]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/ipc/sem.c | |
3 | * Copyright (C) 1992 Krishna Balasubramanian | |
4 | * Copyright (C) 1995 Eric Schenk, Bruno Haible | |
5 | * | |
1da177e4 LT |
6 | * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <[email protected]> |
7 | * | |
8 | * SMP-threaded, sysctl's added | |
624dffcb | 9 | * (c) 1999 Manfred Spraul <[email protected]> |
1da177e4 | 10 | * Enforced range limit on SEM_UNDO |
046c6884 | 11 | * (c) 2001 Red Hat Inc |
1da177e4 LT |
12 | * Lockless wakeup |
13 | * (c) 2003 Manfred Spraul <[email protected]> | |
c5cf6359 MS |
14 | * Further wakeup optimizations, documentation |
15 | * (c) 2010 Manfred Spraul <[email protected]> | |
073115d6 SG |
16 | * |
17 | * support for audit of ipc object properties and permission changes | |
18 | * Dustin Kirkland <[email protected]> | |
e3893534 KK |
19 | * |
20 | * namespaces support | |
21 | * OpenVZ, SWsoft Inc. | |
22 | * Pavel Emelianov <[email protected]> | |
c5cf6359 MS |
23 | * |
24 | * Implementation notes: (May 2010) | |
25 | * This file implements System V semaphores. | |
26 | * | |
27 | * User space visible behavior: | |
28 | * - FIFO ordering for semop() operations (just FIFO, not starvation | |
29 | * protection) | |
30 | * - multiple semaphore operations that alter the same semaphore in | |
31 | * one semop() are handled. | |
32 | * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and | |
33 | * SETALL calls. | |
34 | * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. | |
35 | * - undo adjustments at process exit are limited to 0..SEMVMX. | |
36 | * - namespace are supported. | |
37 | * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing | |
38 | * to /proc/sys/kernel/sem. | |
39 | * - statistics about the usage are reported in /proc/sysvipc/sem. | |
40 | * | |
41 | * Internals: | |
42 | * - scalability: | |
43 | * - all global variables are read-mostly. | |
44 | * - semop() calls and semctl(RMID) are synchronized by RCU. | |
45 | * - most operations do write operations (actually: spin_lock calls) to | |
46 | * the per-semaphore array structure. | |
47 | * Thus: Perfect SMP scaling between independent semaphore arrays. | |
48 | * If multiple semaphores in one array are used, then cache line | |
49 | * trashing on the semaphore array spinlock will limit the scaling. | |
2f2ed41d | 50 | * - semncnt and semzcnt are calculated on demand in count_semcnt() |
c5cf6359 MS |
51 | * - the task that performs a successful semop() scans the list of all |
52 | * sleeping tasks and completes any pending operations that can be fulfilled. | |
53 | * Semaphores are actively given to waiting tasks (necessary for FIFO). | |
54 | * (see update_queue()) | |
55 | * - To improve the scalability, the actual wake-up calls are performed after | |
56 | * dropping all locks. (see wake_up_sem_queue_prepare(), | |
57 | * wake_up_sem_queue_do()) | |
58 | * - All work is done by the waker, the woken up task does not have to do | |
59 | * anything - not even acquiring a lock or dropping a refcount. | |
60 | * - A woken up task may not even touch the semaphore array anymore, it may | |
61 | * have been destroyed already by a semctl(RMID). | |
62 | * - The synchronizations between wake-ups due to a timeout/signal and a | |
63 | * wake-up due to a completed semaphore operation is achieved by using an | |
64 | * intermediate state (IN_WAKEUP). | |
65 | * - UNDO values are stored in an array (one per process and per | |
66 | * semaphore array, lazily allocated). For backwards compatibility, multiple | |
67 | * modes for the UNDO variables are supported (per process, per thread) | |
68 | * (see copy_semundo, CLONE_SYSVSEM) | |
69 | * - There are two lists of the pending operations: a per-array list | |
70 | * and per-semaphore list (stored in the array). This allows to achieve FIFO | |
71 | * ordering without always scanning all pending operations. | |
72 | * The worst-case behavior is nevertheless O(N^2) for N wakeups. | |
1da177e4 LT |
73 | */ |
74 | ||
1da177e4 LT |
75 | #include <linux/slab.h> |
76 | #include <linux/spinlock.h> | |
77 | #include <linux/init.h> | |
78 | #include <linux/proc_fs.h> | |
79 | #include <linux/time.h> | |
1da177e4 LT |
80 | #include <linux/security.h> |
81 | #include <linux/syscalls.h> | |
82 | #include <linux/audit.h> | |
c59ede7b | 83 | #include <linux/capability.h> |
19b4946c | 84 | #include <linux/seq_file.h> |
3e148c79 | 85 | #include <linux/rwsem.h> |
e3893534 | 86 | #include <linux/nsproxy.h> |
ae5e1b22 | 87 | #include <linux/ipc_namespace.h> |
5f921ae9 | 88 | |
7153e402 | 89 | #include <linux/uaccess.h> |
1da177e4 LT |
90 | #include "util.h" |
91 | ||
e57940d7 MS |
92 | /* One semaphore structure for each semaphore in the system. */ |
93 | struct sem { | |
94 | int semval; /* current value */ | |
a5f4db87 DB |
95 | /* |
96 | * PID of the process that last modified the semaphore. For | |
97 | * Linux, specifically these are: | |
98 | * - semop | |
99 | * - semctl, via SETVAL and SETALL. | |
100 | * - at task exit when performing undo adjustments (see exit_sem). | |
101 | */ | |
102 | int sempid; | |
6062a8dc | 103 | spinlock_t lock; /* spinlock for fine-grained semtimedop */ |
1a82e9e1 MS |
104 | struct list_head pending_alter; /* pending single-sop operations */ |
105 | /* that alter the semaphore */ | |
106 | struct list_head pending_const; /* pending single-sop operations */ | |
107 | /* that do not alter the semaphore*/ | |
d12e1e50 | 108 | time_t sem_otime; /* candidate for sem_otime */ |
f5c936c0 | 109 | } ____cacheline_aligned_in_smp; |
e57940d7 MS |
110 | |
111 | /* One queue for each sleeping process in the system. */ | |
112 | struct sem_queue { | |
e57940d7 MS |
113 | struct list_head list; /* queue of pending operations */ |
114 | struct task_struct *sleeper; /* this process */ | |
115 | struct sem_undo *undo; /* undo structure */ | |
116 | int pid; /* process id of requesting process */ | |
117 | int status; /* completion status of operation */ | |
118 | struct sembuf *sops; /* array of pending operations */ | |
ed247b7c | 119 | struct sembuf *blocking; /* the operation that blocked */ |
e57940d7 MS |
120 | int nsops; /* number of operations */ |
121 | int alter; /* does *sops alter the array? */ | |
122 | }; | |
123 | ||
124 | /* Each task has a list of undo requests. They are executed automatically | |
125 | * when the process exits. | |
126 | */ | |
127 | struct sem_undo { | |
128 | struct list_head list_proc; /* per-process list: * | |
129 | * all undos from one process | |
130 | * rcu protected */ | |
131 | struct rcu_head rcu; /* rcu struct for sem_undo */ | |
132 | struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ | |
133 | struct list_head list_id; /* per semaphore array list: | |
134 | * all undos for one array */ | |
135 | int semid; /* semaphore set identifier */ | |
136 | short *semadj; /* array of adjustments */ | |
137 | /* one per semaphore */ | |
138 | }; | |
139 | ||
140 | /* sem_undo_list controls shared access to the list of sem_undo structures | |
141 | * that may be shared among all a CLONE_SYSVSEM task group. | |
142 | */ | |
143 | struct sem_undo_list { | |
144 | atomic_t refcnt; | |
145 | spinlock_t lock; | |
146 | struct list_head list_proc; | |
147 | }; | |
148 | ||
149 | ||
ed2ddbf8 | 150 | #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) |
e3893534 | 151 | |
1b531f21 | 152 | #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) |
1da177e4 | 153 | |
7748dbfa | 154 | static int newary(struct ipc_namespace *, struct ipc_params *); |
01b8b07a | 155 | static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); |
1da177e4 | 156 | #ifdef CONFIG_PROC_FS |
19b4946c | 157 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it); |
1da177e4 LT |
158 | #endif |
159 | ||
160 | #define SEMMSL_FAST 256 /* 512 bytes on stack */ | |
161 | #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ | |
162 | ||
163 | /* | |
758a6ba3 | 164 | * Locking: |
5864a2fd | 165 | * a) global sem_lock() for read/write |
1da177e4 | 166 | * sem_undo.id_next, |
758a6ba3 | 167 | * sem_array.complex_count, |
5864a2fd MS |
168 | * sem_array.complex_mode |
169 | * sem_array.pending{_alter,_const}, | |
170 | * sem_array.sem_undo | |
46c0a8ca | 171 | * |
5864a2fd | 172 | * b) global or semaphore sem_lock() for read/write: |
758a6ba3 | 173 | * sem_array.sem_base[i].pending_{const,alter}: |
5864a2fd MS |
174 | * sem_array.complex_mode (for read) |
175 | * | |
176 | * c) special: | |
177 | * sem_undo_list.list_proc: | |
178 | * * undo_list->lock for write | |
179 | * * rcu for read | |
1da177e4 LT |
180 | */ |
181 | ||
e3893534 KK |
182 | #define sc_semmsl sem_ctls[0] |
183 | #define sc_semmns sem_ctls[1] | |
184 | #define sc_semopm sem_ctls[2] | |
185 | #define sc_semmni sem_ctls[3] | |
186 | ||
ed2ddbf8 | 187 | void sem_init_ns(struct ipc_namespace *ns) |
e3893534 | 188 | { |
e3893534 KK |
189 | ns->sc_semmsl = SEMMSL; |
190 | ns->sc_semmns = SEMMNS; | |
191 | ns->sc_semopm = SEMOPM; | |
192 | ns->sc_semmni = SEMMNI; | |
193 | ns->used_sems = 0; | |
ed2ddbf8 | 194 | ipc_init_ids(&ns->ids[IPC_SEM_IDS]); |
e3893534 KK |
195 | } |
196 | ||
ae5e1b22 | 197 | #ifdef CONFIG_IPC_NS |
e3893534 KK |
198 | void sem_exit_ns(struct ipc_namespace *ns) |
199 | { | |
01b8b07a | 200 | free_ipcs(ns, &sem_ids(ns), freeary); |
7d6feeb2 | 201 | idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); |
e3893534 | 202 | } |
ae5e1b22 | 203 | #endif |
1da177e4 | 204 | |
239521f3 | 205 | void __init sem_init(void) |
1da177e4 | 206 | { |
ed2ddbf8 | 207 | sem_init_ns(&init_ipc_ns); |
19b4946c MW |
208 | ipc_init_proc_interface("sysvipc/sem", |
209 | " key semid perms nsems uid gid cuid cgid otime ctime\n", | |
e3893534 | 210 | IPC_SEM_IDS, sysvipc_sem_proc_show); |
1da177e4 LT |
211 | } |
212 | ||
f269f40a MS |
213 | /** |
214 | * unmerge_queues - unmerge queues, if possible. | |
215 | * @sma: semaphore array | |
216 | * | |
217 | * The function unmerges the wait queues if complex_count is 0. | |
218 | * It must be called prior to dropping the global semaphore array lock. | |
219 | */ | |
220 | static void unmerge_queues(struct sem_array *sma) | |
221 | { | |
222 | struct sem_queue *q, *tq; | |
223 | ||
224 | /* complex operations still around? */ | |
225 | if (sma->complex_count) | |
226 | return; | |
227 | /* | |
228 | * We will switch back to simple mode. | |
229 | * Move all pending operation back into the per-semaphore | |
230 | * queues. | |
231 | */ | |
232 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | |
233 | struct sem *curr; | |
234 | curr = &sma->sem_base[q->sops[0].sem_num]; | |
235 | ||
236 | list_add_tail(&q->list, &curr->pending_alter); | |
237 | } | |
238 | INIT_LIST_HEAD(&sma->pending_alter); | |
239 | } | |
240 | ||
241 | /** | |
8001c858 | 242 | * merge_queues - merge single semop queues into global queue |
