]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * fs/direct-io.c | |
3 | * | |
4 | * Copyright (C) 2002, Linus Torvalds. | |
5 | * | |
6 | * O_DIRECT | |
7 | * | |
8 | * 04Jul2002 [email protected] | |
9 | * Initial version | |
10 | * 11Sep2002 [email protected] | |
11 | * added readv/writev support. | |
12 | * 29Oct2002 [email protected] | |
13 | * rewrote bio_add_page() support. | |
14 | * 30Oct2002 [email protected] | |
15 | * added support for non-aligned IO. | |
16 | * 06Nov2002 [email protected] | |
17 | * added asynchronous IO support. | |
18 | * 21Jul2003 [email protected] | |
19 | * added IO completion notifier. | |
20 | */ | |
21 | ||
22 | #include <linux/kernel.h> | |
23 | #include <linux/module.h> | |
24 | #include <linux/types.h> | |
25 | #include <linux/fs.h> | |
26 | #include <linux/mm.h> | |
27 | #include <linux/slab.h> | |
28 | #include <linux/highmem.h> | |
29 | #include <linux/pagemap.h> | |
30 | #include <linux/bio.h> | |
31 | #include <linux/wait.h> | |
32 | #include <linux/err.h> | |
33 | #include <linux/blkdev.h> | |
34 | #include <linux/buffer_head.h> | |
35 | #include <linux/rwsem.h> | |
36 | #include <linux/uio.h> | |
37 | #include <asm/atomic.h> | |
38 | ||
39 | /* | |
40 | * How many user pages to map in one call to get_user_pages(). This determines | |
41 | * the size of a structure on the stack. | |
42 | */ | |
43 | #define DIO_PAGES 64 | |
44 | ||
45 | /* | |
46 | * This code generally works in units of "dio_blocks". A dio_block is | |
47 | * somewhere between the hard sector size and the filesystem block size. it | |
48 | * is determined on a per-invocation basis. When talking to the filesystem | |
49 | * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity | |
50 | * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted | |
51 | * to bio_block quantities by shifting left by blkfactor. | |
52 | * | |
53 | * If blkfactor is zero then the user's request was aligned to the filesystem's | |
54 | * blocksize. | |
55 | * | |
56 | * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. | |
57 | * This determines whether we need to do the fancy locking which prevents | |
58 | * direct-IO from being able to read uninitialised disk blocks. If its zero | |
59 | * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_sem is | |
60 | * not held for the entire direct write (taken briefly, initially, during a | |
61 | * direct read though, but its never held for the duration of a direct-IO). | |
62 | */ | |
63 | ||
64 | struct dio { | |
65 | /* BIO submission state */ | |
66 | struct bio *bio; /* bio under assembly */ | |
67 | struct inode *inode; | |
68 | int rw; | |
29504ff3 | 69 | loff_t i_size; /* i_size when submitted */ |
1da177e4 LT |
70 | int lock_type; /* doesn't change */ |
71 | unsigned blkbits; /* doesn't change */ | |
72 | unsigned blkfactor; /* When we're using an alignment which | |
73 | is finer than the filesystem's soft | |
74 | blocksize, this specifies how much | |
75 | finer. blkfactor=2 means 1/4-block | |
76 | alignment. Does not change */ | |
77 | unsigned start_zero_done; /* flag: sub-blocksize zeroing has | |
78 | been performed at the start of a | |
79 | write */ | |
80 | int pages_in_io; /* approximate total IO pages */ | |
81 | size_t size; /* total request size (doesn't change)*/ | |
82 | sector_t block_in_file; /* Current offset into the underlying | |
83 | file in dio_block units. */ | |
84 | unsigned blocks_available; /* At block_in_file. changes */ | |
85 | sector_t final_block_in_request;/* doesn't change */ | |
86 | unsigned first_block_in_page; /* doesn't change, Used only once */ | |
87 | int boundary; /* prev block is at a boundary */ | |
88 | int reap_counter; /* rate limit reaping */ | |
89 | get_blocks_t *get_blocks; /* block mapping function */ | |
90 | dio_iodone_t *end_io; /* IO completion function */ | |
91 | sector_t final_block_in_bio; /* current final block in bio + 1 */ | |
