]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/cpuset.c | |
3 | * | |
4 | * Processor and Memory placement constraints for sets of tasks. | |
5 | * | |
6 | * Copyright (C) 2003 BULL SA. | |
029190c5 | 7 | * Copyright (C) 2004-2007 Silicon Graphics, Inc. |
8793d854 | 8 | * Copyright (C) 2006 Google, Inc |
1da177e4 LT |
9 | * |
10 | * Portions derived from Patrick Mochel's sysfs code. | |
11 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | |
1da177e4 | 12 | * |
825a46af | 13 | * 2003-10-10 Written by Simon Derr. |
1da177e4 | 14 | * 2003-10-22 Updates by Stephen Hemminger. |
825a46af | 15 | * 2004 May-July Rework by Paul Jackson. |
8793d854 | 16 | * 2006 Rework by Paul Menage to use generic cgroups |
cf417141 MK |
17 | * 2008 Rework of the scheduler domains and CPU hotplug handling |
18 | * by Max Krasnyansky | |
1da177e4 LT |
19 | * |
20 | * This file is subject to the terms and conditions of the GNU General Public | |
21 | * License. See the file COPYING in the main directory of the Linux | |
22 | * distribution for more details. | |
23 | */ | |
24 | ||
1da177e4 LT |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpumask.h> | |
27 | #include <linux/cpuset.h> | |
28 | #include <linux/err.h> | |
29 | #include <linux/errno.h> | |
30 | #include <linux/file.h> | |
31 | #include <linux/fs.h> | |
32 | #include <linux/init.h> | |
33 | #include <linux/interrupt.h> | |
34 | #include <linux/kernel.h> | |
35 | #include <linux/kmod.h> | |
36 | #include <linux/list.h> | |
68860ec1 | 37 | #include <linux/mempolicy.h> |
1da177e4 | 38 | #include <linux/mm.h> |
f481891f | 39 | #include <linux/memory.h> |
9984de1a | 40 | #include <linux/export.h> |
1da177e4 LT |
41 | #include <linux/mount.h> |
42 | #include <linux/namei.h> | |
43 | #include <linux/pagemap.h> | |
44 | #include <linux/proc_fs.h> | |
6b9c2603 | 45 | #include <linux/rcupdate.h> |
1da177e4 LT |
46 | #include <linux/sched.h> |
47 | #include <linux/seq_file.h> | |
22fb52dd | 48 | #include <linux/security.h> |
1da177e4 | 49 | #include <linux/slab.h> |
1da177e4 LT |
50 | #include <linux/spinlock.h> |
51 | #include <linux/stat.h> | |
52 | #include <linux/string.h> | |
53 | #include <linux/time.h> | |
54 | #include <linux/backing-dev.h> | |
55 | #include <linux/sort.h> | |
56 | ||
57 | #include <asm/uaccess.h> | |
60063497 | 58 | #include <linux/atomic.h> |
3d3f26a7 | 59 | #include <linux/mutex.h> |
956db3ca CW |
60 | #include <linux/workqueue.h> |
61 | #include <linux/cgroup.h> | |
1da177e4 | 62 | |
f90d4118 MX |
63 | /* |
64 | * Workqueue for cpuset related tasks. | |
65 | * | |
66 | * Using kevent workqueue may cause deadlock when memory_migrate | |
67 | * is set. So we create a separate workqueue thread for cpuset. | |
68 | */ | |
69 | static struct workqueue_struct *cpuset_wq; | |
70 | ||
202f72d5 PJ |
71 | /* |
72 | * Tracks how many cpusets are currently defined in system. | |
73 | * When there is only one cpuset (the root cpuset) we can | |
74 | * short circuit some hooks. | |
75 | */ | |
7edc5962 | 76 | int number_of_cpusets __read_mostly; |
202f72d5 | 77 | |
2df167a3 | 78 | /* Forward declare cgroup structures */ |
8793d854 PM |
79 | struct cgroup_subsys cpuset_subsys; |
80 | struct cpuset; | |
81 | ||
3e0d98b9 PJ |
82 | /* See "Frequency meter" comments, below. */ |
83 | ||
84 | struct fmeter { | |
85 | int cnt; /* unprocessed events count */ | |
86 | int val; /* most recent output value */ | |
87 | time_t time; /* clock (secs) when val computed */ | |
88 | spinlock_t lock; /* guards read or write of above */ | |
89 | }; | |
90 | ||
1da177e4 | 91 | struct cpuset { |
8793d854 PM |
92 | struct cgroup_subsys_state css; |
93 | ||
1da177e4 | 94 | unsigned long flags; /* "unsigned long" so bitops work */ |
300ed6cb | 95 | cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ |
1da177e4 LT |
96 | nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ |
97 | ||
1da177e4 | 98 | struct cpuset *parent; /* my parent */ |
1da177e4 | 99 | |
3e0d98b9 | 100 | struct fmeter fmeter; /* memory_pressure filter */ |
029190c5 PJ |
101 | |
102 | /* partition number for rebuild_sched_domains() */ | |
103 | int pn; | |
956db3ca | 104 | |
1d3504fc HS |
105 | /* for custom sched domain */ |
106 | int relax_domain_level; | |
107 | ||
732bee7a | 108 | /* used for walking a cpuset hierarchy */ |
956db3ca | 109 | struct list_head stack_list; |
1da177e4 LT |
110 | }; |
111 | ||
8793d854 PM |
112 | /* Retrieve the cpuset for a cgroup */ |
113 | static inline struct cpuset *cgroup_cs(struct cgroup *cont) | |
114 | { | |
115 | return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), | |
116 | struct cpuset, css); | |
117 | } | |
118 | ||
119 | /* Retrieve the cpuset for a task */ | |
120 | static inline struct cpuset *task_cs(struct task_struct *task) | |
121 | { | |
122 | return container_of(task_subsys_state(task, cpuset_subsys_id), | |
123 | struct cpuset, css); | |
124 | } | |
8793d854 | 125 | |
b246272e DR |
126 | #ifdef CONFIG_NUMA |
127 | static inline bool task_has_mempolicy(struct task_struct *task) | |
128 | { | |
129 | return task->mempolicy; | |
130 | } | |
131 | #else | |
132 | static inline bool task_has_mempolicy(struct task_struct *task) | |
133 | { | |
134 | return false; | |
135 | } | |
136 | #endif | |
137 | ||
138 | ||
1da177e4 LT |
139 | /* bits in struct cpuset flags field */ |
140 | typedef enum { | |
141 | CS_CPU_EXCLUSIVE, | |
142 | CS_MEM_EXCLUSIVE, | |
78608366 | 143 | CS_MEM_HARDWALL, |
45b07ef3 | 144 | CS_MEMORY_MIGRATE, |
029190c5 | 145 | CS_SCHED_LOAD_BALANCE, |
825a46af PJ |
146 | CS_SPREAD_PAGE, |
147 | CS_SPREAD_SLAB, | |
1da177e4 LT |
148 | } cpuset_flagbits_t; |
149 | ||
7ddf96b0 SB |
150 | /* the type of hotplug event */ |
151 | enum hotplug_event { | |
152 | CPUSET_CPU_OFFLINE, | |
153 | CPUSET_MEM_OFFLINE, | |
154 | }; | |
155 | ||
1da177e4 LT |
156 | /* convenient tests for these bits */ |
157 | static inline int is_cpu_exclusive(const struct cpuset *cs) | |
158 | { | |
7b5b9ef0 | 159 | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
160 | } |
161 | ||
162 | static inline int is_mem_exclusive(const struct cpuset *cs) | |
163 | { | |
7b5b9ef0 | 164 | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
165 | } |
166 | ||
78608366 PM |
167 | static inline int is_mem_hardwall(const struct cpuset *cs) |
168 | { | |
169 | return test_bit(CS_MEM_HARDWALL, &cs->flags); | |
170 | } | |
171 | ||
029190c5 PJ |
172 | static inline int is_sched_load_balance(const struct cpuset *cs) |
173 | { | |
174 | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | |
175 | } | |
176 | ||
45b07ef3 PJ |
177 | static inline int is_memory_migrate(const struct cpuset *cs) |
178 | { | |
7b5b9ef0 | 179 | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); |
45b07ef3 PJ |
180 | } |
181 | ||
825a46af PJ |
182 | static inline int is_spread_page(const struct cpuset *cs) |
183 | { | |
184 | return test_bit(CS_SPREAD_PAGE, &cs->flags); | |
185 | } | |
186 | ||
187 | static inline int is_spread_slab(const struct cpuset *cs) | |
188 | { | |
189 | return test_bit(CS_SPREAD_SLAB, &cs->flags); | |
190 | } | |
191 | ||
1da177e4 LT |
192 | static struct cpuset top_cpuset = { |
193 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | |
1da177e4 LT |
194 | }; |
195 | ||
1da177e4 | 196 | /* |
2df167a3 PM |
197 | * There are two global mutexes guarding cpuset structures. The first |
198 | * is the main control groups cgroup_mutex, accessed via | |
199 | * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific | |
200 | * callback_mutex, below. They can nest. It is ok to first take | |
201 | * cgroup_mutex, then nest callback_mutex. We also require taking | |
202 | * task_lock() when dereferencing a task's cpuset pointer. See "The | |
203 | * task_lock() exception", at the end of this comment. | |
053199ed | 204 | * |
3d3f26a7 | 205 | * A task must hold both mutexes to modify cpusets. If a task |
2df167a3 | 206 | * holds cgroup_mutex, then it blocks others wanting that mutex, |
3d3f26a7 | 207 | * ensuring that it is the only task able to also acquire callback_mutex |
053199ed PJ |
208 | * and be able to modify cpusets. It can perform various checks on |
209 | * the cpuset structure first, knowing nothing will change. It can | |
2df167a3 | 210 | * also allocate memory while just holding cgroup_mutex. While it is |
053199ed | 211 | * performing these checks, various callback routines can briefly |
3d3f26a7 IM |
212 | * acquire callback_mutex to query cpusets. Once it is ready to make |
213 | * the changes, it takes callback_mutex, blocking everyone else. | |
053199ed PJ |
214 | * |
215 | * Calls to the kernel memory allocator can not be made while holding | |
3d3f26a7 | 216 | * callback_mutex, as that would risk double tripping on callback_mutex |
053199ed PJ |
217 | * from one of the callbacks into the cpuset code from within |
218 | * __alloc_pages(). | |
219 | * | |
3d3f26a7 | 220 | * If a task is only holding callback_mutex, then it has read-only |
053199ed PJ |
221 | * access to cpusets. |
222 | * | |
58568d2a MX |
223 | * Now, the task_struct fields mems_allowed and mempolicy may be changed |
224 | * by other task, we use alloc_lock in the task_struct fields to protect | |
225 | * them. | |
053199ed | 226 | * |
3d3f26a7 | 227 | * The cpuset_common_file_read() handlers only hold callback_mutex across |
053199ed PJ |
228 | * small pieces of code, such as when reading out possibly multi-word |
229 | * cpumasks and nodemasks. | |
230 | * | |
2df167a3 PM |
231 | * Accessing a task's cpuset should be done in accordance with the |
232 | * guidelines for accessing subsystem state in kernel/cgroup.c | |
1da177e4 LT |
233 | */ |
234 | ||
3d3f26a7 | 235 | static DEFINE_MUTEX(callback_mutex); |
4247bdc6 | 236 | |
75aa1994 DR |
237 | /* |
238 | * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist | |
239 | * buffers. They are statically allocated to prevent using excess stack | |
240 | * when calling cpuset_print_task_mems_allowed(). | |
241 | */ | |
242 | #define CPUSET_NAME_LEN (128) | |
243 | #define CPUSET_NODELIST_LEN (256) | |
244 | static char cpuset_name[CPUSET_NAME_LEN]; | |
245 | static char cpuset_nodelist[CPUSET_NODELIST_LEN]; | |
246 | static DEFINE_SPINLOCK(cpuset_buffer_lock); | |
247 | ||
cf417141 MK |
248 | /* |
249 | * This is ugly, but preserves the userspace API for existing cpuset | |
8793d854 | 250 | * users. If someone tries to mount the "cpuset" filesystem, we |
cf417141 MK |
251 | * silently switch it to mount "cgroup" instead |
252 | */ | |
f7e83571 AV |
253 | static struct dentry *cpuset_mount(struct file_system_type *fs_type, |
254 | int flags, const char *unused_dev_name, void *data) | |
1da177e4 | 255 | { |
8793d854 | 256 | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); |
f7e83571 | 257 | struct dentry *ret = ERR_PTR(-ENODEV); |
8793d854 PM |
258 | if (cgroup_fs) { |
259 | char mountopts[] = | |
260 | "cpuset,noprefix," | |
261 | "release_agent=/sbin/cpuset_release_agent"; | |
f7e83571 AV |
262 | ret = cgroup_fs->mount(cgroup_fs, flags, |
263 | unused_dev_name, mountopts); | |
8793d854 PM |
264 | put_filesystem(cgroup_fs); |
265 | } | |
266 | return ret; | |
1da177e4 LT |
267 | } |
268 | ||
269 | static struct file_system_type cpuset_fs_type = { | |
270 | .name = "cpuset", | |
f7e83571 | 271 | .mount = cpuset_mount, |
1da177e4 LT |
272 | }; |
273 | ||
1da177e4 | 274 | /* |
300ed6cb | 275 | * Return in pmask the portion of a cpusets's cpus_allowed that |
1da177e4 LT |
276 | * are online. If none are online, walk up the cpuset hierarchy |
277 | * until we find one that does have some online cpus. If we get | |
278 | * all the way to the top and still haven't found any online cpus, | |
5f054e31 RR |
279 | * return cpu_online_mask. Or if passed a NULL cs from an exit'ing |
280 | * task, return cpu_online_mask. | |
1da177e4 LT |
281 | * |
282 | * One way or another, we guarantee to return some non-empty subset | |
5f054e31 | 283 | * of cpu_online_mask. |
1da177e4 | 284 | * |
3d3f26a7 | 285 | * Call with callback_mutex held. |
1da177e4 LT |
286 | */ |
287 | ||
6af866af LZ |
288 | static void guarantee_online_cpus(const struct cpuset *cs, |
289 | struct cpumask *pmask) | |
1da177e4 | 290 | { |
300ed6cb | 291 | while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) |
1da177e4 LT |
292 | cs = cs->parent; |
293 | if (cs) | |
300ed6cb | 294 | cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); |
1da177e4 | 295 | else |
300ed6cb LZ |
296 | cpumask_copy(pmask, cpu_online_mask); |
297 | BUG_ON(!cpumask_intersects(pmask, cpu_online_mask)); | |
1da177e4 LT |
298 | } |
299 | ||
300 | /* | |
301 | * Return in *pmask the portion of a cpusets's mems_allowed that | |
0e1e7c7a CL |
302 | * are online, with memory. If none are online with memory, walk |
303 | * up the cpuset hierarchy until we find one that does have some | |
304 | * online mems. If we get all the way to the top and still haven't | |
305 | * found any online mems, return node_states[N_HIGH_MEMORY]. | |
1da177e4 LT |
306 | * |
307 | * One way or another, we guarantee to return some non-empty subset | |
0e1e7c7a | 308 | * of node_states[N_HIGH_MEMORY]. |
1da177e4 | 309 | * |
3d3f26a7 | 310 | * Call with callback_mutex held. |
1da177e4 LT |
311 | */ |
312 | ||
313 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | |
314 | { | |
0e1e7c7a CL |
315 | while (cs && !nodes_intersects(cs->mems_allowed, |
316 | node_states[N_HIGH_MEMORY])) | |
1da177e4 LT |
317 | cs = cs->parent; |
318 | if (cs) | |
0e1e7c7a CL |
319 | nodes_and(*pmask, cs->mems_allowed, |
320 | node_states[N_HIGH_MEMORY]); | |
