]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/cpuset.c | |
3 | * | |
4 | * Processor and Memory placement constraints for sets of tasks. | |
5 | * | |
6 | * Copyright (C) 2003 BULL SA. | |
029190c5 | 7 | * Copyright (C) 2004-2007 Silicon Graphics, Inc. |
8793d854 | 8 | * Copyright (C) 2006 Google, Inc |
1da177e4 LT |
9 | * |
10 | * Portions derived from Patrick Mochel's sysfs code. | |
11 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | |
1da177e4 | 12 | * |
825a46af | 13 | * 2003-10-10 Written by Simon Derr. |
1da177e4 | 14 | * 2003-10-22 Updates by Stephen Hemminger. |
825a46af | 15 | * 2004 May-July Rework by Paul Jackson. |
8793d854 | 16 | * 2006 Rework by Paul Menage to use generic cgroups |
cf417141 MK |
17 | * 2008 Rework of the scheduler domains and CPU hotplug handling |
18 | * by Max Krasnyansky | |
1da177e4 LT |
19 | * |
20 | * This file is subject to the terms and conditions of the GNU General Public | |
21 | * License. See the file COPYING in the main directory of the Linux | |
22 | * distribution for more details. | |
23 | */ | |
24 | ||
1da177e4 LT |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpumask.h> | |
27 | #include <linux/cpuset.h> | |
28 | #include <linux/err.h> | |
29 | #include <linux/errno.h> | |
30 | #include <linux/file.h> | |
31 | #include <linux/fs.h> | |
32 | #include <linux/init.h> | |
33 | #include <linux/interrupt.h> | |
34 | #include <linux/kernel.h> | |
35 | #include <linux/kmod.h> | |
36 | #include <linux/list.h> | |
68860ec1 | 37 | #include <linux/mempolicy.h> |
1da177e4 | 38 | #include <linux/mm.h> |
f481891f | 39 | #include <linux/memory.h> |
9984de1a | 40 | #include <linux/export.h> |
1da177e4 LT |
41 | #include <linux/mount.h> |
42 | #include <linux/namei.h> | |
43 | #include <linux/pagemap.h> | |
44 | #include <linux/proc_fs.h> | |
6b9c2603 | 45 | #include <linux/rcupdate.h> |
1da177e4 LT |
46 | #include <linux/sched.h> |
47 | #include <linux/seq_file.h> | |
22fb52dd | 48 | #include <linux/security.h> |
1da177e4 | 49 | #include <linux/slab.h> |
1da177e4 LT |
50 | #include <linux/spinlock.h> |
51 | #include <linux/stat.h> | |
52 | #include <linux/string.h> | |
53 | #include <linux/time.h> | |
54 | #include <linux/backing-dev.h> | |
55 | #include <linux/sort.h> | |
56 | ||
57 | #include <asm/uaccess.h> | |
60063497 | 58 | #include <linux/atomic.h> |
3d3f26a7 | 59 | #include <linux/mutex.h> |
956db3ca CW |
60 | #include <linux/workqueue.h> |
61 | #include <linux/cgroup.h> | |
e44193d3 | 62 | #include <linux/wait.h> |
1da177e4 | 63 | |
202f72d5 PJ |
64 | /* |
65 | * Tracks how many cpusets are currently defined in system. | |
66 | * When there is only one cpuset (the root cpuset) we can | |
67 | * short circuit some hooks. | |
68 | */ | |
7edc5962 | 69 | int number_of_cpusets __read_mostly; |
202f72d5 | 70 | |
3e0d98b9 PJ |
71 | /* See "Frequency meter" comments, below. */ |
72 | ||
73 | struct fmeter { | |
74 | int cnt; /* unprocessed events count */ | |
75 | int val; /* most recent output value */ | |
76 | time_t time; /* clock (secs) when val computed */ | |
77 | spinlock_t lock; /* guards read or write of above */ | |
78 | }; | |
79 | ||
1da177e4 | 80 | struct cpuset { |
8793d854 PM |
81 | struct cgroup_subsys_state css; |
82 | ||
1da177e4 | 83 | unsigned long flags; /* "unsigned long" so bitops work */ |
300ed6cb | 84 | cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ |
1da177e4 LT |
85 | nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ |
86 | ||
33ad801d LZ |
87 | /* |
88 | * This is old Memory Nodes tasks took on. | |
89 | * | |
90 | * - top_cpuset.old_mems_allowed is initialized to mems_allowed. | |
91 | * - A new cpuset's old_mems_allowed is initialized when some | |
92 | * task is moved into it. | |
93 | * - old_mems_allowed is used in cpuset_migrate_mm() when we change | |
94 | * cpuset.mems_allowed and have tasks' nodemask updated, and | |
95 | * then old_mems_allowed is updated to mems_allowed. | |
96 | */ | |
97 | nodemask_t old_mems_allowed; | |
98 | ||
3e0d98b9 | 99 | struct fmeter fmeter; /* memory_pressure filter */ |
029190c5 | 100 | |
452477fa TH |
101 | /* |
102 | * Tasks are being attached to this cpuset. Used to prevent | |
103 | * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). | |
104 | */ | |
105 | int attach_in_progress; | |
106 | ||
029190c5 PJ |
107 | /* partition number for rebuild_sched_domains() */ |
108 | int pn; | |
956db3ca | 109 | |
1d3504fc HS |
110 | /* for custom sched domain */ |
111 | int relax_domain_level; | |
1da177e4 LT |
112 | }; |
113 | ||
a7c6d554 | 114 | static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) |
8793d854 | 115 | { |
a7c6d554 | 116 | return css ? container_of(css, struct cpuset, css) : NULL; |
8793d854 PM |
117 | } |
118 | ||
119 | /* Retrieve the cpuset for a task */ | |
120 | static inline struct cpuset *task_cs(struct task_struct *task) | |
121 | { | |
a7c6d554 | 122 | return css_cs(task_css(task, cpuset_subsys_id)); |
8793d854 | 123 | } |
8793d854 | 124 | |
c9710d80 | 125 | static inline struct cpuset *parent_cs(struct cpuset *cs) |
c431069f | 126 | { |
63876986 | 127 | return css_cs(css_parent(&cs->css)); |
c431069f TH |
128 | } |
129 | ||
b246272e DR |
130 | #ifdef CONFIG_NUMA |
131 | static inline bool task_has_mempolicy(struct task_struct *task) | |
132 | { | |
133 | return task->mempolicy; | |
134 | } | |
135 | #else | |
136 | static inline bool task_has_mempolicy(struct task_struct *task) | |
137 | { | |
138 | return false; | |
139 | } | |
140 | #endif | |
141 | ||
142 | ||
1da177e4 LT |
143 | /* bits in struct cpuset flags field */ |
144 | typedef enum { | |
efeb77b2 | 145 | CS_ONLINE, |
1da177e4 LT |
146 | CS_CPU_EXCLUSIVE, |
147 | CS_MEM_EXCLUSIVE, | |
78608366 | 148 | CS_MEM_HARDWALL, |
45b07ef3 | 149 | CS_MEMORY_MIGRATE, |
029190c5 | 150 | CS_SCHED_LOAD_BALANCE, |
825a46af PJ |
151 | CS_SPREAD_PAGE, |
152 | CS_SPREAD_SLAB, | |
1da177e4 LT |
153 | } cpuset_flagbits_t; |
154 | ||
155 | /* convenient tests for these bits */ | |
efeb77b2 TH |
156 | static inline bool is_cpuset_online(const struct cpuset *cs) |
157 | { | |
158 | return test_bit(CS_ONLINE, &cs->flags); | |
159 | } | |
160 | ||
1da177e4 LT |
161 | static inline int is_cpu_exclusive(const struct cpuset *cs) |
162 | { | |
7b5b9ef0 | 163 | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
164 | } |
165 | ||
166 | static inline int is_mem_exclusive(const struct cpuset *cs) | |
167 | { | |
7b5b9ef0 | 168 | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
169 | } |
170 | ||
78608366 PM |
171 | static inline int is_mem_hardwall(const struct cpuset *cs) |
172 | { | |
173 | return test_bit(CS_MEM_HARDWALL, &cs->flags); | |
174 | } | |
175 | ||
029190c5 PJ |
176 | static inline int is_sched_load_balance(const struct cpuset *cs) |
177 | { | |
178 | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | |
179 | } | |
180 | ||
45b07ef3 PJ |
181 | static inline int is_memory_migrate(const struct cpuset *cs) |
182 | { | |
7b5b9ef0 | 183 | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); |
45b07ef3 PJ |
184 | } |
185 | ||
825a46af PJ |
186 | static inline int is_spread_page(const struct cpuset *cs) |
187 | { | |
188 | return test_bit(CS_SPREAD_PAGE, &cs->flags); | |
189 | } | |
190 | ||
191 | static inline int is_spread_slab(const struct cpuset *cs) | |
192 | { | |
193 | return test_bit(CS_SPREAD_SLAB, &cs->flags); | |
194 | } | |
195 | ||
1da177e4 | 196 | static struct cpuset top_cpuset = { |
efeb77b2 TH |
197 | .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | |
198 | (1 << CS_MEM_EXCLUSIVE)), | |
1da177e4 LT |
199 | }; |
200 | ||
ae8086ce TH |
201 | /** |
202 | * cpuset_for_each_child - traverse online children of a cpuset | |
203 | * @child_cs: loop cursor pointing to the current child | |
492eb21b | 204 | * @pos_css: used for iteration |
ae8086ce TH |
205 | * @parent_cs: target cpuset to walk children of |
206 | * | |
207 | * Walk @child_cs through the online children of @parent_cs. Must be used | |
208 | * with RCU read locked. | |
209 | */ | |
492eb21b TH |
210 | #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ |
211 | css_for_each_child((pos_css), &(parent_cs)->css) \ | |
212 | if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) | |
ae8086ce | 213 | |
fc560a26 TH |
214 | /** |
215 | * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants | |
216 | * @des_cs: loop cursor pointing to the current descendant | |
492eb21b | 217 | * @pos_css: used for iteration |
fc560a26 TH |
218 | * @root_cs: target cpuset to walk ancestor of |
219 | * | |
220 | * Walk @des_cs through the online descendants of @root_cs. Must be used | |
492eb21b | 221 | * with RCU read locked. The caller may modify @pos_css by calling |
bd8815a6 TH |
222 | * css_rightmost_descendant() to skip subtree. @root_cs is included in the |
223 | * iteration and the first node to be visited. | |
fc560a26 | 224 | */ |
492eb21b TH |
225 | #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ |
226 | css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ | |
227 | if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) | |
fc560a26 | 228 | |
1da177e4 | 229 | /* |
5d21cc2d TH |
230 | * There are two global mutexes guarding cpuset structures - cpuset_mutex |
231 | * and callback_mutex. The latter may nest inside the former. We also | |
232 | * require taking task_lock() when dereferencing a task's cpuset pointer. | |
233 | * See "The task_lock() exception", at the end of this comment. | |
234 | * | |
235 | * A task must hold both mutexes to modify cpusets. If a task holds | |
236 | * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it | |
237 | * is the only task able to also acquire callback_mutex and be able to | |
238 | * modify cpusets. It can perform various checks on the cpuset structure | |
239 | * first, knowing nothing will change. It can also allocate memory while | |
240 | * just holding cpuset_mutex. While it is performing these checks, various | |
241 | * callback routines can briefly acquire callback_mutex to query cpusets. | |
242 | * Once it is ready to make the changes, it takes callback_mutex, blocking | |
243 | * everyone else. | |
053199ed PJ |
244 | * |
245 | * Calls to the kernel memory allocator can not be made while holding | |
3d3f26a7 | 246 | * callback_mutex, as that would risk double tripping on callback_mutex |
053199ed PJ |
247 | * from one of the callbacks into the cpuset code from within |
248 | * __alloc_pages(). | |
249 | * | |
3d3f26a7 | 250 | * If a task is only holding callback_mutex, then it has read-only |
053199ed PJ |
251 | * access to cpusets. |
252 | * | |
58568d2a MX |
253 | * Now, the task_struct fields mems_allowed and mempolicy may be changed |
254 | * by other task, we use alloc_lock in the task_struct fields to protect | |
255 | * them. | |
053199ed | 256 | * |
3d3f26a7 | 257 | * The cpuset_common_file_read() handlers only hold callback_mutex across |
053199ed PJ |
258 | * small pieces of code, such as when reading out possibly multi-word |
259 | * cpumasks and nodemasks. | |
260 | * | |
2df167a3 PM |
261 | * Accessing a task's cpuset should be done in accordance with the |
262 | * guidelines for accessing subsystem state in kernel/cgroup.c | |
1da177e4 LT |
263 | */ |
264 | ||
5d21cc2d | 265 | static DEFINE_MUTEX(cpuset_mutex); |
3d3f26a7 | 266 | static DEFINE_MUTEX(callback_mutex); |
4247bdc6 | 267 | |
3a5a6d0c TH |
268 | /* |
269 | * CPU / memory hotplug is handled asynchronously. | |
270 | */ | |
271 | static void cpuset_hotplug_workfn(struct work_struct *work); | |
3a5a6d0c TH |
272 | static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); |
273 | ||
e44193d3 LZ |
274 | static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); |
275 | ||
cf417141 MK |
276 | /* |
277 | * This is ugly, but preserves the userspace API for existing cpuset | |
8793d854 | 278 | * users. If someone tries to mount the "cpuset" filesystem, we |
cf417141 MK |
279 | * silently switch it to mount "cgroup" instead |
280 | */ | |
f7e83571 AV |
281 | static struct dentry *cpuset_mount(struct file_system_type *fs_type, |
282 | int flags, const char *unused_dev_name, void *data) | |
1da177e4 | 283 | { |
8793d854 | 284 | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); |
f7e83571 | 285 | struct dentry *ret = ERR_PTR(-ENODEV); |
8793d854 PM |
286 | if (cgroup_fs) { |
287 | char mountopts[] = | |
288 | "cpuset,noprefix," | |
289 | "release_agent=/sbin/cpuset_release_agent"; | |
f7e83571 AV |
290 | ret = cgroup_fs->mount(cgroup_fs, flags, |
291 | unused_dev_name, mountopts); | |
8793d854 PM |
292 | put_filesystem(cgroup_fs); |
293 | } | |
294 | return ret; | |
1da177e4 LT |
295 | } |
296 | ||
297 | static struct file_system_type cpuset_fs_type = { | |
298 | .name = "cpuset", | |
f7e83571 | 299 | .mount = cpuset_mount, |
1da177e4 LT |
300 | }; |
301 | ||
1da177e4 | 302 | /* |
300ed6cb | 303 | * Return in pmask the portion of a cpusets's cpus_allowed that |
1da177e4 | 304 | * are online. If none are online, walk up the cpuset hierarchy |
40df2deb LZ |
305 | * until we find one that does have some online cpus. The top |
306 | * cpuset always has some cpus online. | |
1da177e4 LT |
307 | * |
308 | * One way or another, we guarantee to return some non-empty subset | |
5f054e31 | 309 | * of cpu_online_mask. |
1da177e4 | 310 | * |
3d3f26a7 | 311 | * Call with callback_mutex held. |
1da177e4 | 312 | */ |
c9710d80 | 313 | static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) |
1da177e4 | 314 | { |
40df2deb | 315 | while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) |
c431069f | 316 | cs = parent_cs(cs); |
40df2deb | 317 | cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); |
1da177e4 LT |
318 | } |
319 | ||
320 | /* | |
321 | * Return in *pmask the portion of a cpusets's mems_allowed that | |
0e1e7c7a CL |
322 | * are online, with memory. If none are online with memory, walk |
323 | * up the cpuset hierarchy until we find one that does have some | |
40df2deb | 324 | * online mems. The top cpuset always has some mems online. |
1da177e4 LT |
325 | * |
326 | * One way or another, we guarantee to return some non-empty subset | |
38d7bee9 | 327 | * of node_states[N_MEMORY]. |
1da177e4 | 328 | * |
3d3f26a7 | 329 | * Call with callback_mutex held. |
1da177e4 | 330 | */ |
c9710d80 | 331 | static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) |
1da177e4 | 332 | { |