92 | sector_t next_block_for_io; /* next block to be put under IO, | |
93 | in dio_blocks units */ | |
94 | struct buffer_head map_bh; /* last get_blocks() result */ | |
95 | ||
96 | /* | |
97 | * Deferred addition of a page to the dio. These variables are | |
98 | * private to dio_send_cur_page(), submit_page_section() and | |
99 | * dio_bio_add_page(). | |
100 | */ | |
101 | struct page *cur_page; /* The page */ | |
102 | unsigned cur_page_offset; /* Offset into it, in bytes */ | |
103 | unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ | |
104 | sector_t cur_page_block; /* Where it starts */ | |
105 | ||
106 | /* | |
107 | * Page fetching state. These variables belong to dio_refill_pages(). | |
108 | */ | |
109 | int curr_page; /* changes */ | |
110 | int total_pages; /* doesn't change */ | |
111 | unsigned long curr_user_address;/* changes */ | |
112 | ||
113 | /* | |
114 | * Page queue. These variables belong to dio_refill_pages() and | |
115 | * dio_get_page(). | |
116 | */ | |
117 | struct page *pages[DIO_PAGES]; /* page buffer */ | |
118 | unsigned head; /* next page to process */ | |
119 | unsigned tail; /* last valid page + 1 */ | |
120 | int page_errors; /* errno from get_user_pages() */ | |
121 | ||
122 | /* BIO completion state */ | |
123 | spinlock_t bio_lock; /* protects BIO fields below */ | |
124 | int bio_count; /* nr bios to be completed */ | |
125 | int bios_in_flight; /* nr bios in flight */ | |
126 | struct bio *bio_list; /* singly linked via bi_private */ | |
127 | struct task_struct *waiter; /* waiting task (NULL if none) */ | |
128 | ||
129 | /* AIO related stuff */ | |
130 | struct kiocb *iocb; /* kiocb */ | |
131 | int is_async; /* is IO async ? */ | |
132 | ssize_t result; /* IO result */ | |
133 | }; | |
134 | ||
135 | /* | |
136 | * How many pages are in the queue? | |
137 | */ | |
138 | static inline unsigned dio_pages_present(struct dio *dio) | |
139 | { | |
140 | return dio->tail - dio->head; | |
141 | } | |
142 | ||
143 | /* | |
144 | * Go grab and pin some userspace pages. Typically we'll get 64 at a time. | |
145 | */ | |
146 | static int dio_refill_pages(struct dio *dio) | |
147 | { | |
148 | int ret; | |
149 | int nr_pages; | |
150 | ||
151 | nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); | |
152 | down_read(¤t->mm->mmap_sem); | |
153 | ret = get_user_pages( | |
154 | current, /* Task for fault acounting */ | |
155 | current->mm, /* whose pages? */ | |
156 | dio->curr_user_address, /* Where from? */ | |
157 | nr_pages, /* How many pages? */ | |
158 | dio->rw == READ, /* Write to memory? */ | |
159 | 0, /* force (?) */ | |
160 | &dio->pages[0], | |
161 | NULL); /* vmas */ | |
162 | up_read(¤t->mm->mmap_sem); | |
163 | ||
164 | if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) { | |
165 | /* | |
166 | * A memory fault, but the filesystem has some outstanding | |
167 | * mapped blocks. We need to use those blocks up to avoid | |
168 | * leaking stale data in the file. | |
169 | */ | |
170 | if (dio->page_errors == 0) | |
171 | dio->page_errors = ret; | |
172 | dio->pages[0] = ZERO_PAGE(dio->curr_user_address); | |
173 | dio->head = 0; | |
174 | dio->tail = 1; | |
175 | ret = 0; | |
176 | goto out; | |
177 | } | |
178 | ||
179 | if (ret >= 0) { | |
180 | dio->curr_user_address += ret * PAGE_SIZE; | |
181 | dio->curr_page += ret; | |
182 | dio->head = 0; | |
183 | dio->tail = ret; | |
184 | ret = 0; | |
185 | } | |
186 | out: | |
187 | return ret; | |
188 | } | |
189 | ||
190 | /* | |
191 | * Get another userspace page. Returns an ERR_PTR on error. Pages are | |
192 | * buffered inside the dio so that we can call get_user_pages() against a | |
193 | * decent number of pages, less frequently. To provide nicer use of the | |
194 | * L1 cache. | |
195 | */ | |
196 | static struct page *dio_get_page(struct dio *dio) | |
197 | { | |