f269f40a MS |
243 | * @sma: semaphore array |
244 | * | |
245 | * This function merges all per-semaphore queues into the global queue. | |
246 | * It is necessary to achieve FIFO ordering for the pending single-sop | |
247 | * operations when a multi-semop operation must sleep. | |
248 | * Only the alter operations must be moved, the const operations can stay. | |
249 | */ | |
250 | static void merge_queues(struct sem_array *sma) | |
251 | { | |
252 | int i; | |
253 | for (i = 0; i < sma->sem_nsems; i++) { | |
254 | struct sem *sem = sma->sem_base + i; | |
255 | ||
256 | list_splice_init(&sem->pending_alter, &sma->pending_alter); | |
257 | } | |
258 | } | |
259 | ||
53dad6d3 DB |
260 | static void sem_rcu_free(struct rcu_head *head) |
261 | { | |
262 | struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu); | |
263 | struct sem_array *sma = ipc_rcu_to_struct(p); | |
264 | ||
265 | security_sem_free(sma); | |
266 | ipc_rcu_free(head); | |
267 | } | |
268 | ||
5e9d5275 | 269 | /* |
5864a2fd | 270 | * Enter the mode suitable for non-simple operations: |
5e9d5275 | 271 | * Caller must own sem_perm.lock. |
5e9d5275 | 272 | */ |
5864a2fd | 273 | static void complexmode_enter(struct sem_array *sma) |
5e9d5275 MS |
274 | { |
275 | int i; | |
276 | struct sem *sem; | |
277 | ||
5864a2fd MS |
278 | if (sma->complex_mode) { |
279 | /* We are already in complex_mode. Nothing to do */ | |
6d07b68c MS |
280 | return; |
281 | } | |
282 | ||
5864a2fd MS |
283 | /* We need a full barrier after seting complex_mode: |
284 | * The write to complex_mode must be visible | |
285 | * before we read the first sem->lock spinlock state. | |
286 | */ | |
287 | smp_store_mb(sma->complex_mode, true); | |
288 | ||
5e9d5275 MS |
289 | for (i = 0; i < sma->sem_nsems; i++) { |
290 | sem = sma->sem_base + i; | |
291 | spin_unlock_wait(&sem->lock); | |
292 | } | |
5864a2fd MS |
293 | /* |
294 | * spin_unlock_wait() is not a memory barriers, it is only a | |
295 | * control barrier. The code must pair with spin_unlock(&sem->lock), | |
296 | * thus just the control barrier is insufficient. | |
297 | * | |
298 | * smp_rmb() is sufficient, as writes cannot pass the control barrier. | |
299 | */ | |
300 | smp_rmb(); | |
301 | } | |
302 | ||
303 | /* | |
304 | * Try to leave the mode that disallows simple operations: | |
305 | * Caller must own sem_perm.lock. | |
306 | */ | |
307 | static void complexmode_tryleave(struct sem_array *sma) | |
308 | { | |
309 | if (sma->complex_count) { | |
310 | /* Complex ops are sleeping. | |
311 | * We must stay in complex mode | |
312 | */ | |
313 | return; | |
314 | } | |
315 | /* | |
316 | * Immediately after setting complex_mode to false, | |
317 | * a simple op can start. Thus: all memory writes | |
318 | * performed by the current operation must be visible | |
319 | * before we set complex_mode to false. | |
320 | */ | |
321 | smp_store_release(&sma->complex_mode, false); | |
5e9d5275 MS |
322 | } |
323 | ||
5864a2fd | 324 | #define SEM_GLOBAL_LOCK (-1) |
6062a8dc RR |
325 | /* |
326 | * If the request contains only one semaphore operation, and there are | |
327 | * no complex transactions pending, lock only the semaphore involved. | |
328 | * Otherwise, lock the entire semaphore array, since we either have | |
329 | * multiple semaphores in our own semops, or we need to look at | |
330 | * semaphores from other pending complex operations. | |
6062a8dc RR |
331 | */ |
332 | static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, | |
333 | int nsops) | |
334 | { | |
5e9d5275 | 335 | struct sem *sem; |
6062a8dc | 336 | |
5e9d5275 MS |
337 | if (nsops != 1) { |
338 | /* Complex operation - acquire a full lock */ | |
339 | ipc_lock_object(&sma->sem_perm); | |
6062a8dc | 340 | |
5864a2fd MS |
341 | /* Prevent parallel simple ops */ |
342 | complexmode_enter(sma); | |
343 | return SEM_GLOBAL_LOCK; | |
5e9d5275 MS |
344 | } |
345 | ||
346 | /* | |
347 | * Only one semaphore affected - try to optimize locking. | |
5864a2fd MS |
348 | * Optimized locking is possible if no complex operation |
349 | * is either enqueued or processed right now. | |
350 | * | |
351 | * Both facts are tracked by complex_mode. | |
5e9d5275 MS |
352 | */ |
353 | sem = sma->sem_base + sops->sem_num; | |
6062a8dc | 354 | |
5864a2fd MS |
355 | /* |
356 | * Initial check for complex_mode. Just an optimization, | |
357 | * no locking, no memory barrier. | |
358 | */ | |
359 | if (!sma->complex_mode) { | |
6062a8dc | 360 | /* |
5e9d5275 MS |
361 | * It appears that no complex operation is around. |
362 | * Acquire the per-semaphore lock. | |
6062a8dc | 363 | */ |
5e9d5275 MS |
364 | spin_lock(&sem->lock); |
365 | ||
5864a2fd MS |
366 | /* |
367 | * See 51d7d5205d33 | |
368 | * ("powerpc: Add smp_mb() to arch_spin_is_locked()"): | |
369 | * A full barrier is required: the write of sem->lock | |
370 | * must be visible before the read is executed | |
371 | */ | |
372 | smp_mb(); | |
5e9d5275 | 373 | |
5864a2fd MS |
374 | if (!smp_load_acquire(&sma->complex_mode)) { |
375 | /* fast path successful! */ | |
376 | return sops->sem_num; | |
6062a8dc | 377 | } |
5e9d5275 MS |
378 | spin_unlock(&sem->lock); |
379 | } | |
380 | ||
381 | /* slow path: acquire the full lock */ | |
382 | ipc_lock_object(&sma->sem_perm); | |
6062a8dc | 383 | |
5e9d5275 MS |
384 | if (sma->complex_count == 0) { |
385 | /* False alarm: | |
386 | * There is no complex operation, thus we can switch | |
387 | * back to the fast path. | |
388 | */ | |
389 | spin_lock(&sem->lock); | |
390 | ipc_unlock_object(&sma->sem_perm); | |
391 | return sops->sem_num; | |
6062a8dc | 392 | } else { |
5e9d5275 MS |
393 | /* Not a false alarm, thus complete the sequence for a |
394 | * full lock. | |
6062a8dc | 395 | */ |
5864a2fd MS |
396 | complexmode_enter(sma); |
397 | return SEM_GLOBAL_LOCK; | |
6062a8dc | 398 | } |
6062a8dc RR |
399 | } |
400 | ||
401 | static inline void sem_unlock(struct sem_array *sma, int locknum) | |
402 | { | |
5864a2fd | 403 | if (locknum == SEM_GLOBAL_LOCK) { |
f269f40a | 404 | unmerge_queues(sma); |
5864a2fd | 405 | complexmode_tryleave(sma); |
cf9d5d78 | 406 | ipc_unlock_object(&sma->sem_perm); |
6062a8dc RR |
407 | } else { |
408 | struct sem *sem = sma->sem_base + locknum; | |
409 | spin_unlock(&sem->lock); | |
410 | } | |
6062a8dc RR |
411 | } |
412 | ||
3e148c79 | 413 | /* |
d9a605e4 | 414 | * sem_lock_(check_) routines are called in the paths where the rwsem |
3e148c79 | 415 | * is not held. |
321310ce LT |
416 | * |
417 | * The caller holds the RCU read lock. | |
3e148c79 | 418 | */ |
6062a8dc RR |
419 | static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, |
420 | int id, struct sembuf *sops, int nsops, int *locknum) | |
023a5355 | 421 | { |
c460b662 RR |
422 | struct kern_ipc_perm *ipcp; |
423 | struct sem_array *sma; | |
03f02c76 | 424 | |
55b7ae50 | 425 | ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); |
321310ce LT |
426 | if (IS_ERR(ipcp)) |
427 | return ERR_CAST(ipcp); | |
b1ed88b4 | 428 | |
6062a8dc RR |
429 | sma = container_of(ipcp, struct sem_array, sem_perm); |
430 | *locknum = sem_lock(sma, sops, nsops); | |
c460b662 RR |
431 | |
432 | /* ipc_rmid() may have already freed the ID while sem_lock | |
433 | * was spinning: verify that the structure is still valid | |
434 | */ | |
72a8ff2f | 435 | if (ipc_valid_object(ipcp)) |
c460b662 RR |
436 | return container_of(ipcp, struct sem_array, sem_perm); |
437 | ||
6062a8dc | 438 | sem_unlock(sma, *locknum); |
321310ce | 439 | return ERR_PTR(-EINVAL); |
023a5355 ND |
440 | } |
441 | ||
16df3674 DB |
442 | static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) |
443 | { | |
55b7ae50 | 444 | struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); |
16df3674 DB |
445 | |
446 | if (IS_ERR(ipcp)) | |
447 | return ERR_CAST(ipcp); | |
448 | ||
449 | return container_of(ipcp, struct sem_array, sem_perm); | |
450 | } | |
451 | ||
16df3674 DB |
452 | static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, |
453 | int id) | |
454 | { | |
455 | struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); | |
456 | ||
457 | if (IS_ERR(ipcp)) | |
458 | return ERR_CAST(ipcp); | |
b1ed88b4 | 459 | |
03f02c76 | 460 | return container_of(ipcp, struct sem_array, sem_perm); |
023a5355 ND |
461 | } |
462 | ||
6ff37972 PP |
463 | static inline void sem_lock_and_putref(struct sem_array *sma) |
464 | { | |
6062a8dc | 465 | sem_lock(sma, NULL, -1); |
9b24fef9 | 466 | ipc_rcu_putref(sma, sem_rcu_free); |
6ff37972 PP |
467 | } |
468 | ||
7ca7e564 ND |
469 | static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) |
470 | { | |
471 | ipc_rmid(&sem_ids(ns), &s->sem_perm); | |
472 | } | |
473 | ||
1da177e4 LT |
474 | /* |
475 | * Lockless wakeup algorithm: | |
476 | * Without the check/retry algorithm a lockless wakeup is possible: | |
477 | * - queue.status is initialized to -EINTR before blocking. | |
478 | * - wakeup is performed by | |
1a82e9e1 | 479 | * * unlinking the queue entry from the pending list |
1da177e4 LT |
480 | * * setting queue.status to IN_WAKEUP |
481 | * This is the notification for the blocked thread that a | |
482 | * result value is imminent. | |
483 | * * call wake_up_process | |
484 | * * set queue.status to the final value. | |
485 | * - the previously blocked thread checks queue.status: | |
239521f3 MS |
486 | * * if it's IN_WAKEUP, then it must wait until the value changes |
487 | * * if it's not -EINTR, then the operation was completed by | |
488 | * update_queue. semtimedop can return queue.status without | |
489 | * performing any operation on the sem array. | |
490 | * * otherwise it must acquire the spinlock and check what's up. | |
1da177e4 LT |
491 | * |
492 | * The two-stage algorithm is necessary to protect against the following | |
493 | * races: | |
494 | * - if queue.status is set after wake_up_process, then the woken up idle | |
495 | * thread could race forward and try (and fail) to acquire sma->lock | |
496 | * before update_queue had a chance to set queue.status | |
497 | * - if queue.status is written before wake_up_process and if the | |
498 | * blocked process is woken up by a signal between writing | |
499 | * queue.status and the wake_up_process, then the woken up | |
500 | * process could return from semtimedop and die by calling | |
501 | * sys_exit before wake_up_process is called. Then wake_up_process | |
502 | * will oops, because the task structure is already invalid. | |
503 | * (yes, this happened on s390 with sysv msg). | |
504 | * | |
505 | */ | |
506 | #define IN_WAKEUP 1 | |
507 | ||
f4566f04 ND |
508 | /** |
509 | * newary - Create a new semaphore set | |
510 | * @ns: namespace | |
511 | * @params: ptr to the structure that contains key, semflg and nsems | |
512 | * | |
d9a605e4 | 513 | * Called with sem_ids.rwsem held (as a writer) |