40df2deb | 333 | while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY])) |
c431069f | 334 | cs = parent_cs(cs); |
40df2deb | 335 | nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]); |
1da177e4 LT |
336 | } |
337 | ||
f3b39d47 MX |
338 | /* |
339 | * update task's spread flag if cpuset's page/slab spread flag is set | |
340 | * | |
5d21cc2d | 341 | * Called with callback_mutex/cpuset_mutex held |
f3b39d47 MX |
342 | */ |
343 | static void cpuset_update_task_spread_flag(struct cpuset *cs, | |
344 | struct task_struct *tsk) | |
345 | { | |
346 | if (is_spread_page(cs)) | |
347 | tsk->flags |= PF_SPREAD_PAGE; | |
348 | else | |
349 | tsk->flags &= ~PF_SPREAD_PAGE; | |
350 | if (is_spread_slab(cs)) | |
351 | tsk->flags |= PF_SPREAD_SLAB; | |
352 | else | |
353 | tsk->flags &= ~PF_SPREAD_SLAB; | |
354 | } | |
355 | ||
1da177e4 LT |
356 | /* |
357 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | |
358 | * | |
359 | * One cpuset is a subset of another if all its allowed CPUs and | |
360 | * Memory Nodes are a subset of the other, and its exclusive flags | |
5d21cc2d | 361 | * are only set if the other's are set. Call holding cpuset_mutex. |
1da177e4 LT |
362 | */ |
363 | ||
364 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | |
365 | { | |
300ed6cb | 366 | return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && |
1da177e4 LT |
367 | nodes_subset(p->mems_allowed, q->mems_allowed) && |
368 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | |
369 | is_mem_exclusive(p) <= is_mem_exclusive(q); | |
370 | } | |
371 | ||
645fcc9d LZ |
372 | /** |
373 | * alloc_trial_cpuset - allocate a trial cpuset | |
374 | * @cs: the cpuset that the trial cpuset duplicates | |
375 | */ | |
c9710d80 | 376 | static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) |
645fcc9d | 377 | { |
300ed6cb LZ |
378 | struct cpuset *trial; |
379 | ||
380 | trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | |
381 | if (!trial) | |
382 | return NULL; | |
383 | ||
384 | if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { | |
385 | kfree(trial); | |
386 | return NULL; | |
387 | } | |
388 | cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | |
389 | ||
390 | return trial; | |
645fcc9d LZ |
391 | } |
392 | ||
393 | /** | |
394 | * free_trial_cpuset - free the trial cpuset | |
395 | * @trial: the trial cpuset to be freed | |
396 | */ | |
397 | static void free_trial_cpuset(struct cpuset *trial) | |
398 | { | |
300ed6cb | 399 | free_cpumask_var(trial->cpus_allowed); |
645fcc9d LZ |
400 | kfree(trial); |
401 | } | |
402 | ||
1da177e4 LT |
403 | /* |
404 | * validate_change() - Used to validate that any proposed cpuset change | |
405 | * follows the structural rules for cpusets. | |
406 | * | |
407 | * If we replaced the flag and mask values of the current cpuset | |
408 | * (cur) with those values in the trial cpuset (trial), would | |
409 | * our various subset and exclusive rules still be valid? Presumes | |
5d21cc2d | 410 | * cpuset_mutex held. |
1da177e4 LT |
411 | * |
412 | * 'cur' is the address of an actual, in-use cpuset. Operations | |
413 | * such as list traversal that depend on the actual address of the | |
414 | * cpuset in the list must use cur below, not trial. | |
415 | * | |
416 | * 'trial' is the address of bulk structure copy of cur, with | |
417 | * perhaps one or more of the fields cpus_allowed, mems_allowed, | |
418 | * or flags changed to new, trial values. | |
419 | * | |
420 | * Return 0 if valid, -errno if not. | |
421 | */ | |
422 | ||
c9710d80 | 423 | static int validate_change(struct cpuset *cur, struct cpuset *trial) |
1da177e4 | 424 | { |
492eb21b | 425 | struct cgroup_subsys_state *css; |
1da177e4 | 426 | struct cpuset *c, *par; |
ae8086ce TH |
427 | int ret; |
428 | ||
429 | rcu_read_lock(); | |
1da177e4 LT |
430 | |
431 | /* Each of our child cpusets must be a subset of us */ | |
ae8086ce | 432 | ret = -EBUSY; |
492eb21b | 433 | cpuset_for_each_child(c, css, cur) |
ae8086ce TH |
434 | if (!is_cpuset_subset(c, trial)) |
435 | goto out; | |
1da177e4 LT |
436 | |
437 | /* Remaining checks don't apply to root cpuset */ | |
ae8086ce | 438 | ret = 0; |
69604067 | 439 | if (cur == &top_cpuset) |
ae8086ce | 440 | goto out; |
1da177e4 | 441 | |
c431069f | 442 | par = parent_cs(cur); |
69604067 | 443 | |
1da177e4 | 444 | /* We must be a subset of our parent cpuset */ |
ae8086ce | 445 | ret = -EACCES; |
1da177e4 | 446 | if (!is_cpuset_subset(trial, par)) |
ae8086ce | 447 | goto out; |
1da177e4 | 448 | |
2df167a3 PM |
449 | /* |
450 | * If either I or some sibling (!= me) is exclusive, we can't | |
451 | * overlap | |
452 | */ | |
ae8086ce | 453 | ret = -EINVAL; |
492eb21b | 454 | cpuset_for_each_child(c, css, par) { |
1da177e4 LT |
455 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && |
456 | c != cur && | |
300ed6cb | 457 | cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) |
ae8086ce | 458 | goto out; |
1da177e4 LT |
459 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && |
460 | c != cur && | |
461 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | |
ae8086ce | 462 | goto out; |
1da177e4 LT |
463 | } |
464 | ||
452477fa TH |
465 | /* |
466 | * Cpusets with tasks - existing or newly being attached - can't | |
1c09b195 | 467 | * be changed to have empty cpus_allowed or mems_allowed. |
452477fa | 468 | */ |
ae8086ce | 469 | ret = -ENOSPC; |
1c09b195 LZ |
470 | if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress)) { |
471 | if (!cpumask_empty(cur->cpus_allowed) && | |
472 | cpumask_empty(trial->cpus_allowed)) | |
473 | goto out; | |
474 | if (!nodes_empty(cur->mems_allowed) && | |
475 | nodes_empty(trial->mems_allowed)) | |
476 | goto out; | |
477 | } | |
020958b6 | 478 | |
ae8086ce TH |
479 | ret = 0; |
480 | out: | |
481 | rcu_read_unlock(); | |
482 | return ret; | |
1da177e4 LT |
483 | } |
484 | ||
db7f47cf | 485 | #ifdef CONFIG_SMP |
029190c5 | 486 | /* |
cf417141 | 487 | * Helper routine for generate_sched_domains(). |
029190c5 PJ |
488 | * Do cpusets a, b have overlapping cpus_allowed masks? |
489 | */ | |
029190c5 PJ |
490 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) |
491 | { | |
300ed6cb | 492 | return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); |
029190c5 PJ |
493 | } |
494 | ||
1d3504fc HS |
495 | static void |
496 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | |
497 | { | |
1d3504fc HS |
498 | if (dattr->relax_domain_level < c->relax_domain_level) |
499 | dattr->relax_domain_level = c->relax_domain_level; | |
500 | return; | |
501 | } | |
502 | ||
fc560a26 TH |
503 | static void update_domain_attr_tree(struct sched_domain_attr *dattr, |
504 | struct cpuset *root_cs) | |
f5393693 | 505 | { |
fc560a26 | 506 | struct cpuset *cp; |
492eb21b | 507 | struct cgroup_subsys_state *pos_css; |
f5393693 | 508 | |
fc560a26 | 509 | rcu_read_lock(); |
492eb21b | 510 | cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { |
bd8815a6 TH |
511 | if (cp == root_cs) |
512 | continue; | |
513 | ||
fc560a26 TH |
514 | /* skip the whole subtree if @cp doesn't have any CPU */ |
515 | if (cpumask_empty(cp->cpus_allowed)) { | |
492eb21b | 516 | pos_css = css_rightmost_descendant(pos_css); |
f5393693 | 517 | continue; |
fc560a26 | 518 | } |
f5393693 LJ |
519 | |
520 | if (is_sched_load_balance(cp)) | |
521 | update_domain_attr(dattr, cp); | |
f5393693 | 522 | } |
fc560a26 | 523 | rcu_read_unlock(); |
f5393693 LJ |
524 | } |
525 | ||
029190c5 | 526 | /* |
cf417141 MK |
527 | * generate_sched_domains() |
528 | * | |
529 | * This function builds a partial partition of the systems CPUs | |
530 | * A 'partial partition' is a set of non-overlapping subsets whose | |
531 | * union is a subset of that set. | |
0a0fca9d | 532 | * The output of this function needs to be passed to kernel/sched/core.c |
cf417141 MK |
533 | * partition_sched_domains() routine, which will rebuild the scheduler's |
534 | * load balancing domains (sched domains) as specified by that partial | |
535 | * partition. | |
029190c5 | 536 | * |
45ce80fb | 537 | * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt |
029190c5 PJ |
538 | * for a background explanation of this. |
539 | * | |
540 | * Does not return errors, on the theory that the callers of this | |
541 | * routine would rather not worry about failures to rebuild sched | |
542 | * domains when operating in the severe memory shortage situations | |
543 | * that could cause allocation failures below. | |
544 | * | |
5d21cc2d | 545 | * Must be called with cpuset_mutex held. |
029190c5 PJ |
546 | * |
547 | * The three key local variables below are: | |
aeed6824 | 548 | * q - a linked-list queue of cpuset pointers, used to implement a |
029190c5 PJ |
549 | * top-down scan of all cpusets. This scan loads a pointer |
550 | * to each cpuset marked is_sched_load_balance into the | |
551 | * array 'csa'. For our purposes, rebuilding the schedulers | |
552 | * sched domains, we can ignore !is_sched_load_balance cpusets. | |
553 | * csa - (for CpuSet Array) Array of pointers to all the cpusets | |
554 | * that need to be load balanced, for convenient iterative | |
555 | * access by the subsequent code that finds the best partition, | |
556 | * i.e the set of domains (subsets) of CPUs such that the | |
557 | * cpus_allowed of every cpuset marked is_sched_load_balance | |
558 | * is a subset of one of these domains, while there are as | |
559 | * many such domains as possible, each as small as possible. | |
560 | * doms - Conversion of 'csa' to an array of cpumasks, for passing to | |
0a0fca9d | 561 | * the kernel/sched/core.c routine partition_sched_domains() in a |
029190c5 PJ |
562 | * convenient format, that can be easily compared to the prior |
563 | * value to determine what partition elements (sched domains) | |
564 | * were changed (added or removed.) | |
565 | * | |
566 | * Finding the best partition (set of domains): | |
567 | * The triple nested loops below over i, j, k scan over the | |
568 | * load balanced cpusets (using the array of cpuset pointers in | |
569 | * csa[]) looking for pairs of cpusets that have overlapping | |
570 | * cpus_allowed, but which don't have the same 'pn' partition | |
571 | * number and gives them in the same partition number. It keeps | |
572 | * looping on the 'restart' label until it can no longer find | |
573 | * any such pairs. | |
574 | * | |
575 | * The union of the cpus_allowed masks from the set of | |
576 | * all cpusets having the same 'pn' value then form the one | |
577 | * element of the partition (one sched domain) to be passed to | |
578 | * partition_sched_domains(). | |
579 | */ | |
acc3f5d7 | 580 | static int generate_sched_domains(cpumask_var_t **domains, |
cf417141 | 581 | struct sched_domain_attr **attributes) |
029190c5 | 582 | { |
029190c5 PJ |
583 | struct cpuset *cp; /* scans q */ |
584 | struct cpuset **csa; /* array of all cpuset ptrs */ | |
585 | int csn; /* how many cpuset ptrs in csa so far */ | |
586 | int i, j, k; /* indices for partition finding loops */ | |
acc3f5d7 | 587 | cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ |
1d3504fc | 588 | struct sched_domain_attr *dattr; /* attributes for custom domains */ |
1583715d | 589 | int ndoms = 0; /* number of sched domains in result */ |
6af866af | 590 | int nslot; /* next empty doms[] struct cpumask slot */ |
492eb21b | 591 | struct cgroup_subsys_state *pos_css; |
029190c5 | 592 | |
029190c5 | 593 | doms = NULL; |
1d3504fc | 594 | dattr = NULL; |
cf417141 | 595 | csa = NULL; |
029190c5 PJ |
596 | |
597 | /* Special case for the 99% of systems with one, full, sched domain */ | |
598 | if (is_sched_load_balance(&top_cpuset)) { | |
acc3f5d7 RR |
599 | ndoms = 1; |
600 | doms = alloc_sched_domains(ndoms); | |
029190c5 | 601 | if (!doms) |
cf417141 MK |
602 | goto done; |
603 | ||
1d3504fc HS |
604 | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); |
605 | if (dattr) { | |
606 | *dattr = SD_ATTR_INIT; | |
93a65575 | 607 | update_domain_attr_tree(dattr, &top_cpuset); |
1d3504fc | 608 | } |
acc3f5d7 | 609 | cpumask_copy(doms[0], top_cpuset.cpus_allowed); |
cf417141 | 610 | |
cf417141 | 611 | goto done; |
029190c5 PJ |
612 | } |
613 | ||
029190c5 PJ |
614 | csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); |
615 | if (!csa) | |
616 | goto done; | |
617 | csn = 0; | |
618 | ||
fc560a26 | 619 | rcu_read_lock(); |
492eb21b | 620 | cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { |
bd8815a6 TH |
621 | if (cp == &top_cpuset) |
622 | continue; | |
f5393693 | 623 | /* |
fc560a26 TH |
624 | * Continue traversing beyond @cp iff @cp has some CPUs and |
625 | * isn't load balancing. The former is obvious. The | |
626 | * latter: All child cpusets contain a subset of the | |
627 | * parent's cpus, so just skip them, and then we call | |
628 | * update_domain_attr_tree() to calc relax_domain_level of | |
629 | * the corresponding sched domain. | |
f5393693 | 630 | */ |
fc560a26 TH |
631 | if (!cpumask_empty(cp->cpus_allowed) && |
632 | !is_sched_load_balance(cp)) | |
f5393693 | 633 | continue; |
489a5393 | 634 | |
fc560a26 TH |
635 | if (is_sched_load_balance(cp)) |
636 | csa[csn++] = cp; | |
637 | ||
638 | /* skip @cp's subtree */ | |
492eb21b | 639 | pos_css = css_rightmost_descendant(pos_css); |
fc560a26 TH |
640 | } |
641 | rcu_read_unlock(); | |
029190c5 PJ |
642 | |
643 | for (i = 0; i < csn; i++) | |
644 | csa[i]->pn = i; | |
645 | ndoms = csn; | |
646 | ||
647 | restart: | |
648 | /* Find the best partition (set of sched domains) */ | |
649 | for (i = 0; i < csn; i++) { | |
650 | struct cpuset *a = csa[i]; | |
651 | int apn = a->pn; | |
652 | ||
653 | for (j = 0; j < csn; j++) { | |
654 | struct cpuset *b = csa[j]; | |
655 | int bpn = b->pn; | |
656 | ||
657 | if (apn != bpn && cpusets_overlap(a, b)) { | |
658 | for (k = 0; k < csn; k++) { | |
659 | struct cpuset *c = csa[k]; | |
660 | ||
661 | if (c->pn == bpn) | |
662 | c->pn = apn; | |
663 | } | |
664 | ndoms--; /* one less element */ | |
665 | goto restart; | |
666 | } | |
667 | } | |
668 | } | |
669 | ||
cf417141 MK |
670 | /* |
671 | * Now we know how many domains to create. | |
672 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | |
673 | */ | |
acc3f5d7 | 674 | doms = alloc_sched_domains(ndoms); |
700018e0 | 675 | if (!doms) |
cf417141 | 676 | goto done; |
cf417141 MK |
677 | |
678 | /* | |