198 | if (dio_pages_present(dio) == 0) { | |
199 | int ret; | |
200 | ||
201 | ret = dio_refill_pages(dio); | |
202 | if (ret) | |
203 | return ERR_PTR(ret); | |
204 | BUG_ON(dio_pages_present(dio) == 0); | |
205 | } | |
206 | return dio->pages[dio->head++]; | |
207 | } | |
208 | ||
209 | /* | |
210 | * Called when all DIO BIO I/O has been completed - let the filesystem | |
211 | * know, if it registered an interest earlier via get_blocks. Pass the | |
212 | * private field of the map buffer_head so that filesystems can use it | |
213 | * to hold additional state between get_blocks calls and dio_complete. | |
214 | */ | |
215 | static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes) | |
216 | { | |
217 | if (dio->end_io && dio->result) | |
92198f7e | 218 | dio->end_io(dio->iocb, offset, bytes, dio->map_bh.b_private); |
1da177e4 LT |
219 | if (dio->lock_type == DIO_LOCKING) |
220 | up_read(&dio->inode->i_alloc_sem); | |
221 | } | |
222 | ||
223 | /* | |
224 | * Called when a BIO has been processed. If the count goes to zero then IO is | |
225 | * complete and we can signal this to the AIO layer. | |
226 | */ | |
227 | static void finished_one_bio(struct dio *dio) | |
228 | { | |
229 | unsigned long flags; | |
230 | ||
231 | spin_lock_irqsave(&dio->bio_lock, flags); | |
232 | if (dio->bio_count == 1) { | |
233 | if (dio->is_async) { | |
29504ff3 DM |
234 | ssize_t transferred; |
235 | loff_t offset; | |
236 | ||
1da177e4 LT |
237 | /* |
238 | * Last reference to the dio is going away. | |
239 | * Drop spinlock and complete the DIO. | |
240 | */ | |
241 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
29504ff3 DM |
242 | |
243 | /* Check for short read case */ | |
244 | transferred = dio->result; | |
245 | offset = dio->iocb->ki_pos; | |
246 | ||
247 | if ((dio->rw == READ) && | |
248 | ((offset + transferred) > dio->i_size)) | |
249 | transferred = dio->i_size - offset; | |
250 | ||
251 | dio_complete(dio, offset, transferred); | |
252 | ||
1da177e4 LT |
253 | /* Complete AIO later if falling back to buffered i/o */ |
254 | if (dio->result == dio->size || | |
255 | ((dio->rw == READ) && dio->result)) { | |
29504ff3 | 256 | aio_complete(dio->iocb, transferred, 0); |
1da177e4 LT |
257 | kfree(dio); |
258 | return; | |
259 | } else { | |
260 | /* | |
261 | * Falling back to buffered | |
262 | */ | |
263 | spin_lock_irqsave(&dio->bio_lock, flags); | |
264 | dio->bio_count--; | |
265 | if (dio->waiter) | |
266 | wake_up_process(dio->waiter); | |
267 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
268 | return; | |
269 | } | |
270 | } | |
271 | } | |
272 | dio->bio_count--; | |
273 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
274 | } | |
275 | ||
276 | static int dio_bio_complete(struct dio *dio, struct bio *bio); | |
277 | /* | |
278 | * Asynchronous IO callback. | |
279 | */ | |
280 | static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error) | |
281 | { | |
282 | struct dio *dio = bio->bi_private; | |
283 | ||
284 | if (bio->bi_size) | |
285 | return 1; | |
286 | ||
287 | /* cleanup the bio */ | |
288 | dio_bio_complete(dio, bio); | |
289 | return 0; | |
290 | } | |
291 | ||
292 | /* | |
293 | * The BIO completion handler simply queues the BIO up for the process-context | |
294 | * handler. | |
295 | * | |
296 | * During I/O bi_private points at the dio. After I/O, bi_private is used to | |
297 | * implement a singly-linked list of completed BIOs, at dio->bio_list. | |
298 | */ | |
299 | static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error) | |
300 | { | |
301 | struct dio *dio = bio->bi_private; | |
302 | unsigned long flags; | |
303 | ||
304 | if (bio->bi_size) | |
305 | return 1; | |
306 | ||
307 | spin_lock_irqsave(&dio->bio_lock, flags); | |
308 | bio->bi_private = dio->bio_list; | |
309 | dio->bio_list = bio; | |
310 | dio->bios_in_flight--; | |
311 | if (dio->waiter && dio->bios_in_flight == 0) | |