1da177e4 | 321 | else |
0e1e7c7a CL |
322 | *pmask = node_states[N_HIGH_MEMORY]; |
323 | BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); | |
1da177e4 LT |
324 | } |
325 | ||
f3b39d47 MX |
326 | /* |
327 | * update task's spread flag if cpuset's page/slab spread flag is set | |
328 | * | |
329 | * Called with callback_mutex/cgroup_mutex held | |
330 | */ | |
331 | static void cpuset_update_task_spread_flag(struct cpuset *cs, | |
332 | struct task_struct *tsk) | |
333 | { | |
334 | if (is_spread_page(cs)) | |
335 | tsk->flags |= PF_SPREAD_PAGE; | |
336 | else | |
337 | tsk->flags &= ~PF_SPREAD_PAGE; | |
338 | if (is_spread_slab(cs)) | |
339 | tsk->flags |= PF_SPREAD_SLAB; | |
340 | else | |
341 | tsk->flags &= ~PF_SPREAD_SLAB; | |
342 | } | |
343 | ||
1da177e4 LT |
344 | /* |
345 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | |
346 | * | |
347 | * One cpuset is a subset of another if all its allowed CPUs and | |
348 | * Memory Nodes are a subset of the other, and its exclusive flags | |
2df167a3 | 349 | * are only set if the other's are set. Call holding cgroup_mutex. |
1da177e4 LT |
350 | */ |
351 | ||
352 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | |
353 | { | |
300ed6cb | 354 | return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && |
1da177e4 LT |
355 | nodes_subset(p->mems_allowed, q->mems_allowed) && |
356 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | |
357 | is_mem_exclusive(p) <= is_mem_exclusive(q); | |
358 | } | |
359 | ||
645fcc9d LZ |
360 | /** |
361 | * alloc_trial_cpuset - allocate a trial cpuset | |
362 | * @cs: the cpuset that the trial cpuset duplicates | |
363 | */ | |
364 | static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs) | |
365 | { | |
300ed6cb LZ |
366 | struct cpuset *trial; |
367 | ||
368 | trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | |
369 | if (!trial) | |
370 | return NULL; | |
371 | ||
372 | if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { | |
373 | kfree(trial); | |
374 | return NULL; | |
375 | } | |
376 | cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | |
377 | ||
378 | return trial; | |
645fcc9d LZ |
379 | } |
380 | ||
381 | /** | |
382 | * free_trial_cpuset - free the trial cpuset | |
383 | * @trial: the trial cpuset to be freed | |
384 | */ | |
385 | static void free_trial_cpuset(struct cpuset *trial) | |
386 | { | |
300ed6cb | 387 | free_cpumask_var(trial->cpus_allowed); |
645fcc9d LZ |
388 | kfree(trial); |
389 | } | |
390 | ||
1da177e4 LT |
391 | /* |
392 | * validate_change() - Used to validate that any proposed cpuset change | |
393 | * follows the structural rules for cpusets. | |
394 | * | |
395 | * If we replaced the flag and mask values of the current cpuset | |
396 | * (cur) with those values in the trial cpuset (trial), would | |
397 | * our various subset and exclusive rules still be valid? Presumes | |
2df167a3 | 398 | * cgroup_mutex held. |
1da177e4 LT |
399 | * |
400 | * 'cur' is the address of an actual, in-use cpuset. Operations | |
401 | * such as list traversal that depend on the actual address of the | |
402 | * cpuset in the list must use cur below, not trial. | |
403 | * | |
404 | * 'trial' is the address of bulk structure copy of cur, with | |
405 | * perhaps one or more of the fields cpus_allowed, mems_allowed, | |
406 | * or flags changed to new, trial values. | |
407 | * | |
408 | * Return 0 if valid, -errno if not. | |
409 | */ | |
410 | ||
411 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | |
412 | { | |
8793d854 | 413 | struct cgroup *cont; |
1da177e4 LT |
414 | struct cpuset *c, *par; |
415 | ||
416 | /* Each of our child cpusets must be a subset of us */ | |
8793d854 PM |
417 | list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { |
418 | if (!is_cpuset_subset(cgroup_cs(cont), trial)) | |
1da177e4 LT |
419 | return -EBUSY; |
420 | } | |
421 | ||
422 | /* Remaining checks don't apply to root cpuset */ | |
69604067 | 423 | if (cur == &top_cpuset) |
1da177e4 LT |
424 | return 0; |
425 | ||
69604067 PJ |
426 | par = cur->parent; |
427 | ||
1da177e4 LT |
428 | /* We must be a subset of our parent cpuset */ |
429 | if (!is_cpuset_subset(trial, par)) | |
430 | return -EACCES; | |
431 | ||
2df167a3 PM |
432 | /* |
433 | * If either I or some sibling (!= me) is exclusive, we can't | |
434 | * overlap | |
435 | */ | |
8793d854 PM |
436 | list_for_each_entry(cont, &par->css.cgroup->children, sibling) { |
437 | c = cgroup_cs(cont); | |
1da177e4 LT |
438 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && |
439 | c != cur && | |
300ed6cb | 440 | cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) |
1da177e4 LT |
441 | return -EINVAL; |
442 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | |
443 | c != cur && | |
444 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | |
445 | return -EINVAL; | |
446 | } | |
447 | ||
020958b6 PJ |
448 | /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ |
449 | if (cgroup_task_count(cur->css.cgroup)) { | |
300ed6cb | 450 | if (cpumask_empty(trial->cpus_allowed) || |
020958b6 PJ |
451 | nodes_empty(trial->mems_allowed)) { |
452 | return -ENOSPC; | |
453 | } | |
454 | } | |
455 | ||
1da177e4 LT |
456 | return 0; |
457 | } | |
458 | ||
db7f47cf | 459 | #ifdef CONFIG_SMP |
029190c5 | 460 | /* |
cf417141 | 461 | * Helper routine for generate_sched_domains(). |
029190c5 PJ |
462 | * Do cpusets a, b have overlapping cpus_allowed masks? |
463 | */ | |
029190c5 PJ |
464 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) |
465 | { | |
300ed6cb | 466 | return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); |
029190c5 PJ |
467 | } |
468 | ||
1d3504fc HS |
469 | static void |
470 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | |
471 | { | |
1d3504fc HS |
472 | if (dattr->relax_domain_level < c->relax_domain_level) |
473 | dattr->relax_domain_level = c->relax_domain_level; | |
474 | return; | |
475 | } | |
476 | ||
f5393693 LJ |
477 | static void |
478 | update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) | |
479 | { | |
480 | LIST_HEAD(q); | |
481 | ||
482 | list_add(&c->stack_list, &q); | |
483 | while (!list_empty(&q)) { | |
484 | struct cpuset *cp; | |
485 | struct cgroup *cont; | |
486 | struct cpuset *child; | |
487 | ||
488 | cp = list_first_entry(&q, struct cpuset, stack_list); | |
489 | list_del(q.next); | |
490 | ||
300ed6cb | 491 | if (cpumask_empty(cp->cpus_allowed)) |
f5393693 LJ |
492 | continue; |
493 | ||
494 | if (is_sched_load_balance(cp)) | |
495 | update_domain_attr(dattr, cp); | |
496 | ||
497 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | |
498 | child = cgroup_cs(cont); | |
499 | list_add_tail(&child->stack_list, &q); | |
500 | } | |
501 | } | |
502 | } | |
503 | ||
029190c5 | 504 | /* |
cf417141 MK |
505 | * generate_sched_domains() |
506 | * | |
507 | * This function builds a partial partition of the systems CPUs | |
508 | * A 'partial partition' is a set of non-overlapping subsets whose | |
509 | * union is a subset of that set. | |
510 | * The output of this function needs to be passed to kernel/sched.c | |
511 | * partition_sched_domains() routine, which will rebuild the scheduler's | |
512 | * load balancing domains (sched domains) as specified by that partial | |
513 | * partition. | |
029190c5 | 514 | * |
45ce80fb | 515 | * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt |
029190c5 PJ |
516 | * for a background explanation of this. |
517 | * | |
518 | * Does not return errors, on the theory that the callers of this | |
519 | * routine would rather not worry about failures to rebuild sched | |
520 | * domains when operating in the severe memory shortage situations | |
521 | * that could cause allocation failures below. | |
522 | * | |
cf417141 | 523 | * Must be called with cgroup_lock held. |
029190c5 PJ |
524 | * |
525 | * The three key local variables below are: | |
aeed6824 | 526 | * q - a linked-list queue of cpuset pointers, used to implement a |
029190c5 PJ |
527 | * top-down scan of all cpusets. This scan loads a pointer |
528 | * to each cpuset marked is_sched_load_balance into the | |
529 | * array 'csa'. For our purposes, rebuilding the schedulers | |
530 | * sched domains, we can ignore !is_sched_load_balance cpusets. | |
531 | * csa - (for CpuSet Array) Array of pointers to all the cpusets | |
532 | * that need to be load balanced, for convenient iterative | |
533 | * access by the subsequent code that finds the best partition, | |
534 | * i.e the set of domains (subsets) of CPUs such that the | |
535 | * cpus_allowed of every cpuset marked is_sched_load_balance | |
536 | * is a subset of one of these domains, while there are as | |
537 | * many such domains as possible, each as small as possible. | |
538 | * doms - Conversion of 'csa' to an array of cpumasks, for passing to | |
539 | * the kernel/sched.c routine partition_sched_domains() in a | |
540 | * convenient format, that can be easily compared to the prior | |
541 | * value to determine what partition elements (sched domains) | |
542 | * were changed (added or removed.) | |
543 | * | |
544 | * Finding the best partition (set of domains): | |
545 | * The triple nested loops below over i, j, k scan over the | |
546 | * load balanced cpusets (using the array of cpuset pointers in | |
547 | * csa[]) looking for pairs of cpusets that have overlapping | |
548 | * cpus_allowed, but which don't have the same 'pn' partition | |
549 | * number and gives them in the same partition number. It keeps | |
550 | * looping on the 'restart' label until it can no longer find | |
551 | * any such pairs. | |
552 | * | |
553 | * The union of the cpus_allowed masks from the set of | |
554 | * all cpusets having the same 'pn' value then form the one | |
555 | * element of the partition (one sched domain) to be passed to | |
556 | * partition_sched_domains(). | |
557 | */ | |
acc3f5d7 | 558 | static int generate_sched_domains(cpumask_var_t **domains, |
cf417141 | 559 | struct sched_domain_attr **attributes) |
029190c5 | 560 | { |
cf417141 | 561 | LIST_HEAD(q); /* queue of cpusets to be scanned */ |
029190c5 PJ |
562 | struct cpuset *cp; /* scans q */ |
563 | struct cpuset **csa; /* array of all cpuset ptrs */ | |
564 | int csn; /* how many cpuset ptrs in csa so far */ | |
565 | int i, j, k; /* indices for partition finding loops */ | |
acc3f5d7 | 566 | cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ |
1d3504fc | 567 | struct sched_domain_attr *dattr; /* attributes for custom domains */ |
1583715d | 568 | int ndoms = 0; /* number of sched domains in result */ |
6af866af | 569 | int nslot; /* next empty doms[] struct cpumask slot */ |
029190c5 | 570 | |
029190c5 | 571 | doms = NULL; |
1d3504fc | 572 | dattr = NULL; |
cf417141 | 573 | csa = NULL; |
029190c5 PJ |
574 | |
575 | /* Special case for the 99% of systems with one, full, sched domain */ | |
576 | if (is_sched_load_balance(&top_cpuset)) { | |
acc3f5d7 RR |
577 | ndoms = 1; |
578 | doms = alloc_sched_domains(ndoms); | |
029190c5 | 579 | if (!doms) |
cf417141 MK |
580 | goto done; |
581 | ||
1d3504fc HS |
582 | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); |
583 | if (dattr) { | |
584 | *dattr = SD_ATTR_INIT; | |
93a65575 | 585 | update_domain_attr_tree(dattr, &top_cpuset); |
1d3504fc | 586 | } |
acc3f5d7 | 587 | cpumask_copy(doms[0], top_cpuset.cpus_allowed); |
cf417141 | 588 | |
cf417141 | 589 | goto done; |
029190c5 PJ |
590 | } |
591 | ||
029190c5 PJ |
592 | csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); |
593 | if (!csa) | |
594 | goto done; | |
595 | csn = 0; | |
596 | ||
aeed6824 LZ |
597 | list_add(&top_cpuset.stack_list, &q); |
598 | while (!list_empty(&q)) { | |
029190c5 PJ |
599 | struct cgroup *cont; |
600 | struct cpuset *child; /* scans child cpusets of cp */ | |
489a5393 | 601 | |
aeed6824 LZ |
602 | cp = list_first_entry(&q, struct cpuset, stack_list); |
603 | list_del(q.next); | |
604 | ||
300ed6cb | 605 | if (cpumask_empty(cp->cpus_allowed)) |
489a5393 LJ |
606 | continue; |
607 | ||
f5393693 LJ |
608 | /* |
609 | * All child cpusets contain a subset of the parent's cpus, so | |
610 | * just skip them, and then we call update_domain_attr_tree() | |
611 | * to calc relax_domain_level of the corresponding sched | |
612 | * domain. | |
613 | */ | |
614 | if (is_sched_load_balance(cp)) { | |
029190c5 | 615 | csa[csn++] = cp; |
f5393693 LJ |
616 | continue; |
617 | } | |
489a5393 | 618 | |
029190c5 PJ |
619 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { |
620 | child = cgroup_cs(cont); | |
aeed6824 | 621 | list_add_tail(&child->stack_list, &q); |
029190c5 PJ |
622 | } |
623 | } | |
624 | ||
625 | for (i = 0; i < csn; i++) | |
626 | csa[i]->pn = i; | |
627 | ndoms = csn; | |
628 | ||
629 | restart: | |
630 | /* Find the best partition (set of sched domains) */ | |
631 | for (i = 0; i < csn; i++) { | |
632 | struct cpuset *a = csa[i]; | |
633 | int apn = a->pn; | |
634 | ||
635 | for (j = 0; j < csn; j++) { | |
636 | struct cpuset *b = csa[j]; | |
637 | int bpn = b->pn; | |
638 | ||
639 | if (apn != bpn && cpusets_overlap(a, b)) { | |
640 | for (k = 0; k < csn; k++) { | |
641 | struct cpuset *c = csa[k]; | |
642 | ||
643 | if (c->pn == bpn) | |
644 | c->pn = apn; | |
645 | } | |
646 | ndoms--; /* one less element */ | |
647 | goto restart; | |
648 | } | |
649 | } | |
650 | } | |
651 | ||
cf417141 MK |
652 | /* |
653 | * Now we know how many domains to create. | |
654 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | |
655 | */ | |
acc3f5d7 | 656 | doms = alloc_sched_domains(ndoms); |
700018e0 | 657 | if (!doms) |