f4566f04 | 514 | */ |
7748dbfa | 515 | static int newary(struct ipc_namespace *ns, struct ipc_params *params) |
1da177e4 LT |
516 | { |
517 | int id; | |
518 | int retval; | |
519 | struct sem_array *sma; | |
520 | int size; | |
7748dbfa ND |
521 | key_t key = params->key; |
522 | int nsems = params->u.nsems; | |
523 | int semflg = params->flg; | |
b97e820f | 524 | int i; |
1da177e4 LT |
525 | |
526 | if (!nsems) | |
527 | return -EINVAL; | |
e3893534 | 528 | if (ns->used_sems + nsems > ns->sc_semmns) |
1da177e4 LT |
529 | return -ENOSPC; |
530 | ||
239521f3 | 531 | size = sizeof(*sma) + nsems * sizeof(struct sem); |
1da177e4 | 532 | sma = ipc_rcu_alloc(size); |
3ab08fe2 | 533 | if (!sma) |
1da177e4 | 534 | return -ENOMEM; |
3ab08fe2 | 535 | |
239521f3 | 536 | memset(sma, 0, size); |
1da177e4 LT |
537 | |
538 | sma->sem_perm.mode = (semflg & S_IRWXUGO); | |
539 | sma->sem_perm.key = key; | |
540 | ||
541 | sma->sem_perm.security = NULL; | |
542 | retval = security_sem_alloc(sma); | |
543 | if (retval) { | |
53dad6d3 | 544 | ipc_rcu_putref(sma, ipc_rcu_free); |
1da177e4 LT |
545 | return retval; |
546 | } | |
547 | ||
1da177e4 | 548 | sma->sem_base = (struct sem *) &sma[1]; |
b97e820f | 549 | |
6062a8dc | 550 | for (i = 0; i < nsems; i++) { |
1a82e9e1 MS |
551 | INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); |
552 | INIT_LIST_HEAD(&sma->sem_base[i].pending_const); | |
6062a8dc RR |
553 | spin_lock_init(&sma->sem_base[i].lock); |
554 | } | |
b97e820f MS |
555 | |
556 | sma->complex_count = 0; | |
5864a2fd | 557 | sma->complex_mode = true; /* dropped by sem_unlock below */ |
1a82e9e1 MS |
558 | INIT_LIST_HEAD(&sma->pending_alter); |
559 | INIT_LIST_HEAD(&sma->pending_const); | |
4daa28f6 | 560 | INIT_LIST_HEAD(&sma->list_id); |
1da177e4 LT |
561 | sma->sem_nsems = nsems; |
562 | sma->sem_ctime = get_seconds(); | |
e8577d1f MS |
563 | |
564 | id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); | |
565 | if (id < 0) { | |
566 | ipc_rcu_putref(sma, sem_rcu_free); | |
567 | return id; | |
568 | } | |
569 | ns->used_sems += nsems; | |
570 | ||
6062a8dc | 571 | sem_unlock(sma, -1); |
6d49dab8 | 572 | rcu_read_unlock(); |
1da177e4 | 573 | |
7ca7e564 | 574 | return sma->sem_perm.id; |
1da177e4 LT |
575 | } |
576 | ||
7748dbfa | 577 | |
f4566f04 | 578 | /* |
d9a605e4 | 579 | * Called with sem_ids.rwsem and ipcp locked. |
f4566f04 | 580 | */ |
03f02c76 | 581 | static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) |
7748dbfa | 582 | { |
03f02c76 ND |
583 | struct sem_array *sma; |
584 | ||
585 | sma = container_of(ipcp, struct sem_array, sem_perm); | |
586 | return security_sem_associate(sma, semflg); | |
7748dbfa ND |
587 | } |
588 | ||
f4566f04 | 589 | /* |
d9a605e4 | 590 | * Called with sem_ids.rwsem and ipcp locked. |
f4566f04 | 591 | */ |
03f02c76 ND |
592 | static inline int sem_more_checks(struct kern_ipc_perm *ipcp, |
593 | struct ipc_params *params) | |
7748dbfa | 594 | { |
03f02c76 ND |
595 | struct sem_array *sma; |
596 | ||
597 | sma = container_of(ipcp, struct sem_array, sem_perm); | |
598 | if (params->u.nsems > sma->sem_nsems) | |
7748dbfa ND |
599 | return -EINVAL; |
600 | ||
601 | return 0; | |
602 | } | |
603 | ||
d5460c99 | 604 | SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) |
1da177e4 | 605 | { |
e3893534 | 606 | struct ipc_namespace *ns; |
eb66ec44 MK |
607 | static const struct ipc_ops sem_ops = { |
608 | .getnew = newary, | |
609 | .associate = sem_security, | |
610 | .more_checks = sem_more_checks, | |
611 | }; | |
7748dbfa | 612 | struct ipc_params sem_params; |
e3893534 KK |
613 | |
614 | ns = current->nsproxy->ipc_ns; | |
1da177e4 | 615 | |
e3893534 | 616 | if (nsems < 0 || nsems > ns->sc_semmsl) |
1da177e4 | 617 | return -EINVAL; |
7ca7e564 | 618 | |
7748dbfa ND |
619 | sem_params.key = key; |
620 | sem_params.flg = semflg; | |
621 | sem_params.u.nsems = nsems; | |
1da177e4 | 622 | |
7748dbfa | 623 | return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); |
1da177e4 LT |
624 | } |
625 | ||
78f5009c PM |
626 | /** |
627 | * perform_atomic_semop - Perform (if possible) a semaphore operation | |
758a6ba3 | 628 | * @sma: semaphore array |
d198cd6d | 629 | * @q: struct sem_queue that describes the operation |
758a6ba3 MS |
630 | * |
631 | * Returns 0 if the operation was possible. | |
632 | * Returns 1 if the operation is impossible, the caller must sleep. | |
633 | * Negative values are error codes. | |
1da177e4 | 634 | */ |
d198cd6d | 635 | static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) |
1da177e4 | 636 | { |
d198cd6d | 637 | int result, sem_op, nsops, pid; |
1da177e4 | 638 | struct sembuf *sop; |
239521f3 | 639 | struct sem *curr; |
d198cd6d MS |
640 | struct sembuf *sops; |
641 | struct sem_undo *un; | |
642 | ||
643 | sops = q->sops; | |
644 | nsops = q->nsops; | |
645 | un = q->undo; | |
1da177e4 LT |
646 | |
647 | for (sop = sops; sop < sops + nsops; sop++) { | |
648 | curr = sma->sem_base + sop->sem_num; | |
649 | sem_op = sop->sem_op; | |
650 | result = curr->semval; | |
78f5009c | 651 | |
1da177e4 LT |
652 | if (!sem_op && result) |
653 | goto would_block; | |
654 | ||
655 | result += sem_op; | |
656 | if (result < 0) | |
657 | goto would_block; | |
658 | if (result > SEMVMX) | |
659 | goto out_of_range; | |
78f5009c | 660 | |
1da177e4 LT |
661 | if (sop->sem_flg & SEM_UNDO) { |
662 | int undo = un->semadj[sop->sem_num] - sem_op; | |
78f5009c | 663 | /* Exceeding the undo range is an error. */ |
1da177e4 LT |
664 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) |
665 | goto out_of_range; | |
78f5009c | 666 | un->semadj[sop->sem_num] = undo; |
1da177e4 | 667 | } |
78f5009c | 668 | |
1da177e4 LT |
669 | curr->semval = result; |
670 | } | |
671 | ||
672 | sop--; | |
d198cd6d | 673 | pid = q->pid; |
1da177e4 LT |
674 | while (sop >= sops) { |
675 | sma->sem_base[sop->sem_num].sempid = pid; | |
1da177e4 LT |
676 | sop--; |
677 | } | |
78f5009c | 678 | |
1da177e4 LT |
679 | return 0; |
680 | ||
681 | out_of_range: | |
682 | result = -ERANGE; | |
683 | goto undo; | |
684 | ||
685 | would_block: | |
ed247b7c MS |
686 | q->blocking = sop; |
687 | ||
1da177e4 LT |
688 | if (sop->sem_flg & IPC_NOWAIT) |
689 | result = -EAGAIN; | |
690 | else | |
691 | result = 1; | |
692 | ||
693 | undo: | |
694 | sop--; | |
695 | while (sop >= sops) { | |
78f5009c PM |
696 | sem_op = sop->sem_op; |
697 | sma->sem_base[sop->sem_num].semval -= sem_op; | |
698 | if (sop->sem_flg & SEM_UNDO) | |
699 | un->semadj[sop->sem_num] += sem_op; | |
1da177e4 LT |
700 | sop--; |
701 | } | |
702 | ||
703 | return result; | |
704 | } | |
705 | ||
0a2b9d4c MS |
706 | /** wake_up_sem_queue_prepare(q, error): Prepare wake-up |
707 | * @q: queue entry that must be signaled | |
708 | * @error: Error value for the signal | |
709 | * | |
710 | * Prepare the wake-up of the queue entry q. | |
d4212093 | 711 | */ |
0a2b9d4c MS |
712 | static void wake_up_sem_queue_prepare(struct list_head *pt, |
713 | struct sem_queue *q, int error) | |
d4212093 | 714 | { |
0a2b9d4c MS |
715 | if (list_empty(pt)) { |
716 | /* | |
717 | * Hold preempt off so that we don't get preempted and have the | |
718 | * wakee busy-wait until we're scheduled back on. | |
719 | */ | |
720 | preempt_disable(); | |
721 | } | |
d4212093 | 722 | q->status = IN_WAKEUP; |
0a2b9d4c MS |
723 | q->pid = error; |
724 | ||
9f1bc2c9 | 725 | list_add_tail(&q->list, pt); |
0a2b9d4c MS |
726 | } |
727 | ||
728 | /** | |
8001c858 | 729 | * wake_up_sem_queue_do - do the actual wake-up |
0a2b9d4c MS |
730 | * @pt: list of tasks to be woken up |
731 | * | |
732 | * Do the actual wake-up. | |
733 | * The function is called without any locks held, thus the semaphore array | |
734 | * could be destroyed already and the tasks can disappear as soon as the | |
735 | * status is set to the actual return code. | |
736 | */ | |
737 | static void wake_up_sem_queue_do(struct list_head *pt) | |
738 | { | |
739 | struct sem_queue *q, *t; | |
740 | int did_something; | |
741 | ||
742 | did_something = !list_empty(pt); | |
9f1bc2c9 | 743 | list_for_each_entry_safe(q, t, pt, list) { |
0a2b9d4c MS |
744 | wake_up_process(q->sleeper); |
745 | /* q can disappear immediately after writing q->status. */ | |
746 | smp_wmb(); | |
747 | q->status = q->pid; | |
748 | } | |
749 | if (did_something) | |
750 | preempt_enable(); | |
d4212093 NP |
751 | } |
752 | ||
b97e820f MS |
753 | static void unlink_queue(struct sem_array *sma, struct sem_queue *q) |
754 | { | |
755 | list_del(&q->list); | |
9f1bc2c9 | 756 | if (q->nsops > 1) |
b97e820f MS |
757 | sma->complex_count--; |
758 | } | |
759 | ||
fd5db422 MS |
760 | /** check_restart(sma, q) |
761 | * @sma: semaphore array | |
762 | * @q: the operation that just completed | |
763 | * | |
764 | * update_queue is O(N^2) when it restarts scanning the whole queue of | |
765 | * waiting operations. Therefore this function checks if the restart is | |
766 | * really necessary. It is called after a previously waiting operation | |
1a82e9e1 MS |
767 | * modified the array. |
768 | * Note that wait-for-zero operations are handled without restart. | |
fd5db422 MS |
769 | */ |
770 | static int check_restart(struct sem_array *sma, struct sem_queue *q) | |
771 | { | |
1a82e9e1 MS |
772 | /* pending complex alter operations are too difficult to analyse */ |
773 | if (!list_empty(&sma->pending_alter)) | |
fd5db422 MS |
774 | return 1; |
775 | ||
776 | /* we were a sleeping complex operation. Too difficult */ | |
777 | if (q->nsops > 1) | |
778 | return 1; | |
779 | ||
1a82e9e1 MS |
780 | /* It is impossible that someone waits for the new value: |
781 | * - complex operations always restart. | |
782 | * - wait-for-zero are handled seperately. | |
783 | * - q is a previously sleeping simple operation that | |
784 | * altered the array. It must be a decrement, because | |
785 | * simple increments never sleep. | |
786 | * - If there are older (higher priority) decrements | |
787 | * in the queue, then they have observed the original | |
788 | * semval value and couldn't proceed. The operation | |
789 | * decremented to value - thus they won't proceed either. | |
790 | */ | |
791 | return 0; | |
792 | } | |
fd5db422 | 793 | |
1a82e9e1 | 794 | /** |
8001c858 | 795 | * wake_const_ops - wake up non-alter tasks |
1a82e9e1 MS |
796 | * @sma: semaphore array. |
797 | * @semnum: semaphore that was modified. | |
798 | * @pt: list head for the tasks that must be woken up. | |
799 | * | |
800 | * wake_const_ops must be called after a semaphore in a semaphore array | |
801 | * was set to 0. If complex const operations are pending, wake_const_ops must | |
802 | * be called with semnum = -1, as well as with the number of each modified | |
803 | * semaphore. | |
804 | * The tasks that must be woken up are added to @pt. The return code | |
