]>
Commit | Line | Data |
---|---|---|
35728b82 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
1da177e4 | 2 | /* |
1da177e4 LT |
3 | * 2002-10-15 Posix Clocks & timers |
4 | * by George Anzinger [email protected] | |
1da177e4 LT |
5 | * Copyright (C) 2002 2003 by MontaVista Software. |
6 | * | |
7 | * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. | |
8 | * Copyright (C) 2004 Boris Hu | |
9 | * | |
0141de74 | 10 | * These are all the functions necessary to implement POSIX clocks & timers |
1da177e4 LT |
11 | */ |
12 | #include <linux/mm.h> | |
1da177e4 LT |
13 | #include <linux/interrupt.h> |
14 | #include <linux/slab.h> | |
15 | #include <linux/time.h> | |
97d1f15b | 16 | #include <linux/mutex.h> |
61855b6b | 17 | #include <linux/sched/task.h> |
1da177e4 | 18 | |
7c0f6ba6 | 19 | #include <linux/uaccess.h> |
1da177e4 LT |
20 | #include <linux/list.h> |
21 | #include <linux/init.h> | |
22 | #include <linux/compiler.h> | |
5ed67f05 | 23 | #include <linux/hash.h> |
0606f422 | 24 | #include <linux/posix-clock.h> |
1da177e4 LT |
25 | #include <linux/posix-timers.h> |
26 | #include <linux/syscalls.h> | |
27 | #include <linux/wait.h> | |
28 | #include <linux/workqueue.h> | |
9984de1a | 29 | #include <linux/export.h> |
5ed67f05 | 30 | #include <linux/hashtable.h> |
edbeda46 | 31 | #include <linux/compat.h> |
19b558db | 32 | #include <linux/nospec.h> |
5a590f35 | 33 | #include <linux/time_namespace.h> |
1da177e4 | 34 | |
8b094cd0 | 35 | #include "timekeeping.h" |
bab0aae9 | 36 | #include "posix-timers.h" |
8b094cd0 | 37 | |
1da177e4 | 38 | /* |
5ed67f05 PE |
39 | * Management arrays for POSIX timers. Timers are now kept in static hash table |
40 | * with 512 entries. | |
41 | * Timer ids are allocated by local routine, which selects proper hash head by | |
42 | * key, constructed from current->signal address and per signal struct counter. | |
43 | * This keeps timer ids unique per process, but now they can intersect between | |
44 | * processes. | |
1da177e4 LT |
45 | */ |
46 | ||
47 | /* | |
48 | * Lets keep our timers in a slab cache :-) | |
49 | */ | |
e18b890b | 50 | static struct kmem_cache *posix_timers_cache; |
5ed67f05 PE |
51 | |
52 | static DEFINE_HASHTABLE(posix_timers_hashtable, 9); | |
53 | static DEFINE_SPINLOCK(hash_lock); | |
1da177e4 | 54 | |
6631fa12 TG |
55 | static const struct k_clock * const posix_clocks[]; |
56 | static const struct k_clock *clockid_to_kclock(const clockid_t id); | |
67edab48 | 57 | static const struct k_clock clock_realtime, clock_monotonic; |
6631fa12 | 58 | |
1da177e4 LT |
59 | /* |
60 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other | |
61 | * SIGEV values. Here we put out an error if this assumption fails. | |
62 | */ | |
63 | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ | |
64 | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) | |
65 | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" | |
66 | #endif | |
67 | ||
1da177e4 LT |
68 | /* |
69 | * The timer ID is turned into a timer address by idr_find(). | |
70 | * Verifying a valid ID consists of: | |
71 | * | |
72 | * a) checking that idr_find() returns other than -1. | |
73 | * b) checking that the timer id matches the one in the timer itself. | |
74 | * c) that the timer owner is in the callers thread group. | |
75 | */ | |
76 | ||
77 | /* | |
78 | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us | |
79 | * to implement others. This structure defines the various | |
0061748d | 80 | * clocks. |
1da177e4 LT |
81 | * |
82 | * RESOLUTION: Clock resolution is used to round up timer and interval | |
83 | * times, NOT to report clock times, which are reported with as | |
84 | * much resolution as the system can muster. In some cases this | |
85 | * resolution may depend on the underlying clock hardware and | |
86 | * may not be quantifiable until run time, and only then is the | |
87 | * necessary code is written. The standard says we should say | |
88 | * something about this issue in the documentation... | |
89 | * | |
0061748d RC |
90 | * FUNCTIONS: The CLOCKs structure defines possible functions to |
91 | * handle various clock functions. | |
1da177e4 | 92 | * |
0061748d RC |
93 | * The standard POSIX timer management code assumes the |
94 | * following: 1.) The k_itimer struct (sched.h) is used for | |
95 | * the timer. 2.) The list, it_lock, it_clock, it_id and | |
96 | * it_pid fields are not modified by timer code. | |
1da177e4 LT |
97 | * |
98 | * Permissions: It is assumed that the clock_settime() function defined | |
99 | * for each clock will take care of permission checks. Some | |
100 | * clocks may be set able by any user (i.e. local process | |
101 | * clocks) others not. Currently the only set able clock we | |
102 | * have is CLOCK_REALTIME and its high res counter part, both of | |
103 | * which we beg off on and pass to do_sys_settimeofday(). | |
104 | */ | |
20f33a03 NK |
105 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); |
106 | ||
107 | #define lock_timer(tid, flags) \ | |
108 | ({ struct k_itimer *__timr; \ | |
109 | __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ | |
110 | __timr; \ | |
111 | }) | |
1da177e4 | 112 | |
5ed67f05 PE |
113 | static int hash(struct signal_struct *sig, unsigned int nr) |
114 | { | |
115 | return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); | |
116 | } | |
117 | ||
118 | static struct k_itimer *__posix_timers_find(struct hlist_head *head, | |
119 | struct signal_struct *sig, | |
120 | timer_t id) | |
121 | { | |
5ed67f05 PE |
122 | struct k_itimer *timer; |
123 | ||
5fb1c2a5 AG |
124 | hlist_for_each_entry_rcu(timer, head, t_hash, |
125 | lockdep_is_held(&hash_lock)) { | |
5ed67f05 PE |
126 | if ((timer->it_signal == sig) && (timer->it_id == id)) |
127 | return timer; | |
128 | } | |
129 | return NULL; | |
130 | } | |
131 | ||
132 | static struct k_itimer *posix_timer_by_id(timer_t id) | |
133 | { | |
134 | struct signal_struct *sig = current->signal; | |
135 | struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; | |
136 | ||
137 | return __posix_timers_find(head, sig, id); | |
138 | } | |
139 | ||
140 | static int posix_timer_add(struct k_itimer *timer) | |
141 | { | |
142 | struct signal_struct *sig = current->signal; | |
143 | int first_free_id = sig->posix_timer_id; | |
144 | struct hlist_head *head; | |
145 | int ret = -ENOENT; | |
146 | ||
147 | do { | |
148 | spin_lock(&hash_lock); | |
149 | head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; | |
150 | if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { | |
151 | hlist_add_head_rcu(&timer->t_hash, head); | |
152 | ret = sig->posix_timer_id; | |
153 | } | |
154 | if (++sig->posix_timer_id < 0) | |
155 | sig->posix_timer_id = 0; | |
156 | if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) | |
157 | /* Loop over all possible ids completed */ | |
158 | ret = -EAGAIN; | |
159 | spin_unlock(&hash_lock); | |
160 | } while (ret == -ENOENT); | |
161 | return ret; | |
162 | } | |
163 | ||
1da177e4 LT |
164 | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) |
165 | { | |