679 | * The rest of the code, including the scheduler, can deal with | |
680 | * dattr==NULL case. No need to abort if alloc fails. | |
681 | */ | |
1d3504fc | 682 | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); |
029190c5 PJ |
683 | |
684 | for (nslot = 0, i = 0; i < csn; i++) { | |
685 | struct cpuset *a = csa[i]; | |
6af866af | 686 | struct cpumask *dp; |
029190c5 PJ |
687 | int apn = a->pn; |
688 | ||
cf417141 MK |
689 | if (apn < 0) { |
690 | /* Skip completed partitions */ | |
691 | continue; | |
692 | } | |
693 | ||
acc3f5d7 | 694 | dp = doms[nslot]; |
cf417141 MK |
695 | |
696 | if (nslot == ndoms) { | |
697 | static int warnings = 10; | |
698 | if (warnings) { | |
699 | printk(KERN_WARNING | |
700 | "rebuild_sched_domains confused:" | |
701 | " nslot %d, ndoms %d, csn %d, i %d," | |
702 | " apn %d\n", | |
703 | nslot, ndoms, csn, i, apn); | |
704 | warnings--; | |
029190c5 | 705 | } |
cf417141 MK |
706 | continue; |
707 | } | |
029190c5 | 708 | |
6af866af | 709 | cpumask_clear(dp); |
cf417141 MK |
710 | if (dattr) |
711 | *(dattr + nslot) = SD_ATTR_INIT; | |
712 | for (j = i; j < csn; j++) { | |
713 | struct cpuset *b = csa[j]; | |
714 | ||
715 | if (apn == b->pn) { | |
300ed6cb | 716 | cpumask_or(dp, dp, b->cpus_allowed); |
cf417141 MK |
717 | if (dattr) |
718 | update_domain_attr_tree(dattr + nslot, b); | |
719 | ||
720 | /* Done with this partition */ | |
721 | b->pn = -1; | |
029190c5 | 722 | } |
029190c5 | 723 | } |
cf417141 | 724 | nslot++; |
029190c5 PJ |
725 | } |
726 | BUG_ON(nslot != ndoms); | |
727 | ||
cf417141 MK |
728 | done: |
729 | kfree(csa); | |
730 | ||
700018e0 LZ |
731 | /* |
732 | * Fallback to the default domain if kmalloc() failed. | |
733 | * See comments in partition_sched_domains(). | |
734 | */ | |
735 | if (doms == NULL) | |
736 | ndoms = 1; | |
737 | ||
cf417141 MK |
738 | *domains = doms; |
739 | *attributes = dattr; | |
740 | return ndoms; | |
741 | } | |
742 | ||
743 | /* | |
744 | * Rebuild scheduler domains. | |
745 | * | |
699140ba TH |
746 | * If the flag 'sched_load_balance' of any cpuset with non-empty |
747 | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | |
748 | * which has that flag enabled, or if any cpuset with a non-empty | |
749 | * 'cpus' is removed, then call this routine to rebuild the | |
750 | * scheduler's dynamic sched domains. | |
cf417141 | 751 | * |
5d21cc2d | 752 | * Call with cpuset_mutex held. Takes get_online_cpus(). |
cf417141 | 753 | */ |
699140ba | 754 | static void rebuild_sched_domains_locked(void) |
cf417141 MK |
755 | { |
756 | struct sched_domain_attr *attr; | |
acc3f5d7 | 757 | cpumask_var_t *doms; |
cf417141 MK |
758 | int ndoms; |
759 | ||
5d21cc2d | 760 | lockdep_assert_held(&cpuset_mutex); |
86ef5c9a | 761 | get_online_cpus(); |
cf417141 | 762 | |
5b16c2a4 LZ |
763 | /* |
764 | * We have raced with CPU hotplug. Don't do anything to avoid | |
765 | * passing doms with offlined cpu to partition_sched_domains(). | |
766 | * Anyways, hotplug work item will rebuild sched domains. | |
767 | */ | |
768 | if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask)) | |
769 | goto out; | |
770 | ||
cf417141 | 771 | /* Generate domain masks and attrs */ |
cf417141 | 772 | ndoms = generate_sched_domains(&doms, &attr); |
cf417141 MK |
773 | |
774 | /* Have scheduler rebuild the domains */ | |
775 | partition_sched_domains(ndoms, doms, attr); | |
5b16c2a4 | 776 | out: |
86ef5c9a | 777 | put_online_cpus(); |
cf417141 | 778 | } |
db7f47cf | 779 | #else /* !CONFIG_SMP */ |
699140ba | 780 | static void rebuild_sched_domains_locked(void) |
db7f47cf PM |
781 | { |
782 | } | |
db7f47cf | 783 | #endif /* CONFIG_SMP */ |
029190c5 | 784 | |
cf417141 MK |
785 | void rebuild_sched_domains(void) |
786 | { | |
5d21cc2d | 787 | mutex_lock(&cpuset_mutex); |
699140ba | 788 | rebuild_sched_domains_locked(); |
5d21cc2d | 789 | mutex_unlock(&cpuset_mutex); |
029190c5 PJ |
790 | } |
791 | ||
070b57fc LZ |
792 | /* |
793 | * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus | |
794 | * @cs: the cpuset in interest | |
58f4790b | 795 | * |
070b57fc LZ |
796 | * A cpuset's effective cpumask is the cpumask of the nearest ancestor |
797 | * with non-empty cpus. We use effective cpumask whenever: | |
798 | * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask | |
799 | * if the cpuset they reside in has no cpus) | |
800 | * - we want to retrieve task_cs(tsk)'s cpus_allowed. | |
801 | * | |
802 | * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an | |
803 | * exception. See comments there. | |
804 | */ | |
805 | static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs) | |
806 | { | |
807 | while (cpumask_empty(cs->cpus_allowed)) | |
808 | cs = parent_cs(cs); | |
809 | return cs; | |
810 | } | |
811 | ||
812 | /* | |
813 | * effective_nodemask_cpuset - return nearest ancestor with non-empty mems | |
814 | * @cs: the cpuset in interest | |
815 | * | |
816 | * A cpuset's effective nodemask is the nodemask of the nearest ancestor | |
817 | * with non-empty memss. We use effective nodemask whenever: | |
818 | * - we update tasks' mems_allowed. (they take on the ancestor's nodemask | |
819 | * if the cpuset they reside in has no mems) | |
820 | * - we want to retrieve task_cs(tsk)'s mems_allowed. | |
821 | * | |
822 | * Called with cpuset_mutex held. | |
053199ed | 823 | */ |
070b57fc | 824 | static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs) |
58f4790b | 825 | { |
070b57fc LZ |
826 | while (nodes_empty(cs->mems_allowed)) |
827 | cs = parent_cs(cs); | |
828 | return cs; | |
58f4790b | 829 | } |
053199ed | 830 | |
58f4790b CW |
831 | /** |
832 | * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's | |
833 | * @tsk: task to test | |
e535837b | 834 | * @data: cpuset to @tsk belongs to |
58f4790b | 835 | * |
72ec7029 TH |
836 | * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed |
837 | * mask needs to be changed. | |
58f4790b CW |
838 | * |
839 | * We don't need to re-check for the cgroup/cpuset membership, since we're | |
5d21cc2d | 840 | * holding cpuset_mutex at this point. |
58f4790b | 841 | */ |
e535837b | 842 | static void cpuset_change_cpumask(struct task_struct *tsk, void *data) |
58f4790b | 843 | { |
e535837b TH |
844 | struct cpuset *cs = data; |
845 | struct cpuset *cpus_cs = effective_cpumask_cpuset(cs); | |
070b57fc | 846 | |
070b57fc | 847 | set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed); |
58f4790b CW |
848 | } |
849 | ||
0b2f630a MX |
850 | /** |
851 | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | |
852 | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | |
72ec7029 | 853 | * @heap: if NULL, defer allocating heap memory to css_scan_tasks() |
0b2f630a | 854 | * |
5d21cc2d | 855 | * Called with cpuset_mutex held |
0b2f630a | 856 | * |
72ec7029 | 857 | * The css_scan_tasks() function will scan all the tasks in a cgroup, |
0b2f630a MX |
858 | * calling callback functions for each. |
859 | * | |
72ec7029 | 860 | * No return value. It's guaranteed that css_scan_tasks() always returns 0 |
4e74339a | 861 | * if @heap != NULL. |
0b2f630a | 862 | */ |
4e74339a | 863 | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) |
0b2f630a | 864 | { |
72ec7029 | 865 | css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap); |
0b2f630a MX |
866 | } |
867 | ||
5c5cc623 LZ |
868 | /* |
869 | * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy. | |
870 | * @root_cs: the root cpuset of the hierarchy | |
871 | * @update_root: update root cpuset or not? | |
72ec7029 | 872 | * @heap: the heap used by css_scan_tasks() |
5c5cc623 LZ |
873 | * |
874 | * This will update cpumasks of tasks in @root_cs and all other empty cpusets | |
875 | * which take on cpumask of @root_cs. | |
876 | * | |
877 | * Called with cpuset_mutex held | |
878 | */ | |
879 | static void update_tasks_cpumask_hier(struct cpuset *root_cs, | |
880 | bool update_root, struct ptr_heap *heap) | |
881 | { | |
882 | struct cpuset *cp; | |
492eb21b | 883 | struct cgroup_subsys_state *pos_css; |
5c5cc623 LZ |
884 | |
885 | rcu_read_lock(); | |
492eb21b | 886 | cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { |
bd8815a6 TH |
887 | if (cp == root_cs) { |
888 | if (!update_root) | |
889 | continue; | |
890 | } else { | |
891 | /* skip the whole subtree if @cp have some CPU */ | |
892 | if (!cpumask_empty(cp->cpus_allowed)) { | |
893 | pos_css = css_rightmost_descendant(pos_css); | |
894 | continue; | |
895 | } | |
5c5cc623 LZ |
896 | } |
897 | if (!css_tryget(&cp->css)) | |
898 | continue; | |
899 | rcu_read_unlock(); | |
900 | ||
901 | update_tasks_cpumask(cp, heap); | |
902 | ||
903 | rcu_read_lock(); | |
904 | css_put(&cp->css); | |
905 | } | |
906 | rcu_read_unlock(); | |
907 | } | |
908 | ||
58f4790b CW |
909 | /** |
910 | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | |
911 | * @cs: the cpuset to consider | |
912 | * @buf: buffer of cpu numbers written to this cpuset | |
913 | */ | |
645fcc9d LZ |
914 | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, |
915 | const char *buf) | |
1da177e4 | 916 | { |
4e74339a | 917 | struct ptr_heap heap; |
58f4790b CW |
918 | int retval; |
919 | int is_load_balanced; | |
1da177e4 | 920 | |
5f054e31 | 921 | /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ |
4c4d50f7 PJ |
922 | if (cs == &top_cpuset) |
923 | return -EACCES; | |
924 | ||
6f7f02e7 | 925 | /* |
c8d9c90c | 926 | * An empty cpus_allowed is ok only if the cpuset has no tasks. |
020958b6 PJ |
927 | * Since cpulist_parse() fails on an empty mask, we special case |
928 | * that parsing. The validate_change() call ensures that cpusets | |
929 | * with tasks have cpus. | |
6f7f02e7 | 930 | */ |
020958b6 | 931 | if (!*buf) { |
300ed6cb | 932 | cpumask_clear(trialcs->cpus_allowed); |
6f7f02e7 | 933 | } else { |
300ed6cb | 934 | retval = cpulist_parse(buf, trialcs->cpus_allowed); |
6f7f02e7 DR |
935 | if (retval < 0) |
936 | return retval; | |
37340746 | 937 | |
6ad4c188 | 938 | if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask)) |
37340746 | 939 | return -EINVAL; |
6f7f02e7 | 940 | } |
029190c5 | 941 | |
8707d8b8 | 942 | /* Nothing to do if the cpus didn't change */ |
300ed6cb | 943 | if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) |
8707d8b8 | 944 | return 0; |
58f4790b | 945 | |
a73456f3 LZ |
946 | retval = validate_change(cs, trialcs); |
947 | if (retval < 0) | |
948 | return retval; | |
949 | ||
4e74339a LZ |
950 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
951 | if (retval) | |
952 | return retval; | |
953 | ||
645fcc9d | 954 | is_load_balanced = is_sched_load_balance(trialcs); |
029190c5 | 955 | |
3d3f26a7 | 956 | mutex_lock(&callback_mutex); |
300ed6cb | 957 | cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); |
3d3f26a7 | 958 | mutex_unlock(&callback_mutex); |
029190c5 | 959 | |
5c5cc623 | 960 | update_tasks_cpumask_hier(cs, true, &heap); |
4e74339a LZ |
961 | |
962 | heap_free(&heap); | |
58f4790b | 963 | |
8707d8b8 | 964 | if (is_load_balanced) |
699140ba | 965 | rebuild_sched_domains_locked(); |
85d7b949 | 966 | return 0; |
1da177e4 LT |
967 | } |
968 | ||
e4e364e8 PJ |
969 | /* |
970 | * cpuset_migrate_mm | |
971 | * | |
972 | * Migrate memory region from one set of nodes to another. | |
973 | * | |
974 | * Temporarilly set tasks mems_allowed to target nodes of migration, | |
975 | * so that the migration code can allocate pages on these nodes. | |
976 | * | |
5d21cc2d | 977 | * Call holding cpuset_mutex, so current's cpuset won't change |
c8d9c90c | 978 | * during this call, as manage_mutex holds off any cpuset_attach() |
e4e364e8 PJ |
979 | * calls. Therefore we don't need to take task_lock around the |
980 | * call to guarantee_online_mems(), as we know no one is changing | |
2df167a3 | 981 | * our task's cpuset. |
e4e364e8 | 982 | * |
e4e364e8 PJ |
983 | * While the mm_struct we are migrating is typically from some |
984 | * other task, the task_struct mems_allowed that we are hacking | |
985 | * is for our current task, which must allocate new pages for that | |
986 | * migrating memory region. | |
e4e364e8 PJ |
987 | */ |
988 | ||
989 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | |
990 | const nodemask_t *to) | |
991 | { | |
992 | struct task_struct *tsk = current; | |
070b57fc | 993 | struct cpuset *mems_cs; |
e4e364e8 | 994 | |
e4e364e8 | 995 | tsk->mems_allowed = *to; |
e4e364e8 PJ |
996 | |
997 | do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); | |
998 | ||
070b57fc LZ |
999 | mems_cs = effective_nodemask_cpuset(task_cs(tsk)); |
1000 | guarantee_online_mems(mems_cs, &tsk->mems_allowed); | |
e4e364e8 PJ |
1001 | } |
1002 | ||
3b6766fe | 1003 | /* |
58568d2a MX |
1004 | * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy |
1005 | * @tsk: the task to change | |
1006 | * @newmems: new nodes that the task will be set | |
1007 | * | |
1008 | * In order to avoid seeing no nodes if the old and new nodes are disjoint, | |
1009 | * we structure updates as setting all new allowed nodes, then clearing newly | |
1010 | * disallowed ones. | |
58568d2a MX |
1011 | */ |
1012 | static void cpuset_change_task_nodemask(struct task_struct *tsk, | |
1013 | nodemask_t *newmems) | |
1014 | { | |
b246272e | 1015 | bool need_loop; |
89e8a244 | 1016 | |
c0ff7453 MX |
1017 | /* |
1018 | * Allow tasks that have access to memory reserves because they have | |
1019 | * been OOM killed to get memory anywhere. | |
1020 | */ | |
1021 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
1022 | return; | |
1023 | if (current->flags & PF_EXITING) /* Let dying task have memory */ | |
1024 | return; | |
1025 | ||
1026 | task_lock(tsk); | |
b246272e DR |
1027 | /* |
1028 | * Determine if a loop is necessary if another thread is doing | |
1029 | * get_mems_allowed(). If at least one node remains unchanged and | |
1030 | * tsk does not have a mempolicy, then an empty nodemask will not be | |
1031 | * possible when mems_allowed is larger than a word. | |
1032 | */ | |
1033 | need_loop = task_has_mempolicy(tsk) || | |
1034 | !nodes_intersects(*newmems, tsk->mems_allowed); | |
c0ff7453 | 1035 | |
0fc0287c PZ |
1036 | if (need_loop) { |
1037 | local_irq_disable(); | |
cc9a6c87 | 1038 | write_seqcount_begin(&tsk->mems_allowed_seq); |
0fc0287c | 1039 | } |
c0ff7453 | 1040 | |
cc9a6c87 MG |
1041 | nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); |
1042 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); | |