805 | * is stored in q->pid. | |
806 | * The function returns 1 if at least one operation was completed successfully. | |
807 | */ | |
808 | static int wake_const_ops(struct sem_array *sma, int semnum, | |
809 | struct list_head *pt) | |
810 | { | |
811 | struct sem_queue *q; | |
812 | struct list_head *walk; | |
813 | struct list_head *pending_list; | |
814 | int semop_completed = 0; | |
815 | ||
816 | if (semnum == -1) | |
817 | pending_list = &sma->pending_const; | |
818 | else | |
819 | pending_list = &sma->sem_base[semnum].pending_const; | |
fd5db422 | 820 | |
1a82e9e1 MS |
821 | walk = pending_list->next; |
822 | while (walk != pending_list) { | |
823 | int error; | |
824 | ||
825 | q = container_of(walk, struct sem_queue, list); | |
826 | walk = walk->next; | |
827 | ||
d198cd6d | 828 | error = perform_atomic_semop(sma, q); |
1a82e9e1 MS |
829 | |
830 | if (error <= 0) { | |
831 | /* operation completed, remove from queue & wakeup */ | |
832 | ||
833 | unlink_queue(sma, q); | |
834 | ||
835 | wake_up_sem_queue_prepare(pt, q, error); | |
836 | if (error == 0) | |
837 | semop_completed = 1; | |
838 | } | |
839 | } | |
840 | return semop_completed; | |
841 | } | |
842 | ||
843 | /** | |
8001c858 | 844 | * do_smart_wakeup_zero - wakeup all wait for zero tasks |
1a82e9e1 MS |
845 | * @sma: semaphore array |
846 | * @sops: operations that were performed | |
847 | * @nsops: number of operations | |
848 | * @pt: list head of the tasks that must be woken up. | |
849 | * | |
8001c858 DB |
850 | * Checks all required queue for wait-for-zero operations, based |
851 | * on the actual changes that were performed on the semaphore array. | |
1a82e9e1 MS |
852 | * The function returns 1 if at least one operation was completed successfully. |
853 | */ | |
854 | static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, | |
855 | int nsops, struct list_head *pt) | |
856 | { | |
857 | int i; | |
858 | int semop_completed = 0; | |
859 | int got_zero = 0; | |
860 | ||
861 | /* first: the per-semaphore queues, if known */ | |
862 | if (sops) { | |
863 | for (i = 0; i < nsops; i++) { | |
864 | int num = sops[i].sem_num; | |
865 | ||
866 | if (sma->sem_base[num].semval == 0) { | |
867 | got_zero = 1; | |
868 | semop_completed |= wake_const_ops(sma, num, pt); | |
869 | } | |
870 | } | |
871 | } else { | |
872 | /* | |
873 | * No sops means modified semaphores not known. | |
874 | * Assume all were changed. | |
fd5db422 | 875 | */ |
1a82e9e1 MS |
876 | for (i = 0; i < sma->sem_nsems; i++) { |
877 | if (sma->sem_base[i].semval == 0) { | |
878 | got_zero = 1; | |
879 | semop_completed |= wake_const_ops(sma, i, pt); | |
880 | } | |
881 | } | |
fd5db422 MS |
882 | } |
883 | /* | |
1a82e9e1 MS |
884 | * If one of the modified semaphores got 0, |
885 | * then check the global queue, too. | |
fd5db422 | 886 | */ |
1a82e9e1 MS |
887 | if (got_zero) |
888 | semop_completed |= wake_const_ops(sma, -1, pt); | |
fd5db422 | 889 | |
1a82e9e1 | 890 | return semop_completed; |
fd5db422 MS |
891 | } |
892 | ||
636c6be8 MS |
893 | |
894 | /** | |
8001c858 | 895 | * update_queue - look for tasks that can be completed. |
636c6be8 MS |
896 | * @sma: semaphore array. |
897 | * @semnum: semaphore that was modified. | |
0a2b9d4c | 898 | * @pt: list head for the tasks that must be woken up. |
636c6be8 MS |
899 | * |
900 | * update_queue must be called after a semaphore in a semaphore array | |
9f1bc2c9 RR |
901 | * was modified. If multiple semaphores were modified, update_queue must |
902 | * be called with semnum = -1, as well as with the number of each modified | |
903 | * semaphore. | |
0a2b9d4c MS |
904 | * The tasks that must be woken up are added to @pt. The return code |
905 | * is stored in q->pid. | |
1a82e9e1 MS |
906 | * The function internally checks if const operations can now succeed. |
907 | * | |
0a2b9d4c | 908 | * The function return 1 if at least one semop was completed successfully. |
1da177e4 | 909 | */ |
0a2b9d4c | 910 | static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) |
1da177e4 | 911 | { |
636c6be8 MS |
912 | struct sem_queue *q; |
913 | struct list_head *walk; | |
914 | struct list_head *pending_list; | |
0a2b9d4c | 915 | int semop_completed = 0; |
636c6be8 | 916 | |
9f1bc2c9 | 917 | if (semnum == -1) |
1a82e9e1 | 918 | pending_list = &sma->pending_alter; |
9f1bc2c9 | 919 | else |
1a82e9e1 | 920 | pending_list = &sma->sem_base[semnum].pending_alter; |
9cad200c NP |
921 | |
922 | again: | |
636c6be8 MS |
923 | walk = pending_list->next; |
924 | while (walk != pending_list) { | |
fd5db422 | 925 | int error, restart; |
636c6be8 | 926 | |
9f1bc2c9 | 927 | q = container_of(walk, struct sem_queue, list); |
636c6be8 | 928 | walk = walk->next; |
1da177e4 | 929 | |
d987f8b2 MS |
930 | /* If we are scanning the single sop, per-semaphore list of |
931 | * one semaphore and that semaphore is 0, then it is not | |
1a82e9e1 | 932 | * necessary to scan further: simple increments |
d987f8b2 MS |
933 | * that affect only one entry succeed immediately and cannot |
934 | * be in the per semaphore pending queue, and decrements | |
935 | * cannot be successful if the value is already 0. | |
936 | */ | |
1a82e9e1 | 937 | if (semnum != -1 && sma->sem_base[semnum].semval == 0) |
d987f8b2 MS |
938 | break; |
939 | ||
d198cd6d | 940 | error = perform_atomic_semop(sma, q); |
1da177e4 LT |
941 | |
942 | /* Does q->sleeper still need to sleep? */ | |
9cad200c NP |
943 | if (error > 0) |
944 | continue; | |
945 | ||
b97e820f | 946 | unlink_queue(sma, q); |
9cad200c | 947 | |
0a2b9d4c | 948 | if (error) { |
fd5db422 | 949 | restart = 0; |
0a2b9d4c MS |
950 | } else { |
951 | semop_completed = 1; | |
1a82e9e1 | 952 | do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); |
fd5db422 | 953 | restart = check_restart(sma, q); |
0a2b9d4c | 954 | } |
fd5db422 | 955 | |
0a2b9d4c | 956 | wake_up_sem_queue_prepare(pt, q, error); |
fd5db422 | 957 | if (restart) |
9cad200c | 958 | goto again; |
1da177e4 | 959 | } |
0a2b9d4c | 960 | return semop_completed; |
1da177e4 LT |
961 | } |
962 | ||
0e8c6656 | 963 | /** |
8001c858 | 964 | * set_semotime - set sem_otime |
0e8c6656 MS |
965 | * @sma: semaphore array |
966 | * @sops: operations that modified the array, may be NULL | |
967 | * | |
968 | * sem_otime is replicated to avoid cache line trashing. | |
969 | * This function sets one instance to the current time. | |
970 | */ | |
971 | static void set_semotime(struct sem_array *sma, struct sembuf *sops) | |
972 | { | |
973 | if (sops == NULL) { | |
974 | sma->sem_base[0].sem_otime = get_seconds(); | |
975 | } else { | |
976 | sma->sem_base[sops[0].sem_num].sem_otime = | |
977 | get_seconds(); | |
978 | } | |
979 | } | |
980 | ||
0a2b9d4c | 981 | /** |
8001c858 | 982 | * do_smart_update - optimized update_queue |
fd5db422 MS |
983 | * @sma: semaphore array |
984 | * @sops: operations that were performed | |
985 | * @nsops: number of operations | |
0a2b9d4c MS |
986 | * @otime: force setting otime |
987 | * @pt: list head of the tasks that must be woken up. | |
fd5db422 | 988 | * |
1a82e9e1 MS |
989 | * do_smart_update() does the required calls to update_queue and wakeup_zero, |
990 | * based on the actual changes that were performed on the semaphore array. | |
0a2b9d4c MS |
991 | * Note that the function does not do the actual wake-up: the caller is |
992 | * responsible for calling wake_up_sem_queue_do(@pt). | |
993 | * It is safe to perform this call after dropping all locks. | |
fd5db422 | 994 | */ |
0a2b9d4c MS |
995 | static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, |
996 | int otime, struct list_head *pt) | |
fd5db422 MS |
997 | { |
998 | int i; | |
999 | ||
1a82e9e1 MS |
1000 | otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); |
1001 | ||
f269f40a MS |
1002 | if (!list_empty(&sma->pending_alter)) { |
1003 | /* semaphore array uses the global queue - just process it. */ | |
1004 | otime |= update_queue(sma, -1, pt); | |
1005 | } else { | |
1006 | if (!sops) { | |
1007 | /* | |
1008 | * No sops, thus the modified semaphores are not | |
1009 | * known. Check all. | |
1010 | */ | |
1011 | for (i = 0; i < sma->sem_nsems; i++) | |
1012 | otime |= update_queue(sma, i, pt); | |
1013 | } else { | |
1014 | /* | |
1015 | * Check the semaphores that were increased: | |
1016 | * - No complex ops, thus all sleeping ops are | |
1017 | * decrease. | |
1018 | * - if we decreased the value, then any sleeping | |
1019 | * semaphore ops wont be able to run: If the | |
1020 | * previous value was too small, then the new | |
1021 | * value will be too small, too. | |
1022 | */ | |
1023 | for (i = 0; i < nsops; i++) { | |
1024 | if (sops[i].sem_op > 0) { | |
1025 | otime |= update_queue(sma, | |
1026 | sops[i].sem_num, pt); | |
1027 | } | |
ab465df9 | 1028 | } |
9f1bc2c9 | 1029 | } |
fd5db422 | 1030 | } |
0e8c6656 MS |
1031 | if (otime) |
1032 | set_semotime(sma, sops); | |
fd5db422 MS |
1033 | } |
1034 | ||
2f2ed41d | 1035 | /* |
b220c57a | 1036 | * check_qop: Test if a queued operation sleeps on the semaphore semnum |
2f2ed41d MS |
1037 | */ |
1038 | static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, | |
1039 | bool count_zero) | |
1040 | { | |
b220c57a | 1041 | struct sembuf *sop = q->blocking; |
2f2ed41d | 1042 | |
9b44ee2e MS |
1043 | /* |
1044 | * Linux always (since 0.99.10) reported a task as sleeping on all | |
1045 | * semaphores. This violates SUS, therefore it was changed to the | |
1046 | * standard compliant behavior. | |
1047 | * Give the administrators a chance to notice that an application | |
1048 | * might misbehave because it relies on the Linux behavior. | |
1049 | */ | |
1050 | pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" | |
1051 | "The task %s (%d) triggered the difference, watch for misbehavior.\n", | |
1052 | current->comm, task_pid_nr(current)); | |
1053 | ||
b220c57a MS |
1054 | if (sop->sem_num != semnum) |
1055 | return 0; | |
2f2ed41d | 1056 | |
b220c57a MS |
1057 | if (count_zero && sop->sem_op == 0) |
1058 | return 1; | |
1059 | if (!count_zero && sop->sem_op < 0) | |
1060 | return 1; | |
1061 | ||
1062 | return 0; | |
2f2ed41d MS |
1063 | } |
1064 | ||
1da177e4 LT |
1065 | /* The following counts are associated to each semaphore: |
1066 | * semncnt number of tasks waiting on semval being nonzero | |
1067 | * semzcnt number of tasks waiting on semval being zero | |
b220c57a MS |
1068 | * |
1069 | * Per definition, a task waits only on the semaphore of the first semop | |
1070 | * that cannot proceed, even if additional operation would block, too. | |
1da177e4 | 1071 | */ |
2f2ed41d MS |
1072 | static int count_semcnt(struct sem_array *sma, ushort semnum, |
1073 | bool count_zero) | |
1da177e4 | 1074 | { |
2f2ed41d | 1075 | struct list_head *l; |
239521f3 | 1076 | struct sem_queue *q; |