166 | spin_unlock_irqrestore(&timr->it_lock, flags); | |
167 | } | |
168 | ||
42285777 | 169 | /* Get clock_realtime */ |
eaf80194 | 170 | static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp) |
42285777 | 171 | { |
3c9c12f4 | 172 | ktime_get_real_ts64(tp); |
42285777 TG |
173 | return 0; |
174 | } | |
175 | ||
9c71a2e8 AV |
176 | static ktime_t posix_get_realtime_ktime(clockid_t which_clock) |
177 | { | |
178 | return ktime_get_real(); | |
179 | } | |
180 | ||
26f9a479 TG |
181 | /* Set clock_realtime */ |
182 | static int posix_clock_realtime_set(const clockid_t which_clock, | |
0fe6afe3 | 183 | const struct timespec64 *tp) |
26f9a479 | 184 | { |
0fe6afe3 | 185 | return do_sys_settimeofday64(tp, NULL); |
26f9a479 TG |
186 | } |
187 | ||
f1f1d5eb | 188 | static int posix_clock_realtime_adj(const clockid_t which_clock, |
ead25417 | 189 | struct __kernel_timex *t) |
f1f1d5eb RC |
190 | { |
191 | return do_adjtimex(t); | |
192 | } | |
193 | ||
becf8b5d TG |
194 | /* |
195 | * Get monotonic time for posix timers | |
196 | */ | |
eaf80194 | 197 | static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp) |
becf8b5d | 198 | { |
3c9c12f4 | 199 | ktime_get_ts64(tp); |
5a590f35 | 200 | timens_add_monotonic(tp); |
becf8b5d TG |
201 | return 0; |
202 | } | |
1da177e4 | 203 | |
9c71a2e8 AV |
204 | static ktime_t posix_get_monotonic_ktime(clockid_t which_clock) |
205 | { | |
206 | return ktime_get(); | |
207 | } | |
208 | ||
2d42244a | 209 | /* |
7fdd7f89 | 210 | * Get monotonic-raw time for posix timers |
2d42244a | 211 | */ |
3c9c12f4 | 212 | static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) |
2d42244a | 213 | { |
58a10456 | 214 | ktime_get_raw_ts64(tp); |
5a590f35 | 215 | timens_add_monotonic(tp); |
2d42244a JS |
216 | return 0; |
217 | } | |
218 | ||
da15cfda | 219 | |
3c9c12f4 | 220 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) |
da15cfda | 221 | { |
58a10456 | 222 | ktime_get_coarse_real_ts64(tp); |
da15cfda JS |
223 | return 0; |
224 | } | |
225 | ||
226 | static int posix_get_monotonic_coarse(clockid_t which_clock, | |
3c9c12f4 | 227 | struct timespec64 *tp) |
da15cfda | 228 | { |
58a10456 | 229 | ktime_get_coarse_ts64(tp); |
5a590f35 | 230 | timens_add_monotonic(tp); |
da15cfda JS |
231 | return 0; |
232 | } | |
233 | ||
d2e3e0ca | 234 | static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) |
da15cfda | 235 | { |
d2e3e0ca | 236 | *tp = ktime_to_timespec64(KTIME_LOW_RES); |
da15cfda JS |
237 | return 0; |
238 | } | |
7fdd7f89 | 239 | |
eaf80194 | 240 | static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp) |
7fdd7f89 | 241 | { |
58a10456 | 242 | ktime_get_boottime_ts64(tp); |
5a590f35 | 243 | timens_add_boottime(tp); |
7fdd7f89 JS |
244 | return 0; |
245 | } | |
246 | ||
9c71a2e8 AV |
247 | static ktime_t posix_get_boottime_ktime(const clockid_t which_clock) |
248 | { | |
249 | return ktime_get_boottime(); | |
250 | } | |
251 | ||
eaf80194 | 252 | static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp) |
1ff3c967 | 253 | { |
58a10456 | 254 | ktime_get_clocktai_ts64(tp); |
1ff3c967 JS |
255 | return 0; |
256 | } | |
7fdd7f89 | 257 | |
9c71a2e8 AV |
258 | static ktime_t posix_get_tai_ktime(clockid_t which_clock) |
259 | { | |
260 | return ktime_get_clocktai(); | |
261 | } | |
262 | ||
d2e3e0ca | 263 | static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) |
056a3cac TG |
264 | { |
265 | tp->tv_sec = 0; | |
266 | tp->tv_nsec = hrtimer_resolution; | |
267 | return 0; | |
268 | } | |
269 | ||
1da177e4 LT |
270 | /* |
271 | * Initialize everything, well, just everything in Posix clocks/timers ;) | |
272 | */ | |
273 | static __init int init_posix_timers(void) | |
274 | { | |
1da177e4 | 275 | posix_timers_cache = kmem_cache_create("posix_timers_cache", |
040b5c6f AD |
276 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
277 | NULL); | |
1da177e4 LT |
278 | return 0; |
279 | } | |
1da177e4 LT |
280 | __initcall(init_posix_timers); |
281 | ||
78c9c4df TG |
282 | /* |
283 | * The siginfo si_overrun field and the return value of timer_getoverrun(2) | |
284 | * are of type int. Clamp the overrun value to INT_MAX | |
285 | */ | |
286 | static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) | |
287 | { | |
288 | s64 sum = timr->it_overrun_last + (s64)baseval; | |
289 | ||
290 | return sum > (s64)INT_MAX ? INT_MAX : (int)sum; | |
291 | } | |
292 | ||
f37fb0aa | 293 | static void common_hrtimer_rearm(struct k_itimer *timr) |
1da177e4 | 294 | { |
44f21475 RZ |
295 | struct hrtimer *timer = &timr->it.real.timer; |
296 | ||
78c9c4df TG |
297 | timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), |
298 | timr->it_interval); | |
44f21475 | 299 | hrtimer_restart(timer); |
1da177e4 LT |
300 | } |
301 | ||
302 | /* | |
303 | * This function is exported for use by the signal deliver code. It is | |
304 | * called just prior to the info block being released and passes that | |
305 | * block to us. It's function is to update the overrun entry AND to | |
306 | * restart the timer. It should only be called if the timer is to be | |
307 | * restarted (i.e. we have flagged this in the sys_private entry of the | |
308 | * info block). | |
309 | * | |
25985edc | 310 | * To protect against the timer going away while the interrupt is queued, |
1da177e4 LT |
311 | * we require that the it_requeue_pending flag be set. |
312 | */ | |
ae7795bc | 313 | void posixtimer_rearm(struct kernel_siginfo *info) |
1da177e4 LT |
314 | { |
315 | struct k_itimer *timr; | |
316 | unsigned long flags; | |
317 | ||
318 | timr = lock_timer(info->si_tid, &flags); | |
af888d67 TG |
319 | if (!timr) |
320 | return; | |
1da177e4 | 321 | |
0e334db6 | 322 | if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) { |
f37fb0aa | 323 | timr->kclock->timer_rearm(timr); |
1da177e4 | 324 | |
21e55c1f | 325 | timr->it_active = 1; |
af888d67 | 326 | timr->it_overrun_last = timr->it_overrun; |
78c9c4df | 327 | timr->it_overrun = -1LL; |
af888d67 TG |
328 | ++timr->it_requeue_pending; |
329 | ||
78c9c4df | 330 | info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); |
becf8b5d TG |
331 | } |
332 | ||
af888d67 | 333 | unlock_timer(timr, flags); |
1da177e4 LT |
334 | } |
335 | ||
ba661292 | 336 | int posix_timer_event(struct k_itimer *timr, int si_private) |
1da177e4 | 337 | { |
24122c7f EB |
338 | enum pid_type type; |
339 | int ret = -1; | |
ba661292 ON |
340 | /* |
341 | * FIXME: if ->sigq is queued we can race with | |
96fe3b07 | 342 | * dequeue_signal()->posixtimer_rearm(). |
ba661292 ON |
343 | * |
344 | * If dequeue_signal() sees the "right" value of | |
96fe3b07 | 345 | * si_sys_private it calls posixtimer_rearm(). |
ba661292 | 346 | * We re-queue ->sigq and drop ->it_lock(). |
96fe3b07 | 347 | * posixtimer_rearm() locks the timer |
ba661292 ON |
348 | * and re-schedules it while ->sigq is pending. |
349 | * Not really bad, but not that we want. | |
350 | */ | |
1da177e4 | 351 | timr->sigq->info.si_sys_private = si_private; |
1da177e4 | 352 | |
24122c7f EB |
353 | type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID; |
