | STATIC struct xlog_recover * |
4476 | xlog_recover_ophdr_to_trans( | |
4477 | struct hlist_head rhash[], | |
4478 | struct xlog_rec_header *rhead, | |
4479 | struct xlog_op_header *ohead) | |
4480 | { | |
4481 | struct xlog_recover *trans; | |
4482 | xlog_tid_t tid; | |
4483 | struct hlist_head *rhp; | |
4484 | ||
4485 | tid = be32_to_cpu(ohead->oh_tid); | |
4486 | rhp = &rhash[XLOG_RHASH(tid)]; | |
b818cca1 DC |
4487 | hlist_for_each_entry(trans, rhp, r_list) { |
4488 | if (trans->r_log_tid == tid) | |
4489 | return trans; | |
4490 | } | |
eeb11688 DC |
4491 | |
4492 | /* | |
b818cca1 DC |
4493 | * skip over non-start transaction headers - we could be |
4494 | * processing slack space before the next transaction starts | |
4495 | */ | |
4496 | if (!(ohead->oh_flags & XLOG_START_TRANS)) | |
4497 | return NULL; | |
4498 | ||
4499 | ASSERT(be32_to_cpu(ohead->oh_len) == 0); | |
4500 | ||
4501 | /* | |
4502 | * This is a new transaction so allocate a new recovery container to | |
4503 | * hold the recovery ops that will follow. | |
4504 | */ | |
4505 | trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); | |
4506 | trans->r_log_tid = tid; | |
4507 | trans->r_lsn = be64_to_cpu(rhead->h_lsn); | |
4508 | INIT_LIST_HEAD(&trans->r_itemq); | |
4509 | INIT_HLIST_NODE(&trans->r_list); | |
4510 | hlist_add_head(&trans->r_list, rhp); | |
4511 | ||
4512 | /* | |
4513 | * Nothing more to do for this ophdr. Items to be added to this new | |
4514 | * transaction will be in subsequent ophdr containers. | |
eeb11688 | 4515 | */ |
eeb11688 DC |
4516 | return NULL; |
4517 | } | |
4518 | ||
4519 | STATIC int | |
4520 | xlog_recover_process_ophdr( | |
4521 | struct xlog *log, | |
4522 | struct hlist_head rhash[], | |
4523 | struct xlog_rec_header *rhead, | |
4524 | struct xlog_op_header *ohead, | |
b2a922cd CH |
4525 | char *dp, |
4526 | char *end, | |
12818d24 BF |
4527 | int pass, |
4528 | struct list_head *buffer_list) | |
eeb11688 DC |
4529 | { |
4530 | struct xlog_recover *trans; | |
eeb11688 | 4531 | unsigned int len; |
12818d24 | 4532 | int error; |
eeb11688 DC |
4533 | |
4534 | /* Do we understand who wrote this op? */ | |
4535 | if (ohead->oh_clientid != XFS_TRANSACTION && | |
4536 | ohead->oh_clientid != XFS_LOG) { | |
4537 | xfs_warn(log->l_mp, "%s: bad clientid 0x%x", | |
4538 | __func__, ohead->oh_clientid); | |
4539 | ASSERT(0); | |
4540 | return -EIO; | |
4541 | } | |
4542 | ||
4543 | /* | |
4544 | * Check the ophdr contains all the data it is supposed to contain. | |
4545 | */ | |
4546 | len = be32_to_cpu(ohead->oh_len); | |
4547 | if (dp + len > end) { | |
4548 | xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); | |
4549 | WARN_ON(1); | |
4550 | return -EIO; | |
4551 | } | |
4552 | ||
4553 | trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); | |
4554 | if (!trans) { | |
4555 | /* nothing to do, so skip over this ophdr */ | |
4556 | return 0; | |
4557 | } | |
4558 | ||
12818d24 BF |
4559 | /* |
4560 | * The recovered buffer queue is drained only once we know that all | |
4561 | * recovery items for the current LSN have been processed. This is | |
4562 | * required because: | |
4563 | * | |
4564 | * - Buffer write submission updates the metadata LSN of the buffer. | |
4565 | * - Log recovery skips items with a metadata LSN >= the current LSN of | |
4566 | * the recovery item. | |
4567 | * - Separate recovery items against the same metadata buffer can share | |
4568 | * a current LSN. I.e., consider that the LSN of a recovery item is | |
4569 | * defined as the starting LSN of the first record in which its | |
4570 | * transaction appears, that a record can hold multiple transactions, | |
4571 | * and/or that a transaction can span multiple records. | |
4572 | * | |
4573 | * In other words, we are allowed to submit a buffer from log recovery | |
4574 | * once per current LSN. Otherwise, we may incorrectly skip recovery | |
4575 | * items and cause corruption. | |
4576 | * | |
4577 | * We don't know up front whether buffers are updated multiple times per | |
4578 | * LSN. Therefore, track the current LSN of each commit log record as it | |
4579 | * is processed and drain the queue when it changes. Use commit records | |
4580 | * because they are ordered correctly by the logging code. | |
4581 | */ | |
4582 | if (log->l_recovery_lsn != trans->r_lsn && | |
4583 | ohead->oh_flags & XLOG_COMMIT_TRANS) { | |
4584 | error = xfs_buf_delwri_submit(buffer_list); | |
4585 | if (error) | |
4586 | return error; | |
4587 | log->l_recovery_lsn = trans->r_lsn; | |
4588 | } | |
4589 | ||
e9131e50 | 4590 | return xlog_recovery_process_trans(log, trans, dp, len, |
12818d24 | 4591 | ohead->oh_flags, pass, buffer_list); |
1da177e4 LT |
4592 | } |
4593 | ||
4594 | /* | |
4595 | * There are two valid states of the r_state field. 0 indicates that the | |
4596 | * transaction structure is in a normal state. We have either seen the | |
4597 | * start of the transaction or the last operation we added was not a partial | |
4598 | * operation. If the last operation we added to the transaction was a | |
4599 | * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. | |
4600 | * | |
4601 | * NOTE: skip LRs with 0 data length. | |
4602 | */ | |
4603 | STATIC int | |
4604 | xlog_recover_process_data( | |
9a8d2fdb | 4605 | struct xlog *log, |
f0a76953 | 4606 | struct hlist_head rhash[], |
9a8d2fdb | 4607 | struct xlog_rec_header *rhead, |
b2a922cd | 4608 | char *dp, |
12818d24 BF |
4609 | int pass, |
4610 | struct list_head *buffer_list) | |
1da177e4 | 4611 | { |
eeb11688 | 4612 | struct xlog_op_header *ohead; |
b2a922cd | 4613 | char *end; |
1da177e4 | 4614 | int num_logops; |
1da177e4 | 4615 | int error; |
1da177e4 | 4616 | |
eeb11688 | 4617 | end = dp + be32_to_cpu(rhead->h_len); |
b53e675d | 4618 | num_logops = be32_to_cpu(rhead->h_num_logops); |
1da177e4 LT |
4619 | |
4620 | /* check the log format matches our own - else we can't recover */ | |
4621 | if (xlog_header_check_recover(log->l_mp, rhead)) | |
2451337d | 4622 | return -EIO; |
1da177e4 | 4623 | |
5cd9cee9 | 4624 | trace_xfs_log_recover_record(log, rhead, pass); |
eeb11688 DC |
4625 | while ((dp < end) && num_logops) { |
4626 | ||
4627 | ohead = (struct xlog_op_header *)dp; | |
4628 | dp += sizeof(*ohead); | |
4629 | ASSERT(dp <= end); | |
4630 | ||
4631 | /* errors will abort recovery */ | |
4632 | error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, | |
12818d24 | 4633 | dp, end, pass, buffer_list); |
eeb11688 DC |
4634 | if (error) |
4635 | return error; | |
4636 | ||
67fcb7bf | 4637 | dp += be32_to_cpu(ohead->oh_len); |
1da177e4 LT |
4638 | num_logops--; |
4639 | } | |
4640 | return 0; | |
4641 | } | |
4642 | ||
dc42375d | 4643 | /* Recover the EFI if necessary. */ |
3c1e2bbe | 4644 | STATIC int |
1da177e4 | 4645 | xlog_recover_process_efi( |
dc42375d DW |
4646 | struct xfs_mount *mp, |
4647 | struct xfs_ail *ailp, | |
4648 | struct xfs_log_item *lip) | |
1da177e4 | 4649 | { |
dc42375d DW |
4650 | struct xfs_efi_log_item *efip; |
4651 | int error; | |
1da177e4 LT |
4652 | |
4653 | /* | |
dc42375d | 4654 | * Skip EFIs that we've already processed. |
1da177e4 | 4655 | */ |
dc42375d DW |