2f2ed41d | 1077 | int semcnt; |
1da177e4 | 1078 | |
2f2ed41d MS |
1079 | semcnt = 0; |
1080 | /* First: check the simple operations. They are easy to evaluate */ | |
1081 | if (count_zero) | |
1082 | l = &sma->sem_base[semnum].pending_const; | |
1083 | else | |
1084 | l = &sma->sem_base[semnum].pending_alter; | |
1da177e4 | 1085 | |
2f2ed41d MS |
1086 | list_for_each_entry(q, l, list) { |
1087 | /* all task on a per-semaphore list sleep on exactly | |
1088 | * that semaphore | |
1089 | */ | |
1090 | semcnt++; | |
ebc2e5e6 RR |
1091 | } |
1092 | ||
2f2ed41d | 1093 | /* Then: check the complex operations. */ |
1994862d | 1094 | list_for_each_entry(q, &sma->pending_alter, list) { |
2f2ed41d MS |
1095 | semcnt += check_qop(sma, semnum, q, count_zero); |
1096 | } | |
1097 | if (count_zero) { | |
1098 | list_for_each_entry(q, &sma->pending_const, list) { | |
1099 | semcnt += check_qop(sma, semnum, q, count_zero); | |
1100 | } | |
1994862d | 1101 | } |
2f2ed41d | 1102 | return semcnt; |
1da177e4 LT |
1103 | } |
1104 | ||
d9a605e4 DB |
1105 | /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked |
1106 | * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem | |
3e148c79 | 1107 | * remains locked on exit. |
1da177e4 | 1108 | */ |
01b8b07a | 1109 | static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) |
1da177e4 | 1110 | { |
380af1b3 MS |
1111 | struct sem_undo *un, *tu; |
1112 | struct sem_queue *q, *tq; | |
01b8b07a | 1113 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); |
0a2b9d4c | 1114 | struct list_head tasks; |
9f1bc2c9 | 1115 | int i; |
1da177e4 | 1116 | |
380af1b3 | 1117 | /* Free the existing undo structures for this semaphore set. */ |
cf9d5d78 | 1118 | ipc_assert_locked_object(&sma->sem_perm); |
380af1b3 MS |
1119 | list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { |
1120 | list_del(&un->list_id); | |
1121 | spin_lock(&un->ulp->lock); | |
1da177e4 | 1122 | un->semid = -1; |
380af1b3 MS |
1123 | list_del_rcu(&un->list_proc); |
1124 | spin_unlock(&un->ulp->lock); | |
693a8b6e | 1125 | kfree_rcu(un, rcu); |
380af1b3 | 1126 | } |
1da177e4 LT |
1127 | |
1128 | /* Wake up all pending processes and let them fail with EIDRM. */ | |
0a2b9d4c | 1129 | INIT_LIST_HEAD(&tasks); |
1a82e9e1 MS |
1130 | list_for_each_entry_safe(q, tq, &sma->pending_const, list) { |
1131 | unlink_queue(sma, q); | |
1132 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); | |
1133 | } | |
1134 | ||
1135 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | |
b97e820f | 1136 | unlink_queue(sma, q); |
0a2b9d4c | 1137 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); |
1da177e4 | 1138 | } |
9f1bc2c9 RR |
1139 | for (i = 0; i < sma->sem_nsems; i++) { |
1140 | struct sem *sem = sma->sem_base + i; | |
1a82e9e1 MS |
1141 | list_for_each_entry_safe(q, tq, &sem->pending_const, list) { |
1142 | unlink_queue(sma, q); | |
1143 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); | |
1144 | } | |
1145 | list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { | |
9f1bc2c9 RR |
1146 | unlink_queue(sma, q); |
1147 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); | |
1148 | } | |
1149 | } | |
1da177e4 | 1150 | |
7ca7e564 ND |
1151 | /* Remove the semaphore set from the IDR */ |
1152 | sem_rmid(ns, sma); | |
6062a8dc | 1153 | sem_unlock(sma, -1); |
6d49dab8 | 1154 | rcu_read_unlock(); |
1da177e4 | 1155 | |
0a2b9d4c | 1156 | wake_up_sem_queue_do(&tasks); |
e3893534 | 1157 | ns->used_sems -= sma->sem_nsems; |
53dad6d3 | 1158 | ipc_rcu_putref(sma, sem_rcu_free); |
1da177e4 LT |
1159 | } |
1160 | ||
1161 | static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) | |
1162 | { | |
239521f3 | 1163 | switch (version) { |
1da177e4 LT |
1164 | case IPC_64: |
1165 | return copy_to_user(buf, in, sizeof(*in)); | |
1166 | case IPC_OLD: | |
1167 | { | |
1168 | struct semid_ds out; | |
1169 | ||
982f7c2b DR |
1170 | memset(&out, 0, sizeof(out)); |
1171 | ||
1da177e4 LT |
1172 | ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); |
1173 | ||
1174 | out.sem_otime = in->sem_otime; | |
1175 | out.sem_ctime = in->sem_ctime; | |
1176 | out.sem_nsems = in->sem_nsems; | |
1177 | ||
1178 | return copy_to_user(buf, &out, sizeof(out)); | |
1179 | } | |
1180 | default: | |
1181 | return -EINVAL; | |
1182 | } | |
1183 | } | |
1184 | ||
d12e1e50 MS |
1185 | static time_t get_semotime(struct sem_array *sma) |
1186 | { | |
1187 | int i; | |
1188 | time_t res; | |
1189 | ||
1190 | res = sma->sem_base[0].sem_otime; | |
1191 | for (i = 1; i < sma->sem_nsems; i++) { | |
1192 | time_t to = sma->sem_base[i].sem_otime; | |
1193 | ||
1194 | if (to > res) | |
1195 | res = to; | |
1196 | } | |
1197 | return res; | |
1198 | } | |
1199 | ||
4b9fcb0e | 1200 | static int semctl_nolock(struct ipc_namespace *ns, int semid, |
e1fd1f49 | 1201 | int cmd, int version, void __user *p) |
1da177e4 | 1202 | { |
e5cc9c7b | 1203 | int err; |
1da177e4 LT |
1204 | struct sem_array *sma; |
1205 | ||
239521f3 | 1206 | switch (cmd) { |
1da177e4 LT |
1207 | case IPC_INFO: |
1208 | case SEM_INFO: | |
1209 | { | |
1210 | struct seminfo seminfo; | |
1211 | int max_id; | |
1212 | ||
1213 | err = security_sem_semctl(NULL, cmd); | |
1214 | if (err) | |
1215 | return err; | |
46c0a8ca | 1216 | |
239521f3 | 1217 | memset(&seminfo, 0, sizeof(seminfo)); |
e3893534 KK |
1218 | seminfo.semmni = ns->sc_semmni; |
1219 | seminfo.semmns = ns->sc_semmns; | |
1220 | seminfo.semmsl = ns->sc_semmsl; | |
1221 | seminfo.semopm = ns->sc_semopm; | |
1da177e4 LT |
1222 | seminfo.semvmx = SEMVMX; |
1223 | seminfo.semmnu = SEMMNU; | |
1224 | seminfo.semmap = SEMMAP; | |
1225 | seminfo.semume = SEMUME; | |
d9a605e4 | 1226 | down_read(&sem_ids(ns).rwsem); |
1da177e4 | 1227 | if (cmd == SEM_INFO) { |
e3893534 KK |
1228 | seminfo.semusz = sem_ids(ns).in_use; |
1229 | seminfo.semaem = ns->used_sems; | |
1da177e4 LT |
1230 | } else { |
1231 | seminfo.semusz = SEMUSZ; | |
1232 | seminfo.semaem = SEMAEM; | |
1233 | } | |
7ca7e564 | 1234 | max_id = ipc_get_maxid(&sem_ids(ns)); |
d9a605e4 | 1235 | up_read(&sem_ids(ns).rwsem); |
46c0a8ca | 1236 | if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) |
1da177e4 | 1237 | return -EFAULT; |
239521f3 | 1238 | return (max_id < 0) ? 0 : max_id; |
1da177e4 | 1239 | } |
4b9fcb0e | 1240 | case IPC_STAT: |
1da177e4 LT |
1241 | case SEM_STAT: |
1242 | { | |
1243 | struct semid64_ds tbuf; | |
16df3674 DB |
1244 | int id = 0; |
1245 | ||
1246 | memset(&tbuf, 0, sizeof(tbuf)); | |
1da177e4 | 1247 | |
941b0304 | 1248 | rcu_read_lock(); |
4b9fcb0e | 1249 | if (cmd == SEM_STAT) { |
16df3674 DB |
1250 | sma = sem_obtain_object(ns, semid); |
1251 | if (IS_ERR(sma)) { | |
1252 | err = PTR_ERR(sma); | |
1253 | goto out_unlock; | |
1254 | } | |
4b9fcb0e PP |
1255 | id = sma->sem_perm.id; |
1256 | } else { | |
16df3674 DB |
1257 | sma = sem_obtain_object_check(ns, semid); |
1258 | if (IS_ERR(sma)) { | |
1259 | err = PTR_ERR(sma); | |
1260 | goto out_unlock; | |
1261 | } | |
4b9fcb0e | 1262 | } |
1da177e4 LT |
1263 | |
1264 | err = -EACCES; | |
b0e77598 | 1265 | if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) |
1da177e4 LT |
1266 | goto out_unlock; |
1267 | ||
1268 | err = security_sem_semctl(sma, cmd); | |
1269 | if (err) | |
1270 | goto out_unlock; | |
1271 | ||
1da177e4 | 1272 | kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); |
d12e1e50 MS |
1273 | tbuf.sem_otime = get_semotime(sma); |
1274 | tbuf.sem_ctime = sma->sem_ctime; | |
1275 | tbuf.sem_nsems = sma->sem_nsems; | |
16df3674 | 1276 | rcu_read_unlock(); |
e1fd1f49 | 1277 | if (copy_semid_to_user(p, &tbuf, version)) |
1da177e4 LT |
1278 | return -EFAULT; |
1279 | return id; | |
1280 | } | |
1281 | default: | |
1282 | return -EINVAL; | |
1283 | } | |
1da177e4 | 1284 | out_unlock: |
16df3674 | 1285 | rcu_read_unlock(); |
1da177e4 LT |
1286 | return err; |
1287 | } | |
1288 | ||
e1fd1f49 AV |
1289 | static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, |
1290 | unsigned long arg) | |
1291 | { | |
1292 | struct sem_undo *un; | |
1293 | struct sem_array *sma; | |
239521f3 | 1294 | struct sem *curr; |
e1fd1f49 | 1295 | int err; |
e1fd1f49 AV |
1296 | struct list_head tasks; |
1297 | int val; | |
1298 | #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) | |
1299 | /* big-endian 64bit */ | |
1300 | val = arg >> 32; | |
1301 | #else | |
1302 | /* 32bit or little-endian 64bit */ | |
1303 | val = arg; | |
1304 | #endif | |
1305 | ||
6062a8dc RR |
1306 | if (val > SEMVMX || val < 0) |
1307 | return -ERANGE; | |
e1fd1f49 AV |
1308 | |
1309 | INIT_LIST_HEAD(&tasks); | |
e1fd1f49 | 1310 | |
6062a8dc RR |
1311 | rcu_read_lock(); |
1312 | sma = sem_obtain_object_check(ns, semid); | |
1313 | if (IS_ERR(sma)) { | |
1314 | rcu_read_unlock(); | |
1315 | return PTR_ERR(sma); | |
1316 | } | |
1317 | ||
1318 | if (semnum < 0 || semnum >= sma->sem_nsems) { | |
1319 | rcu_read_unlock(); | |
1320 | return -EINVAL; | |
1321 | } | |
1322 | ||
1323 | ||
1324 | if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { | |
1325 | rcu_read_unlock(); | |
1326 | return -EACCES; | |
1327 | } | |
e1fd1f49 AV |
1328 | |
1329 | err = security_sem_semctl(sma, SETVAL); | |
6062a8dc RR |
1330 | if (err) { |
1331 | rcu_read_unlock(); | |
1332 | return -EACCES; | |
1333 | } | |
e1fd1f49 | 1334 | |
6062a8dc | 1335 | sem_lock(sma, NULL, -1); |
e1fd1f49 | 1336 | |
0f3d2b01 | 1337 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1338 | sem_unlock(sma, -1); |
1339 | rcu_read_unlock(); | |
1340 | return -EIDRM; | |
1341 | } | |
1342 | ||
e1fd1f49 AV |
1343 | curr = &sma->sem_base[semnum]; |
1344 | ||
cf9d5d78 | 1345 | ipc_assert_locked_object(&sma->sem_perm); |
e1fd1f49 AV |
1346 | list_for_each_entry(un, &sma->list_id, list_id) |
1347 | un->semadj[semnum] = 0; | |
1348 | ||
1349 | curr->semval = val; | |
1350 | curr->sempid = task_tgid_vnr(current); | |
1351 | sma->sem_ctime = get_seconds(); | |
1352 | /* maybe some queued-up processes were waiting for this */ | |
1353 | do_smart_update(sma, NULL, 0, 0, &tasks); | |
6062a8dc | 1354 | sem_unlock(sma, -1); |
6d49dab8 | 1355 | rcu_read_unlock(); |
e1fd1f49 | 1356 | wake_up_sem_queue_do(&tasks); |
6062a8dc | 1357 | return 0; |
e1fd1f49 AV |
1358 | } |
1359 | ||
e3893534 | 1360 | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, |
e1fd1f49 | 1361 | int cmd, void __user *p) |
1da177e4 LT |
1362 | { |
1363 | struct sem_array *sma; | |
239521f3 | 1364 | struct sem *curr; |
16df3674 | 1365 | int err, nsems; |
1da177e4 | 1366 | ushort fast_sem_io[SEMMSL_FAST]; |
239521f3 | 1367 | ushort *sem_io = fast_sem_io; |
0a2b9d4c | 1368 | struct list_head tasks; |
1da177e4 | 1369 | |
16df3674 DB |
1370 | INIT_LIST_HEAD(&tasks); |
1371 | ||
1372 | rcu_read_lock(); | |
1373 | sma = sem_obtain_object_check(ns, semid); | |
1374 | if (IS_ERR(sma)) { | |
1375 | rcu_read_unlock(); | |
023a5355 | 1376 | return PTR_ERR(sma); |