cf417141 | 658 | goto done; |
cf417141 MK |
659 | |
660 | /* | |
661 | * The rest of the code, including the scheduler, can deal with | |
662 | * dattr==NULL case. No need to abort if alloc fails. | |
663 | */ | |
1d3504fc | 664 | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); |
029190c5 PJ |
665 | |
666 | for (nslot = 0, i = 0; i < csn; i++) { | |
667 | struct cpuset *a = csa[i]; | |
6af866af | 668 | struct cpumask *dp; |
029190c5 PJ |
669 | int apn = a->pn; |
670 | ||
cf417141 MK |
671 | if (apn < 0) { |
672 | /* Skip completed partitions */ | |
673 | continue; | |
674 | } | |
675 | ||
acc3f5d7 | 676 | dp = doms[nslot]; |
cf417141 MK |
677 | |
678 | if (nslot == ndoms) { | |
679 | static int warnings = 10; | |
680 | if (warnings) { | |
681 | printk(KERN_WARNING | |
682 | "rebuild_sched_domains confused:" | |
683 | " nslot %d, ndoms %d, csn %d, i %d," | |
684 | " apn %d\n", | |
685 | nslot, ndoms, csn, i, apn); | |
686 | warnings--; | |
029190c5 | 687 | } |
cf417141 MK |
688 | continue; |
689 | } | |
029190c5 | 690 | |
6af866af | 691 | cpumask_clear(dp); |
cf417141 MK |
692 | if (dattr) |
693 | *(dattr + nslot) = SD_ATTR_INIT; | |
694 | for (j = i; j < csn; j++) { | |
695 | struct cpuset *b = csa[j]; | |
696 | ||
697 | if (apn == b->pn) { | |
300ed6cb | 698 | cpumask_or(dp, dp, b->cpus_allowed); |
cf417141 MK |
699 | if (dattr) |
700 | update_domain_attr_tree(dattr + nslot, b); | |
701 | ||
702 | /* Done with this partition */ | |
703 | b->pn = -1; | |
029190c5 | 704 | } |
029190c5 | 705 | } |
cf417141 | 706 | nslot++; |
029190c5 PJ |
707 | } |
708 | BUG_ON(nslot != ndoms); | |
709 | ||
cf417141 MK |
710 | done: |
711 | kfree(csa); | |
712 | ||
700018e0 LZ |
713 | /* |
714 | * Fallback to the default domain if kmalloc() failed. | |
715 | * See comments in partition_sched_domains(). | |
716 | */ | |
717 | if (doms == NULL) | |
718 | ndoms = 1; | |
719 | ||
cf417141 MK |
720 | *domains = doms; |
721 | *attributes = dattr; | |
722 | return ndoms; | |
723 | } | |
724 | ||
725 | /* | |
726 | * Rebuild scheduler domains. | |
727 | * | |
728 | * Call with neither cgroup_mutex held nor within get_online_cpus(). | |
729 | * Takes both cgroup_mutex and get_online_cpus(). | |
730 | * | |
731 | * Cannot be directly called from cpuset code handling changes | |
732 | * to the cpuset pseudo-filesystem, because it cannot be called | |
733 | * from code that already holds cgroup_mutex. | |
734 | */ | |
735 | static void do_rebuild_sched_domains(struct work_struct *unused) | |
736 | { | |
737 | struct sched_domain_attr *attr; | |
acc3f5d7 | 738 | cpumask_var_t *doms; |
cf417141 MK |
739 | int ndoms; |
740 | ||
86ef5c9a | 741 | get_online_cpus(); |
cf417141 MK |
742 | |
743 | /* Generate domain masks and attrs */ | |
744 | cgroup_lock(); | |
745 | ndoms = generate_sched_domains(&doms, &attr); | |
746 | cgroup_unlock(); | |
747 | ||
748 | /* Have scheduler rebuild the domains */ | |
749 | partition_sched_domains(ndoms, doms, attr); | |
750 | ||
86ef5c9a | 751 | put_online_cpus(); |
cf417141 | 752 | } |
db7f47cf PM |
753 | #else /* !CONFIG_SMP */ |
754 | static void do_rebuild_sched_domains(struct work_struct *unused) | |
755 | { | |
756 | } | |
757 | ||
e1b8090b | 758 | static int generate_sched_domains(cpumask_var_t **domains, |
db7f47cf PM |
759 | struct sched_domain_attr **attributes) |
760 | { | |
761 | *domains = NULL; | |
762 | return 1; | |
763 | } | |
764 | #endif /* CONFIG_SMP */ | |
029190c5 | 765 | |
cf417141 MK |
766 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); |
767 | ||
768 | /* | |
769 | * Rebuild scheduler domains, asynchronously via workqueue. | |
770 | * | |
771 | * If the flag 'sched_load_balance' of any cpuset with non-empty | |
772 | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | |
773 | * which has that flag enabled, or if any cpuset with a non-empty | |
774 | * 'cpus' is removed, then call this routine to rebuild the | |
775 | * scheduler's dynamic sched domains. | |
776 | * | |
777 | * The rebuild_sched_domains() and partition_sched_domains() | |
778 | * routines must nest cgroup_lock() inside get_online_cpus(), | |
779 | * but such cpuset changes as these must nest that locking the | |
780 | * other way, holding cgroup_lock() for much of the code. | |
781 | * | |
782 | * So in order to avoid an ABBA deadlock, the cpuset code handling | |
783 | * these user changes delegates the actual sched domain rebuilding | |
784 | * to a separate workqueue thread, which ends up processing the | |
785 | * above do_rebuild_sched_domains() function. | |
786 | */ | |
787 | static void async_rebuild_sched_domains(void) | |
788 | { | |
f90d4118 | 789 | queue_work(cpuset_wq, &rebuild_sched_domains_work); |
cf417141 MK |
790 | } |
791 | ||
792 | /* | |
793 | * Accomplishes the same scheduler domain rebuild as the above | |
794 | * async_rebuild_sched_domains(), however it directly calls the | |
795 | * rebuild routine synchronously rather than calling it via an | |
796 | * asynchronous work thread. | |
797 | * | |
798 | * This can only be called from code that is not holding | |
799 | * cgroup_mutex (not nested in a cgroup_lock() call.) | |
800 | */ | |
801 | void rebuild_sched_domains(void) | |
802 | { | |
803 | do_rebuild_sched_domains(NULL); | |
029190c5 PJ |
804 | } |
805 | ||
58f4790b CW |
806 | /** |
807 | * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's | |
808 | * @tsk: task to test | |
809 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | |
810 | * | |
2df167a3 | 811 | * Call with cgroup_mutex held. May take callback_mutex during call. |
58f4790b CW |
812 | * Called for each task in a cgroup by cgroup_scan_tasks(). |
813 | * Return nonzero if this tasks's cpus_allowed mask should be changed (in other | |
814 | * words, if its mask is not equal to its cpuset's mask). | |
053199ed | 815 | */ |
9e0c914c AB |
816 | static int cpuset_test_cpumask(struct task_struct *tsk, |
817 | struct cgroup_scanner *scan) | |
58f4790b | 818 | { |
300ed6cb | 819 | return !cpumask_equal(&tsk->cpus_allowed, |
58f4790b CW |
820 | (cgroup_cs(scan->cg))->cpus_allowed); |
821 | } | |
053199ed | 822 | |
58f4790b CW |
823 | /** |
824 | * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's | |
825 | * @tsk: task to test | |
826 | * @scan: struct cgroup_scanner containing the cgroup of the task | |
827 | * | |
828 | * Called by cgroup_scan_tasks() for each task in a cgroup whose | |
829 | * cpus_allowed mask needs to be changed. | |
830 | * | |
831 | * We don't need to re-check for the cgroup/cpuset membership, since we're | |
832 | * holding cgroup_lock() at this point. | |
833 | */ | |
9e0c914c AB |
834 | static void cpuset_change_cpumask(struct task_struct *tsk, |
835 | struct cgroup_scanner *scan) | |
58f4790b | 836 | { |
300ed6cb | 837 | set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed)); |
58f4790b CW |
838 | } |
839 | ||
0b2f630a MX |
840 | /** |
841 | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | |
842 | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | |
4e74339a | 843 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() |
0b2f630a MX |
844 | * |
845 | * Called with cgroup_mutex held | |
846 | * | |
847 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
848 | * calling callback functions for each. | |
849 | * | |
4e74339a LZ |
850 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
851 | * if @heap != NULL. | |
0b2f630a | 852 | */ |
4e74339a | 853 | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) |
0b2f630a MX |
854 | { |
855 | struct cgroup_scanner scan; | |
0b2f630a MX |
856 | |
857 | scan.cg = cs->css.cgroup; | |
858 | scan.test_task = cpuset_test_cpumask; | |
859 | scan.process_task = cpuset_change_cpumask; | |
4e74339a LZ |
860 | scan.heap = heap; |
861 | cgroup_scan_tasks(&scan); | |
0b2f630a MX |
862 | } |
863 | ||
58f4790b CW |
864 | /** |
865 | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | |
866 | * @cs: the cpuset to consider | |
867 | * @buf: buffer of cpu numbers written to this cpuset | |
868 | */ | |
645fcc9d LZ |
869 | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, |
870 | const char *buf) | |
1da177e4 | 871 | { |
4e74339a | 872 | struct ptr_heap heap; |
58f4790b CW |
873 | int retval; |
874 | int is_load_balanced; | |
1da177e4 | 875 | |
5f054e31 | 876 | /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ |
4c4d50f7 PJ |
877 | if (cs == &top_cpuset) |
878 | return -EACCES; | |
879 | ||
6f7f02e7 | 880 | /* |
c8d9c90c | 881 | * An empty cpus_allowed is ok only if the cpuset has no tasks. |
020958b6 PJ |
882 | * Since cpulist_parse() fails on an empty mask, we special case |
883 | * that parsing. The validate_change() call ensures that cpusets | |
884 | * with tasks have cpus. | |
6f7f02e7 | 885 | */ |
020958b6 | 886 | if (!*buf) { |
300ed6cb | 887 | cpumask_clear(trialcs->cpus_allowed); |
6f7f02e7 | 888 | } else { |
300ed6cb | 889 | retval = cpulist_parse(buf, trialcs->cpus_allowed); |
6f7f02e7 DR |
890 | if (retval < 0) |
891 | return retval; | |
37340746 | 892 | |
6ad4c188 | 893 | if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask)) |
37340746 | 894 | return -EINVAL; |
6f7f02e7 | 895 | } |
645fcc9d | 896 | retval = validate_change(cs, trialcs); |
85d7b949 DG |
897 | if (retval < 0) |
898 | return retval; | |
029190c5 | 899 | |
8707d8b8 | 900 | /* Nothing to do if the cpus didn't change */ |
300ed6cb | 901 | if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) |
8707d8b8 | 902 | return 0; |
58f4790b | 903 | |
4e74339a LZ |
904 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
905 | if (retval) | |
906 | return retval; | |
907 | ||
645fcc9d | 908 | is_load_balanced = is_sched_load_balance(trialcs); |
029190c5 | 909 | |
3d3f26a7 | 910 | mutex_lock(&callback_mutex); |
300ed6cb | 911 | cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); |
3d3f26a7 | 912 | mutex_unlock(&callback_mutex); |
029190c5 | 913 | |
8707d8b8 PM |
914 | /* |
915 | * Scan tasks in the cpuset, and update the cpumasks of any | |
58f4790b | 916 | * that need an update. |
8707d8b8 | 917 | */ |
4e74339a LZ |
918 | update_tasks_cpumask(cs, &heap); |
919 | ||
920 | heap_free(&heap); | |
58f4790b | 921 | |
8707d8b8 | 922 | if (is_load_balanced) |
cf417141 | 923 | async_rebuild_sched_domains(); |
85d7b949 | 924 | return 0; |
1da177e4 LT |
925 | } |
926 | ||
e4e364e8 PJ |
927 | /* |
928 | * cpuset_migrate_mm | |
929 | * | |
930 | * Migrate memory region from one set of nodes to another. | |
931 | * | |
932 | * Temporarilly set tasks mems_allowed to target nodes of migration, | |
933 | * so that the migration code can allocate pages on these nodes. | |
934 | * | |
2df167a3 | 935 | * Call holding cgroup_mutex, so current's cpuset won't change |
c8d9c90c | 936 | * during this call, as manage_mutex holds off any cpuset_attach() |
e4e364e8 PJ |
937 | * calls. Therefore we don't need to take task_lock around the |
938 | * call to guarantee_online_mems(), as we know no one is changing | |
2df167a3 | 939 | * our task's cpuset. |
e4e364e8 | 940 | * |
e4e364e8 PJ |
941 | * While the mm_struct we are migrating is typically from some |
942 | * other task, the task_struct mems_allowed that we are hacking | |
943 | * is for our current task, which must allocate new pages for that | |
944 | * migrating memory region. | |
e4e364e8 PJ |
945 | */ |
946 | ||
947 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | |
948 | const nodemask_t *to) | |
949 | { | |
950 | struct task_struct *tsk = current; | |
951 | ||
e4e364e8 | 952 | tsk->mems_allowed = *to; |
e4e364e8 PJ |
953 | |
954 | do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); | |
955 | ||
8793d854 | 956 | guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); |
e4e364e8 PJ |
957 | } |
958 | ||
3b6766fe | 959 | /* |
58568d2a MX |
960 | * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy |
961 | * @tsk: the task to change | |
962 | * @newmems: new nodes that the task will be set | |
963 | * | |
964 | * In order to avoid seeing no nodes if the old and new nodes are disjoint, | |
965 | * we structure updates as setting all new allowed nodes, then clearing newly | |
966 | * disallowed ones. | |
58568d2a MX |
967 | */ |
968 | static void cpuset_change_task_nodemask(struct task_struct *tsk, | |
969 | nodemask_t *newmems) | |
970 | { | |
b246272e | 971 | bool need_loop; |
89e8a244 | 972 | |
c0ff7453 MX |
973 | /* |
974 | * Allow tasks that have access to memory reserves because they have | |
975 | * been OOM killed to get memory anywhere. | |
976 | */ | |
977 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
978 | return; | |
979 | if (current->flags & PF_EXITING) /* Let dying task have memory */ | |
980 | return; | |
981 | ||
982 | task_lock(tsk); | |
b246272e DR |
983 | /* |
984 | * Determine if a loop is necessary if another thread is doing | |
985 | * get_mems_allowed(). If at least one node remains unchanged and | |
986 | * tsk does not have a mempolicy, then an empty nodemask will not be | |
987 | * possible when mems_allowed is larger than a word. | |
988 | */ | |
989 | need_loop = task_has_mempolicy(tsk) || | |
990 | !nodes_intersects(*newmems, tsk->mems_allowed); | |
c0ff7453 | 991 | |
cc9a6c87 MG |
992 | if (need_loop) |
993 | write_seqcount_begin(&tsk->mems_allowed_seq); | |
c0ff7453 | 994 | |
cc9a6c87 MG |
995 | nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); |
996 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); | |
c0ff7453 MX |
997 | |
998 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); | |
58568d2a | 999 | tsk->mems_allowed = *newmems; |
cc9a6c87 MG |
1000 | |
1001 | if (need_loop) | |
