]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
eefa864b JK |
2 | #include <linux/mm.h> |
3 | #include <linux/mmzone.h> | |
57c8a661 | 4 | #include <linux/memblock.h> |
eefa864b JK |
5 | #include <linux/page_ext.h> |
6 | #include <linux/memory.h> | |
7 | #include <linux/vmalloc.h> | |
8 | #include <linux/kmemleak.h> | |
48c96a36 | 9 | #include <linux/page_owner.h> |
33c3fc71 | 10 | #include <linux/page_idle.h> |
df4e817b | 11 | #include <linux/page_table_check.h> |
eefa864b JK |
12 | |
13 | /* | |
14 | * struct page extension | |
15 | * | |
16 | * This is the feature to manage memory for extended data per page. | |
17 | * | |
18 | * Until now, we must modify struct page itself to store extra data per page. | |
19 | * This requires rebuilding the kernel and it is really time consuming process. | |
20 | * And, sometimes, rebuild is impossible due to third party module dependency. | |
21 | * At last, enlarging struct page could cause un-wanted system behaviour change. | |
22 | * | |
23 | * This feature is intended to overcome above mentioned problems. This feature | |
24 | * allocates memory for extended data per page in certain place rather than | |
25 | * the struct page itself. This memory can be accessed by the accessor | |
26 | * functions provided by this code. During the boot process, it checks whether | |
27 | * allocation of huge chunk of memory is needed or not. If not, it avoids | |
28 | * allocating memory at all. With this advantage, we can include this feature | |
29 | * into the kernel in default and can avoid rebuild and solve related problems. | |
30 | * | |
31 | * To help these things to work well, there are two callbacks for clients. One | |
32 | * is the need callback which is mandatory if user wants to avoid useless | |
33 | * memory allocation at boot-time. The other is optional, init callback, which | |
34 | * is used to do proper initialization after memory is allocated. | |
35 | * | |
36 | * The need callback is used to decide whether extended memory allocation is | |
37 | * needed or not. Sometimes users want to deactivate some features in this | |
8958b249 | 38 | * boot and extra memory would be unnecessary. In this case, to avoid |
eefa864b JK |
39 | * allocating huge chunk of memory, each clients represent their need of |
40 | * extra memory through the need callback. If one of the need callbacks | |
41 | * returns true, it means that someone needs extra memory so that | |
42 | * page extension core should allocates memory for page extension. If | |
43 | * none of need callbacks return true, memory isn't needed at all in this boot | |
44 | * and page extension core can skip to allocate memory. As result, | |
45 | * none of memory is wasted. | |
46 | * | |
980ac167 JK |
47 | * When need callback returns true, page_ext checks if there is a request for |
48 | * extra memory through size in struct page_ext_operations. If it is non-zero, | |
49 | * extra space is allocated for each page_ext entry and offset is returned to | |
50 | * user through offset in struct page_ext_operations. | |
51 | * | |
eefa864b JK |
52 | * The init callback is used to do proper initialization after page extension |
53 | * is completely initialized. In sparse memory system, extra memory is | |
54 | * allocated some time later than memmap is allocated. In other words, lifetime | |
55 | * of memory for page extension isn't same with memmap for struct page. | |
56 | * Therefore, clients can't store extra data until page extension is | |
57 | * initialized, even if pages are allocated and used freely. This could | |
58 | * cause inadequate state of extra data per page, so, to prevent it, client | |
59 | * can utilize this callback to initialize the state of it correctly. | |
60 | */ | |
61 | ||
1c676e0d SP |
62 | #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) |
63 | static bool need_page_idle(void) | |
64 | { | |
65 | return true; | |
66 | } | |
cab0a7c1 | 67 | static struct page_ext_operations page_idle_ops __initdata = { |