c0ff7453 MX |
1043 | |
1044 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); | |
58568d2a | 1045 | tsk->mems_allowed = *newmems; |
cc9a6c87 | 1046 | |
0fc0287c | 1047 | if (need_loop) { |
cc9a6c87 | 1048 | write_seqcount_end(&tsk->mems_allowed_seq); |
0fc0287c PZ |
1049 | local_irq_enable(); |
1050 | } | |
cc9a6c87 | 1051 | |
c0ff7453 | 1052 | task_unlock(tsk); |
58568d2a MX |
1053 | } |
1054 | ||
e535837b TH |
1055 | struct cpuset_change_nodemask_arg { |
1056 | struct cpuset *cs; | |
1057 | nodemask_t *newmems; | |
1058 | }; | |
1059 | ||
58568d2a MX |
1060 | /* |
1061 | * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy | |
1062 | * of it to cpuset's new mems_allowed, and migrate pages to new nodes if | |
5d21cc2d | 1063 | * memory_migrate flag is set. Called with cpuset_mutex held. |
3b6766fe | 1064 | */ |
e535837b | 1065 | static void cpuset_change_nodemask(struct task_struct *p, void *data) |
3b6766fe | 1066 | { |
e535837b TH |
1067 | struct cpuset_change_nodemask_arg *arg = data; |
1068 | struct cpuset *cs = arg->cs; | |
3b6766fe | 1069 | struct mm_struct *mm; |
3b6766fe | 1070 | int migrate; |
58568d2a | 1071 | |
e535837b | 1072 | cpuset_change_task_nodemask(p, arg->newmems); |
53feb297 | 1073 | |
3b6766fe LZ |
1074 | mm = get_task_mm(p); |
1075 | if (!mm) | |
1076 | return; | |
1077 | ||
3b6766fe LZ |
1078 | migrate = is_memory_migrate(cs); |
1079 | ||
1080 | mpol_rebind_mm(mm, &cs->mems_allowed); | |
1081 | if (migrate) | |
e535837b | 1082 | cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems); |
3b6766fe LZ |
1083 | mmput(mm); |
1084 | } | |
1085 | ||
8793d854 PM |
1086 | static void *cpuset_being_rebound; |
1087 | ||
0b2f630a MX |
1088 | /** |
1089 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | |
1090 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | |
72ec7029 | 1091 | * @heap: if NULL, defer allocating heap memory to css_scan_tasks() |
0b2f630a | 1092 | * |
72ec7029 TH |
1093 | * Called with cpuset_mutex held. No return value. It's guaranteed that |
1094 | * css_scan_tasks() always returns 0 if @heap != NULL. | |
0b2f630a | 1095 | */ |
33ad801d | 1096 | static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap) |
1da177e4 | 1097 | { |
33ad801d | 1098 | static nodemask_t newmems; /* protected by cpuset_mutex */ |
070b57fc | 1099 | struct cpuset *mems_cs = effective_nodemask_cpuset(cs); |
e535837b TH |
1100 | struct cpuset_change_nodemask_arg arg = { .cs = cs, |
1101 | .newmems = &newmems }; | |
59dac16f | 1102 | |
846a16bf | 1103 | cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ |
4225399a | 1104 | |
070b57fc | 1105 | guarantee_online_mems(mems_cs, &newmems); |
33ad801d | 1106 | |
4225399a | 1107 | /* |
3b6766fe LZ |
1108 | * The mpol_rebind_mm() call takes mmap_sem, which we couldn't |
1109 | * take while holding tasklist_lock. Forks can happen - the | |
1110 | * mpol_dup() cpuset_being_rebound check will catch such forks, | |
1111 | * and rebind their vma mempolicies too. Because we still hold | |
5d21cc2d | 1112 | * the global cpuset_mutex, we know that no other rebind effort |
3b6766fe | 1113 | * will be contending for the global variable cpuset_being_rebound. |
4225399a | 1114 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() |
04c19fa6 | 1115 | * is idempotent. Also migrate pages in each mm to new nodes. |
4225399a | 1116 | */ |
72ec7029 | 1117 | css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap); |
4225399a | 1118 | |
33ad801d LZ |
1119 | /* |
1120 | * All the tasks' nodemasks have been updated, update | |
1121 | * cs->old_mems_allowed. | |
1122 | */ | |
1123 | cs->old_mems_allowed = newmems; | |
1124 | ||
2df167a3 | 1125 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ |
8793d854 | 1126 | cpuset_being_rebound = NULL; |
1da177e4 LT |
1127 | } |
1128 | ||
5c5cc623 LZ |
1129 | /* |
1130 | * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy. | |
1131 | * @cs: the root cpuset of the hierarchy | |
1132 | * @update_root: update the root cpuset or not? | |
72ec7029 | 1133 | * @heap: the heap used by css_scan_tasks() |
5c5cc623 LZ |
1134 | * |
1135 | * This will update nodemasks of tasks in @root_cs and all other empty cpusets | |
1136 | * which take on nodemask of @root_cs. | |
1137 | * | |
1138 | * Called with cpuset_mutex held | |
1139 | */ | |
1140 | static void update_tasks_nodemask_hier(struct cpuset *root_cs, | |
1141 | bool update_root, struct ptr_heap *heap) | |
1142 | { | |
1143 | struct cpuset *cp; | |
492eb21b | 1144 | struct cgroup_subsys_state *pos_css; |
5c5cc623 LZ |
1145 | |
1146 | rcu_read_lock(); | |
492eb21b | 1147 | cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { |
bd8815a6 TH |
1148 | if (cp == root_cs) { |
1149 | if (!update_root) | |
1150 | continue; | |
1151 | } else { | |
1152 | /* skip the whole subtree if @cp have some CPU */ | |
1153 | if (!nodes_empty(cp->mems_allowed)) { | |
1154 | pos_css = css_rightmost_descendant(pos_css); | |
1155 | continue; | |
1156 | } | |
5c5cc623 LZ |
1157 | } |
1158 | if (!css_tryget(&cp->css)) | |
1159 | continue; | |
1160 | rcu_read_unlock(); | |
1161 | ||
1162 | update_tasks_nodemask(cp, heap); | |
1163 | ||
1164 | rcu_read_lock(); | |
1165 | css_put(&cp->css); | |
1166 | } | |
1167 | rcu_read_unlock(); | |
1168 | } | |
1169 | ||
0b2f630a MX |
1170 | /* |
1171 | * Handle user request to change the 'mems' memory placement | |
1172 | * of a cpuset. Needs to validate the request, update the | |
58568d2a MX |
1173 | * cpusets mems_allowed, and for each task in the cpuset, |
1174 | * update mems_allowed and rebind task's mempolicy and any vma | |
1175 | * mempolicies and if the cpuset is marked 'memory_migrate', | |
1176 | * migrate the tasks pages to the new memory. | |
0b2f630a | 1177 | * |
5d21cc2d | 1178 | * Call with cpuset_mutex held. May take callback_mutex during call. |
0b2f630a MX |
1179 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, |
1180 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | |
1181 | * their mempolicies to the cpusets new mems_allowed. | |
1182 | */ | |
645fcc9d LZ |
1183 | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, |
1184 | const char *buf) | |
0b2f630a | 1185 | { |
0b2f630a | 1186 | int retval; |
010cfac4 | 1187 | struct ptr_heap heap; |
0b2f630a MX |
1188 | |
1189 | /* | |
38d7bee9 | 1190 | * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; |
0b2f630a MX |
1191 | * it's read-only |
1192 | */ | |
53feb297 MX |
1193 | if (cs == &top_cpuset) { |
1194 | retval = -EACCES; | |
1195 | goto done; | |
1196 | } | |
0b2f630a | 1197 | |
0b2f630a MX |
1198 | /* |
1199 | * An empty mems_allowed is ok iff there are no tasks in the cpuset. | |
1200 | * Since nodelist_parse() fails on an empty mask, we special case | |
1201 | * that parsing. The validate_change() call ensures that cpusets | |
1202 | * with tasks have memory. | |
1203 | */ | |
1204 | if (!*buf) { | |
645fcc9d | 1205 | nodes_clear(trialcs->mems_allowed); |
0b2f630a | 1206 | } else { |
645fcc9d | 1207 | retval = nodelist_parse(buf, trialcs->mems_allowed); |
0b2f630a MX |
1208 | if (retval < 0) |
1209 | goto done; | |
1210 | ||
645fcc9d | 1211 | if (!nodes_subset(trialcs->mems_allowed, |
38d7bee9 | 1212 | node_states[N_MEMORY])) { |
53feb297 MX |
1213 | retval = -EINVAL; |
1214 | goto done; | |
1215 | } | |
0b2f630a | 1216 | } |
33ad801d LZ |
1217 | |
1218 | if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { | |
0b2f630a MX |
1219 | retval = 0; /* Too easy - nothing to do */ |
1220 | goto done; | |
1221 | } | |
645fcc9d | 1222 | retval = validate_change(cs, trialcs); |
0b2f630a MX |
1223 | if (retval < 0) |
1224 | goto done; | |
1225 | ||
010cfac4 LZ |
1226 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
1227 | if (retval < 0) | |
1228 | goto done; | |
1229 | ||
0b2f630a | 1230 | mutex_lock(&callback_mutex); |
645fcc9d | 1231 | cs->mems_allowed = trialcs->mems_allowed; |
0b2f630a MX |
1232 | mutex_unlock(&callback_mutex); |
1233 | ||
5c5cc623 | 1234 | update_tasks_nodemask_hier(cs, true, &heap); |
010cfac4 LZ |
1235 | |
1236 | heap_free(&heap); | |
0b2f630a MX |
1237 | done: |
1238 | return retval; | |
1239 | } | |
1240 | ||
8793d854 PM |
1241 | int current_cpuset_is_being_rebound(void) |
1242 | { | |
1243 | return task_cs(current) == cpuset_being_rebound; | |
1244 | } | |
1245 | ||
5be7a479 | 1246 | static int update_relax_domain_level(struct cpuset *cs, s64 val) |
1d3504fc | 1247 | { |
db7f47cf | 1248 | #ifdef CONFIG_SMP |
60495e77 | 1249 | if (val < -1 || val >= sched_domain_level_max) |
30e0e178 | 1250 | return -EINVAL; |
db7f47cf | 1251 | #endif |
1d3504fc HS |
1252 | |
1253 | if (val != cs->relax_domain_level) { | |
1254 | cs->relax_domain_level = val; | |
300ed6cb LZ |
1255 | if (!cpumask_empty(cs->cpus_allowed) && |
1256 | is_sched_load_balance(cs)) | |
699140ba | 1257 | rebuild_sched_domains_locked(); |
1d3504fc HS |
1258 | } |
1259 | ||
1260 | return 0; | |
1261 | } | |
1262 | ||
72ec7029 | 1263 | /** |
950592f7 MX |
1264 | * cpuset_change_flag - make a task's spread flags the same as its cpuset's |
1265 | * @tsk: task to be updated | |
e535837b | 1266 | * @data: cpuset to @tsk belongs to |
950592f7 | 1267 | * |
72ec7029 | 1268 | * Called by css_scan_tasks() for each task in a cgroup. |
950592f7 MX |
1269 | * |
1270 | * We don't need to re-check for the cgroup/cpuset membership, since we're | |
5d21cc2d | 1271 | * holding cpuset_mutex at this point. |
950592f7 | 1272 | */ |
e535837b | 1273 | static void cpuset_change_flag(struct task_struct *tsk, void *data) |
950592f7 | 1274 | { |
e535837b TH |
1275 | struct cpuset *cs = data; |
1276 | ||
1277 | cpuset_update_task_spread_flag(cs, tsk); | |
950592f7 MX |
1278 | } |
1279 | ||
72ec7029 | 1280 | /** |
950592f7 MX |
1281 | * update_tasks_flags - update the spread flags of tasks in the cpuset. |
1282 | * @cs: the cpuset in which each task's spread flags needs to be changed | |
72ec7029 | 1283 | * @heap: if NULL, defer allocating heap memory to css_scan_tasks() |
950592f7 | 1284 | * |
5d21cc2d | 1285 | * Called with cpuset_mutex held |
950592f7 | 1286 | * |
72ec7029 | 1287 | * The css_scan_tasks() function will scan all the tasks in a cgroup, |
950592f7 MX |
1288 | * calling callback functions for each. |
1289 | * | |
72ec7029 | 1290 | * No return value. It's guaranteed that css_scan_tasks() always returns 0 |
950592f7 MX |
1291 | * if @heap != NULL. |
1292 | */ | |
1293 | static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap) | |
1294 | { | |
72ec7029 | 1295 | css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap); |
950592f7 MX |
1296 | } |
1297 | ||
1da177e4 LT |
1298 | /* |
1299 | * update_flag - read a 0 or a 1 in a file and update associated flag | |
78608366 PM |
1300 | * bit: the bit to update (see cpuset_flagbits_t) |
1301 | * cs: the cpuset to update | |
1302 | * turning_on: whether the flag is being set or cleared | |
053199ed | 1303 | * |
5d21cc2d | 1304 | * Call with cpuset_mutex held. |
1da177e4 LT |
1305 | */ |
1306 | ||
700fe1ab PM |
1307 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, |
1308 | int turning_on) | |
1da177e4 | 1309 | { |
645fcc9d | 1310 | struct cpuset *trialcs; |
40b6a762 | 1311 | int balance_flag_changed; |
950592f7 MX |
1312 | int spread_flag_changed; |
1313 | struct ptr_heap heap; | |
1314 | int err; | |
1da177e4 | 1315 | |
645fcc9d LZ |
1316 | trialcs = alloc_trial_cpuset(cs); |
1317 | if (!trialcs) | |
1318 | return -ENOMEM; | |
1319 | ||
1da177e4 | 1320 | if (turning_on) |
645fcc9d | 1321 | set_bit(bit, &trialcs->flags); |
1da177e4 | 1322 | else |
645fcc9d | 1323 | clear_bit(bit, &trialcs->flags); |
1da177e4 | 1324 | |
645fcc9d | 1325 | err = validate_change(cs, trialcs); |
85d7b949 | 1326 | if (err < 0) |
645fcc9d | 1327 | goto out; |
029190c5 | 1328 | |
950592f7 MX |
1329 | err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
1330 | if (err < 0) | |
1331 | goto out; | |
1332 | ||
029190c5 | 1333 | balance_flag_changed = (is_sched_load_balance(cs) != |
645fcc9d | 1334 | is_sched_load_balance(trialcs)); |
029190c5 | 1335 | |
950592f7 MX |
1336 | spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) |
1337 | || (is_spread_page(cs) != is_spread_page(trialcs))); | |
1338 | ||
3d3f26a7 | 1339 | mutex_lock(&callback_mutex); |
645fcc9d | 1340 | cs->flags = trialcs->flags; |
3d3f26a7 | 1341 | mutex_unlock(&callback_mutex); |
85d7b949 | 1342 | |
300ed6cb | 1343 | if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) |
699140ba | 1344 | rebuild_sched_domains_locked(); |
029190c5 | 1345 | |
950592f7 MX |
1346 | if (spread_flag_changed) |
1347 | update_tasks_flags(cs, &heap); | |
1348 | heap_free(&heap); | |
645fcc9d LZ |
1349 | out: |
1350 | free_trial_cpuset(trialcs); | |
1351 | return err; | |
1da177e4 LT |
1352 | } |
1353 | ||
3e0d98b9 | 1354 | /* |
80f7228b | 1355 | * Frequency meter - How fast is some event occurring? |
3e0d98b9 PJ |
1356 | * |
1357 | * These routines manage a digitally filtered, constant time based, | |
1358 | * event frequency meter. There are four routines: | |
1359 | * fmeter_init() - initialize a frequency meter. | |
1360 | * fmeter_markevent() - called each time the event happens. | |
1361 | * fmeter_getrate() - returns the recent rate of such events. | |
1362 | * fmeter_update() - internal routine used to update fmeter. | |
1363 | * | |
1364 | * A common data structure is passed to each of these routines, | |
1365 | * which is used to keep track of the state required to manage the | |
1366 | * frequency meter and its digital filter. | |
1367 | * | |
1368 | * The filter works on the number of events marked per unit time. | |
1369 | * The filter is single-pole low-pass recursive (IIR). The time unit | |
1370 | * is 1 second. Arithmetic is done using 32-bit integers scaled to | |
1371 | * simulate 3 decimal digits of precision (multiplied by 1000). | |
1372 | * | |
1373 | * With an FM_COEF of 933, and a time base of 1 second, the filter | |
1374 | * has a half-life of 10 seconds, meaning that if the events quit | |
1375 | * happening, then the rate returned from the fmeter_getrate() | |
1376 | * will be cut in half each 10 seconds, until it converges to zero. | |
1377 | * | |
1378 | * It is not worth doing a real infinitely recursive filter. If more | |
1379 | * than FM_MAXTICKS ticks have elapsed since the last filter event, | |
1380 | * just compute FM_MAXTICKS ticks worth, by which point the level | |
