]>
Commit | Line | Data |
---|---|---|
b097186f KRW |
1 | /* |
2 | * Copyright 2010 | |
3 | * by Konrad Rzeszutek Wilk <[email protected]> | |
4 | * | |
5 | * This code provides a IOMMU for Xen PV guests with PCI passthrough. | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License v2.0 as published by | |
9 | * the Free Software Foundation | |
10 | * | |
11 | * This program is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * PV guests under Xen are running in an non-contiguous memory architecture. | |
17 | * | |
18 | * When PCI pass-through is utilized, this necessitates an IOMMU for | |
19 | * translating bus (DMA) to virtual and vice-versa and also providing a | |
20 | * mechanism to have contiguous pages for device drivers operations (say DMA | |
21 | * operations). | |
22 | * | |
23 | * Specifically, under Xen the Linux idea of pages is an illusion. It | |
24 | * assumes that pages start at zero and go up to the available memory. To | |
25 | * help with that, the Linux Xen MMU provides a lookup mechanism to | |
26 | * translate the page frame numbers (PFN) to machine frame numbers (MFN) | |
27 | * and vice-versa. The MFN are the "real" frame numbers. Furthermore | |
28 | * memory is not contiguous. Xen hypervisor stitches memory for guests | |
29 | * from different pools, which means there is no guarantee that PFN==MFN | |
30 | * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are | |
31 | * allocated in descending order (high to low), meaning the guest might | |
32 | * never get any MFN's under the 4GB mark. | |
33 | * | |
34 | */ | |
35 | ||
36 | #include <linux/bootmem.h> | |
37 | #include <linux/dma-mapping.h> | |
38 | #include <xen/swiotlb-xen.h> | |
39 | #include <xen/page.h> | |
40 | #include <xen/xen-ops.h> | |
41 | /* | |
42 | * Used to do a quick range check in swiotlb_tbl_unmap_single and | |
43 | * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | |
44 | * API. | |
45 | */ | |
46 | ||
47 | static char *xen_io_tlb_start, *xen_io_tlb_end; | |
48 | static unsigned long xen_io_tlb_nslabs; | |
49 | /* | |
50 | * Quick lookup value of the bus address of the IOTLB. | |
51 | */ | |
52 | ||
53 | u64 start_dma_addr; | |
54 | ||
55 | static dma_addr_t xen_phys_to_bus(phys_addr_t paddr) | |
56 | { | |
57 | return phys_to_machine(XPADDR(paddr)).maddr;; | |
58 | } | |
59 | ||
60 | static phys_addr_t xen_bus_to_phys(dma_addr_t baddr) | |
61 | { | |
62 | return machine_to_phys(XMADDR(baddr)).paddr; | |
63 | } | |
64 | ||
65 | static dma_addr_t xen_virt_to_bus(void *address) | |
66 | { | |
67 | return xen_phys_to_bus(virt_to_phys(address)); | |
68 | } | |
69 | ||
70 | static int check_pages_physically_contiguous(unsigned long pfn, | |
71 | unsigned int offset, | |
72 | size_t length) | |
73 | { | |
74 | unsigned long next_mfn; | |
75 | int i; | |
76 | int nr_pages; | |
77 | ||
78 | next_mfn = pfn_to_mfn(pfn); | |
79 | nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; | |
80 | ||
81 | for (i = 1; i < nr_pages; i++) { | |
82 | if (pfn_to_mfn(++pfn) != ++next_mfn) | |
83 | return 0; | |
84 | } | |
85 | return 1; | |
86 | } | |
87 | ||
88 | static int range_straddles_page_boundary(phys_addr_t p, size_t size) | |
89 | { | |
90 | unsigned long pfn = PFN_DOWN(p); | |
91 | unsigned int offset = p & ~PAGE_MASK; | |
92 | ||
93 | if (offset + size <= PAGE_SIZE) | |
94 | return 0; | |
95 | if (check_pages_physically_contiguous(pfn, offset, size)) | |
96 | return 0; | |
97 | return 1; | |
98 | } | |
99 | ||
100 | static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) | |
101 | { | |
102 | unsigned long mfn = PFN_DOWN(dma_addr); | |
103 | unsigned long pfn = mfn_to_local_pfn(mfn); | |
104 | phys_addr_t paddr; | |
105 | ||
106 | /* If the address is outside our domain, it CAN | |
107 | * have the same virtual address as another address | |
108 | * in our domain. Therefore _only_ check address within our domain. | |
109 | */ | |
110 | if (pfn_valid(pfn)) { | |
111 | paddr = PFN_PHYS(pfn); | |
112 | return paddr >= virt_to_phys(xen_io_tlb_start) && | |
113 | paddr < virt_to_phys(xen_io_tlb_end); | |
114 | } | |
115 | return 0; | |
116 | } | |
117 | ||
118 | static int max_dma_bits = 32; | |
119 | ||
120 | static int | |
121 | xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) | |
122 | { | |
123 | int i, rc; | |
124 | int dma_bits; | |
125 | ||
126 | dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; | |
127 | ||
128 | i = 0; | |
129 | do { | |
130 | int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); | |
131 | ||
132 | do { | |