312 | wake_up_process(dio->waiter); | |
313 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
314 | return 0; | |
315 | } | |
316 | ||
317 | static int | |
318 | dio_bio_alloc(struct dio *dio, struct block_device *bdev, | |
319 | sector_t first_sector, int nr_vecs) | |
320 | { | |
321 | struct bio *bio; | |
322 | ||
323 | bio = bio_alloc(GFP_KERNEL, nr_vecs); | |
324 | if (bio == NULL) | |
325 | return -ENOMEM; | |
326 | ||
327 | bio->bi_bdev = bdev; | |
328 | bio->bi_sector = first_sector; | |
329 | if (dio->is_async) | |
330 | bio->bi_end_io = dio_bio_end_aio; | |
331 | else | |
332 | bio->bi_end_io = dio_bio_end_io; | |
333 | ||
334 | dio->bio = bio; | |
335 | return 0; | |
336 | } | |
337 | ||
338 | /* | |
339 | * In the AIO read case we speculatively dirty the pages before starting IO. | |
340 | * During IO completion, any of these pages which happen to have been written | |
341 | * back will be redirtied by bio_check_pages_dirty(). | |
342 | */ | |
343 | static void dio_bio_submit(struct dio *dio) | |
344 | { | |
345 | struct bio *bio = dio->bio; | |
346 | unsigned long flags; | |
347 | ||
348 | bio->bi_private = dio; | |
349 | spin_lock_irqsave(&dio->bio_lock, flags); | |
350 | dio->bio_count++; | |
351 | dio->bios_in_flight++; | |
352 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
353 | if (dio->is_async && dio->rw == READ) | |
354 | bio_set_pages_dirty(bio); | |
355 | submit_bio(dio->rw, bio); | |
356 | ||
357 | dio->bio = NULL; | |
358 | dio->boundary = 0; | |
359 | } | |
360 | ||
361 | /* | |
362 | * Release any resources in case of a failure | |
363 | */ | |
364 | static void dio_cleanup(struct dio *dio) | |
365 | { | |
366 | while (dio_pages_present(dio)) | |
367 | page_cache_release(dio_get_page(dio)); | |
368 | } | |
369 | ||
370 | /* | |
371 | * Wait for the next BIO to complete. Remove it and return it. | |
372 | */ | |
373 | static struct bio *dio_await_one(struct dio *dio) | |
374 | { | |
375 | unsigned long flags; | |
376 | struct bio *bio; | |
377 | ||
378 | spin_lock_irqsave(&dio->bio_lock, flags); | |
379 | while (dio->bio_list == NULL) { | |
380 | set_current_state(TASK_UNINTERRUPTIBLE); | |
381 | if (dio->bio_list == NULL) { | |
382 | dio->waiter = current; | |
383 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
384 | blk_run_address_space(dio->inode->i_mapping); | |
385 | io_schedule(); | |
386 | spin_lock_irqsave(&dio->bio_lock, flags); | |
387 | dio->waiter = NULL; | |
388 | } | |
389 | set_current_state(TASK_RUNNING); | |
390 | } | |
391 | bio = dio->bio_list; | |
392 | dio->bio_list = bio->bi_private; | |
393 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
394 | return bio; | |
395 | } | |
396 | ||
397 | /* | |
398 | * Process one completed BIO. No locks are held. | |
399 | */ | |
400 | static int dio_bio_complete(struct dio *dio, struct bio *bio) | |
401 | { | |
402 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | |
403 | struct bio_vec *bvec = bio->bi_io_vec; | |
404 | int page_no; | |
405 | ||
406 | if (!uptodate) | |
407 | dio->result = -EIO; | |
408 | ||
409 | if (dio->is_async && dio->rw == READ) { | |
410 | bio_check_pages_dirty(bio); /* transfers ownership */ | |
411 | } else { | |
412 | for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { | |
413 | struct page *page = bvec[page_no].bv_page; | |
414 | ||
415 | if (dio->rw == READ && !PageCompound(page)) | |
416 | set_page_dirty_lock(page); | |
417 | page_cache_release(page); | |
418 | } | |
419 | bio_put(bio); | |
420 | } | |
421 | finished_one_bio(dio); | |
422 | return uptodate ? 0 : -EIO; | |
423 | } | |
424 | ||
425 | /* | |
426 | * Wait on and process all in-flight BIOs. | |
427 | */ | |
428 | static int dio_await_completion(struct dio *dio) | |
429 | { | |
430 | int ret = 0; | |
431 | ||
432 | if (dio->bio) | |
433 | dio_bio_submit(dio); | |
434 | ||
435 | /* | |