1381 | * will be stable. | |
1382 | * | |
1383 | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | |
1384 | * arithmetic overflow in the fmeter_update() routine. | |
1385 | * | |
1386 | * Given the simple 32 bit integer arithmetic used, this meter works | |
1387 | * best for reporting rates between one per millisecond (msec) and | |
1388 | * one per 32 (approx) seconds. At constant rates faster than one | |
1389 | * per msec it maxes out at values just under 1,000,000. At constant | |
1390 | * rates between one per msec, and one per second it will stabilize | |
1391 | * to a value N*1000, where N is the rate of events per second. | |
1392 | * At constant rates between one per second and one per 32 seconds, | |
1393 | * it will be choppy, moving up on the seconds that have an event, | |
1394 | * and then decaying until the next event. At rates slower than | |
1395 | * about one in 32 seconds, it decays all the way back to zero between | |
1396 | * each event. | |
1397 | */ | |
1398 | ||
1399 | #define FM_COEF 933 /* coefficient for half-life of 10 secs */ | |
1400 | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ | |
1401 | #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ | |
1402 | #define FM_SCALE 1000 /* faux fixed point scale */ | |
1403 | ||
1404 | /* Initialize a frequency meter */ | |
1405 | static void fmeter_init(struct fmeter *fmp) | |
1406 | { | |
1407 | fmp->cnt = 0; | |
1408 | fmp->val = 0; | |
1409 | fmp->time = 0; | |
1410 | spin_lock_init(&fmp->lock); | |
1411 | } | |
1412 | ||
1413 | /* Internal meter update - process cnt events and update value */ | |
1414 | static void fmeter_update(struct fmeter *fmp) | |
1415 | { | |
1416 | time_t now = get_seconds(); | |
1417 | time_t ticks = now - fmp->time; | |
1418 | ||
1419 | if (ticks == 0) | |
1420 | return; | |
1421 | ||
1422 | ticks = min(FM_MAXTICKS, ticks); | |
1423 | while (ticks-- > 0) | |
1424 | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | |
1425 | fmp->time = now; | |
1426 | ||
1427 | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | |
1428 | fmp->cnt = 0; | |
1429 | } | |
1430 | ||
1431 | /* Process any previous ticks, then bump cnt by one (times scale). */ | |
1432 | static void fmeter_markevent(struct fmeter *fmp) | |
1433 | { | |
1434 | spin_lock(&fmp->lock); | |
1435 | fmeter_update(fmp); | |
1436 | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | |
1437 | spin_unlock(&fmp->lock); | |
1438 | } | |
1439 | ||
1440 | /* Process any previous ticks, then return current value. */ | |
1441 | static int fmeter_getrate(struct fmeter *fmp) | |
1442 | { | |
1443 | int val; | |
1444 | ||
1445 | spin_lock(&fmp->lock); | |
1446 | fmeter_update(fmp); | |
1447 | val = fmp->val; | |
1448 | spin_unlock(&fmp->lock); | |
1449 | return val; | |
1450 | } | |
1451 | ||
5d21cc2d | 1452 | /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ |
eb95419b TH |
1453 | static int cpuset_can_attach(struct cgroup_subsys_state *css, |
1454 | struct cgroup_taskset *tset) | |
f780bdb7 | 1455 | { |
eb95419b | 1456 | struct cpuset *cs = css_cs(css); |
bb9d97b6 TH |
1457 | struct task_struct *task; |
1458 | int ret; | |
1da177e4 | 1459 | |
5d21cc2d TH |
1460 | mutex_lock(&cpuset_mutex); |
1461 | ||
88fa523b LZ |
1462 | /* |
1463 | * We allow to move tasks into an empty cpuset if sane_behavior | |
1464 | * flag is set. | |
1465 | */ | |
5d21cc2d | 1466 | ret = -ENOSPC; |
eb95419b | 1467 | if (!cgroup_sane_behavior(css->cgroup) && |
88fa523b | 1468 | (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) |
5d21cc2d | 1469 | goto out_unlock; |
9985b0ba | 1470 | |
d99c8727 | 1471 | cgroup_taskset_for_each(task, css, tset) { |
bb9d97b6 | 1472 | /* |
14a40ffc TH |
1473 | * Kthreads which disallow setaffinity shouldn't be moved |
1474 | * to a new cpuset; we don't want to change their cpu | |
1475 | * affinity and isolating such threads by their set of | |
1476 | * allowed nodes is unnecessary. Thus, cpusets are not | |
1477 | * applicable for such threads. This prevents checking for | |
1478 | * success of set_cpus_allowed_ptr() on all attached tasks | |
1479 | * before cpus_allowed may be changed. | |
bb9d97b6 | 1480 | */ |
5d21cc2d | 1481 | ret = -EINVAL; |
14a40ffc | 1482 | if (task->flags & PF_NO_SETAFFINITY) |
5d21cc2d TH |
1483 | goto out_unlock; |
1484 | ret = security_task_setscheduler(task); | |
1485 | if (ret) | |
1486 | goto out_unlock; | |
bb9d97b6 | 1487 | } |
f780bdb7 | 1488 | |
452477fa TH |
1489 | /* |
1490 | * Mark attach is in progress. This makes validate_change() fail | |
1491 | * changes which zero cpus/mems_allowed. | |
1492 | */ | |
1493 | cs->attach_in_progress++; | |
5d21cc2d TH |
1494 | ret = 0; |
1495 | out_unlock: | |
1496 | mutex_unlock(&cpuset_mutex); | |
1497 | return ret; | |
8793d854 | 1498 | } |
f780bdb7 | 1499 | |
eb95419b | 1500 | static void cpuset_cancel_attach(struct cgroup_subsys_state *css, |
452477fa TH |
1501 | struct cgroup_taskset *tset) |
1502 | { | |
5d21cc2d | 1503 | mutex_lock(&cpuset_mutex); |
eb95419b | 1504 | css_cs(css)->attach_in_progress--; |
5d21cc2d | 1505 | mutex_unlock(&cpuset_mutex); |
8793d854 | 1506 | } |
1da177e4 | 1507 | |
4e4c9a14 | 1508 | /* |
5d21cc2d | 1509 | * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() |
4e4c9a14 TH |
1510 | * but we can't allocate it dynamically there. Define it global and |
1511 | * allocate from cpuset_init(). | |
1512 | */ | |
1513 | static cpumask_var_t cpus_attach; | |
1514 | ||
eb95419b TH |
1515 | static void cpuset_attach(struct cgroup_subsys_state *css, |
1516 | struct cgroup_taskset *tset) | |
8793d854 | 1517 | { |
67bd2c59 | 1518 | /* static buf protected by cpuset_mutex */ |
4e4c9a14 | 1519 | static nodemask_t cpuset_attach_nodemask_to; |
8793d854 | 1520 | struct mm_struct *mm; |
bb9d97b6 TH |
1521 | struct task_struct *task; |
1522 | struct task_struct *leader = cgroup_taskset_first(tset); | |
d99c8727 TH |
1523 | struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset, |
1524 | cpuset_subsys_id); | |
eb95419b | 1525 | struct cpuset *cs = css_cs(css); |
d99c8727 | 1526 | struct cpuset *oldcs = css_cs(oldcss); |
070b57fc LZ |
1527 | struct cpuset *cpus_cs = effective_cpumask_cpuset(cs); |
1528 | struct cpuset *mems_cs = effective_nodemask_cpuset(cs); | |
22fb52dd | 1529 | |
5d21cc2d TH |
1530 | mutex_lock(&cpuset_mutex); |
1531 | ||
4e4c9a14 TH |
1532 | /* prepare for attach */ |
1533 | if (cs == &top_cpuset) | |
1534 | cpumask_copy(cpus_attach, cpu_possible_mask); | |
1535 | else | |
070b57fc | 1536 | guarantee_online_cpus(cpus_cs, cpus_attach); |
4e4c9a14 | 1537 | |
070b57fc | 1538 | guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to); |
4e4c9a14 | 1539 | |
d99c8727 | 1540 | cgroup_taskset_for_each(task, css, tset) { |
bb9d97b6 TH |
1541 | /* |
1542 | * can_attach beforehand should guarantee that this doesn't | |
1543 | * fail. TODO: have a better way to handle failure here | |
1544 | */ | |
1545 | WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); | |
1546 | ||
1547 | cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); | |
1548 | cpuset_update_task_spread_flag(cs, task); | |
1549 | } | |
22fb52dd | 1550 | |
f780bdb7 BB |
1551 | /* |
1552 | * Change mm, possibly for multiple threads in a threadgroup. This is | |
1553 | * expensive and may sleep. | |
1554 | */ | |
f780bdb7 | 1555 | cpuset_attach_nodemask_to = cs->mems_allowed; |
bb9d97b6 | 1556 | mm = get_task_mm(leader); |
4225399a | 1557 | if (mm) { |
070b57fc LZ |
1558 | struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs); |
1559 | ||
f780bdb7 | 1560 | mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); |
f047cecf LZ |
1561 | |
1562 | /* | |
1563 | * old_mems_allowed is the same with mems_allowed here, except | |
1564 | * if this task is being moved automatically due to hotplug. | |
1565 | * In that case @mems_allowed has been updated and is empty, | |
1566 | * so @old_mems_allowed is the right nodesets that we migrate | |
1567 | * mm from. | |
1568 | */ | |
1569 | if (is_memory_migrate(cs)) { | |
1570 | cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed, | |
f780bdb7 | 1571 | &cpuset_attach_nodemask_to); |
f047cecf | 1572 | } |
4225399a PJ |
1573 | mmput(mm); |
1574 | } | |
452477fa | 1575 | |
33ad801d | 1576 | cs->old_mems_allowed = cpuset_attach_nodemask_to; |
02bb5863 | 1577 | |
452477fa | 1578 | cs->attach_in_progress--; |
e44193d3 LZ |
1579 | if (!cs->attach_in_progress) |
1580 | wake_up(&cpuset_attach_wq); | |
5d21cc2d TH |
1581 | |
1582 | mutex_unlock(&cpuset_mutex); | |
1da177e4 LT |
1583 | } |
1584 | ||
1585 | /* The various types of files and directories in a cpuset file system */ | |
1586 | ||
1587 | typedef enum { | |
45b07ef3 | 1588 | FILE_MEMORY_MIGRATE, |
1da177e4 LT |
1589 | FILE_CPULIST, |
1590 | FILE_MEMLIST, | |
1591 | FILE_CPU_EXCLUSIVE, | |
1592 | FILE_MEM_EXCLUSIVE, | |
78608366 | 1593 | FILE_MEM_HARDWALL, |
029190c5 | 1594 | FILE_SCHED_LOAD_BALANCE, |
1d3504fc | 1595 | FILE_SCHED_RELAX_DOMAIN_LEVEL, |
3e0d98b9 PJ |
1596 | FILE_MEMORY_PRESSURE_ENABLED, |
1597 | FILE_MEMORY_PRESSURE, | |
825a46af PJ |
1598 | FILE_SPREAD_PAGE, |
1599 | FILE_SPREAD_SLAB, | |
1da177e4 LT |
1600 | } cpuset_filetype_t; |
1601 | ||
182446d0 TH |
1602 | static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, |
1603 | u64 val) | |
700fe1ab | 1604 | { |
182446d0 | 1605 | struct cpuset *cs = css_cs(css); |
700fe1ab | 1606 | cpuset_filetype_t type = cft->private; |
a903f086 | 1607 | int retval = 0; |
700fe1ab | 1608 | |
5d21cc2d | 1609 | mutex_lock(&cpuset_mutex); |
a903f086 LZ |
1610 | if (!is_cpuset_online(cs)) { |
1611 | retval = -ENODEV; | |
5d21cc2d | 1612 | goto out_unlock; |
a903f086 | 1613 | } |
700fe1ab PM |
1614 | |
1615 | switch (type) { | |
1da177e4 | 1616 | case FILE_CPU_EXCLUSIVE: |
700fe1ab | 1617 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); |
1da177e4 LT |
1618 | break; |
1619 | case FILE_MEM_EXCLUSIVE: | |
700fe1ab | 1620 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); |
1da177e4 | 1621 | break; |
78608366 PM |
1622 | case FILE_MEM_HARDWALL: |
1623 | retval = update_flag(CS_MEM_HARDWALL, cs, val); | |
1624 | break; | |
029190c5 | 1625 | case FILE_SCHED_LOAD_BALANCE: |
700fe1ab | 1626 | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); |
1d3504fc | 1627 | break; |
45b07ef3 | 1628 | case FILE_MEMORY_MIGRATE: |
700fe1ab | 1629 | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); |
45b07ef3 | 1630 | break; |
3e0d98b9 | 1631 | case FILE_MEMORY_PRESSURE_ENABLED: |
700fe1ab | 1632 | cpuset_memory_pressure_enabled = !!val; |
3e0d98b9 PJ |
1633 | break; |
1634 | case FILE_MEMORY_PRESSURE: | |
1635 | retval = -EACCES; | |
1636 | break; | |
825a46af | 1637 | case FILE_SPREAD_PAGE: |
700fe1ab | 1638 | retval = update_flag(CS_SPREAD_PAGE, cs, val); |
825a46af PJ |
1639 | break; |
1640 | case FILE_SPREAD_SLAB: | |
700fe1ab | 1641 | retval = update_flag(CS_SPREAD_SLAB, cs, val); |
825a46af | 1642 | break; |
1da177e4 LT |
1643 | default: |
1644 | retval = -EINVAL; | |
700fe1ab | 1645 | break; |
1da177e4 | 1646 | } |
5d21cc2d TH |
1647 | out_unlock: |
1648 | mutex_unlock(&cpuset_mutex); | |
1da177e4 LT |
1649 | return retval; |
1650 | } | |
1651 | ||
182446d0 TH |
1652 | static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, |
1653 | s64 val) | |
5be7a479 | 1654 | { |
182446d0 | 1655 | struct cpuset *cs = css_cs(css); |
5be7a479 | 1656 | cpuset_filetype_t type = cft->private; |
5d21cc2d | 1657 | int retval = -ENODEV; |
5be7a479 | 1658 | |
5d21cc2d TH |
1659 | mutex_lock(&cpuset_mutex); |
1660 | if (!is_cpuset_online(cs)) | |
1661 | goto out_unlock; | |
e3712395 | 1662 | |
5be7a479 PM |
1663 | switch (type) { |
1664 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1665 | retval = update_relax_domain_level(cs, val); | |
1666 | break; | |
1667 | default: | |
1668 | retval = -EINVAL; | |
1669 | break; | |
1670 | } | |
5d21cc2d TH |
1671 | out_unlock: |
1672 | mutex_unlock(&cpuset_mutex); | |
5be7a479 PM |
1673 | return retval; |
1674 | } | |
1675 | ||
e3712395 PM |
1676 | /* |
1677 | * Common handling for a write to a "cpus" or "mems" file. | |
1678 | */ | |
182446d0 TH |
1679 | static int cpuset_write_resmask(struct cgroup_subsys_state *css, |
1680 | struct cftype *cft, const char *buf) | |
e3712395 | 1681 | { |
182446d0 | 1682 | struct cpuset *cs = css_cs(css); |
645fcc9d | 1683 | struct cpuset *trialcs; |
5d21cc2d | 1684 | int retval = -ENODEV; |
e3712395 | 1685 | |
3a5a6d0c TH |
1686 | /* |
1687 | * CPU or memory hotunplug may leave @cs w/o any execution | |
1688 | * resources, in which case the hotplug code asynchronously updates | |
1689 | * configuration and transfers all tasks to the nearest ancestor | |
1690 | * which can execute. | |
1691 | * | |
1692 | * As writes to "cpus" or "mems" may restore @cs's execution | |
1693 | * resources, wait for the previously scheduled operations before | |
1694 | * proceeding, so that we don't end up keep removing tasks added | |
1695 | * after execution capability is restored. | |
1696 | */ | |
1697 | flush_work(&cpuset_hotplug_work); | |
1698 | ||
5d21cc2d TH |
1699 | mutex_lock(&cpuset_mutex); |
1700 | if (!is_cpuset_online(cs)) | |
1701 | goto out_unlock; | |
e3712395 | 1702 | |
645fcc9d | 1703 | trialcs = alloc_trial_cpuset(cs); |
b75f38d6 LZ |
1704 | if (!trialcs) { |
1705 | retval = -ENOMEM; | |
5d21cc2d | 1706 | goto out_unlock; |
b75f38d6 | 1707 | } |
645fcc9d | 1708 | |
e3712395 PM |
1709 | switch (cft->private) { |
1710 | case FILE_CPULIST: | |
645fcc9d | 1711 | retval = update_cpumask(cs, trialcs, buf); |
e3712395 PM |
1712 | break; |
1713 | case FILE_MEMLIST: | |
645fcc9d | 1714 | retval = update_nodemask(cs, trialcs, buf); |
e3712395 PM |
1715 | break; |
1716 | default: | |
1717 | retval = -EINVAL; | |
1718 | break; | |
1719 | } | |
645fcc9d LZ |
1720 | |
1721 | free_trial_cpuset(trialcs); | |
5d21cc2d TH |
1722 | out_unlock: |
1723 | mutex_unlock(&cpuset_mutex); | |
e3712395 PM |
1724 | return retval; |
1725 | } | |
1726 | ||
1da177e4 LT |
1727 | /* |
1728 | * These ascii lists should be read in a single call, by using a user | |
1729 | * buffer large enough to hold the entire map. If read in smaller | |
1730 | * chunks, there is no guarantee of atomicity. Since the display format | |
1731 | * used, list of ranges of sequential numbers, is variable length, | |
1732 | * and since these maps can change value dynamically, one could read | |