4656 | efip = container_of(lip, struct xfs_efi_log_item, efi_item); |
4657 | if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) | |
4658 | return 0; | |
1da177e4 | 4659 | |
57e80956 | 4660 | spin_unlock(&ailp->ail_lock); |
dc42375d | 4661 | error = xfs_efi_recover(mp, efip); |
57e80956 | 4662 | spin_lock(&ailp->ail_lock); |
1da177e4 | 4663 | |
dc42375d DW |
4664 | return error; |
4665 | } | |
6bc43af3 | 4666 | |
dc42375d DW |
4667 | /* Release the EFI since we're cancelling everything. */ |
4668 | STATIC void | |
4669 | xlog_recover_cancel_efi( | |
4670 | struct xfs_mount *mp, | |
4671 | struct xfs_ail *ailp, | |
4672 | struct xfs_log_item *lip) | |
4673 | { | |
4674 | struct xfs_efi_log_item *efip; | |
1da177e4 | 4675 | |
dc42375d | 4676 | efip = container_of(lip, struct xfs_efi_log_item, efi_item); |
fc6149d8 | 4677 | |
57e80956 | 4678 | spin_unlock(&ailp->ail_lock); |
dc42375d | 4679 | xfs_efi_release(efip); |
57e80956 | 4680 | spin_lock(&ailp->ail_lock); |
dc42375d DW |
4681 | } |
4682 | ||
9e88b5d8 DW |
4683 | /* Recover the RUI if necessary. */ |
4684 | STATIC int | |
4685 | xlog_recover_process_rui( | |
4686 | struct xfs_mount *mp, | |
4687 | struct xfs_ail *ailp, | |
4688 | struct xfs_log_item *lip) | |
4689 | { | |
4690 | struct xfs_rui_log_item *ruip; | |
4691 | int error; | |
4692 | ||
4693 | /* | |
4694 | * Skip RUIs that we've already processed. | |
4695 | */ | |
4696 | ruip = container_of(lip, struct xfs_rui_log_item, rui_item); | |
4697 | if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) | |
4698 | return 0; | |
4699 | ||
57e80956 | 4700 | spin_unlock(&ailp->ail_lock); |
9e88b5d8 | 4701 | error = xfs_rui_recover(mp, ruip); |
57e80956 | 4702 | spin_lock(&ailp->ail_lock); |
9e88b5d8 DW |
4703 | |
4704 | return error; | |
4705 | } | |
4706 | ||
4707 | /* Release the RUI since we're cancelling everything. */ | |
4708 | STATIC void | |
4709 | xlog_recover_cancel_rui( | |
4710 | struct xfs_mount *mp, | |
4711 | struct xfs_ail *ailp, | |
4712 | struct xfs_log_item *lip) | |
4713 | { | |
4714 | struct xfs_rui_log_item *ruip; | |
4715 | ||
4716 | ruip = container_of(lip, struct xfs_rui_log_item, rui_item); | |
4717 | ||
57e80956 | 4718 | spin_unlock(&ailp->ail_lock); |
9e88b5d8 | 4719 | xfs_rui_release(ruip); |
57e80956 | 4720 | spin_lock(&ailp->ail_lock); |
9e88b5d8 DW |
4721 | } |
4722 | ||
f997ee21 DW |
4723 | /* Recover the CUI if necessary. */ |
4724 | STATIC int | |
4725 | xlog_recover_process_cui( | |
fbfa977d | 4726 | struct xfs_trans *parent_tp, |
f997ee21 | 4727 | struct xfs_ail *ailp, |
fbfa977d | 4728 | struct xfs_log_item *lip) |
f997ee21 DW |
4729 | { |
4730 | struct xfs_cui_log_item *cuip; | |
4731 | int error; | |
4732 | ||
4733 | /* | |
4734 | * Skip CUIs that we've already processed. | |
4735 | */ | |
4736 | cuip = container_of(lip, struct xfs_cui_log_item, cui_item); | |
4737 | if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) | |
4738 | return 0; | |
4739 | ||
57e80956 | 4740 | spin_unlock(&ailp->ail_lock); |
fbfa977d | 4741 | error = xfs_cui_recover(parent_tp, cuip); |
57e80956 | 4742 | spin_lock(&ailp->ail_lock); |
f997ee21 DW |
4743 | |
4744 | return error; | |
4745 | } | |
4746 | ||
4747 | /* Release the CUI since we're cancelling everything. */ | |
4748 | STATIC void | |
4749 | xlog_recover_cancel_cui( | |
4750 | struct xfs_mount *mp, | |
4751 | struct xfs_ail *ailp, | |
4752 | struct xfs_log_item *lip) | |
4753 | { | |
4754 | struct xfs_cui_log_item *cuip; | |
4755 | ||
4756 | cuip = container_of(lip, struct xfs_cui_log_item, cui_item); | |
4757 | ||
57e80956 | 4758 | spin_unlock(&ailp->ail_lock); |
f997ee21 | 4759 | xfs_cui_release(cuip); |
57e80956 | 4760 | spin_lock(&ailp->ail_lock); |
f997ee21 DW |
4761 | } |
4762 | ||
77d61fe4 DW |
4763 | /* Recover the BUI if necessary. */ |
4764 | STATIC int | |
4765 | xlog_recover_process_bui( | |
fbfa977d | 4766 | struct xfs_trans *parent_tp, |
77d61fe4 | 4767 | struct xfs_ail *ailp, |
fbfa977d | 4768 | struct xfs_log_item *lip) |
77d61fe4 DW |
4769 | { |
4770 | struct xfs_bui_log_item *buip; | |
4771 | int error; | |
4772 | ||
4773 | /* | |
4774 | * Skip BUIs that we've already processed. | |
4775 | */ | |
4776 | buip = container_of(lip, struct xfs_bui_log_item, bui_item); | |
4777 | if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) | |
4778 | return 0; | |
4779 | ||
57e80956 | 4780 | spin_unlock(&ailp->ail_lock); |
fbfa977d | 4781 | error = xfs_bui_recover(parent_tp, buip); |
57e80956 | 4782 | spin_lock(&ailp->ail_lock); |
77d61fe4 DW |
4783 | |
4784 | return error; | |
4785 | } | |
4786 | ||
4787 | /* Release the BUI since we're cancelling everything. */ | |
4788 | STATIC void | |
4789 | xlog_recover_cancel_bui( | |
4790 | struct xfs_mount *mp, | |
4791 | struct xfs_ail *ailp, | |
4792 | struct xfs_log_item *lip) | |
4793 | { | |
4794 | struct xfs_bui_log_item *buip; | |
4795 | ||
4796 | buip = container_of(lip, struct xfs_bui_log_item, bui_item); | |
4797 | ||
57e80956 | 4798 | spin_unlock(&ailp->ail_lock); |
77d61fe4 | 4799 | xfs_bui_release(buip); |
57e80956 | 4800 | spin_lock(&ailp->ail_lock); |
77d61fe4 DW |
4801 | } |
4802 | ||
dc42375d DW |
4803 | /* Is this log item a deferred action intent? */ |
4804 | static inline bool xlog_item_is_intent(struct xfs_log_item *lip) | |
4805 | { | |
4806 | switch (lip->li_type) { | |
4807 | case XFS_LI_EFI: | |
9e88b5d8 | 4808 | case XFS_LI_RUI: |
f997ee21 | 4809 | case XFS_LI_CUI: |
77d61fe4 | 4810 | case XFS_LI_BUI: |
dc42375d DW |
4811 | return true; |
4812 | default: | |
4813 | return false; | |
4814 | } | |
1da177e4 LT |
4815 | } |
4816 | ||
50995582 DW |
4817 | /* Take all the collected deferred ops and finish them in order. */ |
4818 | static int | |
4819 | xlog_finish_defer_ops( | |
fbfa977d | 4820 | struct xfs_trans *parent_tp) |
50995582 | 4821 | { |
fbfa977d | 4822 | struct xfs_mount *mp = parent_tp->t_mountp; |
50995582 DW |
4823 | struct xfs_trans *tp; |
4824 | int64_t freeblks; | |
4825 | uint resblks; | |
4826 | int error; | |
4827 | ||
4828 | /* | |
4829 | * We're finishing the defer_ops that accumulated as a result of | |
4830 | * recovering unfinished intent items during log recovery. We | |
4831 | * reserve an itruncate transaction because it is the largest | |
4832 | * permanent transaction type. Since we're the only user of the fs | |
4833 | * right now, take 93% (15/16) of the available free blocks. Use | |
4834 | * weird math to avoid a 64-bit division. | |
4835 | */ | |
4836 | freeblks = percpu_counter_sum(&mp->m_fdblocks); | |
4837 | if (freeblks <= 0) | |
4838 | return -ENOSPC; | |
4839 | resblks = min_t(int64_t, UINT_MAX, freeblks); | |
4840 | resblks = (resblks * 15) >> 4; | |
4841 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, | |
4842 | 0, XFS_TRANS_RESERVE, &tp); | |
4843 | if (error) | |
4844 | return error; | |
91ef75b6 | 4845 | /* transfer all collected dfops to this transaction */ |
ce356d64 | 4846 | xfs_defer_move(tp, parent_tp); |
50995582 | 4847 | |
50995582 | 4848 | return xfs_trans_commit(tp); |
50995582 DW |
4849 | } |
4850 | ||
1da177e4 | 4851 | /* |
dc42375d DW |
4852 | * When this is called, all of the log intent items which did not have |
