]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
f25dfb5e | 2 | * file.c - NTFS kernel file operations. Part of the Linux-NTFS project. |
1da177e4 | 3 | * |
78af34f0 | 4 | * Copyright (c) 2001-2006 Anton Altaparmakov |
1da177e4 LT |
5 | * |
6 | * This program/include file is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU General Public License as published | |
8 | * by the Free Software Foundation; either version 2 of the License, or | |
9 | * (at your option) any later version. | |
10 | * | |
11 | * This program/include file is distributed in the hope that it will be | |
12 | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty | |
13 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public License | |
17 | * along with this program (in the main directory of the Linux-NTFS | |
18 | * distribution in the file COPYING); if not, write to the Free Software | |
19 | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
20 | */ | |
21 | ||
1da177e4 | 22 | #include <linux/buffer_head.h> |
98b27036 AA |
23 | #include <linux/pagemap.h> |
24 | #include <linux/pagevec.h> | |
25 | #include <linux/sched.h> | |
26 | #include <linux/swap.h> | |
27 | #include <linux/uio.h> | |
28 | #include <linux/writeback.h> | |
1da177e4 | 29 | |
98b27036 AA |
30 | #include <asm/page.h> |
31 | #include <asm/uaccess.h> | |
32 | ||
33 | #include "attrib.h" | |
34 | #include "bitmap.h" | |
1da177e4 LT |
35 | #include "inode.h" |
36 | #include "debug.h" | |
98b27036 AA |
37 | #include "lcnalloc.h" |
38 | #include "malloc.h" | |
39 | #include "mft.h" | |
1da177e4 LT |
40 | #include "ntfs.h" |
41 | ||
42 | /** | |
43 | * ntfs_file_open - called when an inode is about to be opened | |
44 | * @vi: inode to be opened | |
45 | * @filp: file structure describing the inode | |
46 | * | |
47 | * Limit file size to the page cache limit on architectures where unsigned long | |
48 | * is 32-bits. This is the most we can do for now without overflowing the page | |
49 | * cache page index. Doing it this way means we don't run into problems because | |
50 | * of existing too large files. It would be better to allow the user to read | |
51 | * the beginning of the file but I doubt very much anyone is going to hit this | |
52 | * check on a 32-bit architecture, so there is no point in adding the extra | |
53 | * complexity required to support this. | |
54 | * | |
55 | * On 64-bit architectures, the check is hopefully optimized away by the | |
56 | * compiler. | |
57 | * | |
58 | * After the check passes, just call generic_file_open() to do its work. | |
59 | */ | |
60 | static int ntfs_file_open(struct inode *vi, struct file *filp) | |
61 | { | |
62 | if (sizeof(unsigned long) < 8) { | |
d4b9ba7b | 63 | if (i_size_read(vi) > MAX_LFS_FILESIZE) |
1da177e4 LT |
64 | return -EFBIG; |
65 | } | |
66 | return generic_file_open(vi, filp); | |
67 | } | |
68 | ||
69 | #ifdef NTFS_RW | |
70 | ||
98b27036 AA |
71 | /** |
72 | * ntfs_attr_extend_initialized - extend the initialized size of an attribute | |
73 | * @ni: ntfs inode of the attribute to extend | |
74 | * @new_init_size: requested new initialized size in bytes | |
75 | * @cached_page: store any allocated but unused page here | |
76 | * @lru_pvec: lru-buffering pagevec of the caller | |
77 | * | |
78 | * Extend the initialized size of an attribute described by the ntfs inode @ni | |
79 | * to @new_init_size bytes. This involves zeroing any non-sparse space between | |
80 | * the old initialized size and @new_init_size both in the page cache and on | |
dda65b94 AA |
81 | * disk (if relevant complete pages are already uptodate in the page cache then |
82 | * these are simply marked dirty). | |
98b27036 AA |
83 | * |
84 | * As a side-effect, the file size (vfs inode->i_size) may be incremented as, | |
85 | * in the resident attribute case, it is tied to the initialized size and, in | |
86 | * the non-resident attribute case, it may not fall below the initialized size. | |
87 | * | |
88 | * Note that if the attribute is resident, we do not need to touch the page | |
89 | * cache at all. This is because if the page cache page is not uptodate we | |
90 | * bring it uptodate later, when doing the write to the mft record since we | |
91 | * then already have the page mapped. And if the page is uptodate, the | |
92 | * non-initialized region will already have been zeroed when the page was | |
93 | * brought uptodate and the region may in fact already have been overwritten | |
94 | * with new data via mmap() based writes, so we cannot just zero it. And since | |
95 | * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped | |
96 | * is unspecified, we choose not to do zeroing and thus we do not need to touch | |
dda65b94 AA |
97 | * the page at all. For a more detailed explanation see ntfs_truncate() in |
98 | * fs/ntfs/inode.c. | |
98b27036 | 99 | * |
dda65b94 | 100 | * @cached_page and @lru_pvec are just optimizations for dealing with multiple |
98b27036 AA |
101 | * pages. |
102 | * | |
103 | * Return 0 on success and -errno on error. In the case that an error is | |
104 | * encountered it is possible that the initialized size will already have been | |
105 | * incremented some way towards @new_init_size but it is guaranteed that if | |
106 | * this is the case, the necessary zeroing will also have happened and that all | |
107 | * metadata is self-consistent. | |
108 | * | |
1b1dcc1b | 109 | * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be |
dda65b94 | 110 | * held by the caller. |
98b27036 AA |
111 | */ |
112 | static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size, | |
113 | struct page **cached_page, struct pagevec *lru_pvec) | |
114 | { | |
115 | s64 old_init_size; | |
116 | loff_t old_i_size; | |
117 | pgoff_t index, end_index; | |
118 | unsigned long flags; | |
119 | struct inode *vi = VFS_I(ni); | |
120 | ntfs_inode *base_ni; | |
121 | MFT_RECORD *m = NULL; | |
122 | ATTR_RECORD *a; | |
123 | ntfs_attr_search_ctx *ctx = NULL; | |
124 | struct address_space *mapping; | |
125 | struct page *page = NULL; | |
126 | u8 *kattr; | |
127 | int err; | |
128 | u32 attr_len; | |
129 | ||
130 | read_lock_irqsave(&ni->size_lock, flags); | |
131 | old_init_size = ni->initialized_size; | |
132 | old_i_size = i_size_read(vi); | |
133 | BUG_ON(new_init_size > ni->allocated_size); | |
134 | read_unlock_irqrestore(&ni->size_lock, flags); | |
135 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | |
136 | "old_initialized_size 0x%llx, " | |
137 | "new_initialized_size 0x%llx, i_size 0x%llx.", | |
138 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | |
139 | (unsigned long long)old_init_size, | |
140 | (unsigned long long)new_init_size, old_i_size); | |
141 | if (!NInoAttr(ni)) | |
142 | base_ni = ni; | |
143 | else | |
144 | base_ni = ni->ext.base_ntfs_ino; | |
145 | /* Use goto to reduce indentation and we need the label below anyway. */ | |
146 | if (NInoNonResident(ni)) | |
147 | goto do_non_resident_extend; | |
148 | BUG_ON(old_init_size != old_i_size); | |
149 | m = map_mft_record(base_ni); | |
150 | if (IS_ERR(m)) { | |
151 | err = PTR_ERR(m); | |
152 | m = NULL; | |
153 | goto err_out; | |
154 | } | |
155 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | |
156 | if (unlikely(!ctx)) { | |
157 | err = -ENOMEM; | |
158 | goto err_out; | |
159 | } | |
160 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | |
161 | CASE_SENSITIVE, 0, NULL, 0, ctx); | |
162 | if (unlikely(err)) { | |
163 | if (err == -ENOENT) | |
164 | err = -EIO; | |
165 | goto err_out; | |
166 | } | |
167 | m = ctx->mrec; | |
168 | a = ctx->attr; | |
169 | BUG_ON(a->non_resident); | |
170 | /* The total length of the attribute value. */ | |
171 | attr_len = le32_to_cpu(a->data.resident.value_length); | |
172 | BUG_ON(old_i_size != (loff_t)attr_len); | |
173 | /* | |
174 | * Do the zeroing in the mft record and update the attribute size in | |
175 | * the mft record. | |
176 | */ | |
177 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | |
178 | memset(kattr + attr_len, 0, new_init_size - attr_len); | |
179 | a->data.resident.value_length = cpu_to_le32((u32)new_init_size); | |
180 | /* Finally, update the sizes in the vfs and ntfs inodes. */ | |
181 | write_lock_irqsave(&ni->size_lock, flags); | |
182 | i_size_write(vi, new_init_size); | |
183 | ni->initialized_size = new_init_size; | |
184 | write_unlock_irqrestore(&ni->size_lock, flags); | |
185 | goto done; | |
186 | do_non_resident_extend: | |
187 | /* | |
188 | * If the new initialized size @new_init_size exceeds the current file | |
189 | * size (vfs inode->i_size), we need to extend the file size to the | |
190 | * new initialized size. | |
191 | */ | |
192 | if (new_init_size > old_i_size) { | |
193 | m = map_mft_record(base_ni); | |
194 | if (IS_ERR(m)) { | |
195 | err = PTR_ERR(m); | |
196 | m = NULL; | |
197 | goto err_out; | |
198 | } | |
199 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | |
200 | if (unlikely(!ctx)) { | |
201 | err = -ENOMEM; | |
202 | goto err_out; | |
203 | } | |
204 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | |
205 | CASE_SENSITIVE, 0, NULL, 0, ctx); | |
206 | if (unlikely(err)) { | |
207 | if (err == -ENOENT) | |
208 | err = -EIO; | |
209 | goto err_out; | |
210 | } | |
211 | m = ctx->mrec; | |
212 | a = ctx->attr; | |
213 | BUG_ON(!a->non_resident); | |
214 | BUG_ON(old_i_size != (loff_t) | |
215 | sle64_to_cpu(a->data.non_resident.data_size)); | |
216 | a->data.non_resident.data_size = cpu_to_sle64(new_init_size); | |
217 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
218 | mark_mft_record_dirty(ctx->ntfs_ino); | |
219 | /* Update the file size in the vfs inode. */ | |
220 | i_size_write(vi, new_init_size); | |
221 | ntfs_attr_put_search_ctx(ctx); | |
222 | ctx = NULL; | |
223 | unmap_mft_record(base_ni); | |
224 | m = NULL; | |
225 | } | |
226 | mapping = vi->i_mapping; | |
227 | index = old_init_size >> PAGE_CACHE_SHIFT; | |
228 | end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | |
229 | do { | |
230 | /* | |
231 | * Read the page. If the page is not present, this will zero | |
232 | * the uninitialized regions for us. | |
233 | */ | |
090d2b18 | 234 | page = read_mapping_page(mapping, index, NULL); |
98b27036 AA |
235 | if (IS_ERR(page)) { |
236 | err = PTR_ERR(page); | |
237 | goto init_err_out; | |
238 | } | |
6fe6900e | 239 | if (unlikely(PageError(page))) { |
98b27036 AA |
240 | page_cache_release(page); |
241 | err = -EIO; | |
242 | goto init_err_out; | |
243 | } | |
244 | /* | |
245 | * Update the initialized size in the ntfs inode. This is | |
246 | * enough to make ntfs_writepage() work. | |
247 | */ | |
248 | write_lock_irqsave(&ni->size_lock, flags); | |
3c6af7fa | 249 | ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT; |
98b27036 AA |
250 | if (ni->initialized_size > new_init_size) |
251 | ni->initialized_size = new_init_size; | |
252 | write_unlock_irqrestore(&ni->size_lock, flags); | |
253 | /* Set the page dirty so it gets written out. */ | |
254 | set_page_dirty(page); | |
255 | page_cache_release(page); | |
256 | /* | |
257 | * Play nice with the vm and the rest of the system. This is | |
258 | * very much needed as we can potentially be modifying the | |
259 | * initialised size from a very small value to a really huge | |
260 | * value, e.g. | |
261 | * f = open(somefile, O_TRUNC); | |
262 | * truncate(f, 10GiB); | |
263 | * seek(f, 10GiB); | |
264 | * write(f, 1); | |