1c676e0d SP |
68 | .need = need_page_idle, |
69 | }; | |
70 | #endif | |
71 | ||
cab0a7c1 | 72 | static struct page_ext_operations *page_ext_ops[] __initdata = { |
48c96a36 JK |
73 | #ifdef CONFIG_PAGE_OWNER |
74 | &page_owner_ops, | |
75 | #endif | |
1c676e0d | 76 | #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) |
33c3fc71 VD |
77 | &page_idle_ops, |
78 | #endif | |
df4e817b PT |
79 | #ifdef CONFIG_PAGE_TABLE_CHECK |
80 | &page_table_check_ops, | |
81 | #endif | |
eefa864b JK |
82 | }; |
83 | ||
5556cfe8 VB |
84 | unsigned long page_ext_size = sizeof(struct page_ext); |
85 | ||
eefa864b JK |
86 | static unsigned long total_usage; |
87 | ||
88 | static bool __init invoke_need_callbacks(void) | |
89 | { | |
90 | int i; | |
91 | int entries = ARRAY_SIZE(page_ext_ops); | |
980ac167 | 92 | bool need = false; |
eefa864b JK |
93 | |
94 | for (i = 0; i < entries; i++) { | |
980ac167 | 95 | if (page_ext_ops[i]->need && page_ext_ops[i]->need()) { |
5556cfe8 VB |
96 | page_ext_ops[i]->offset = page_ext_size; |
97 | page_ext_size += page_ext_ops[i]->size; | |
980ac167 JK |
98 | need = true; |
99 | } | |
eefa864b JK |
100 | } |
101 | ||
980ac167 | 102 | return need; |
eefa864b JK |
103 | } |
104 | ||
105 | static void __init invoke_init_callbacks(void) | |
106 | { | |
107 | int i; | |
108 | int entries = ARRAY_SIZE(page_ext_ops); | |
109 | ||
110 | for (i = 0; i < entries; i++) { | |
111 | if (page_ext_ops[i]->init) | |
112 | page_ext_ops[i]->init(); | |
113 | } | |
114 | } | |
115 | ||
7fb7ab6d ZH |
116 | #ifndef CONFIG_SPARSEMEM |
117 | void __init page_ext_init_flatmem_late(void) | |
118 | { | |
119 | invoke_init_callbacks(); | |
120 | } | |
121 | #endif | |
122 | ||
980ac167 JK |
123 | static inline struct page_ext *get_entry(void *base, unsigned long index) |
124 | { | |
5556cfe8 | 125 | return base + page_ext_size * index; |
980ac167 JK |
126 | } |
127 | ||
7fb7ab6d | 128 | #ifndef CONFIG_SPARSEMEM |
eefa864b JK |
129 | |
130 | ||
131 | void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) | |
132 | { | |
133 | pgdat->node_page_ext = NULL; | |
134 | } | |
135 | ||
10ed6341 | 136 | struct page_ext *lookup_page_ext(const struct page *page) |
eefa864b JK |
137 | { |
138 | unsigned long pfn = page_to_pfn(page); | |
0b06bb3f | 139 | unsigned long index; |
eefa864b JK |
140 | struct page_ext *base; |
141 | ||
142 | base = NODE_DATA(page_to_nid(page))->node_page_ext; | |
eefa864b JK |
143 | /* |
144 | * The sanity checks the page allocator does upon freeing a | |
145 | * page can reach here before the page_ext arrays are | |
146 | * allocated when feeding a range of pages to the allocator | |
147 | * for the first time during bootup or memory hotplug. | |
148 | */ | |
149 | if (unlikely(!base)) | |
150 | return NULL; | |
0b06bb3f | 151 | index = pfn - round_down(node_start_pfn(page_to_nid(page)), |
eefa864b | 152 | MAX_ORDER_NR_PAGES); |
980ac167 | 153 | return get_entry(base, index); |
eefa864b JK |
154 | } |
155 | ||
156 | static int __init alloc_node_page_ext(int nid) | |
157 | { | |
158 | struct page_ext *base; | |
159 | unsigned long table_size; | |
160 | unsigned long nr_pages; | |
161 | ||
162 | nr_pages = NODE_DATA(nid)->node_spanned_pages; | |
163 | if (!nr_pages) | |
164 | return 0; | |
165 | ||
166 | /* | |
167 | * Need extra space if node range is not aligned with | |
168 | * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm | |
169 | * checks buddy's status, range could be out of exact node range. | |
170 | */ | |
171 | if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || | |
172 | !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) | |
173 | nr_pages += MAX_ORDER_NR_PAGES; | |
174 | ||
5556cfe8 | 175 | table_size = page_ext_size * nr_pages; |
eefa864b | 176 | |
26fb3dae | 177 | base = memblock_alloc_try_nid( |
eefa864b | 178 | table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), |
97ad1087 | 179 | MEMBLOCK_ALLOC_ACCESSIBLE, nid); |
eefa864b JK |
180 | if (!base) |