436 | * The bio_lock is not held for the read of bio_count. | |
437 | * This is ok since it is the dio_bio_complete() that changes | |
438 | * bio_count. | |
439 | */ | |
440 | while (dio->bio_count) { | |
441 | struct bio *bio = dio_await_one(dio); | |
442 | int ret2; | |
443 | ||
444 | ret2 = dio_bio_complete(dio, bio); | |
445 | if (ret == 0) | |
446 | ret = ret2; | |
447 | } | |
448 | return ret; | |
449 | } | |
450 | ||
451 | /* | |
452 | * A really large O_DIRECT read or write can generate a lot of BIOs. So | |
453 | * to keep the memory consumption sane we periodically reap any completed BIOs | |
454 | * during the BIO generation phase. | |
455 | * | |
456 | * This also helps to limit the peak amount of pinned userspace memory. | |
457 | */ | |
458 | static int dio_bio_reap(struct dio *dio) | |
459 | { | |
460 | int ret = 0; | |
461 | ||
462 | if (dio->reap_counter++ >= 64) { | |
463 | while (dio->bio_list) { | |
464 | unsigned long flags; | |
465 | struct bio *bio; | |
466 | int ret2; | |
467 | ||
468 | spin_lock_irqsave(&dio->bio_lock, flags); | |
469 | bio = dio->bio_list; | |
470 | dio->bio_list = bio->bi_private; | |
471 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
472 | ret2 = dio_bio_complete(dio, bio); | |
473 | if (ret == 0) | |
474 | ret = ret2; | |
475 | } | |
476 | dio->reap_counter = 0; | |
477 | } | |
478 | return ret; | |
479 | } | |
480 | ||
481 | /* | |
482 | * Call into the fs to map some more disk blocks. We record the current number | |
483 | * of available blocks at dio->blocks_available. These are in units of the | |
484 | * fs blocksize, (1 << inode->i_blkbits). | |
485 | * | |
486 | * The fs is allowed to map lots of blocks at once. If it wants to do that, | |
487 | * it uses the passed inode-relative block number as the file offset, as usual. | |
488 | * | |
489 | * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io | |
490 | * has remaining to do. The fs should not map more than this number of blocks. | |
491 | * | |
492 | * If the fs has mapped a lot of blocks, it should populate bh->b_size to | |
493 | * indicate how much contiguous disk space has been made available at | |
494 | * bh->b_blocknr. | |
495 | * | |
496 | * If *any* of the mapped blocks are new, then the fs must set buffer_new(). | |
497 | * This isn't very efficient... | |
498 | * | |
499 | * In the case of filesystem holes: the fs may return an arbitrarily-large | |
500 | * hole by returning an appropriate value in b_size and by clearing | |
501 | * buffer_mapped(). However the direct-io code will only process holes one | |
502 | * block at a time - it will repeatedly call get_blocks() as it walks the hole. | |
503 | */ | |
504 | static int get_more_blocks(struct dio *dio) | |
505 | { | |
506 | int ret; | |
507 | struct buffer_head *map_bh = &dio->map_bh; | |
508 | sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ | |
509 | unsigned long fs_count; /* Number of filesystem-sized blocks */ | |
510 | unsigned long dio_count;/* Number of dio_block-sized blocks */ | |
511 | unsigned long blkmask; | |
512 | int create; | |
513 | ||
514 | /* | |
515 | * If there was a memory error and we've overwritten all the | |
516 | * mapped blocks then we can now return that memory error | |
517 | */ | |
518 | ret = dio->page_errors; | |
519 | if (ret == 0) { | |
520 | map_bh->b_state = 0; | |
521 | map_bh->b_size = 0; | |
522 | BUG_ON(dio->block_in_file >= dio->final_block_in_request); | |
523 | fs_startblk = dio->block_in_file >> dio->blkfactor; | |
524 | dio_count = dio->final_block_in_request - dio->block_in_file; | |
525 | fs_count = dio_count >> dio->blkfactor; | |
526 | blkmask = (1 << dio->blkfactor) - 1; | |
527 | if (dio_count & blkmask) | |
528 | fs_count++; | |
529 | ||
530 | create = dio->rw == WRITE; | |
531 | if (dio->lock_type == DIO_LOCKING) { | |
532 | if (dio->block_in_file < (i_size_read(dio->inode) >> | |