265 | * And this would mean we would be marking dirty hundreds of | |
266 | * thousands of pages or as in the above example more than | |
267 | * two and a half million pages! | |
268 | * | |
269 | * TODO: For sparse pages could optimize this workload by using | |
270 | * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This | |
271 | * would be set in readpage for sparse pages and here we would | |
272 | * not need to mark dirty any pages which have this bit set. | |
273 | * The only caveat is that we have to clear the bit everywhere | |
274 | * where we allocate any clusters that lie in the page or that | |
275 | * contain the page. | |
276 | * | |
277 | * TODO: An even greater optimization would be for us to only | |
278 | * call readpage() on pages which are not in sparse regions as | |
279 | * determined from the runlist. This would greatly reduce the | |
280 | * number of pages we read and make dirty in the case of sparse | |
281 | * files. | |
282 | */ | |
283 | balance_dirty_pages_ratelimited(mapping); | |
284 | cond_resched(); | |
285 | } while (++index < end_index); | |
286 | read_lock_irqsave(&ni->size_lock, flags); | |
287 | BUG_ON(ni->initialized_size != new_init_size); | |
288 | read_unlock_irqrestore(&ni->size_lock, flags); | |
289 | /* Now bring in sync the initialized_size in the mft record. */ | |
290 | m = map_mft_record(base_ni); | |
291 | if (IS_ERR(m)) { | |
292 | err = PTR_ERR(m); | |
293 | m = NULL; | |
294 | goto init_err_out; | |
295 | } | |
296 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | |
297 | if (unlikely(!ctx)) { | |
298 | err = -ENOMEM; | |
299 | goto init_err_out; | |
300 | } | |
301 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | |
302 | CASE_SENSITIVE, 0, NULL, 0, ctx); | |
303 | if (unlikely(err)) { | |
304 | if (err == -ENOENT) | |
305 | err = -EIO; | |
306 | goto init_err_out; | |
307 | } | |
308 | m = ctx->mrec; | |
309 | a = ctx->attr; | |
310 | BUG_ON(!a->non_resident); | |
311 | a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); | |
312 | done: | |
313 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
314 | mark_mft_record_dirty(ctx->ntfs_ino); | |
315 | if (ctx) | |
316 | ntfs_attr_put_search_ctx(ctx); | |
317 | if (m) | |
318 | unmap_mft_record(base_ni); | |
319 | ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", | |
320 | (unsigned long long)new_init_size, i_size_read(vi)); | |
321 | return 0; | |
322 | init_err_out: | |
323 | write_lock_irqsave(&ni->size_lock, flags); | |
324 | ni->initialized_size = old_init_size; | |
325 | write_unlock_irqrestore(&ni->size_lock, flags); | |
326 | err_out: | |
327 | if (ctx) | |
328 | ntfs_attr_put_search_ctx(ctx); | |
329 | if (m) | |
330 | unmap_mft_record(base_ni); | |
331 | ntfs_debug("Failed. Returning error code %i.", err); | |
332 | return err; | |
333 | } | |
334 | ||
335 | /** | |
336 | * ntfs_fault_in_pages_readable - | |
337 | * | |
338 | * Fault a number of userspace pages into pagetables. | |
339 | * | |
340 | * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes | |
341 | * with more than two userspace pages as well as handling the single page case | |
342 | * elegantly. | |
343 | * | |
344 | * If you find this difficult to understand, then think of the while loop being | |
345 | * the following code, except that we do without the integer variable ret: | |
346 | * | |
347 | * do { | |
348 | * ret = __get_user(c, uaddr); | |
349 | * uaddr += PAGE_SIZE; | |
350 | * } while (!ret && uaddr < end); | |
351 | * | |
352 | * Note, the final __get_user() may well run out-of-bounds of the user buffer, | |
353 | * but _not_ out-of-bounds of the page the user buffer belongs to, and since | |
354 | * this is only a read and not a write, and since it is still in the same page, | |
355 | * it should not matter and this makes the code much simpler. | |
356 | */ | |
357 | static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, | |
358 | int bytes) | |
359 | { | |
360 | const char __user *end; | |
361 | volatile char c; | |
362 | ||
363 | /* Set @end to the first byte outside the last page we care about. */ | |
364 | end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes); | |
365 | ||
366 | while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) | |
367 | ; | |
368 | } | |
369 | ||
370 | /** | |
371 | * ntfs_fault_in_pages_readable_iovec - | |
372 | * | |
373 | * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. | |
374 | */ | |
375 | static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, | |
376 | size_t iov_ofs, int bytes) | |
377 | { | |
378 | do { | |
379 | const char __user *buf; | |
380 | unsigned len; | |
381 | ||
382 | buf = iov->iov_base + iov_ofs; | |
383 | len = iov->iov_len - iov_ofs; | |
384 | if (len > bytes) | |
385 | len = bytes; | |
386 | ntfs_fault_in_pages_readable(buf, len); | |
387 | bytes -= len; | |
388 | iov++; | |
389 | iov_ofs = 0; | |
390 | } while (bytes); | |
391 | } | |
392 | ||
393 | /** | |
394 | * __ntfs_grab_cache_pages - obtain a number of locked pages | |
395 | * @mapping: address space mapping from which to obtain page cache pages | |
396 | * @index: starting index in @mapping at which to begin obtaining pages | |
397 | * @nr_pages: number of page cache pages to obtain | |
398 | * @pages: array of pages in which to return the obtained page cache pages | |
399 | * @cached_page: allocated but as yet unused page | |
400 | * @lru_pvec: lru-buffering pagevec of caller | |
401 | * | |
402 | * Obtain @nr_pages locked page cache pages from the mapping @maping and | |
403 | * starting at index @index. | |
404 | * | |
405 | * If a page is newly created, increment its refcount and add it to the | |
406 | * caller's lru-buffering pagevec @lru_pvec. | |
407 | * | |
408 | * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages | |
409 | * are obtained at once instead of just one page and that 0 is returned on | |
410 | * success and -errno on error. | |
411 | * | |
412 | * Note, the page locks are obtained in ascending page index order. | |
413 | */ | |
414 | static inline int __ntfs_grab_cache_pages(struct address_space *mapping, | |
415 | pgoff_t index, const unsigned nr_pages, struct page **pages, | |
416 | struct page **cached_page, struct pagevec *lru_pvec) | |
417 | { | |
418 | int err, nr; | |
419 | ||
420 | BUG_ON(!nr_pages); | |
421 | err = nr = 0; | |
422 | do { | |
423 | pages[nr] = find_lock_page(mapping, index); | |
424 | if (!pages[nr]) { | |
425 | if (!*cached_page) { | |
426 | *cached_page = page_cache_alloc(mapping); | |
427 | if (unlikely(!*cached_page)) { | |
428 | err = -ENOMEM; | |
429 | goto err_out; | |
430 | } | |
431 | } | |
432 | err = add_to_page_cache(*cached_page, mapping, index, | |
433 | GFP_KERNEL); | |
434 | if (unlikely(err)) { | |
435 | if (err == -EEXIST) | |
436 | continue; | |
437 | goto err_out; | |
438 | } | |
439 | pages[nr] = *cached_page; | |
440 | page_cache_get(*cached_page); | |
441 | if (unlikely(!pagevec_add(lru_pvec, *cached_page))) | |
442 | __pagevec_lru_add(lru_pvec); | |
443 | *cached_page = NULL; | |
444 | } | |
445 | index++; | |
446 | nr++; | |
447 | } while (nr < nr_pages); | |
448 | out: | |
449 | return err; | |
450 | err_out: | |
451 | while (nr > 0) { | |
452 | unlock_page(pages[--nr]); | |
453 | page_cache_release(pages[nr]); | |
454 | } | |
455 | goto out; | |
456 | } | |
457 | ||
458 | static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) | |
459 | { | |
460 | lock_buffer(bh); | |
461 | get_bh(bh); | |
462 | bh->b_end_io = end_buffer_read_sync; | |
463 | return submit_bh(READ, bh); | |
464 | } | |
465 | ||
466 | /** | |
467 | * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data | |
468 | * @pages: array of destination pages | |
469 | * @nr_pages: number of pages in @pages | |
470 | * @pos: byte position in file at which the write begins | |
471 | * @bytes: number of bytes to be written | |
472 | * | |
473 | * This is called for non-resident attributes from ntfs_file_buffered_write() | |
1b1dcc1b | 474 | * with i_mutex held on the inode (@pages[0]->mapping->host). There are |
98b27036 AA |
475 | * @nr_pages pages in @pages which are locked but not kmap()ped. The source |
476 | * data has not yet been copied into the @pages. | |
477 | * | |
478 | * Need to fill any holes with actual clusters, allocate buffers if necessary, | |
479 | * ensure all the buffers are mapped, and bring uptodate any buffers that are | |
480 | * only partially being written to. | |
481 | * | |
482 | * If @nr_pages is greater than one, we are guaranteed that the cluster size is | |
483 | * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside | |
484 | * the same cluster and that they are the entirety of that cluster, and that | |
485 | * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. | |
486 | * | |
487 | * i_size is not to be modified yet. | |
488 | * | |
489 | * Return 0 on success or -errno on error. | |
490 | */ | |
491 | static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, | |
492 | unsigned nr_pages, s64 pos, size_t bytes) | |
493 | { | |
494 | VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; | |
495 | LCN lcn; | |
496 | s64 bh_pos, vcn_len, end, initialized_size; | |
497 | sector_t lcn_block; | |
498 | struct page *page; | |
499 | struct inode *vi; | |
500 | ntfs_inode *ni, *base_ni = NULL; | |
501 | ntfs_volume *vol; | |
502 | runlist_element *rl, *rl2; | |
503 | struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; | |
504 | ntfs_attr_search_ctx *ctx = NULL; | |
505 | MFT_RECORD *m = NULL; | |
506 | ATTR_RECORD *a = NULL; | |
507 | unsigned long flags; | |
508 | u32 attr_rec_len = 0; | |
509 | unsigned blocksize, u; | |
510 | int err, mp_size; | |
c49c3111 | 511 | bool rl_write_locked, was_hole, is_retry; |
98b27036 AA |
512 | unsigned char blocksize_bits; |
513 | struct { | |
514 | u8 runlist_merged:1; | |
515 | u8 mft_attr_mapped:1; | |
516 | u8 mp_rebuilt:1; | |
517 | u8 attr_switched:1; | |
518 | } status = { 0, 0, 0, 0 }; | |
519 | ||
520 | BUG_ON(!nr_pages); | |
521 | BUG_ON(!pages); | |
522 | BUG_ON(!*pages); | |
523 | vi = pages[0]->mapping->host; | |
524 | ni = NTFS_I(vi); | |
525 | vol = ni->vol; | |
526 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " | |
d04bd1fb | 527 | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", |
98b27036 AA |
528 | vi->i_ino, ni->type, pages[0]->index, nr_pages, |
529 | (long long)pos, bytes); | |
78af34f0 AA |
530 | blocksize = vol->sb->s_blocksize; |
531 | blocksize_bits = vol->sb->s_blocksize_bits; | |
98b27036 AA |
532 | u = 0; |
533 | do { | |
534 | struct page *page = pages[u]; | |
535 | /* | |
536 | * create_empty_buffers() will create uptodate/dirty buffers if | |
537 | * the page is uptodate/dirty. | |
538 | */ | |
539 | if (!page_has_buffers(page)) { | |
540 | create_empty_buffers(page, blocksize, 0); | |
541 | if (unlikely(!page_has_buffers(page))) | |
542 | return -ENOMEM; | |
543 | } | |
544 | } while (++u < nr_pages); | |
c49c3111 | 545 | rl_write_locked = false; |
98b27036 AA |
546 | rl = NULL; |
547 | err = 0; | |
548 | vcn = lcn = -1; | |
549 | vcn_len = 0; | |
550 | lcn_block = -1; | |
c49c3111 | 551 | was_hole = false; |
98b27036 AA |
552 | cpos = pos >> vol->cluster_size_bits; |
553 | end = pos + bytes; | |
554 | cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; | |
555 | /* | |
556 | * Loop over each page and for each page over each buffer. Use goto to | |
557 | * reduce indentation. | |