181 | return -ENOMEM; | |
182 | NODE_DATA(nid)->node_page_ext = base; | |
183 | total_usage += table_size; | |
184 | return 0; | |
185 | } | |
186 | ||
187 | void __init page_ext_init_flatmem(void) | |
188 | { | |
189 | ||
190 | int nid, fail; | |
191 | ||
192 | if (!invoke_need_callbacks()) | |
193 | return; | |
194 | ||
195 | for_each_online_node(nid) { | |
196 | fail = alloc_node_page_ext(nid); | |
197 | if (fail) | |
198 | goto fail; | |
199 | } | |
200 | pr_info("allocated %ld bytes of page_ext\n", total_usage); | |
eefa864b JK |
201 | return; |
202 | ||
203 | fail: | |
204 | pr_crit("allocation of page_ext failed.\n"); | |
205 | panic("Out of memory"); | |
206 | } | |
207 | ||
d1fea155 | 208 | #else /* CONFIG_SPARSEMEM */ |
eefa864b | 209 | |
10ed6341 | 210 | struct page_ext *lookup_page_ext(const struct page *page) |
eefa864b JK |
211 | { |
212 | unsigned long pfn = page_to_pfn(page); | |
213 | struct mem_section *section = __pfn_to_section(pfn); | |
eefa864b JK |
214 | /* |
215 | * The sanity checks the page allocator does upon freeing a | |
216 | * page can reach here before the page_ext arrays are | |
217 | * allocated when feeding a range of pages to the allocator | |
218 | * for the first time during bootup or memory hotplug. | |
219 | */ | |
220 | if (!section->page_ext) | |
221 | return NULL; | |
980ac167 | 222 | return get_entry(section->page_ext, pfn); |
eefa864b JK |
223 | } |
224 | ||
225 | static void *__meminit alloc_page_ext(size_t size, int nid) | |
226 | { | |
227 | gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; | |
228 | void *addr = NULL; | |
229 | ||
230 | addr = alloc_pages_exact_nid(nid, size, flags); | |
231 | if (addr) { | |
232 | kmemleak_alloc(addr, size, 1, flags); | |
233 | return addr; | |
234 | } | |
235 | ||
b95046b0 | 236 | addr = vzalloc_node(size, nid); |
eefa864b JK |
237 | |
238 | return addr; | |
239 | } | |
240 | ||
241 | static int __meminit init_section_page_ext(unsigned long pfn, int nid) | |
242 | { | |
243 | struct mem_section *section; | |
244 | struct page_ext *base; | |
245 | unsigned long table_size; | |
246 | ||
247 | section = __pfn_to_section(pfn); | |
248 | ||
249 | if (section->page_ext) | |
250 | return 0; | |
251 | ||
5556cfe8 | 252 | table_size = page_ext_size * PAGES_PER_SECTION; |
eefa864b JK |
253 | base = alloc_page_ext(table_size, nid); |
254 | ||
255 | /* | |
256 | * The value stored in section->page_ext is (base - pfn) | |
257 | * and it does not point to the memory block allocated above, | |
258 | * causing kmemleak false positives. | |
259 | */ | |
260 | kmemleak_not_leak(base); | |
261 | ||
262 | if (!base) { | |
263 | pr_err("page ext allocation failure\n"); | |
264 | return -ENOMEM; | |
265 | } | |
266 | ||
267 | /* | |
268 | * The passed "pfn" may not be aligned to SECTION. For the calculation | |
269 | * we need to apply a mask. | |
270 | */ | |
271 | pfn &= PAGE_SECTION_MASK; | |
5556cfe8 | 272 | section->page_ext = (void *)base - page_ext_size * pfn; |
eefa864b JK |
273 | total_usage += table_size; |
274 | return 0; | |
275 | } | |
76af6a05 | 276 | |
eefa864b JK |
277 | static void free_page_ext(void *addr) |
278 | { | |
279 | if (is_vmalloc_addr(addr)) { | |
280 | vfree(addr); | |
281 | } else { | |
282 | struct page *page = virt_to_page(addr); | |
283 | size_t table_size; | |
284 | ||
5556cfe8 | 285 | table_size = page_ext_size * PAGES_PER_SECTION; |
eefa864b JK |
286 | |
287 | BUG_ON(PageReserved(page)); | |
0c815854 | 288 | kmemleak_free(addr); |
eefa864b JK |
289 | free_pages_exact(addr, table_size); |
290 | } | |
291 | } | |
292 | ||
293 | static void __free_page_ext(unsigned long pfn) | |
294 | { | |
295 | struct mem_section *ms; | |
296 | struct page_ext *base; | |
297 | ||
298 | ms = __pfn_to_section(pfn); | |
299 | if (!ms || !ms->page_ext) | |
300 | return; | |
980ac167 | 301 | base = get_entry(ms->page_ext, pfn); |
eefa864b JK |
302 | free_page_ext(base); |
303 | ms->page_ext = NULL; | |
304 | } | |
305 | ||