1002 | write_seqcount_end(&tsk->mems_allowed_seq); | |
1003 | ||
c0ff7453 | 1004 | task_unlock(tsk); |
58568d2a MX |
1005 | } |
1006 | ||
1007 | /* | |
1008 | * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy | |
1009 | * of it to cpuset's new mems_allowed, and migrate pages to new nodes if | |
1010 | * memory_migrate flag is set. Called with cgroup_mutex held. | |
3b6766fe LZ |
1011 | */ |
1012 | static void cpuset_change_nodemask(struct task_struct *p, | |
1013 | struct cgroup_scanner *scan) | |
1014 | { | |
1015 | struct mm_struct *mm; | |
1016 | struct cpuset *cs; | |
1017 | int migrate; | |
1018 | const nodemask_t *oldmem = scan->data; | |
ee24d379 | 1019 | static nodemask_t newmems; /* protected by cgroup_mutex */ |
58568d2a MX |
1020 | |
1021 | cs = cgroup_cs(scan->cg); | |
ee24d379 | 1022 | guarantee_online_mems(cs, &newmems); |
58568d2a | 1023 | |
ee24d379 | 1024 | cpuset_change_task_nodemask(p, &newmems); |
53feb297 | 1025 | |
3b6766fe LZ |
1026 | mm = get_task_mm(p); |
1027 | if (!mm) | |
1028 | return; | |
1029 | ||
3b6766fe LZ |
1030 | migrate = is_memory_migrate(cs); |
1031 | ||
1032 | mpol_rebind_mm(mm, &cs->mems_allowed); | |
1033 | if (migrate) | |
1034 | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); | |
1035 | mmput(mm); | |
1036 | } | |
1037 | ||
8793d854 PM |
1038 | static void *cpuset_being_rebound; |
1039 | ||
0b2f630a MX |
1040 | /** |
1041 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | |
1042 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | |
1043 | * @oldmem: old mems_allowed of cpuset cs | |
010cfac4 | 1044 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() |
0b2f630a MX |
1045 | * |
1046 | * Called with cgroup_mutex held | |
010cfac4 LZ |
1047 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
1048 | * if @heap != NULL. | |
0b2f630a | 1049 | */ |
010cfac4 LZ |
1050 | static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem, |
1051 | struct ptr_heap *heap) | |
1da177e4 | 1052 | { |
3b6766fe | 1053 | struct cgroup_scanner scan; |
59dac16f | 1054 | |
846a16bf | 1055 | cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ |
4225399a | 1056 | |
3b6766fe LZ |
1057 | scan.cg = cs->css.cgroup; |
1058 | scan.test_task = NULL; | |
1059 | scan.process_task = cpuset_change_nodemask; | |
010cfac4 | 1060 | scan.heap = heap; |
3b6766fe | 1061 | scan.data = (nodemask_t *)oldmem; |
4225399a PJ |
1062 | |
1063 | /* | |
3b6766fe LZ |
1064 | * The mpol_rebind_mm() call takes mmap_sem, which we couldn't |
1065 | * take while holding tasklist_lock. Forks can happen - the | |
1066 | * mpol_dup() cpuset_being_rebound check will catch such forks, | |
1067 | * and rebind their vma mempolicies too. Because we still hold | |
1068 | * the global cgroup_mutex, we know that no other rebind effort | |
1069 | * will be contending for the global variable cpuset_being_rebound. | |
4225399a | 1070 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() |
04c19fa6 | 1071 | * is idempotent. Also migrate pages in each mm to new nodes. |
4225399a | 1072 | */ |
010cfac4 | 1073 | cgroup_scan_tasks(&scan); |
4225399a | 1074 | |
2df167a3 | 1075 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ |
8793d854 | 1076 | cpuset_being_rebound = NULL; |
1da177e4 LT |
1077 | } |
1078 | ||
0b2f630a MX |
1079 | /* |
1080 | * Handle user request to change the 'mems' memory placement | |
1081 | * of a cpuset. Needs to validate the request, update the | |
58568d2a MX |
1082 | * cpusets mems_allowed, and for each task in the cpuset, |
1083 | * update mems_allowed and rebind task's mempolicy and any vma | |
1084 | * mempolicies and if the cpuset is marked 'memory_migrate', | |
1085 | * migrate the tasks pages to the new memory. | |
0b2f630a MX |
1086 | * |
1087 | * Call with cgroup_mutex held. May take callback_mutex during call. | |
1088 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | |
1089 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | |
1090 | * their mempolicies to the cpusets new mems_allowed. | |
1091 | */ | |
645fcc9d LZ |
1092 | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, |
1093 | const char *buf) | |
0b2f630a | 1094 | { |
53feb297 | 1095 | NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL); |
0b2f630a | 1096 | int retval; |
010cfac4 | 1097 | struct ptr_heap heap; |
0b2f630a | 1098 | |
53feb297 MX |
1099 | if (!oldmem) |
1100 | return -ENOMEM; | |
1101 | ||
0b2f630a MX |
1102 | /* |
1103 | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; | |
1104 | * it's read-only | |
1105 | */ | |
53feb297 MX |
1106 | if (cs == &top_cpuset) { |
1107 | retval = -EACCES; | |
1108 | goto done; | |
1109 | } | |
0b2f630a | 1110 | |
0b2f630a MX |
1111 | /* |
1112 | * An empty mems_allowed is ok iff there are no tasks in the cpuset. | |
1113 | * Since nodelist_parse() fails on an empty mask, we special case | |
1114 | * that parsing. The validate_change() call ensures that cpusets | |
1115 | * with tasks have memory. | |
1116 | */ | |
1117 | if (!*buf) { | |
645fcc9d | 1118 | nodes_clear(trialcs->mems_allowed); |
0b2f630a | 1119 | } else { |
645fcc9d | 1120 | retval = nodelist_parse(buf, trialcs->mems_allowed); |
0b2f630a MX |
1121 | if (retval < 0) |
1122 | goto done; | |
1123 | ||
645fcc9d | 1124 | if (!nodes_subset(trialcs->mems_allowed, |
53feb297 MX |
1125 | node_states[N_HIGH_MEMORY])) { |
1126 | retval = -EINVAL; | |
1127 | goto done; | |
1128 | } | |
0b2f630a | 1129 | } |
53feb297 MX |
1130 | *oldmem = cs->mems_allowed; |
1131 | if (nodes_equal(*oldmem, trialcs->mems_allowed)) { | |
0b2f630a MX |
1132 | retval = 0; /* Too easy - nothing to do */ |
1133 | goto done; | |
1134 | } | |
645fcc9d | 1135 | retval = validate_change(cs, trialcs); |
0b2f630a MX |
1136 | if (retval < 0) |
1137 | goto done; | |
1138 | ||
010cfac4 LZ |
1139 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
1140 | if (retval < 0) | |
1141 | goto done; | |
1142 | ||
0b2f630a | 1143 | mutex_lock(&callback_mutex); |
645fcc9d | 1144 | cs->mems_allowed = trialcs->mems_allowed; |
0b2f630a MX |
1145 | mutex_unlock(&callback_mutex); |
1146 | ||
53feb297 | 1147 | update_tasks_nodemask(cs, oldmem, &heap); |
010cfac4 LZ |
1148 | |
1149 | heap_free(&heap); | |
0b2f630a | 1150 | done: |
53feb297 | 1151 | NODEMASK_FREE(oldmem); |
0b2f630a MX |
1152 | return retval; |
1153 | } | |
1154 | ||
8793d854 PM |
1155 | int current_cpuset_is_being_rebound(void) |
1156 | { | |
1157 | return task_cs(current) == cpuset_being_rebound; | |
1158 | } | |
1159 | ||
5be7a479 | 1160 | static int update_relax_domain_level(struct cpuset *cs, s64 val) |
1d3504fc | 1161 | { |
db7f47cf | 1162 | #ifdef CONFIG_SMP |
60495e77 | 1163 | if (val < -1 || val >= sched_domain_level_max) |
30e0e178 | 1164 | return -EINVAL; |
db7f47cf | 1165 | #endif |
1d3504fc HS |
1166 | |
1167 | if (val != cs->relax_domain_level) { | |
1168 | cs->relax_domain_level = val; | |
300ed6cb LZ |
1169 | if (!cpumask_empty(cs->cpus_allowed) && |
1170 | is_sched_load_balance(cs)) | |
cf417141 | 1171 | async_rebuild_sched_domains(); |
1d3504fc HS |
1172 | } |
1173 | ||
1174 | return 0; | |
1175 | } | |
1176 | ||
950592f7 MX |
1177 | /* |
1178 | * cpuset_change_flag - make a task's spread flags the same as its cpuset's | |
1179 | * @tsk: task to be updated | |
1180 | * @scan: struct cgroup_scanner containing the cgroup of the task | |
1181 | * | |
1182 | * Called by cgroup_scan_tasks() for each task in a cgroup. | |
1183 | * | |
1184 | * We don't need to re-check for the cgroup/cpuset membership, since we're | |
1185 | * holding cgroup_lock() at this point. | |
1186 | */ | |
1187 | static void cpuset_change_flag(struct task_struct *tsk, | |
1188 | struct cgroup_scanner *scan) | |
1189 | { | |
1190 | cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk); | |
1191 | } | |
1192 | ||
1193 | /* | |
1194 | * update_tasks_flags - update the spread flags of tasks in the cpuset. | |
1195 | * @cs: the cpuset in which each task's spread flags needs to be changed | |
1196 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | |
1197 | * | |
1198 | * Called with cgroup_mutex held | |
1199 | * | |
1200 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
1201 | * calling callback functions for each. | |
1202 | * | |
1203 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | |
1204 | * if @heap != NULL. | |
1205 | */ | |
1206 | static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap) | |
1207 | { | |
1208 | struct cgroup_scanner scan; | |
1209 | ||
1210 | scan.cg = cs->css.cgroup; | |
1211 | scan.test_task = NULL; | |
1212 | scan.process_task = cpuset_change_flag; | |
1213 | scan.heap = heap; | |
1214 | cgroup_scan_tasks(&scan); | |
1215 | } | |
1216 | ||
1da177e4 LT |
1217 | /* |
1218 | * update_flag - read a 0 or a 1 in a file and update associated flag | |
78608366 PM |
1219 | * bit: the bit to update (see cpuset_flagbits_t) |
1220 | * cs: the cpuset to update | |
1221 | * turning_on: whether the flag is being set or cleared | |
053199ed | 1222 | * |
2df167a3 | 1223 | * Call with cgroup_mutex held. |
1da177e4 LT |
1224 | */ |
1225 | ||
700fe1ab PM |
1226 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, |
1227 | int turning_on) | |
1da177e4 | 1228 | { |
645fcc9d | 1229 | struct cpuset *trialcs; |
40b6a762 | 1230 | int balance_flag_changed; |
950592f7 MX |
1231 | int spread_flag_changed; |
1232 | struct ptr_heap heap; | |
1233 | int err; | |
1da177e4 | 1234 | |
645fcc9d LZ |
1235 | trialcs = alloc_trial_cpuset(cs); |
1236 | if (!trialcs) | |
1237 | return -ENOMEM; | |
1238 | ||
1da177e4 | 1239 | if (turning_on) |
645fcc9d | 1240 | set_bit(bit, &trialcs->flags); |
1da177e4 | 1241 | else |
645fcc9d | 1242 | clear_bit(bit, &trialcs->flags); |
1da177e4 | 1243 | |
645fcc9d | 1244 | err = validate_change(cs, trialcs); |
85d7b949 | 1245 | if (err < 0) |
645fcc9d | 1246 | goto out; |
029190c5 | 1247 | |
950592f7 MX |
1248 | err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
1249 | if (err < 0) | |
1250 | goto out; | |
1251 | ||
029190c5 | 1252 | balance_flag_changed = (is_sched_load_balance(cs) != |
645fcc9d | 1253 | is_sched_load_balance(trialcs)); |
029190c5 | 1254 | |
950592f7 MX |
1255 | spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) |
1256 | || (is_spread_page(cs) != is_spread_page(trialcs))); | |
1257 | ||
3d3f26a7 | 1258 | mutex_lock(&callback_mutex); |
645fcc9d | 1259 | cs->flags = trialcs->flags; |
3d3f26a7 | 1260 | mutex_unlock(&callback_mutex); |
85d7b949 | 1261 | |
300ed6cb | 1262 | if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) |
cf417141 | 1263 | async_rebuild_sched_domains(); |
029190c5 | 1264 | |
950592f7 MX |
1265 | if (spread_flag_changed) |
1266 | update_tasks_flags(cs, &heap); | |
1267 | heap_free(&heap); | |
645fcc9d LZ |
1268 | out: |
1269 | free_trial_cpuset(trialcs); | |
1270 | return err; | |
1da177e4 LT |
1271 | } |
1272 | ||
3e0d98b9 | 1273 | /* |
80f7228b | 1274 | * Frequency meter - How fast is some event occurring? |
3e0d98b9 PJ |
1275 | * |
1276 | * These routines manage a digitally filtered, constant time based, | |
1277 | * event frequency meter. There are four routines: | |
1278 | * fmeter_init() - initialize a frequency meter. | |
1279 | * fmeter_markevent() - called each time the event happens. | |
1280 | * fmeter_getrate() - returns the recent rate of such events. | |
1281 | * fmeter_update() - internal routine used to update fmeter. | |
1282 | * | |
1283 | * A common data structure is passed to each of these routines, | |
1284 | * which is used to keep track of the state required to manage the | |
1285 | * frequency meter and its digital filter. | |
1286 | * | |
1287 | * The filter works on the number of events marked per unit time. | |
1288 | * The filter is single-pole low-pass recursive (IIR). The time unit | |
1289 | * is 1 second. Arithmetic is done using 32-bit integers scaled to | |
1290 | * simulate 3 decimal digits of precision (multiplied by 1000). | |
1291 | * | |
1292 | * With an FM_COEF of 933, and a time base of 1 second, the filter | |
1293 | * has a half-life of 10 seconds, meaning that if the events quit | |
1294 | * happening, then the rate returned from the fmeter_getrate() | |
1295 | * will be cut in half each 10 seconds, until it converges to zero. | |
1296 | * | |
1297 | * It is not worth doing a real infinitely recursive filter. If more | |
1298 | * than FM_MAXTICKS ticks have elapsed since the last filter event, | |
1299 | * just compute FM_MAXTICKS ticks worth, by which point the level | |
1300 | * will be stable. | |
1301 | * | |
1302 | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | |
1303 | * arithmetic overflow in the fmeter_update() routine. | |
1304 | * | |
1305 | * Given the simple 32 bit integer arithmetic used, this meter works | |
1306 | * best for reporting rates between one per millisecond (msec) and | |
1307 | * one per 32 (approx) seconds. At constant rates faster than one | |
1308 | * per msec it maxes out at values just under 1,000,000. At constant | |
1309 | * rates between one per msec, and one per second it will stabilize | |
1310 | * to a value N*1000, where N is the rate of events per second. | |
1311 | * At constant rates between one per second and one per 32 seconds, | |
1312 | * it will be choppy, moving up on the seconds that have an event, | |
1313 | * and then decaying until the next event. At rates slower than | |
1314 | * about one in 32 seconds, it decays all the way back to zero between | |
1315 | * each event. | |
1316 | */ | |
1317 | ||
1318 | #define FM_COEF 933 /* coefficient for half-life of 10 secs */ | |
1319 | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ | |
1320 | #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ | |
1321 | #define FM_SCALE 1000 /* faux fixed point scale */ | |
1322 | ||
1323 | /* Initialize a frequency meter */ | |
1324 | static void fmeter_init(struct fmeter *fmp) | |
1325 | { | |
1326 | fmp->cnt = 0; | |
1327 | fmp->val = 0; | |
1328 | fmp->time = 0; | |
1329 | spin_lock_init(&fmp->lock); | |
1330 | } | |
1331 | ||
1332 | /* Internal meter update - process cnt events and update value */ | |
1333 | static void fmeter_update(struct fmeter *fmp) | |
1334 | { | |
1335 | time_t now = get_seconds(); | |
1336 | time_t ticks = now - fmp->time; | |
1337 | ||
1338 | if (ticks == 0) | |
1339 | return; | |
1340 | ||
1341 | ticks = min(FM_MAXTICKS, ticks); | |
1342 | while (ticks-- > 0) | |
1343 | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | |
1344 | fmp->time = now; | |
1345 | ||
1346 | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | |
1347 | fmp->cnt = 0; | |
1348 | } | |
1349 | ||
1350 | /* Process any previous ticks, then bump cnt by one (times scale). */ | |
1351 | static void fmeter_markevent(struct fmeter *fmp) | |
1352 | { | |
1353 | spin_lock(&fmp->lock); | |
1354 | fmeter_update(fmp); | |
1355 | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | |
1356 | spin_unlock(&fmp->lock); | |
1357 | } | |
1358 | ||
1359 | /* Process any previous ticks, then return current value. */ | |
1360 | static int fmeter_getrate(struct fmeter *fmp) | |
1361 | { | |
1362 | int val; | |
1363 | ||
1364 | spin_lock(&fmp->lock); | |
1365 | fmeter_update(fmp); | |
1366 | val = fmp->val; | |
1367 | spin_unlock(&fmp->lock); | |
1368 | return val; | |
1369 | } | |
1370 | ||
f780bdb7 BB |
1371 | /* |
1372 | * Protected by cgroup_lock. The nodemasks must be stored globally because | |
94196f51 TH |
1373 | * dynamically allocating them is not allowed in can_attach, and they must |
1374 | * persist until attach. | |
f780bdb7 BB |
1375 | */ |
1376 | static cpumask_var_t cpus_attach; | |
1377 | static nodemask_t cpuset_attach_nodemask_from; | |
1378 | static nodemask_t cpuset_attach_nodemask_to; | |
1379 | ||
2df167a3 | 1380 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
761b3ef5 | 1381 | static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) |
f780bdb7 | 1382 | { |
2f7ee569 | 1383 | struct cpuset *cs = cgroup_cs(cgrp); |
bb9d97b6 TH |
1384 | struct task_struct *task; |
1385 | int ret; | |
1da177e4 | 1386 | |
300ed6cb | 1387 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
1da177e4 | 1388 | return -ENOSPC; |
9985b0ba | 1389 | |
bb9d97b6 TH |
1390 | cgroup_taskset_for_each(task, cgrp, tset) { |
1391 | /* | |
1392 | * Kthreads bound to specific cpus cannot be moved to a new | |
1393 | * cpuset; we cannot change their cpu affinity and | |
1394 | * isolating such threads by their set of allowed nodes is | |
1395 | * unnecessary. Thus, cpusets are not applicable for such | |
1396 | * threads. This prevents checking for success of | |
1397 | * set_cpus_allowed_ptr() on all attached tasks before | |
1398 | * cpus_allowed may be changed. | |
1399 | */ | |
1400 | if (task->flags & PF_THREAD_BOUND) | |
1401 | return -EINVAL; | |
1402 | if ((ret = security_task_setscheduler(task))) | |
1403 | return ret; | |
1404 | } | |
f780bdb7 | 1405 | |
94196f51 | 1406 | /* prepare for attach */ |
f780bdb7 BB |
1407 | if (cs == &top_cpuset) |
1408 | cpumask_copy(cpus_attach, cpu_possible_mask); | |
1409 | else | |
1410 | guarantee_online_cpus(cs, cpus_attach); | |
1411 | ||
1412 | guarantee_online_mems(cs, &cpuset_attach_nodemask_to); | |
f780bdb7 | 1413 | |
94196f51 | 1414 | return 0; |
8793d854 | 1415 | } |
1da177e4 | 1416 | |
761b3ef5 | 1417 | static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) |
8793d854 | 1418 | { |
8793d854 | 1419 | struct mm_struct *mm; |
bb9d97b6 TH |
1420 | struct task_struct *task; |
1421 | struct task_struct *leader = cgroup_taskset_first(tset); | |
2f7ee569 TH |
1422 | struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset); |
1423 | struct cpuset *cs = cgroup_cs(cgrp); | |
1424 | struct cpuset *oldcs = cgroup_cs(oldcgrp); | |
22fb52dd | 1425 | |
bb9d97b6 TH |
1426 | cgroup_taskset_for_each(task, cgrp, tset) { |
1427 | /* | |
1428 | * can_attach beforehand should guarantee that this doesn't | |
1429 | * fail. TODO: have a better way to handle failure here | |
1430 | */ | |
1431 | WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); | |
1432 | ||
1433 | cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); | |
1434 | cpuset_update_task_spread_flag(cs, task); | |
1435 | } | |
22fb52dd | 1436 | |
f780bdb7 BB |
1437 | /* |
1438 | * Change mm, possibly for multiple threads in a threadgroup. This is | |
1439 | * expensive and may sleep. | |
1440 | */ | |
1441 | cpuset_attach_nodemask_from = oldcs->mems_allowed; | |
1442 | cpuset_attach_nodemask_to = cs->mems_allowed; | |
bb9d97b6 | 1443 | mm = get_task_mm(leader); |
4225399a | 1444 | if (mm) { |
f780bdb7 | 1445 | mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); |
2741a559 | 1446 | if (is_memory_migrate(cs)) |
f780bdb7 BB |
1447 | cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from, |
1448 | &cpuset_attach_nodemask_to); | |
4225399a PJ |
1449 | mmput(mm); |
1450 | } | |
1da177e4 LT |
1451 | } |
1452 | ||
1453 | /* The various types of files and directories in a cpuset file system */ | |
1454 | ||
1455 | typedef enum { | |
45b07ef3 | 1456 | FILE_MEMORY_MIGRATE, |
1da177e4 LT |
1457 | FILE_CPULIST, |
1458 | FILE_MEMLIST, | |
1459 | FILE_CPU_EXCLUSIVE, | |
1460 | FILE_MEM_EXCLUSIVE, | |
78608366 | 1461 | FILE_MEM_HARDWALL, |
029190c5 | 1462 | FILE_SCHED_LOAD_BALANCE, |
1d3504fc | 1463 | FILE_SCHED_RELAX_DOMAIN_LEVEL, |
3e0d98b9 PJ |
1464 | FILE_MEMORY_PRESSURE_ENABLED, |
1465 | FILE_MEMORY_PRESSURE, | |
825a46af PJ |
1466 | FILE_SPREAD_PAGE, |
1467 | FILE_SPREAD_SLAB, | |
1da177e4 LT |
1468 | } cpuset_filetype_t; |
1469 | ||
700fe1ab PM |
1470 | static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) |
1471 | { | |
1472 | int retval = 0; | |
1473 | struct cpuset *cs = cgroup_cs(cgrp); | |
1474 | cpuset_filetype_t type = cft->private; | |
1475 | ||
e3712395 | 1476 | if (!cgroup_lock_live_group(cgrp)) |
700fe1ab | 1477 | return -ENODEV; |
700fe1ab PM |
1478 | |
1479 | switch (type) { | |
1da177e4 | 1480 | case FILE_CPU_EXCLUSIVE: |
700fe1ab | 1481 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); |
1da177e4 LT |
1482 | break; |
1483 | case FILE_MEM_EXCLUSIVE: | |
700fe1ab | 1484 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); |
1da177e4 | 1485 | break; |
78608366 PM |
1486 | case FILE_MEM_HARDWALL: |
1487 | retval = update_flag(CS_MEM_HARDWALL, cs, val); | |
1488 | break; | |
029190c5 | 1489 | case FILE_SCHED_LOAD_BALANCE: |
700fe1ab | 1490 | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); |
1d3504fc | 1491 | break; |
45b07ef3 | 1492 | case FILE_MEMORY_MIGRATE: |
700fe1ab | 1493 | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); |
45b07ef3 | 1494 | break; |
3e0d98b9 | 1495 | case FILE_MEMORY_PRESSURE_ENABLED: |
700fe1ab | 1496 | cpuset_memory_pressure_enabled = !!val; |
3e0d98b9 PJ |
1497 | break; |
1498 | case FILE_MEMORY_PRESSURE: | |
1499 | retval = -EACCES; | |
1500 | break; | |
825a46af | 1501 | case FILE_SPREAD_PAGE: |
700fe1ab | 1502 | retval = update_flag(CS_SPREAD_PAGE, cs, val); |
825a46af PJ |
1503 | break; |
1504 | case FILE_SPREAD_SLAB: | |
700fe1ab | 1505 | retval = update_flag(CS_SPREAD_SLAB, cs, val); |
825a46af | 1506 | break; |
1da177e4 LT |
1507 | default: |
1508 | retval = -EINVAL; | |
700fe1ab | 1509 | break; |
1da177e4 | 1510 | } |
8793d854 | 1511 | cgroup_unlock(); |
1da177e4 LT |
1512 | return retval; |
1513 | } | |
1514 | ||
5be7a479 PM |
1515 | static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) |
1516 | { | |
1517 | int retval = 0; | |
1518 | struct cpuset *cs = cgroup_cs(cgrp); | |
1519 | cpuset_filetype_t type = cft->private; | |
1520 | ||
e3712395 | 1521 | if (!cgroup_lock_live_group(cgrp)) |
5be7a479 | 1522 | return -ENODEV; |
e3712395 | 1523 | |
5be7a479 PM |
1524 | switch (type) { |
1525 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1526 | retval = update_relax_domain_level(cs, val); | |
1527 | break; | |
1528 | default: | |
1529 | retval = -EINVAL; | |
1530 | break; | |
1531 | } | |
1532 | cgroup_unlock(); | |
1533 | return retval; | |
1534 | } | |
1535 | ||
e3712395 PM |
1536 | /* |
1537 | * Common handling for a write to a "cpus" or "mems" file. | |
1538 | */ | |
1539 | static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, | |
1540 | const char *buf) | |
1541 | { | |
1542 | int retval = 0; | |
645fcc9d LZ |
1543 | struct cpuset *cs = cgroup_cs(cgrp); |
1544 | struct cpuset *trialcs; | |
e3712395 PM |
1545 | |
1546 | if (!cgroup_lock_live_group(cgrp)) | |
1547 | return -ENODEV; | |
1548 | ||
645fcc9d | 1549 | trialcs = alloc_trial_cpuset(cs); |
b75f38d6 LZ |
1550 | if (!trialcs) { |
1551 | retval = -ENOMEM; | |
1552 | goto out; | |
1553 | } | |
645fcc9d | 1554 | |
e3712395 PM |
1555 | switch (cft->private) { |
1556 | case FILE_CPULIST: | |
645fcc9d | 1557 | retval = update_cpumask(cs, trialcs, buf); |
e3712395 PM |
1558 | break; |
1559 | case FILE_MEMLIST: | |
645fcc9d | 1560 | retval = update_nodemask(cs, trialcs, buf); |
e3712395 PM |
1561 | break; |
1562 | default: | |
1563 | retval = -EINVAL; | |
1564 | break; | |
1565 | } | |
645fcc9d LZ |
1566 | |
1567 | free_trial_cpuset(trialcs); | |
b75f38d6 | 1568 | out: |
e3712395 PM |
1569 | cgroup_unlock(); |
1570 | return retval; | |
1571 | } | |
1572 | ||
1da177e4 LT |
1573 | /* |
1574 | * These ascii lists should be read in a single call, by using a user | |
1575 | * buffer large enough to hold the entire map. If read in smaller | |
1576 | * chunks, there is no guarantee of atomicity. Since the display format | |
1577 | * used, list of ranges of sequential numbers, is variable length, | |
1578 | * and since these maps can change value dynamically, one could read | |
1579 | * gibberish by doing partial reads while a list was changing. | |
1580 | * A single large read to a buffer that crosses a page boundary is | |
1581 | * ok, because the result being copied to user land is not recomputed | |
1582 | * across a page fault. | |
1583 | */ | |
1584 | ||
9303e0c4 | 1585 | static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs) |
1da177e4 | 1586 | { |
9303e0c4 | 1587 | size_t count; |
1da177e4 | 1588 | |
3d3f26a7 | 1589 | mutex_lock(&callback_mutex); |
9303e0c4 | 1590 | count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed); |
3d3f26a7 | 1591 | mutex_unlock(&callback_mutex); |
1da177e4 | 1592 | |
9303e0c4 | 1593 | return count; |
1da177e4 LT |
1594 | } |
1595 | ||
9303e0c4 | 1596 | static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs) |
1da177e4 | 1597 | { |
9303e0c4 | 1598 | size_t count; |
1da177e4 | 1599 | |
3d3f26a7 | 1600 | mutex_lock(&callback_mutex); |
9303e0c4 | 1601 | count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed); |
3d3f26a7 | 1602 | mutex_unlock(&callback_mutex); |
1da177e4 | 1603 | |
9303e0c4 | 1604 | return count; |
1da177e4 LT |
1605 | } |
1606 | ||
8793d854 PM |
1607 | static ssize_t cpuset_common_file_read(struct cgroup *cont, |
1608 | struct cftype *cft, | |
1609 | struct file *file, | |
1610 | char __user *buf, | |
1611 | size_t nbytes, loff_t *ppos) | |
1da177e4 | 1612 | { |
8793d854 | 1613 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 LT |
1614 | cpuset_filetype_t type = cft->private; |
1615 | char *page; | |
1616 | ssize_t retval = 0; | |
1617 | char *s; | |
1da177e4 | 1618 | |
e12ba74d | 1619 | if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) |
1da177e4 LT |
1620 | return -ENOMEM; |
1621 | ||
1622 | s = page; | |
1623 | ||
1624 | switch (type) { | |
1625 | case FILE_CPULIST: | |
1626 | s += cpuset_sprintf_cpulist(s, cs); | |
1627 | break; | |
1628 | case FILE_MEMLIST: | |
1629 | s += cpuset_sprintf_memlist(s, cs); | |
1630 | break; | |
1da177e4 LT |
1631 | default: |
1632 | retval = -EINVAL; | |
1633 | goto out; | |
1634 | } | |
1635 | *s++ = '\n'; | |
1da177e4 | 1636 | |
eacaa1f5 | 1637 | retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); |
1da177e4 LT |
1638 | out: |
1639 | free_page((unsigned long)page); | |
1640 | return retval; | |
1641 | } | |
1642 | ||
700fe1ab PM |
1643 | static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) |
1644 | { | |
1645 | struct cpuset *cs = cgroup_cs(cont); | |
1646 | cpuset_filetype_t type = cft->private; | |
1647 | switch (type) { | |
1648 | case FILE_CPU_EXCLUSIVE: | |
1649 | return is_cpu_exclusive(cs); | |
1650 | case FILE_MEM_EXCLUSIVE: | |
1651 | return is_mem_exclusive(cs); | |
78608366 PM |
1652 | case FILE_MEM_HARDWALL: |
1653 | return is_mem_hardwall(cs); | |
700fe1ab PM |
1654 | case FILE_SCHED_LOAD_BALANCE: |
1655 | return is_sched_load_balance(cs); | |
1656 | case FILE_MEMORY_MIGRATE: | |
1657 | return is_memory_migrate(cs); | |
1658 | case FILE_MEMORY_PRESSURE_ENABLED: | |
1659 | return cpuset_memory_pressure_enabled; | |
1660 | case FILE_MEMORY_PRESSURE: | |
1661 | return fmeter_getrate(&cs->fmeter); | |
1662 | case FILE_SPREAD_PAGE: | |
1663 | return is_spread_page(cs); | |
1664 | case FILE_SPREAD_SLAB: | |
1665 | return is_spread_slab(cs); | |
1666 | default: | |
1667 | BUG(); | |
1668 | } | |
cf417141 MK |
1669 | |
1670 | /* Unreachable but makes gcc happy */ | |
1671 | return 0; | |
700fe1ab | 1672 | } |
1da177e4 | 1673 | |
5be7a479 PM |
1674 | static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) |
1675 | { | |
1676 | struct cpuset *cs = cgroup_cs(cont); | |