558 | */ | |
559 | u = 0; | |
560 | do_next_page: | |
561 | page = pages[u]; | |
562 | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; | |
563 | bh = head = page_buffers(page); | |
564 | do { | |
565 | VCN cdelta; | |
566 | s64 bh_end; | |
567 | unsigned bh_cofs; | |
568 | ||
569 | /* Clear buffer_new on all buffers to reinitialise state. */ | |
570 | if (buffer_new(bh)) | |
571 | clear_buffer_new(bh); | |
572 | bh_end = bh_pos + blocksize; | |
573 | bh_cpos = bh_pos >> vol->cluster_size_bits; | |
574 | bh_cofs = bh_pos & vol->cluster_size_mask; | |
575 | if (buffer_mapped(bh)) { | |
576 | /* | |
577 | * The buffer is already mapped. If it is uptodate, | |
578 | * ignore it. | |
579 | */ | |
580 | if (buffer_uptodate(bh)) | |
581 | continue; | |
582 | /* | |
583 | * The buffer is not uptodate. If the page is uptodate | |
584 | * set the buffer uptodate and otherwise ignore it. | |
585 | */ | |
586 | if (PageUptodate(page)) { | |
587 | set_buffer_uptodate(bh); | |
588 | continue; | |
589 | } | |
590 | /* | |
591 | * Neither the page nor the buffer are uptodate. If | |
592 | * the buffer is only partially being written to, we | |
593 | * need to read it in before the write, i.e. now. | |
594 | */ | |
595 | if ((bh_pos < pos && bh_end > pos) || | |
596 | (bh_pos < end && bh_end > end)) { | |
597 | /* | |
598 | * If the buffer is fully or partially within | |
599 | * the initialized size, do an actual read. | |
600 | * Otherwise, simply zero the buffer. | |
601 | */ | |
602 | read_lock_irqsave(&ni->size_lock, flags); | |
603 | initialized_size = ni->initialized_size; | |
604 | read_unlock_irqrestore(&ni->size_lock, flags); | |
605 | if (bh_pos < initialized_size) { | |
606 | ntfs_submit_bh_for_read(bh); | |
607 | *wait_bh++ = bh; | |
608 | } else { | |
609 | u8 *kaddr = kmap_atomic(page, KM_USER0); | |
610 | memset(kaddr + bh_offset(bh), 0, | |
611 | blocksize); | |
612 | kunmap_atomic(kaddr, KM_USER0); | |
613 | flush_dcache_page(page); | |
614 | set_buffer_uptodate(bh); | |
615 | } | |
616 | } | |
617 | continue; | |
618 | } | |
619 | /* Unmapped buffer. Need to map it. */ | |
620 | bh->b_bdev = vol->sb->s_bdev; | |
621 | /* | |
622 | * If the current buffer is in the same clusters as the map | |
623 | * cache, there is no need to check the runlist again. The | |
624 | * map cache is made up of @vcn, which is the first cached file | |
625 | * cluster, @vcn_len which is the number of cached file | |
626 | * clusters, @lcn is the device cluster corresponding to @vcn, | |
627 | * and @lcn_block is the block number corresponding to @lcn. | |
628 | */ | |
629 | cdelta = bh_cpos - vcn; | |
630 | if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { | |
631 | map_buffer_cached: | |
632 | BUG_ON(lcn < 0); | |
633 | bh->b_blocknr = lcn_block + | |
634 | (cdelta << (vol->cluster_size_bits - | |
635 | blocksize_bits)) + | |
636 | (bh_cofs >> blocksize_bits); | |
637 | set_buffer_mapped(bh); | |
638 | /* | |
639 | * If the page is uptodate so is the buffer. If the | |
640 | * buffer is fully outside the write, we ignore it if | |
641 | * it was already allocated and we mark it dirty so it | |
642 | * gets written out if we allocated it. On the other | |
643 | * hand, if we allocated the buffer but we are not | |
644 | * marking it dirty we set buffer_new so we can do | |
645 | * error recovery. | |
646 | */ | |
647 | if (PageUptodate(page)) { | |
648 | if (!buffer_uptodate(bh)) | |
649 | set_buffer_uptodate(bh); | |
650 | if (unlikely(was_hole)) { | |
651 | /* We allocated the buffer. */ | |
652 | unmap_underlying_metadata(bh->b_bdev, | |
653 | bh->b_blocknr); | |
654 | if (bh_end <= pos || bh_pos >= end) | |
655 | mark_buffer_dirty(bh); | |
656 | else | |
657 | set_buffer_new(bh); | |
658 | } | |
659 | continue; | |
660 | } | |
661 | /* Page is _not_ uptodate. */ | |
662 | if (likely(!was_hole)) { | |
663 | /* | |
664 | * Buffer was already allocated. If it is not | |
665 | * uptodate and is only partially being written | |
666 | * to, we need to read it in before the write, | |
667 | * i.e. now. | |
668 | */ | |
3aebf25b AA |
669 | if (!buffer_uptodate(bh) && bh_pos < end && |
670 | bh_end > pos && | |
671 | (bh_pos < pos || | |
672 | bh_end > end)) { | |
98b27036 AA |
673 | /* |
674 | * If the buffer is fully or partially | |
675 | * within the initialized size, do an | |
676 | * actual read. Otherwise, simply zero | |
677 | * the buffer. | |
678 | */ | |
679 | read_lock_irqsave(&ni->size_lock, | |
680 | flags); | |
681 | initialized_size = ni->initialized_size; | |
682 | read_unlock_irqrestore(&ni->size_lock, | |
683 | flags); | |
684 | if (bh_pos < initialized_size) { | |
685 | ntfs_submit_bh_for_read(bh); | |
686 | *wait_bh++ = bh; | |
687 | } else { | |
688 | u8 *kaddr = kmap_atomic(page, | |
689 | KM_USER0); | |
690 | memset(kaddr + bh_offset(bh), | |
691 | 0, blocksize); | |
692 | kunmap_atomic(kaddr, KM_USER0); | |
693 | flush_dcache_page(page); | |
694 | set_buffer_uptodate(bh); | |
695 | } | |
696 | } | |
697 | continue; | |
698 | } | |
699 | /* We allocated the buffer. */ | |
700 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | |
701 | /* | |
702 | * If the buffer is fully outside the write, zero it, | |
703 | * set it uptodate, and mark it dirty so it gets | |
704 | * written out. If it is partially being written to, | |
705 | * zero region surrounding the write but leave it to | |
706 | * commit write to do anything else. Finally, if the | |
707 | * buffer is fully being overwritten, do nothing. | |
708 | */ | |
709 | if (bh_end <= pos || bh_pos >= end) { | |
710 | if (!buffer_uptodate(bh)) { | |
711 | u8 *kaddr = kmap_atomic(page, KM_USER0); | |
712 | memset(kaddr + bh_offset(bh), 0, | |
713 | blocksize); | |
714 | kunmap_atomic(kaddr, KM_USER0); | |
715 | flush_dcache_page(page); | |
716 | set_buffer_uptodate(bh); | |
717 | } | |
718 | mark_buffer_dirty(bh); | |
719 | continue; | |
720 | } | |
721 | set_buffer_new(bh); | |
722 | if (!buffer_uptodate(bh) && | |
723 | (bh_pos < pos || bh_end > end)) { | |
724 | u8 *kaddr; | |
725 | unsigned pofs; | |
726 | ||
727 | kaddr = kmap_atomic(page, KM_USER0); | |
728 | if (bh_pos < pos) { | |
729 | pofs = bh_pos & ~PAGE_CACHE_MASK; | |
730 | memset(kaddr + pofs, 0, pos - bh_pos); | |
731 | } | |
732 | if (bh_end > end) { | |
733 | pofs = end & ~PAGE_CACHE_MASK; | |
734 | memset(kaddr + pofs, 0, bh_end - end); | |
735 | } | |
736 | kunmap_atomic(kaddr, KM_USER0); | |
737 | flush_dcache_page(page); | |
738 | } | |
739 | continue; | |
740 | } | |
741 | /* | |
742 | * Slow path: this is the first buffer in the cluster. If it | |
743 | * is outside allocated size and is not uptodate, zero it and | |
744 | * set it uptodate. | |
745 | */ | |
746 | read_lock_irqsave(&ni->size_lock, flags); | |
747 | initialized_size = ni->allocated_size; | |
748 | read_unlock_irqrestore(&ni->size_lock, flags); | |
749 | if (bh_pos > initialized_size) { | |
750 | if (PageUptodate(page)) { | |
751 | if (!buffer_uptodate(bh)) | |
752 | set_buffer_uptodate(bh); | |
753 | } else if (!buffer_uptodate(bh)) { | |
754 | u8 *kaddr = kmap_atomic(page, KM_USER0); | |
755 | memset(kaddr + bh_offset(bh), 0, blocksize); | |
756 | kunmap_atomic(kaddr, KM_USER0); | |
757 | flush_dcache_page(page); | |
758 | set_buffer_uptodate(bh); | |
759 | } | |
760 | continue; | |
761 | } | |
c49c3111 | 762 | is_retry = false; |
98b27036 AA |
763 | if (!rl) { |
764 | down_read(&ni->runlist.lock); | |
765 | retry_remap: | |
766 | rl = ni->runlist.rl; | |
767 | } | |
768 | if (likely(rl != NULL)) { | |
769 | /* Seek to element containing target cluster. */ | |
770 | while (rl->length && rl[1].vcn <= bh_cpos) | |
771 | rl++; | |
772 | lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); | |
773 | if (likely(lcn >= 0)) { | |
774 | /* | |
775 | * Successful remap, setup the map cache and | |
776 | * use that to deal with the buffer. | |
777 | */ | |
c49c3111 | 778 | was_hole = false; |
98b27036 AA |
779 | vcn = bh_cpos; |
780 | vcn_len = rl[1].vcn - vcn; | |
781 | lcn_block = lcn << (vol->cluster_size_bits - | |
782 | blocksize_bits); | |
d5aeaef3 | 783 | cdelta = 0; |
98b27036 | 784 | /* |
3aebf25b AA |
785 | * If the number of remaining clusters touched |
786 | * by the write is smaller or equal to the | |
787 | * number of cached clusters, unlock the | |
788 | * runlist as the map cache will be used from | |
789 | * now on. | |
98b27036 AA |
790 | */ |
791 | if (likely(vcn + vcn_len >= cend)) { | |
792 | if (rl_write_locked) { | |
793 | up_write(&ni->runlist.lock); | |
c49c3111 | 794 | rl_write_locked = false; |
98b27036 AA |
795 | } else |
796 | up_read(&ni->runlist.lock); | |
797 | rl = NULL; | |
798 | } | |
799 | goto map_buffer_cached; | |
800 | } | |
801 | } else | |
802 | lcn = LCN_RL_NOT_MAPPED; | |
803 | /* | |
804 | * If it is not a hole and not out of bounds, the runlist is | |
805 | * probably unmapped so try to map it now. | |
806 | */ | |
807 | if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { | |
808 | if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { | |
809 | /* Attempt to map runlist. */ | |
810 | if (!rl_write_locked) { | |
811 | /* | |
812 | * We need the runlist locked for | |
813 | * writing, so if it is locked for | |
814 | * reading relock it now and retry in | |
815 | * case it changed whilst we dropped | |
816 | * the lock. | |
817 | */ | |
818 | up_read(&ni->runlist.lock); | |
819 | down_write(&ni->runlist.lock); | |
c49c3111 | 820 | rl_write_locked = true; |
98b27036 AA |
821 | goto retry_remap; |
822 | } | |
823 | err = ntfs_map_runlist_nolock(ni, bh_cpos, | |
824 | NULL); | |
825 | if (likely(!err)) { | |
c49c3111 | 826 | is_retry = true; |
98b27036 AA |
827 | goto retry_remap; |
828 | } | |
829 | /* | |
830 | * If @vcn is out of bounds, pretend @lcn is | |
831 | * LCN_ENOENT. As long as the buffer is out | |
832 | * of bounds this will work fine. | |
833 | */ | |
834 | if (err == -ENOENT) { | |
835 | lcn = LCN_ENOENT; | |
836 | err = 0; | |
837 | goto rl_not_mapped_enoent; | |
838 | } | |
839 | } else | |
840 | err = -EIO; | |
841 | /* Failed to map the buffer, even after retrying. */ | |
842 | bh->b_blocknr = -1; | |
843 | ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " | |
844 | "attribute type 0x%x, vcn 0x%llx, " | |
845 | "vcn offset 0x%x, because its " | |
846 | "location on disk could not be " | |
847 | "determined%s (error code %i).", | |
848 | ni->mft_no, ni->type, | |
849 | (unsigned long long)bh_cpos, | |
850 | (unsigned)bh_pos & | |
851 | vol->cluster_size_mask, | |
852 | is_retry ? " even after retrying" : "", | |
853 | err); | |
854 | break; | |
855 | } | |
856 | rl_not_mapped_enoent: | |
857 | /* | |
858 | * The buffer is in a hole or out of bounds. We need to fill | |
859 | * the hole, unless the buffer is in a cluster which is not | |
860 | * touched by the write, in which case we just leave the buffer | |
861 | * unmapped. This can only happen when the cluster size is | |
862 | * less than the page cache size. | |
863 | */ | |
864 | if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { | |
865 | bh_cend = (bh_end + vol->cluster_size - 1) >> | |
866 | vol->cluster_size_bits; | |
867 | if ((bh_cend <= cpos || bh_cpos >= cend)) { | |
868 | bh->b_blocknr = -1; | |
869 | /* | |
870 | * If the buffer is uptodate we skip it. If it | |
871 | * is not but the page is uptodate, we can set | |
872 | * the buffer uptodate. If the page is not | |