133 | rc = xen_create_contiguous_region( | |
134 | (unsigned long)buf + (i << IO_TLB_SHIFT), | |
135 | get_order(slabs << IO_TLB_SHIFT), | |
136 | dma_bits); | |
137 | } while (rc && dma_bits++ < max_dma_bits); | |
138 | if (rc) | |
139 | return rc; | |
140 | ||
141 | i += slabs; | |
142 | } while (i < nslabs); | |
143 | return 0; | |
144 | } | |
145 | ||
146 | void __init xen_swiotlb_init(int verbose) | |
147 | { | |
148 | unsigned long bytes; | |
149 | int rc; | |
150 | ||
151 | xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); | |
152 | xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); | |
153 | ||
154 | bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; | |
155 | ||
156 | /* | |
157 | * Get IO TLB memory from any location. | |
158 | */ | |
159 | xen_io_tlb_start = alloc_bootmem(bytes); | |
160 | if (!xen_io_tlb_start) | |
161 | panic("Cannot allocate SWIOTLB buffer"); | |
162 | ||
163 | xen_io_tlb_end = xen_io_tlb_start + bytes; | |
164 | /* | |
165 | * And replace that memory with pages under 4GB. | |
166 | */ | |
167 | rc = xen_swiotlb_fixup(xen_io_tlb_start, | |
168 | bytes, | |
169 | xen_io_tlb_nslabs); | |
170 | if (rc) | |
171 | goto error; | |
172 | ||
173 | start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); | |
174 | swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose); | |
175 | ||
176 | return; | |
177 | error: | |
178 | panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\ | |
179 | "We either don't have the permission or you do not have enough"\ | |
180 | "free memory under 4GB!\n", rc); | |
181 | } | |
182 | ||
183 | void * | |
184 | xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, | |
185 | dma_addr_t *dma_handle, gfp_t flags) | |
186 | { | |
187 | void *ret; | |
188 | int order = get_order(size); | |
189 | u64 dma_mask = DMA_BIT_MASK(32); | |
190 | unsigned long vstart; | |
191 | ||
192 | /* | |
193 | * Ignore region specifiers - the kernel's ideas of | |
194 | * pseudo-phys memory layout has nothing to do with the | |
195 | * machine physical layout. We can't allocate highmem | |
196 | * because we can't return a pointer to it. | |
197 | */ | |
198 | flags &= ~(__GFP_DMA | __GFP_HIGHMEM); | |
199 | ||
200 | if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) | |
201 | return ret; | |
202 | ||
203 | vstart = __get_free_pages(flags, order); | |
204 | ret = (void *)vstart; | |
205 | ||
206 | if (hwdev && hwdev->coherent_dma_mask) | |
207 | dma_mask = dma_alloc_coherent_mask(hwdev, flags); | |
208 | ||
209 | if (ret) { | |
210 | if (xen_create_contiguous_region(vstart, order, | |
211 | fls64(dma_mask)) != 0) { | |
212 | free_pages(vstart, order); | |
213 | return NULL; | |
214 | } | |
215 | memset(ret, 0, size); | |
216 | *dma_handle = virt_to_machine(ret).maddr; | |
217 | } | |
218 | return ret; | |
219 | } | |
220 | EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); | |
221 | ||
222 | void | |
223 | xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | |
224 | dma_addr_t dev_addr) | |
225 | { | |
226 | int order = get_order(size); | |
227 | ||
228 | if (dma_release_from_coherent(hwdev, order, vaddr)) | |
229 | return; | |
230 | ||
231 | xen_destroy_contiguous_region((unsigned long)vaddr, order); | |
232 | free_pages((unsigned long)vaddr, order); | |
233 | } | |
234 | EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); | |
235 | ||
236 | ||
237 | /* | |
238 | * Map a single buffer of the indicated size for DMA in streaming mode. The | |
239 | * physical address to use is returned. | |
240 | * | |
241 | * Once the device is given the dma address, the device owns this memory until | |
242 | * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. | |
243 | */ | |
244 | dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, | |
245 | unsigned long offset, size_t size, | |
246 | enum dma_data_direction dir, | |
247 | struct dma_attrs *attrs) | |
248 | { | |
249 | phys_addr_t phys = page_to_phys(page) + offset; | |
250 | dma_addr_t dev_addr = xen_phys_to_bus(phys); | |
251 | void *map; | |
252 | ||
253 | BUG_ON(dir == DMA_NONE); | |
254 | /* | |
255 | * If the address happens to be in the device's DMA window, | |
256 | * we can safely return the device addr and not worry about bounce | |
257 | * buffering it. | |
258 | */ | |
259 | if (dma_capable(dev, dev_addr, size) && | |
260 | !range_straddles_page_boundary(phys, size) && !swiotlb_force) | |
261 | return dev_addr; | |
262 | ||
263 | /* | |
264 | * Oh well, have to allocate and map a bounce buffer. | |
265 | */ | |