4853 | * corresponding log done items should be in the AIL. What we do now | |
4854 | * is update the data structures associated with each one. | |
1da177e4 | 4855 | * |
dc42375d DW |
4856 | * Since we process the log intent items in normal transactions, they |
4857 | * will be removed at some point after the commit. This prevents us | |
4858 | * from just walking down the list processing each one. We'll use a | |
4859 | * flag in the intent item to skip those that we've already processed | |
4860 | * and use the AIL iteration mechanism's generation count to try to | |
4861 | * speed this up at least a bit. | |
1da177e4 | 4862 | * |
dc42375d DW |
4863 | * When we start, we know that the intents are the only things in the |
4864 | * AIL. As we process them, however, other items are added to the | |
4865 | * AIL. | |
1da177e4 | 4866 | */ |
3c1e2bbe | 4867 | STATIC int |
dc42375d | 4868 | xlog_recover_process_intents( |
f0b2efad | 4869 | struct xlog *log) |
1da177e4 | 4870 | { |
fbfa977d | 4871 | struct xfs_trans *parent_tp; |
27d8d5fe | 4872 | struct xfs_ail_cursor cur; |
50995582 | 4873 | struct xfs_log_item *lip; |
a9c21c1b | 4874 | struct xfs_ail *ailp; |
fbfa977d | 4875 | int error; |
7bf7a193 | 4876 | #if defined(DEBUG) || defined(XFS_WARN) |
dc42375d | 4877 | xfs_lsn_t last_lsn; |
7bf7a193 | 4878 | #endif |
1da177e4 | 4879 | |
fbfa977d BF |
4880 | /* |
4881 | * The intent recovery handlers commit transactions to complete recovery | |
4882 | * for individual intents, but any new deferred operations that are | |
4883 | * queued during that process are held off until the very end. The | |
4884 | * purpose of this transaction is to serve as a container for deferred | |
4885 | * operations. Each intent recovery handler must transfer dfops here | |
4886 | * before its local transaction commits, and we'll finish the entire | |
4887 | * list below. | |
4888 | */ | |
4889 | error = xfs_trans_alloc_empty(log->l_mp, &parent_tp); | |
4890 | if (error) | |
4891 | return error; | |
4892 | ||
a9c21c1b | 4893 | ailp = log->l_ailp; |
57e80956 | 4894 | spin_lock(&ailp->ail_lock); |
a9c21c1b | 4895 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
7bf7a193 | 4896 | #if defined(DEBUG) || defined(XFS_WARN) |
dc42375d | 4897 | last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); |
7bf7a193 | 4898 | #endif |
1da177e4 LT |
4899 | while (lip != NULL) { |
4900 | /* | |
dc42375d DW |
4901 | * We're done when we see something other than an intent. |
4902 | * There should be no intents left in the AIL now. | |
1da177e4 | 4903 | */ |
dc42375d | 4904 | if (!xlog_item_is_intent(lip)) { |
27d8d5fe | 4905 | #ifdef DEBUG |
a9c21c1b | 4906 | for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) |
dc42375d | 4907 | ASSERT(!xlog_item_is_intent(lip)); |
27d8d5fe | 4908 | #endif |
1da177e4 LT |
4909 | break; |
4910 | } | |
4911 | ||
4912 | /* | |
dc42375d DW |
4913 | * We should never see a redo item with a LSN higher than |
4914 | * the last transaction we found in the log at the start | |
4915 | * of recovery. | |
1da177e4 | 4916 | */ |
dc42375d | 4917 | ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); |
1da177e4 | 4918 | |
50995582 DW |
4919 | /* |
4920 | * NOTE: If your intent processing routine can create more | |
4921 | * deferred ops, you /must/ attach them to the dfops in this | |
4922 | * routine or else those subsequent intents will get | |
4923 | * replayed in the wrong order! | |
4924 | */ | |
dc42375d DW |
4925 | switch (lip->li_type) { |
4926 | case XFS_LI_EFI: | |
4927 | error = xlog_recover_process_efi(log->l_mp, ailp, lip); | |
4928 | break; | |
9e88b5d8 DW |
4929 | case XFS_LI_RUI: |
4930 | error = xlog_recover_process_rui(log->l_mp, ailp, lip); | |
4931 | break; | |
f997ee21 | 4932 | case XFS_LI_CUI: |
fbfa977d | 4933 | error = xlog_recover_process_cui(parent_tp, ailp, lip); |
f997ee21 | 4934 | break; |
77d61fe4 | 4935 | case XFS_LI_BUI: |
fbfa977d | 4936 | error = xlog_recover_process_bui(parent_tp, ailp, lip); |
77d61fe4 | 4937 | break; |
dc42375d | 4938 | } |
27d8d5fe DC |
4939 | if (error) |
4940 | goto out; | |
a9c21c1b | 4941 | lip = xfs_trans_ail_cursor_next(ailp, &cur); |
1da177e4 | 4942 | } |
27d8d5fe | 4943 | out: |
e4a1e29c | 4944 | xfs_trans_ail_cursor_done(&cur); |
57e80956 | 4945 | spin_unlock(&ailp->ail_lock); |
fbfa977d BF |
4946 | if (!error) |
4947 | error = xlog_finish_defer_ops(parent_tp); | |
4948 | xfs_trans_cancel(parent_tp); | |
50995582 | 4949 | |
3c1e2bbe | 4950 | return error; |
1da177e4 LT |
4951 | } |
4952 | ||
f0b2efad | 4953 | /* |
dc42375d DW |
4954 | * A cancel occurs when the mount has failed and we're bailing out. |
4955 | * Release all pending log intent items so they don't pin the AIL. | |
f0b2efad BF |
4956 | */ |
4957 | STATIC int | |
dc42375d | 4958 | xlog_recover_cancel_intents( |
f0b2efad BF |
4959 | struct xlog *log) |
4960 | { | |
4961 | struct xfs_log_item *lip; | |
f0b2efad BF |
4962 | int error = 0; |
4963 | struct xfs_ail_cursor cur; | |
4964 | struct xfs_ail *ailp; | |
4965 | ||
4966 | ailp = log->l_ailp; | |
57e80956 | 4967 | spin_lock(&ailp->ail_lock); |
f0b2efad BF |
4968 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
4969 | while (lip != NULL) { | |
4970 | /* | |
dc42375d DW |
4971 | * We're done when we see something other than an intent. |
4972 | * There should be no intents left in the AIL now. | |
f0b2efad | 4973 | */ |
dc42375d | 4974 | if (!xlog_item_is_intent(lip)) { |
f0b2efad BF |
4975 | #ifdef DEBUG |
4976 | for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) | |
dc42375d | 4977 | ASSERT(!xlog_item_is_intent(lip)); |
f0b2efad BF |
4978 | #endif |
4979 | break; | |
4980 | } | |
4981 | ||
dc42375d DW |
4982 | switch (lip->li_type) { |
4983 | case XFS_LI_EFI: | |
4984 | xlog_recover_cancel_efi(log->l_mp, ailp, lip); | |
4985 | break; | |
9e88b5d8 DW |
4986 | case XFS_LI_RUI: |
4987 | xlog_recover_cancel_rui(log->l_mp, ailp, lip); | |
4988 | break; | |
f997ee21 DW |
4989 | case XFS_LI_CUI: |
4990 | xlog_recover_cancel_cui(log->l_mp, ailp, lip); | |
4991 | break; | |
77d61fe4 DW |
4992 | case XFS_LI_BUI: |
4993 | xlog_recover_cancel_bui(log->l_mp, ailp, lip); | |
4994 | break; | |
dc42375d | 4995 | } |
f0b2efad BF |
4996 | |
4997 | lip = xfs_trans_ail_cursor_next(ailp, &cur); | |
4998 | } | |
4999 | ||
5000 | xfs_trans_ail_cursor_done(&cur); | |
57e80956 | 5001 | spin_unlock(&ailp->ail_lock); |
f0b2efad BF |
5002 | return error; |
5003 | } | |
5004 | ||
1da177e4 LT |
5005 | /* |
5006 | * This routine performs a transaction to null out a bad inode pointer | |
5007 | * in an agi unlinked inode hash bucket. | |
5008 | */ | |
5009 | STATIC void | |
5010 | xlog_recover_clear_agi_bucket( | |
5011 | xfs_mount_t *mp, | |
5012 | xfs_agnumber_t agno, | |
5013 | int bucket) | |
5014 | { | |
5015 | xfs_trans_t *tp; | |
5016 | xfs_agi_t *agi; | |
5017 | xfs_buf_t *agibp; | |
5018 | int offset; | |
5019 | int error; | |
5020 | ||
253f4911 | 5021 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); |
e5720eec | 5022 | if (error) |
253f4911 | 5023 | goto out_error; |
1da177e4 | 5024 | |
5e1be0fb CH |
5025 | error = xfs_read_agi(mp, tp, agno, &agibp); |
5026 | if (error) | |
e5720eec | 5027 | goto out_abort; |