873 | * uptodate, we can clear the buffer and set it | |
874 | * uptodate. Whether this is worthwhile is | |
875 | * debatable and this could be removed. | |
876 | */ | |
877 | if (PageUptodate(page)) { | |
878 | if (!buffer_uptodate(bh)) | |
879 | set_buffer_uptodate(bh); | |
880 | } else if (!buffer_uptodate(bh)) { | |
881 | u8 *kaddr = kmap_atomic(page, KM_USER0); | |
882 | memset(kaddr + bh_offset(bh), 0, | |
883 | blocksize); | |
884 | kunmap_atomic(kaddr, KM_USER0); | |
885 | flush_dcache_page(page); | |
886 | set_buffer_uptodate(bh); | |
887 | } | |
888 | continue; | |
889 | } | |
890 | } | |
891 | /* | |
892 | * Out of bounds buffer is invalid if it was not really out of | |
893 | * bounds. | |
894 | */ | |
895 | BUG_ON(lcn != LCN_HOLE); | |
896 | /* | |
897 | * We need the runlist locked for writing, so if it is locked | |
898 | * for reading relock it now and retry in case it changed | |
899 | * whilst we dropped the lock. | |
900 | */ | |
901 | BUG_ON(!rl); | |
902 | if (!rl_write_locked) { | |
903 | up_read(&ni->runlist.lock); | |
904 | down_write(&ni->runlist.lock); | |
c49c3111 | 905 | rl_write_locked = true; |
98b27036 AA |
906 | goto retry_remap; |
907 | } | |
908 | /* Find the previous last allocated cluster. */ | |
909 | BUG_ON(rl->lcn != LCN_HOLE); | |
910 | lcn = -1; | |
911 | rl2 = rl; | |
912 | while (--rl2 >= ni->runlist.rl) { | |
913 | if (rl2->lcn >= 0) { | |
914 | lcn = rl2->lcn + rl2->length; | |
915 | break; | |
916 | } | |
917 | } | |
918 | rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, | |
c49c3111 | 919 | false); |
98b27036 AA |
920 | if (IS_ERR(rl2)) { |
921 | err = PTR_ERR(rl2); | |
922 | ntfs_debug("Failed to allocate cluster, error code %i.", | |
923 | err); | |
924 | break; | |
925 | } | |
926 | lcn = rl2->lcn; | |
927 | rl = ntfs_runlists_merge(ni->runlist.rl, rl2); | |
928 | if (IS_ERR(rl)) { | |
929 | err = PTR_ERR(rl); | |
930 | if (err != -ENOMEM) | |
931 | err = -EIO; | |
932 | if (ntfs_cluster_free_from_rl(vol, rl2)) { | |
933 | ntfs_error(vol->sb, "Failed to release " | |
934 | "allocated cluster in error " | |
935 | "code path. Run chkdsk to " | |
936 | "recover the lost cluster."); | |
937 | NVolSetErrors(vol); | |
938 | } | |
939 | ntfs_free(rl2); | |
940 | break; | |
941 | } | |
942 | ni->runlist.rl = rl; | |
943 | status.runlist_merged = 1; | |
bb8047d3 AA |
944 | ntfs_debug("Allocated cluster, lcn 0x%llx.", |
945 | (unsigned long long)lcn); | |
98b27036 AA |
946 | /* Map and lock the mft record and get the attribute record. */ |
947 | if (!NInoAttr(ni)) | |
948 | base_ni = ni; | |
949 | else | |
950 | base_ni = ni->ext.base_ntfs_ino; | |
951 | m = map_mft_record(base_ni); | |
952 | if (IS_ERR(m)) { | |
953 | err = PTR_ERR(m); | |
954 | break; | |
955 | } | |
956 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | |
957 | if (unlikely(!ctx)) { | |
958 | err = -ENOMEM; | |
959 | unmap_mft_record(base_ni); | |
960 | break; | |
961 | } | |
962 | status.mft_attr_mapped = 1; | |
963 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | |
964 | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); | |
965 | if (unlikely(err)) { | |
966 | if (err == -ENOENT) | |
967 | err = -EIO; | |
968 | break; | |
969 | } | |
970 | m = ctx->mrec; | |
971 | a = ctx->attr; | |
972 | /* | |
973 | * Find the runlist element with which the attribute extent | |
974 | * starts. Note, we cannot use the _attr_ version because we | |
975 | * have mapped the mft record. That is ok because we know the | |
976 | * runlist fragment must be mapped already to have ever gotten | |
977 | * here, so we can just use the _rl_ version. | |
978 | */ | |
979 | vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); | |
980 | rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); | |
981 | BUG_ON(!rl2); | |
982 | BUG_ON(!rl2->length); | |
983 | BUG_ON(rl2->lcn < LCN_HOLE); | |
984 | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); | |
985 | /* | |
986 | * If @highest_vcn is zero, calculate the real highest_vcn | |
987 | * (which can really be zero). | |
988 | */ | |
989 | if (!highest_vcn) | |
990 | highest_vcn = (sle64_to_cpu( | |
991 | a->data.non_resident.allocated_size) >> | |
992 | vol->cluster_size_bits) - 1; | |
993 | /* | |
994 | * Determine the size of the mapping pairs array for the new | |
995 | * extent, i.e. the old extent with the hole filled. | |
996 | */ | |
997 | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, | |
998 | highest_vcn); | |
999 | if (unlikely(mp_size <= 0)) { | |
1000 | if (!(err = mp_size)) | |
1001 | err = -EIO; | |
1002 | ntfs_debug("Failed to get size for mapping pairs " | |
1003 | "array, error code %i.", err); | |
1004 | break; | |
1005 | } | |
1006 | /* | |
1007 | * Resize the attribute record to fit the new mapping pairs | |
1008 | * array. | |
1009 | */ | |
1010 | attr_rec_len = le32_to_cpu(a->length); | |
1011 | err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( | |
1012 | a->data.non_resident.mapping_pairs_offset)); | |
1013 | if (unlikely(err)) { | |
1014 | BUG_ON(err != -ENOSPC); | |
1015 | // TODO: Deal with this by using the current attribute | |
1016 | // and fill it with as much of the mapping pairs | |
1017 | // array as possible. Then loop over each attribute | |
1018 | // extent rewriting the mapping pairs arrays as we go | |
1019 | // along and if when we reach the end we have not | |
1020 | // enough space, try to resize the last attribute | |
1021 | // extent and if even that fails, add a new attribute | |
1022 | // extent. | |
1023 | // We could also try to resize at each step in the hope | |
1024 | // that we will not need to rewrite every single extent. | |
1025 | // Note, we may need to decompress some extents to fill | |
1026 | // the runlist as we are walking the extents... | |
1027 | ntfs_error(vol->sb, "Not enough space in the mft " | |
1028 | "record for the extended attribute " | |
1029 | "record. This case is not " | |
1030 | "implemented yet."); | |
1031 | err = -EOPNOTSUPP; | |
1032 | break ; | |
1033 | } | |
1034 | status.mp_rebuilt = 1; | |
1035 | /* | |
1036 | * Generate the mapping pairs array directly into the attribute | |
1037 | * record. | |
1038 | */ | |
1039 | err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | |
1040 | a->data.non_resident.mapping_pairs_offset), | |
1041 | mp_size, rl2, vcn, highest_vcn, NULL); | |
1042 | if (unlikely(err)) { | |
1043 | ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " | |
1044 | "attribute type 0x%x, because building " | |
1045 | "the mapping pairs failed with error " | |
1046 | "code %i.", vi->i_ino, | |
1047 | (unsigned)le32_to_cpu(ni->type), err); | |
1048 | err = -EIO; | |
1049 | break; | |
1050 | } | |
1051 | /* Update the highest_vcn but only if it was not set. */ | |
1052 | if (unlikely(!a->data.non_resident.highest_vcn)) | |
1053 | a->data.non_resident.highest_vcn = | |
1054 | cpu_to_sle64(highest_vcn); | |
1055 | /* | |
1056 | * If the attribute is sparse/compressed, update the compressed | |
1057 | * size in the ntfs_inode structure and the attribute record. | |
1058 | */ | |
1059 | if (likely(NInoSparse(ni) || NInoCompressed(ni))) { | |
1060 | /* | |
1061 | * If we are not in the first attribute extent, switch | |
1062 | * to it, but first ensure the changes will make it to | |
1063 | * disk later. | |
1064 | */ | |
1065 | if (a->data.non_resident.lowest_vcn) { | |
1066 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1067 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1068 | ntfs_attr_reinit_search_ctx(ctx); | |
1069 | err = ntfs_attr_lookup(ni->type, ni->name, | |
1070 | ni->name_len, CASE_SENSITIVE, | |
1071 | 0, NULL, 0, ctx); | |
1072 | if (unlikely(err)) { | |
1073 | status.attr_switched = 1; | |
1074 | break; | |
1075 | } | |
1076 | /* @m is not used any more so do not set it. */ | |
1077 | a = ctx->attr; | |
1078 | } | |
1079 | write_lock_irqsave(&ni->size_lock, flags); | |
1080 | ni->itype.compressed.size += vol->cluster_size; | |
1081 | a->data.non_resident.compressed_size = | |
1082 | cpu_to_sle64(ni->itype.compressed.size); | |
1083 | write_unlock_irqrestore(&ni->size_lock, flags); | |
1084 | } | |
1085 | /* Ensure the changes make it to disk. */ | |
1086 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1087 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1088 | ntfs_attr_put_search_ctx(ctx); | |
1089 | unmap_mft_record(base_ni); | |
1090 | /* Successfully filled the hole. */ | |
1091 | status.runlist_merged = 0; | |
1092 | status.mft_attr_mapped = 0; | |
1093 | status.mp_rebuilt = 0; | |
1094 | /* Setup the map cache and use that to deal with the buffer. */ | |
c49c3111 | 1095 | was_hole = true; |
98b27036 AA |
1096 | vcn = bh_cpos; |
1097 | vcn_len = 1; | |
1098 | lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); | |
1099 | cdelta = 0; | |
1100 | /* | |
1101 | * If the number of remaining clusters in the @pages is smaller | |
1102 | * or equal to the number of cached clusters, unlock the | |
1103 | * runlist as the map cache will be used from now on. | |
1104 | */ | |
1105 | if (likely(vcn + vcn_len >= cend)) { | |
1106 | up_write(&ni->runlist.lock); | |
c49c3111 | 1107 | rl_write_locked = false; |
98b27036 AA |
1108 | rl = NULL; |
1109 | } | |
1110 | goto map_buffer_cached; | |
1111 | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); | |
1112 | /* If there are no errors, do the next page. */ | |
1113 | if (likely(!err && ++u < nr_pages)) | |
1114 | goto do_next_page; | |
1115 | /* If there are no errors, release the runlist lock if we took it. */ | |
1116 | if (likely(!err)) { | |
1117 | if (unlikely(rl_write_locked)) { | |
1118 | up_write(&ni->runlist.lock); | |
c49c3111 | 1119 | rl_write_locked = false; |
98b27036 AA |
1120 | } else if (unlikely(rl)) |
1121 | up_read(&ni->runlist.lock); | |
1122 | rl = NULL; | |
1123 | } | |
1124 | /* If we issued read requests, let them complete. */ | |
1125 | read_lock_irqsave(&ni->size_lock, flags); | |
1126 | initialized_size = ni->initialized_size; | |
1127 | read_unlock_irqrestore(&ni->size_lock, flags); | |
1128 | while (wait_bh > wait) { | |
1129 | bh = *--wait_bh; | |
1130 | wait_on_buffer(bh); | |
1131 | if (likely(buffer_uptodate(bh))) { | |
1132 | page = bh->b_page; | |
1133 | bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + | |
1134 | bh_offset(bh); | |
1135 | /* | |
1136 | * If the buffer overflows the initialized size, need | |
1137 | * to zero the overflowing region. | |
1138 | */ | |
1139 | if (unlikely(bh_pos + blocksize > initialized_size)) { | |
1140 | u8 *kaddr; | |
1141 | int ofs = 0; | |
1142 | ||
1143 | if (likely(bh_pos < initialized_size)) | |
1144 | ofs = initialized_size - bh_pos; | |
1145 | kaddr = kmap_atomic(page, KM_USER0); | |
1146 | memset(kaddr + bh_offset(bh) + ofs, 0, | |
1147 | blocksize - ofs); | |
1148 | kunmap_atomic(kaddr, KM_USER0); | |
1149 | flush_dcache_page(page); | |
1150 | } | |
1151 | } else /* if (unlikely(!buffer_uptodate(bh))) */ | |
1152 | err = -EIO; | |
1153 | } | |
1154 | if (likely(!err)) { | |
1155 | /* Clear buffer_new on all buffers. */ | |
1156 | u = 0; | |
1157 | do { | |
1158 | bh = head = page_buffers(pages[u]); | |
1159 | do { | |
1160 | if (buffer_new(bh)) | |
1161 | clear_buffer_new(bh); | |
1162 | } while ((bh = bh->b_this_page) != head); | |
1163 | } while (++u < nr_pages); | |
1164 | ntfs_debug("Done."); | |
1165 | return err; | |
1166 | } | |
1167 | if (status.attr_switched) { | |