266 | map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); | |
267 | if (!map) | |
268 | return DMA_ERROR_CODE; | |
269 | ||
270 | dev_addr = xen_virt_to_bus(map); | |
271 | ||
272 | /* | |
273 | * Ensure that the address returned is DMA'ble | |
274 | */ | |
275 | if (!dma_capable(dev, dev_addr, size)) | |
276 | panic("map_single: bounce buffer is not DMA'ble"); | |
277 | ||
278 | return dev_addr; | |
279 | } | |
280 | EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); | |
281 | ||
282 | /* | |
283 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | |
284 | * match what was provided for in a previous xen_swiotlb_map_page call. All | |
285 | * other usages are undefined. | |
286 | * | |
287 | * After this call, reads by the cpu to the buffer are guaranteed to see | |
288 | * whatever the device wrote there. | |
289 | */ | |
290 | static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, | |
291 | size_t size, enum dma_data_direction dir) | |
292 | { | |
293 | phys_addr_t paddr = xen_bus_to_phys(dev_addr); | |
294 | ||
295 | BUG_ON(dir == DMA_NONE); | |
296 | ||
297 | /* NOTE: We use dev_addr here, not paddr! */ | |
298 | if (is_xen_swiotlb_buffer(dev_addr)) { | |
299 | swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir); | |
300 | return; | |
301 | } | |
302 | ||
303 | if (dir != DMA_FROM_DEVICE) | |
304 | return; | |
305 | ||
306 | /* | |
307 | * phys_to_virt doesn't work with hihgmem page but we could | |
308 | * call dma_mark_clean() with hihgmem page here. However, we | |
309 | * are fine since dma_mark_clean() is null on POWERPC. We can | |
310 | * make dma_mark_clean() take a physical address if necessary. | |
311 | */ | |
312 | dma_mark_clean(phys_to_virt(paddr), size); | |
313 | } | |
314 | ||
315 | void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, | |
316 | size_t size, enum dma_data_direction dir, | |
317 | struct dma_attrs *attrs) | |
318 | { | |
319 | xen_unmap_single(hwdev, dev_addr, size, dir); | |
320 | } | |
321 | EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); | |
322 | ||
323 | /* | |
324 | * Make physical memory consistent for a single streaming mode DMA translation | |
325 | * after a transfer. | |
326 | * | |
327 | * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer | |
328 | * using the cpu, yet do not wish to teardown the dma mapping, you must | |
329 | * call this function before doing so. At the next point you give the dma | |
330 | * address back to the card, you must first perform a | |
331 | * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer | |
332 | */ | |
333 | static void | |
334 | xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, | |
335 | size_t size, enum dma_data_direction dir, | |
336 | enum dma_sync_target target) | |
337 | { | |
338 | phys_addr_t paddr = xen_bus_to_phys(dev_addr); | |
339 | ||
340 | BUG_ON(dir == DMA_NONE); | |
341 | ||
342 | /* NOTE: We use dev_addr here, not paddr! */ | |
343 | if (is_xen_swiotlb_buffer(dev_addr)) { | |
344 | swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir, | |
345 | target); | |
346 | return; | |
347 | } | |
348 | ||
349 | if (dir != DMA_FROM_DEVICE) | |
350 | return; | |
351 | ||
352 | dma_mark_clean(phys_to_virt(paddr), size); | |
353 | } | |
354 | ||
355 | void | |
356 | xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | |
357 | size_t size, enum dma_data_direction dir) | |
358 | { | |
359 | xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); | |
360 | } | |
361 | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); | |
362 | ||
363 | void | |
364 | xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | |
365 | size_t size, enum dma_data_direction dir) | |
366 | { | |
367 | xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); | |
368 | } | |
369 | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); | |
370 | ||
371 | /* | |
372 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | |
373 | * This is the scatter-gather version of the above xen_swiotlb_map_page | |
374 | * interface. Here the scatter gather list elements are each tagged with the | |
375 | * appropriate dma address and length. They are obtained via | |
376 | * sg_dma_{address,length}(SG). | |
377 | * | |
378 | * NOTE: An implementation may be able to use a smaller number of | |
379 | * DMA address/length pairs than there are SG table elements. | |
380 | * (for example via virtual mapping capabilities) | |
381 | * The routine returns the number of addr/length pairs actually | |
382 | * used, at most nents. | |
383 | * | |
384 | * Device ownership issues as mentioned above for xen_swiotlb_map_page are the | |