1733 | * gibberish by doing partial reads while a list was changing. | |
1da177e4 | 1734 | */ |
2da8ca82 | 1735 | static int cpuset_common_seq_show(struct seq_file *sf, void *v) |
1da177e4 | 1736 | { |
2da8ca82 TH |
1737 | struct cpuset *cs = css_cs(seq_css(sf)); |
1738 | cpuset_filetype_t type = seq_cft(sf)->private; | |
51ffe411 TH |
1739 | ssize_t count; |
1740 | char *buf, *s; | |
1741 | int ret = 0; | |
1da177e4 | 1742 | |
51ffe411 TH |
1743 | count = seq_get_buf(sf, &buf); |
1744 | s = buf; | |
1da177e4 | 1745 | |
51ffe411 | 1746 | mutex_lock(&callback_mutex); |
1da177e4 LT |
1747 | |
1748 | switch (type) { | |
1749 | case FILE_CPULIST: | |
51ffe411 | 1750 | s += cpulist_scnprintf(s, count, cs->cpus_allowed); |
1da177e4 LT |
1751 | break; |
1752 | case FILE_MEMLIST: | |
51ffe411 | 1753 | s += nodelist_scnprintf(s, count, cs->mems_allowed); |
1da177e4 | 1754 | break; |
1da177e4 | 1755 | default: |
51ffe411 TH |
1756 | ret = -EINVAL; |
1757 | goto out_unlock; | |
1da177e4 | 1758 | } |
1da177e4 | 1759 | |
51ffe411 TH |
1760 | if (s < buf + count - 1) { |
1761 | *s++ = '\n'; | |
1762 | seq_commit(sf, s - buf); | |
1763 | } else { | |
1764 | seq_commit(sf, -1); | |
1765 | } | |
1766 | out_unlock: | |
1767 | mutex_unlock(&callback_mutex); | |
1768 | return ret; | |
1da177e4 LT |
1769 | } |
1770 | ||
182446d0 | 1771 | static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) |
700fe1ab | 1772 | { |
182446d0 | 1773 | struct cpuset *cs = css_cs(css); |
700fe1ab PM |
1774 | cpuset_filetype_t type = cft->private; |
1775 | switch (type) { | |
1776 | case FILE_CPU_EXCLUSIVE: | |
1777 | return is_cpu_exclusive(cs); | |
1778 | case FILE_MEM_EXCLUSIVE: | |
1779 | return is_mem_exclusive(cs); | |
78608366 PM |
1780 | case FILE_MEM_HARDWALL: |
1781 | return is_mem_hardwall(cs); | |
700fe1ab PM |
1782 | case FILE_SCHED_LOAD_BALANCE: |
1783 | return is_sched_load_balance(cs); | |
1784 | case FILE_MEMORY_MIGRATE: | |
1785 | return is_memory_migrate(cs); | |
1786 | case FILE_MEMORY_PRESSURE_ENABLED: | |
1787 | return cpuset_memory_pressure_enabled; | |
1788 | case FILE_MEMORY_PRESSURE: | |
1789 | return fmeter_getrate(&cs->fmeter); | |
1790 | case FILE_SPREAD_PAGE: | |
1791 | return is_spread_page(cs); | |
1792 | case FILE_SPREAD_SLAB: | |
1793 | return is_spread_slab(cs); | |
1794 | default: | |
1795 | BUG(); | |
1796 | } | |
cf417141 MK |
1797 | |
1798 | /* Unreachable but makes gcc happy */ | |
1799 | return 0; | |
700fe1ab | 1800 | } |
1da177e4 | 1801 | |
182446d0 | 1802 | static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) |
5be7a479 | 1803 | { |
182446d0 | 1804 | struct cpuset *cs = css_cs(css); |
5be7a479 PM |
1805 | cpuset_filetype_t type = cft->private; |
1806 | switch (type) { | |
1807 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1808 | return cs->relax_domain_level; | |
1809 | default: | |
1810 | BUG(); | |
1811 | } | |
cf417141 MK |
1812 | |
1813 | /* Unrechable but makes gcc happy */ | |
1814 | return 0; | |
5be7a479 PM |
1815 | } |
1816 | ||
1da177e4 LT |
1817 | |
1818 | /* | |
1819 | * for the common functions, 'private' gives the type of file | |
1820 | */ | |
1821 | ||
addf2c73 PM |
1822 | static struct cftype files[] = { |
1823 | { | |
1824 | .name = "cpus", | |
2da8ca82 | 1825 | .seq_show = cpuset_common_seq_show, |
e3712395 PM |
1826 | .write_string = cpuset_write_resmask, |
1827 | .max_write_len = (100U + 6 * NR_CPUS), | |
addf2c73 PM |
1828 | .private = FILE_CPULIST, |
1829 | }, | |
1830 | ||
1831 | { | |
1832 | .name = "mems", | |
2da8ca82 | 1833 | .seq_show = cpuset_common_seq_show, |
e3712395 PM |
1834 | .write_string = cpuset_write_resmask, |
1835 | .max_write_len = (100U + 6 * MAX_NUMNODES), | |
addf2c73 PM |
1836 | .private = FILE_MEMLIST, |
1837 | }, | |
1838 | ||
1839 | { | |
1840 | .name = "cpu_exclusive", | |
1841 | .read_u64 = cpuset_read_u64, | |
1842 | .write_u64 = cpuset_write_u64, | |
1843 | .private = FILE_CPU_EXCLUSIVE, | |
1844 | }, | |
1845 | ||
1846 | { | |
1847 | .name = "mem_exclusive", | |
1848 | .read_u64 = cpuset_read_u64, | |
1849 | .write_u64 = cpuset_write_u64, | |
1850 | .private = FILE_MEM_EXCLUSIVE, | |
1851 | }, | |
1852 | ||
78608366 PM |
1853 | { |
1854 | .name = "mem_hardwall", | |
1855 | .read_u64 = cpuset_read_u64, | |
1856 | .write_u64 = cpuset_write_u64, | |
1857 | .private = FILE_MEM_HARDWALL, | |
1858 | }, | |
1859 | ||
addf2c73 PM |
1860 | { |
1861 | .name = "sched_load_balance", | |
1862 | .read_u64 = cpuset_read_u64, | |
1863 | .write_u64 = cpuset_write_u64, | |
1864 | .private = FILE_SCHED_LOAD_BALANCE, | |
1865 | }, | |
1866 | ||
1867 | { | |
1868 | .name = "sched_relax_domain_level", | |
5be7a479 PM |
1869 | .read_s64 = cpuset_read_s64, |
1870 | .write_s64 = cpuset_write_s64, | |
addf2c73 PM |
1871 | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, |
1872 | }, | |
1873 | ||
1874 | { | |
1875 | .name = "memory_migrate", | |
1876 | .read_u64 = cpuset_read_u64, | |
1877 | .write_u64 = cpuset_write_u64, | |
1878 | .private = FILE_MEMORY_MIGRATE, | |
1879 | }, | |
1880 | ||
1881 | { | |
1882 | .name = "memory_pressure", | |
1883 | .read_u64 = cpuset_read_u64, | |
1884 | .write_u64 = cpuset_write_u64, | |
1885 | .private = FILE_MEMORY_PRESSURE, | |
099fca32 | 1886 | .mode = S_IRUGO, |
addf2c73 PM |
1887 | }, |
1888 | ||
1889 | { | |
1890 | .name = "memory_spread_page", | |
1891 | .read_u64 = cpuset_read_u64, | |
1892 | .write_u64 = cpuset_write_u64, | |
1893 | .private = FILE_SPREAD_PAGE, | |
1894 | }, | |
1895 | ||
1896 | { | |
1897 | .name = "memory_spread_slab", | |
1898 | .read_u64 = cpuset_read_u64, | |
1899 | .write_u64 = cpuset_write_u64, | |
1900 | .private = FILE_SPREAD_SLAB, | |
1901 | }, | |
3e0d98b9 | 1902 | |
4baf6e33 TH |
1903 | { |
1904 | .name = "memory_pressure_enabled", | |
1905 | .flags = CFTYPE_ONLY_ON_ROOT, | |
1906 | .read_u64 = cpuset_read_u64, | |
1907 | .write_u64 = cpuset_write_u64, | |
1908 | .private = FILE_MEMORY_PRESSURE_ENABLED, | |
1909 | }, | |
1da177e4 | 1910 | |
4baf6e33 TH |
1911 | { } /* terminate */ |
1912 | }; | |
1da177e4 LT |
1913 | |
1914 | /* | |
92fb9748 | 1915 | * cpuset_css_alloc - allocate a cpuset css |
c9e5fe66 | 1916 | * cgrp: control group that the new cpuset will be part of |
1da177e4 LT |
1917 | */ |
1918 | ||
eb95419b TH |
1919 | static struct cgroup_subsys_state * |
1920 | cpuset_css_alloc(struct cgroup_subsys_state *parent_css) | |
1da177e4 | 1921 | { |
c8f699bb | 1922 | struct cpuset *cs; |
1da177e4 | 1923 | |
eb95419b | 1924 | if (!parent_css) |
8793d854 | 1925 | return &top_cpuset.css; |
033fa1c5 | 1926 | |
c8f699bb | 1927 | cs = kzalloc(sizeof(*cs), GFP_KERNEL); |
1da177e4 | 1928 | if (!cs) |
8793d854 | 1929 | return ERR_PTR(-ENOMEM); |
300ed6cb LZ |
1930 | if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { |
1931 | kfree(cs); | |
1932 | return ERR_PTR(-ENOMEM); | |
1933 | } | |
1da177e4 | 1934 | |
029190c5 | 1935 | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
300ed6cb | 1936 | cpumask_clear(cs->cpus_allowed); |
f9a86fcb | 1937 | nodes_clear(cs->mems_allowed); |
3e0d98b9 | 1938 | fmeter_init(&cs->fmeter); |
1d3504fc | 1939 | cs->relax_domain_level = -1; |
1da177e4 | 1940 | |
c8f699bb TH |
1941 | return &cs->css; |
1942 | } | |
1943 | ||
eb95419b | 1944 | static int cpuset_css_online(struct cgroup_subsys_state *css) |
c8f699bb | 1945 | { |
eb95419b | 1946 | struct cpuset *cs = css_cs(css); |
c431069f | 1947 | struct cpuset *parent = parent_cs(cs); |
ae8086ce | 1948 | struct cpuset *tmp_cs; |
492eb21b | 1949 | struct cgroup_subsys_state *pos_css; |
c8f699bb TH |
1950 | |
1951 | if (!parent) | |
1952 | return 0; | |
1953 | ||
5d21cc2d TH |
1954 | mutex_lock(&cpuset_mutex); |
1955 | ||
efeb77b2 | 1956 | set_bit(CS_ONLINE, &cs->flags); |
c8f699bb TH |
1957 | if (is_spread_page(parent)) |
1958 | set_bit(CS_SPREAD_PAGE, &cs->flags); | |
1959 | if (is_spread_slab(parent)) | |
1960 | set_bit(CS_SPREAD_SLAB, &cs->flags); | |
1da177e4 | 1961 | |
202f72d5 | 1962 | number_of_cpusets++; |
033fa1c5 | 1963 | |
eb95419b | 1964 | if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) |
5d21cc2d | 1965 | goto out_unlock; |
033fa1c5 TH |
1966 | |
1967 | /* | |
1968 | * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is | |
1969 | * set. This flag handling is implemented in cgroup core for | |
1970 | * histrical reasons - the flag may be specified during mount. | |
1971 | * | |
1972 | * Currently, if any sibling cpusets have exclusive cpus or mem, we | |
1973 | * refuse to clone the configuration - thereby refusing the task to | |
1974 | * be entered, and as a result refusing the sys_unshare() or | |
1975 | * clone() which initiated it. If this becomes a problem for some | |
1976 | * users who wish to allow that scenario, then this could be | |
1977 | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | |
1978 | * (and likewise for mems) to the new cgroup. | |
1979 | */ | |
ae8086ce | 1980 | rcu_read_lock(); |
492eb21b | 1981 | cpuset_for_each_child(tmp_cs, pos_css, parent) { |
ae8086ce TH |
1982 | if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { |
1983 | rcu_read_unlock(); | |
5d21cc2d | 1984 | goto out_unlock; |
ae8086ce | 1985 | } |
033fa1c5 | 1986 | } |
ae8086ce | 1987 | rcu_read_unlock(); |
033fa1c5 TH |
1988 | |
1989 | mutex_lock(&callback_mutex); | |
1990 | cs->mems_allowed = parent->mems_allowed; | |
1991 | cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); | |
1992 | mutex_unlock(&callback_mutex); | |
5d21cc2d TH |
1993 | out_unlock: |
1994 | mutex_unlock(&cpuset_mutex); | |
c8f699bb TH |
1995 | return 0; |
1996 | } | |
1997 | ||
0b9e6965 ZH |
1998 | /* |
1999 | * If the cpuset being removed has its flag 'sched_load_balance' | |
2000 | * enabled, then simulate turning sched_load_balance off, which | |
2001 | * will call rebuild_sched_domains_locked(). | |
2002 | */ | |
2003 | ||
eb95419b | 2004 | static void cpuset_css_offline(struct cgroup_subsys_state *css) |
c8f699bb | 2005 | { |
eb95419b | 2006 | struct cpuset *cs = css_cs(css); |
c8f699bb | 2007 | |
5d21cc2d | 2008 | mutex_lock(&cpuset_mutex); |
c8f699bb TH |
2009 | |
2010 | if (is_sched_load_balance(cs)) | |
2011 | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); | |
2012 | ||
2013 | number_of_cpusets--; | |
efeb77b2 | 2014 | clear_bit(CS_ONLINE, &cs->flags); |
c8f699bb | 2015 | |
5d21cc2d | 2016 | mutex_unlock(&cpuset_mutex); |
1da177e4 LT |
2017 | } |
2018 | ||
eb95419b | 2019 | static void cpuset_css_free(struct cgroup_subsys_state *css) |
1da177e4 | 2020 | { |
eb95419b | 2021 | struct cpuset *cs = css_cs(css); |
1da177e4 | 2022 | |
300ed6cb | 2023 | free_cpumask_var(cs->cpus_allowed); |
8793d854 | 2024 | kfree(cs); |
1da177e4 LT |
2025 | } |
2026 | ||
8793d854 PM |
2027 | struct cgroup_subsys cpuset_subsys = { |
2028 | .name = "cpuset", | |
92fb9748 | 2029 | .css_alloc = cpuset_css_alloc, |
c8f699bb TH |
2030 | .css_online = cpuset_css_online, |
2031 | .css_offline = cpuset_css_offline, | |
92fb9748 | 2032 | .css_free = cpuset_css_free, |
8793d854 | 2033 | .can_attach = cpuset_can_attach, |
452477fa | 2034 | .cancel_attach = cpuset_cancel_attach, |
8793d854 | 2035 | .attach = cpuset_attach, |
8793d854 | 2036 | .subsys_id = cpuset_subsys_id, |
4baf6e33 | 2037 | .base_cftypes = files, |
8793d854 PM |
2038 | .early_init = 1, |
2039 | }; | |
2040 | ||
1da177e4 LT |
2041 | /** |
2042 | * cpuset_init - initialize cpusets at system boot | |
2043 | * | |
2044 | * Description: Initialize top_cpuset and the cpuset internal file system, | |
2045 | **/ | |
2046 | ||
2047 | int __init cpuset_init(void) | |
2048 | { | |
8793d854 | 2049 | int err = 0; |
1da177e4 | 2050 | |
58568d2a MX |
2051 | if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)) |
2052 | BUG(); | |
2053 | ||
300ed6cb | 2054 | cpumask_setall(top_cpuset.cpus_allowed); |
f9a86fcb | 2055 | nodes_setall(top_cpuset.mems_allowed); |
1da177e4 | 2056 | |
3e0d98b9 | 2057 | fmeter_init(&top_cpuset.fmeter); |
029190c5 | 2058 | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); |
1d3504fc | 2059 | top_cpuset.relax_domain_level = -1; |
1da177e4 | 2060 | |
1da177e4 LT |
2061 | err = register_filesystem(&cpuset_fs_type); |
2062 | if (err < 0) | |
8793d854 PM |
2063 | return err; |
2064 | ||
2341d1b6 LZ |
2065 | if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) |
2066 | BUG(); | |
2067 | ||
202f72d5 | 2068 | number_of_cpusets = 1; |
8793d854 | 2069 | return 0; |
1da177e4 LT |
2070 | } |
2071 | ||
b1aac8bb | 2072 | /* |
cf417141 | 2073 | * If CPU and/or memory hotplug handlers, below, unplug any CPUs |
b1aac8bb PJ |
2074 | * or memory nodes, we need to walk over the cpuset hierarchy, |
2075 | * removing that CPU or node from all cpusets. If this removes the | |
956db3ca CW |
2076 | * last CPU or node from a cpuset, then move the tasks in the empty |
2077 | * cpuset to its next-highest non-empty parent. | |
b1aac8bb | 2078 | */ |
956db3ca CW |
2079 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) |
2080 | { | |
2081 | struct cpuset *parent; | |
2082 | ||
956db3ca CW |
2083 | /* |
2084 | * Find its next-highest non-empty parent, (top cpuset | |
2085 | * has online cpus, so can't be empty). | |
2086 | */ | |
c431069f | 2087 | parent = parent_cs(cs); |
300ed6cb | 2088 | while (cpumask_empty(parent->cpus_allowed) || |
b4501295 | 2089 | nodes_empty(parent->mems_allowed)) |
c431069f | 2090 | parent = parent_cs(parent); |
956db3ca | 2091 | |
8cc99345 TH |
2092 | if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { |
2093 | rcu_read_lock(); | |
2094 | printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n", | |
2095 | cgroup_name(cs->css.cgroup)); | |
2096 | rcu_read_unlock(); | |
2097 | } | |
956db3ca CW |
2098 | } |
2099 | ||
deb7aa30 | 2100 | /** |
388afd85 | 2101 | * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug |
deb7aa30 | 2102 | * @cs: cpuset in interest |
956db3ca | 2103 | * |
deb7aa30 TH |
2104 | * Compare @cs's cpu and mem masks against top_cpuset and if some have gone |
2105 | * offline, update @cs accordingly. If @cs ends up with no CPU or memory, | |
2106 | * all its tasks are moved to the nearest ancestor with both resources. | |
80d1fa64 | 2107 | */ |
388afd85 | 2108 | static void cpuset_hotplug_update_tasks(struct cpuset *cs) |
80d1fa64 | 2109 | { |
deb7aa30 | 2110 | static cpumask_t off_cpus; |
33ad801d | 2111 | static nodemask_t off_mems; |
5d21cc2d | 2112 | bool is_empty; |