354 | ret = send_sigqueue(timr->sigq, timr->it_pid, type); | |
4aa73611 ON |
355 | /* If we failed to send the signal the timer stops. */ |
356 | return ret > 0; | |
1da177e4 | 357 | } |
1da177e4 LT |
358 | |
359 | /* | |
360 | * This function gets called when a POSIX.1b interval timer expires. It | |
361 | * is used as a callback from the kernel internal timer. The | |
362 | * run_timer_list code ALWAYS calls with interrupts on. | |
363 | ||
364 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | |
365 | */ | |
c9cb2e3d | 366 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) |
1da177e4 | 367 | { |
05cfb614 | 368 | struct k_itimer *timr; |
1da177e4 | 369 | unsigned long flags; |
becf8b5d | 370 | int si_private = 0; |
c9cb2e3d | 371 | enum hrtimer_restart ret = HRTIMER_NORESTART; |
1da177e4 | 372 | |
05cfb614 | 373 | timr = container_of(timer, struct k_itimer, it.real.timer); |
1da177e4 | 374 | spin_lock_irqsave(&timr->it_lock, flags); |
1da177e4 | 375 | |
21e55c1f | 376 | timr->it_active = 0; |
80105cd0 | 377 | if (timr->it_interval != 0) |
becf8b5d | 378 | si_private = ++timr->it_requeue_pending; |
1da177e4 | 379 | |
becf8b5d TG |
380 | if (posix_timer_event(timr, si_private)) { |
381 | /* | |
382 | * signal was not sent because of sig_ignor | |
383 | * we will not get a call back to restart it AND | |
384 | * it should be restarted. | |
385 | */ | |
80105cd0 | 386 | if (timr->it_interval != 0) { |
58229a18 TG |
387 | ktime_t now = hrtimer_cb_get_time(timer); |
388 | ||
389 | /* | |
390 | * FIXME: What we really want, is to stop this | |
391 | * timer completely and restart it in case the | |
392 | * SIG_IGN is removed. This is a non trivial | |
393 | * change which involves sighand locking | |
394 | * (sigh !), which we don't want to do late in | |
395 | * the release cycle. | |
396 | * | |
397 | * For now we just let timers with an interval | |
398 | * less than a jiffie expire every jiffie to | |
399 | * avoid softirq starvation in case of SIG_IGN | |
400 | * and a very small interval, which would put | |
401 | * the timer right back on the softirq pending | |
402 | * list. By moving now ahead of time we trick | |
403 | * hrtimer_forward() to expire the timer | |
404 | * later, while we still maintain the overrun | |
405 | * accuracy, but have some inconsistency in | |
406 | * the timer_gettime() case. This is at least | |
407 | * better than a starved softirq. A more | |
408 | * complex fix which solves also another related | |
409 | * inconsistency is already in the pipeline. | |
410 | */ | |
411 | #ifdef CONFIG_HIGH_RES_TIMERS | |
412 | { | |
8b0e1953 | 413 | ktime_t kj = NSEC_PER_SEC / HZ; |
58229a18 | 414 | |
80105cd0 | 415 | if (timr->it_interval < kj) |
58229a18 TG |
416 | now = ktime_add(now, kj); |
417 | } | |
418 | #endif | |
78c9c4df TG |
419 | timr->it_overrun += hrtimer_forward(timer, now, |
420 | timr->it_interval); | |
becf8b5d | 421 | ret = HRTIMER_RESTART; |
a0a0c28c | 422 | ++timr->it_requeue_pending; |
21e55c1f | 423 | timr->it_active = 1; |
1da177e4 | 424 | } |
1da177e4 | 425 | } |
1da177e4 | 426 | |
becf8b5d TG |
427 | unlock_timer(timr, flags); |
428 | return ret; | |
429 | } | |
1da177e4 | 430 | |
27af4245 | 431 | static struct pid *good_sigevent(sigevent_t * event) |
1da177e4 | 432 | { |
2118e1f5 EB |
433 | struct pid *pid = task_tgid(current); |
434 | struct task_struct *rtn; | |
1da177e4 | 435 | |
cef31d9a TG |
436 | switch (event->sigev_notify) { |
437 | case SIGEV_SIGNAL | SIGEV_THREAD_ID: | |
2118e1f5 EB |
438 | pid = find_vpid(event->sigev_notify_thread_id); |
439 | rtn = pid_task(pid, PIDTYPE_PID); | |
cef31d9a TG |
440 | if (!rtn || !same_thread_group(rtn, current)) |
441 | return NULL; | |
df561f66 | 442 | fallthrough; |
cef31d9a TG |
443 | case SIGEV_SIGNAL: |
444 | case SIGEV_THREAD: | |
445 | if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) | |
446 | return NULL; | |
df561f66 | 447 | fallthrough; |
cef31d9a | 448 | case SIGEV_NONE: |
2118e1f5 | 449 | return pid; |
cef31d9a | 450 | default: |
1da177e4 | 451 | return NULL; |
cef31d9a | 452 | } |
1da177e4 LT |
453 | } |
454 | ||
1da177e4 LT |
455 | static struct k_itimer * alloc_posix_timer(void) |
456 | { | |
457 | struct k_itimer *tmr; | |
c3762229 | 458 | tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); |
1da177e4 LT |
459 | if (!tmr) |
460 | return tmr; | |
1da177e4 LT |
461 | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { |
462 | kmem_cache_free(posix_timers_cache, tmr); | |
aa94fbd5 | 463 | return NULL; |
1da177e4 | 464 | } |
3b10db2b | 465 | clear_siginfo(&tmr->sigq->info); |
1da177e4 LT |
466 | return tmr; |
467 | } | |
468 | ||
8af08871 ED |
469 | static void k_itimer_rcu_free(struct rcu_head *head) |
470 | { | |
5d99b32a | 471 | struct k_itimer *tmr = container_of(head, struct k_itimer, rcu); |
8af08871 ED |
472 | |
473 | kmem_cache_free(posix_timers_cache, tmr); | |
474 | } | |
475 | ||
1da177e4 LT |
476 | #define IT_ID_SET 1 |
477 | #define IT_ID_NOT_SET 0 | |
478 | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | |
479 | { | |
480 | if (it_id_set) { | |
481 | unsigned long flags; | |
5ed67f05 PE |
482 | spin_lock_irqsave(&hash_lock, flags); |
483 | hlist_del_rcu(&tmr->t_hash); | |
484 | spin_unlock_irqrestore(&hash_lock, flags); | |
1da177e4 | 485 | } |
89992102 | 486 | put_pid(tmr->it_pid); |
1da177e4 | 487 | sigqueue_free(tmr->sigq); |
5d99b32a | 488 | call_rcu(&tmr->rcu, k_itimer_rcu_free); |
1da177e4 LT |
489 | } |
490 | ||
838394fb TG |
491 | static int common_timer_create(struct k_itimer *new_timer) |
492 | { | |
493 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); | |
494 | return 0; | |
495 | } | |
496 | ||
1da177e4 | 497 | /* Create a POSIX.1b interval timer. */ |
2482097c AV |
498 | static int do_timer_create(clockid_t which_clock, struct sigevent *event, |
499 | timer_t __user *created_timer_id) | |
1da177e4 | 500 | { |
d3ba5a9a | 501 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
2cd499e3 | 502 | struct k_itimer *new_timer; |
ef864c95 | 503 | int error, new_timer_id; |
1da177e4 LT |
504 | int it_id_set = IT_ID_NOT_SET; |
505 | ||
838394fb | 506 | if (!kc) |
1da177e4 | 507 | return -EINVAL; |
838394fb TG |
508 | if (!kc->timer_create) |
509 | return -EOPNOTSUPP; | |
1da177e4 LT |
510 | |
511 | new_timer = alloc_posix_timer(); | |
512 | if (unlikely(!new_timer)) | |
513 | return -EAGAIN; | |
514 | ||
515 | spin_lock_init(&new_timer->it_lock); | |
5ed67f05 PE |
516 | new_timer_id = posix_timer_add(new_timer); |
517 | if (new_timer_id < 0) { | |
518 | error = new_timer_id; | |
1da177e4 LT |
519 | goto out; |
520 | } | |
521 | ||
522 | it_id_set = IT_ID_SET; | |
523 | new_timer->it_id = (timer_t) new_timer_id; | |
524 | new_timer->it_clock = which_clock; | |
d97bb75d | 525 | new_timer->kclock = kc; |
78c9c4df | 526 | new_timer->it_overrun = -1LL; |
1da177e4 | 527 | |
2482097c | 528 | if (event) { |
36b2f046 | 529 | rcu_read_lock(); |
2482097c | 530 | new_timer->it_pid = get_pid(good_sigevent(event)); |
36b2f046 | 531 | rcu_read_unlock(); |
89992102 | 532 | if (!new_timer->it_pid) { |
1da177e4 LT |
533 | error = -EINVAL; |
534 | goto out; | |