1168 | /* Get back to the attribute extent we modified. */ | |
1169 | ntfs_attr_reinit_search_ctx(ctx); | |
1170 | if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | |
1171 | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { | |
1172 | ntfs_error(vol->sb, "Failed to find required " | |
1173 | "attribute extent of attribute in " | |
1174 | "error code path. Run chkdsk to " | |
1175 | "recover."); | |
1176 | write_lock_irqsave(&ni->size_lock, flags); | |
1177 | ni->itype.compressed.size += vol->cluster_size; | |
1178 | write_unlock_irqrestore(&ni->size_lock, flags); | |
1179 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1180 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1181 | /* | |
1182 | * The only thing that is now wrong is the compressed | |
1183 | * size of the base attribute extent which chkdsk | |
1184 | * should be able to fix. | |
1185 | */ | |
1186 | NVolSetErrors(vol); | |
1187 | } else { | |
1188 | m = ctx->mrec; | |
1189 | a = ctx->attr; | |
1190 | status.attr_switched = 0; | |
1191 | } | |
1192 | } | |
1193 | /* | |
1194 | * If the runlist has been modified, need to restore it by punching a | |
1195 | * hole into it and we then need to deallocate the on-disk cluster as | |
1196 | * well. Note, we only modify the runlist if we are able to generate a | |
1197 | * new mapping pairs array, i.e. only when the mapped attribute extent | |
1198 | * is not switched. | |
1199 | */ | |
1200 | if (status.runlist_merged && !status.attr_switched) { | |
1201 | BUG_ON(!rl_write_locked); | |
1202 | /* Make the file cluster we allocated sparse in the runlist. */ | |
1203 | if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { | |
1204 | ntfs_error(vol->sb, "Failed to punch hole into " | |
1205 | "attribute runlist in error code " | |
1206 | "path. Run chkdsk to recover the " | |
1207 | "lost cluster."); | |
98b27036 AA |
1208 | NVolSetErrors(vol); |
1209 | } else /* if (success) */ { | |
1210 | status.runlist_merged = 0; | |
1211 | /* | |
1212 | * Deallocate the on-disk cluster we allocated but only | |
1213 | * if we succeeded in punching its vcn out of the | |
1214 | * runlist. | |
1215 | */ | |
1216 | down_write(&vol->lcnbmp_lock); | |
1217 | if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { | |
1218 | ntfs_error(vol->sb, "Failed to release " | |
1219 | "allocated cluster in error " | |
1220 | "code path. Run chkdsk to " | |
1221 | "recover the lost cluster."); | |
1222 | NVolSetErrors(vol); | |
1223 | } | |
1224 | up_write(&vol->lcnbmp_lock); | |
1225 | } | |
1226 | } | |
1227 | /* | |
1228 | * Resize the attribute record to its old size and rebuild the mapping | |
1229 | * pairs array. Note, we only can do this if the runlist has been | |
1230 | * restored to its old state which also implies that the mapped | |
1231 | * attribute extent is not switched. | |
1232 | */ | |
1233 | if (status.mp_rebuilt && !status.runlist_merged) { | |
1234 | if (ntfs_attr_record_resize(m, a, attr_rec_len)) { | |
1235 | ntfs_error(vol->sb, "Failed to restore attribute " | |
1236 | "record in error code path. Run " | |
1237 | "chkdsk to recover."); | |
98b27036 AA |
1238 | NVolSetErrors(vol); |
1239 | } else /* if (success) */ { | |
1240 | if (ntfs_mapping_pairs_build(vol, (u8*)a + | |
1241 | le16_to_cpu(a->data.non_resident. | |
1242 | mapping_pairs_offset), attr_rec_len - | |
1243 | le16_to_cpu(a->data.non_resident. | |
1244 | mapping_pairs_offset), ni->runlist.rl, | |
1245 | vcn, highest_vcn, NULL)) { | |
1246 | ntfs_error(vol->sb, "Failed to restore " | |
1247 | "mapping pairs array in error " | |
1248 | "code path. Run chkdsk to " | |
1249 | "recover."); | |
98b27036 AA |
1250 | NVolSetErrors(vol); |
1251 | } | |
1252 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1253 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1254 | } | |
1255 | } | |
1256 | /* Release the mft record and the attribute. */ | |
1257 | if (status.mft_attr_mapped) { | |
1258 | ntfs_attr_put_search_ctx(ctx); | |
1259 | unmap_mft_record(base_ni); | |
1260 | } | |
1261 | /* Release the runlist lock. */ | |
1262 | if (rl_write_locked) | |
1263 | up_write(&ni->runlist.lock); | |
1264 | else if (rl) | |
1265 | up_read(&ni->runlist.lock); | |
1266 | /* | |
1267 | * Zero out any newly allocated blocks to avoid exposing stale data. | |
1268 | * If BH_New is set, we know that the block was newly allocated above | |
1269 | * and that it has not been fully zeroed and marked dirty yet. | |
1270 | */ | |
1271 | nr_pages = u; | |
1272 | u = 0; | |
1273 | end = bh_cpos << vol->cluster_size_bits; | |
1274 | do { | |
1275 | page = pages[u]; | |
1276 | bh = head = page_buffers(page); | |
1277 | do { | |
1278 | if (u == nr_pages && | |
1279 | ((s64)page->index << PAGE_CACHE_SHIFT) + | |
1280 | bh_offset(bh) >= end) | |
1281 | break; | |
1282 | if (!buffer_new(bh)) | |
1283 | continue; | |
1284 | clear_buffer_new(bh); | |
1285 | if (!buffer_uptodate(bh)) { | |
1286 | if (PageUptodate(page)) | |
1287 | set_buffer_uptodate(bh); | |
1288 | else { | |
1289 | u8 *kaddr = kmap_atomic(page, KM_USER0); | |
1290 | memset(kaddr + bh_offset(bh), 0, | |
1291 | blocksize); | |
1292 | kunmap_atomic(kaddr, KM_USER0); | |
1293 | flush_dcache_page(page); | |
1294 | set_buffer_uptodate(bh); | |
1295 | } | |
1296 | } | |
1297 | mark_buffer_dirty(bh); | |
1298 | } while ((bh = bh->b_this_page) != head); | |
1299 | } while (++u <= nr_pages); | |
1300 | ntfs_error(vol->sb, "Failed. Returning error code %i.", err); | |
1301 | return err; | |
1302 | } | |
1303 | ||
1304 | /* | |
1305 | * Copy as much as we can into the pages and return the number of bytes which | |
1306 | * were sucessfully copied. If a fault is encountered then clear the pages | |
1307 | * out to (ofs + bytes) and return the number of bytes which were copied. | |
1308 | */ | |
1309 | static inline size_t ntfs_copy_from_user(struct page **pages, | |
1310 | unsigned nr_pages, unsigned ofs, const char __user *buf, | |
1311 | size_t bytes) | |
1312 | { | |
1313 | struct page **last_page = pages + nr_pages; | |
1314 | char *kaddr; | |
1315 | size_t total = 0; | |
1316 | unsigned len; | |
1317 | int left; | |
1318 | ||
1319 | do { | |
1320 | len = PAGE_CACHE_SIZE - ofs; | |
1321 | if (len > bytes) | |
1322 | len = bytes; | |
1323 | kaddr = kmap_atomic(*pages, KM_USER0); | |
1324 | left = __copy_from_user_inatomic(kaddr + ofs, buf, len); | |
1325 | kunmap_atomic(kaddr, KM_USER0); | |
1326 | if (unlikely(left)) { | |
1327 | /* Do it the slow way. */ | |
1328 | kaddr = kmap(*pages); | |
1329 | left = __copy_from_user(kaddr + ofs, buf, len); | |
1330 | kunmap(*pages); | |
1331 | if (unlikely(left)) | |
1332 | goto err_out; | |
1333 | } | |
1334 | total += len; | |
1335 | bytes -= len; | |
1336 | if (!bytes) | |
1337 | break; | |
1338 | buf += len; | |
1339 | ofs = 0; | |
1340 | } while (++pages < last_page); | |
1341 | out: | |
1342 | return total; | |
1343 | err_out: | |
1344 | total += len - left; | |
1345 | /* Zero the rest of the target like __copy_from_user(). */ | |
1346 | while (++pages < last_page) { | |
1347 | bytes -= len; | |
1348 | if (!bytes) | |
1349 | break; | |
1350 | len = PAGE_CACHE_SIZE; | |
1351 | if (len > bytes) | |
1352 | len = bytes; | |
1353 | kaddr = kmap_atomic(*pages, KM_USER0); | |
1354 | memset(kaddr, 0, len); | |
1355 | kunmap_atomic(kaddr, KM_USER0); | |
1356 | } | |
1357 | goto out; | |
1358 | } | |
1359 | ||
01408c49 | 1360 | static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr, |
98b27036 AA |
1361 | const struct iovec *iov, size_t iov_ofs, size_t bytes) |
1362 | { | |
1363 | size_t total = 0; | |
1364 | ||
1365 | while (1) { | |
1366 | const char __user *buf = iov->iov_base + iov_ofs; | |
1367 | unsigned len; | |
1368 | size_t left; | |
1369 | ||
1370 | len = iov->iov_len - iov_ofs; | |
1371 | if (len > bytes) | |
1372 | len = bytes; | |
1373 | left = __copy_from_user_inatomic(vaddr, buf, len); | |
1374 | total += len; | |
1375 | bytes -= len; | |
1376 | vaddr += len; | |
1377 | if (unlikely(left)) { | |
98b27036 AA |
1378 | total -= left; |
1379 | break; | |
1380 | } | |
1381 | if (!bytes) | |
1382 | break; | |
1383 | iov++; | |
1384 | iov_ofs = 0; | |
1385 | } | |
1386 | return total; | |
1387 | } | |
1388 | ||
1389 | static inline void ntfs_set_next_iovec(const struct iovec **iovp, | |
1390 | size_t *iov_ofsp, size_t bytes) | |
1391 | { | |
1392 | const struct iovec *iov = *iovp; | |
1393 | size_t iov_ofs = *iov_ofsp; | |
1394 | ||
1395 | while (bytes) { | |
1396 | unsigned len; | |
1397 | ||
1398 | len = iov->iov_len - iov_ofs; | |
1399 | if (len > bytes) | |
1400 | len = bytes; | |
1401 | bytes -= len; | |
1402 | iov_ofs += len; | |
1403 | if (iov->iov_len == iov_ofs) { | |
1404 | iov++; | |
1405 | iov_ofs = 0; | |
1406 | } | |
1407 | } | |
1408 | *iovp = iov; | |
1409 | *iov_ofsp = iov_ofs; | |
1410 | } | |
1411 | ||
1412 | /* | |
1413 | * This has the same side-effects and return value as ntfs_copy_from_user(). | |
1414 | * The difference is that on a fault we need to memset the remainder of the | |
1415 | * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s | |
1416 | * single-segment behaviour. | |
1417 | * | |
01408c49 N |
1418 | * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both |
1419 | * when atomic and when not atomic. This is ok because | |
1420 | * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic() | |
1421 | * and it is ok to call this when non-atomic. | |
1422 | * Infact, the only difference between __copy_from_user_inatomic() and | |
1423 | * __copy_from_user() is that the latter calls might_sleep() and the former | |
1424 | * should not zero the tail of the buffer on error. And on many | |
98b27036 AA |
1425 | * architectures __copy_from_user_inatomic() is just defined to |
1426 | * __copy_from_user() so it makes no difference at all on those architectures. | |
1427 | */ | |
1428 | static inline size_t ntfs_copy_from_user_iovec(struct page **pages, | |
1429 | unsigned nr_pages, unsigned ofs, const struct iovec **iov, | |
1430 | size_t *iov_ofs, size_t bytes) | |
1431 | { | |
1432 | struct page **last_page = pages + nr_pages; | |
1433 | char *kaddr; | |
1434 | size_t copied, len, total = 0; | |
1435 | ||
1436 | do { | |
1437 | len = PAGE_CACHE_SIZE - ofs; | |
1438 | if (len > bytes) | |
1439 | len = bytes; | |
1440 | kaddr = kmap_atomic(*pages, KM_USER0); | |
01408c49 | 1441 | copied = __ntfs_copy_from_user_iovec_inatomic(kaddr + ofs, |
98b27036 AA |
1442 | *iov, *iov_ofs, len); |
1443 | kunmap_atomic(kaddr, KM_USER0); | |
1444 | if (unlikely(copied != len)) { | |
1445 | /* Do it the slow way. */ | |
1446 | kaddr = kmap(*pages); | |
01408c49 | 1447 | copied = __ntfs_copy_from_user_iovec_inatomic(kaddr + ofs, |
98b27036 | 1448 | *iov, *iov_ofs, len); |
01408c49 N |
1449 | /* |
1450 | * Zero the rest of the target like __copy_from_user(). | |
1451 | */ | |
1452 | memset(kaddr + ofs + copied, 0, len - copied); | |
98b27036 AA |
1453 | kunmap(*pages); |
1454 | if (unlikely(copied != len)) | |
1455 | goto err_out; | |
1456 | } | |
1457 | total += len; | |
1458 | bytes -= len; | |
1459 | if (!bytes) | |
1460 | break; | |
1461 | ntfs_set_next_iovec(iov, iov_ofs, len); | |
1462 | ofs = 0; | |
1463 | } while (++pages < last_page); | |
1464 | out: | |
1465 | return total; | |
1466 | err_out: | |
1467 | total += copied; | |
1468 | /* Zero the rest of the target like __copy_from_user(). */ | |
1469 | while (++pages < last_page) { | |
