mm/hmm: fix use after free with struct hmm in the mmu notifiers
[linux.git] / mm / hmm.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
133ff0ea
JG
2/*
3 * Copyright 2013 Red Hat Inc.
4 *
f813f219 5 * Authors: Jérôme Glisse <jglisse@redhat.com>
133ff0ea
JG
6 */
7/*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11#include <linux/mm.h>
12#include <linux/hmm.h>
858b54da 13#include <linux/init.h>
da4c3c73
JG
14#include <linux/rmap.h>
15#include <linux/swap.h>
133ff0ea
JG
16#include <linux/slab.h>
17#include <linux/sched.h>
4ef589dc
JG
18#include <linux/mmzone.h>
19#include <linux/pagemap.h>
da4c3c73
JG
20#include <linux/swapops.h>
21#include <linux/hugetlb.h>
4ef589dc 22#include <linux/memremap.h>
7b2d55d2 23#include <linux/jump_label.h>
55c0ece8 24#include <linux/dma-mapping.h>
c0b12405 25#include <linux/mmu_notifier.h>
4ef589dc
JG
26#include <linux/memory_hotplug.h>
27
28#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
133ff0ea 29
6b368cd4 30#if IS_ENABLED(CONFIG_HMM_MIRROR)
c0b12405
JG
31static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
32
704f3f2c
JG
33static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
34{
35 struct hmm *hmm = READ_ONCE(mm->hmm);
36
37 if (hmm && kref_get_unless_zero(&hmm->kref))
38 return hmm;
39
40 return NULL;
41}
42
43/**
44 * hmm_get_or_create - register HMM against an mm (HMM internal)
133ff0ea
JG
45 *
46 * @mm: mm struct to attach to
704f3f2c
JG
47 * Returns: returns an HMM object, either by referencing the existing
48 * (per-process) object, or by creating a new one.
133ff0ea 49 *
704f3f2c
JG
50 * This is not intended to be used directly by device drivers. If mm already
51 * has an HMM struct then it get a reference on it and returns it. Otherwise
52 * it allocates an HMM struct, initializes it, associate it with the mm and
53 * returns it.
133ff0ea 54 */
704f3f2c 55static struct hmm *hmm_get_or_create(struct mm_struct *mm)
133ff0ea 56{
704f3f2c 57 struct hmm *hmm = mm_get_hmm(mm);
c0b12405 58 bool cleanup = false;
133ff0ea 59
c0b12405
JG
60 if (hmm)
61 return hmm;
62
63 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
64 if (!hmm)
65 return NULL;
a3e0d41c 66 init_waitqueue_head(&hmm->wq);
c0b12405
JG
67 INIT_LIST_HEAD(&hmm->mirrors);
68 init_rwsem(&hmm->mirrors_sem);
c0b12405 69 hmm->mmu_notifier.ops = NULL;
da4c3c73 70 INIT_LIST_HEAD(&hmm->ranges);
a3e0d41c 71 mutex_init(&hmm->lock);
704f3f2c 72 kref_init(&hmm->kref);
a3e0d41c
JG
73 hmm->notifiers = 0;
74 hmm->dead = false;
c0b12405
JG
75 hmm->mm = mm;
76
c0b12405
JG
77 spin_lock(&mm->page_table_lock);
78 if (!mm->hmm)
79 mm->hmm = hmm;
80 else
81 cleanup = true;
82 spin_unlock(&mm->page_table_lock);
83
86a2d598
RC
84 if (cleanup)
85 goto error;
86
87 /*
88 * We should only get here if hold the mmap_sem in write mode ie on
89 * registration of first mirror through hmm_mirror_register()
90 */
91 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
92 if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
93 goto error_mm;
c0b12405 94
704f3f2c 95 return hmm;
86a2d598
RC
96
97error_mm:
98 spin_lock(&mm->page_table_lock);
99 if (mm->hmm == hmm)
100 mm->hmm = NULL;
101 spin_unlock(&mm->page_table_lock);
102error:
103 kfree(hmm);
104 return NULL;
133ff0ea
JG
105}
106
6d7c3cde
JG
107static void hmm_free_rcu(struct rcu_head *rcu)
108{
109 kfree(container_of(rcu, struct hmm, rcu));
110}
111
704f3f2c
JG
112static void hmm_free(struct kref *kref)
113{
114 struct hmm *hmm = container_of(kref, struct hmm, kref);
115 struct mm_struct *mm = hmm->mm;
116
117 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
118
119 spin_lock(&mm->page_table_lock);
120 if (mm->hmm == hmm)
121 mm->hmm = NULL;
122 spin_unlock(&mm->page_table_lock);
123
6d7c3cde 124 mmu_notifier_call_srcu(&hmm->rcu, hmm_free_rcu);
704f3f2c
JG
125}
126
127static inline void hmm_put(struct hmm *hmm)
128{
129 kref_put(&hmm->kref, hmm_free);
130}
131
133ff0ea
JG
132void hmm_mm_destroy(struct mm_struct *mm)
133{
704f3f2c
JG
134 struct hmm *hmm;
135
136 spin_lock(&mm->page_table_lock);
137 hmm = mm_get_hmm(mm);
138 mm->hmm = NULL;
139 if (hmm) {
140 hmm->mm = NULL;
a3e0d41c 141 hmm->dead = true;
704f3f2c
JG
142 spin_unlock(&mm->page_table_lock);
143 hmm_put(hmm);
144 return;
145 }
146
147 spin_unlock(&mm->page_table_lock);
133ff0ea 148}
c0b12405 149
a3e0d41c 150static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
c0b12405 151{
6d7c3cde 152 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405 153 struct hmm_mirror *mirror;
da4c3c73
JG
154 struct hmm_range *range;
155
6d7c3cde
JG
156 /* Bail out if hmm is in the process of being freed */
157 if (!kref_get_unless_zero(&hmm->kref))
158 return;
159
a3e0d41c
JG
160 /* Report this HMM as dying. */
161 hmm->dead = true;
da4c3c73 162
a3e0d41c
JG
163 /* Wake-up everyone waiting on any range. */
164 mutex_lock(&hmm->lock);
085ea250 165 list_for_each_entry(range, &hmm->ranges, list)
da4c3c73 166 range->valid = false;
a3e0d41c
JG
167 wake_up_all(&hmm->wq);
168 mutex_unlock(&hmm->lock);
e1401513
RC
169
170 down_write(&hmm->mirrors_sem);
171 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
172 list);
173 while (mirror) {
174 list_del_init(&mirror->list);
175 if (mirror->ops->release) {
176 /*
085ea250
RC
177 * Drop mirrors_sem so the release callback can wait
178 * on any pending work that might itself trigger a
179 * mmu_notifier callback and thus would deadlock with
180 * us.