535 | } | |
2482097c AV |
536 | new_timer->it_sigev_notify = event->sigev_notify; |
537 | new_timer->sigq->info.si_signo = event->sigev_signo; | |
538 | new_timer->sigq->info.si_value = event->sigev_value; | |
1da177e4 | 539 | } else { |
2482097c AV |
540 | new_timer->it_sigev_notify = SIGEV_SIGNAL; |
541 | new_timer->sigq->info.si_signo = SIGALRM; | |
542 | memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); | |
543 | new_timer->sigq->info.si_value.sival_int = new_timer->it_id; | |
89992102 | 544 | new_timer->it_pid = get_pid(task_tgid(current)); |
1da177e4 LT |
545 | } |
546 | ||
717835d9 | 547 | new_timer->sigq->info.si_tid = new_timer->it_id; |
5a9fa730 | 548 | new_timer->sigq->info.si_code = SI_TIMER; |
717835d9 | 549 | |
2b08de00 AV |
550 | if (copy_to_user(created_timer_id, |
551 | &new_timer_id, sizeof (new_timer_id))) { | |
552 | error = -EFAULT; | |
553 | goto out; | |
554 | } | |
555 | ||
838394fb | 556 | error = kc->timer_create(new_timer); |
45e0fffc AV |
557 | if (error) |
558 | goto out; | |
559 | ||
36b2f046 | 560 | spin_lock_irq(¤t->sighand->siglock); |
27af4245 | 561 | new_timer->it_signal = current->signal; |
36b2f046 ON |
562 | list_add(&new_timer->list, ¤t->signal->posix_timers); |
563 | spin_unlock_irq(¤t->sighand->siglock); | |
ef864c95 ON |
564 | |
565 | return 0; | |
838394fb | 566 | /* |
1da177e4 LT |
567 | * In the case of the timer belonging to another task, after |
568 | * the task is unlocked, the timer is owned by the other task | |
569 | * and may cease to exist at any time. Don't use or modify | |
570 | * new_timer after the unlock call. | |
571 | */ | |
1da177e4 | 572 | out: |
ef864c95 | 573 | release_posix_timer(new_timer, it_id_set); |
1da177e4 LT |
574 | return error; |
575 | } | |
576 | ||
2482097c AV |
577 | SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, |
578 | struct sigevent __user *, timer_event_spec, | |
579 | timer_t __user *, created_timer_id) | |
580 | { | |
581 | if (timer_event_spec) { | |
582 | sigevent_t event; | |
583 | ||
584 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) | |
585 | return -EFAULT; | |
586 | return do_timer_create(which_clock, &event, created_timer_id); | |
587 | } | |
588 | return do_timer_create(which_clock, NULL, created_timer_id); | |
589 | } | |
590 | ||
591 | #ifdef CONFIG_COMPAT | |
592 | COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, | |
593 | struct compat_sigevent __user *, timer_event_spec, | |
594 | timer_t __user *, created_timer_id) | |
595 | { | |
596 | if (timer_event_spec) { | |
597 | sigevent_t event; | |
598 | ||
599 | if (get_compat_sigevent(&event, timer_event_spec)) | |
600 | return -EFAULT; | |
601 | return do_timer_create(which_clock, &event, created_timer_id); | |
602 | } | |
603 | return do_timer_create(which_clock, NULL, created_timer_id); | |
604 | } | |
605 | #endif | |
606 | ||
1da177e4 LT |
607 | /* |
608 | * Locking issues: We need to protect the result of the id look up until | |
609 | * we get the timer locked down so it is not deleted under us. The | |
610 | * removal is done under the idr spinlock so we use that here to bridge | |
611 | * the find to the timer lock. To avoid a dead lock, the timer id MUST | |
612 | * be release with out holding the timer lock. | |
613 | */ | |
20f33a03 | 614 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) |
1da177e4 LT |
615 | { |
616 | struct k_itimer *timr; | |
8af08871 | 617 | |
e182bb38 TH |
618 | /* |
619 | * timer_t could be any type >= int and we want to make sure any | |
620 | * @timer_id outside positive int range fails lookup. | |
621 | */ | |
622 | if ((unsigned long long)timer_id > INT_MAX) | |
623 | return NULL; | |
624 | ||
8af08871 | 625 | rcu_read_lock(); |
5ed67f05 | 626 | timr = posix_timer_by_id(timer_id); |
1da177e4 | 627 | if (timr) { |
8af08871 | 628 | spin_lock_irqsave(&timr->it_lock, *flags); |
89992102 | 629 | if (timr->it_signal == current->signal) { |
8af08871 | 630 | rcu_read_unlock(); |
31d92845 ON |
631 | return timr; |
632 | } | |
8af08871 | 633 | spin_unlock_irqrestore(&timr->it_lock, *flags); |
31d92845 | 634 | } |
8af08871 | 635 | rcu_read_unlock(); |
1da177e4 | 636 | |
31d92845 | 637 | return NULL; |
1da177e4 LT |
638 | } |
639 | ||
91d57bae TG |
640 | static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) |
641 | { | |
642 | struct hrtimer *timer = &timr->it.real.timer; | |
643 | ||
644 | return __hrtimer_expires_remaining_adjusted(timer, now); | |
645 | } | |
646 | ||
6fec64e1 | 647 | static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) |
91d57bae TG |
648 | { |
649 | struct hrtimer *timer = &timr->it.real.timer; | |
650 | ||
6fec64e1 | 651 | return hrtimer_forward(timer, now, timr->it_interval); |
91d57bae TG |
652 | } |
653 | ||
1da177e4 LT |
654 | /* |
655 | * Get the time remaining on a POSIX.1b interval timer. This function | |
656 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not | |
657 | * mess with irq. | |
658 | * | |
659 | * We have a couple of messes to clean up here. First there is the case | |
660 | * of a timer that has a requeue pending. These timers should appear to | |
661 | * be in the timer list with an expiry as if we were to requeue them | |
662 | * now. | |
663 | * | |
664 | * The second issue is the SIGEV_NONE timer which may be active but is | |
665 | * not really ever put in the timer list (to save system resources). | |
666 | * This timer may be expired, and if so, we will do it here. Otherwise | |
667 | * it is the same as a requeue pending timer WRT to what we should | |
668 | * report. | |
669 | */ | |
f2c45807 | 670 | void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) |
1da177e4 | 671 | { |
91d57bae | 672 | const struct k_clock *kc = timr->kclock; |
3b98a532 | 673 | ktime_t now, remaining, iv; |
91d57bae | 674 | bool sig_none; |
1da177e4 | 675 | |
cef31d9a | 676 | sig_none = timr->it_sigev_notify == SIGEV_NONE; |
80105cd0 | 677 | iv = timr->it_interval; |
3b98a532 | 678 | |
becf8b5d | 679 | /* interval timer ? */ |
91d57bae | 680 | if (iv) { |
5f252b32 | 681 | cur_setting->it_interval = ktime_to_timespec64(iv); |
91d57bae TG |
682 | } else if (!timr->it_active) { |
683 | /* | |
684 | * SIGEV_NONE oneshot timers are never queued. Check them | |
685 | * below. | |
686 | */ | |
687 | if (!sig_none) | |
688 | return; | |
689 | } | |
3b98a532 | 690 | |
198fa445 | 691 | now = kc->clock_get_ktime(timr->it_clock); |
3b98a532 | 692 | |
becf8b5d | 693 | /* |
91d57bae TG |
694 | * When a requeue is pending or this is a SIGEV_NONE timer move the |
695 | * expiry time forward by intervals, so expiry is > now. | |
becf8b5d | 696 | */ |
91d57bae | 697 | if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) |
78c9c4df | 698 | timr->it_overrun += kc->timer_forward(timr, now); |
3b98a532 | 699 | |
91d57bae | 700 | remaining = kc->timer_remaining(timr, now); |
becf8b5d | 701 | /* Return 0 only, when the timer is expired and not pending */ |
2456e855 | 702 | if (remaining <= 0) { |
3b98a532 RZ |
703 | /* |
704 | * A single shot SIGEV_NONE timer must return 0, when | |
705 | * it is expired ! | |