1677 | cpuset_filetype_t type = cft->private; | |
1678 | switch (type) { | |
1679 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1680 | return cs->relax_domain_level; | |
1681 | default: | |
1682 | BUG(); | |
1683 | } | |
cf417141 MK |
1684 | |
1685 | /* Unrechable but makes gcc happy */ | |
1686 | return 0; | |
5be7a479 PM |
1687 | } |
1688 | ||
1da177e4 LT |
1689 | |
1690 | /* | |
1691 | * for the common functions, 'private' gives the type of file | |
1692 | */ | |
1693 | ||
addf2c73 PM |
1694 | static struct cftype files[] = { |
1695 | { | |
1696 | .name = "cpus", | |
1697 | .read = cpuset_common_file_read, | |
e3712395 PM |
1698 | .write_string = cpuset_write_resmask, |
1699 | .max_write_len = (100U + 6 * NR_CPUS), | |
addf2c73 PM |
1700 | .private = FILE_CPULIST, |
1701 | }, | |
1702 | ||
1703 | { | |
1704 | .name = "mems", | |
1705 | .read = cpuset_common_file_read, | |
e3712395 PM |
1706 | .write_string = cpuset_write_resmask, |
1707 | .max_write_len = (100U + 6 * MAX_NUMNODES), | |
addf2c73 PM |
1708 | .private = FILE_MEMLIST, |
1709 | }, | |
1710 | ||
1711 | { | |
1712 | .name = "cpu_exclusive", | |
1713 | .read_u64 = cpuset_read_u64, | |
1714 | .write_u64 = cpuset_write_u64, | |
1715 | .private = FILE_CPU_EXCLUSIVE, | |
1716 | }, | |
1717 | ||
1718 | { | |
1719 | .name = "mem_exclusive", | |
1720 | .read_u64 = cpuset_read_u64, | |
1721 | .write_u64 = cpuset_write_u64, | |
1722 | .private = FILE_MEM_EXCLUSIVE, | |
1723 | }, | |
1724 | ||
78608366 PM |
1725 | { |
1726 | .name = "mem_hardwall", | |
1727 | .read_u64 = cpuset_read_u64, | |
1728 | .write_u64 = cpuset_write_u64, | |
1729 | .private = FILE_MEM_HARDWALL, | |
1730 | }, | |
1731 | ||
addf2c73 PM |
1732 | { |
1733 | .name = "sched_load_balance", | |
1734 | .read_u64 = cpuset_read_u64, | |
1735 | .write_u64 = cpuset_write_u64, | |
1736 | .private = FILE_SCHED_LOAD_BALANCE, | |
1737 | }, | |
1738 | ||
1739 | { | |
1740 | .name = "sched_relax_domain_level", | |
5be7a479 PM |
1741 | .read_s64 = cpuset_read_s64, |
1742 | .write_s64 = cpuset_write_s64, | |
addf2c73 PM |
1743 | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, |
1744 | }, | |
1745 | ||
1746 | { | |
1747 | .name = "memory_migrate", | |
1748 | .read_u64 = cpuset_read_u64, | |
1749 | .write_u64 = cpuset_write_u64, | |
1750 | .private = FILE_MEMORY_MIGRATE, | |
1751 | }, | |
1752 | ||
1753 | { | |
1754 | .name = "memory_pressure", | |
1755 | .read_u64 = cpuset_read_u64, | |
1756 | .write_u64 = cpuset_write_u64, | |
1757 | .private = FILE_MEMORY_PRESSURE, | |
099fca32 | 1758 | .mode = S_IRUGO, |
addf2c73 PM |
1759 | }, |
1760 | ||
1761 | { | |
1762 | .name = "memory_spread_page", | |
1763 | .read_u64 = cpuset_read_u64, | |
1764 | .write_u64 = cpuset_write_u64, | |
1765 | .private = FILE_SPREAD_PAGE, | |
1766 | }, | |
1767 | ||
1768 | { | |
1769 | .name = "memory_spread_slab", | |
1770 | .read_u64 = cpuset_read_u64, | |
1771 | .write_u64 = cpuset_write_u64, | |
1772 | .private = FILE_SPREAD_SLAB, | |
1773 | }, | |
3e0d98b9 | 1774 | |
4baf6e33 TH |
1775 | { |
1776 | .name = "memory_pressure_enabled", | |
1777 | .flags = CFTYPE_ONLY_ON_ROOT, | |
1778 | .read_u64 = cpuset_read_u64, | |
1779 | .write_u64 = cpuset_write_u64, | |
1780 | .private = FILE_MEMORY_PRESSURE_ENABLED, | |
1781 | }, | |
1da177e4 | 1782 | |
4baf6e33 TH |
1783 | { } /* terminate */ |
1784 | }; | |
1da177e4 | 1785 | |
8793d854 | 1786 | /* |
a77aea92 DL |
1787 | * post_clone() is called during cgroup_create() when the |
1788 | * clone_children mount argument was specified. The cgroup | |
1789 | * can not yet have any tasks. | |
8793d854 PM |
1790 | * |
1791 | * Currently we refuse to set up the cgroup - thereby | |
1792 | * refusing the task to be entered, and as a result refusing | |
1793 | * the sys_unshare() or clone() which initiated it - if any | |
1794 | * sibling cpusets have exclusive cpus or mem. | |
1795 | * | |
1796 | * If this becomes a problem for some users who wish to | |
1797 | * allow that scenario, then cpuset_post_clone() could be | |
1798 | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | |
2df167a3 PM |
1799 | * (and likewise for mems) to the new cgroup. Called with cgroup_mutex |
1800 | * held. | |
8793d854 | 1801 | */ |
761b3ef5 | 1802 | static void cpuset_post_clone(struct cgroup *cgroup) |
8793d854 PM |
1803 | { |
1804 | struct cgroup *parent, *child; | |
1805 | struct cpuset *cs, *parent_cs; | |
1806 | ||
1807 | parent = cgroup->parent; | |
1808 | list_for_each_entry(child, &parent->children, sibling) { | |
1809 | cs = cgroup_cs(child); | |
1810 | if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) | |
1811 | return; | |
1812 | } | |
1813 | cs = cgroup_cs(cgroup); | |
1814 | parent_cs = cgroup_cs(parent); | |
1815 | ||
523fb486 | 1816 | mutex_lock(&callback_mutex); |
8793d854 | 1817 | cs->mems_allowed = parent_cs->mems_allowed; |
300ed6cb | 1818 | cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed); |
523fb486 | 1819 | mutex_unlock(&callback_mutex); |
8793d854 PM |
1820 | return; |
1821 | } | |
1822 | ||
1da177e4 LT |
1823 | /* |
1824 | * cpuset_create - create a cpuset | |
2df167a3 | 1825 | * cont: control group that the new cpuset will be part of |
1da177e4 LT |
1826 | */ |
1827 | ||
761b3ef5 | 1828 | static struct cgroup_subsys_state *cpuset_create(struct cgroup *cont) |
1da177e4 LT |
1829 | { |
1830 | struct cpuset *cs; | |
8793d854 | 1831 | struct cpuset *parent; |
1da177e4 | 1832 | |
8793d854 | 1833 | if (!cont->parent) { |
8793d854 PM |
1834 | return &top_cpuset.css; |
1835 | } | |
1836 | parent = cgroup_cs(cont->parent); | |
1da177e4 LT |
1837 | cs = kmalloc(sizeof(*cs), GFP_KERNEL); |
1838 | if (!cs) | |
8793d854 | 1839 | return ERR_PTR(-ENOMEM); |
300ed6cb LZ |
1840 | if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { |
1841 | kfree(cs); | |
1842 | return ERR_PTR(-ENOMEM); | |
1843 | } | |
1da177e4 | 1844 | |
1da177e4 | 1845 | cs->flags = 0; |
825a46af PJ |
1846 | if (is_spread_page(parent)) |
1847 | set_bit(CS_SPREAD_PAGE, &cs->flags); | |
1848 | if (is_spread_slab(parent)) | |
1849 | set_bit(CS_SPREAD_SLAB, &cs->flags); | |
029190c5 | 1850 | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
300ed6cb | 1851 | cpumask_clear(cs->cpus_allowed); |
f9a86fcb | 1852 | nodes_clear(cs->mems_allowed); |
3e0d98b9 | 1853 | fmeter_init(&cs->fmeter); |
1d3504fc | 1854 | cs->relax_domain_level = -1; |
1da177e4 LT |
1855 | |
1856 | cs->parent = parent; | |
202f72d5 | 1857 | number_of_cpusets++; |
8793d854 | 1858 | return &cs->css ; |
1da177e4 LT |
1859 | } |
1860 | ||
029190c5 | 1861 | /* |
029190c5 PJ |
1862 | * If the cpuset being removed has its flag 'sched_load_balance' |
1863 | * enabled, then simulate turning sched_load_balance off, which | |
cf417141 | 1864 | * will call async_rebuild_sched_domains(). |
029190c5 PJ |
1865 | */ |
1866 | ||
761b3ef5 | 1867 | static void cpuset_destroy(struct cgroup *cont) |
1da177e4 | 1868 | { |
8793d854 | 1869 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 | 1870 | |
029190c5 | 1871 | if (is_sched_load_balance(cs)) |
700fe1ab | 1872 | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); |
029190c5 | 1873 | |
202f72d5 | 1874 | number_of_cpusets--; |
300ed6cb | 1875 | free_cpumask_var(cs->cpus_allowed); |
8793d854 | 1876 | kfree(cs); |
1da177e4 LT |
1877 | } |
1878 | ||
8793d854 PM |
1879 | struct cgroup_subsys cpuset_subsys = { |
1880 | .name = "cpuset", | |
1881 | .create = cpuset_create, | |
cf417141 | 1882 | .destroy = cpuset_destroy, |
8793d854 PM |
1883 | .can_attach = cpuset_can_attach, |
1884 | .attach = cpuset_attach, | |
8793d854 PM |
1885 | .post_clone = cpuset_post_clone, |
1886 | .subsys_id = cpuset_subsys_id, | |
4baf6e33 | 1887 | .base_cftypes = files, |
8793d854 PM |
1888 | .early_init = 1, |
1889 | }; | |
1890 | ||
1da177e4 LT |
1891 | /** |
1892 | * cpuset_init - initialize cpusets at system boot | |
1893 | * | |
1894 | * Description: Initialize top_cpuset and the cpuset internal file system, | |
1895 | **/ | |
1896 | ||
1897 | int __init cpuset_init(void) | |
1898 | { | |
8793d854 | 1899 | int err = 0; |
1da177e4 | 1900 | |
58568d2a MX |
1901 | if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)) |
1902 | BUG(); | |
1903 | ||
300ed6cb | 1904 | cpumask_setall(top_cpuset.cpus_allowed); |
f9a86fcb | 1905 | nodes_setall(top_cpuset.mems_allowed); |
1da177e4 | 1906 | |
3e0d98b9 | 1907 | fmeter_init(&top_cpuset.fmeter); |
029190c5 | 1908 | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); |
1d3504fc | 1909 | top_cpuset.relax_domain_level = -1; |
1da177e4 | 1910 | |
1da177e4 LT |
1911 | err = register_filesystem(&cpuset_fs_type); |
1912 | if (err < 0) | |
8793d854 PM |
1913 | return err; |
1914 | ||
2341d1b6 LZ |
1915 | if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) |
1916 | BUG(); | |
1917 | ||
202f72d5 | 1918 | number_of_cpusets = 1; |
8793d854 | 1919 | return 0; |
1da177e4 LT |
1920 | } |
1921 | ||
956db3ca CW |
1922 | /** |
1923 | * cpuset_do_move_task - move a given task to another cpuset | |
1924 | * @tsk: pointer to task_struct the task to move | |
1925 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | |
1926 | * | |
1927 | * Called by cgroup_scan_tasks() for each task in a cgroup. | |
1928 | * Return nonzero to stop the walk through the tasks. | |
1929 | */ | |
9e0c914c AB |
1930 | static void cpuset_do_move_task(struct task_struct *tsk, |
1931 | struct cgroup_scanner *scan) | |
956db3ca | 1932 | { |
7f81b1ae | 1933 | struct cgroup *new_cgroup = scan->data; |
956db3ca | 1934 | |
7f81b1ae | 1935 | cgroup_attach_task(new_cgroup, tsk); |
956db3ca CW |
1936 | } |
1937 | ||
1938 | /** | |
1939 | * move_member_tasks_to_cpuset - move tasks from one cpuset to another | |
1940 | * @from: cpuset in which the tasks currently reside | |
1941 | * @to: cpuset to which the tasks will be moved | |
1942 | * | |
c8d9c90c PJ |
1943 | * Called with cgroup_mutex held |
1944 | * callback_mutex must not be held, as cpuset_attach() will take it. | |
956db3ca CW |
1945 | * |
1946 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
1947 | * calling callback functions for each. | |
1948 | */ | |
1949 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) | |
1950 | { | |
7f81b1ae | 1951 | struct cgroup_scanner scan; |
956db3ca | 1952 | |
7f81b1ae LZ |
1953 | scan.cg = from->css.cgroup; |
1954 | scan.test_task = NULL; /* select all tasks in cgroup */ | |
1955 | scan.process_task = cpuset_do_move_task; | |
1956 | scan.heap = NULL; | |
1957 | scan.data = to->css.cgroup; | |
956db3ca | 1958 | |
7f81b1ae | 1959 | if (cgroup_scan_tasks(&scan)) |
956db3ca CW |
1960 | printk(KERN_ERR "move_member_tasks_to_cpuset: " |
1961 | "cgroup_scan_tasks failed\n"); | |
1962 | } | |
1963 | ||
b1aac8bb | 1964 | /* |
cf417141 | 1965 | * If CPU and/or memory hotplug handlers, below, unplug any CPUs |
b1aac8bb PJ |
1966 | * or memory nodes, we need to walk over the cpuset hierarchy, |
1967 | * removing that CPU or node from all cpusets. If this removes the | |
956db3ca CW |
1968 | * last CPU or node from a cpuset, then move the tasks in the empty |
1969 | * cpuset to its next-highest non-empty parent. | |
b1aac8bb | 1970 | * |
c8d9c90c PJ |
1971 | * Called with cgroup_mutex held |
1972 | * callback_mutex must not be held, as cpuset_attach() will take it. | |
b1aac8bb | 1973 | */ |
956db3ca CW |
1974 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) |
1975 | { | |
1976 | struct cpuset *parent; | |
1977 | ||
c8d9c90c PJ |
1978 | /* |
1979 | * The cgroup's css_sets list is in use if there are tasks | |
1980 | * in the cpuset; the list is empty if there are none; | |
1981 | * the cs->css.refcnt seems always 0. | |
1982 | */ | |
956db3ca CW |
1983 | if (list_empty(&cs->css.cgroup->css_sets)) |
1984 | return; | |
b1aac8bb | 1985 | |
956db3ca CW |
1986 | /* |
1987 | * Find its next-highest non-empty parent, (top cpuset | |
1988 | * has online cpus, so can't be empty). | |
1989 | */ | |
1990 | parent = cs->parent; | |
300ed6cb | 1991 | while (cpumask_empty(parent->cpus_allowed) || |
b4501295 | 1992 | nodes_empty(parent->mems_allowed)) |
956db3ca | 1993 | parent = parent->parent; |
956db3ca CW |
1994 | |
1995 | move_member_tasks_to_cpuset(cs, parent); | |
1996 | } | |
1997 | ||
80d1fa64 SB |
1998 | /* |
1999 | * Helper function to traverse cpusets. | |
2000 | * It can be used to walk the cpuset tree from top to bottom, completing | |
2001 | * one layer before dropping down to the next (thus always processing a | |
2002 | * node before any of its children). | |
2003 | */ | |
2004 | static struct cpuset *cpuset_next(struct list_head *queue) | |
2005 | { | |
2006 | struct cpuset *cp; | |
2007 | struct cpuset *child; /* scans child cpusets of cp */ | |
2008 | struct cgroup *cont; | |
2009 | ||
2010 | if (list_empty(queue)) | |
2011 | return NULL; | |
2012 | ||
2013 | cp = list_first_entry(queue, struct cpuset, stack_list); | |
2014 | list_del(queue->next); | |
2015 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | |
2016 | child = cgroup_cs(cont); | |
2017 | list_add_tail(&child->stack_list, queue); | |
2018 | } | |
2019 | ||
2020 | return cp; | |
2021 | } | |
2022 | ||
2023 | ||
956db3ca | 2024 | /* |
7ddf96b0 SB |
2025 | * Walk the specified cpuset subtree upon a hotplug operation (CPU/Memory |
2026 | * online/offline) and update the cpusets accordingly. | |
2027 | * For regular CPU/Mem hotplug, look for empty cpusets; the tasks of such | |
2028 | * cpuset must be moved to a parent cpuset. | |
956db3ca | 2029 | * |
2df167a3 | 2030 | * Called with cgroup_mutex held. We take callback_mutex to modify |
956db3ca CW |
2031 | * cpus_allowed and mems_allowed. |