16df3674 | 1377 | } |
1da177e4 LT |
1378 | |
1379 | nsems = sma->sem_nsems; | |
1380 | ||
1da177e4 | 1381 | err = -EACCES; |
c728b9c8 LT |
1382 | if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) |
1383 | goto out_rcu_wakeup; | |
1da177e4 LT |
1384 | |
1385 | err = security_sem_semctl(sma, cmd); | |
c728b9c8 LT |
1386 | if (err) |
1387 | goto out_rcu_wakeup; | |
1da177e4 LT |
1388 | |
1389 | err = -EACCES; | |
1390 | switch (cmd) { | |
1391 | case GETALL: | |
1392 | { | |
e1fd1f49 | 1393 | ushort __user *array = p; |
1da177e4 LT |
1394 | int i; |
1395 | ||
ce857229 | 1396 | sem_lock(sma, NULL, -1); |
0f3d2b01 | 1397 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1398 | err = -EIDRM; |
1399 | goto out_unlock; | |
1400 | } | |
239521f3 | 1401 | if (nsems > SEMMSL_FAST) { |
ce857229 | 1402 | if (!ipc_rcu_getref(sma)) { |
ce857229 | 1403 | err = -EIDRM; |
6e224f94 | 1404 | goto out_unlock; |
ce857229 AV |
1405 | } |
1406 | sem_unlock(sma, -1); | |
6d49dab8 | 1407 | rcu_read_unlock(); |
1da177e4 | 1408 | sem_io = ipc_alloc(sizeof(ushort)*nsems); |
239521f3 | 1409 | if (sem_io == NULL) { |
9b24fef9 | 1410 | ipc_rcu_putref(sma, sem_rcu_free); |
1da177e4 LT |
1411 | return -ENOMEM; |
1412 | } | |
1413 | ||
4091fd94 | 1414 | rcu_read_lock(); |
6ff37972 | 1415 | sem_lock_and_putref(sma); |
0f3d2b01 | 1416 | if (!ipc_valid_object(&sma->sem_perm)) { |
1da177e4 | 1417 | err = -EIDRM; |
6e224f94 | 1418 | goto out_unlock; |
1da177e4 | 1419 | } |
ce857229 | 1420 | } |
1da177e4 LT |
1421 | for (i = 0; i < sma->sem_nsems; i++) |
1422 | sem_io[i] = sma->sem_base[i].semval; | |
6062a8dc | 1423 | sem_unlock(sma, -1); |
6d49dab8 | 1424 | rcu_read_unlock(); |
1da177e4 | 1425 | err = 0; |
239521f3 | 1426 | if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) |
1da177e4 LT |
1427 | err = -EFAULT; |
1428 | goto out_free; | |
1429 | } | |
1430 | case SETALL: | |
1431 | { | |
1432 | int i; | |
1433 | struct sem_undo *un; | |
1434 | ||
6062a8dc | 1435 | if (!ipc_rcu_getref(sma)) { |
6e224f94 MS |
1436 | err = -EIDRM; |
1437 | goto out_rcu_wakeup; | |
6062a8dc | 1438 | } |
16df3674 | 1439 | rcu_read_unlock(); |
1da177e4 | 1440 | |
239521f3 | 1441 | if (nsems > SEMMSL_FAST) { |
1da177e4 | 1442 | sem_io = ipc_alloc(sizeof(ushort)*nsems); |
239521f3 | 1443 | if (sem_io == NULL) { |
9b24fef9 | 1444 | ipc_rcu_putref(sma, sem_rcu_free); |
1da177e4 LT |
1445 | return -ENOMEM; |
1446 | } | |
1447 | } | |
1448 | ||
239521f3 | 1449 | if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { |
9b24fef9 | 1450 | ipc_rcu_putref(sma, sem_rcu_free); |
1da177e4 LT |
1451 | err = -EFAULT; |
1452 | goto out_free; | |
1453 | } | |
1454 | ||
1455 | for (i = 0; i < nsems; i++) { | |
1456 | if (sem_io[i] > SEMVMX) { | |
9b24fef9 | 1457 | ipc_rcu_putref(sma, sem_rcu_free); |
1da177e4 LT |
1458 | err = -ERANGE; |
1459 | goto out_free; | |
1460 | } | |
1461 | } | |
4091fd94 | 1462 | rcu_read_lock(); |
6ff37972 | 1463 | sem_lock_and_putref(sma); |
0f3d2b01 | 1464 | if (!ipc_valid_object(&sma->sem_perm)) { |
1da177e4 | 1465 | err = -EIDRM; |
6e224f94 | 1466 | goto out_unlock; |
1da177e4 LT |
1467 | } |
1468 | ||
a5f4db87 | 1469 | for (i = 0; i < nsems; i++) { |
1da177e4 | 1470 | sma->sem_base[i].semval = sem_io[i]; |
a5f4db87 DB |
1471 | sma->sem_base[i].sempid = task_tgid_vnr(current); |
1472 | } | |
4daa28f6 | 1473 | |
cf9d5d78 | 1474 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 | 1475 | list_for_each_entry(un, &sma->list_id, list_id) { |
1da177e4 LT |
1476 | for (i = 0; i < nsems; i++) |
1477 | un->semadj[i] = 0; | |
4daa28f6 | 1478 | } |
1da177e4 LT |
1479 | sma->sem_ctime = get_seconds(); |
1480 | /* maybe some queued-up processes were waiting for this */ | |
0a2b9d4c | 1481 | do_smart_update(sma, NULL, 0, 0, &tasks); |
1da177e4 LT |
1482 | err = 0; |
1483 | goto out_unlock; | |
1484 | } | |
e1fd1f49 | 1485 | /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ |
1da177e4 LT |
1486 | } |
1487 | err = -EINVAL; | |
c728b9c8 LT |
1488 | if (semnum < 0 || semnum >= nsems) |
1489 | goto out_rcu_wakeup; | |
1da177e4 | 1490 | |
6062a8dc | 1491 | sem_lock(sma, NULL, -1); |
0f3d2b01 | 1492 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1493 | err = -EIDRM; |
1494 | goto out_unlock; | |
1495 | } | |
1da177e4 LT |
1496 | curr = &sma->sem_base[semnum]; |
1497 | ||
1498 | switch (cmd) { | |
1499 | case GETVAL: | |
1500 | err = curr->semval; | |
1501 | goto out_unlock; | |
1502 | case GETPID: | |
1503 | err = curr->sempid; | |
1504 | goto out_unlock; | |
1505 | case GETNCNT: | |
2f2ed41d | 1506 | err = count_semcnt(sma, semnum, 0); |
1da177e4 LT |
1507 | goto out_unlock; |
1508 | case GETZCNT: | |
2f2ed41d | 1509 | err = count_semcnt(sma, semnum, 1); |
1da177e4 | 1510 | goto out_unlock; |
1da177e4 | 1511 | } |
16df3674 | 1512 | |
1da177e4 | 1513 | out_unlock: |
6062a8dc | 1514 | sem_unlock(sma, -1); |
c728b9c8 | 1515 | out_rcu_wakeup: |
6d49dab8 | 1516 | rcu_read_unlock(); |
0a2b9d4c | 1517 | wake_up_sem_queue_do(&tasks); |
1da177e4 | 1518 | out_free: |
239521f3 | 1519 | if (sem_io != fast_sem_io) |
1d5cfdb0 | 1520 | ipc_free(sem_io); |
1da177e4 LT |
1521 | return err; |
1522 | } | |
1523 | ||
016d7132 PP |
1524 | static inline unsigned long |
1525 | copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) | |
1da177e4 | 1526 | { |
239521f3 | 1527 | switch (version) { |
1da177e4 | 1528 | case IPC_64: |
016d7132 | 1529 | if (copy_from_user(out, buf, sizeof(*out))) |
1da177e4 | 1530 | return -EFAULT; |
1da177e4 | 1531 | return 0; |
1da177e4 LT |
1532 | case IPC_OLD: |
1533 | { | |
1534 | struct semid_ds tbuf_old; | |
1535 | ||
239521f3 | 1536 | if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) |
1da177e4 LT |
1537 | return -EFAULT; |
1538 | ||
016d7132 PP |
1539 | out->sem_perm.uid = tbuf_old.sem_perm.uid; |
1540 | out->sem_perm.gid = tbuf_old.sem_perm.gid; | |
1541 | out->sem_perm.mode = tbuf_old.sem_perm.mode; | |
1da177e4 LT |
1542 | |
1543 | return 0; | |
1544 | } | |
1545 | default: | |
1546 | return -EINVAL; | |
1547 | } | |
1548 | } | |
1549 | ||
522bb2a2 | 1550 | /* |
d9a605e4 | 1551 | * This function handles some semctl commands which require the rwsem |
522bb2a2 | 1552 | * to be held in write mode. |
d9a605e4 | 1553 | * NOTE: no locks must be held, the rwsem is taken inside this function. |
522bb2a2 | 1554 | */ |
21a4826a | 1555 | static int semctl_down(struct ipc_namespace *ns, int semid, |
e1fd1f49 | 1556 | int cmd, int version, void __user *p) |
1da177e4 LT |
1557 | { |
1558 | struct sem_array *sma; | |
1559 | int err; | |
016d7132 | 1560 | struct semid64_ds semid64; |
1da177e4 LT |
1561 | struct kern_ipc_perm *ipcp; |
1562 | ||
239521f3 | 1563 | if (cmd == IPC_SET) { |
e1fd1f49 | 1564 | if (copy_semid_from_user(&semid64, p, version)) |
1da177e4 | 1565 | return -EFAULT; |
1da177e4 | 1566 | } |
073115d6 | 1567 | |
d9a605e4 | 1568 | down_write(&sem_ids(ns).rwsem); |
7b4cc5d8 DB |
1569 | rcu_read_lock(); |
1570 | ||
16df3674 DB |
1571 | ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, |
1572 | &semid64.sem_perm, 0); | |
7b4cc5d8 DB |
1573 | if (IS_ERR(ipcp)) { |
1574 | err = PTR_ERR(ipcp); | |
7b4cc5d8 DB |
1575 | goto out_unlock1; |
1576 | } | |
073115d6 | 1577 | |
a5f75e7f | 1578 | sma = container_of(ipcp, struct sem_array, sem_perm); |
1da177e4 LT |
1579 | |
1580 | err = security_sem_semctl(sma, cmd); | |
7b4cc5d8 DB |
1581 | if (err) |
1582 | goto out_unlock1; | |
1da177e4 | 1583 | |
7b4cc5d8 | 1584 | switch (cmd) { |
1da177e4 | 1585 | case IPC_RMID: |
6062a8dc | 1586 | sem_lock(sma, NULL, -1); |
7b4cc5d8 | 1587 | /* freeary unlocks the ipc object and rcu */ |
01b8b07a | 1588 | freeary(ns, ipcp); |
522bb2a2 | 1589 | goto out_up; |
1da177e4 | 1590 | case IPC_SET: |
6062a8dc | 1591 | sem_lock(sma, NULL, -1); |
1efdb69b EB |
1592 | err = ipc_update_perm(&semid64.sem_perm, ipcp); |
1593 | if (err) | |
7b4cc5d8 | 1594 | goto out_unlock0; |
1da177e4 | 1595 | sma->sem_ctime = get_seconds(); |
1da177e4 LT |
1596 | break; |
1597 | default: | |
1da177e4 | 1598 | err = -EINVAL; |
7b4cc5d8 | 1599 | goto out_unlock1; |
1da177e4 | 1600 | } |
1da177e4 | 1601 | |
7b4cc5d8 | 1602 | out_unlock0: |
6062a8dc | 1603 | sem_unlock(sma, -1); |
7b4cc5d8 | 1604 | out_unlock1: |
6d49dab8 | 1605 | rcu_read_unlock(); |
522bb2a2 | 1606 | out_up: |
d9a605e4 | 1607 | up_write(&sem_ids(ns).rwsem); |
1da177e4 LT |
1608 | return err; |
1609 | } | |
1610 | ||
e1fd1f49 | 1611 | SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) |
1da177e4 | 1612 | { |
1da177e4 | 1613 | int version; |
e3893534 | 1614 | struct ipc_namespace *ns; |
e1fd1f49 | 1615 | void __user *p = (void __user *)arg; |
1da177e4 LT |
1616 | |
1617 | if (semid < 0) | |
1618 | return -EINVAL; | |
1619 | ||
1620 | version = ipc_parse_version(&cmd); | |
e3893534 | 1621 | ns = current->nsproxy->ipc_ns; |
1da177e4 | 1622 | |
239521f3 | 1623 | switch (cmd) { |
1da177e4 LT |
1624 | case IPC_INFO: |
1625 | case SEM_INFO: | |
4b9fcb0e | 1626 | case IPC_STAT: |
1da177e4 | 1627 | case SEM_STAT: |
e1fd1f49 | 1628 | return semctl_nolock(ns, semid, cmd, version, p); |
1da177e4 LT |
1629 | case GETALL: |
1630 | case GETVAL: | |
1631 | case GETPID: | |
1632 | case GETNCNT: | |
1633 | case GETZCNT: | |
1da177e4 | 1634 | case SETALL: |
e1fd1f49 AV |
1635 | return semctl_main(ns, semid, semnum, cmd, p); |
1636 | case SETVAL: | |
1637 | return semctl_setval(ns, semid, semnum, arg); | |
1da177e4 LT |
1638 | case IPC_RMID: |
1639 | case IPC_SET: | |
e1fd1f49 | 1640 | return semctl_down(ns, semid, cmd, version, p); |
1da177e4 LT |
1641 | default: |
1642 | return -EINVAL; | |
1643 | } | |
1644 | } | |
1645 | ||
1da177e4 LT |
1646 | /* If the task doesn't already have a undo_list, then allocate one |
1647 | * here. We guarantee there is only one thread using this undo list, | |
1648 | * and current is THE ONE | |
1649 | * | |
1650 | * If this allocation and assignment succeeds, but later | |
1651 | * portions of this code fail, there is no need to free the sem_undo_list. | |
1652 | * Just let it stay associated with the task, and it'll be freed later | |
1653 | * at exit time. | |
1654 | * | |
1655 | * This can block, so callers must hold no locks. | |
1656 | */ | |
1657 | static inline int get_undo_list(struct sem_undo_list **undo_listp) | |
1658 | { | |
1659 | struct sem_undo_list *undo_list; | |
1da177e4 LT |
1660 | |
1661 | undo_list = current->sysvsem.undo_list; | |
1662 | if (!undo_list) { | |
2453a306 | 1663 | undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); |
1da177e4 LT |
1664 | if (undo_list == NULL) |
1665 | return -ENOMEM; | |
00a5dfdb | 1666 | spin_lock_init(&undo_list->lock); |
1da177e4 | 1667 | atomic_set(&undo_list->refcnt, 1); |
4daa28f6 MS |
1668 | INIT_LIST_HEAD(&undo_list->list_proc); |
1669 | ||
1da177e4 LT |
1670 | current->sysvsem.undo_list = undo_list; |
1671 | } | |