e1401513
RC
181 */
182 up_write(&hmm->mirrors_sem);
183 mirror->ops->release(mirror);
184 down_write(&hmm->mirrors_sem);
185 }
186 mirror = list_first_entry_or_null(&hmm->mirrors,
187 struct hmm_mirror, list);
188 }
189 up_write(&hmm->mirrors_sem);
704f3f2c
JG
190
191 hmm_put(hmm);
e1401513
RC
192}
193
93065ac7 194static int hmm_invalidate_range_start(struct mmu_notifier *mn,
a3e0d41c 195 const struct mmu_notifier_range *nrange)
c0b12405 196{
6d7c3cde 197 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
a3e0d41c 198 struct hmm_mirror *mirror;
ec131b2d 199 struct hmm_update update;
a3e0d41c
JG
200 struct hmm_range *range;
201 int ret = 0;
c0b12405 202
6d7c3cde
JG
203 if (!kref_get_unless_zero(&hmm->kref))
204 return 0;
c0b12405 205
a3e0d41c
JG
206 update.start = nrange->start;
207 update.end = nrange->end;
ec131b2d 208 update.event = HMM_UPDATE_INVALIDATE;
dfcd6660 209 update.blockable = mmu_notifier_range_blockable(nrange);
a3e0d41c 210
dfcd6660 211 if (mmu_notifier_range_blockable(nrange))
a3e0d41c
JG
212 mutex_lock(&hmm->lock);
213 else if (!mutex_trylock(&hmm->lock)) {
214 ret = -EAGAIN;
215 goto out;
216 }
217 hmm->notifiers++;
218 list_for_each_entry(range, &hmm->ranges, list) {
219 if (update.end < range->start || update.start >= range->end)
220 continue;
221
222 range->valid = false;
223 }
224 mutex_unlock(&hmm->lock);
225
dfcd6660 226 if (mmu_notifier_range_blockable(nrange))
a3e0d41c
JG
227 down_read(&hmm->mirrors_sem);
228 else if (!down_read_trylock(&hmm->mirrors_sem)) {
229 ret = -EAGAIN;
230 goto out;
231 }
232 list_for_each_entry(mirror, &hmm->mirrors, list) {
233 int ret;
234
235 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
085ea250
RC
236 if (!update.blockable && ret == -EAGAIN)
237 break;
a3e0d41c
JG
238 }
239 up_read(&hmm->mirrors_sem);
240
241out:
704f3f2c
JG
242 hmm_put(hmm);
243 return ret;
c0b12405
JG
244}
245
246static void hmm_invalidate_range_end(struct mmu_notifier *mn,
a3e0d41c 247 const struct mmu_notifier_range *nrange)
c0b12405 248{
6d7c3cde 249 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405 250
6d7c3cde
JG
251 if (!kref_get_unless_zero(&hmm->kref))
252 return;
c0b12405 253
a3e0d41c
JG
254 mutex_lock(&hmm->lock);
255 hmm->notifiers--;
256 if (!hmm->notifiers) {
257 struct hmm_range *range;
258
259 list_for_each_entry(range, &hmm->ranges, list) {
260 if (range->valid)
261 continue;
262 range->valid = true;
263 }
264 wake_up_all(&hmm->wq);
265 }
266 mutex_unlock(&hmm->lock);
267
704f3f2c 268 hmm_put(hmm);
c0b12405
JG
269}
270
271static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
e1401513 272 .release = hmm_release,
c0b12405
JG
273 .invalidate_range_start = hmm_invalidate_range_start,
274 .invalidate_range_end = hmm_invalidate_range_end,
275};
276
277/*
278 * hmm_mirror_register() - register a mirror against an mm
279 *
280 * @mirror: new mirror struct to register
281 * @mm: mm to register against
085ea250 282 * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
c0b12405
JG
283 *
284 * To start mirroring a process address space, the device driver must register
285 * an HMM mirror struct.
286 *
287 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
288 */
289int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
290{
291 /* Sanity check */
292 if (!mm || !mirror || !mirror->ops)
293 return -EINVAL;
294
704f3f2c 295 mirror->hmm = hmm_get_or_create(mm);
c0b12405
JG
296 if (!mirror->hmm)
297 return -ENOMEM;
298
299 down_write(&mirror->hmm->mirrors_sem);
704f3f2c
JG
300 list_add(&mirror->list, &mirror->hmm->mirrors);
301 up_write(&mirror->hmm->mirrors_sem);
c0b12405
JG
302
303 return 0;
304}
305EXPORT_SYMBOL(hmm_mirror_register);
306
307/*
308 * hmm_mirror_unregister() - unregister a mirror
309 *
085ea250 310 * @mirror: mirror struct to unregister
c0b12405
JG
311 *
312 * Stop mirroring a process address space, and cleanup.
313 */
314void hmm_mirror_unregister(struct hmm_mirror *mirror)
315{
704f3f2c 316 struct hmm *hmm = READ_ONCE(mirror->hmm);
c01cbba2 317
704f3f2c 318 if (hmm == NULL)
c01cbba2 319 return;
c0b12405
JG
320
321 down_write(&hmm->mirrors_sem);
e1401513 322 list_del_init(&mirror->list);
704f3f2c 323 /* To protect us against double unregister ... */
c01cbba2 324 mirror->hmm = NULL;
c0b12405 325 up_write(&hmm->mirrors_sem);
c01cbba2 326
704f3f2c 327 hmm_put(hmm);
c0b12405
JG
328}
329EXPORT_SYMBOL(hmm_mirror_unregister);
da4c3c73 330
74eee180
JG
331struct hmm_vma_walk {
332 struct hmm_range *range;
992de9a8 333 struct dev_pagemap *pgmap;
74eee180
JG
334 unsigned long last;
335 bool fault;
336 bool block;
74eee180
JG
337};
338
2aee09d8
JG
339static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
340 bool write_fault, uint64_t *pfn)
74eee180 341{
9b1ae605 342 unsigned int flags = FAULT_FLAG_REMOTE;
74eee180 343 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 344 struct hmm_range *range = hmm_vma_walk->range;
74eee180 345 struct vm_area_struct *vma = walk->vma;
50a7ca3c 346 vm_fault_t ret;
74eee180
JG
347
348 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
2aee09d8 349 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
50a7ca3c
SJ
350 ret = handle_mm_fault(vma, addr, flags);
351 if (ret & VM_FAULT_RETRY)
73231612 352 return -EAGAIN;
50a7ca3c 353 if (ret & VM_FAULT_ERROR) {
f88a1e90 354 *pfn = range->values[HMM_PFN_ERROR];
74eee180
JG
355 return -EFAULT;
356 }
357
73231612 358 return -EBUSY;
74eee180
JG
359}
360
da4c3c73
JG
361static int hmm_pfns_bad(unsigned long addr,
362 unsigned long end,
363 struct mm_walk *walk)
364{
c719547f
JG
365 struct hmm_vma_walk *hmm_vma_walk = walk->private;
366 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 367 uint64_t *pfns = range->pfns;
da4c3c73
JG
368 unsigned long i;
369
370 i = (addr - range->start) >> PAGE_SHIFT;
371 for (; addr < end; addr += PAGE_SIZE, i++)
f88a1e90 372 pfns[i] = range->values[HMM_PFN_ERROR];
da4c3c73
JG
373
374 return 0;
375}
376
5504ed29
JG
377/*
378 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
379 * @start: range virtual start address (inclusive)
380 * @end: range virtual end address (exclusive)
2aee09d8
JG
381 * @fault: should we fault or not ?
382 * @write_fault: write fault ?
5504ed29 383 * @walk: mm_walk structure
085ea250 384 * Return: 0 on success, -EBUSY after page fault, or page fault error
5504ed29
JG
385 *
386 * This function will be called whenever pmd_none() or pte_none() returns true,
387 * or whenever there is no page directory covering the virtual address range.