1470 | bytes -= len; | |
1471 | if (!bytes) | |
1472 | break; | |
1473 | len = PAGE_CACHE_SIZE; | |
1474 | if (len > bytes) | |
1475 | len = bytes; | |
1476 | kaddr = kmap_atomic(*pages, KM_USER0); | |
1477 | memset(kaddr, 0, len); | |
1478 | kunmap_atomic(kaddr, KM_USER0); | |
1479 | } | |
1480 | goto out; | |
1481 | } | |
1482 | ||
1483 | static inline void ntfs_flush_dcache_pages(struct page **pages, | |
1484 | unsigned nr_pages) | |
1485 | { | |
1486 | BUG_ON(!nr_pages); | |
f893afbe AA |
1487 | /* |
1488 | * Warning: Do not do the decrement at the same time as the call to | |
1489 | * flush_dcache_page() because it is a NULL macro on i386 and hence the | |
1490 | * decrement never happens so the loop never terminates. | |
1491 | */ | |
98b27036 | 1492 | do { |
f893afbe | 1493 | --nr_pages; |
98b27036 | 1494 | flush_dcache_page(pages[nr_pages]); |
f893afbe | 1495 | } while (nr_pages > 0); |
98b27036 AA |
1496 | } |
1497 | ||
1498 | /** | |
1499 | * ntfs_commit_pages_after_non_resident_write - commit the received data | |
1500 | * @pages: array of destination pages | |
1501 | * @nr_pages: number of pages in @pages | |
1502 | * @pos: byte position in file at which the write begins | |
1503 | * @bytes: number of bytes to be written | |
1504 | * | |
1505 | * See description of ntfs_commit_pages_after_write(), below. | |
1506 | */ | |
1507 | static inline int ntfs_commit_pages_after_non_resident_write( | |
1508 | struct page **pages, const unsigned nr_pages, | |
1509 | s64 pos, size_t bytes) | |
1510 | { | |
1511 | s64 end, initialized_size; | |
1512 | struct inode *vi; | |
1513 | ntfs_inode *ni, *base_ni; | |
1514 | struct buffer_head *bh, *head; | |
1515 | ntfs_attr_search_ctx *ctx; | |
1516 | MFT_RECORD *m; | |
1517 | ATTR_RECORD *a; | |
1518 | unsigned long flags; | |
1519 | unsigned blocksize, u; | |
1520 | int err; | |
1521 | ||
1522 | vi = pages[0]->mapping->host; | |
1523 | ni = NTFS_I(vi); | |
78af34f0 | 1524 | blocksize = vi->i_sb->s_blocksize; |
98b27036 AA |
1525 | end = pos + bytes; |
1526 | u = 0; | |
1527 | do { | |
1528 | s64 bh_pos; | |
1529 | struct page *page; | |
c49c3111 | 1530 | bool partial; |
98b27036 AA |
1531 | |
1532 | page = pages[u]; | |
1533 | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; | |
1534 | bh = head = page_buffers(page); | |
c49c3111 | 1535 | partial = false; |
98b27036 AA |
1536 | do { |
1537 | s64 bh_end; | |
1538 | ||
1539 | bh_end = bh_pos + blocksize; | |
1540 | if (bh_end <= pos || bh_pos >= end) { | |
1541 | if (!buffer_uptodate(bh)) | |
c49c3111 | 1542 | partial = true; |
98b27036 AA |
1543 | } else { |
1544 | set_buffer_uptodate(bh); | |
1545 | mark_buffer_dirty(bh); | |
1546 | } | |
1547 | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); | |
1548 | /* | |
1549 | * If all buffers are now uptodate but the page is not, set the | |
1550 | * page uptodate. | |
1551 | */ | |
1552 | if (!partial && !PageUptodate(page)) | |
1553 | SetPageUptodate(page); | |
1554 | } while (++u < nr_pages); | |
1555 | /* | |
1556 | * Finally, if we do not need to update initialized_size or i_size we | |
1557 | * are finished. | |
1558 | */ | |
1559 | read_lock_irqsave(&ni->size_lock, flags); | |
1560 | initialized_size = ni->initialized_size; | |
1561 | read_unlock_irqrestore(&ni->size_lock, flags); | |
1562 | if (end <= initialized_size) { | |
1563 | ntfs_debug("Done."); | |
1564 | return 0; | |
1565 | } | |
1566 | /* | |
1567 | * Update initialized_size/i_size as appropriate, both in the inode and | |
1568 | * the mft record. | |
1569 | */ | |
1570 | if (!NInoAttr(ni)) | |
1571 | base_ni = ni; | |
1572 | else | |
1573 | base_ni = ni->ext.base_ntfs_ino; | |
1574 | /* Map, pin, and lock the mft record. */ | |
1575 | m = map_mft_record(base_ni); | |
1576 | if (IS_ERR(m)) { | |
1577 | err = PTR_ERR(m); | |
1578 | m = NULL; | |
1579 | ctx = NULL; | |
1580 | goto err_out; | |
1581 | } | |
1582 | BUG_ON(!NInoNonResident(ni)); | |
1583 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | |
1584 | if (unlikely(!ctx)) { | |
1585 | err = -ENOMEM; | |
1586 | goto err_out; | |
1587 | } | |
1588 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | |
1589 | CASE_SENSITIVE, 0, NULL, 0, ctx); | |
1590 | if (unlikely(err)) { | |
1591 | if (err == -ENOENT) | |
1592 | err = -EIO; | |
1593 | goto err_out; | |
1594 | } | |
1595 | a = ctx->attr; | |
1596 | BUG_ON(!a->non_resident); | |
1597 | write_lock_irqsave(&ni->size_lock, flags); | |
1598 | BUG_ON(end > ni->allocated_size); | |
1599 | ni->initialized_size = end; | |
1600 | a->data.non_resident.initialized_size = cpu_to_sle64(end); | |
1601 | if (end > i_size_read(vi)) { | |
1602 | i_size_write(vi, end); | |
1603 | a->data.non_resident.data_size = | |
1604 | a->data.non_resident.initialized_size; | |
1605 | } | |
1606 | write_unlock_irqrestore(&ni->size_lock, flags); | |
1607 | /* Mark the mft record dirty, so it gets written back. */ | |
1608 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1609 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1610 | ntfs_attr_put_search_ctx(ctx); | |
1611 | unmap_mft_record(base_ni); | |
1612 | ntfs_debug("Done."); | |
1613 | return 0; | |
1614 | err_out: | |
1615 | if (ctx) | |
1616 | ntfs_attr_put_search_ctx(ctx); | |
1617 | if (m) | |
1618 | unmap_mft_record(base_ni); | |
1619 | ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " | |
1620 | "code %i).", err); | |
f95c4018 | 1621 | if (err != -ENOMEM) |
98b27036 | 1622 | NVolSetErrors(ni->vol); |
98b27036 AA |
1623 | return err; |
1624 | } | |
1625 | ||
1626 | /** | |
1627 | * ntfs_commit_pages_after_write - commit the received data | |
1628 | * @pages: array of destination pages | |
1629 | * @nr_pages: number of pages in @pages | |
1630 | * @pos: byte position in file at which the write begins | |
1631 | * @bytes: number of bytes to be written | |
1632 | * | |
1b1dcc1b | 1633 | * This is called from ntfs_file_buffered_write() with i_mutex held on the inode |
98b27036 AA |
1634 | * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are |
1635 | * locked but not kmap()ped. The source data has already been copied into the | |
1636 | * @page. ntfs_prepare_pages_for_non_resident_write() has been called before | |
1637 | * the data was copied (for non-resident attributes only) and it returned | |
1638 | * success. | |
1639 | * | |
1640 | * Need to set uptodate and mark dirty all buffers within the boundary of the | |
1641 | * write. If all buffers in a page are uptodate we set the page uptodate, too. | |
1642 | * | |
1643 | * Setting the buffers dirty ensures that they get written out later when | |
1644 | * ntfs_writepage() is invoked by the VM. | |
1645 | * | |
1646 | * Finally, we need to update i_size and initialized_size as appropriate both | |
1647 | * in the inode and the mft record. | |
1648 | * | |
1649 | * This is modelled after fs/buffer.c::generic_commit_write(), which marks | |
1650 | * buffers uptodate and dirty, sets the page uptodate if all buffers in the | |
1651 | * page are uptodate, and updates i_size if the end of io is beyond i_size. In | |
1652 | * that case, it also marks the inode dirty. | |
1653 | * | |
1654 | * If things have gone as outlined in | |
1655 | * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page | |
1656 | * content modifications here for non-resident attributes. For resident | |
1657 | * attributes we need to do the uptodate bringing here which we combine with | |
1658 | * the copying into the mft record which means we save one atomic kmap. | |
1659 | * | |
1660 | * Return 0 on success or -errno on error. | |
1661 | */ | |
1662 | static int ntfs_commit_pages_after_write(struct page **pages, | |
1663 | const unsigned nr_pages, s64 pos, size_t bytes) | |
1664 | { | |
1665 | s64 end, initialized_size; | |
1666 | loff_t i_size; | |
1667 | struct inode *vi; | |
1668 | ntfs_inode *ni, *base_ni; | |
1669 | struct page *page; | |
1670 | ntfs_attr_search_ctx *ctx; | |
1671 | MFT_RECORD *m; | |
1672 | ATTR_RECORD *a; | |
1673 | char *kattr, *kaddr; | |
1674 | unsigned long flags; | |
1675 | u32 attr_len; | |
1676 | int err; | |
1677 | ||
1678 | BUG_ON(!nr_pages); | |
1679 | BUG_ON(!pages); | |
1680 | page = pages[0]; | |
1681 | BUG_ON(!page); | |
1682 | vi = page->mapping->host; | |
1683 | ni = NTFS_I(vi); | |
1684 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " | |
d04bd1fb | 1685 | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", |
98b27036 AA |
1686 | vi->i_ino, ni->type, page->index, nr_pages, |
1687 | (long long)pos, bytes); | |
1688 | if (NInoNonResident(ni)) | |
1689 | return ntfs_commit_pages_after_non_resident_write(pages, | |
1690 | nr_pages, pos, bytes); | |
1691 | BUG_ON(nr_pages > 1); | |
1692 | /* | |
1693 | * Attribute is resident, implying it is not compressed, encrypted, or | |
1694 | * sparse. | |
1695 | */ | |
1696 | if (!NInoAttr(ni)) | |
1697 | base_ni = ni; | |
1698 | else | |
1699 | base_ni = ni->ext.base_ntfs_ino; | |
1700 | BUG_ON(NInoNonResident(ni)); | |
1701 | /* Map, pin, and lock the mft record. */ | |
1702 | m = map_mft_record(base_ni); | |
1703 | if (IS_ERR(m)) { | |
1704 | err = PTR_ERR(m); | |
1705 | m = NULL; | |
1706 | ctx = NULL; | |
1707 | goto err_out; | |
1708 | } | |
1709 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | |
1710 | if (unlikely(!ctx)) { | |
1711 | err = -ENOMEM; | |
1712 | goto err_out; | |
1713 | } | |
1714 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | |
1715 | CASE_SENSITIVE, 0, NULL, 0, ctx); | |
1716 | if (unlikely(err)) { | |
1717 | if (err == -ENOENT) | |
1718 | err = -EIO; | |
1719 | goto err_out; | |
1720 | } | |
1721 | a = ctx->attr; | |
1722 | BUG_ON(a->non_resident); | |
1723 | /* The total length of the attribute value. */ | |
1724 | attr_len = le32_to_cpu(a->data.resident.value_length); | |
1725 | i_size = i_size_read(vi); | |
1726 | BUG_ON(attr_len != i_size); | |
1727 | BUG_ON(pos > attr_len); | |
1728 | end = pos + bytes; | |
1729 | BUG_ON(end > le32_to_cpu(a->length) - | |
1730 | le16_to_cpu(a->data.resident.value_offset)); | |
1731 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | |
1732 | kaddr = kmap_atomic(page, KM_USER0); | |
1733 | /* Copy the received data from the page to the mft record. */ | |
1734 | memcpy(kattr + pos, kaddr + pos, bytes); | |
1735 | /* Update the attribute length if necessary. */ | |
1736 | if (end > attr_len) { | |
1737 | attr_len = end; | |
1738 | a->data.resident.value_length = cpu_to_le32(attr_len); | |
1739 | } | |
1740 | /* | |
1741 | * If the page is not uptodate, bring the out of bounds area(s) | |
1742 | * uptodate by copying data from the mft record to the page. | |
1743 | */ | |
1744 | if (!PageUptodate(page)) { | |
1745 | if (pos > 0) | |
1746 | memcpy(kaddr, kattr, pos); | |
1747 | if (end < attr_len) | |
1748 | memcpy(kaddr + end, kattr + end, attr_len - end); | |
1749 | /* Zero the region outside the end of the attribute value. */ | |
1750 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); | |
1751 | flush_dcache_page(page); | |
1752 | SetPageUptodate(page); | |
1753 | } | |
1754 | kunmap_atomic(kaddr, KM_USER0); | |
1755 | /* Update initialized_size/i_size if necessary. */ | |
1756 | read_lock_irqsave(&ni->size_lock, flags); | |
1757 | initialized_size = ni->initialized_size; | |
1758 | BUG_ON(end > ni->allocated_size); | |
1759 | read_unlock_irqrestore(&ni->size_lock, flags); | |
1760 | BUG_ON(initialized_size != i_size); | |