533 | dio->blkbits)) | |
534 | create = 0; | |
535 | } else if (dio->lock_type == DIO_NO_LOCKING) { | |
536 | create = 0; | |
537 | } | |
538 | /* | |
539 | * For writes inside i_size we forbid block creations: only | |
540 | * overwrites are permitted. We fall back to buffered writes | |
541 | * at a higher level for inside-i_size block-instantiating | |
542 | * writes. | |
543 | */ | |
544 | ret = (*dio->get_blocks)(dio->inode, fs_startblk, fs_count, | |
545 | map_bh, create); | |
546 | } | |
547 | return ret; | |
548 | } | |
549 | ||
550 | /* | |
551 | * There is no bio. Make one now. | |
552 | */ | |
553 | static int dio_new_bio(struct dio *dio, sector_t start_sector) | |
554 | { | |
555 | sector_t sector; | |
556 | int ret, nr_pages; | |
557 | ||
558 | ret = dio_bio_reap(dio); | |
559 | if (ret) | |
560 | goto out; | |
561 | sector = start_sector << (dio->blkbits - 9); | |
562 | nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); | |
563 | BUG_ON(nr_pages <= 0); | |
564 | ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); | |
565 | dio->boundary = 0; | |
566 | out: | |
567 | return ret; | |
568 | } | |
569 | ||
570 | /* | |
571 | * Attempt to put the current chunk of 'cur_page' into the current BIO. If | |
572 | * that was successful then update final_block_in_bio and take a ref against | |
573 | * the just-added page. | |
574 | * | |
575 | * Return zero on success. Non-zero means the caller needs to start a new BIO. | |
576 | */ | |
577 | static int dio_bio_add_page(struct dio *dio) | |
578 | { | |
579 | int ret; | |
580 | ||
581 | ret = bio_add_page(dio->bio, dio->cur_page, | |
582 | dio->cur_page_len, dio->cur_page_offset); | |
583 | if (ret == dio->cur_page_len) { | |
584 | /* | |
585 | * Decrement count only, if we are done with this page | |
586 | */ | |
587 | if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) | |
588 | dio->pages_in_io--; | |
589 | page_cache_get(dio->cur_page); | |
590 | dio->final_block_in_bio = dio->cur_page_block + | |
591 | (dio->cur_page_len >> dio->blkbits); | |
592 | ret = 0; | |
593 | } else { | |
594 | ret = 1; | |
595 | } | |
596 | return ret; | |
597 | } | |
598 | ||
599 | /* | |
600 | * Put cur_page under IO. The section of cur_page which is described by | |
601 | * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page | |
602 | * starts on-disk at cur_page_block. | |
603 | * | |
604 | * We take a ref against the page here (on behalf of its presence in the bio). | |
605 | * | |
606 | * The caller of this function is responsible for removing cur_page from the | |
607 | * dio, and for dropping the refcount which came from that presence. | |
608 | */ | |
609 | static int dio_send_cur_page(struct dio *dio) | |
610 | { | |
611 | int ret = 0; | |
612 | ||
613 | if (dio->bio) { | |
614 | /* | |
615 | * See whether this new request is contiguous with the old | |
616 | */ | |
617 | if (dio->final_block_in_bio != dio->cur_page_block) | |
618 | dio_bio_submit(dio); | |
619 | /* | |
620 | * Submit now if the underlying fs is about to perform a | |
621 | * metadata read | |
622 | */ | |
623 | if (dio->boundary) | |
624 | dio_bio_submit(dio); | |
625 | } | |
626 | ||
627 | if (dio->bio == NULL) { | |
628 | ret = dio_new_bio(dio, dio->cur_page_block); | |
629 | if (ret) | |
630 | goto out; | |
631 | } | |
632 | ||
633 | if (dio_bio_add_page(dio) != 0) { | |
634 | dio_bio_submit(dio); | |
635 | ret = dio_new_bio(dio, dio->cur_page_block); | |
636 | if (ret == 0) { | |
637 | ret = dio_bio_add_page(dio); | |
638 | BUG_ON(ret != 0); | |
639 | } | |
640 | } | |
641 | out: | |
642 | return ret; | |
643 | } | |
644 | ||
645 | /* | |
646 | * An autonomous function to put a chunk of a page under deferred IO. | |
647 | * | |
648 | * The caller doesn't actually know (or care) whether this piece of page is in | |
649 | * a BIO, or is under IO or whatever. We just take care of all possible | |