1672 | *undo_listp = undo_list; | |
1673 | return 0; | |
1674 | } | |
1675 | ||
bf17bb71 | 1676 | static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) |
1da177e4 | 1677 | { |
bf17bb71 | 1678 | struct sem_undo *un; |
4daa28f6 | 1679 | |
bf17bb71 NP |
1680 | list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { |
1681 | if (un->semid == semid) | |
1682 | return un; | |
1da177e4 | 1683 | } |
4daa28f6 | 1684 | return NULL; |
1da177e4 LT |
1685 | } |
1686 | ||
bf17bb71 NP |
1687 | static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) |
1688 | { | |
1689 | struct sem_undo *un; | |
1690 | ||
239521f3 | 1691 | assert_spin_locked(&ulp->lock); |
bf17bb71 NP |
1692 | |
1693 | un = __lookup_undo(ulp, semid); | |
1694 | if (un) { | |
1695 | list_del_rcu(&un->list_proc); | |
1696 | list_add_rcu(&un->list_proc, &ulp->list_proc); | |
1697 | } | |
1698 | return un; | |
1699 | } | |
1700 | ||
4daa28f6 | 1701 | /** |
8001c858 | 1702 | * find_alloc_undo - lookup (and if not present create) undo array |
4daa28f6 MS |
1703 | * @ns: namespace |
1704 | * @semid: semaphore array id | |
1705 | * | |
1706 | * The function looks up (and if not present creates) the undo structure. | |
1707 | * The size of the undo structure depends on the size of the semaphore | |
1708 | * array, thus the alloc path is not that straightforward. | |
380af1b3 MS |
1709 | * Lifetime-rules: sem_undo is rcu-protected, on success, the function |
1710 | * performs a rcu_read_lock(). | |
4daa28f6 MS |
1711 | */ |
1712 | static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) | |
1da177e4 LT |
1713 | { |
1714 | struct sem_array *sma; | |
1715 | struct sem_undo_list *ulp; | |
1716 | struct sem_undo *un, *new; | |
6062a8dc | 1717 | int nsems, error; |
1da177e4 LT |
1718 | |
1719 | error = get_undo_list(&ulp); | |
1720 | if (error) | |
1721 | return ERR_PTR(error); | |
1722 | ||
380af1b3 | 1723 | rcu_read_lock(); |
c530c6ac | 1724 | spin_lock(&ulp->lock); |
1da177e4 | 1725 | un = lookup_undo(ulp, semid); |
c530c6ac | 1726 | spin_unlock(&ulp->lock); |
239521f3 | 1727 | if (likely(un != NULL)) |
1da177e4 LT |
1728 | goto out; |
1729 | ||
1730 | /* no undo structure around - allocate one. */ | |
4daa28f6 | 1731 | /* step 1: figure out the size of the semaphore array */ |
16df3674 DB |
1732 | sma = sem_obtain_object_check(ns, semid); |
1733 | if (IS_ERR(sma)) { | |
1734 | rcu_read_unlock(); | |
4de85cd6 | 1735 | return ERR_CAST(sma); |
16df3674 | 1736 | } |
023a5355 | 1737 | |
1da177e4 | 1738 | nsems = sma->sem_nsems; |
6062a8dc RR |
1739 | if (!ipc_rcu_getref(sma)) { |
1740 | rcu_read_unlock(); | |
1741 | un = ERR_PTR(-EIDRM); | |
1742 | goto out; | |
1743 | } | |
16df3674 | 1744 | rcu_read_unlock(); |
1da177e4 | 1745 | |
4daa28f6 | 1746 | /* step 2: allocate new undo structure */ |
4668edc3 | 1747 | new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); |
1da177e4 | 1748 | if (!new) { |
9b24fef9 | 1749 | ipc_rcu_putref(sma, sem_rcu_free); |
1da177e4 LT |
1750 | return ERR_PTR(-ENOMEM); |
1751 | } | |
1da177e4 | 1752 | |
380af1b3 | 1753 | /* step 3: Acquire the lock on semaphore array */ |
4091fd94 | 1754 | rcu_read_lock(); |
6ff37972 | 1755 | sem_lock_and_putref(sma); |
0f3d2b01 | 1756 | if (!ipc_valid_object(&sma->sem_perm)) { |
6062a8dc | 1757 | sem_unlock(sma, -1); |
6d49dab8 | 1758 | rcu_read_unlock(); |
1da177e4 LT |
1759 | kfree(new); |
1760 | un = ERR_PTR(-EIDRM); | |
1761 | goto out; | |
1762 | } | |
380af1b3 MS |
1763 | spin_lock(&ulp->lock); |
1764 | ||
1765 | /* | |
1766 | * step 4: check for races: did someone else allocate the undo struct? | |
1767 | */ | |
1768 | un = lookup_undo(ulp, semid); | |
1769 | if (un) { | |
1770 | kfree(new); | |
1771 | goto success; | |
1772 | } | |
4daa28f6 MS |
1773 | /* step 5: initialize & link new undo structure */ |
1774 | new->semadj = (short *) &new[1]; | |
380af1b3 | 1775 | new->ulp = ulp; |
4daa28f6 MS |
1776 | new->semid = semid; |
1777 | assert_spin_locked(&ulp->lock); | |
380af1b3 | 1778 | list_add_rcu(&new->list_proc, &ulp->list_proc); |
cf9d5d78 | 1779 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 | 1780 | list_add(&new->list_id, &sma->list_id); |
380af1b3 | 1781 | un = new; |
4daa28f6 | 1782 | |
380af1b3 | 1783 | success: |
c530c6ac | 1784 | spin_unlock(&ulp->lock); |
6062a8dc | 1785 | sem_unlock(sma, -1); |
1da177e4 LT |
1786 | out: |
1787 | return un; | |
1788 | } | |
1789 | ||
c61284e9 MS |
1790 | |
1791 | /** | |
8001c858 | 1792 | * get_queue_result - retrieve the result code from sem_queue |
c61284e9 MS |
1793 | * @q: Pointer to queue structure |
1794 | * | |
1795 | * Retrieve the return code from the pending queue. If IN_WAKEUP is found in | |
1796 | * q->status, then we must loop until the value is replaced with the final | |
1797 | * value: This may happen if a task is woken up by an unrelated event (e.g. | |
1798 | * signal) and in parallel the task is woken up by another task because it got | |
1799 | * the requested semaphores. | |
1800 | * | |
1801 | * The function can be called with or without holding the semaphore spinlock. | |
1802 | */ | |
1803 | static int get_queue_result(struct sem_queue *q) | |
1804 | { | |
1805 | int error; | |
1806 | ||
1807 | error = q->status; | |
1808 | while (unlikely(error == IN_WAKEUP)) { | |
1809 | cpu_relax(); | |
1810 | error = q->status; | |
1811 | } | |
1812 | ||
1813 | return error; | |
1814 | } | |
1815 | ||
d5460c99 HC |
1816 | SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, |
1817 | unsigned, nsops, const struct timespec __user *, timeout) | |
1da177e4 LT |
1818 | { |
1819 | int error = -EINVAL; | |
1820 | struct sem_array *sma; | |
1821 | struct sembuf fast_sops[SEMOPM_FAST]; | |
239521f3 | 1822 | struct sembuf *sops = fast_sops, *sop; |
1da177e4 | 1823 | struct sem_undo *un; |
6062a8dc | 1824 | int undos = 0, alter = 0, max, locknum; |
1da177e4 LT |
1825 | struct sem_queue queue; |
1826 | unsigned long jiffies_left = 0; | |
e3893534 | 1827 | struct ipc_namespace *ns; |
0a2b9d4c | 1828 | struct list_head tasks; |
e3893534 KK |
1829 | |
1830 | ns = current->nsproxy->ipc_ns; | |
1da177e4 LT |
1831 | |
1832 | if (nsops < 1 || semid < 0) | |
1833 | return -EINVAL; | |
e3893534 | 1834 | if (nsops > ns->sc_semopm) |
1da177e4 | 1835 | return -E2BIG; |
239521f3 MS |
1836 | if (nsops > SEMOPM_FAST) { |
1837 | sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL); | |
1838 | if (sops == NULL) | |
1da177e4 LT |
1839 | return -ENOMEM; |
1840 | } | |
239521f3 MS |
1841 | if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { |
1842 | error = -EFAULT; | |
1da177e4 LT |
1843 | goto out_free; |
1844 | } | |
1845 | if (timeout) { | |
1846 | struct timespec _timeout; | |
1847 | if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { | |
1848 | error = -EFAULT; | |
1849 | goto out_free; | |
1850 | } | |
1851 | if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || | |
1852 | _timeout.tv_nsec >= 1000000000L) { | |
1853 | error = -EINVAL; | |
1854 | goto out_free; | |
1855 | } | |
1856 | jiffies_left = timespec_to_jiffies(&_timeout); | |
1857 | } | |
1858 | max = 0; | |
1859 | for (sop = sops; sop < sops + nsops; sop++) { | |
1860 | if (sop->sem_num >= max) | |
1861 | max = sop->sem_num; | |
1862 | if (sop->sem_flg & SEM_UNDO) | |
b78755ab MS |
1863 | undos = 1; |
1864 | if (sop->sem_op != 0) | |
1da177e4 LT |
1865 | alter = 1; |
1866 | } | |
1da177e4 | 1867 | |
6062a8dc RR |
1868 | INIT_LIST_HEAD(&tasks); |
1869 | ||
1da177e4 | 1870 | if (undos) { |
6062a8dc | 1871 | /* On success, find_alloc_undo takes the rcu_read_lock */ |
4daa28f6 | 1872 | un = find_alloc_undo(ns, semid); |
1da177e4 LT |
1873 | if (IS_ERR(un)) { |
1874 | error = PTR_ERR(un); | |
1875 | goto out_free; | |
1876 | } | |
6062a8dc | 1877 | } else { |
1da177e4 | 1878 | un = NULL; |
6062a8dc RR |
1879 | rcu_read_lock(); |
1880 | } | |
1da177e4 | 1881 | |
16df3674 | 1882 | sma = sem_obtain_object_check(ns, semid); |
023a5355 | 1883 | if (IS_ERR(sma)) { |
6062a8dc | 1884 | rcu_read_unlock(); |
023a5355 | 1885 | error = PTR_ERR(sma); |
1da177e4 | 1886 | goto out_free; |
023a5355 ND |
1887 | } |
1888 | ||
16df3674 | 1889 | error = -EFBIG; |
c728b9c8 LT |
1890 | if (max >= sma->sem_nsems) |
1891 | goto out_rcu_wakeup; | |
16df3674 DB |
1892 | |
1893 | error = -EACCES; | |
c728b9c8 LT |
1894 | if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) |
1895 | goto out_rcu_wakeup; | |
16df3674 DB |
1896 | |
1897 | error = security_sem_semop(sma, sops, nsops, alter); | |
c728b9c8 LT |
1898 | if (error) |
1899 | goto out_rcu_wakeup; | |
16df3674 | 1900 | |
6e224f94 MS |
1901 | error = -EIDRM; |
1902 | locknum = sem_lock(sma, sops, nsops); | |
0f3d2b01 RA |
1903 | /* |
1904 | * We eventually might perform the following check in a lockless | |
1905 | * fashion, considering ipc_valid_object() locking constraints. | |
1906 | * If nsops == 1 and there is no contention for sem_perm.lock, then | |
1907 | * only a per-semaphore lock is held and it's OK to proceed with the | |
1908 | * check below. More details on the fine grained locking scheme | |
1909 | * entangled here and why it's RMID race safe on comments at sem_lock() | |
1910 | */ | |
1911 | if (!ipc_valid_object(&sma->sem_perm)) | |
6e224f94 | 1912 | goto out_unlock_free; |
1da177e4 | 1913 | /* |
4daa28f6 | 1914 | * semid identifiers are not unique - find_alloc_undo may have |
1da177e4 | 1915 | * allocated an undo structure, it was invalidated by an RMID |
4daa28f6 | 1916 | * and now a new array with received the same id. Check and fail. |
25985edc | 1917 | * This case can be detected checking un->semid. The existence of |
380af1b3 | 1918 | * "un" itself is guaranteed by rcu. |
1da177e4 | 1919 | */ |
6062a8dc RR |
1920 | if (un && un->semid == -1) |
1921 | goto out_unlock_free; | |
4daa28f6 | 1922 | |
d198cd6d MS |
1923 | queue.sops = sops; |
1924 | queue.nsops = nsops; | |
1925 | queue.undo = un; | |
1926 | queue.pid = task_tgid_vnr(current); | |
1927 | queue.alter = alter; | |
1928 | ||
1929 | error = perform_atomic_semop(sma, &queue); | |
0e8c6656 MS |
1930 | if (error == 0) { |
1931 | /* If the operation was successful, then do | |
1932 | * the required updates. | |
1933 | */ | |
1934 | if (alter) | |
0a2b9d4c | 1935 | do_smart_update(sma, sops, nsops, 1, &tasks); |
0e8c6656 MS |
1936 | else |
1937 | set_semotime(sma, sops); | |
1da177e4 | 1938 | } |
0e8c6656 MS |
1939 | if (error <= 0) |
1940 | goto out_unlock_free; | |
1da177e4 LT |
1941 | |
1942 | /* We need to sleep on this operation, so we put the current | |
1943 | * task into the pending queue and go to sleep. | |
1944 | */ | |
46c0a8ca | 1945 | |
b97e820f MS |
1946 | if (nsops == 1) { |
1947 | struct sem *curr; | |
1948 | curr = &sma->sem_base[sops->sem_num]; | |
1949 | ||
f269f40a MS |
1950 | if (alter) { |
1951 | if (sma->complex_count) { | |
1952 | list_add_tail(&queue.list, | |