2032 | * | |
2033 | * This walk processes the tree from top to bottom, completing one layer | |
2034 | * before dropping down to the next. It always processes a node before | |
2035 | * any of its children. | |
2036 | * | |
a1cd2b13 SB |
2037 | * In the case of memory hot-unplug, it will remove nodes from N_HIGH_MEMORY |
2038 | * if all present pages from a node are offlined. | |
956db3ca | 2039 | */ |
7ddf96b0 SB |
2040 | static void |
2041 | scan_cpusets_upon_hotplug(struct cpuset *root, enum hotplug_event event) | |
b1aac8bb | 2042 | { |
8d1e6266 | 2043 | LIST_HEAD(queue); |
7ddf96b0 | 2044 | struct cpuset *cp; /* scans cpusets being updated */ |
ee24d379 | 2045 | static nodemask_t oldmems; /* protected by cgroup_mutex */ |
b1aac8bb | 2046 | |
956db3ca CW |
2047 | list_add_tail((struct list_head *)&root->stack_list, &queue); |
2048 | ||
7ddf96b0 SB |
2049 | switch (event) { |
2050 | case CPUSET_CPU_OFFLINE: | |
2051 | while ((cp = cpuset_next(&queue)) != NULL) { | |
2052 | ||
2053 | /* Continue past cpusets with all cpus online */ | |
2054 | if (cpumask_subset(cp->cpus_allowed, cpu_active_mask)) | |
2055 | continue; | |
2056 | ||
2057 | /* Remove offline cpus from this cpuset. */ | |
2058 | mutex_lock(&callback_mutex); | |
2059 | cpumask_and(cp->cpus_allowed, cp->cpus_allowed, | |
2060 | cpu_active_mask); | |
2061 | mutex_unlock(&callback_mutex); | |
2062 | ||
2063 | /* Move tasks from the empty cpuset to a parent */ | |
2064 | if (cpumask_empty(cp->cpus_allowed)) | |
2065 | remove_tasks_in_empty_cpuset(cp); | |
2066 | else | |
2067 | update_tasks_cpumask(cp, NULL); | |
2068 | } | |
2069 | break; | |
b4501295 | 2070 | |
7ddf96b0 SB |
2071 | case CPUSET_MEM_OFFLINE: |
2072 | while ((cp = cpuset_next(&queue)) != NULL) { | |
b4501295 | 2073 | |
7ddf96b0 SB |
2074 | /* Continue past cpusets with all mems online */ |
2075 | if (nodes_subset(cp->mems_allowed, | |
2076 | node_states[N_HIGH_MEMORY])) | |
2077 | continue; | |
f9b4fb8d | 2078 | |
7ddf96b0 SB |
2079 | oldmems = cp->mems_allowed; |
2080 | ||
2081 | /* Remove offline mems from this cpuset. */ | |
2082 | mutex_lock(&callback_mutex); | |
2083 | nodes_and(cp->mems_allowed, cp->mems_allowed, | |
956db3ca | 2084 | node_states[N_HIGH_MEMORY]); |
7ddf96b0 | 2085 | mutex_unlock(&callback_mutex); |
b4501295 | 2086 | |
7ddf96b0 SB |
2087 | /* Move tasks from the empty cpuset to a parent */ |
2088 | if (nodes_empty(cp->mems_allowed)) | |
2089 | remove_tasks_in_empty_cpuset(cp); | |
2090 | else | |
2091 | update_tasks_nodemask(cp, &oldmems, NULL); | |
f9b4fb8d | 2092 | } |
b1aac8bb PJ |
2093 | } |
2094 | } | |
2095 | ||
4c4d50f7 PJ |
2096 | /* |
2097 | * The top_cpuset tracks what CPUs and Memory Nodes are online, | |
2098 | * period. This is necessary in order to make cpusets transparent | |
2099 | * (of no affect) on systems that are actively using CPU hotplug | |
2100 | * but making no active use of cpusets. | |
2101 | * | |
d35be8ba SB |
2102 | * The only exception to this is suspend/resume, where we don't |
2103 | * modify cpusets at all. | |
2104 | * | |
38837fc7 | 2105 | * This routine ensures that top_cpuset.cpus_allowed tracks |
3a101d05 | 2106 | * cpu_active_mask on each CPU hotplug (cpuhp) event. |
cf417141 MK |
2107 | * |
2108 | * Called within get_online_cpus(). Needs to call cgroup_lock() | |
2109 | * before calling generate_sched_domains(). | |
7ddf96b0 SB |
2110 | * |
2111 | * @cpu_online: Indicates whether this is a CPU online event (true) or | |
2112 | * a CPU offline event (false). | |
4c4d50f7 | 2113 | */ |
7ddf96b0 | 2114 | void cpuset_update_active_cpus(bool cpu_online) |
4c4d50f7 | 2115 | { |
cf417141 | 2116 | struct sched_domain_attr *attr; |
acc3f5d7 | 2117 | cpumask_var_t *doms; |
cf417141 MK |
2118 | int ndoms; |
2119 | ||
cf417141 | 2120 | cgroup_lock(); |
0b4217b3 | 2121 | mutex_lock(&callback_mutex); |
6ad4c188 | 2122 | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); |
0b4217b3 | 2123 | mutex_unlock(&callback_mutex); |
7ddf96b0 SB |
2124 | |
2125 | if (!cpu_online) | |
2126 | scan_cpusets_upon_hotplug(&top_cpuset, CPUSET_CPU_OFFLINE); | |
2127 | ||
cf417141 MK |
2128 | ndoms = generate_sched_domains(&doms, &attr); |
2129 | cgroup_unlock(); | |
2130 | ||
2131 | /* Have scheduler rebuild the domains */ | |
2132 | partition_sched_domains(ndoms, doms, attr); | |
4c4d50f7 | 2133 | } |
4c4d50f7 | 2134 | |
b1aac8bb | 2135 | #ifdef CONFIG_MEMORY_HOTPLUG |
38837fc7 | 2136 | /* |
0e1e7c7a | 2137 | * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. |
cf417141 | 2138 | * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. |
a1cd2b13 | 2139 | * See cpuset_update_active_cpus() for CPU hotplug handling. |
38837fc7 | 2140 | */ |
f481891f MX |
2141 | static int cpuset_track_online_nodes(struct notifier_block *self, |
2142 | unsigned long action, void *arg) | |
38837fc7 | 2143 | { |
ee24d379 | 2144 | static nodemask_t oldmems; /* protected by cgroup_mutex */ |
5ab116c9 | 2145 | |
cf417141 | 2146 | cgroup_lock(); |
f481891f MX |
2147 | switch (action) { |
2148 | case MEM_ONLINE: | |
ee24d379 | 2149 | oldmems = top_cpuset.mems_allowed; |
0b4217b3 | 2150 | mutex_lock(&callback_mutex); |
f481891f | 2151 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
0b4217b3 | 2152 | mutex_unlock(&callback_mutex); |
ee24d379 | 2153 | update_tasks_nodemask(&top_cpuset, &oldmems, NULL); |
5ab116c9 MX |
2154 | break; |
2155 | case MEM_OFFLINE: | |
2156 | /* | |
2157 | * needn't update top_cpuset.mems_allowed explicitly because | |
7ddf96b0 | 2158 | * scan_cpusets_upon_hotplug() will update it. |
5ab116c9 | 2159 | */ |
7ddf96b0 | 2160 | scan_cpusets_upon_hotplug(&top_cpuset, CPUSET_MEM_OFFLINE); |
f481891f MX |
2161 | break; |
2162 | default: | |
2163 | break; | |
2164 | } | |
cf417141 | 2165 | cgroup_unlock(); |
53feb297 | 2166 | |
f481891f | 2167 | return NOTIFY_OK; |
38837fc7 PJ |
2168 | } |
2169 | #endif | |
2170 | ||
1da177e4 LT |
2171 | /** |
2172 | * cpuset_init_smp - initialize cpus_allowed | |
2173 | * | |
2174 | * Description: Finish top cpuset after cpu, node maps are initialized | |
2175 | **/ | |
2176 | ||
2177 | void __init cpuset_init_smp(void) | |
2178 | { | |
6ad4c188 | 2179 | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); |
0e1e7c7a | 2180 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
4c4d50f7 | 2181 | |
f481891f | 2182 | hotplug_memory_notifier(cpuset_track_online_nodes, 10); |
f90d4118 MX |
2183 | |
2184 | cpuset_wq = create_singlethread_workqueue("cpuset"); | |
2185 | BUG_ON(!cpuset_wq); | |
1da177e4 LT |
2186 | } |
2187 | ||
2188 | /** | |
1da177e4 LT |
2189 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. |
2190 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | |
6af866af | 2191 | * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. |
1da177e4 | 2192 | * |
300ed6cb | 2193 | * Description: Returns the cpumask_var_t cpus_allowed of the cpuset |
1da177e4 | 2194 | * attached to the specified @tsk. Guaranteed to return some non-empty |
5f054e31 | 2195 | * subset of cpu_online_mask, even if this means going outside the |
1da177e4 LT |
2196 | * tasks cpuset. |
2197 | **/ | |
2198 | ||
6af866af | 2199 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) |
1da177e4 | 2200 | { |
3d3f26a7 | 2201 | mutex_lock(&callback_mutex); |
909d75a3 | 2202 | task_lock(tsk); |
f9a86fcb | 2203 | guarantee_online_cpus(task_cs(tsk), pmask); |
909d75a3 | 2204 | task_unlock(tsk); |
897f0b3c | 2205 | mutex_unlock(&callback_mutex); |
1da177e4 LT |
2206 | } |
2207 | ||
2baab4e9 | 2208 | void cpuset_cpus_allowed_fallback(struct task_struct *tsk) |
9084bb82 ON |
2209 | { |
2210 | const struct cpuset *cs; | |
9084bb82 ON |
2211 | |
2212 | rcu_read_lock(); | |
2213 | cs = task_cs(tsk); | |
2214 | if (cs) | |
1e1b6c51 | 2215 | do_set_cpus_allowed(tsk, cs->cpus_allowed); |
9084bb82 ON |
2216 | rcu_read_unlock(); |
2217 | ||
2218 | /* | |
2219 | * We own tsk->cpus_allowed, nobody can change it under us. | |
2220 | * | |
2221 | * But we used cs && cs->cpus_allowed lockless and thus can | |
2222 | * race with cgroup_attach_task() or update_cpumask() and get | |
2223 | * the wrong tsk->cpus_allowed. However, both cases imply the | |
2224 | * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() | |
2225 | * which takes task_rq_lock(). | |
2226 | * | |
2227 | * If we are called after it dropped the lock we must see all | |
2228 | * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary | |
2229 | * set any mask even if it is not right from task_cs() pov, | |
2230 | * the pending set_cpus_allowed_ptr() will fix things. | |
2baab4e9 PZ |
2231 | * |
2232 | * select_fallback_rq() will fix things ups and set cpu_possible_mask | |
2233 | * if required. | |
9084bb82 | 2234 | */ |
9084bb82 ON |
2235 | } |
2236 | ||
1da177e4 LT |
2237 | void cpuset_init_current_mems_allowed(void) |
2238 | { | |
f9a86fcb | 2239 | nodes_setall(current->mems_allowed); |
1da177e4 LT |
2240 | } |
2241 | ||
909d75a3 PJ |
2242 | /** |
2243 | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | |
2244 | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | |
2245 | * | |
2246 | * Description: Returns the nodemask_t mems_allowed of the cpuset | |
2247 | * attached to the specified @tsk. Guaranteed to return some non-empty | |
0e1e7c7a | 2248 | * subset of node_states[N_HIGH_MEMORY], even if this means going outside the |
909d75a3 PJ |
2249 | * tasks cpuset. |
2250 | **/ | |
2251 | ||
2252 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | |
2253 | { | |
2254 | nodemask_t mask; | |
2255 | ||
3d3f26a7 | 2256 | mutex_lock(&callback_mutex); |
909d75a3 | 2257 | task_lock(tsk); |
8793d854 | 2258 | guarantee_online_mems(task_cs(tsk), &mask); |
909d75a3 | 2259 | task_unlock(tsk); |
3d3f26a7 | 2260 | mutex_unlock(&callback_mutex); |
909d75a3 PJ |
2261 | |
2262 | return mask; | |
2263 | } | |
2264 | ||
d9fd8a6d | 2265 | /** |
19770b32 MG |
2266 | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed |
2267 | * @nodemask: the nodemask to be checked | |
d9fd8a6d | 2268 | * |
19770b32 | 2269 | * Are any of the nodes in the nodemask allowed in current->mems_allowed? |
1da177e4 | 2270 | */ |
19770b32 | 2271 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) |
1da177e4 | 2272 | { |
19770b32 | 2273 | return nodes_intersects(*nodemask, current->mems_allowed); |
1da177e4 LT |
2274 | } |
2275 | ||
9bf2229f | 2276 | /* |
78608366 PM |
2277 | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or |
2278 | * mem_hardwall ancestor to the specified cpuset. Call holding | |
2279 | * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall | |
2280 | * (an unusual configuration), then returns the root cpuset. | |
9bf2229f | 2281 | */ |
78608366 | 2282 | static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) |
9bf2229f | 2283 | { |
78608366 | 2284 | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) |
9bf2229f PJ |
2285 | cs = cs->parent; |
2286 | return cs; | |
2287 | } | |
2288 | ||
d9fd8a6d | 2289 | /** |
a1bc5a4e DR |
2290 | * cpuset_node_allowed_softwall - Can we allocate on a memory node? |
2291 | * @node: is this an allowed node? | |
02a0e53d | 2292 | * @gfp_mask: memory allocation flags |
d9fd8a6d | 2293 | * |
a1bc5a4e DR |
2294 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
2295 | * set, yes, we can always allocate. If node is in our task's mems_allowed, | |
2296 | * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest | |
2297 | * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been | |
2298 | * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE | |
2299 | * flag, yes. | |
9bf2229f PJ |
2300 | * Otherwise, no. |
2301 | * | |
a1bc5a4e DR |
2302 | * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to |
2303 | * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall() | |
2304 | * might sleep, and might allow a node from an enclosing cpuset. | |
02a0e53d | 2305 | * |
a1bc5a4e DR |
2306 | * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall |
2307 | * cpusets, and never sleeps. | |
02a0e53d PJ |
2308 | * |
2309 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2310 | * by forcibly using a zonelist starting at a specified node, and by | |
2311 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2312 | * any node on the zonelist except the first. By the time any such | |
2313 | * calls get to this routine, we should just shut up and say 'yes'. | |
2314 | * | |
9bf2229f | 2315 | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, |
c596d9f3 DR |
2316 | * and do not allow allocations outside the current tasks cpuset |
2317 | * unless the task has been OOM killed as is marked TIF_MEMDIE. | |
9bf2229f | 2318 | * GFP_KERNEL allocations are not so marked, so can escape to the |
78608366 | 2319 | * nearest enclosing hardwalled ancestor cpuset. |
9bf2229f | 2320 | * |
02a0e53d PJ |
2321 | * Scanning up parent cpusets requires callback_mutex. The |
2322 | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | |
2323 | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | |
2324 | * current tasks mems_allowed came up empty on the first pass over | |
2325 | * the zonelist. So only GFP_KERNEL allocations, if all nodes in the | |
2326 | * cpuset are short of memory, might require taking the callback_mutex | |
2327 | * mutex. | |
9bf2229f | 2328 | * |
36be57ff | 2329 | * The first call here from mm/page_alloc:get_page_from_freelist() |
02a0e53d PJ |
2330 | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, |
2331 | * so no allocation on a node outside the cpuset is allowed (unless | |
2332 | * in interrupt, of course). | |
36be57ff PJ |
2333 | * |