706 | */ | |
91d57bae | 707 | if (!sig_none) |
3b98a532 | 708 | cur_setting->it_value.tv_nsec = 1; |
91d57bae | 709 | } else { |
5f252b32 | 710 | cur_setting->it_value = ktime_to_timespec64(remaining); |
91d57bae | 711 | } |
1da177e4 LT |
712 | } |
713 | ||
714 | /* Get the time remaining on a POSIX.1b interval timer. */ | |
b0dc1242 | 715 | static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) |
1da177e4 | 716 | { |
a7319fa2 | 717 | struct k_itimer *timr; |
d3ba5a9a | 718 | const struct k_clock *kc; |
1da177e4 | 719 | unsigned long flags; |
a7319fa2 | 720 | int ret = 0; |
1da177e4 LT |
721 | |
722 | timr = lock_timer(timer_id, &flags); | |
723 | if (!timr) | |
724 | return -EINVAL; | |
725 | ||
b0dc1242 | 726 | memset(setting, 0, sizeof(*setting)); |
d97bb75d | 727 | kc = timr->kclock; |
a7319fa2 TG |
728 | if (WARN_ON_ONCE(!kc || !kc->timer_get)) |
729 | ret = -EINVAL; | |
730 | else | |
b0dc1242 | 731 | kc->timer_get(timr, setting); |
1da177e4 LT |
732 | |
733 | unlock_timer(timr, flags); | |
b0dc1242 AV |
734 | return ret; |
735 | } | |
1da177e4 | 736 | |
b0dc1242 AV |
737 | /* Get the time remaining on a POSIX.1b interval timer. */ |
738 | SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, | |
6ff84735 | 739 | struct __kernel_itimerspec __user *, setting) |
b0dc1242 | 740 | { |
725816e8 | 741 | struct itimerspec64 cur_setting; |
1da177e4 | 742 | |
725816e8 | 743 | int ret = do_timer_gettime(timer_id, &cur_setting); |
b0dc1242 | 744 | if (!ret) { |
725816e8 | 745 | if (put_itimerspec64(&cur_setting, setting)) |
b0dc1242 AV |
746 | ret = -EFAULT; |
747 | } | |
a7319fa2 | 748 | return ret; |
1da177e4 | 749 | } |
becf8b5d | 750 | |
6ff84735 DD |
751 | #ifdef CONFIG_COMPAT_32BIT_TIME |
752 | ||
8dabe724 AB |
753 | SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id, |
754 | struct old_itimerspec32 __user *, setting) | |
b0dc1242 | 755 | { |
725816e8 | 756 | struct itimerspec64 cur_setting; |
b0dc1242 | 757 | |
725816e8 | 758 | int ret = do_timer_gettime(timer_id, &cur_setting); |
b0dc1242 | 759 | if (!ret) { |
9afc5eee | 760 | if (put_old_itimerspec32(&cur_setting, setting)) |
b0dc1242 AV |
761 | ret = -EFAULT; |
762 | } | |
763 | return ret; | |
764 | } | |
6ff84735 | 765 | |
b0dc1242 AV |
766 | #endif |
767 | ||
1da177e4 LT |
768 | /* |
769 | * Get the number of overruns of a POSIX.1b interval timer. This is to | |
770 | * be the overrun of the timer last delivered. At the same time we are | |
771 | * accumulating overruns on the next timer. The overrun is frozen when | |
772 | * the signal is delivered, either at the notify time (if the info block | |
773 | * is not queued) or at the actual delivery time (as we are informed by | |
96fe3b07 | 774 | * the call back to posixtimer_rearm(). So all we need to do is |
1da177e4 LT |
775 | * to pick up the frozen overrun. |
776 | */ | |
362e9c07 | 777 | SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
1da177e4 LT |
778 | { |
779 | struct k_itimer *timr; | |
780 | int overrun; | |
5ba25331 | 781 | unsigned long flags; |
1da177e4 LT |
782 | |
783 | timr = lock_timer(timer_id, &flags); | |
784 | if (!timr) | |
785 | return -EINVAL; | |
786 | ||
78c9c4df | 787 | overrun = timer_overrun_to_int(timr, 0); |
1da177e4 LT |
788 | unlock_timer(timr, flags); |
789 | ||
790 | return overrun; | |
791 | } | |
1da177e4 | 792 | |
eae1c4ae TG |
793 | static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, |
794 | bool absolute, bool sigev_none) | |
795 | { | |
796 | struct hrtimer *timer = &timr->it.real.timer; | |
797 | enum hrtimer_mode mode; | |
798 | ||
799 | mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; | |
67edab48 TG |
800 | /* |
801 | * Posix magic: Relative CLOCK_REALTIME timers are not affected by | |
802 | * clock modifications, so they become CLOCK_MONOTONIC based under the | |
803 | * hood. See hrtimer_init(). Update timr->kclock, so the generic | |
9c71a2e8 | 804 | * functions which use timr->kclock->clock_get_*() work. |
67edab48 TG |
805 | * |
806 | * Note: it_clock stays unmodified, because the next timer_set() might | |
807 | * use ABSTIME, so it needs to switch back. | |
808 | */ | |
809 | if (timr->it_clock == CLOCK_REALTIME) | |
810 | timr->kclock = absolute ? &clock_realtime : &clock_monotonic; | |
811 | ||
eae1c4ae TG |
812 | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
813 | timr->it.real.timer.function = posix_timer_fn; | |
814 | ||
815 | if (!absolute) | |
816 | expires = ktime_add_safe(expires, timer->base->get_time()); | |
817 | hrtimer_set_expires(timer, expires); | |
818 | ||
819 | if (!sigev_none) | |
820 | hrtimer_start_expires(timer, HRTIMER_MODE_ABS); | |
821 | } | |
822 | ||
823 | static int common_hrtimer_try_to_cancel(struct k_itimer *timr) | |
824 | { | |
825 | return hrtimer_try_to_cancel(&timr->it.real.timer); | |
826 | } | |
827 | ||
ec8f954a TG |
828 | static void common_timer_wait_running(struct k_itimer *timer) |
829 | { | |
830 | hrtimer_cancel_wait_running(&timer->it.real.timer); | |
831 | } | |
832 | ||
0bee3b60 FW |
833 | /* |
834 | * On PREEMPT_RT this prevent priority inversion against softirq kthread in | |
835 | * case it gets preempted while executing a timer callback. See comments in | |
836 | * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a | |
837 | * cpu_relax(). | |
838 | */ | |
6945e5c2 TG |
839 | static struct k_itimer *timer_wait_running(struct k_itimer *timer, |
840 | unsigned long *flags) | |
841 | { | |
ec8f954a | 842 | const struct k_clock *kc = READ_ONCE(timer->kclock); |
6945e5c2 TG |
843 | timer_t timer_id = READ_ONCE(timer->it_id); |
844 | ||
ec8f954a TG |
845 | /* Prevent kfree(timer) after dropping the lock */ |
846 | rcu_read_lock(); | |
6945e5c2 | 847 | unlock_timer(timer, *flags); |
ec8f954a TG |
848 | |
849 | if (!WARN_ON_ONCE(!kc->timer_wait_running)) | |
850 | kc->timer_wait_running(timer); | |
851 | ||
852 | rcu_read_unlock(); | |
6945e5c2 TG |
853 | /* Relock the timer. It might be not longer hashed. */ |
854 | return lock_timer(timer_id, flags); | |
855 | } | |
856 | ||
1da177e4 | 857 | /* Set a POSIX.1b interval timer. */ |
f2c45807 TG |
858 | int common_timer_set(struct k_itimer *timr, int flags, |
859 | struct itimerspec64 *new_setting, | |
860 | struct itimerspec64 *old_setting) | |
1da177e4 | 861 | { |
eae1c4ae TG |
862 | const struct k_clock *kc = timr->kclock; |
863 | bool sigev_none; | |
864 | ktime_t expires; | |
1da177e4 LT |
865 | |
866 | if (old_setting) | |
867 | common_timer_get(timr, old_setting); | |
868 | ||
eae1c4ae | 869 | /* Prevent rearming by clearing the interval */ |
80105cd0 | 870 | timr->it_interval = 0; |
1da177e4 | 871 | /* |
eae1c4ae TG |
872 | * Careful here. On SMP systems the timer expiry function could be |
873 | * active and spinning on timr->it_lock. | |
1da177e4 | 874 | */ |
eae1c4ae | 875 | if (kc->timer_try_to_cancel(timr) < 0) |
1da177e4 | 876 | return TIMER_RETRY; |
1da177e4 | 877 | |
21e55c1f TG |
878 | timr->it_active = 0; |
879 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | |
1da177e4 LT |
880 | ~REQUEUE_PENDING; |
881 | timr->it_overrun_last = 0; | |