1da177e4 | 5028 | |
5e1be0fb | 5029 | agi = XFS_BUF_TO_AGI(agibp); |
16259e7d | 5030 | agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); |
1da177e4 LT |
5031 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
5032 | (sizeof(xfs_agino_t) * bucket); | |
5033 | xfs_trans_log_buf(tp, agibp, offset, | |
5034 | (offset + sizeof(xfs_agino_t) - 1)); | |
5035 | ||
70393313 | 5036 | error = xfs_trans_commit(tp); |
e5720eec DC |
5037 | if (error) |
5038 | goto out_error; | |
5039 | return; | |
5040 | ||
5041 | out_abort: | |
4906e215 | 5042 | xfs_trans_cancel(tp); |
e5720eec | 5043 | out_error: |
a0fa2b67 | 5044 | xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); |
e5720eec | 5045 | return; |
1da177e4 LT |
5046 | } |
5047 | ||
23fac50f CH |
5048 | STATIC xfs_agino_t |
5049 | xlog_recover_process_one_iunlink( | |
5050 | struct xfs_mount *mp, | |
5051 | xfs_agnumber_t agno, | |
5052 | xfs_agino_t agino, | |
5053 | int bucket) | |
5054 | { | |
5055 | struct xfs_buf *ibp; | |
5056 | struct xfs_dinode *dip; | |
5057 | struct xfs_inode *ip; | |
5058 | xfs_ino_t ino; | |
5059 | int error; | |
5060 | ||
5061 | ino = XFS_AGINO_TO_INO(mp, agno, agino); | |
7b6259e7 | 5062 | error = xfs_iget(mp, NULL, ino, 0, 0, &ip); |
23fac50f CH |
5063 | if (error) |
5064 | goto fail; | |
5065 | ||
5066 | /* | |
5067 | * Get the on disk inode to find the next inode in the bucket. | |
5068 | */ | |
475ee413 | 5069 | error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); |
23fac50f | 5070 | if (error) |
0e446673 | 5071 | goto fail_iput; |
23fac50f | 5072 | |
17c12bcd | 5073 | xfs_iflags_clear(ip, XFS_IRECOVERY); |
54d7b5c1 | 5074 | ASSERT(VFS_I(ip)->i_nlink == 0); |
c19b3b05 | 5075 | ASSERT(VFS_I(ip)->i_mode != 0); |
23fac50f CH |
5076 | |
5077 | /* setup for the next pass */ | |
5078 | agino = be32_to_cpu(dip->di_next_unlinked); | |
5079 | xfs_buf_relse(ibp); | |
5080 | ||
5081 | /* | |
5082 | * Prevent any DMAPI event from being sent when the reference on | |
5083 | * the inode is dropped. | |
5084 | */ | |
5085 | ip->i_d.di_dmevmask = 0; | |
5086 | ||
44a8736b | 5087 | xfs_irele(ip); |
23fac50f CH |
5088 | return agino; |
5089 | ||
0e446673 | 5090 | fail_iput: |
44a8736b | 5091 | xfs_irele(ip); |
23fac50f CH |
5092 | fail: |
5093 | /* | |
5094 | * We can't read in the inode this bucket points to, or this inode | |
5095 | * is messed up. Just ditch this bucket of inodes. We will lose | |
5096 | * some inodes and space, but at least we won't hang. | |
5097 | * | |
5098 | * Call xlog_recover_clear_agi_bucket() to perform a transaction to | |
5099 | * clear the inode pointer in the bucket. | |
5100 | */ | |
5101 | xlog_recover_clear_agi_bucket(mp, agno, bucket); | |
5102 | return NULLAGINO; | |
5103 | } | |
5104 | ||
1da177e4 LT |
5105 | /* |
5106 | * xlog_iunlink_recover | |
5107 | * | |
5108 | * This is called during recovery to process any inodes which | |
5109 | * we unlinked but not freed when the system crashed. These | |
5110 | * inodes will be on the lists in the AGI blocks. What we do | |
5111 | * here is scan all the AGIs and fully truncate and free any | |
5112 | * inodes found on the lists. Each inode is removed from the | |
5113 | * lists when it has been fully truncated and is freed. The | |
5114 | * freeing of the inode and its removal from the list must be | |
5115 | * atomic. | |
5116 | */ | |
d96f8f89 | 5117 | STATIC void |
1da177e4 | 5118 | xlog_recover_process_iunlinks( |
9a8d2fdb | 5119 | struct xlog *log) |
1da177e4 LT |
5120 | { |
5121 | xfs_mount_t *mp; | |
5122 | xfs_agnumber_t agno; | |
5123 | xfs_agi_t *agi; | |
5124 | xfs_buf_t *agibp; | |
1da177e4 | 5125 | xfs_agino_t agino; |
1da177e4 LT |
5126 | int bucket; |
5127 | int error; | |
1da177e4 LT |
5128 | |
5129 | mp = log->l_mp; | |
5130 | ||
1da177e4 LT |
5131 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { |
5132 | /* | |
5133 | * Find the agi for this ag. | |
5134 | */ | |
5e1be0fb CH |
5135 | error = xfs_read_agi(mp, NULL, agno, &agibp); |
5136 | if (error) { | |
5137 | /* | |
5138 | * AGI is b0rked. Don't process it. | |
5139 | * | |
5140 | * We should probably mark the filesystem as corrupt | |
5141 | * after we've recovered all the ag's we can.... | |
5142 | */ | |
5143 | continue; | |
1da177e4 | 5144 | } |
d97d32ed JK |
5145 | /* |
5146 | * Unlock the buffer so that it can be acquired in the normal | |
5147 | * course of the transaction to truncate and free each inode. | |
5148 | * Because we are not racing with anyone else here for the AGI | |
5149 | * buffer, we don't even need to hold it locked to read the | |
5150 | * initial unlinked bucket entries out of the buffer. We keep | |
5151 | * buffer reference though, so that it stays pinned in memory | |
5152 | * while we need the buffer. | |
5153 | */ | |
1da177e4 | 5154 | agi = XFS_BUF_TO_AGI(agibp); |
d97d32ed | 5155 | xfs_buf_unlock(agibp); |
1da177e4 LT |
5156 | |
5157 | for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { | |
16259e7d | 5158 | agino = be32_to_cpu(agi->agi_unlinked[bucket]); |
1da177e4 | 5159 | while (agino != NULLAGINO) { |
23fac50f CH |
5160 | agino = xlog_recover_process_one_iunlink(mp, |
5161 | agno, agino, bucket); | |
1da177e4 LT |
5162 | } |
5163 | } | |
d97d32ed | 5164 | xfs_buf_rele(agibp); |
1da177e4 | 5165 | } |
1da177e4 LT |
5166 | } |
5167 | ||
0e446be4 | 5168 | STATIC int |
1da177e4 | 5169 | xlog_unpack_data( |
9a8d2fdb | 5170 | struct xlog_rec_header *rhead, |
b2a922cd | 5171 | char *dp, |
9a8d2fdb | 5172 | struct xlog *log) |
1da177e4 LT |
5173 | { |
5174 | int i, j, k; | |
1da177e4 | 5175 | |
b53e675d | 5176 | for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && |
1da177e4 | 5177 | i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { |
b53e675d | 5178 | *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; |
1da177e4 LT |
5179 | dp += BBSIZE; |
5180 | } | |
5181 | ||
62118709 | 5182 | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { |
b28708d6 | 5183 | xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; |
b53e675d | 5184 | for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { |
1da177e4 LT |
5185 | j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); |
5186 | k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); | |
b53e675d | 5187 | *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; |
1da177e4 LT |
5188 | dp += BBSIZE; |
5189 | } | |
5190 | } | |
0e446be4 CH |
5191 | |
5192 | return 0; | |
1da177e4 LT |
5193 | } |
5194 | ||
9d94901f | 5195 | /* |
b94fb2d1 | 5196 | * CRC check, unpack and process a log record. |
9d94901f BF |
5197 | */ |
5198 | STATIC int | |
5199 | xlog_recover_process( | |
5200 | struct xlog *log, | |
5201 | struct hlist_head rhash[], | |
5202 | struct xlog_rec_header *rhead, | |
5203 | char *dp, | |
12818d24 BF |
5204 | int pass, |
5205 | struct list_head *buffer_list) | |
9d94901f BF |
5206 | { |
5207 | int error; | |
cae028df | 5208 | __le32 old_crc = rhead->h_crc; |
b94fb2d1 BF |
5209 | __le32 crc; |
5210 | ||
cae028df | 5211 | |
6528250b BF |
5212 | crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); |
5213 | ||
b94fb2d1 | 5214 | /* |
6528250b BF |
5215 | * Nothing else to do if this is a CRC verification pass. Just return |