388 */
2aee09d8
JG
389static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
390 bool fault, bool write_fault,
391 struct mm_walk *walk)
da4c3c73 392{
74eee180
JG
393 struct hmm_vma_walk *hmm_vma_walk = walk->private;
394 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 395 uint64_t *pfns = range->pfns;
63d5066f 396 unsigned long i, page_size;
da4c3c73 397
74eee180 398 hmm_vma_walk->last = addr;
63d5066f
JG
399 page_size = hmm_range_page_size(range);
400 i = (addr - range->start) >> range->page_shift;
401
402 for (; addr < end; addr += page_size, i++) {
f88a1e90 403 pfns[i] = range->values[HMM_PFN_NONE];
2aee09d8 404 if (fault || write_fault) {
74eee180 405 int ret;
da4c3c73 406
2aee09d8
JG
407 ret = hmm_vma_do_fault(walk, addr, write_fault,
408 &pfns[i]);
73231612 409 if (ret != -EBUSY)
74eee180
JG
410 return ret;
411 }
412 }
413
73231612 414 return (fault || write_fault) ? -EBUSY : 0;
2aee09d8
JG
415}
416
417static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
418 uint64_t pfns, uint64_t cpu_flags,
419 bool *fault, bool *write_fault)
420{
f88a1e90
JG
421 struct hmm_range *range = hmm_vma_walk->range;
422
2aee09d8
JG
423 if (!hmm_vma_walk->fault)
424 return;
425
023a019a
JG
426 /*
427 * So we not only consider the individual per page request we also
428 * consider the default flags requested for the range. The API can
429 * be use in 2 fashions. The first one where the HMM user coalesce
430 * multiple page fault into one request and set flags per pfns for
431 * of those faults. The second one where the HMM user want to pre-
432 * fault a range with specific flags. For the latter one it is a
433 * waste to have the user pre-fill the pfn arrays with a default
434 * flags value.
435 */
436 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
437
2aee09d8 438 /* We aren't ask to do anything ... */
f88a1e90 439 if (!(pfns & range->flags[HMM_PFN_VALID]))
2aee09d8 440 return;
f88a1e90
JG
441 /* If this is device memory than only fault if explicitly requested */
442 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
443 /* Do we fault on device memory ? */
444 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
445 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
446 *fault = true;
447 }
2aee09d8
JG
448 return;
449 }
f88a1e90
JG
450
451 /* If CPU page table is not valid then we need to fault */
452 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
453 /* Need to write fault ? */
454 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
455 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
456 *write_fault = true;
2aee09d8
JG
457 *fault = true;
458 }
459}
460
461static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
462 const uint64_t *pfns, unsigned long npages,
463 uint64_t cpu_flags, bool *fault,
464 bool *write_fault)
465{
466 unsigned long i;
467
468 if (!hmm_vma_walk->fault) {
469 *fault = *write_fault = false;
470 return;
471 }
472
a3e0d41c 473 *fault = *write_fault = false;
2aee09d8
JG
474 for (i = 0; i < npages; ++i) {
475 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
476 fault, write_fault);
a3e0d41c 477 if ((*write_fault))
2aee09d8
JG
478 return;
479 }
480}
481
482static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
483 struct mm_walk *walk)
484{
485 struct hmm_vma_walk *hmm_vma_walk = walk->private;
486 struct hmm_range *range = hmm_vma_walk->range;
487 bool fault, write_fault;
488 unsigned long i, npages;
489 uint64_t *pfns;
490
491 i = (addr - range->start) >> PAGE_SHIFT;
492 npages = (end - addr) >> PAGE_SHIFT;
493 pfns = &range->pfns[i];
494 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
495 0, &fault, &write_fault);
496 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
497}
498
f88a1e90 499static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
2aee09d8
JG
500{
501 if (pmd_protnone(pmd))
502 return 0;
f88a1e90
JG
503 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
504 range->flags[HMM_PFN_WRITE] :
505 range->flags[HMM_PFN_VALID];
da4c3c73
JG
506}
507
992de9a8
JG
508static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
509{
510 if (!pud_present(pud))
511 return 0;
512 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
513 range->flags[HMM_PFN_WRITE] :
514 range->flags[HMM_PFN_VALID];
515}
516
53f5c3f4
JG
517static int hmm_vma_handle_pmd(struct mm_walk *walk,
518 unsigned long addr,
519 unsigned long end,
520 uint64_t *pfns,
521 pmd_t pmd)
522{
992de9a8 523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
53f5c3f4 524 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 525 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8 526 unsigned long pfn, npages, i;
2aee09d8 527 bool fault, write_fault;
f88a1e90 528 uint64_t cpu_flags;
53f5c3f4 529
2aee09d8 530 npages = (end - addr) >> PAGE_SHIFT;
f88a1e90 531 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
2aee09d8
JG
532 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
533 &fault, &write_fault);
53f5c3f4 534
2aee09d8
JG
535 if (pmd_protnone(pmd) || fault || write_fault)
536 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
537
538 pfn = pmd_pfn(pmd) + pte_index(addr);
992de9a8
JG
539 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
540 if (pmd_devmap(pmd)) {
541 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
542 hmm_vma_walk->pgmap);
543 if (unlikely(!hmm_vma_walk->pgmap))
544 return -EBUSY;
545 }
391aab11 546 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
992de9a8
JG
547 }
548 if (hmm_vma_walk->pgmap) {
549 put_dev_pagemap(hmm_vma_walk->pgmap);
550 hmm_vma_walk->pgmap = NULL;
551 }
53f5c3f4
JG
552 hmm_vma_walk->last = end;
553 return 0;
992de9a8
JG
554#else
555 /* If THP is not enabled then we should never reach that code ! */
556 return -EINVAL;
557#endif
53f5c3f4
JG
558}
559
f88a1e90 560static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
2aee09d8 561{
789c2af8 562 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
2aee09d8 563 return 0;
f88a1e90
JG
564 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
565 range->flags[HMM_PFN_WRITE] :
566 range->flags[HMM_PFN_VALID];
2aee09d8
JG
567}
568
53f5c3f4
JG
569static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
570 unsigned long end, pmd_t *pmdp, pte_t *ptep,
571 uint64_t *pfn)
572{
573 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 574 struct hmm_range *range = hmm_vma_walk->range;
53f5c3f4 575 struct vm_area_struct *vma = walk->vma;
2aee09d8
JG
576 bool fault, write_fault;
577 uint64_t cpu_flags;
53f5c3f4 578 pte_t pte = *ptep;
f88a1e90 579 uint64_t orig_pfn = *pfn;
53f5c3f4 580
f88a1e90 581 *pfn = range->values[HMM_PFN_NONE];
73231612 582 fault = write_fault = false;
53f5c3f4
JG
583
584 if (pte_none(pte)) {
73231612
JG
585 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
586 &fault, &write_fault);
2aee09d8 587 if (fault || write_fault)
53f5c3f4
JG
588 goto fault;
589 return 0;
590 }
591
592 if (!pte_present(pte)) {
593 swp_entry_t entry = pte_to_swp_entry(pte);
594
595 if (!non_swap_entry(entry)) {
2aee09d8 596 if (fault || write_fault)
53f5c3f4
JG
597 goto fault;
598 return 0;
599 }
600
601 /*
602 * This is a special swap entry, ignore migration, use
603 * device and report anything else as error.