1da177e4 | 882 | |
eae1c4ae | 883 | /* Switch off the timer when it_value is zero */ |
becf8b5d TG |
884 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) |
885 | return 0; | |
1da177e4 | 886 | |
80105cd0 | 887 | timr->it_interval = timespec64_to_ktime(new_setting->it_interval); |
eae1c4ae | 888 | expires = timespec64_to_ktime(new_setting->it_value); |
7da8b3a4 AV |
889 | if (flags & TIMER_ABSTIME) |
890 | expires = timens_ktime_to_host(timr->it_clock, expires); | |
cef31d9a | 891 | sigev_none = timr->it_sigev_notify == SIGEV_NONE; |
becf8b5d | 892 | |
eae1c4ae TG |
893 | kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); |
894 | timr->it_active = !sigev_none; | |
1da177e4 LT |
895 | return 0; |
896 | } | |
897 | ||
21670ee4 | 898 | static int do_timer_settime(timer_t timer_id, int tmr_flags, |
1acbe770 AV |
899 | struct itimerspec64 *new_spec64, |
900 | struct itimerspec64 *old_spec64) | |
1da177e4 | 901 | { |
1acbe770 | 902 | const struct k_clock *kc; |
5f252b32 | 903 | struct k_itimer *timr; |
21670ee4 | 904 | unsigned long flags; |
5f252b32 | 905 | int error = 0; |
1da177e4 | 906 | |
1acbe770 AV |
907 | if (!timespec64_valid(&new_spec64->it_interval) || |
908 | !timespec64_valid(&new_spec64->it_value)) | |
1da177e4 LT |
909 | return -EINVAL; |
910 | ||
1acbe770 AV |
911 | if (old_spec64) |
912 | memset(old_spec64, 0, sizeof(*old_spec64)); | |
6945e5c2 | 913 | |
21670ee4 | 914 | timr = lock_timer(timer_id, &flags); |
6945e5c2 | 915 | retry: |
1da177e4 LT |
916 | if (!timr) |
917 | return -EINVAL; | |
918 | ||
d97bb75d | 919 | kc = timr->kclock; |
27722df1 TG |
920 | if (WARN_ON_ONCE(!kc || !kc->timer_set)) |
921 | error = -EINVAL; | |
922 | else | |
21670ee4 | 923 | error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64); |
1da177e4 | 924 | |
1da177e4 | 925 | if (error == TIMER_RETRY) { |
6945e5c2 TG |
926 | // We already got the old time... |
927 | old_spec64 = NULL; | |
928 | /* Unlocks and relocks the timer if it still exists */ | |
929 | timr = timer_wait_running(timr, &flags); | |
1da177e4 LT |
930 | goto retry; |
931 | } | |
6945e5c2 | 932 | unlock_timer(timr, flags); |
1da177e4 | 933 | |
1acbe770 AV |
934 | return error; |
935 | } | |
1da177e4 | 936 | |
1acbe770 AV |
937 | /* Set a POSIX.1b interval timer */ |
938 | SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, | |
6ff84735 DD |
939 | const struct __kernel_itimerspec __user *, new_setting, |
940 | struct __kernel_itimerspec __user *, old_setting) | |
1acbe770 | 941 | { |
725816e8 DD |
942 | struct itimerspec64 new_spec, old_spec; |
943 | struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; | |
1acbe770 AV |
944 | int error = 0; |
945 | ||
946 | if (!new_setting) | |
947 | return -EINVAL; | |
948 | ||
725816e8 | 949 | if (get_itimerspec64(&new_spec, new_setting)) |
1acbe770 | 950 | return -EFAULT; |
1acbe770 | 951 | |
725816e8 | 952 | error = do_timer_settime(timer_id, flags, &new_spec, rtn); |
1acbe770 | 953 | if (!error && old_setting) { |
725816e8 | 954 | if (put_itimerspec64(&old_spec, old_setting)) |
1acbe770 AV |
955 | error = -EFAULT; |
956 | } | |
957 | return error; | |
958 | } | |
959 | ||
6ff84735 | 960 | #ifdef CONFIG_COMPAT_32BIT_TIME |
8dabe724 AB |
961 | SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags, |
962 | struct old_itimerspec32 __user *, new, | |
963 | struct old_itimerspec32 __user *, old) | |
1acbe770 | 964 | { |
725816e8 DD |
965 | struct itimerspec64 new_spec, old_spec; |
966 | struct itimerspec64 *rtn = old ? &old_spec : NULL; | |
1acbe770 AV |
967 | int error = 0; |
968 | ||
969 | if (!new) | |
970 | return -EINVAL; | |
9afc5eee | 971 | if (get_old_itimerspec32(&new_spec, new)) |
1acbe770 AV |
972 | return -EFAULT; |
973 | ||
725816e8 | 974 | error = do_timer_settime(timer_id, flags, &new_spec, rtn); |
1acbe770 | 975 | if (!error && old) { |
9afc5eee | 976 | if (put_old_itimerspec32(&old_spec, old)) |
1acbe770 AV |
977 | error = -EFAULT; |
978 | } | |
1da177e4 LT |
979 | return error; |
980 | } | |
1acbe770 | 981 | #endif |
1da177e4 | 982 | |
f2c45807 | 983 | int common_timer_del(struct k_itimer *timer) |
1da177e4 | 984 | { |
eae1c4ae | 985 | const struct k_clock *kc = timer->kclock; |
f972be33 | 986 | |
eae1c4ae TG |
987 | timer->it_interval = 0; |
988 | if (kc->timer_try_to_cancel(timer) < 0) | |
1da177e4 | 989 | return TIMER_RETRY; |
21e55c1f | 990 | timer->it_active = 0; |
1da177e4 LT |
991 | return 0; |
992 | } | |
993 | ||
994 | static inline int timer_delete_hook(struct k_itimer *timer) | |
995 | { | |
d97bb75d | 996 | const struct k_clock *kc = timer->kclock; |
6761c670 TG |
997 | |
998 | if (WARN_ON_ONCE(!kc || !kc->timer_del)) | |
999 | return -EINVAL; | |
1000 | return kc->timer_del(timer); | |
1da177e4 LT |
1001 | } |
1002 | ||
1003 | /* Delete a POSIX.1b interval timer. */ | |
362e9c07 | 1004 | SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) |
1da177e4 LT |
1005 | { |
1006 | struct k_itimer *timer; | |
5ba25331 | 1007 | unsigned long flags; |
1da177e4 | 1008 | |
1da177e4 | 1009 | timer = lock_timer(timer_id, &flags); |
6945e5c2 TG |
1010 | |
1011 | retry_delete: | |
1da177e4 LT |
1012 | if (!timer) |
1013 | return -EINVAL; | |
1014 | ||
6945e5c2 TG |
1015 | if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) { |
1016 | /* Unlocks and relocks the timer if it still exists */ | |
1017 | timer = timer_wait_running(timer, &flags); | |
1da177e4 LT |
1018 | goto retry_delete; |
1019 | } | |
becf8b5d | 1020 | |
1da177e4 LT |
1021 | spin_lock(¤t->sighand->siglock); |
1022 | list_del(&timer->list); | |
1023 | spin_unlock(¤t->sighand->siglock); | |
1024 | /* | |
1025 | * This keeps any tasks waiting on the spin lock from thinking | |
1026 | * they got something (see the lock code above). | |
1027 | */ | |
89992102 | 1028 | timer->it_signal = NULL; |
4b7a1304 | 1029 | |
1da177e4 LT |
1030 | unlock_timer(timer, flags); |
1031 | release_posix_timer(timer, IT_ID_SET); | |
1032 | return 0; | |
1033 | } | |
becf8b5d | 1034 | |
1da177e4 LT |
1035 | /* |
1036 | * return timer owned by the process, used by exit_itimers | |
1037 | */ | |
858119e1 | 1038 | static void itimer_delete(struct k_itimer *timer) |
1da177e4 | 1039 | { |
1da177e4 | 1040 | retry_delete: |
7586addb | 1041 | spin_lock_irq(&timer->it_lock); |
1da177e4 | 1042 | |
becf8b5d | 1043 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
7586addb | 1044 | spin_unlock_irq(&timer->it_lock); |
1da177e4 LT |
1045 | goto retry_delete; |
1046 | } | |
1da177e4 | 1047 | list_del(&timer->list); |
4b7a1304 | 1048 | |
7586addb | 1049 | spin_unlock_irq(&timer->it_lock); |
1da177e4 LT |
1050 | release_posix_timer(timer, IT_ID_SET); |
1051 | } | |
1052 | ||
1053 | /* | |
25f407f0 | 1054 | * This is called by do_exit or de_thread, only when there are no more |
1da177e4 LT |
1055 | * references to the shared signal_struct. |
1056 | */ | |
1057 | void exit_itimers(struct signal_struct *sig) | |
1058 | { | |
1059 | struct k_itimer *tmr; | |
1060 | ||
1061 | while (!list_empty(&sig->posix_timers)) { | |
1062 | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); | |