5c5cc623 | 2113 | bool sane = cgroup_sane_behavior(cs->css.cgroup); |
80d1fa64 | 2114 | |
e44193d3 LZ |
2115 | retry: |
2116 | wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); | |
80d1fa64 | 2117 | |
5d21cc2d | 2118 | mutex_lock(&cpuset_mutex); |
7ddf96b0 | 2119 | |
e44193d3 LZ |
2120 | /* |
2121 | * We have raced with task attaching. We wait until attaching | |
2122 | * is finished, so we won't attach a task to an empty cpuset. | |
2123 | */ | |
2124 | if (cs->attach_in_progress) { | |
2125 | mutex_unlock(&cpuset_mutex); | |
2126 | goto retry; | |
2127 | } | |
2128 | ||
deb7aa30 TH |
2129 | cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed); |
2130 | nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed); | |
80d1fa64 | 2131 | |
5c5cc623 LZ |
2132 | mutex_lock(&callback_mutex); |
2133 | cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus); | |
2134 | mutex_unlock(&callback_mutex); | |
2135 | ||
2136 | /* | |
2137 | * If sane_behavior flag is set, we need to update tasks' cpumask | |
f047cecf LZ |
2138 | * for empty cpuset to take on ancestor's cpumask. Otherwise, don't |
2139 | * call update_tasks_cpumask() if the cpuset becomes empty, as | |
2140 | * the tasks in it will be migrated to an ancestor. | |
5c5cc623 LZ |
2141 | */ |
2142 | if ((sane && cpumask_empty(cs->cpus_allowed)) || | |
f047cecf | 2143 | (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed))) |
deb7aa30 | 2144 | update_tasks_cpumask(cs, NULL); |
80d1fa64 | 2145 | |
5c5cc623 LZ |
2146 | mutex_lock(&callback_mutex); |
2147 | nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems); | |
2148 | mutex_unlock(&callback_mutex); | |
2149 | ||
2150 | /* | |
2151 | * If sane_behavior flag is set, we need to update tasks' nodemask | |
f047cecf LZ |
2152 | * for empty cpuset to take on ancestor's nodemask. Otherwise, don't |
2153 | * call update_tasks_nodemask() if the cpuset becomes empty, as | |
2154 | * the tasks in it will be migratd to an ancestor. | |
5c5cc623 LZ |
2155 | */ |
2156 | if ((sane && nodes_empty(cs->mems_allowed)) || | |
f047cecf | 2157 | (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed))) |
33ad801d | 2158 | update_tasks_nodemask(cs, NULL); |
deb7aa30 | 2159 | |
5d21cc2d TH |
2160 | is_empty = cpumask_empty(cs->cpus_allowed) || |
2161 | nodes_empty(cs->mems_allowed); | |
8d033948 | 2162 | |
5d21cc2d TH |
2163 | mutex_unlock(&cpuset_mutex); |
2164 | ||
2165 | /* | |
5c5cc623 LZ |
2166 | * If sane_behavior flag is set, we'll keep tasks in empty cpusets. |
2167 | * | |
2168 | * Otherwise move tasks to the nearest ancestor with execution | |
2169 | * resources. This is full cgroup operation which will | |
5d21cc2d TH |
2170 | * also call back into cpuset. Should be done outside any lock. |
2171 | */ | |
5c5cc623 | 2172 | if (!sane && is_empty) |
5d21cc2d | 2173 | remove_tasks_in_empty_cpuset(cs); |
b1aac8bb PJ |
2174 | } |
2175 | ||
deb7aa30 | 2176 | /** |
3a5a6d0c | 2177 | * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset |
956db3ca | 2178 | * |
deb7aa30 TH |
2179 | * This function is called after either CPU or memory configuration has |
2180 | * changed and updates cpuset accordingly. The top_cpuset is always | |
2181 | * synchronized to cpu_active_mask and N_MEMORY, which is necessary in | |
2182 | * order to make cpusets transparent (of no affect) on systems that are | |
2183 | * actively using CPU hotplug but making no active use of cpusets. | |
956db3ca | 2184 | * |
deb7aa30 | 2185 | * Non-root cpusets are only affected by offlining. If any CPUs or memory |
388afd85 LZ |
2186 | * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on |
2187 | * all descendants. | |
956db3ca | 2188 | * |
deb7aa30 TH |
2189 | * Note that CPU offlining during suspend is ignored. We don't modify |
2190 | * cpusets across suspend/resume cycles at all. | |
956db3ca | 2191 | */ |
3a5a6d0c | 2192 | static void cpuset_hotplug_workfn(struct work_struct *work) |
b1aac8bb | 2193 | { |
5c5cc623 LZ |
2194 | static cpumask_t new_cpus; |
2195 | static nodemask_t new_mems; | |
deb7aa30 | 2196 | bool cpus_updated, mems_updated; |
b1aac8bb | 2197 | |
5d21cc2d | 2198 | mutex_lock(&cpuset_mutex); |
956db3ca | 2199 | |
deb7aa30 TH |
2200 | /* fetch the available cpus/mems and find out which changed how */ |
2201 | cpumask_copy(&new_cpus, cpu_active_mask); | |
2202 | new_mems = node_states[N_MEMORY]; | |
7ddf96b0 | 2203 | |
deb7aa30 | 2204 | cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus); |
deb7aa30 | 2205 | mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems); |
7ddf96b0 | 2206 | |
deb7aa30 TH |
2207 | /* synchronize cpus_allowed to cpu_active_mask */ |
2208 | if (cpus_updated) { | |
2209 | mutex_lock(&callback_mutex); | |
2210 | cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); | |
2211 | mutex_unlock(&callback_mutex); | |
2212 | /* we don't mess with cpumasks of tasks in top_cpuset */ | |
2213 | } | |
b4501295 | 2214 | |
deb7aa30 TH |
2215 | /* synchronize mems_allowed to N_MEMORY */ |
2216 | if (mems_updated) { | |
deb7aa30 TH |
2217 | mutex_lock(&callback_mutex); |
2218 | top_cpuset.mems_allowed = new_mems; | |
2219 | mutex_unlock(&callback_mutex); | |
33ad801d | 2220 | update_tasks_nodemask(&top_cpuset, NULL); |
deb7aa30 | 2221 | } |
b4501295 | 2222 | |
388afd85 LZ |
2223 | mutex_unlock(&cpuset_mutex); |
2224 | ||
5c5cc623 LZ |
2225 | /* if cpus or mems changed, we need to propagate to descendants */ |
2226 | if (cpus_updated || mems_updated) { | |
deb7aa30 | 2227 | struct cpuset *cs; |
492eb21b | 2228 | struct cgroup_subsys_state *pos_css; |
f9b4fb8d | 2229 | |
fc560a26 | 2230 | rcu_read_lock(); |
492eb21b | 2231 | cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { |
bd8815a6 | 2232 | if (cs == &top_cpuset || !css_tryget(&cs->css)) |
388afd85 LZ |
2233 | continue; |
2234 | rcu_read_unlock(); | |
7ddf96b0 | 2235 | |
388afd85 | 2236 | cpuset_hotplug_update_tasks(cs); |
b4501295 | 2237 | |
388afd85 LZ |
2238 | rcu_read_lock(); |
2239 | css_put(&cs->css); | |
2240 | } | |
2241 | rcu_read_unlock(); | |
2242 | } | |
8d033948 | 2243 | |
deb7aa30 | 2244 | /* rebuild sched domains if cpus_allowed has changed */ |
e0e80a02 LZ |
2245 | if (cpus_updated) |
2246 | rebuild_sched_domains(); | |
b1aac8bb PJ |
2247 | } |
2248 | ||
7ddf96b0 | 2249 | void cpuset_update_active_cpus(bool cpu_online) |
4c4d50f7 | 2250 | { |
3a5a6d0c TH |
2251 | /* |
2252 | * We're inside cpu hotplug critical region which usually nests | |
2253 | * inside cgroup synchronization. Bounce actual hotplug processing | |
2254 | * to a work item to avoid reverse locking order. | |
2255 | * | |
2256 | * We still need to do partition_sched_domains() synchronously; | |
2257 | * otherwise, the scheduler will get confused and put tasks to the | |
2258 | * dead CPU. Fall back to the default single domain. | |
2259 | * cpuset_hotplug_workfn() will rebuild it as necessary. | |
2260 | */ | |
2261 | partition_sched_domains(1, NULL, NULL); | |
2262 | schedule_work(&cpuset_hotplug_work); | |
4c4d50f7 | 2263 | } |
4c4d50f7 | 2264 | |
38837fc7 | 2265 | /* |
38d7bee9 LJ |
2266 | * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. |
2267 | * Call this routine anytime after node_states[N_MEMORY] changes. | |
a1cd2b13 | 2268 | * See cpuset_update_active_cpus() for CPU hotplug handling. |
38837fc7 | 2269 | */ |
f481891f MX |
2270 | static int cpuset_track_online_nodes(struct notifier_block *self, |
2271 | unsigned long action, void *arg) | |
38837fc7 | 2272 | { |
3a5a6d0c | 2273 | schedule_work(&cpuset_hotplug_work); |
f481891f | 2274 | return NOTIFY_OK; |
38837fc7 | 2275 | } |
d8f10cb3 AM |
2276 | |
2277 | static struct notifier_block cpuset_track_online_nodes_nb = { | |
2278 | .notifier_call = cpuset_track_online_nodes, | |
2279 | .priority = 10, /* ??! */ | |
2280 | }; | |
38837fc7 | 2281 | |
1da177e4 LT |
2282 | /** |
2283 | * cpuset_init_smp - initialize cpus_allowed | |
2284 | * | |
2285 | * Description: Finish top cpuset after cpu, node maps are initialized | |
d8f10cb3 | 2286 | */ |
1da177e4 LT |
2287 | void __init cpuset_init_smp(void) |
2288 | { | |
6ad4c188 | 2289 | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); |
38d7bee9 | 2290 | top_cpuset.mems_allowed = node_states[N_MEMORY]; |
33ad801d | 2291 | top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; |
4c4d50f7 | 2292 | |
d8f10cb3 | 2293 | register_hotmemory_notifier(&cpuset_track_online_nodes_nb); |
1da177e4 LT |
2294 | } |
2295 | ||
2296 | /** | |
1da177e4 LT |
2297 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. |
2298 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | |
6af866af | 2299 | * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. |
1da177e4 | 2300 | * |
300ed6cb | 2301 | * Description: Returns the cpumask_var_t cpus_allowed of the cpuset |
1da177e4 | 2302 | * attached to the specified @tsk. Guaranteed to return some non-empty |
5f054e31 | 2303 | * subset of cpu_online_mask, even if this means going outside the |
1da177e4 LT |
2304 | * tasks cpuset. |
2305 | **/ | |
2306 | ||
6af866af | 2307 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) |
1da177e4 | 2308 | { |
070b57fc LZ |
2309 | struct cpuset *cpus_cs; |
2310 | ||
3d3f26a7 | 2311 | mutex_lock(&callback_mutex); |
909d75a3 | 2312 | task_lock(tsk); |
070b57fc LZ |
2313 | cpus_cs = effective_cpumask_cpuset(task_cs(tsk)); |
2314 | guarantee_online_cpus(cpus_cs, pmask); | |
909d75a3 | 2315 | task_unlock(tsk); |
897f0b3c | 2316 | mutex_unlock(&callback_mutex); |
1da177e4 LT |
2317 | } |
2318 | ||
2baab4e9 | 2319 | void cpuset_cpus_allowed_fallback(struct task_struct *tsk) |
9084bb82 | 2320 | { |
c9710d80 | 2321 | struct cpuset *cpus_cs; |
9084bb82 ON |
2322 | |
2323 | rcu_read_lock(); | |
070b57fc LZ |
2324 | cpus_cs = effective_cpumask_cpuset(task_cs(tsk)); |
2325 | do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed); | |
9084bb82 ON |
2326 | rcu_read_unlock(); |
2327 | ||
2328 | /* | |
2329 | * We own tsk->cpus_allowed, nobody can change it under us. | |
2330 | * | |
2331 | * But we used cs && cs->cpus_allowed lockless and thus can | |
2332 | * race with cgroup_attach_task() or update_cpumask() and get | |
2333 | * the wrong tsk->cpus_allowed. However, both cases imply the | |
2334 | * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() | |
2335 | * which takes task_rq_lock(). | |
2336 | * | |
2337 | * If we are called after it dropped the lock we must see all | |
2338 | * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary | |
2339 | * set any mask even if it is not right from task_cs() pov, | |
2340 | * the pending set_cpus_allowed_ptr() will fix things. | |
2baab4e9 PZ |
2341 | * |
2342 | * select_fallback_rq() will fix things ups and set cpu_possible_mask | |
2343 | * if required. | |
9084bb82 | 2344 | */ |
9084bb82 ON |
2345 | } |
2346 | ||
1da177e4 LT |
2347 | void cpuset_init_current_mems_allowed(void) |
2348 | { | |
f9a86fcb | 2349 | nodes_setall(current->mems_allowed); |
1da177e4 LT |
2350 | } |
2351 | ||
909d75a3 PJ |
2352 | /** |
2353 | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | |
2354 | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | |
2355 | * | |
2356 | * Description: Returns the nodemask_t mems_allowed of the cpuset | |
2357 | * attached to the specified @tsk. Guaranteed to return some non-empty | |
38d7bee9 | 2358 | * subset of node_states[N_MEMORY], even if this means going outside the |
909d75a3 PJ |
2359 | * tasks cpuset. |
2360 | **/ | |
2361 | ||
2362 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | |
2363 | { | |
070b57fc | 2364 | struct cpuset *mems_cs; |
909d75a3 PJ |
2365 | nodemask_t mask; |
2366 | ||
3d3f26a7 | 2367 | mutex_lock(&callback_mutex); |
909d75a3 | 2368 | task_lock(tsk); |
070b57fc LZ |
2369 | mems_cs = effective_nodemask_cpuset(task_cs(tsk)); |
2370 | guarantee_online_mems(mems_cs, &mask); | |
909d75a3 | 2371 | task_unlock(tsk); |
3d3f26a7 | 2372 | mutex_unlock(&callback_mutex); |
909d75a3 PJ |
2373 | |
2374 | return mask; | |
2375 | } | |
2376 | ||
d9fd8a6d | 2377 | /** |
19770b32 MG |
2378 | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed |
2379 | * @nodemask: the nodemask to be checked | |
d9fd8a6d | 2380 | * |
19770b32 | 2381 | * Are any of the nodes in the nodemask allowed in current->mems_allowed? |
1da177e4 | 2382 | */ |
19770b32 | 2383 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) |
1da177e4 | 2384 | { |
19770b32 | 2385 | return nodes_intersects(*nodemask, current->mems_allowed); |
1da177e4 LT |
2386 | } |
2387 | ||
9bf2229f | 2388 | /* |
78608366 PM |
2389 | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or |
2390 | * mem_hardwall ancestor to the specified cpuset. Call holding | |
2391 | * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall | |
2392 | * (an unusual configuration), then returns the root cpuset. | |
9bf2229f | 2393 | */ |
c9710d80 | 2394 | static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) |
9bf2229f | 2395 | { |
c431069f TH |
2396 | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) |
2397 | cs = parent_cs(cs); | |
9bf2229f PJ |
2398 | return cs; |
2399 | } | |
2400 | ||
d9fd8a6d | 2401 | /** |
a1bc5a4e DR |
2402 | * cpuset_node_allowed_softwall - Can we allocate on a memory node? |
2403 | * @node: is this an allowed node? | |
02a0e53d | 2404 | * @gfp_mask: memory allocation flags |
d9fd8a6d | 2405 | * |
a1bc5a4e DR |
2406 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
2407 | * set, yes, we can always allocate. If node is in our task's mems_allowed, | |
2408 | * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest | |
2409 | * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been | |
2410 | * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE | |
2411 | * flag, yes. | |
9bf2229f PJ |
2412 | * Otherwise, no. |
2413 | * | |
a1bc5a4e DR |
2414 | * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to |
2415 | * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall() | |
2416 | * might sleep, and might allow a node from an enclosing cpuset. | |
02a0e53d | 2417 | * |
a1bc5a4e DR |
2418 | * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall |
2419 | * cpusets, and never sleeps. | |
02a0e53d PJ |
2420 | * |
2421 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2422 | * by forcibly using a zonelist starting at a specified node, and by | |
2423 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2424 | * any node on the zonelist except the first. By the time any such | |