1761 | if (end > initialized_size) { | |
1762 | unsigned long flags; | |
1763 | ||
1764 | write_lock_irqsave(&ni->size_lock, flags); | |
1765 | ni->initialized_size = end; | |
1766 | i_size_write(vi, end); | |
1767 | write_unlock_irqrestore(&ni->size_lock, flags); | |
1768 | } | |
1769 | /* Mark the mft record dirty, so it gets written back. */ | |
1770 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1771 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1772 | ntfs_attr_put_search_ctx(ctx); | |
1773 | unmap_mft_record(base_ni); | |
1774 | ntfs_debug("Done."); | |
1775 | return 0; | |
1776 | err_out: | |
1777 | if (err == -ENOMEM) { | |
1778 | ntfs_warning(vi->i_sb, "Error allocating memory required to " | |
1779 | "commit the write."); | |
1780 | if (PageUptodate(page)) { | |
1781 | ntfs_warning(vi->i_sb, "Page is uptodate, setting " | |
1782 | "dirty so the write will be retried " | |
1783 | "later on by the VM."); | |
1784 | /* | |
1785 | * Put the page on mapping->dirty_pages, but leave its | |
1786 | * buffers' dirty state as-is. | |
1787 | */ | |
1788 | __set_page_dirty_nobuffers(page); | |
1789 | err = 0; | |
1790 | } else | |
1791 | ntfs_error(vi->i_sb, "Page is not uptodate. Written " | |
1792 | "data has been lost."); | |
1793 | } else { | |
1794 | ntfs_error(vi->i_sb, "Resident attribute commit write failed " | |
1795 | "with error %i.", err); | |
1796 | NVolSetErrors(ni->vol); | |
98b27036 AA |
1797 | } |
1798 | if (ctx) | |
1799 | ntfs_attr_put_search_ctx(ctx); | |
1800 | if (m) | |
1801 | unmap_mft_record(base_ni); | |
1802 | return err; | |
1803 | } | |
1804 | ||
1805 | /** | |
1806 | * ntfs_file_buffered_write - | |
1807 | * | |
1b1dcc1b | 1808 | * Locking: The vfs is holding ->i_mutex on the inode. |
98b27036 AA |
1809 | */ |
1810 | static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, | |
1811 | const struct iovec *iov, unsigned long nr_segs, | |
1812 | loff_t pos, loff_t *ppos, size_t count) | |
1813 | { | |
1814 | struct file *file = iocb->ki_filp; | |
1815 | struct address_space *mapping = file->f_mapping; | |
1816 | struct inode *vi = mapping->host; | |
1817 | ntfs_inode *ni = NTFS_I(vi); | |
1818 | ntfs_volume *vol = ni->vol; | |
1819 | struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; | |
1820 | struct page *cached_page = NULL; | |
1821 | char __user *buf = NULL; | |
1822 | s64 end, ll; | |
1823 | VCN last_vcn; | |
1824 | LCN lcn; | |
1825 | unsigned long flags; | |
dda65b94 | 1826 | size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */ |
98b27036 AA |
1827 | ssize_t status, written; |
1828 | unsigned nr_pages; | |
1829 | int err; | |
1830 | struct pagevec lru_pvec; | |
1831 | ||
1832 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | |
1833 | "pos 0x%llx, count 0x%lx.", | |
1834 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | |
1835 | (unsigned long long)pos, (unsigned long)count); | |
1836 | if (unlikely(!count)) | |
1837 | return 0; | |
1838 | BUG_ON(NInoMstProtected(ni)); | |
1839 | /* | |
1840 | * If the attribute is not an index root and it is encrypted or | |
1841 | * compressed, we cannot write to it yet. Note we need to check for | |
1842 | * AT_INDEX_ALLOCATION since this is the type of both directory and | |
1843 | * index inodes. | |
1844 | */ | |
1845 | if (ni->type != AT_INDEX_ALLOCATION) { | |
1846 | /* If file is encrypted, deny access, just like NT4. */ | |
1847 | if (NInoEncrypted(ni)) { | |
7d0ffdb2 AA |
1848 | /* |
1849 | * Reminder for later: Encrypted files are _always_ | |
1850 | * non-resident so that the content can always be | |
1851 | * encrypted. | |
1852 | */ | |
98b27036 AA |
1853 | ntfs_debug("Denying write access to encrypted file."); |
1854 | return -EACCES; | |
1855 | } | |
1856 | if (NInoCompressed(ni)) { | |
7d0ffdb2 AA |
1857 | /* Only unnamed $DATA attribute can be compressed. */ |
1858 | BUG_ON(ni->type != AT_DATA); | |
1859 | BUG_ON(ni->name_len); | |
1860 | /* | |
1861 | * Reminder for later: If resident, the data is not | |
1862 | * actually compressed. Only on the switch to non- | |
1863 | * resident does compression kick in. This is in | |
1864 | * contrast to encrypted files (see above). | |
1865 | */ | |
98b27036 AA |
1866 | ntfs_error(vi->i_sb, "Writing to compressed files is " |
1867 | "not implemented yet. Sorry."); | |
1868 | return -EOPNOTSUPP; | |
1869 | } | |
1870 | } | |
1871 | /* | |
1872 | * If a previous ntfs_truncate() failed, repeat it and abort if it | |
1873 | * fails again. | |
1874 | */ | |
1875 | if (unlikely(NInoTruncateFailed(ni))) { | |
1876 | down_write(&vi->i_alloc_sem); | |
1877 | err = ntfs_truncate(vi); | |
1878 | up_write(&vi->i_alloc_sem); | |
1879 | if (err || NInoTruncateFailed(ni)) { | |
1880 | if (!err) | |
1881 | err = -EIO; | |
1882 | ntfs_error(vol->sb, "Cannot perform write to inode " | |
1883 | "0x%lx, attribute type 0x%x, because " | |
1884 | "ntfs_truncate() failed (error code " | |
1885 | "%i).", vi->i_ino, | |
1886 | (unsigned)le32_to_cpu(ni->type), err); | |
1887 | return err; | |
1888 | } | |
1889 | } | |
1890 | /* The first byte after the write. */ | |
1891 | end = pos + count; | |
1892 | /* | |
1893 | * If the write goes beyond the allocated size, extend the allocation | |
1894 | * to cover the whole of the write, rounded up to the nearest cluster. | |
1895 | */ | |
1896 | read_lock_irqsave(&ni->size_lock, flags); | |
1897 | ll = ni->allocated_size; | |
1898 | read_unlock_irqrestore(&ni->size_lock, flags); | |
1899 | if (end > ll) { | |
1900 | /* Extend the allocation without changing the data size. */ | |
1901 | ll = ntfs_attr_extend_allocation(ni, end, -1, pos); | |
1902 | if (likely(ll >= 0)) { | |
1903 | BUG_ON(pos >= ll); | |
1904 | /* If the extension was partial truncate the write. */ | |
1905 | if (end > ll) { | |
1906 | ntfs_debug("Truncating write to inode 0x%lx, " | |
1907 | "attribute type 0x%x, because " | |
1908 | "the allocation was only " | |
1909 | "partially extended.", | |
1910 | vi->i_ino, (unsigned) | |
1911 | le32_to_cpu(ni->type)); | |
1912 | end = ll; | |
1913 | count = ll - pos; | |
1914 | } | |
1915 | } else { | |
1916 | err = ll; | |
1917 | read_lock_irqsave(&ni->size_lock, flags); | |
1918 | ll = ni->allocated_size; | |
1919 | read_unlock_irqrestore(&ni->size_lock, flags); | |
1920 | /* Perform a partial write if possible or fail. */ | |
1921 | if (pos < ll) { | |
1922 | ntfs_debug("Truncating write to inode 0x%lx, " | |
1923 | "attribute type 0x%x, because " | |
1924 | "extending the allocation " | |
1925 | "failed (error code %i).", | |
1926 | vi->i_ino, (unsigned) | |
1927 | le32_to_cpu(ni->type), err); | |
1928 | end = ll; | |
1929 | count = ll - pos; | |
1930 | } else { | |
1931 | ntfs_error(vol->sb, "Cannot perform write to " | |
1932 | "inode 0x%lx, attribute type " | |
1933 | "0x%x, because extending the " | |
1934 | "allocation failed (error " | |
1935 | "code %i).", vi->i_ino, | |
1936 | (unsigned) | |
1937 | le32_to_cpu(ni->type), err); | |
1938 | return err; | |
1939 | } | |
1940 | } | |
1941 | } | |
1942 | pagevec_init(&lru_pvec, 0); | |
1943 | written = 0; | |
1944 | /* | |
1945 | * If the write starts beyond the initialized size, extend it up to the | |
1946 | * beginning of the write and initialize all non-sparse space between | |
1947 | * the old initialized size and the new one. This automatically also | |
1948 | * increments the vfs inode->i_size to keep it above or equal to the | |
1949 | * initialized_size. | |
1950 | */ | |
1951 | read_lock_irqsave(&ni->size_lock, flags); | |
1952 | ll = ni->initialized_size; | |
1953 | read_unlock_irqrestore(&ni->size_lock, flags); | |
1954 | if (pos > ll) { | |
1955 | err = ntfs_attr_extend_initialized(ni, pos, &cached_page, | |
1956 | &lru_pvec); | |
1957 | if (err < 0) { | |
1958 | ntfs_error(vol->sb, "Cannot perform write to inode " | |
1959 | "0x%lx, attribute type 0x%x, because " | |
1960 | "extending the initialized size " | |
1961 | "failed (error code %i).", vi->i_ino, | |
1962 | (unsigned)le32_to_cpu(ni->type), err); | |
1963 | status = err; | |
1964 | goto err_out; | |
1965 | } | |
1966 | } | |
1967 | /* | |
1968 | * Determine the number of pages per cluster for non-resident | |
1969 | * attributes. | |
1970 | */ | |
1971 | nr_pages = 1; | |
1972 | if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) | |
1973 | nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; | |
1974 | /* Finally, perform the actual write. */ | |
1975 | last_vcn = -1; | |
1976 | if (likely(nr_segs == 1)) | |
1977 | buf = iov->iov_base; | |
98b27036 AA |
1978 | do { |
1979 | VCN vcn; | |
1980 | pgoff_t idx, start_idx; | |
1981 | unsigned ofs, do_pages, u; | |
1982 | size_t copied; | |
1983 | ||
1984 | start_idx = idx = pos >> PAGE_CACHE_SHIFT; | |
1985 | ofs = pos & ~PAGE_CACHE_MASK; | |
1986 | bytes = PAGE_CACHE_SIZE - ofs; | |
1987 | do_pages = 1; | |
1988 | if (nr_pages > 1) { | |
1989 | vcn = pos >> vol->cluster_size_bits; | |
1990 | if (vcn != last_vcn) { | |
1991 | last_vcn = vcn; | |
1992 | /* | |
1993 | * Get the lcn of the vcn the write is in. If | |
1994 | * it is a hole, need to lock down all pages in | |
1995 | * the cluster. | |
1996 | */ | |
1997 | down_read(&ni->runlist.lock); | |
1998 | lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> | |
c49c3111 | 1999 | vol->cluster_size_bits, false); |
98b27036 AA |
2000 | up_read(&ni->runlist.lock); |
2001 | if (unlikely(lcn < LCN_HOLE)) { | |
2002 | status = -EIO; | |
2003 | if (lcn == LCN_ENOMEM) | |
2004 | status = -ENOMEM; | |
2005 | else | |
2006 | ntfs_error(vol->sb, "Cannot " | |
2007 | "perform write to " | |
2008 | "inode 0x%lx, " | |
2009 | "attribute type 0x%x, " | |
2010 | "because the attribute " | |
2011 | "is corrupt.", | |
2012 | vi->i_ino, (unsigned) | |
2013 | le32_to_cpu(ni->type)); | |
2014 | break; | |
2015 | } | |
2016 | if (lcn == LCN_HOLE) { | |
2017 | start_idx = (pos & ~(s64) | |
2018 | vol->cluster_size_mask) | |
2019 | >> PAGE_CACHE_SHIFT; | |
2020 | bytes = vol->cluster_size - (pos & | |
2021 | vol->cluster_size_mask); | |
2022 | do_pages = nr_pages; | |
2023 | } | |
2024 | } | |
2025 | } | |
2026 | if (bytes > count) | |
2027 | bytes = count; | |
2028 | /* | |
2029 | * Bring in the user page(s) that we will copy from _first_. | |
2030 | * Otherwise there is a nasty deadlock on copying from the same | |
2031 | * page(s) as we are writing to, without it/them being marked | |
2032 | * up-to-date. Note, at present there is nothing to stop the | |
2033 | * pages being swapped out between us bringing them into memory | |
2034 | * and doing the actual copying. | |
2035 | */ | |
2036 | if (likely(nr_segs == 1)) | |
2037 | ntfs_fault_in_pages_readable(buf, bytes); | |
2038 | else | |
2039 | ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); | |
2040 | /* Get and lock @do_pages starting at index @start_idx. */ | |
2041 | status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, | |
2042 | pages, &cached_page, &lru_pvec); | |
2043 | if (unlikely(status)) | |
2044 | break; | |
2045 | /* | |
2046 | * For non-resident attributes, we need to fill any holes with | |
2047 | * actual clusters and ensure all bufferes are mapped. We also | |
2048 | * need to bring uptodate any buffers that are only partially | |
2049 | * being written to. | |
2050 | */ | |
2051 | if (NInoNonResident(ni)) { | |
2052 | status = ntfs_prepare_pages_for_non_resident_write( | |
2053 | pages, do_pages, pos, bytes); | |
2054 | if (unlikely(status)) { | |