604 */
605 if (is_device_private_entry(entry)) {
f88a1e90
JG
606 cpu_flags = range->flags[HMM_PFN_VALID] |
607 range->flags[HMM_PFN_DEVICE_PRIVATE];
2aee09d8 608 cpu_flags |= is_write_device_private_entry(entry) ?
f88a1e90
JG
609 range->flags[HMM_PFN_WRITE] : 0;
610 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
611 &fault, &write_fault);
612 if (fault || write_fault)
613 goto fault;
391aab11
JG
614 *pfn = hmm_device_entry_from_pfn(range,
615 swp_offset(entry));
f88a1e90 616 *pfn |= cpu_flags;
53f5c3f4
JG
617 return 0;
618 }
619
620 if (is_migration_entry(entry)) {
2aee09d8 621 if (fault || write_fault) {
53f5c3f4
JG
622 pte_unmap(ptep);
623 hmm_vma_walk->last = addr;
624 migration_entry_wait(vma->vm_mm,
2aee09d8 625 pmdp, addr);
73231612 626 return -EBUSY;
53f5c3f4
JG
627 }
628 return 0;
629 }
630
631 /* Report error for everything else */
f88a1e90 632 *pfn = range->values[HMM_PFN_ERROR];
53f5c3f4 633 return -EFAULT;
73231612
JG
634 } else {
635 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
636 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
637 &fault, &write_fault);
53f5c3f4
JG
638 }
639
2aee09d8 640 if (fault || write_fault)
53f5c3f4
JG
641 goto fault;
642
992de9a8
JG
643 if (pte_devmap(pte)) {
644 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
645 hmm_vma_walk->pgmap);
646 if (unlikely(!hmm_vma_walk->pgmap))
647 return -EBUSY;
648 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
649 *pfn = range->values[HMM_PFN_SPECIAL];
650 return -EFAULT;
651 }
652
391aab11 653 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
53f5c3f4
JG
654 return 0;
655
656fault:
992de9a8
JG
657 if (hmm_vma_walk->pgmap) {
658 put_dev_pagemap(hmm_vma_walk->pgmap);
659 hmm_vma_walk->pgmap = NULL;
660 }
53f5c3f4
JG
661 pte_unmap(ptep);
662 /* Fault any virtual address we were asked to fault */
2aee09d8 663 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
664}
665
da4c3c73
JG
666static int hmm_vma_walk_pmd(pmd_t *pmdp,
667 unsigned long start,
668 unsigned long end,
669 struct mm_walk *walk)
670{
74eee180
JG
671 struct hmm_vma_walk *hmm_vma_walk = walk->private;
672 struct hmm_range *range = hmm_vma_walk->range;
d08faca0 673 struct vm_area_struct *vma = walk->vma;
ff05c0c6 674 uint64_t *pfns = range->pfns;
da4c3c73 675 unsigned long addr = start, i;
da4c3c73 676 pte_t *ptep;
d08faca0 677 pmd_t pmd;
da4c3c73 678
da4c3c73
JG
679
680again:
d08faca0
JG
681 pmd = READ_ONCE(*pmdp);
682 if (pmd_none(pmd))
da4c3c73
JG
683 return hmm_vma_walk_hole(start, end, walk);
684
d08faca0 685 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
da4c3c73
JG
686 return hmm_pfns_bad(start, end, walk);
687
d08faca0
JG
688 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
689 bool fault, write_fault;
690 unsigned long npages;
691 uint64_t *pfns;
692
693 i = (addr - range->start) >> PAGE_SHIFT;
694 npages = (end - addr) >> PAGE_SHIFT;
695 pfns = &range->pfns[i];
696
697 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
698 0, &fault, &write_fault);
699 if (fault || write_fault) {
700 hmm_vma_walk->last = addr;
701 pmd_migration_entry_wait(vma->vm_mm, pmdp);
73231612 702 return -EBUSY;
d08faca0
JG
703 }
704 return 0;
705 } else if (!pmd_present(pmd))
706 return hmm_pfns_bad(start, end, walk);
da4c3c73 707
d08faca0 708 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
da4c3c73
JG
709 /*
710 * No need to take pmd_lock here, even if some other threads
711 * is splitting the huge pmd we will get that event through
712 * mmu_notifier callback.
713 *
714 * So just read pmd value and check again its a transparent
715 * huge or device mapping one and compute corresponding pfn
716 * values.
717 */
718 pmd = pmd_read_atomic(pmdp);
719 barrier();
720 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
721 goto again;
74eee180 722
d08faca0 723 i = (addr - range->start) >> PAGE_SHIFT;
53f5c3f4 724 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
da4c3c73
JG
725 }
726
d08faca0
JG
727 /*
728 * We have handled all the valid case above ie either none, migration,
729 * huge or transparent huge. At this point either it is a valid pmd
730 * entry pointing to pte directory or it is a bad pmd that will not
731 * recover.
732 */
733 if (pmd_bad(pmd))
da4c3c73
JG
734 return hmm_pfns_bad(start, end, walk);
735
736 ptep = pte_offset_map(pmdp, addr);
d08faca0 737 i = (addr - range->start) >> PAGE_SHIFT;
da4c3c73 738 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
53f5c3f4 739 int r;
74eee180 740
53f5c3f4
JG
741 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
742 if (r) {
743 /* hmm_vma_handle_pte() did unmap pte directory */
744 hmm_vma_walk->last = addr;
745 return r;
74eee180 746 }
da4c3c73 747 }
992de9a8
JG
748 if (hmm_vma_walk->pgmap) {
749 /*
750 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
751 * so that we can leverage get_dev_pagemap() optimization which
752 * will not re-take a reference on a pgmap if we already have
753 * one.