1063 | itimer_delete(tmr); | |
1064 | } | |
1065 | } | |
1066 | ||
362e9c07 | 1067 | SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, |
6d5b8413 | 1068 | const struct __kernel_timespec __user *, tp) |
1da177e4 | 1069 | { |
d3ba5a9a | 1070 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
5c499410 | 1071 | struct timespec64 new_tp; |
1da177e4 | 1072 | |
26f9a479 | 1073 | if (!kc || !kc->clock_set) |
1da177e4 | 1074 | return -EINVAL; |
26f9a479 | 1075 | |
5c499410 | 1076 | if (get_timespec64(&new_tp, tp)) |
1da177e4 LT |
1077 | return -EFAULT; |
1078 | ||
5c499410 | 1079 | return kc->clock_set(which_clock, &new_tp); |
1da177e4 LT |
1080 | } |
1081 | ||
362e9c07 | 1082 | SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, |
6d5b8413 | 1083 | struct __kernel_timespec __user *, tp) |
1da177e4 | 1084 | { |
d3ba5a9a | 1085 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
5c499410 | 1086 | struct timespec64 kernel_tp; |
1da177e4 LT |
1087 | int error; |
1088 | ||
42285777 | 1089 | if (!kc) |
1da177e4 | 1090 | return -EINVAL; |
42285777 | 1091 | |
819a95fe | 1092 | error = kc->clock_get_timespec(which_clock, &kernel_tp); |
42285777 | 1093 | |
5c499410 | 1094 | if (!error && put_timespec64(&kernel_tp, tp)) |
1da177e4 LT |
1095 | error = -EFAULT; |
1096 | ||
1097 | return error; | |
1da177e4 LT |
1098 | } |
1099 | ||
ead25417 | 1100 | int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx) |
f1f1d5eb | 1101 | { |
d3ba5a9a | 1102 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
f1f1d5eb RC |
1103 | |
1104 | if (!kc) | |
1105 | return -EINVAL; | |
1106 | if (!kc->clock_adj) | |
1107 | return -EOPNOTSUPP; | |
1108 | ||
1a596398 AB |
1109 | return kc->clock_adj(which_clock, ktx); |
1110 | } | |
1111 | ||
1112 | SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, | |
3876ced4 | 1113 | struct __kernel_timex __user *, utx) |
1a596398 | 1114 | { |
ead25417 | 1115 | struct __kernel_timex ktx; |
1a596398 AB |
1116 | int err; |
1117 | ||
f1f1d5eb RC |
1118 | if (copy_from_user(&ktx, utx, sizeof(ktx))) |
1119 | return -EFAULT; | |
1120 | ||
1a596398 | 1121 | err = do_clock_adjtime(which_clock, &ktx); |
f1f1d5eb | 1122 | |
f0dbe81f | 1123 | if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) |
f1f1d5eb RC |
1124 | return -EFAULT; |
1125 | ||
1126 | return err; | |
1127 | } | |
1128 | ||
d822cdcc | 1129 | SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, |
6d5b8413 | 1130 | struct __kernel_timespec __user *, tp) |
d822cdcc AV |
1131 | { |
1132 | const struct k_clock *kc = clockid_to_kclock(which_clock); | |
5c499410 | 1133 | struct timespec64 rtn_tp; |
d822cdcc AV |
1134 | int error; |
1135 | ||
1136 | if (!kc) | |
1137 | return -EINVAL; | |
1138 | ||
5c499410 | 1139 | error = kc->clock_getres(which_clock, &rtn_tp); |
d822cdcc | 1140 | |
5c499410 | 1141 | if (!error && tp && put_timespec64(&rtn_tp, tp)) |
d822cdcc AV |
1142 | error = -EFAULT; |
1143 | ||
1144 | return error; | |
1145 | } | |
1146 | ||
b5793b0d | 1147 | #ifdef CONFIG_COMPAT_32BIT_TIME |
3a4d44b6 | 1148 | |
8dabe724 AB |
1149 | SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock, |
1150 | struct old_timespec32 __user *, tp) | |
d822cdcc AV |
1151 | { |
1152 | const struct k_clock *kc = clockid_to_kclock(which_clock); | |
5c499410 | 1153 | struct timespec64 ts; |
d822cdcc AV |
1154 | |
1155 | if (!kc || !kc->clock_set) | |
1156 | return -EINVAL; | |
1157 | ||
9afc5eee | 1158 | if (get_old_timespec32(&ts, tp)) |
d822cdcc AV |
1159 | return -EFAULT; |
1160 | ||
5c499410 | 1161 | return kc->clock_set(which_clock, &ts); |
d822cdcc AV |
1162 | } |
1163 | ||
8dabe724 AB |
1164 | SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock, |
1165 | struct old_timespec32 __user *, tp) | |
d822cdcc AV |
1166 | { |
1167 | const struct k_clock *kc = clockid_to_kclock(which_clock); | |
5c499410 DD |
1168 | struct timespec64 ts; |
1169 | int err; | |
d822cdcc AV |
1170 | |
1171 | if (!kc) | |
1172 | return -EINVAL; | |
1173 | ||
819a95fe | 1174 | err = kc->clock_get_timespec(which_clock, &ts); |
d822cdcc | 1175 | |
9afc5eee | 1176 | if (!err && put_old_timespec32(&ts, tp)) |
5c499410 | 1177 | err = -EFAULT; |
d822cdcc | 1178 | |
5c499410 | 1179 | return err; |
d822cdcc AV |
1180 | } |
1181 | ||
8dabe724 AB |
1182 | SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock, |
1183 | struct old_timex32 __user *, utp) | |
3a4d44b6 | 1184 | { |
ead25417 | 1185 | struct __kernel_timex ktx; |
3a4d44b6 AV |
1186 | int err; |
1187 | ||
4d5f007e | 1188 | err = get_old_timex32(&ktx, utp); |
3a4d44b6 AV |
1189 | if (err) |
1190 | return err; | |
1191 | ||
1a596398 | 1192 | err = do_clock_adjtime(which_clock, &ktx); |
3a4d44b6 AV |
1193 | |
1194 | if (err >= 0) | |
4d5f007e | 1195 | err = put_old_timex32(utp, &ktx); |
3a4d44b6 AV |
1196 | |
1197 | return err; | |
1198 | } | |
3a4d44b6 | 1199 | |
8dabe724 AB |
1200 | SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock, |
1201 | struct old_timespec32 __user *, tp) | |
1da177e4 | 1202 | { |
d3ba5a9a | 1203 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
5c499410 DD |
1204 | struct timespec64 ts; |
1205 | int err; | |
1da177e4 | 1206 | |
e5e542ee | 1207 | if (!kc) |
1da177e4 LT |
1208 | return -EINVAL; |
1209 | ||
5c499410 | 1210 | err = kc->clock_getres(which_clock, &ts); |
9afc5eee | 1211 | if (!err && tp && put_old_timespec32(&ts, tp)) |
5c499410 | 1212 | return -EFAULT; |
1da177e4 | 1213 | |
5c499410 | 1214 | return err; |
1da177e4 | 1215 | } |
5c499410 | 1216 | |
d822cdcc | 1217 | #endif |
1da177e4 | 1218 | |
97735f25 TG |
1219 | /* |
1220 | * nanosleep for monotonic and realtime clocks | |
1221 | */ | |
1222 | static int common_nsleep(const clockid_t which_clock, int flags, | |
938e7cf2 | 1223 | const struct timespec64 *rqtp) |
97735f25 | 1224 | { |
ea2d1f7f AV |
1225 | ktime_t texp = timespec64_to_ktime(*rqtp); |
1226 | ||
1227 | return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? | |
080344b9 ON |
1228 | HRTIMER_MODE_ABS : HRTIMER_MODE_REL, |
1229 | which_clock); | |
97735f25 | 1230 | } |
1da177e4 | 1231 | |
1f9b37bf AV |
1232 | static int common_nsleep_timens(const clockid_t which_clock, int flags, |
1233 | const struct timespec64 *rqtp) | |
1234 | { | |
1235 | ktime_t texp = timespec64_to_ktime(*rqtp); | |
1236 | ||
1237 | if (flags & TIMER_ABSTIME) | |
1238 | texp = timens_ktime_to_host(which_clock, texp); | |
1239 | ||
1240 | return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? | |
1241 | HRTIMER_MODE_ABS : HRTIMER_MODE_REL, | |
1242 | which_clock); | |
1243 | } | |
1244 | ||
362e9c07 | 1245 | SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, |
01909974 DD |
1246 | const struct __kernel_timespec __user *, rqtp, |
1247 | struct __kernel_timespec __user *, rmtp) | |
1da177e4 | 1248 | { |
d3ba5a9a | 1249 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
c0edd7c9 | 1250 | struct timespec64 t; |
1da177e4 | 1251 | |
a5cd2880 | 1252 | if (!kc) |
1da177e4 | 1253 | return -EINVAL; |
a5cd2880 | 1254 | if (!kc->nsleep) |
93cb8e20 | 1255 | return -EOPNOTSUPP; |
1da177e4 | 1256 | |
c0edd7c9 | 1257 | if (get_timespec64(&t, rqtp)) |