5216 | * if this a record with a non-zero crc. Unfortunately, mkfs always | |
cae028df | 5217 | * sets old_crc to 0 so we must consider this valid even on v5 supers. |
6528250b BF |
5218 | * Otherwise, return EFSBADCRC on failure so the callers up the stack |
5219 | * know precisely what failed. | |
5220 | */ | |
5221 | if (pass == XLOG_RECOVER_CRCPASS) { | |
cae028df | 5222 | if (old_crc && crc != old_crc) |
6528250b BF |
5223 | return -EFSBADCRC; |
5224 | return 0; | |
5225 | } | |
5226 | ||
5227 | /* | |
5228 | * We're in the normal recovery path. Issue a warning if and only if the | |
5229 | * CRC in the header is non-zero. This is an advisory warning and the | |
5230 | * zero CRC check prevents warnings from being emitted when upgrading | |
5231 | * the kernel from one that does not add CRCs by default. | |
b94fb2d1 | 5232 | */ |
cae028df DC |
5233 | if (crc != old_crc) { |
5234 | if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { | |
b94fb2d1 BF |
5235 | xfs_alert(log->l_mp, |
5236 | "log record CRC mismatch: found 0x%x, expected 0x%x.", | |
cae028df | 5237 | le32_to_cpu(old_crc), |
b94fb2d1 BF |
5238 | le32_to_cpu(crc)); |
5239 | xfs_hex_dump(dp, 32); | |
5240 | } | |
5241 | ||
5242 | /* | |
5243 | * If the filesystem is CRC enabled, this mismatch becomes a | |
5244 | * fatal log corruption failure. | |
5245 | */ | |
5246 | if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) | |
5247 | return -EFSCORRUPTED; | |
5248 | } | |
9d94901f BF |
5249 | |
5250 | error = xlog_unpack_data(rhead, dp, log); | |
5251 | if (error) | |
5252 | return error; | |
5253 | ||
12818d24 BF |
5254 | return xlog_recover_process_data(log, rhash, rhead, dp, pass, |
5255 | buffer_list); | |
9d94901f BF |
5256 | } |
5257 | ||
1da177e4 LT |
5258 | STATIC int |
5259 | xlog_valid_rec_header( | |
9a8d2fdb MT |
5260 | struct xlog *log, |
5261 | struct xlog_rec_header *rhead, | |
1da177e4 LT |
5262 | xfs_daddr_t blkno) |
5263 | { | |
5264 | int hlen; | |
5265 | ||
69ef921b | 5266 | if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { |
1da177e4 LT |
5267 | XFS_ERROR_REPORT("xlog_valid_rec_header(1)", |
5268 | XFS_ERRLEVEL_LOW, log->l_mp); | |
2451337d | 5269 | return -EFSCORRUPTED; |
1da177e4 LT |
5270 | } |
5271 | if (unlikely( | |
5272 | (!rhead->h_version || | |
b53e675d | 5273 | (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { |
a0fa2b67 | 5274 | xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", |
34a622b2 | 5275 | __func__, be32_to_cpu(rhead->h_version)); |
2451337d | 5276 | return -EIO; |
1da177e4 LT |
5277 | } |
5278 | ||
5279 | /* LR body must have data or it wouldn't have been written */ | |
b53e675d | 5280 | hlen = be32_to_cpu(rhead->h_len); |
1da177e4 LT |
5281 | if (unlikely( hlen <= 0 || hlen > INT_MAX )) { |
5282 | XFS_ERROR_REPORT("xlog_valid_rec_header(2)", | |
5283 | XFS_ERRLEVEL_LOW, log->l_mp); | |
2451337d | 5284 | return -EFSCORRUPTED; |
1da177e4 LT |
5285 | } |
5286 | if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { | |
5287 | XFS_ERROR_REPORT("xlog_valid_rec_header(3)", | |
5288 | XFS_ERRLEVEL_LOW, log->l_mp); | |
2451337d | 5289 | return -EFSCORRUPTED; |
1da177e4 LT |
5290 | } |
5291 | return 0; | |
5292 | } | |
5293 | ||
5294 | /* | |
5295 | * Read the log from tail to head and process the log records found. | |
5296 | * Handle the two cases where the tail and head are in the same cycle | |
5297 | * and where the active portion of the log wraps around the end of | |
5298 | * the physical log separately. The pass parameter is passed through | |
5299 | * to the routines called to process the data and is not looked at | |
5300 | * here. | |
5301 | */ | |
5302 | STATIC int | |
5303 | xlog_do_recovery_pass( | |
9a8d2fdb | 5304 | struct xlog *log, |
1da177e4 LT |
5305 | xfs_daddr_t head_blk, |
5306 | xfs_daddr_t tail_blk, | |
d7f37692 BF |
5307 | int pass, |
5308 | xfs_daddr_t *first_bad) /* out: first bad log rec */ | |
1da177e4 LT |
5309 | { |
5310 | xlog_rec_header_t *rhead; | |
284f1c2c | 5311 | xfs_daddr_t blk_no, rblk_no; |
d7f37692 | 5312 | xfs_daddr_t rhead_blk; |
b2a922cd | 5313 | char *offset; |
1da177e4 | 5314 | xfs_buf_t *hbp, *dbp; |
a70f9fe5 | 5315 | int error = 0, h_size, h_len; |
12818d24 | 5316 | int error2 = 0; |
1da177e4 LT |
5317 | int bblks, split_bblks; |
5318 | int hblks, split_hblks, wrapped_hblks; | |
39775431 | 5319 | int i; |
f0a76953 | 5320 | struct hlist_head rhash[XLOG_RHASH_SIZE]; |
12818d24 | 5321 | LIST_HEAD (buffer_list); |
1da177e4 LT |
5322 | |
5323 | ASSERT(head_blk != tail_blk); | |
a4c9b34d | 5324 | blk_no = rhead_blk = tail_blk; |
1da177e4 | 5325 | |
39775431 BF |
5326 | for (i = 0; i < XLOG_RHASH_SIZE; i++) |
5327 | INIT_HLIST_HEAD(&rhash[i]); | |
5328 | ||
1da177e4 LT |
5329 | /* |
5330 | * Read the header of the tail block and get the iclog buffer size from | |
5331 | * h_size. Use this to tell how many sectors make up the log header. | |
5332 | */ | |
62118709 | 5333 | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { |
1da177e4 LT |
5334 | /* |
5335 | * When using variable length iclogs, read first sector of | |
5336 | * iclog header and extract the header size from it. Get a | |
5337 | * new hbp that is the correct size. | |
5338 | */ | |
5339 | hbp = xlog_get_bp(log, 1); | |
5340 | if (!hbp) | |
2451337d | 5341 | return -ENOMEM; |
076e6acb CH |
5342 | |
5343 | error = xlog_bread(log, tail_blk, 1, hbp, &offset); | |
5344 | if (error) | |
1da177e4 | 5345 | goto bread_err1; |
076e6acb | 5346 | |
1da177e4 LT |
5347 | rhead = (xlog_rec_header_t *)offset; |
5348 | error = xlog_valid_rec_header(log, rhead, tail_blk); | |
5349 | if (error) | |
5350 | goto bread_err1; | |
a70f9fe5 BF |
5351 | |
5352 | /* | |
5353 | * xfsprogs has a bug where record length is based on lsunit but | |
5354 | * h_size (iclog size) is hardcoded to 32k. Now that we | |
5355 | * unconditionally CRC verify the unmount record, this means the | |
5356 | * log buffer can be too small for the record and cause an | |
5357 | * overrun. | |
5358 | * | |
5359 | * Detect this condition here. Use lsunit for the buffer size as | |
5360 | * long as this looks like the mkfs case. Otherwise, return an | |
5361 | * error to avoid a buffer overrun. | |
5362 | */ | |
b53e675d | 5363 | h_size = be32_to_cpu(rhead->h_size); |
a70f9fe5 BF |
5364 | h_len = be32_to_cpu(rhead->h_len); |
5365 | if (h_len > h_size) { | |
5366 | if (h_len <= log->l_mp->m_logbsize && | |
5367 | be32_to_cpu(rhead->h_num_logops) == 1) { | |
5368 | xfs_warn(log->l_mp, | |
5369 | "invalid iclog size (%d bytes), using lsunit (%d bytes)", | |
5370 | h_size, log->l_mp->m_logbsize); | |
5371 | h_size = log->l_mp->m_logbsize; | |
5372 | } else | |
5373 | return -EFSCORRUPTED; | |
5374 | } | |
5375 | ||
b53e675d | 5376 | if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && |
1da177e4 LT |
5377 | (h_size > XLOG_HEADER_CYCLE_SIZE)) { |
5378 | hblks = h_size / XLOG_HEADER_CYCLE_SIZE; | |
5379 | if (h_size % XLOG_HEADER_CYCLE_SIZE) | |
5380 | hblks++; | |
5381 | xlog_put_bp(hbp); | |
5382 | hbp = xlog_get_bp(log, hblks); | |
5383 | } else { | |
5384 | hblks = 1; | |
5385 | } | |
5386 | } else { | |
69ce58f0 | 5387 | ASSERT(log->l_sectBBsize == 1); |