2055 | loff_t i_size; | |
2056 | ||
2057 | do { | |
2058 | unlock_page(pages[--do_pages]); | |
2059 | page_cache_release(pages[do_pages]); | |
2060 | } while (do_pages); | |
2061 | /* | |
2062 | * The write preparation may have instantiated | |
2063 | * allocated space outside i_size. Trim this | |
2064 | * off again. We can ignore any errors in this | |
2065 | * case as we will just be waisting a bit of | |
2066 | * allocated space, which is not a disaster. | |
2067 | */ | |
2068 | i_size = i_size_read(vi); | |
2069 | if (pos + bytes > i_size) | |
2070 | vmtruncate(vi, i_size); | |
2071 | break; | |
2072 | } | |
2073 | } | |
2074 | u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; | |
2075 | if (likely(nr_segs == 1)) { | |
2076 | copied = ntfs_copy_from_user(pages + u, do_pages - u, | |
2077 | ofs, buf, bytes); | |
2078 | buf += copied; | |
2079 | } else | |
2080 | copied = ntfs_copy_from_user_iovec(pages + u, | |
2081 | do_pages - u, ofs, &iov, &iov_ofs, | |
2082 | bytes); | |
2083 | ntfs_flush_dcache_pages(pages + u, do_pages - u); | |
2084 | status = ntfs_commit_pages_after_write(pages, do_pages, pos, | |
2085 | bytes); | |
2086 | if (likely(!status)) { | |
2087 | written += copied; | |
2088 | count -= copied; | |
2089 | pos += copied; | |
2090 | if (unlikely(copied != bytes)) | |
2091 | status = -EFAULT; | |
2092 | } | |
2093 | do { | |
2094 | unlock_page(pages[--do_pages]); | |
2095 | mark_page_accessed(pages[do_pages]); | |
2096 | page_cache_release(pages[do_pages]); | |
2097 | } while (do_pages); | |
2098 | if (unlikely(status)) | |
2099 | break; | |
2100 | balance_dirty_pages_ratelimited(mapping); | |
2101 | cond_resched(); | |
2102 | } while (count); | |
2103 | err_out: | |
2104 | *ppos = pos; | |
2105 | if (cached_page) | |
2106 | page_cache_release(cached_page); | |
2107 | /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */ | |
2108 | if (likely(!status)) { | |
2109 | if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) { | |
2110 | if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb)) | |
2111 | status = generic_osync_inode(vi, mapping, | |
2112 | OSYNC_METADATA|OSYNC_DATA); | |
2113 | } | |
2114 | } | |
2115 | pagevec_lru_add(&lru_pvec); | |
2116 | ntfs_debug("Done. Returning %s (written 0x%lx, status %li).", | |
2117 | written ? "written" : "status", (unsigned long)written, | |
2118 | (long)status); | |
2119 | return written ? written : status; | |
2120 | } | |
2121 | ||
2122 | /** | |
2123 | * ntfs_file_aio_write_nolock - | |
2124 | */ | |
2125 | static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, | |
2126 | const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) | |
2127 | { | |
2128 | struct file *file = iocb->ki_filp; | |
2129 | struct address_space *mapping = file->f_mapping; | |
2130 | struct inode *inode = mapping->host; | |
2131 | loff_t pos; | |
2132 | unsigned long seg; | |
2133 | size_t count; /* after file limit checks */ | |
2134 | ssize_t written, err; | |
2135 | ||
2136 | count = 0; | |
2137 | for (seg = 0; seg < nr_segs; seg++) { | |
2138 | const struct iovec *iv = &iov[seg]; | |
2139 | /* | |
2140 | * If any segment has a negative length, or the cumulative | |
2141 | * length ever wraps negative then return -EINVAL. | |
2142 | */ | |
2143 | count += iv->iov_len; | |
2144 | if (unlikely((ssize_t)(count|iv->iov_len) < 0)) | |
2145 | return -EINVAL; | |
2146 | if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) | |
2147 | continue; | |
2148 | if (!seg) | |
2149 | return -EFAULT; | |
2150 | nr_segs = seg; | |
2151 | count -= iv->iov_len; /* This segment is no good */ | |
2152 | break; | |
2153 | } | |
2154 | pos = *ppos; | |
2155 | vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | |
2156 | /* We can write back this queue in page reclaim. */ | |
2157 | current->backing_dev_info = mapping->backing_dev_info; | |
2158 | written = 0; | |
2159 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | |
2160 | if (err) | |
2161 | goto out; | |
2162 | if (!count) | |
2163 | goto out; | |
20d29372 | 2164 | err = remove_suid(file->f_path.dentry); |
98b27036 AA |
2165 | if (err) |
2166 | goto out; | |
870f4817 | 2167 | file_update_time(file); |
98b27036 AA |
2168 | written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, |
2169 | count); | |
2170 | out: | |
2171 | current->backing_dev_info = NULL; | |
2172 | return written ? written : err; | |
2173 | } | |
2174 | ||
2175 | /** | |
2176 | * ntfs_file_aio_write - | |
2177 | */ | |
027445c3 BP |
2178 | static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov, |
2179 | unsigned long nr_segs, loff_t pos) | |
98b27036 AA |
2180 | { |
2181 | struct file *file = iocb->ki_filp; | |
2182 | struct address_space *mapping = file->f_mapping; | |
2183 | struct inode *inode = mapping->host; | |
2184 | ssize_t ret; | |
98b27036 AA |
2185 | |
2186 | BUG_ON(iocb->ki_pos != pos); | |
2187 | ||
1b1dcc1b | 2188 | mutex_lock(&inode->i_mutex); |
027445c3 | 2189 | ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos); |
1b1dcc1b | 2190 | mutex_unlock(&inode->i_mutex); |
98b27036 AA |
2191 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { |
2192 | int err = sync_page_range(inode, mapping, pos, ret); | |
2193 | if (err < 0) | |
2194 | ret = err; | |
2195 | } | |
2196 | return ret; | |
2197 | } | |
2198 | ||
2199 | /** | |
2200 | * ntfs_file_writev - | |
2201 | * | |
2202 | * Basically the same as generic_file_writev() except that it ends up calling | |
2203 | * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock(). | |
2204 | */ | |
2205 | static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov, | |
2206 | unsigned long nr_segs, loff_t *ppos) | |
2207 | { | |
2208 | struct address_space *mapping = file->f_mapping; | |
2209 | struct inode *inode = mapping->host; | |
2210 | struct kiocb kiocb; | |
2211 | ssize_t ret; | |
2212 | ||
1b1dcc1b | 2213 | mutex_lock(&inode->i_mutex); |
98b27036 AA |
2214 | init_sync_kiocb(&kiocb, file); |
2215 | ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); | |
2216 | if (ret == -EIOCBQUEUED) | |
2217 | ret = wait_on_sync_kiocb(&kiocb); | |
1b1dcc1b | 2218 | mutex_unlock(&inode->i_mutex); |
98b27036 AA |
2219 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { |
2220 | int err = sync_page_range(inode, mapping, *ppos - ret, ret); | |
2221 | if (err < 0) | |
2222 | ret = err; | |
2223 | } | |
2224 | return ret; | |
2225 | } | |
2226 | ||
2227 | /** | |
2228 | * ntfs_file_write - simple wrapper for ntfs_file_writev() | |
2229 | */ | |
2230 | static ssize_t ntfs_file_write(struct file *file, const char __user *buf, | |
2231 | size_t count, loff_t *ppos) | |
2232 | { | |
2233 | struct iovec local_iov = { .iov_base = (void __user *)buf, | |
2234 | .iov_len = count }; | |
2235 | ||
2236 | return ntfs_file_writev(file, &local_iov, 1, ppos); | |
2237 | } | |
2238 | ||
1da177e4 LT |
2239 | /** |
2240 | * ntfs_file_fsync - sync a file to disk | |
2241 | * @filp: file to be synced | |
2242 | * @dentry: dentry describing the file to sync | |
2243 | * @datasync: if non-zero only flush user data and not metadata | |
2244 | * | |
2245 | * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync | |
2246 | * system calls. This function is inspired by fs/buffer.c::file_fsync(). | |
2247 | * | |
2248 | * If @datasync is false, write the mft record and all associated extent mft | |
2249 | * records as well as the $DATA attribute and then sync the block device. | |
2250 | * | |
2251 | * If @datasync is true and the attribute is non-resident, we skip the writing | |
2252 | * of the mft record and all associated extent mft records (this might still | |
2253 | * happen due to the write_inode_now() call). | |
2254 | * | |
2255 | * Also, if @datasync is true, we do not wait on the inode to be written out | |
2256 | * but we always wait on the page cache pages to be written out. | |
2257 | * | |
2258 | * Note: In the past @filp could be NULL so we ignore it as we don't need it | |
2259 | * anyway. | |
2260 | * | |
1b1dcc1b | 2261 | * Locking: Caller must hold i_mutex on the inode. |
1da177e4 LT |
2262 | * |
2263 | * TODO: We should probably also write all attribute/index inodes associated | |
2264 | * with this inode but since we have no simple way of getting to them we ignore | |
2265 | * this problem for now. | |
2266 | */ | |
2267 | static int ntfs_file_fsync(struct file *filp, struct dentry *dentry, | |
2268 | int datasync) | |
2269 | { | |
2270 | struct inode *vi = dentry->d_inode; | |
2271 | int err, ret = 0; | |
2272 | ||
2273 | ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); | |
2274 | BUG_ON(S_ISDIR(vi->i_mode)); | |
2275 | if (!datasync || !NInoNonResident(NTFS_I(vi))) | |
2276 | ret = ntfs_write_inode(vi, 1); | |
2277 | write_inode_now(vi, !datasync); | |
f25dfb5e AA |
2278 | /* |
2279 | * NOTE: If we were to use mapping->private_list (see ext2 and | |
2280 | * fs/buffer.c) for dirty blocks then we could optimize the below to be | |
2281 | * sync_mapping_buffers(vi->i_mapping). | |
2282 | */ | |
1da177e4 LT |
2283 | err = sync_blockdev(vi->i_sb->s_bdev); |
2284 | if (unlikely(err && !ret)) | |
2285 | ret = err; | |
2286 | if (likely(!ret)) | |
2287 | ntfs_debug("Done."); | |
2288 | else | |
2289 | ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error " | |
2290 | "%u.", datasync ? "data" : "", vi->i_ino, -ret); | |
2291 | return ret; | |
2292 | } | |
2293 | ||
2294 | #endif /* NTFS_RW */ | |
2295 | ||
4b6f5d20 | 2296 | const struct file_operations ntfs_file_ops = { |
98b27036 | 2297 | .llseek = generic_file_llseek, /* Seek inside file. */ |
543ade1f | 2298 | .read = do_sync_read, /* Read from file. */ |
98b27036 | 2299 | .aio_read = generic_file_aio_read, /* Async read from file. */ |
1da177e4 | 2300 | #ifdef NTFS_RW |
98b27036 AA |
2301 | .write = ntfs_file_write, /* Write to file. */ |
2302 | .aio_write = ntfs_file_aio_write, /* Async write to file. */ | |
98b27036 AA |
2303 | /*.release = ,*/ /* Last file is closed. See |
2304 | fs/ext2/file.c:: | |
2305 | ext2_release_file() for | |
2306 | how to use this to discard | |
2307 | preallocated space for | |
2308 | write opened files. */ | |
2309 | .fsync = ntfs_file_fsync, /* Sync a file to disk. */ | |
2310 | /*.aio_fsync = ,*/ /* Sync all outstanding async | |
2311 | i/o operations on a | |
2312 | kiocb. */ | |
1da177e4 | 2313 | #endif /* NTFS_RW */ |
98b27036 AA |
2314 | /*.ioctl = ,*/ /* Perform function on the |
2315 | mounted filesystem. */ | |
2316 | .mmap = generic_file_mmap, /* Mmap file. */ | |
2317 | .open = ntfs_file_open, /* Open file. */ | |
2318 | .sendfile = generic_file_sendfile, /* Zero-copy data send with | |
2319 | the data source being on | |
2320 | the ntfs partition. We do | |
2321 | not need to care about the | |
2322 | data destination. */ | |
2323 | /*.sendpage = ,*/ /* Zero-copy data send with | |
2324 | the data destination being | |
2325 | on the ntfs partition. We | |
2326 | do not need to care about | |
2327 | the data source. */ | |
1da177e4 LT |
2328 | }; |
2329 | ||
92e1d5be | 2330 | const struct inode_operations ntfs_file_inode_ops = { |
1da177e4 LT |
2331 | #ifdef NTFS_RW |
2332 | .truncate = ntfs_truncate_vfs, | |
2333 | .setattr = ntfs_setattr, | |
2334 | #endif /* NTFS_RW */ | |
2335 | }; | |
2336 | ||
4b6f5d20 | 2337 | const struct file_operations ntfs_empty_file_ops = {}; |
1da177e4 | 2338 | |
92e1d5be | 2339 | const struct inode_operations ntfs_empty_inode_ops = {}; |