754 */
755 put_dev_pagemap(hmm_vma_walk->pgmap);
756 hmm_vma_walk->pgmap = NULL;
757 }
da4c3c73
JG
758 pte_unmap(ptep - 1);
759
53f5c3f4 760 hmm_vma_walk->last = addr;
da4c3c73
JG
761 return 0;
762}
763
992de9a8
JG
764static int hmm_vma_walk_pud(pud_t *pudp,
765 unsigned long start,
766 unsigned long end,
767 struct mm_walk *walk)
768{
769 struct hmm_vma_walk *hmm_vma_walk = walk->private;
770 struct hmm_range *range = hmm_vma_walk->range;
771 unsigned long addr = start, next;
772 pmd_t *pmdp;
773 pud_t pud;
774 int ret;
775
776again:
777 pud = READ_ONCE(*pudp);
778 if (pud_none(pud))
779 return hmm_vma_walk_hole(start, end, walk);
780
781 if (pud_huge(pud) && pud_devmap(pud)) {
782 unsigned long i, npages, pfn;
783 uint64_t *pfns, cpu_flags;
784 bool fault, write_fault;
785
786 if (!pud_present(pud))
787 return hmm_vma_walk_hole(start, end, walk);
788
789 i = (addr - range->start) >> PAGE_SHIFT;
790 npages = (end - addr) >> PAGE_SHIFT;
791 pfns = &range->pfns[i];
792
793 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
794 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
795 cpu_flags, &fault, &write_fault);
796 if (fault || write_fault)
797 return hmm_vma_walk_hole_(addr, end, fault,
798 write_fault, walk);
799
992de9a8
JG
800 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
801 for (i = 0; i < npages; ++i, ++pfn) {
802 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
803 hmm_vma_walk->pgmap);
804 if (unlikely(!hmm_vma_walk->pgmap))
805 return -EBUSY;
391aab11
JG
806 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
807 cpu_flags;
992de9a8
JG
808 }
809 if (hmm_vma_walk->pgmap) {
810 put_dev_pagemap(hmm_vma_walk->pgmap);
811 hmm_vma_walk->pgmap = NULL;
812 }
813 hmm_vma_walk->last = end;
814 return 0;
992de9a8
JG
815 }
816
817 split_huge_pud(walk->vma, pudp, addr);
818 if (pud_none(*pudp))
819 goto again;
820
821 pmdp = pmd_offset(pudp, addr);
822 do {
823 next = pmd_addr_end(addr, end);
824 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
825 if (ret)
826 return ret;
827 } while (pmdp++, addr = next, addr != end);
828
829 return 0;
830}
831
63d5066f
JG
832static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
833 unsigned long start, unsigned long end,
834 struct mm_walk *walk)
835{
836#ifdef CONFIG_HUGETLB_PAGE
837 unsigned long addr = start, i, pfn, mask, size, pfn_inc;
838 struct hmm_vma_walk *hmm_vma_walk = walk->private;
839 struct hmm_range *range = hmm_vma_walk->range;
840 struct vm_area_struct *vma = walk->vma;
841 struct hstate *h = hstate_vma(vma);
842 uint64_t orig_pfn, cpu_flags;
843 bool fault, write_fault;
844 spinlock_t *ptl;
845 pte_t entry;
846 int ret = 0;
847
848 size = 1UL << huge_page_shift(h);
849 mask = size - 1;
850 if (range->page_shift != PAGE_SHIFT) {
851 /* Make sure we are looking at full page. */
852 if (start & mask)
853 return -EINVAL;
854 if (end < (start + size))
855 return -EINVAL;
856 pfn_inc = size >> PAGE_SHIFT;
857 } else {
858 pfn_inc = 1;
859 size = PAGE_SIZE;
860 }
861
862
863 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
864 entry = huge_ptep_get(pte);
865
866 i = (start - range->start) >> range->page_shift;
867 orig_pfn = range->pfns[i];
868 range->pfns[i] = range->values[HMM_PFN_NONE];
869 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
870 fault = write_fault = false;
871 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
872 &fault, &write_fault);
873 if (fault || write_fault) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
879 for (; addr < end; addr += size, i++, pfn += pfn_inc)
391aab11
JG
880 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
881 cpu_flags;
63d5066f
JG
882 hmm_vma_walk->last = end;
883
884unlock:
885 spin_unlock(ptl);
886
887 if (ret == -ENOENT)
888 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
889
890 return ret;
891#else /* CONFIG_HUGETLB_PAGE */
892 return -EINVAL;
893#endif
894}
895
f88a1e90
JG
896static void hmm_pfns_clear(struct hmm_range *range,
897 uint64_t *pfns,
33cd47dc
JG
898 unsigned long addr,
899 unsigned long end)
900{
901 for (; addr < end; addr += PAGE_SIZE, pfns++)
f88a1e90 902 *pfns = range->values[HMM_PFN_NONE];
33cd47dc
JG
903}
904
da4c3c73 905/*
a3e0d41c 906 * hmm_range_register() - start tracking change to CPU page table over a range
25f23a0c 907 * @range: range
a3e0d41c
JG
908 * @mm: the mm struct for the range of virtual address
909 * @start: start virtual address (inclusive)
910 * @end: end virtual address (exclusive)
63d5066f 911 * @page_shift: expect page shift for the range
a3e0d41c 912 * Returns 0 on success, -EFAULT if the address space is no longer valid
25f23a0c 913 *
a3e0d41c 914 * Track updates to the CPU page table see include/linux/hmm.h
da4c3c73 915 */
a3e0d41c
JG
916int hmm_range_register(struct hmm_range *range,
917 struct mm_struct *mm,
918 unsigned long start,
63d5066f
JG
919 unsigned long end,
920 unsigned page_shift)
da4c3c73 921{
63d5066f 922 unsigned long mask = ((1UL << page_shift) - 1UL);
085ea250 923 struct hmm *hmm;
63d5066f 924
a3e0d41c 925 range->valid = false;
704f3f2c
JG
926 range->hmm = NULL;
927
63d5066f
JG
928 if ((start & mask) || (end & mask))
929 return -EINVAL;
930 if (start >= end)
da4c3c73
JG
931 return -EINVAL;
932
63d5066f 933 range->page_shift = page_shift;
a3e0d41c
JG
934 range->start = start;
935 range->end = end;
936
085ea250
RC
937 hmm = hmm_get_or_create(mm);
938 if (!hmm)
a3e0d41c 939 return -EFAULT;
704f3f2c
JG
940
941 /* Check if hmm_mm_destroy() was call. */
085ea250
RC
942 if (hmm->mm == NULL || hmm->dead) {
943 hmm_put(hmm);
a3e0d41c 944 return -EFAULT;
704f3f2c 945 }
da4c3c73 946
085ea250
RC
947 /* Initialize range to track CPU page table updates. */
948 mutex_lock(&hmm->lock);
855ce7d2 949
085ea250
RC
950 range->hmm = hmm;
951 list_add_rcu(&range->list, &hmm->ranges);
86586a41 952
704f3f2c 953 /*
a3e0d41c
JG
954 * If there are any concurrent notifiers we have to wait for them for
955 * the range to be valid (see hmm_range_wait_until_valid()).
704f3f2c 956 */
085ea250 957 if (!hmm->notifiers)
a3e0d41c 958 range->valid = true;
085ea250 959 mutex_unlock(&hmm->lock);
a3e0d41c
JG
960
961 return 0;
da4c3c73 962}
a3e0d41c 963EXPORT_SYMBOL(hmm_range_register);
da4c3c73
JG
964
965/*
a3e0d41c
JG
966 * hmm_range_unregister() - stop tracking change to CPU page table over a range
967 * @range: range
da4c3c73
JG
968 *
969 * Range struct is used to track updates to the CPU page table after a call to
a3e0d41c 970 * hmm_range_register(). See include/linux/hmm.h for how to use it.
da4c3c73 971 */
a3e0d41c 972void hmm_range_unregister(struct hmm_range *range)
da4c3c73 973{
085ea250
RC
974 struct hmm *hmm = range->hmm;
975
704f3f2c 976 /* Sanity check this really should not happen. */
085ea250 977 if (hmm == NULL || range->end <= range->start)
a3e0d41c 978 return;
da4c3c73 979
085ea250 980 mutex_lock(&hmm->lock);
da4c3c73 981 list_del_rcu(&range->list);
085ea250 982 mutex_unlock(&hmm->lock);
da4c3c73 983
a3e0d41c
JG
984 /* Drop reference taken by hmm_range_register() */
985 range->valid = false;
085ea250 986 hmm_put(hmm);
704f3f2c 987 range->hmm = NULL;
da4c3c73 988}
a3e0d41c
JG
989EXPORT_SYMBOL(hmm_range_unregister);
990
991/*
992 * hmm_range_snapshot() - snapshot CPU page table for a range
993 * @range: range
085ea250 994 * Return: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
a3e0d41c
JG
995 * permission (for instance asking for write and range is read only),
996 * -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
997 * vma or it is illegal to access that range), number of valid pages
998 * in range->pfns[] (from range start address).