1953 | &sma->pending_alter); | |
1954 | } else { | |
1955 | ||
1956 | list_add_tail(&queue.list, | |
1957 | &curr->pending_alter); | |
1958 | } | |
1959 | } else { | |
1a82e9e1 | 1960 | list_add_tail(&queue.list, &curr->pending_const); |
f269f40a | 1961 | } |
b97e820f | 1962 | } else { |
f269f40a MS |
1963 | if (!sma->complex_count) |
1964 | merge_queues(sma); | |
1965 | ||
9f1bc2c9 | 1966 | if (alter) |
1a82e9e1 | 1967 | list_add_tail(&queue.list, &sma->pending_alter); |
9f1bc2c9 | 1968 | else |
1a82e9e1 MS |
1969 | list_add_tail(&queue.list, &sma->pending_const); |
1970 | ||
b97e820f MS |
1971 | sma->complex_count++; |
1972 | } | |
1973 | ||
1da177e4 LT |
1974 | queue.status = -EINTR; |
1975 | queue.sleeper = current; | |
0b0577f6 MS |
1976 | |
1977 | sleep_again: | |
52644c9a | 1978 | __set_current_state(TASK_INTERRUPTIBLE); |
6062a8dc | 1979 | sem_unlock(sma, locknum); |
6d49dab8 | 1980 | rcu_read_unlock(); |
1da177e4 LT |
1981 | |
1982 | if (timeout) | |
1983 | jiffies_left = schedule_timeout(jiffies_left); | |
1984 | else | |
1985 | schedule(); | |
1986 | ||
c61284e9 | 1987 | error = get_queue_result(&queue); |
1da177e4 LT |
1988 | |
1989 | if (error != -EINTR) { | |
1990 | /* fast path: update_queue already obtained all requested | |
c61284e9 MS |
1991 | * resources. |
1992 | * Perform a smp_mb(): User space could assume that semop() | |
1993 | * is a memory barrier: Without the mb(), the cpu could | |
1994 | * speculatively read in user space stale data that was | |
1995 | * overwritten by the previous owner of the semaphore. | |
1996 | */ | |
1997 | smp_mb(); | |
1998 | ||
1da177e4 LT |
1999 | goto out_free; |
2000 | } | |
2001 | ||
321310ce | 2002 | rcu_read_lock(); |
6062a8dc | 2003 | sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); |
d694ad62 MS |
2004 | |
2005 | /* | |
2006 | * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. | |
2007 | */ | |
2008 | error = get_queue_result(&queue); | |
2009 | ||
2010 | /* | |
2011 | * Array removed? If yes, leave without sem_unlock(). | |
2012 | */ | |
023a5355 | 2013 | if (IS_ERR(sma)) { |
321310ce | 2014 | rcu_read_unlock(); |
1da177e4 LT |
2015 | goto out_free; |
2016 | } | |
2017 | ||
c61284e9 | 2018 | |
1da177e4 | 2019 | /* |
d694ad62 MS |
2020 | * If queue.status != -EINTR we are woken up by another process. |
2021 | * Leave without unlink_queue(), but with sem_unlock(). | |
1da177e4 | 2022 | */ |
3ab08fe2 | 2023 | if (error != -EINTR) |
1da177e4 | 2024 | goto out_unlock_free; |
1da177e4 LT |
2025 | |
2026 | /* | |
2027 | * If an interrupt occurred we have to clean up the queue | |
2028 | */ | |
2029 | if (timeout && jiffies_left == 0) | |
2030 | error = -EAGAIN; | |
0b0577f6 MS |
2031 | |
2032 | /* | |
2033 | * If the wakeup was spurious, just retry | |
2034 | */ | |
2035 | if (error == -EINTR && !signal_pending(current)) | |
2036 | goto sleep_again; | |
2037 | ||
b97e820f | 2038 | unlink_queue(sma, &queue); |
1da177e4 LT |
2039 | |
2040 | out_unlock_free: | |
6062a8dc | 2041 | sem_unlock(sma, locknum); |
c728b9c8 | 2042 | out_rcu_wakeup: |
6d49dab8 | 2043 | rcu_read_unlock(); |
0a2b9d4c | 2044 | wake_up_sem_queue_do(&tasks); |
1da177e4 | 2045 | out_free: |
239521f3 | 2046 | if (sops != fast_sops) |
1da177e4 LT |
2047 | kfree(sops); |
2048 | return error; | |
2049 | } | |
2050 | ||
d5460c99 HC |
2051 | SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, |
2052 | unsigned, nsops) | |
1da177e4 LT |
2053 | { |
2054 | return sys_semtimedop(semid, tsops, nsops, NULL); | |
2055 | } | |
2056 | ||
2057 | /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between | |
2058 | * parent and child tasks. | |
1da177e4 LT |
2059 | */ |
2060 | ||
2061 | int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) | |
2062 | { | |
2063 | struct sem_undo_list *undo_list; | |
2064 | int error; | |
2065 | ||
2066 | if (clone_flags & CLONE_SYSVSEM) { | |
2067 | error = get_undo_list(&undo_list); | |
2068 | if (error) | |
2069 | return error; | |
1da177e4 LT |
2070 | atomic_inc(&undo_list->refcnt); |
2071 | tsk->sysvsem.undo_list = undo_list; | |
46c0a8ca | 2072 | } else |
1da177e4 LT |
2073 | tsk->sysvsem.undo_list = NULL; |
2074 | ||
2075 | return 0; | |
2076 | } | |
2077 | ||
2078 | /* | |
2079 | * add semadj values to semaphores, free undo structures. | |
2080 | * undo structures are not freed when semaphore arrays are destroyed | |
2081 | * so some of them may be out of date. | |
2082 | * IMPLEMENTATION NOTE: There is some confusion over whether the | |
2083 | * set of adjustments that needs to be done should be done in an atomic | |
2084 | * manner or not. That is, if we are attempting to decrement the semval | |
2085 | * should we queue up and wait until we can do so legally? | |
2086 | * The original implementation attempted to do this (queue and wait). | |
2087 | * The current implementation does not do so. The POSIX standard | |
2088 | * and SVID should be consulted to determine what behavior is mandated. | |
2089 | */ | |
2090 | void exit_sem(struct task_struct *tsk) | |
2091 | { | |
4daa28f6 | 2092 | struct sem_undo_list *ulp; |
1da177e4 | 2093 | |
4daa28f6 MS |
2094 | ulp = tsk->sysvsem.undo_list; |
2095 | if (!ulp) | |
1da177e4 | 2096 | return; |
9edff4ab | 2097 | tsk->sysvsem.undo_list = NULL; |
1da177e4 | 2098 | |
4daa28f6 | 2099 | if (!atomic_dec_and_test(&ulp->refcnt)) |
1da177e4 LT |
2100 | return; |
2101 | ||
380af1b3 | 2102 | for (;;) { |
1da177e4 | 2103 | struct sem_array *sma; |
380af1b3 | 2104 | struct sem_undo *un; |
0a2b9d4c | 2105 | struct list_head tasks; |
6062a8dc | 2106 | int semid, i; |
4daa28f6 | 2107 | |
2a1613a5 NB |
2108 | cond_resched(); |
2109 | ||
380af1b3 | 2110 | rcu_read_lock(); |
05725f7e JP |
2111 | un = list_entry_rcu(ulp->list_proc.next, |
2112 | struct sem_undo, list_proc); | |
602b8593 HK |
2113 | if (&un->list_proc == &ulp->list_proc) { |
2114 | /* | |
2115 | * We must wait for freeary() before freeing this ulp, | |
2116 | * in case we raced with last sem_undo. There is a small | |
2117 | * possibility where we exit while freeary() didn't | |
2118 | * finish unlocking sem_undo_list. | |
2119 | */ | |
2120 | spin_unlock_wait(&ulp->lock); | |
2121 | rcu_read_unlock(); | |
2122 | break; | |
2123 | } | |
2124 | spin_lock(&ulp->lock); | |
2125 | semid = un->semid; | |
2126 | spin_unlock(&ulp->lock); | |
4daa28f6 | 2127 | |
602b8593 | 2128 | /* exit_sem raced with IPC_RMID, nothing to do */ |
6062a8dc RR |
2129 | if (semid == -1) { |
2130 | rcu_read_unlock(); | |
602b8593 | 2131 | continue; |
6062a8dc | 2132 | } |
1da177e4 | 2133 | |
602b8593 | 2134 | sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); |
380af1b3 | 2135 | /* exit_sem raced with IPC_RMID, nothing to do */ |
6062a8dc RR |
2136 | if (IS_ERR(sma)) { |
2137 | rcu_read_unlock(); | |
380af1b3 | 2138 | continue; |
6062a8dc | 2139 | } |
1da177e4 | 2140 | |
6062a8dc | 2141 | sem_lock(sma, NULL, -1); |
6e224f94 | 2142 | /* exit_sem raced with IPC_RMID, nothing to do */ |
0f3d2b01 | 2143 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
2144 | sem_unlock(sma, -1); |
2145 | rcu_read_unlock(); | |
2146 | continue; | |
2147 | } | |
bf17bb71 | 2148 | un = __lookup_undo(ulp, semid); |
380af1b3 MS |
2149 | if (un == NULL) { |
2150 | /* exit_sem raced with IPC_RMID+semget() that created | |
2151 | * exactly the same semid. Nothing to do. | |
2152 | */ | |
6062a8dc | 2153 | sem_unlock(sma, -1); |
6d49dab8 | 2154 | rcu_read_unlock(); |
380af1b3 MS |
2155 | continue; |
2156 | } | |
2157 | ||
2158 | /* remove un from the linked lists */ | |
cf9d5d78 | 2159 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 MS |
2160 | list_del(&un->list_id); |
2161 | ||
a9795584 HK |
2162 | /* we are the last process using this ulp, acquiring ulp->lock |
2163 | * isn't required. Besides that, we are also protected against | |
2164 | * IPC_RMID as we hold sma->sem_perm lock now | |
2165 | */ | |
380af1b3 | 2166 | list_del_rcu(&un->list_proc); |
380af1b3 | 2167 | |
4daa28f6 MS |
2168 | /* perform adjustments registered in un */ |
2169 | for (i = 0; i < sma->sem_nsems; i++) { | |
239521f3 | 2170 | struct sem *semaphore = &sma->sem_base[i]; |
4daa28f6 MS |
2171 | if (un->semadj[i]) { |
2172 | semaphore->semval += un->semadj[i]; | |
1da177e4 LT |
2173 | /* |
2174 | * Range checks of the new semaphore value, | |
2175 | * not defined by sus: | |
2176 | * - Some unices ignore the undo entirely | |
2177 | * (e.g. HP UX 11i 11.22, Tru64 V5.1) | |
2178 | * - some cap the value (e.g. FreeBSD caps | |
2179 | * at 0, but doesn't enforce SEMVMX) | |
2180 | * | |
2181 | * Linux caps the semaphore value, both at 0 | |
2182 | * and at SEMVMX. | |
2183 | * | |
239521f3 | 2184 | * Manfred <[email protected]> |
1da177e4 | 2185 | */ |
5f921ae9 IM |
2186 | if (semaphore->semval < 0) |
2187 | semaphore->semval = 0; | |
2188 | if (semaphore->semval > SEMVMX) | |
2189 | semaphore->semval = SEMVMX; | |
b488893a | 2190 | semaphore->sempid = task_tgid_vnr(current); |
1da177e4 LT |
2191 | } |
2192 | } | |
1da177e4 | 2193 | /* maybe some queued-up processes were waiting for this */ |
0a2b9d4c MS |
2194 | INIT_LIST_HEAD(&tasks); |
2195 | do_smart_update(sma, NULL, 0, 1, &tasks); | |
6062a8dc | 2196 | sem_unlock(sma, -1); |
6d49dab8 | 2197 | rcu_read_unlock(); |
0a2b9d4c | 2198 | wake_up_sem_queue_do(&tasks); |
380af1b3 | 2199 | |
693a8b6e | 2200 | kfree_rcu(un, rcu); |
1da177e4 | 2201 | } |
4daa28f6 | 2202 | kfree(ulp); |
1da177e4 LT |
2203 | } |
2204 | ||
2205 | #ifdef CONFIG_PROC_FS | |
19b4946c | 2206 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it) |
1da177e4 | 2207 | { |
1efdb69b | 2208 | struct user_namespace *user_ns = seq_user_ns(s); |
19b4946c | 2209 | struct sem_array *sma = it; |
d12e1e50 MS |
2210 | time_t sem_otime; |
2211 | ||
d8c63376 MS |
2212 | /* |
2213 | * The proc interface isn't aware of sem_lock(), it calls | |
2214 | * ipc_lock_object() directly (in sysvipc_find_ipc). | |
5864a2fd MS |
2215 | * In order to stay compatible with sem_lock(), we must |
2216 | * enter / leave complex_mode. | |
d8c63376 | 2217 | */ |
5864a2fd | 2218 | complexmode_enter(sma); |
d8c63376 | 2219 | |
d12e1e50 | 2220 | sem_otime = get_semotime(sma); |
19b4946c | 2221 | |
7f032d6e JP |
2222 | seq_printf(s, |
2223 | "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", | |
2224 | sma->sem_perm.key, | |
2225 | sma->sem_perm.id, | |
2226 | sma->sem_perm.mode, | |
2227 | sma->sem_nsems, | |
2228 | from_kuid_munged(user_ns, sma->sem_perm.uid), | |
2229 | from_kgid_munged(user_ns, sma->sem_perm.gid), | |
2230 | from_kuid_munged(user_ns, sma->sem_perm.cuid), | |
2231 | from_kgid_munged(user_ns, sma->sem_perm.cgid), | |
2232 | sem_otime, | |
2233 | sma->sem_ctime); | |
2234 | ||
5864a2fd MS |
2235 | complexmode_tryleave(sma); |
2236 | ||
7f032d6e | 2237 | return 0; |
1da177e4 LT |
2238 | } |
2239 | #endif |