1da177e4 LT |
5388 | hblks = 1; |
5389 | hbp = xlog_get_bp(log, 1); | |
5390 | h_size = XLOG_BIG_RECORD_BSIZE; | |
5391 | } | |
5392 | ||
5393 | if (!hbp) | |
2451337d | 5394 | return -ENOMEM; |
1da177e4 LT |
5395 | dbp = xlog_get_bp(log, BTOBB(h_size)); |
5396 | if (!dbp) { | |
5397 | xlog_put_bp(hbp); | |
2451337d | 5398 | return -ENOMEM; |
1da177e4 LT |
5399 | } |
5400 | ||
5401 | memset(rhash, 0, sizeof(rhash)); | |
970fd3f0 | 5402 | if (tail_blk > head_blk) { |
1da177e4 LT |
5403 | /* |
5404 | * Perform recovery around the end of the physical log. | |
5405 | * When the head is not on the same cycle number as the tail, | |
970fd3f0 | 5406 | * we can't do a sequential recovery. |
1da177e4 | 5407 | */ |
1da177e4 LT |
5408 | while (blk_no < log->l_logBBsize) { |
5409 | /* | |
5410 | * Check for header wrapping around physical end-of-log | |
5411 | */ | |
62926044 | 5412 | offset = hbp->b_addr; |
1da177e4 LT |
5413 | split_hblks = 0; |
5414 | wrapped_hblks = 0; | |
5415 | if (blk_no + hblks <= log->l_logBBsize) { | |
5416 | /* Read header in one read */ | |
076e6acb CH |
5417 | error = xlog_bread(log, blk_no, hblks, hbp, |
5418 | &offset); | |
1da177e4 LT |
5419 | if (error) |
5420 | goto bread_err2; | |
1da177e4 LT |
5421 | } else { |
5422 | /* This LR is split across physical log end */ | |
5423 | if (blk_no != log->l_logBBsize) { | |
5424 | /* some data before physical log end */ | |
5425 | ASSERT(blk_no <= INT_MAX); | |
5426 | split_hblks = log->l_logBBsize - (int)blk_no; | |
5427 | ASSERT(split_hblks > 0); | |
076e6acb CH |
5428 | error = xlog_bread(log, blk_no, |
5429 | split_hblks, hbp, | |
5430 | &offset); | |
5431 | if (error) | |
1da177e4 | 5432 | goto bread_err2; |
1da177e4 | 5433 | } |
076e6acb | 5434 | |
1da177e4 LT |
5435 | /* |
5436 | * Note: this black magic still works with | |
5437 | * large sector sizes (non-512) only because: | |
5438 | * - we increased the buffer size originally | |
5439 | * by 1 sector giving us enough extra space | |
5440 | * for the second read; | |
5441 | * - the log start is guaranteed to be sector | |
5442 | * aligned; | |
5443 | * - we read the log end (LR header start) | |
5444 | * _first_, then the log start (LR header end) | |
5445 | * - order is important. | |
5446 | */ | |
234f56ac | 5447 | wrapped_hblks = hblks - split_hblks; |
44396476 DC |
5448 | error = xlog_bread_offset(log, 0, |
5449 | wrapped_hblks, hbp, | |
5450 | offset + BBTOB(split_hblks)); | |
1da177e4 LT |
5451 | if (error) |
5452 | goto bread_err2; | |
1da177e4 LT |
5453 | } |
5454 | rhead = (xlog_rec_header_t *)offset; | |
5455 | error = xlog_valid_rec_header(log, rhead, | |
5456 | split_hblks ? blk_no : 0); | |
5457 | if (error) | |
5458 | goto bread_err2; | |
5459 | ||
b53e675d | 5460 | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); |
1da177e4 LT |
5461 | blk_no += hblks; |
5462 | ||
284f1c2c BF |
5463 | /* |
5464 | * Read the log record data in multiple reads if it | |
5465 | * wraps around the end of the log. Note that if the | |
5466 | * header already wrapped, blk_no could point past the | |
5467 | * end of the log. The record data is contiguous in | |
5468 | * that case. | |
5469 | */ | |
5470 | if (blk_no + bblks <= log->l_logBBsize || | |
5471 | blk_no >= log->l_logBBsize) { | |
0703a8e1 | 5472 | rblk_no = xlog_wrap_logbno(log, blk_no); |
284f1c2c | 5473 | error = xlog_bread(log, rblk_no, bblks, dbp, |
076e6acb | 5474 | &offset); |
1da177e4 LT |
5475 | if (error) |
5476 | goto bread_err2; | |
1da177e4 LT |
5477 | } else { |
5478 | /* This log record is split across the | |
5479 | * physical end of log */ | |
62926044 | 5480 | offset = dbp->b_addr; |
1da177e4 LT |
5481 | split_bblks = 0; |
5482 | if (blk_no != log->l_logBBsize) { | |
5483 | /* some data is before the physical | |
5484 | * end of log */ | |
5485 | ASSERT(!wrapped_hblks); | |
5486 | ASSERT(blk_no <= INT_MAX); | |
5487 | split_bblks = | |
5488 | log->l_logBBsize - (int)blk_no; | |
5489 | ASSERT(split_bblks > 0); | |
076e6acb CH |
5490 | error = xlog_bread(log, blk_no, |
5491 | split_bblks, dbp, | |
5492 | &offset); | |
5493 | if (error) | |
1da177e4 | 5494 | goto bread_err2; |
1da177e4 | 5495 | } |
076e6acb | 5496 | |
1da177e4 LT |
5497 | /* |
5498 | * Note: this black magic still works with | |
5499 | * large sector sizes (non-512) only because: | |
5500 | * - we increased the buffer size originally | |
5501 | * by 1 sector giving us enough extra space | |
5502 | * for the second read; | |
5503 | * - the log start is guaranteed to be sector | |
5504 | * aligned; | |
5505 | * - we read the log end (LR header start) | |
5506 | * _first_, then the log start (LR header end) | |
5507 | * - order is important. | |
5508 | */ | |
44396476 | 5509 | error = xlog_bread_offset(log, 0, |
009507b0 | 5510 | bblks - split_bblks, dbp, |
44396476 | 5511 | offset + BBTOB(split_bblks)); |
076e6acb CH |
5512 | if (error) |
5513 | goto bread_err2; | |
1da177e4 | 5514 | } |
0e446be4 | 5515 | |
9d94901f | 5516 | error = xlog_recover_process(log, rhash, rhead, offset, |
12818d24 | 5517 | pass, &buffer_list); |
0e446be4 | 5518 | if (error) |
1da177e4 | 5519 | goto bread_err2; |
d7f37692 | 5520 | |
1da177e4 | 5521 | blk_no += bblks; |
d7f37692 | 5522 | rhead_blk = blk_no; |
1da177e4 LT |
5523 | } |
5524 | ||
5525 | ASSERT(blk_no >= log->l_logBBsize); | |
5526 | blk_no -= log->l_logBBsize; | |
d7f37692 | 5527 | rhead_blk = blk_no; |
970fd3f0 | 5528 | } |
1da177e4 | 5529 | |
970fd3f0 ES |
5530 | /* read first part of physical log */ |
5531 | while (blk_no < head_blk) { | |
5532 | error = xlog_bread(log, blk_no, hblks, hbp, &offset); | |
5533 | if (error) | |
5534 | goto bread_err2; | |
076e6acb | 5535 | |
970fd3f0 ES |
5536 | rhead = (xlog_rec_header_t *)offset; |
5537 | error = xlog_valid_rec_header(log, rhead, blk_no); | |
5538 | if (error) | |
5539 | goto bread_err2; | |
076e6acb | 5540 | |
970fd3f0 ES |
5541 | /* blocks in data section */ |
5542 | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); | |
5543 | error = xlog_bread(log, blk_no+hblks, bblks, dbp, | |
5544 | &offset); | |
5545 | if (error) | |
5546 | goto bread_err2; | |
076e6acb | 5547 | |
12818d24 BF |
5548 | error = xlog_recover_process(log, rhash, rhead, offset, pass, |
5549 | &buffer_list); | |
970fd3f0 ES |
5550 | if (error) |
5551 | goto bread_err2; | |
d7f37692 | 5552 | |
970fd3f0 | 5553 | blk_no += bblks + hblks; |
d7f37692 | 5554 | rhead_blk = blk_no; |
1da177e4 LT |
5555 | } |
5556 | ||
5557 | bread_err2: | |
5558 | xlog_put_bp(dbp); | |
5559 | bread_err1: | |
5560 | xlog_put_bp(hbp); | |
d7f37692 | 5561 | |
12818d24 BF |
5562 | /* |
5563 | * Submit buffers that have been added from the last record processed, | |
5564 | * regardless of error status. | |
5565 | */ | |
5566 | if (!list_empty(&buffer_list)) | |
5567 | error2 = xfs_buf_delwri_submit(&buffer_list); | |
5568 | ||
d7f37692 BF |
5569 | if (error && first_bad) |
5570 | *first_bad = rhead_blk; | |
5571 | ||
39775431 BF |
5572 | /* |
5573 | * Transactions are freed at commit time but transactions without commit | |
5574 | * records on disk are never committed. Free any that may be left in the | |
5575 | * hash table. | |