385 | * same here. | |
386 | */ | |
387 | int | |
388 | xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, | |
389 | int nelems, enum dma_data_direction dir, | |
390 | struct dma_attrs *attrs) | |
391 | { | |
392 | struct scatterlist *sg; | |
393 | int i; | |
394 | ||
395 | BUG_ON(dir == DMA_NONE); | |
396 | ||
397 | for_each_sg(sgl, sg, nelems, i) { | |
398 | phys_addr_t paddr = sg_phys(sg); | |
399 | dma_addr_t dev_addr = xen_phys_to_bus(paddr); | |
400 | ||
401 | if (swiotlb_force || | |
402 | !dma_capable(hwdev, dev_addr, sg->length) || | |
403 | range_straddles_page_boundary(paddr, sg->length)) { | |
404 | void *map = swiotlb_tbl_map_single(hwdev, | |
405 | start_dma_addr, | |
406 | sg_phys(sg), | |
407 | sg->length, dir); | |
408 | if (!map) { | |
409 | /* Don't panic here, we expect map_sg users | |
410 | to do proper error handling. */ | |
411 | xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, | |
412 | attrs); | |
413 | sgl[0].dma_length = 0; | |
414 | return DMA_ERROR_CODE; | |
415 | } | |
416 | sg->dma_address = xen_virt_to_bus(map); | |
417 | } else | |
418 | sg->dma_address = dev_addr; | |
419 | sg->dma_length = sg->length; | |
420 | } | |
421 | return nelems; | |
422 | } | |
423 | EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); | |
424 | ||
425 | int | |
426 | xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | |
427 | enum dma_data_direction dir) | |
428 | { | |
429 | return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); | |
430 | } | |
431 | EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg); | |
432 | ||
433 | /* | |
434 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | |
435 | * concerning calls here are the same as for swiotlb_unmap_page() above. | |
436 | */ | |
437 | void | |
438 | xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, | |
439 | int nelems, enum dma_data_direction dir, | |
440 | struct dma_attrs *attrs) | |
441 | { | |
442 | struct scatterlist *sg; | |
443 | int i; | |
444 | ||
445 | BUG_ON(dir == DMA_NONE); | |
446 | ||
447 | for_each_sg(sgl, sg, nelems, i) | |
448 | xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); | |
449 | ||
450 | } | |
451 | EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); | |
452 | ||
453 | void | |
454 | xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | |
455 | enum dma_data_direction dir) | |
456 | { | |
457 | return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); | |
458 | } | |
459 | EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg); | |
460 | ||
461 | /* | |
462 | * Make physical memory consistent for a set of streaming mode DMA translations | |
463 | * after a transfer. | |
464 | * | |
465 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | |
466 | * and usage. | |
467 | */ | |
468 | static void | |
469 | xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, | |
470 | int nelems, enum dma_data_direction dir, | |
471 | enum dma_sync_target target) | |
472 | { | |
473 | struct scatterlist *sg; | |
474 | int i; | |
475 | ||
476 | for_each_sg(sgl, sg, nelems, i) | |
477 | xen_swiotlb_sync_single(hwdev, sg->dma_address, | |
478 | sg->dma_length, dir, target); | |
479 | } | |
480 | ||
481 | void | |
482 | xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | |
483 | int nelems, enum dma_data_direction dir) | |
484 | { | |
485 | xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); | |
486 | } | |
487 | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); | |
488 | ||
489 | void | |
490 | xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | |
491 | int nelems, enum dma_data_direction dir) | |
492 | { | |
493 | xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); | |
494 | } | |
495 | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); | |
496 | ||
497 | int | |
498 | xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) | |
499 | { | |
500 | return !dma_addr; | |
501 | } | |
502 | EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); | |
503 | ||
504 | /* | |
505 | * Return whether the given device DMA address mask can be supported | |
506 | * properly. For example, if your device can only drive the low 24-bits | |
507 | * during bus mastering, then you would pass 0x00ffffff as the mask to | |
508 | * this function. | |
509 | */ | |
510 | int | |
511 | xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) | |
512 | { | |
513 | return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; | |
514 | } | |
515 | EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); |