2425 | * calls get to this routine, we should just shut up and say 'yes'. | |
2426 | * | |
9bf2229f | 2427 | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, |
c596d9f3 DR |
2428 | * and do not allow allocations outside the current tasks cpuset |
2429 | * unless the task has been OOM killed as is marked TIF_MEMDIE. | |
9bf2229f | 2430 | * GFP_KERNEL allocations are not so marked, so can escape to the |
78608366 | 2431 | * nearest enclosing hardwalled ancestor cpuset. |
9bf2229f | 2432 | * |
02a0e53d PJ |
2433 | * Scanning up parent cpusets requires callback_mutex. The |
2434 | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | |
2435 | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | |
2436 | * current tasks mems_allowed came up empty on the first pass over | |
2437 | * the zonelist. So only GFP_KERNEL allocations, if all nodes in the | |
2438 | * cpuset are short of memory, might require taking the callback_mutex | |
2439 | * mutex. | |
9bf2229f | 2440 | * |
36be57ff | 2441 | * The first call here from mm/page_alloc:get_page_from_freelist() |
02a0e53d PJ |
2442 | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, |
2443 | * so no allocation on a node outside the cpuset is allowed (unless | |
2444 | * in interrupt, of course). | |
36be57ff PJ |
2445 | * |
2446 | * The second pass through get_page_from_freelist() doesn't even call | |
2447 | * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() | |
2448 | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | |
2449 | * in alloc_flags. That logic and the checks below have the combined | |
2450 | * affect that: | |
9bf2229f PJ |
2451 | * in_interrupt - any node ok (current task context irrelevant) |
2452 | * GFP_ATOMIC - any node ok | |
c596d9f3 | 2453 | * TIF_MEMDIE - any node ok |
78608366 | 2454 | * GFP_KERNEL - any node in enclosing hardwalled cpuset ok |
9bf2229f | 2455 | * GFP_USER - only nodes in current tasks mems allowed ok. |
36be57ff PJ |
2456 | * |
2457 | * Rule: | |
a1bc5a4e | 2458 | * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you |
36be57ff PJ |
2459 | * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables |
2460 | * the code that might scan up ancestor cpusets and sleep. | |
02a0e53d | 2461 | */ |
a1bc5a4e | 2462 | int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) |
1da177e4 | 2463 | { |
c9710d80 | 2464 | struct cpuset *cs; /* current cpuset ancestors */ |
29afd49b | 2465 | int allowed; /* is allocation in zone z allowed? */ |
9bf2229f | 2466 | |
9b819d20 | 2467 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
9bf2229f | 2468 | return 1; |
92d1dbd2 | 2469 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); |
9bf2229f PJ |
2470 | if (node_isset(node, current->mems_allowed)) |
2471 | return 1; | |
c596d9f3 DR |
2472 | /* |
2473 | * Allow tasks that have access to memory reserves because they have | |
2474 | * been OOM killed to get memory anywhere. | |
2475 | */ | |
2476 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2477 | return 1; | |
9bf2229f PJ |
2478 | if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ |
2479 | return 0; | |
2480 | ||
5563e770 BP |
2481 | if (current->flags & PF_EXITING) /* Let dying task have memory */ |
2482 | return 1; | |
2483 | ||
9bf2229f | 2484 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ |
3d3f26a7 | 2485 | mutex_lock(&callback_mutex); |
053199ed | 2486 | |
053199ed | 2487 | task_lock(current); |
78608366 | 2488 | cs = nearest_hardwall_ancestor(task_cs(current)); |
053199ed PJ |
2489 | task_unlock(current); |
2490 | ||
9bf2229f | 2491 | allowed = node_isset(node, cs->mems_allowed); |
3d3f26a7 | 2492 | mutex_unlock(&callback_mutex); |
9bf2229f | 2493 | return allowed; |
1da177e4 LT |
2494 | } |
2495 | ||
02a0e53d | 2496 | /* |
a1bc5a4e DR |
2497 | * cpuset_node_allowed_hardwall - Can we allocate on a memory node? |
2498 | * @node: is this an allowed node? | |
02a0e53d PJ |
2499 | * @gfp_mask: memory allocation flags |
2500 | * | |
a1bc5a4e DR |
2501 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
2502 | * set, yes, we can always allocate. If node is in our task's mems_allowed, | |
2503 | * yes. If the task has been OOM killed and has access to memory reserves as | |
2504 | * specified by the TIF_MEMDIE flag, yes. | |
2505 | * Otherwise, no. | |
02a0e53d PJ |
2506 | * |
2507 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2508 | * by forcibly using a zonelist starting at a specified node, and by | |
2509 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2510 | * any node on the zonelist except the first. By the time any such | |
2511 | * calls get to this routine, we should just shut up and say 'yes'. | |
2512 | * | |
a1bc5a4e DR |
2513 | * Unlike the cpuset_node_allowed_softwall() variant, above, |
2514 | * this variant requires that the node be in the current task's | |
02a0e53d PJ |
2515 | * mems_allowed or that we're in interrupt. It does not scan up the |
2516 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | |
2517 | * It never sleeps. | |
2518 | */ | |
a1bc5a4e | 2519 | int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) |
02a0e53d | 2520 | { |
02a0e53d PJ |
2521 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
2522 | return 1; | |
02a0e53d PJ |
2523 | if (node_isset(node, current->mems_allowed)) |
2524 | return 1; | |
dedf8b79 DW |
2525 | /* |
2526 | * Allow tasks that have access to memory reserves because they have | |
2527 | * been OOM killed to get memory anywhere. | |
2528 | */ | |
2529 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2530 | return 1; | |
02a0e53d PJ |
2531 | return 0; |
2532 | } | |
2533 | ||
825a46af | 2534 | /** |
6adef3eb JS |
2535 | * cpuset_mem_spread_node() - On which node to begin search for a file page |
2536 | * cpuset_slab_spread_node() - On which node to begin search for a slab page | |
825a46af PJ |
2537 | * |
2538 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | |
2539 | * tasks in a cpuset with is_spread_page or is_spread_slab set), | |
2540 | * and if the memory allocation used cpuset_mem_spread_node() | |
2541 | * to determine on which node to start looking, as it will for | |
2542 | * certain page cache or slab cache pages such as used for file | |
2543 | * system buffers and inode caches, then instead of starting on the | |
2544 | * local node to look for a free page, rather spread the starting | |
2545 | * node around the tasks mems_allowed nodes. | |
2546 | * | |
2547 | * We don't have to worry about the returned node being offline | |
2548 | * because "it can't happen", and even if it did, it would be ok. | |
2549 | * | |
2550 | * The routines calling guarantee_online_mems() are careful to | |
2551 | * only set nodes in task->mems_allowed that are online. So it | |
2552 | * should not be possible for the following code to return an | |
2553 | * offline node. But if it did, that would be ok, as this routine | |
2554 | * is not returning the node where the allocation must be, only | |
2555 | * the node where the search should start. The zonelist passed to | |
2556 | * __alloc_pages() will include all nodes. If the slab allocator | |
2557 | * is passed an offline node, it will fall back to the local node. | |
2558 | * See kmem_cache_alloc_node(). | |
2559 | */ | |
2560 | ||
6adef3eb | 2561 | static int cpuset_spread_node(int *rotor) |
825a46af PJ |
2562 | { |
2563 | int node; | |
2564 | ||
6adef3eb | 2565 | node = next_node(*rotor, current->mems_allowed); |
825a46af PJ |
2566 | if (node == MAX_NUMNODES) |
2567 | node = first_node(current->mems_allowed); | |
6adef3eb | 2568 | *rotor = node; |
825a46af PJ |
2569 | return node; |
2570 | } | |
6adef3eb JS |
2571 | |
2572 | int cpuset_mem_spread_node(void) | |
2573 | { | |
778d3b0f MH |
2574 | if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) |
2575 | current->cpuset_mem_spread_rotor = | |
2576 | node_random(¤t->mems_allowed); | |
2577 | ||
6adef3eb JS |
2578 | return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); |
2579 | } | |
2580 | ||
2581 | int cpuset_slab_spread_node(void) | |
2582 | { | |
778d3b0f MH |
2583 | if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) |
2584 | current->cpuset_slab_spread_rotor = | |
2585 | node_random(¤t->mems_allowed); | |
2586 | ||
6adef3eb JS |
2587 | return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); |
2588 | } | |
2589 | ||
825a46af PJ |
2590 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); |
2591 | ||
ef08e3b4 | 2592 | /** |
bbe373f2 DR |
2593 | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? |
2594 | * @tsk1: pointer to task_struct of some task. | |
2595 | * @tsk2: pointer to task_struct of some other task. | |
2596 | * | |
2597 | * Description: Return true if @tsk1's mems_allowed intersects the | |
2598 | * mems_allowed of @tsk2. Used by the OOM killer to determine if | |
2599 | * one of the task's memory usage might impact the memory available | |
2600 | * to the other. | |
ef08e3b4 PJ |
2601 | **/ |
2602 | ||
bbe373f2 DR |
2603 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, |
2604 | const struct task_struct *tsk2) | |
ef08e3b4 | 2605 | { |
bbe373f2 | 2606 | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); |
ef08e3b4 PJ |
2607 | } |
2608 | ||
f440d98f LZ |
2609 | #define CPUSET_NODELIST_LEN (256) |
2610 | ||
75aa1994 DR |
2611 | /** |
2612 | * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed | |
2613 | * @task: pointer to task_struct of some task. | |
2614 | * | |
2615 | * Description: Prints @task's name, cpuset name, and cached copy of its | |
2616 | * mems_allowed to the kernel log. Must hold task_lock(task) to allow | |
2617 | * dereferencing task_cs(task). | |
2618 | */ | |
2619 | void cpuset_print_task_mems_allowed(struct task_struct *tsk) | |
2620 | { | |
f440d98f LZ |
2621 | /* Statically allocated to prevent using excess stack. */ |
2622 | static char cpuset_nodelist[CPUSET_NODELIST_LEN]; | |
2623 | static DEFINE_SPINLOCK(cpuset_buffer_lock); | |
75aa1994 | 2624 | |
f440d98f | 2625 | struct cgroup *cgrp = task_cs(tsk)->css.cgroup; |
63f43f55 | 2626 | |
cfb5966b | 2627 | rcu_read_lock(); |
f440d98f | 2628 | spin_lock(&cpuset_buffer_lock); |
63f43f55 | 2629 | |
75aa1994 DR |
2630 | nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, |
2631 | tsk->mems_allowed); | |
2632 | printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", | |
f440d98f LZ |
2633 | tsk->comm, cgroup_name(cgrp), cpuset_nodelist); |
2634 | ||
75aa1994 | 2635 | spin_unlock(&cpuset_buffer_lock); |
cfb5966b | 2636 | rcu_read_unlock(); |
75aa1994 DR |
2637 | } |
2638 | ||
3e0d98b9 PJ |
2639 | /* |
2640 | * Collection of memory_pressure is suppressed unless | |
2641 | * this flag is enabled by writing "1" to the special | |
2642 | * cpuset file 'memory_pressure_enabled' in the root cpuset. | |
2643 | */ | |
2644 | ||
c5b2aff8 | 2645 | int cpuset_memory_pressure_enabled __read_mostly; |
3e0d98b9 PJ |
2646 | |
2647 | /** | |
2648 | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | |
2649 | * | |
2650 | * Keep a running average of the rate of synchronous (direct) | |
2651 | * page reclaim efforts initiated by tasks in each cpuset. | |
2652 | * | |
2653 | * This represents the rate at which some task in the cpuset | |
2654 | * ran low on memory on all nodes it was allowed to use, and | |
2655 | * had to enter the kernels page reclaim code in an effort to | |
2656 | * create more free memory by tossing clean pages or swapping | |
2657 | * or writing dirty pages. | |
2658 | * | |
2659 | * Display to user space in the per-cpuset read-only file | |
2660 | * "memory_pressure". Value displayed is an integer | |
2661 | * representing the recent rate of entry into the synchronous | |
2662 | * (direct) page reclaim by any task attached to the cpuset. | |
2663 | **/ | |
2664 | ||
2665 | void __cpuset_memory_pressure_bump(void) | |
2666 | { | |
3e0d98b9 | 2667 | task_lock(current); |
8793d854 | 2668 | fmeter_markevent(&task_cs(current)->fmeter); |
3e0d98b9 PJ |
2669 | task_unlock(current); |
2670 | } | |
2671 | ||
8793d854 | 2672 | #ifdef CONFIG_PROC_PID_CPUSET |
1da177e4 LT |
2673 | /* |
2674 | * proc_cpuset_show() | |
2675 | * - Print tasks cpuset path into seq_file. | |
2676 | * - Used for /proc/<pid>/cpuset. | |
053199ed PJ |
2677 | * - No need to task_lock(tsk) on this tsk->cpuset reference, as it |
2678 | * doesn't really matter if tsk->cpuset changes after we read it, | |
5d21cc2d | 2679 | * and we take cpuset_mutex, keeping cpuset_attach() from changing it |
2df167a3 | 2680 | * anyway. |
1da177e4 | 2681 | */ |
8d8b97ba | 2682 | int proc_cpuset_show(struct seq_file *m, void *unused_v) |
1da177e4 | 2683 | { |
13b41b09 | 2684 | struct pid *pid; |
1da177e4 LT |
2685 | struct task_struct *tsk; |
2686 | char *buf; | |
8793d854 | 2687 | struct cgroup_subsys_state *css; |
99f89551 | 2688 | int retval; |
1da177e4 | 2689 | |
99f89551 | 2690 | retval = -ENOMEM; |
1da177e4 LT |
2691 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
2692 | if (!buf) | |
99f89551 EB |
2693 | goto out; |
2694 | ||
2695 | retval = -ESRCH; | |
13b41b09 EB |
2696 | pid = m->private; |
2697 | tsk = get_pid_task(pid, PIDTYPE_PID); | |
99f89551 EB |
2698 | if (!tsk) |
2699 | goto out_free; | |
1da177e4 | 2700 | |
27e89ae5 | 2701 | rcu_read_lock(); |
8af01f56 | 2702 | css = task_css(tsk, cpuset_subsys_id); |
8793d854 | 2703 | retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); |
27e89ae5 | 2704 | rcu_read_unlock(); |
1da177e4 | 2705 | if (retval < 0) |
27e89ae5 | 2706 | goto out_put_task; |
1da177e4 LT |
2707 | seq_puts(m, buf); |
2708 | seq_putc(m, '\n'); | |
27e89ae5 | 2709 | out_put_task: |
99f89551 EB |
2710 | put_task_struct(tsk); |
2711 | out_free: | |
1da177e4 | 2712 | kfree(buf); |
99f89551 | 2713 | out: |
1da177e4 LT |
2714 | return retval; |
2715 | } | |
8793d854 | 2716 | #endif /* CONFIG_PROC_PID_CPUSET */ |
1da177e4 | 2717 | |
d01d4827 | 2718 | /* Display task mems_allowed in /proc/<pid>/status file. */ |
df5f8314 EB |
2719 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) |
2720 | { | |
df5f8314 | 2721 | seq_printf(m, "Mems_allowed:\t"); |
30e8e136 | 2722 | seq_nodemask(m, &task->mems_allowed); |
df5f8314 | 2723 | seq_printf(m, "\n"); |
39106dcf | 2724 | seq_printf(m, "Mems_allowed_list:\t"); |
30e8e136 | 2725 | seq_nodemask_list(m, &task->mems_allowed); |
39106dcf | 2726 | seq_printf(m, "\n"); |
1da177e4 | 2727 | } |