5576 | */ | |
5577 | for (i = 0; i < XLOG_RHASH_SIZE; i++) { | |
5578 | struct hlist_node *tmp; | |
5579 | struct xlog_recover *trans; | |
5580 | ||
5581 | hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) | |
5582 | xlog_recover_free_trans(trans); | |
5583 | } | |
5584 | ||
12818d24 | 5585 | return error ? error : error2; |
1da177e4 LT |
5586 | } |
5587 | ||
5588 | /* | |
5589 | * Do the recovery of the log. We actually do this in two phases. | |
5590 | * The two passes are necessary in order to implement the function | |
5591 | * of cancelling a record written into the log. The first pass | |
5592 | * determines those things which have been cancelled, and the | |
5593 | * second pass replays log items normally except for those which | |
5594 | * have been cancelled. The handling of the replay and cancellations | |
5595 | * takes place in the log item type specific routines. | |
5596 | * | |
5597 | * The table of items which have cancel records in the log is allocated | |
5598 | * and freed at this level, since only here do we know when all of | |
5599 | * the log recovery has been completed. | |
5600 | */ | |
5601 | STATIC int | |
5602 | xlog_do_log_recovery( | |
9a8d2fdb | 5603 | struct xlog *log, |
1da177e4 LT |
5604 | xfs_daddr_t head_blk, |
5605 | xfs_daddr_t tail_blk) | |
5606 | { | |
d5689eaa | 5607 | int error, i; |
1da177e4 LT |
5608 | |
5609 | ASSERT(head_blk != tail_blk); | |
5610 | ||
5611 | /* | |
5612 | * First do a pass to find all of the cancelled buf log items. | |
5613 | * Store them in the buf_cancel_table for use in the second pass. | |
5614 | */ | |
d5689eaa CH |
5615 | log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * |
5616 | sizeof(struct list_head), | |
1da177e4 | 5617 | KM_SLEEP); |
d5689eaa CH |
5618 | for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) |
5619 | INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); | |
5620 | ||
1da177e4 | 5621 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, |
d7f37692 | 5622 | XLOG_RECOVER_PASS1, NULL); |
1da177e4 | 5623 | if (error != 0) { |
f0e2d93c | 5624 | kmem_free(log->l_buf_cancel_table); |
1da177e4 LT |
5625 | log->l_buf_cancel_table = NULL; |
5626 | return error; | |
5627 | } | |
5628 | /* | |
5629 | * Then do a second pass to actually recover the items in the log. | |
5630 | * When it is complete free the table of buf cancel items. | |
5631 | */ | |
5632 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, | |
d7f37692 | 5633 | XLOG_RECOVER_PASS2, NULL); |
1da177e4 | 5634 | #ifdef DEBUG |
6d192a9b | 5635 | if (!error) { |
1da177e4 LT |
5636 | int i; |
5637 | ||
5638 | for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) | |
d5689eaa | 5639 | ASSERT(list_empty(&log->l_buf_cancel_table[i])); |
1da177e4 LT |
5640 | } |
5641 | #endif /* DEBUG */ | |
5642 | ||
f0e2d93c | 5643 | kmem_free(log->l_buf_cancel_table); |
1da177e4 LT |
5644 | log->l_buf_cancel_table = NULL; |
5645 | ||
5646 | return error; | |
5647 | } | |
5648 | ||
5649 | /* | |
5650 | * Do the actual recovery | |
5651 | */ | |
5652 | STATIC int | |
5653 | xlog_do_recover( | |
9a8d2fdb | 5654 | struct xlog *log, |
1da177e4 LT |
5655 | xfs_daddr_t head_blk, |
5656 | xfs_daddr_t tail_blk) | |
5657 | { | |
a798011c | 5658 | struct xfs_mount *mp = log->l_mp; |
1da177e4 LT |
5659 | int error; |
5660 | xfs_buf_t *bp; | |
5661 | xfs_sb_t *sbp; | |
5662 | ||
e67d3d42 BF |
5663 | trace_xfs_log_recover(log, head_blk, tail_blk); |
5664 | ||
1da177e4 LT |
5665 | /* |
5666 | * First replay the images in the log. | |
5667 | */ | |
5668 | error = xlog_do_log_recovery(log, head_blk, tail_blk); | |
43ff2122 | 5669 | if (error) |
1da177e4 | 5670 | return error; |
1da177e4 LT |
5671 | |
5672 | /* | |
5673 | * If IO errors happened during recovery, bail out. | |
5674 | */ | |
a798011c | 5675 | if (XFS_FORCED_SHUTDOWN(mp)) { |
2451337d | 5676 | return -EIO; |
1da177e4 LT |
5677 | } |
5678 | ||
5679 | /* | |
5680 | * We now update the tail_lsn since much of the recovery has completed | |
5681 | * and there may be space available to use. If there were no extent | |
5682 | * or iunlinks, we can free up the entire log and set the tail_lsn to | |
5683 | * be the last_sync_lsn. This was set in xlog_find_tail to be the | |
5684 | * lsn of the last known good LR on disk. If there are extent frees | |
5685 | * or iunlinks they will have some entries in the AIL; so we look at | |
5686 | * the AIL to determine how to set the tail_lsn. | |
5687 | */ | |
a798011c | 5688 | xlog_assign_tail_lsn(mp); |
1da177e4 LT |
5689 | |
5690 | /* | |
5691 | * Now that we've finished replaying all buffer and inode | |
98021821 | 5692 | * updates, re-read in the superblock and reverify it. |
1da177e4 | 5693 | */ |
a798011c | 5694 | bp = xfs_getsb(mp, 0); |
1157b32c | 5695 | bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); |
b68c0821 | 5696 | ASSERT(!(bp->b_flags & XBF_WRITE)); |
0cac682f | 5697 | bp->b_flags |= XBF_READ; |
1813dd64 | 5698 | bp->b_ops = &xfs_sb_buf_ops; |
83a0adc3 | 5699 | |
6af88cda | 5700 | error = xfs_buf_submit(bp); |
d64e31a2 | 5701 | if (error) { |
a798011c | 5702 | if (!XFS_FORCED_SHUTDOWN(mp)) { |
595bff75 DC |
5703 | xfs_buf_ioerror_alert(bp, __func__); |
5704 | ASSERT(0); | |
5705 | } | |
1da177e4 LT |
5706 | xfs_buf_relse(bp); |
5707 | return error; | |
5708 | } | |
5709 | ||
5710 | /* Convert superblock from on-disk format */ | |
a798011c | 5711 | sbp = &mp->m_sb; |
98021821 | 5712 | xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); |
1da177e4 LT |
5713 | xfs_buf_relse(bp); |
5714 | ||
a798011c DC |
5715 | /* re-initialise in-core superblock and geometry structures */ |
5716 | xfs_reinit_percpu_counters(mp); | |
5717 | error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); | |
5718 | if (error) { | |
5719 | xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); | |
5720 | return error; | |
5721 | } | |
52548852 | 5722 | mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); |
5478eead | 5723 | |
1da177e4 LT |
5724 | xlog_recover_check_summary(log); |
5725 | ||
5726 | /* Normal transactions can now occur */ | |
5727 | log->l_flags &= ~XLOG_ACTIVE_RECOVERY; | |
5728 | return 0; | |
5729 | } | |
5730 | ||
5731 | /* | |
5732 | * Perform recovery and re-initialize some log variables in xlog_find_tail. | |
5733 | * | |
5734 | * Return error or zero. | |
5735 | */ | |
5736 | int | |
5737 | xlog_recover( | |
9a8d2fdb | 5738 | struct xlog *log) |
1da177e4 LT |
5739 | { |
5740 | xfs_daddr_t head_blk, tail_blk; | |
5741 | int error; | |
5742 | ||
5743 | /* find the tail of the log */ | |
a45086e2 BF |
5744 | error = xlog_find_tail(log, &head_blk, &tail_blk); |
5745 | if (error) | |
1da177e4 LT |
5746 | return error; |
5747 | ||
a45086e2 BF |
5748 | /* |
5749 | * The superblock was read before the log was available and thus the LSN | |
5750 | * could not be verified. Check the superblock LSN against the current | |
5751 | * LSN now that it's known. | |
5752 | */ | |
5753 | if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && | |
5754 | !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) | |
5755 | return -EINVAL; | |
5756 | ||
1da177e4 LT |
5757 | if (tail_blk != head_blk) { |