999 *
1000 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
1001 * validity is tracked by range struct. See in include/linux/hmm.h for example
1002 * on how to use.
1003 */
1004long hmm_range_snapshot(struct hmm_range *range)
1005{
63d5066f 1006 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c
JG
1007 unsigned long start = range->start, end;
1008 struct hmm_vma_walk hmm_vma_walk;
1009 struct hmm *hmm = range->hmm;
1010 struct vm_area_struct *vma;
1011 struct mm_walk mm_walk;
1012
1013 /* Check if hmm_mm_destroy() was call. */
1014 if (hmm->mm == NULL || hmm->dead)
1015 return -EFAULT;
1016
1017 do {
1018 /* If range is no longer valid force retry. */
1019 if (!range->valid)
1020 return -EAGAIN;
1021
1022 vma = find_vma(hmm->mm, start);
63d5066f 1023 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c
JG
1024 return -EFAULT;
1025
63d5066f 1026 if (is_vm_hugetlb_page(vma)) {
1c2308f0
JG
1027 if (huge_page_shift(hstate_vma(vma)) !=
1028 range->page_shift &&
63d5066f
JG
1029 range->page_shift != PAGE_SHIFT)
1030 return -EINVAL;
1031 } else {
1032 if (range->page_shift != PAGE_SHIFT)
1033 return -EINVAL;
1034 }
1035
a3e0d41c
JG
1036 if (!(vma->vm_flags & VM_READ)) {
1037 /*
1038 * If vma do not allow read access, then assume that it
1039 * does not allow write access, either. HMM does not
1040 * support architecture that allow write without read.
1041 */
1042 hmm_pfns_clear(range, range->pfns,
1043 range->start, range->end);
1044 return -EPERM;
1045 }
1046
1047 range->vma = vma;
992de9a8 1048 hmm_vma_walk.pgmap = NULL;
a3e0d41c
JG
1049 hmm_vma_walk.last = start;
1050 hmm_vma_walk.fault = false;
1051 hmm_vma_walk.range = range;
1052 mm_walk.private = &hmm_vma_walk;
1053 end = min(range->end, vma->vm_end);
1054
1055 mm_walk.vma = vma;
1056 mm_walk.mm = vma->vm_mm;
1057 mm_walk.pte_entry = NULL;
1058 mm_walk.test_walk = NULL;
1059 mm_walk.hugetlb_entry = NULL;
992de9a8 1060 mm_walk.pud_entry = hmm_vma_walk_pud;
a3e0d41c
JG
1061 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1062 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1063 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1064
1065 walk_page_range(start, end, &mm_walk);
1066 start = end;
1067 } while (start < range->end);
1068
1069 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1070}
1071EXPORT_SYMBOL(hmm_range_snapshot);
74eee180
JG
1072
1073/*
73231612 1074 * hmm_range_fault() - try to fault some address in a virtual address range
08232a45 1075 * @range: range being faulted
74eee180 1076 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
085ea250 1077 * Return: number of valid pages in range->pfns[] (from range start
73231612
JG
1078 * address). This may be zero. If the return value is negative,
1079 * then one of the following values may be returned:
1080 *
1081 * -EINVAL invalid arguments or mm or virtual address are in an
63d5066f 1082 * invalid vma (for instance device file vma).
73231612
JG
1083 * -ENOMEM: Out of memory.
1084 * -EPERM: Invalid permission (for instance asking for write and
1085 * range is read only).
1086 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1087 * happens if block argument is false.
1088 * -EBUSY: If the the range is being invalidated and you should wait
1089 * for invalidation to finish.
1090 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1091 * that range), number of valid pages in range->pfns[] (from
1092 * range start address).
74eee180
JG
1093 *
1094 * This is similar to a regular CPU page fault except that it will not trigger
73231612
JG
1095 * any memory migration if the memory being faulted is not accessible by CPUs
1096 * and caller does not ask for migration.
74eee180 1097 *
ff05c0c6
JG
1098 * On error, for one virtual address in the range, the function will mark the
1099 * corresponding HMM pfn entry with an error flag.
74eee180 1100 */
73231612 1101long hmm_range_fault(struct hmm_range *range, bool block)
74eee180 1102{
63d5066f 1103 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c 1104 unsigned long start = range->start, end;
74eee180 1105 struct hmm_vma_walk hmm_vma_walk;
a3e0d41c
JG
1106 struct hmm *hmm = range->hmm;
1107 struct vm_area_struct *vma;
74eee180 1108 struct mm_walk mm_walk;
74eee180
JG
1109 int ret;
1110
a3e0d41c
JG
1111 /* Check if hmm_mm_destroy() was call. */
1112 if (hmm->mm == NULL || hmm->dead)
1113 return -EFAULT;
704f3f2c 1114
a3e0d41c
JG
1115 do {
1116 /* If range is no longer valid force retry. */
1117 if (!range->valid) {
1118 up_read(&hmm->mm->mmap_sem);
1119 return -EAGAIN;
1120 }
74eee180 1121
a3e0d41c 1122 vma = find_vma(hmm->mm, start);
63d5066f 1123 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c 1124 return -EFAULT;
704f3f2c 1125
63d5066f
JG
1126 if (is_vm_hugetlb_page(vma)) {
1127 if (huge_page_shift(hstate_vma(vma)) !=
1128 range->page_shift &&
1129 range->page_shift != PAGE_SHIFT)
1130 return -EINVAL;
1131 } else {
1132 if (range->page_shift != PAGE_SHIFT)
1133 return -EINVAL;
1134 }
1135
a3e0d41c
JG
1136 if (!(vma->vm_flags & VM_READ)) {
1137 /*
1138 * If vma do not allow read access, then assume that it
1139 * does not allow write access, either. HMM does not
1140 * support architecture that allow write without read.
1141 */
1142 hmm_pfns_clear(range, range->pfns,
1143 range->start, range->end);
1144 return -EPERM;
1145 }
74eee180 1146
a3e0d41c 1147 range->vma = vma;
992de9a8 1148 hmm_vma_walk.pgmap = NULL;
a3e0d41c
JG
1149 hmm_vma_walk.last = start;
1150 hmm_vma_walk.fault = true;
1151 hmm_vma_walk.block = block;
1152 hmm_vma_walk.range = range;
1153 mm_walk.private = &hmm_vma_walk;
1154 end = min(range->end, vma->vm_end);
1155
1156 mm_walk.vma = vma;
1157 mm_walk.mm = vma->vm_mm;
1158 mm_walk.pte_entry = NULL;
1159 mm_walk.test_walk = NULL;
1160 mm_walk.hugetlb_entry = NULL;
992de9a8 1161 mm_walk.pud_entry = hmm_vma_walk_pud;
a3e0d41c
JG
1162 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1163 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1164 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1165
1166 do {
1167 ret = walk_page_range(start, end, &mm_walk);
1168 start = hmm_vma_walk.last;
1169
1170 /* Keep trying while the range is valid. */
1171 } while (ret == -EBUSY && range->valid);
1172
1173 if (ret) {
1174 unsigned long i;
1175
1176 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1177 hmm_pfns_clear(range, &range->pfns[i],
1178 hmm_vma_walk.last, range->end);
1179 return ret;
1180 }
1181 start = end;
74eee180 1182
a3e0d41c 1183 } while (start < range->end);
704f3f2c 1184
73231612 1185 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
74eee180 1186}
73231612 1187EXPORT_SYMBOL(hmm_range_fault);
55c0ece8
JG
1188
1189/**
1190 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1191 * @range: range being faulted
1192 * @device: device against to dma map page to
1193 * @daddrs: dma address of mapped pages
1194 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
085ea250 1195 * Return: number of pages mapped on success, -EAGAIN if mmap_sem have been
55c0ece8
JG
1196 * drop and you need to try again, some other error value otherwise
1197 *
1198 * Note same usage pattern as hmm_range_fault().