650 | * situations here. The separation between the logic of do_direct_IO() and | |
651 | * that of submit_page_section() is important for clarity. Please don't break. | |
652 | * | |
653 | * The chunk of page starts on-disk at blocknr. | |
654 | * | |
655 | * We perform deferred IO, by recording the last-submitted page inside our | |
656 | * private part of the dio structure. If possible, we just expand the IO | |
657 | * across that page here. | |
658 | * | |
659 | * If that doesn't work out then we put the old page into the bio and add this | |
660 | * page to the dio instead. | |
661 | */ | |
662 | static int | |
663 | submit_page_section(struct dio *dio, struct page *page, | |
664 | unsigned offset, unsigned len, sector_t blocknr) | |
665 | { | |
666 | int ret = 0; | |
667 | ||
668 | /* | |
669 | * Can we just grow the current page's presence in the dio? | |
670 | */ | |
671 | if ( (dio->cur_page == page) && | |
672 | (dio->cur_page_offset + dio->cur_page_len == offset) && | |
673 | (dio->cur_page_block + | |
674 | (dio->cur_page_len >> dio->blkbits) == blocknr)) { | |
675 | dio->cur_page_len += len; | |
676 | ||
677 | /* | |
678 | * If dio->boundary then we want to schedule the IO now to | |
679 | * avoid metadata seeks. | |
680 | */ | |
681 | if (dio->boundary) { | |
682 | ret = dio_send_cur_page(dio); | |
683 | page_cache_release(dio->cur_page); | |
684 | dio->cur_page = NULL; | |
685 | } | |
686 | goto out; | |
687 | } | |
688 | ||
689 | /* | |
690 | * If there's a deferred page already there then send it. | |
691 | */ | |
692 | if (dio->cur_page) { | |
693 | ret = dio_send_cur_page(dio); | |
694 | page_cache_release(dio->cur_page); | |
695 | dio->cur_page = NULL; | |
696 | if (ret) | |
697 | goto out; | |
698 | } | |
699 | ||
700 | page_cache_get(page); /* It is in dio */ | |
701 | dio->cur_page = page; | |
702 | dio->cur_page_offset = offset; | |
703 | dio->cur_page_len = len; | |
704 | dio->cur_page_block = blocknr; | |
705 | out: | |
706 | return ret; | |
707 | } | |
708 | ||
709 | /* | |
710 | * Clean any dirty buffers in the blockdev mapping which alias newly-created | |
711 | * file blocks. Only called for S_ISREG files - blockdevs do not set | |
712 | * buffer_new | |
713 | */ | |
714 | static void clean_blockdev_aliases(struct dio *dio) | |
715 | { | |
716 | unsigned i; | |
717 | unsigned nblocks; | |
718 | ||
719 | nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; | |
720 | ||
721 | for (i = 0; i < nblocks; i++) { | |
722 | unmap_underlying_metadata(dio->map_bh.b_bdev, | |
723 | dio->map_bh.b_blocknr + i); | |
724 | } | |
725 | } | |
726 | ||
727 | /* | |
728 | * If we are not writing the entire block and get_block() allocated | |
729 | * the block for us, we need to fill-in the unused portion of the | |
730 | * block with zeros. This happens only if user-buffer, fileoffset or | |
731 | * io length is not filesystem block-size multiple. | |
732 | * | |
733 | * `end' is zero if we're doing the start of the IO, 1 at the end of the | |
734 | * IO. | |
735 | */ | |
736 | static void dio_zero_block(struct dio *dio, int end) | |
737 | { | |
738 | unsigned dio_blocks_per_fs_block; | |
739 | unsigned this_chunk_blocks; /* In dio_blocks */ | |
740 | unsigned this_chunk_bytes; | |
741 | struct page *page; | |
742 | ||
743 | dio->start_zero_done = 1; | |
744 | if (!dio->blkfactor || !buffer_new(&dio->map_bh)) | |
745 | return; | |
746 | ||
747 | dio_blocks_per_fs_block = 1 << dio->blkfactor; | |
748 | this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); | |
749 | ||
750 | if (!this_chunk_blocks) | |
751 | return; | |
752 | ||
753 | /* | |
754 | * We need to zero out part of an fs block. It is either at the | |
755 | * beginning or the end of the fs block. | |
756 | */ | |
757 | if (end) | |
758 | this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; | |
759 | ||