306 | static int __meminit online_page_ext(unsigned long start_pfn, | |
307 | unsigned long nr_pages, | |
308 | int nid) | |
309 | { | |
310 | unsigned long start, end, pfn; | |
311 | int fail = 0; | |
312 | ||
313 | start = SECTION_ALIGN_DOWN(start_pfn); | |
314 | end = SECTION_ALIGN_UP(start_pfn + nr_pages); | |
315 | ||
98fa15f3 | 316 | if (nid == NUMA_NO_NODE) { |
eefa864b JK |
317 | /* |
318 | * In this case, "nid" already exists and contains valid memory. | |
319 | * "start_pfn" passed to us is a pfn which is an arg for | |
320 | * online__pages(), and start_pfn should exist. | |
321 | */ | |
322 | nid = pfn_to_nid(start_pfn); | |
30a51400 | 323 | VM_BUG_ON(!node_online(nid)); |
eefa864b JK |
324 | } |
325 | ||
dccacf8d | 326 | for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) |
eefa864b | 327 | fail = init_section_page_ext(pfn, nid); |
eefa864b JK |
328 | if (!fail) |
329 | return 0; | |
330 | ||
331 | /* rollback */ | |
332 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | |
333 | __free_page_ext(pfn); | |
334 | ||
335 | return -ENOMEM; | |
336 | } | |
337 | ||
338 | static int __meminit offline_page_ext(unsigned long start_pfn, | |
339 | unsigned long nr_pages, int nid) | |
340 | { | |
341 | unsigned long start, end, pfn; | |
342 | ||
343 | start = SECTION_ALIGN_DOWN(start_pfn); | |
344 | end = SECTION_ALIGN_UP(start_pfn + nr_pages); | |
345 | ||
346 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | |
347 | __free_page_ext(pfn); | |
348 | return 0; | |
349 | ||
350 | } | |
351 | ||
352 | static int __meminit page_ext_callback(struct notifier_block *self, | |
353 | unsigned long action, void *arg) | |
354 | { | |
355 | struct memory_notify *mn = arg; | |
356 | int ret = 0; | |
357 | ||
358 | switch (action) { | |
359 | case MEM_GOING_ONLINE: | |
360 | ret = online_page_ext(mn->start_pfn, | |
361 | mn->nr_pages, mn->status_change_nid); | |
362 | break; | |
363 | case MEM_OFFLINE: | |
364 | offline_page_ext(mn->start_pfn, | |
365 | mn->nr_pages, mn->status_change_nid); | |
366 | break; | |
367 | case MEM_CANCEL_ONLINE: | |
368 | offline_page_ext(mn->start_pfn, | |
369 | mn->nr_pages, mn->status_change_nid); | |
370 | break; | |
371 | case MEM_GOING_OFFLINE: | |
372 | break; | |
373 | case MEM_ONLINE: | |
374 | case MEM_CANCEL_OFFLINE: | |
375 | break; | |
376 | } | |
377 | ||
378 | return notifier_from_errno(ret); | |
379 | } | |
380 | ||
eefa864b JK |
381 | void __init page_ext_init(void) |
382 | { | |
383 | unsigned long pfn; | |
384 | int nid; | |
385 | ||
386 | if (!invoke_need_callbacks()) | |
387 | return; | |
388 | ||
389 | for_each_node_state(nid, N_MEMORY) { | |
390 | unsigned long start_pfn, end_pfn; | |
391 | ||
392 | start_pfn = node_start_pfn(nid); | |
393 | end_pfn = node_end_pfn(nid); | |
394 | /* | |
395 | * start_pfn and end_pfn may not be aligned to SECTION and the | |
396 | * page->flags of out of node pages are not initialized. So we | |
397 | * scan [start_pfn, the biggest section's pfn < end_pfn) here. | |
398 | */ | |
399 | for (pfn = start_pfn; pfn < end_pfn; | |
400 | pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { | |
401 | ||
402 | if (!pfn_valid(pfn)) | |
403 | continue; | |
404 | /* | |
405 | * Nodes's pfns can be overlapping. | |
406 | * We know some arch can have a nodes layout such as | |
407 | * -------------pfn--------------> | |
408 | * N0 | N1 | N2 | N0 | N1 | N2|.... | |
409 | */ | |
2f1ee091 | 410 | if (pfn_to_nid(pfn) != nid) |
eefa864b JK |
411 | continue; |
412 | if (init_section_page_ext(pfn, nid)) | |
413 | goto oom; | |
0fc542b7 | 414 | cond_resched(); |
eefa864b JK |
415 | } |
416 | } | |
417 | hotplug_memory_notifier(page_ext_callback, 0); | |
418 | pr_info("allocated %ld bytes of page_ext\n", total_usage); | |
419 | invoke_init_callbacks(); | |
420 | return; | |
421 | ||
422 | oom: | |
423 | panic("Out of memory"); | |
424 | } | |
425 | ||
426 | void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) | |
427 | { | |
428 | } | |
429 | ||
430 | #endif |