2334 | * The second pass through get_page_from_freelist() doesn't even call | |
2335 | * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() | |
2336 | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | |
2337 | * in alloc_flags. That logic and the checks below have the combined | |
2338 | * affect that: | |
9bf2229f PJ |
2339 | * in_interrupt - any node ok (current task context irrelevant) |
2340 | * GFP_ATOMIC - any node ok | |
c596d9f3 | 2341 | * TIF_MEMDIE - any node ok |
78608366 | 2342 | * GFP_KERNEL - any node in enclosing hardwalled cpuset ok |
9bf2229f | 2343 | * GFP_USER - only nodes in current tasks mems allowed ok. |
36be57ff PJ |
2344 | * |
2345 | * Rule: | |
a1bc5a4e | 2346 | * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you |
36be57ff PJ |
2347 | * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables |
2348 | * the code that might scan up ancestor cpusets and sleep. | |
02a0e53d | 2349 | */ |
a1bc5a4e | 2350 | int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) |
1da177e4 | 2351 | { |
9bf2229f | 2352 | const struct cpuset *cs; /* current cpuset ancestors */ |
29afd49b | 2353 | int allowed; /* is allocation in zone z allowed? */ |
9bf2229f | 2354 | |
9b819d20 | 2355 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
9bf2229f | 2356 | return 1; |
92d1dbd2 | 2357 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); |
9bf2229f PJ |
2358 | if (node_isset(node, current->mems_allowed)) |
2359 | return 1; | |
c596d9f3 DR |
2360 | /* |
2361 | * Allow tasks that have access to memory reserves because they have | |
2362 | * been OOM killed to get memory anywhere. | |
2363 | */ | |
2364 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2365 | return 1; | |
9bf2229f PJ |
2366 | if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ |
2367 | return 0; | |
2368 | ||
5563e770 BP |
2369 | if (current->flags & PF_EXITING) /* Let dying task have memory */ |
2370 | return 1; | |
2371 | ||
9bf2229f | 2372 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ |
3d3f26a7 | 2373 | mutex_lock(&callback_mutex); |
053199ed | 2374 | |
053199ed | 2375 | task_lock(current); |
78608366 | 2376 | cs = nearest_hardwall_ancestor(task_cs(current)); |
053199ed PJ |
2377 | task_unlock(current); |
2378 | ||
9bf2229f | 2379 | allowed = node_isset(node, cs->mems_allowed); |
3d3f26a7 | 2380 | mutex_unlock(&callback_mutex); |
9bf2229f | 2381 | return allowed; |
1da177e4 LT |
2382 | } |
2383 | ||
02a0e53d | 2384 | /* |
a1bc5a4e DR |
2385 | * cpuset_node_allowed_hardwall - Can we allocate on a memory node? |
2386 | * @node: is this an allowed node? | |
02a0e53d PJ |
2387 | * @gfp_mask: memory allocation flags |
2388 | * | |
a1bc5a4e DR |
2389 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
2390 | * set, yes, we can always allocate. If node is in our task's mems_allowed, | |
2391 | * yes. If the task has been OOM killed and has access to memory reserves as | |
2392 | * specified by the TIF_MEMDIE flag, yes. | |
2393 | * Otherwise, no. | |
02a0e53d PJ |
2394 | * |
2395 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2396 | * by forcibly using a zonelist starting at a specified node, and by | |
2397 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2398 | * any node on the zonelist except the first. By the time any such | |
2399 | * calls get to this routine, we should just shut up and say 'yes'. | |
2400 | * | |
a1bc5a4e DR |
2401 | * Unlike the cpuset_node_allowed_softwall() variant, above, |
2402 | * this variant requires that the node be in the current task's | |
02a0e53d PJ |
2403 | * mems_allowed or that we're in interrupt. It does not scan up the |
2404 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | |
2405 | * It never sleeps. | |
2406 | */ | |
a1bc5a4e | 2407 | int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) |
02a0e53d | 2408 | { |
02a0e53d PJ |
2409 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
2410 | return 1; | |
02a0e53d PJ |
2411 | if (node_isset(node, current->mems_allowed)) |
2412 | return 1; | |
dedf8b79 DW |
2413 | /* |
2414 | * Allow tasks that have access to memory reserves because they have | |
2415 | * been OOM killed to get memory anywhere. | |
2416 | */ | |
2417 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2418 | return 1; | |
02a0e53d PJ |
2419 | return 0; |
2420 | } | |
2421 | ||
505970b9 PJ |
2422 | /** |
2423 | * cpuset_unlock - release lock on cpuset changes | |
2424 | * | |
2425 | * Undo the lock taken in a previous cpuset_lock() call. | |
2426 | */ | |
2427 | ||
2428 | void cpuset_unlock(void) | |
2429 | { | |
3d3f26a7 | 2430 | mutex_unlock(&callback_mutex); |
505970b9 PJ |
2431 | } |
2432 | ||
825a46af | 2433 | /** |
6adef3eb JS |
2434 | * cpuset_mem_spread_node() - On which node to begin search for a file page |
2435 | * cpuset_slab_spread_node() - On which node to begin search for a slab page | |
825a46af PJ |
2436 | * |
2437 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | |
2438 | * tasks in a cpuset with is_spread_page or is_spread_slab set), | |
2439 | * and if the memory allocation used cpuset_mem_spread_node() | |
2440 | * to determine on which node to start looking, as it will for | |
2441 | * certain page cache or slab cache pages such as used for file | |
2442 | * system buffers and inode caches, then instead of starting on the | |
2443 | * local node to look for a free page, rather spread the starting | |
2444 | * node around the tasks mems_allowed nodes. | |
2445 | * | |
2446 | * We don't have to worry about the returned node being offline | |
2447 | * because "it can't happen", and even if it did, it would be ok. | |
2448 | * | |
2449 | * The routines calling guarantee_online_mems() are careful to | |
2450 | * only set nodes in task->mems_allowed that are online. So it | |
2451 | * should not be possible for the following code to return an | |
2452 | * offline node. But if it did, that would be ok, as this routine | |
2453 | * is not returning the node where the allocation must be, only | |
2454 | * the node where the search should start. The zonelist passed to | |
2455 | * __alloc_pages() will include all nodes. If the slab allocator | |
2456 | * is passed an offline node, it will fall back to the local node. | |
2457 | * See kmem_cache_alloc_node(). | |
2458 | */ | |
2459 | ||
6adef3eb | 2460 | static int cpuset_spread_node(int *rotor) |
825a46af PJ |
2461 | { |
2462 | int node; | |
2463 | ||
6adef3eb | 2464 | node = next_node(*rotor, current->mems_allowed); |
825a46af PJ |
2465 | if (node == MAX_NUMNODES) |
2466 | node = first_node(current->mems_allowed); | |
6adef3eb | 2467 | *rotor = node; |
825a46af PJ |
2468 | return node; |
2469 | } | |
6adef3eb JS |
2470 | |
2471 | int cpuset_mem_spread_node(void) | |
2472 | { | |
778d3b0f MH |
2473 | if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) |
2474 | current->cpuset_mem_spread_rotor = | |
2475 | node_random(¤t->mems_allowed); | |
2476 | ||
6adef3eb JS |
2477 | return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); |
2478 | } | |
2479 | ||
2480 | int cpuset_slab_spread_node(void) | |
2481 | { | |
778d3b0f MH |
2482 | if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) |
2483 | current->cpuset_slab_spread_rotor = | |
2484 | node_random(¤t->mems_allowed); | |
2485 | ||
6adef3eb JS |
2486 | return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); |
2487 | } | |
2488 | ||
825a46af PJ |
2489 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); |
2490 | ||
ef08e3b4 | 2491 | /** |
bbe373f2 DR |
2492 | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? |
2493 | * @tsk1: pointer to task_struct of some task. | |
2494 | * @tsk2: pointer to task_struct of some other task. | |
2495 | * | |
2496 | * Description: Return true if @tsk1's mems_allowed intersects the | |
2497 | * mems_allowed of @tsk2. Used by the OOM killer to determine if | |
2498 | * one of the task's memory usage might impact the memory available | |
2499 | * to the other. | |
ef08e3b4 PJ |
2500 | **/ |
2501 | ||
bbe373f2 DR |
2502 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, |
2503 | const struct task_struct *tsk2) | |
ef08e3b4 | 2504 | { |
bbe373f2 | 2505 | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); |
ef08e3b4 PJ |
2506 | } |
2507 | ||
75aa1994 DR |
2508 | /** |
2509 | * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed | |
2510 | * @task: pointer to task_struct of some task. | |
2511 | * | |
2512 | * Description: Prints @task's name, cpuset name, and cached copy of its | |
2513 | * mems_allowed to the kernel log. Must hold task_lock(task) to allow | |
2514 | * dereferencing task_cs(task). | |
2515 | */ | |
2516 | void cpuset_print_task_mems_allowed(struct task_struct *tsk) | |
2517 | { | |
2518 | struct dentry *dentry; | |
2519 | ||
2520 | dentry = task_cs(tsk)->css.cgroup->dentry; | |
2521 | spin_lock(&cpuset_buffer_lock); | |
2522 | snprintf(cpuset_name, CPUSET_NAME_LEN, | |
2523 | dentry ? (const char *)dentry->d_name.name : "/"); | |
2524 | nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, | |
2525 | tsk->mems_allowed); | |
2526 | printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", | |
2527 | tsk->comm, cpuset_name, cpuset_nodelist); | |
2528 | spin_unlock(&cpuset_buffer_lock); | |
2529 | } | |
2530 | ||
3e0d98b9 PJ |
2531 | /* |
2532 | * Collection of memory_pressure is suppressed unless | |
2533 | * this flag is enabled by writing "1" to the special | |
2534 | * cpuset file 'memory_pressure_enabled' in the root cpuset. | |
2535 | */ | |
2536 | ||
c5b2aff8 | 2537 | int cpuset_memory_pressure_enabled __read_mostly; |
3e0d98b9 PJ |
2538 | |
2539 | /** | |
2540 | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | |
2541 | * | |
2542 | * Keep a running average of the rate of synchronous (direct) | |
2543 | * page reclaim efforts initiated by tasks in each cpuset. | |
2544 | * | |
2545 | * This represents the rate at which some task in the cpuset | |
2546 | * ran low on memory on all nodes it was allowed to use, and | |
2547 | * had to enter the kernels page reclaim code in an effort to | |
2548 | * create more free memory by tossing clean pages or swapping | |
2549 | * or writing dirty pages. | |
2550 | * | |
2551 | * Display to user space in the per-cpuset read-only file | |
2552 | * "memory_pressure". Value displayed is an integer | |
2553 | * representing the recent rate of entry into the synchronous | |
2554 | * (direct) page reclaim by any task attached to the cpuset. | |
2555 | **/ | |
2556 | ||
2557 | void __cpuset_memory_pressure_bump(void) | |
2558 | { | |
3e0d98b9 | 2559 | task_lock(current); |
8793d854 | 2560 | fmeter_markevent(&task_cs(current)->fmeter); |
3e0d98b9 PJ |
2561 | task_unlock(current); |
2562 | } | |
2563 | ||
8793d854 | 2564 | #ifdef CONFIG_PROC_PID_CPUSET |
1da177e4 LT |
2565 | /* |
2566 | * proc_cpuset_show() | |
2567 | * - Print tasks cpuset path into seq_file. | |
2568 | * - Used for /proc/<pid>/cpuset. | |
053199ed PJ |
2569 | * - No need to task_lock(tsk) on this tsk->cpuset reference, as it |
2570 | * doesn't really matter if tsk->cpuset changes after we read it, | |
c8d9c90c | 2571 | * and we take cgroup_mutex, keeping cpuset_attach() from changing it |
2df167a3 | 2572 | * anyway. |
1da177e4 | 2573 | */ |
029190c5 | 2574 | static int proc_cpuset_show(struct seq_file *m, void *unused_v) |
1da177e4 | 2575 | { |
13b41b09 | 2576 | struct pid *pid; |
1da177e4 LT |
2577 | struct task_struct *tsk; |
2578 | char *buf; | |
8793d854 | 2579 | struct cgroup_subsys_state *css; |
99f89551 | 2580 | int retval; |
1da177e4 | 2581 | |
99f89551 | 2582 | retval = -ENOMEM; |
1da177e4 LT |
2583 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
2584 | if (!buf) | |
99f89551 EB |
2585 | goto out; |
2586 | ||
2587 | retval = -ESRCH; | |
13b41b09 EB |
2588 | pid = m->private; |
2589 | tsk = get_pid_task(pid, PIDTYPE_PID); | |
99f89551 EB |
2590 | if (!tsk) |
2591 | goto out_free; | |
1da177e4 | 2592 | |
99f89551 | 2593 | retval = -EINVAL; |
8793d854 PM |
2594 | cgroup_lock(); |
2595 | css = task_subsys_state(tsk, cpuset_subsys_id); | |
2596 | retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); | |
1da177e4 | 2597 | if (retval < 0) |
99f89551 | 2598 | goto out_unlock; |
1da177e4 LT |
2599 | seq_puts(m, buf); |
2600 | seq_putc(m, '\n'); | |
99f89551 | 2601 | out_unlock: |
8793d854 | 2602 | cgroup_unlock(); |
99f89551 EB |
2603 | put_task_struct(tsk); |
2604 | out_free: | |
1da177e4 | 2605 | kfree(buf); |
99f89551 | 2606 | out: |
1da177e4 LT |
2607 | return retval; |
2608 | } | |
2609 | ||
2610 | static int cpuset_open(struct inode *inode, struct file *file) | |
2611 | { | |
13b41b09 EB |
2612 | struct pid *pid = PROC_I(inode)->pid; |
2613 | return single_open(file, proc_cpuset_show, pid); | |
1da177e4 LT |
2614 | } |
2615 | ||
9a32144e | 2616 | const struct file_operations proc_cpuset_operations = { |
1da177e4 LT |
2617 | .open = cpuset_open, |
2618 | .read = seq_read, | |
2619 | .llseek = seq_lseek, | |
2620 | .release = single_release, | |
2621 | }; | |
8793d854 | 2622 | #endif /* CONFIG_PROC_PID_CPUSET */ |
1da177e4 | 2623 | |
d01d4827 | 2624 | /* Display task mems_allowed in /proc/<pid>/status file. */ |
df5f8314 EB |
2625 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) |
2626 | { | |
df5f8314 | 2627 | seq_printf(m, "Mems_allowed:\t"); |
30e8e136 | 2628 | seq_nodemask(m, &task->mems_allowed); |
df5f8314 | 2629 | seq_printf(m, "\n"); |
39106dcf | 2630 | seq_printf(m, "Mems_allowed_list:\t"); |
30e8e136 | 2631 | seq_nodemask_list(m, &task->mems_allowed); |
39106dcf | 2632 | seq_printf(m, "\n"); |
1da177e4 | 2633 | } |