1199 */
1200long hmm_range_dma_map(struct hmm_range *range,
1201 struct device *device,
1202 dma_addr_t *daddrs,
1203 bool block)
1204{
1205 unsigned long i, npages, mapped;
1206 long ret;
1207
1208 ret = hmm_range_fault(range, block);
1209 if (ret <= 0)
1210 return ret ? ret : -EBUSY;
1211
1212 npages = (range->end - range->start) >> PAGE_SHIFT;
1213 for (i = 0, mapped = 0; i < npages; ++i) {
1214 enum dma_data_direction dir = DMA_TO_DEVICE;
1215 struct page *page;
1216
1217 /*
1218 * FIXME need to update DMA API to provide invalid DMA address
1219 * value instead of a function to test dma address value. This
1220 * would remove lot of dumb code duplicated accross many arch.
1221 *
1222 * For now setting it to 0 here is good enough as the pfns[]
1223 * value is what is use to check what is valid and what isn't.
1224 */
1225 daddrs[i] = 0;
1226
391aab11 1227 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1228 if (page == NULL)
1229 continue;
1230
1231 /* Check if range is being invalidated */
1232 if (!range->valid) {
1233 ret = -EBUSY;
1234 goto unmap;
1235 }
1236
1237 /* If it is read and write than map bi-directional. */
1238 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1239 dir = DMA_BIDIRECTIONAL;
1240
1241 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1242 if (dma_mapping_error(device, daddrs[i])) {
1243 ret = -EFAULT;
1244 goto unmap;
1245 }
1246
1247 mapped++;
1248 }
1249
1250 return mapped;
1251
1252unmap:
1253 for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1254 enum dma_data_direction dir = DMA_TO_DEVICE;
1255 struct page *page;
1256
391aab11 1257 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1258 if (page == NULL)
1259 continue;
1260
1261 if (dma_mapping_error(device, daddrs[i]))
1262 continue;
1263
1264 /* If it is read and write than map bi-directional. */
1265 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1266 dir = DMA_BIDIRECTIONAL;
1267
1268 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1269 mapped--;
1270 }
1271
1272 return ret;
1273}
1274EXPORT_SYMBOL(hmm_range_dma_map);
1275
1276/**
1277 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1278 * @range: range being unmapped
1279 * @vma: the vma against which the range (optional)
1280 * @device: device against which dma map was done
1281 * @daddrs: dma address of mapped pages
1282 * @dirty: dirty page if it had the write flag set
085ea250 1283 * Return: number of page unmapped on success, -EINVAL otherwise
55c0ece8
JG
1284 *
1285 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1286 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1287 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1288 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1289 */
1290long hmm_range_dma_unmap(struct hmm_range *range,
1291 struct vm_area_struct *vma,
1292 struct device *device,
1293 dma_addr_t *daddrs,
1294 bool dirty)
1295{
1296 unsigned long i, npages;
1297 long cpages = 0;
1298
1299 /* Sanity check. */
1300 if (range->end <= range->start)
1301 return -EINVAL;
1302 if (!daddrs)
1303 return -EINVAL;
1304 if (!range->pfns)
1305 return -EINVAL;
1306
1307 npages = (range->end - range->start) >> PAGE_SHIFT;
1308 for (i = 0; i < npages; ++i) {
1309 enum dma_data_direction dir = DMA_TO_DEVICE;
1310 struct page *page;
1311
391aab11 1312 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1313 if (page == NULL)
1314 continue;
1315
1316 /* If it is read and write than map bi-directional. */
1317 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1318 dir = DMA_BIDIRECTIONAL;
1319
1320 /*
1321 * See comments in function description on why it is
1322 * safe here to call set_page_dirty()
1323 */
1324 if (dirty)
1325 set_page_dirty(page);
1326 }
1327
1328 /* Unmap and clear pfns/dma address */
1329 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1330 range->pfns[i] = range->values[HMM_PFN_NONE];
1331 /* FIXME see comments in hmm_vma_dma_map() */
1332 daddrs[i] = 0;
1333 cpages++;
1334 }
1335
1336 return cpages;
1337}
1338EXPORT_SYMBOL(hmm_range_dma_unmap);
c0b12405 1339#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
4ef589dc
JG
1340
1341
df6ad698 1342#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
4ef589dc
JG
1343struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1344 unsigned long addr)
1345{
1346 struct page *page;
1347
1348 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1349 if (!page)
1350 return NULL;
1351 lock_page(page);
1352 return page;
1353}
1354EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1355
1356
1357static void hmm_devmem_ref_release(struct percpu_ref *ref)
1358{
1359 struct hmm_devmem *devmem;
1360
1361 devmem = container_of(ref, struct hmm_devmem, ref);
1362 complete(&devmem->completion);
1363}
1364
1365static void hmm_devmem_ref_exit(void *data)
1366{
1367 struct percpu_ref *ref = data;
1368 struct hmm_devmem *devmem;
1369
1370 devmem = container_of(ref, struct hmm_devmem, ref);
bbecd94e 1371 wait_for_completion(&devmem->completion);
4ef589dc 1372 percpu_ref_exit(ref);
4ef589dc
JG
1373}
1374
bbecd94e 1375static void hmm_devmem_ref_kill(struct percpu_ref *ref)
4ef589dc 1376{
4ef589dc 1377 percpu_ref_kill(ref);
4ef589dc
JG
1378}
1379
b57e622e 1380static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
4ef589dc
JG
1381 unsigned long addr,
1382 const struct page *page,
1383 unsigned int flags,
1384 pmd_t *pmdp)
1385{
1386 struct hmm_devmem *devmem = page->pgmap->data;
1387
1388 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1389}
1390
1391static void hmm_devmem_free(struct page *page, void *data)
1392{
1393 struct hmm_devmem *devmem = data;
1394
2fa147bd
DW
1395 page->mapping = NULL;
1396
4ef589dc
JG
1397 devmem->ops->free(devmem, page);
1398}
1399
4ef589dc
JG
1400/*
1401 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1402 *
1403 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1404 * @device: device struct to bind the resource too
1405 * @size: size in bytes of the device memory to add
085ea250 1406 * Return: pointer to new hmm_devmem struct ERR_PTR otherwise
4ef589dc
JG
1407 *
1408 * This function first finds an empty range of physical address big enough to
1409 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1410 * in turn allocates struct pages. It does not do anything beyond that; all
1411 * events affecting the memory will go through the various callbacks provided
1412 * by hmm_devmem_ops struct.
1413 *
1414 * Device driver should call this function during device initialization and
1415 * is then responsible of memory management. HMM only provides helpers.