1da177e4 LT |
1258 | return -EFAULT; |
1259 | ||
c0edd7c9 | 1260 | if (!timespec64_valid(&t)) |
1da177e4 | 1261 | return -EINVAL; |
99e6c0e6 AV |
1262 | if (flags & TIMER_ABSTIME) |
1263 | rmtp = NULL; | |
edbeda46 | 1264 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
99e6c0e6 | 1265 | current->restart_block.nanosleep.rmtp = rmtp; |
1da177e4 | 1266 | |
c0edd7c9 | 1267 | return kc->nsleep(which_clock, flags, &t); |
1da177e4 | 1268 | } |
1711ef38 | 1269 | |
b5793b0d DD |
1270 | #ifdef CONFIG_COMPAT_32BIT_TIME |
1271 | ||
8dabe724 AB |
1272 | SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags, |
1273 | struct old_timespec32 __user *, rqtp, | |
1274 | struct old_timespec32 __user *, rmtp) | |
1711ef38 | 1275 | { |
d3ba5a9a | 1276 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
c0edd7c9 | 1277 | struct timespec64 t; |
59bd5bc2 | 1278 | |
edbeda46 | 1279 | if (!kc) |
59bd5bc2 | 1280 | return -EINVAL; |
edbeda46 | 1281 | if (!kc->nsleep) |
93cb8e20 | 1282 | return -EOPNOTSUPP; |
edbeda46 | 1283 | |
9afc5eee | 1284 | if (get_old_timespec32(&t, rqtp)) |
edbeda46 | 1285 | return -EFAULT; |
1711ef38 | 1286 | |
c0edd7c9 | 1287 | if (!timespec64_valid(&t)) |
edbeda46 AV |
1288 | return -EINVAL; |
1289 | if (flags & TIMER_ABSTIME) | |
1290 | rmtp = NULL; | |
1291 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; | |
1292 | current->restart_block.nanosleep.compat_rmtp = rmtp; | |
1293 | ||
c0edd7c9 | 1294 | return kc->nsleep(which_clock, flags, &t); |
1711ef38 | 1295 | } |
b5793b0d | 1296 | |
edbeda46 | 1297 | #endif |
6631fa12 TG |
1298 | |
1299 | static const struct k_clock clock_realtime = { | |
eae1c4ae | 1300 | .clock_getres = posix_get_hrtimer_res, |
eaf80194 | 1301 | .clock_get_timespec = posix_get_realtime_timespec, |
9c71a2e8 | 1302 | .clock_get_ktime = posix_get_realtime_ktime, |
eae1c4ae TG |
1303 | .clock_set = posix_clock_realtime_set, |
1304 | .clock_adj = posix_clock_realtime_adj, | |
1305 | .nsleep = common_nsleep, | |
eae1c4ae TG |
1306 | .timer_create = common_timer_create, |
1307 | .timer_set = common_timer_set, | |
1308 | .timer_get = common_timer_get, | |
1309 | .timer_del = common_timer_del, | |
1310 | .timer_rearm = common_hrtimer_rearm, | |
1311 | .timer_forward = common_hrtimer_forward, | |
1312 | .timer_remaining = common_hrtimer_remaining, | |
1313 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, | |
ec8f954a | 1314 | .timer_wait_running = common_timer_wait_running, |
eae1c4ae | 1315 | .timer_arm = common_hrtimer_arm, |
6631fa12 TG |
1316 | }; |
1317 | ||
1318 | static const struct k_clock clock_monotonic = { | |
eae1c4ae | 1319 | .clock_getres = posix_get_hrtimer_res, |
eaf80194 | 1320 | .clock_get_timespec = posix_get_monotonic_timespec, |
9c71a2e8 | 1321 | .clock_get_ktime = posix_get_monotonic_ktime, |
1f9b37bf | 1322 | .nsleep = common_nsleep_timens, |
eae1c4ae TG |
1323 | .timer_create = common_timer_create, |
1324 | .timer_set = common_timer_set, | |
1325 | .timer_get = common_timer_get, | |
1326 | .timer_del = common_timer_del, | |
1327 | .timer_rearm = common_hrtimer_rearm, | |
1328 | .timer_forward = common_hrtimer_forward, | |
1329 | .timer_remaining = common_hrtimer_remaining, | |
1330 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, | |
ec8f954a | 1331 | .timer_wait_running = common_timer_wait_running, |
eae1c4ae | 1332 | .timer_arm = common_hrtimer_arm, |
6631fa12 TG |
1333 | }; |
1334 | ||
1335 | static const struct k_clock clock_monotonic_raw = { | |
eae1c4ae | 1336 | .clock_getres = posix_get_hrtimer_res, |
819a95fe | 1337 | .clock_get_timespec = posix_get_monotonic_raw, |
6631fa12 TG |
1338 | }; |
1339 | ||
1340 | static const struct k_clock clock_realtime_coarse = { | |
eae1c4ae | 1341 | .clock_getres = posix_get_coarse_res, |
819a95fe | 1342 | .clock_get_timespec = posix_get_realtime_coarse, |
6631fa12 TG |
1343 | }; |
1344 | ||
1345 | static const struct k_clock clock_monotonic_coarse = { | |
eae1c4ae | 1346 | .clock_getres = posix_get_coarse_res, |
819a95fe | 1347 | .clock_get_timespec = posix_get_monotonic_coarse, |
6631fa12 TG |
1348 | }; |
1349 | ||
1350 | static const struct k_clock clock_tai = { | |
eae1c4ae | 1351 | .clock_getres = posix_get_hrtimer_res, |
9c71a2e8 | 1352 | .clock_get_ktime = posix_get_tai_ktime, |
eaf80194 | 1353 | .clock_get_timespec = posix_get_tai_timespec, |
eae1c4ae | 1354 | .nsleep = common_nsleep, |
eae1c4ae TG |
1355 | .timer_create = common_timer_create, |
1356 | .timer_set = common_timer_set, | |
1357 | .timer_get = common_timer_get, | |
1358 | .timer_del = common_timer_del, | |
1359 | .timer_rearm = common_hrtimer_rearm, | |
1360 | .timer_forward = common_hrtimer_forward, | |
1361 | .timer_remaining = common_hrtimer_remaining, | |
1362 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, | |
ec8f954a | 1363 | .timer_wait_running = common_timer_wait_running, |
eae1c4ae | 1364 | .timer_arm = common_hrtimer_arm, |
6631fa12 TG |
1365 | }; |
1366 | ||
a3ed0e43 | 1367 | static const struct k_clock clock_boottime = { |
eae1c4ae | 1368 | .clock_getres = posix_get_hrtimer_res, |
9c71a2e8 | 1369 | .clock_get_ktime = posix_get_boottime_ktime, |
eaf80194 | 1370 | .clock_get_timespec = posix_get_boottime_timespec, |
1f9b37bf | 1371 | .nsleep = common_nsleep_timens, |
a3ed0e43 TG |
1372 | .timer_create = common_timer_create, |
1373 | .timer_set = common_timer_set, | |
1374 | .timer_get = common_timer_get, | |
1375 | .timer_del = common_timer_del, | |
1376 | .timer_rearm = common_hrtimer_rearm, | |
1377 | .timer_forward = common_hrtimer_forward, | |
1378 | .timer_remaining = common_hrtimer_remaining, | |
1379 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, | |
ec8f954a | 1380 | .timer_wait_running = common_timer_wait_running, |
a3ed0e43 | 1381 | .timer_arm = common_hrtimer_arm, |
6631fa12 TG |
1382 | }; |
1383 | ||
1384 | static const struct k_clock * const posix_clocks[] = { | |
1385 | [CLOCK_REALTIME] = &clock_realtime, | |
1386 | [CLOCK_MONOTONIC] = &clock_monotonic, | |
1387 | [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, | |
1388 | [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, | |
1389 | [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, | |
1390 | [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, | |
1391 | [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, | |
a3ed0e43 | 1392 | [CLOCK_BOOTTIME] = &clock_boottime, |
6631fa12 TG |
1393 | [CLOCK_REALTIME_ALARM] = &alarm_clock, |
1394 | [CLOCK_BOOTTIME_ALARM] = &alarm_clock, | |
1395 | [CLOCK_TAI] = &clock_tai, | |
1396 | }; | |
1397 | ||
1398 | static const struct k_clock *clockid_to_kclock(const clockid_t id) | |
1399 | { | |
19b558db TG |
1400 | clockid_t idx = id; |
1401 | ||
1402 | if (id < 0) { | |
6631fa12 TG |
1403 | return (id & CLOCKFD_MASK) == CLOCKFD ? |
1404 | &clock_posix_dynamic : &clock_posix_cpu; | |
19b558db | 1405 | } |
6631fa12 | 1406 | |
19b558db | 1407 | if (id >= ARRAY_SIZE(posix_clocks)) |
6631fa12 | 1408 | return NULL; |
19b558db TG |
1409 | |
1410 | return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; | |
6631fa12 | 1411 | } |