5758 | /* There used to be a comment here: | |
5759 | * | |
5760 | * disallow recovery on read-only mounts. note -- mount | |
5761 | * checks for ENOSPC and turns it into an intelligent | |
5762 | * error message. | |
5763 | * ...but this is no longer true. Now, unless you specify | |
5764 | * NORECOVERY (in which case this function would never be | |
5765 | * called), we just go ahead and recover. We do this all | |
5766 | * under the vfs layer, so we can get away with it unless | |
5767 | * the device itself is read-only, in which case we fail. | |
5768 | */ | |
3a02ee18 | 5769 | if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { |
1da177e4 LT |
5770 | return error; |
5771 | } | |
5772 | ||
e721f504 DC |
5773 | /* |
5774 | * Version 5 superblock log feature mask validation. We know the | |
5775 | * log is dirty so check if there are any unknown log features | |
5776 | * in what we need to recover. If there are unknown features | |
5777 | * (e.g. unsupported transactions, then simply reject the | |
5778 | * attempt at recovery before touching anything. | |
5779 | */ | |
5780 | if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && | |
5781 | xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, | |
5782 | XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { | |
5783 | xfs_warn(log->l_mp, | |
f41febd2 | 5784 | "Superblock has unknown incompatible log features (0x%x) enabled.", |
e721f504 DC |
5785 | (log->l_mp->m_sb.sb_features_log_incompat & |
5786 | XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); | |
f41febd2 JP |
5787 | xfs_warn(log->l_mp, |
5788 | "The log can not be fully and/or safely recovered by this kernel."); | |
5789 | xfs_warn(log->l_mp, | |
5790 | "Please recover the log on a kernel that supports the unknown features."); | |
2451337d | 5791 | return -EINVAL; |
e721f504 DC |
5792 | } |
5793 | ||
2e227178 BF |
5794 | /* |
5795 | * Delay log recovery if the debug hook is set. This is debug | |
5796 | * instrumention to coordinate simulation of I/O failures with | |
5797 | * log recovery. | |
5798 | */ | |
5799 | if (xfs_globals.log_recovery_delay) { | |
5800 | xfs_notice(log->l_mp, | |
5801 | "Delaying log recovery for %d seconds.", | |
5802 | xfs_globals.log_recovery_delay); | |
5803 | msleep(xfs_globals.log_recovery_delay * 1000); | |
5804 | } | |
5805 | ||
a0fa2b67 DC |
5806 | xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", |
5807 | log->l_mp->m_logname ? log->l_mp->m_logname | |
5808 | : "internal"); | |
1da177e4 LT |
5809 | |
5810 | error = xlog_do_recover(log, head_blk, tail_blk); | |
5811 | log->l_flags |= XLOG_RECOVERY_NEEDED; | |
5812 | } | |
5813 | return error; | |
5814 | } | |
5815 | ||
5816 | /* | |
5817 | * In the first part of recovery we replay inodes and buffers and build | |
5818 | * up the list of extent free items which need to be processed. Here | |
5819 | * we process the extent free items and clean up the on disk unlinked | |
5820 | * inode lists. This is separated from the first part of recovery so | |
5821 | * that the root and real-time bitmap inodes can be read in from disk in | |
5822 | * between the two stages. This is necessary so that we can free space | |
5823 | * in the real-time portion of the file system. | |
5824 | */ | |
5825 | int | |
5826 | xlog_recover_finish( | |
9a8d2fdb | 5827 | struct xlog *log) |
1da177e4 LT |
5828 | { |
5829 | /* | |
5830 | * Now we're ready to do the transactions needed for the | |
5831 | * rest of recovery. Start with completing all the extent | |
5832 | * free intent records and then process the unlinked inode | |
5833 | * lists. At this point, we essentially run in normal mode | |
5834 | * except that we're still performing recovery actions | |
5835 | * rather than accepting new requests. | |
5836 | */ | |
5837 | if (log->l_flags & XLOG_RECOVERY_NEEDED) { | |
3c1e2bbe | 5838 | int error; |
dc42375d | 5839 | error = xlog_recover_process_intents(log); |
3c1e2bbe | 5840 | if (error) { |
dc42375d | 5841 | xfs_alert(log->l_mp, "Failed to recover intents"); |
3c1e2bbe DC |
5842 | return error; |
5843 | } | |
9e88b5d8 | 5844 | |
1da177e4 | 5845 | /* |
dc42375d | 5846 | * Sync the log to get all the intents out of the AIL. |
1da177e4 LT |
5847 | * This isn't absolutely necessary, but it helps in |
5848 | * case the unlink transactions would have problems | |
dc42375d | 5849 | * pushing the intents out of the way. |
1da177e4 | 5850 | */ |
a14a348b | 5851 | xfs_log_force(log->l_mp, XFS_LOG_SYNC); |
1da177e4 | 5852 | |
4249023a | 5853 | xlog_recover_process_iunlinks(log); |
1da177e4 LT |
5854 | |
5855 | xlog_recover_check_summary(log); | |
5856 | ||
a0fa2b67 DC |
5857 | xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", |
5858 | log->l_mp->m_logname ? log->l_mp->m_logname | |
5859 | : "internal"); | |
1da177e4 LT |
5860 | log->l_flags &= ~XLOG_RECOVERY_NEEDED; |
5861 | } else { | |
a0fa2b67 | 5862 | xfs_info(log->l_mp, "Ending clean mount"); |
1da177e4 LT |
5863 | } |
5864 | return 0; | |
5865 | } | |
5866 | ||
f0b2efad BF |
5867 | int |
5868 | xlog_recover_cancel( | |
5869 | struct xlog *log) | |
5870 | { | |
5871 | int error = 0; | |
5872 | ||
5873 | if (log->l_flags & XLOG_RECOVERY_NEEDED) | |
dc42375d | 5874 | error = xlog_recover_cancel_intents(log); |
f0b2efad BF |
5875 | |
5876 | return error; | |
5877 | } | |
1da177e4 LT |
5878 | |
5879 | #if defined(DEBUG) | |
5880 | /* | |
5881 | * Read all of the agf and agi counters and check that they | |
5882 | * are consistent with the superblock counters. | |
5883 | */ | |
e89fbb5e | 5884 | STATIC void |
1da177e4 | 5885 | xlog_recover_check_summary( |
9a8d2fdb | 5886 | struct xlog *log) |
1da177e4 LT |
5887 | { |
5888 | xfs_mount_t *mp; | |
5889 | xfs_agf_t *agfp; | |
1da177e4 LT |
5890 | xfs_buf_t *agfbp; |
5891 | xfs_buf_t *agibp; | |
1da177e4 | 5892 | xfs_agnumber_t agno; |
c8ce540d DW |
5893 | uint64_t freeblks; |
5894 | uint64_t itotal; | |
5895 | uint64_t ifree; | |
5e1be0fb | 5896 | int error; |
1da177e4 LT |
5897 | |
5898 | mp = log->l_mp; | |
5899 | ||
5900 | freeblks = 0LL; | |
5901 | itotal = 0LL; | |
5902 | ifree = 0LL; | |
5903 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { | |
4805621a CH |
5904 | error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); |
5905 | if (error) { | |
a0fa2b67 DC |
5906 | xfs_alert(mp, "%s agf read failed agno %d error %d", |
5907 | __func__, agno, error); | |
4805621a CH |
5908 | } else { |
5909 | agfp = XFS_BUF_TO_AGF(agfbp); | |
5910 | freeblks += be32_to_cpu(agfp->agf_freeblks) + | |
5911 | be32_to_cpu(agfp->agf_flcount); | |
5912 | xfs_buf_relse(agfbp); | |
1da177e4 | 5913 | } |
1da177e4 | 5914 | |
5e1be0fb | 5915 | error = xfs_read_agi(mp, NULL, agno, &agibp); |
a0fa2b67 DC |
5916 | if (error) { |
5917 | xfs_alert(mp, "%s agi read failed agno %d error %d", | |
5918 | __func__, agno, error); | |
5919 | } else { | |
5e1be0fb | 5920 | struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); |
16259e7d | 5921 | |
5e1be0fb CH |
5922 | itotal += be32_to_cpu(agi->agi_count); |
5923 | ifree += be32_to_cpu(agi->agi_freecount); | |
5924 | xfs_buf_relse(agibp); | |
5925 | } | |
1da177e4 | 5926 | } |
1da177e4 LT |
5927 | } |
5928 | #endif /* DEBUG */ |