1416 */
1417struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1418 struct device *device,
1419 unsigned long size)
1420{
1421 struct hmm_devmem *devmem;
1422 resource_size_t addr;
bbecd94e 1423 void *result;
4ef589dc
JG
1424 int ret;
1425
e7638488 1426 dev_pagemap_get_ops();
4ef589dc 1427
58ef15b7 1428 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
4ef589dc
JG
1429 if (!devmem)
1430 return ERR_PTR(-ENOMEM);
1431
1432 init_completion(&devmem->completion);
1433 devmem->pfn_first = -1UL;
1434 devmem->pfn_last = -1UL;
1435 devmem->resource = NULL;
1436 devmem->device = device;
1437 devmem->ops = ops;
1438
1439 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1440 0, GFP_KERNEL);
1441 if (ret)
58ef15b7 1442 return ERR_PTR(ret);
4ef589dc 1443
58ef15b7 1444 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
4ef589dc 1445 if (ret)
58ef15b7 1446 return ERR_PTR(ret);
4ef589dc
JG
1447
1448 size = ALIGN(size, PA_SECTION_SIZE);
1449 addr = min((unsigned long)iomem_resource.end,
1450 (1UL << MAX_PHYSMEM_BITS) - 1);
1451 addr = addr - size + 1UL;
1452
1453 /*
1454 * FIXME add a new helper to quickly walk resource tree and find free
1455 * range
1456 *
1457 * FIXME what about ioport_resource resource ?
1458 */
1459 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1460 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1461 if (ret != REGION_DISJOINT)
1462 continue;
1463
1464 devmem->resource = devm_request_mem_region(device, addr, size,
1465 dev_name(device));
58ef15b7
DW
1466 if (!devmem->resource)
1467 return ERR_PTR(-ENOMEM);
4ef589dc
JG
1468 break;
1469 }
58ef15b7
DW
1470 if (!devmem->resource)
1471 return ERR_PTR(-ERANGE);
4ef589dc
JG
1472
1473 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1474 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1475 devmem->pfn_last = devmem->pfn_first +
1476 (resource_size(devmem->resource) >> PAGE_SHIFT);
063a7d1d 1477 devmem->page_fault = hmm_devmem_fault;
4ef589dc 1478
bbecd94e
DW
1479 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1480 devmem->pagemap.res = *devmem->resource;
bbecd94e
DW
1481 devmem->pagemap.page_free = hmm_devmem_free;
1482 devmem->pagemap.altmap_valid = false;
1483 devmem->pagemap.ref = &devmem->ref;
1484 devmem->pagemap.data = devmem;
1485 devmem->pagemap.kill = hmm_devmem_ref_kill;
4ef589dc 1486
bbecd94e
DW
1487 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1488 if (IS_ERR(result))
1489 return result;
4ef589dc 1490 return devmem;
4ef589dc 1491}
02917e9f 1492EXPORT_SYMBOL_GPL(hmm_devmem_add);
4ef589dc 1493
d3df0a42
JG
1494struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1495 struct device *device,
1496 struct resource *res)
1497{
1498 struct hmm_devmem *devmem;
bbecd94e 1499 void *result;
d3df0a42
JG
1500 int ret;
1501
1502 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1503 return ERR_PTR(-EINVAL);
1504
e7638488 1505 dev_pagemap_get_ops();
d3df0a42 1506
58ef15b7 1507 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
d3df0a42
JG
1508 if (!devmem)
1509 return ERR_PTR(-ENOMEM);
1510
1511 init_completion(&devmem->completion);
1512 devmem->pfn_first = -1UL;
1513 devmem->pfn_last = -1UL;
1514 devmem->resource = res;
1515 devmem->device = device;
1516 devmem->ops = ops;
1517
1518 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1519 0, GFP_KERNEL);
1520 if (ret)
58ef15b7 1521 return ERR_PTR(ret);
d3df0a42 1522
58ef15b7
DW
1523 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1524 &devmem->ref);
d3df0a42 1525 if (ret)
58ef15b7 1526 return ERR_PTR(ret);
d3df0a42
JG
1527
1528 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1529 devmem->pfn_last = devmem->pfn_first +
1530 (resource_size(devmem->resource) >> PAGE_SHIFT);
063a7d1d 1531 devmem->page_fault = hmm_devmem_fault;
d3df0a42 1532
bbecd94e
DW
1533 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1534 devmem->pagemap.res = *devmem->resource;
bbecd94e
DW
1535 devmem->pagemap.page_free = hmm_devmem_free;
1536 devmem->pagemap.altmap_valid = false;
1537 devmem->pagemap.ref = &devmem->ref;
1538 devmem->pagemap.data = devmem;
1539 devmem->pagemap.kill = hmm_devmem_ref_kill;
d3df0a42 1540
bbecd94e
DW
1541 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1542 if (IS_ERR(result))
1543 return result;
d3df0a42 1544 return devmem;
d3df0a42 1545}
02917e9f 1546EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
d3df0a42 1547
858b54da
JG
1548/*
1549 * A device driver that wants to handle multiple devices memory through a
1550 * single fake device can use hmm_device to do so. This is purely a helper
1551 * and it is not needed to make use of any HMM functionality.
1552 */
1553#define HMM_DEVICE_MAX 256
1554
1555static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1556static DEFINE_SPINLOCK(hmm_device_lock);
1557static struct class *hmm_device_class;
1558static dev_t hmm_device_devt;
1559
1560static void hmm_device_release(struct device *device)
1561{
1562 struct hmm_device *hmm_device;
1563
1564 hmm_device = container_of(device, struct hmm_device, device);
1565 spin_lock(&hmm_device_lock);
1566 clear_bit(hmm_device->minor, hmm_device_mask);
1567 spin_unlock(&hmm_device_lock);
1568
1569 kfree(hmm_device);
1570}
1571
1572struct hmm_device *hmm_device_new(void *drvdata)
1573{
1574 struct hmm_device *hmm_device;
1575
1576 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1577 if (!hmm_device)
1578 return ERR_PTR(-ENOMEM);
1579
1580 spin_lock(&hmm_device_lock);
1581 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1582 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1583 spin_unlock(&hmm_device_lock);
1584 kfree(hmm_device);
1585 return ERR_PTR(-EBUSY);
1586 }
1587 set_bit(hmm_device->minor, hmm_device_mask);
1588 spin_unlock(&hmm_device_lock);
1589
1590 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1591 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1592 hmm_device->minor);
1593 hmm_device->device.release = hmm_device_release;
1594 dev_set_drvdata(&hmm_device->device, drvdata);
1595 hmm_device->device.class = hmm_device_class;
1596 device_initialize(&hmm_device->device);
1597
1598 return hmm_device;
1599}
1600EXPORT_SYMBOL(hmm_device_new);
1601
1602void hmm_device_put(struct hmm_device *hmm_device)
1603{
1604 put_device(&hmm_device->device);
1605}
1606EXPORT_SYMBOL(hmm_device_put);
1607
1608static int __init hmm_init(void)
1609{
1610 int ret;
1611
1612 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1613 HMM_DEVICE_MAX,
1614 "hmm_device");
1615 if (ret)
1616 return ret;
1617
1618 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1619 if (IS_ERR(hmm_device_class)) {
1620 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1621 return PTR_ERR(hmm_device_class);
1622 }
1623 return 0;
1624}
1625
1626device_initcall(hmm_init);
df6ad698 1627#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
This page took 0.409588 seconds and 4 git commands to generate.