760 | this_chunk_bytes = this_chunk_blocks << dio->blkbits; | |
761 | ||
762 | page = ZERO_PAGE(dio->curr_user_address); | |
763 | if (submit_page_section(dio, page, 0, this_chunk_bytes, | |
764 | dio->next_block_for_io)) | |
765 | return; | |
766 | ||
767 | dio->next_block_for_io += this_chunk_blocks; | |
768 | } | |
769 | ||
770 | /* | |
771 | * Walk the user pages, and the file, mapping blocks to disk and generating | |
772 | * a sequence of (page,offset,len,block) mappings. These mappings are injected | |
773 | * into submit_page_section(), which takes care of the next stage of submission | |
774 | * | |
775 | * Direct IO against a blockdev is different from a file. Because we can | |
776 | * happily perform page-sized but 512-byte aligned IOs. It is important that | |
777 | * blockdev IO be able to have fine alignment and large sizes. | |
778 | * | |
779 | * So what we do is to permit the ->get_blocks function to populate bh.b_size | |
780 | * with the size of IO which is permitted at this offset and this i_blkbits. | |
781 | * | |
782 | * For best results, the blockdev should be set up with 512-byte i_blkbits and | |
783 | * it should set b_size to PAGE_SIZE or more inside get_blocks(). This gives | |
784 | * fine alignment but still allows this function to work in PAGE_SIZE units. | |
785 | */ | |
786 | static int do_direct_IO(struct dio *dio) | |
787 | { | |
788 | const unsigned blkbits = dio->blkbits; | |
789 | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; | |
790 | struct page *page; | |
791 | unsigned block_in_page; | |
792 | struct buffer_head *map_bh = &dio->map_bh; | |
793 | int ret = 0; | |
794 | ||
795 | /* The I/O can start at any block offset within the first page */ | |
796 | block_in_page = dio->first_block_in_page; | |
797 | ||
798 | while (dio->block_in_file < dio->final_block_in_request) { | |
799 | page = dio_get_page(dio); | |
800 | if (IS_ERR(page)) { | |
801 | ret = PTR_ERR(page); | |
802 | goto out; | |
803 | } | |
804 | ||
805 | while (block_in_page < blocks_per_page) { | |
806 | unsigned offset_in_page = block_in_page << blkbits; | |
807 | unsigned this_chunk_bytes; /* # of bytes mapped */ | |
808 | unsigned this_chunk_blocks; /* # of blocks */ | |
809 | unsigned u; | |
810 | ||
811 | if (dio->blocks_available == 0) { | |
812 | /* | |
813 | * Need to go and map some more disk | |
814 | */ | |
815 | unsigned long blkmask; | |
816 | unsigned long dio_remainder; | |
817 | ||
818 | ret = get_more_blocks(dio); | |
819 | if (ret) { | |
820 | page_cache_release(page); | |
821 | goto out; | |
822 | } | |
823 | if (!buffer_mapped(map_bh)) | |
824 | goto do_holes; | |
825 | ||
826 | dio->blocks_available = | |
827 | map_bh->b_size >> dio->blkbits; | |
828 | dio->next_block_for_io = | |
829 | map_bh->b_blocknr << dio->blkfactor; | |
830 | if (buffer_new(map_bh)) | |
831 | clean_blockdev_aliases(dio); | |
832 | ||
833 | if (!dio->blkfactor) | |
834 | goto do_holes; | |
835 | ||
836 | blkmask = (1 << dio->blkfactor) - 1; | |
837 | dio_remainder = (dio->block_in_file & blkmask); | |
838 | ||
839 | /* | |
840 | * If we are at the start of IO and that IO | |
841 | * starts partway into a fs-block, | |
842 | * dio_remainder will be non-zero. If the IO | |
843 | * is a read then we can simply advance the IO | |
844 | * cursor to the first block which is to be | |
845 | * read. But if the IO is a write and the | |
846 | * block was newly allocated we cannot do that; | |
847 | * the start of the fs block must be zeroed out | |
848 | * on-disk | |
849 | */ | |
850 | if (!buffer_new(map_bh)) | |
851 | dio->next_block_for_io += dio_remainder; | |
852 | dio->blocks_available -= dio_remainder; | |
853 | } | |
854 | do_holes: | |
855 | /* Handle holes */ | |
856 | if (!buffer_mapped(map_bh)) { | |
857 | char *kaddr; | |
858 | ||
859 | /* AKPM: eargh, -ENOTBLK is a hack */ | |
860 | if (dio->rw == WRITE) { | |
861 | page_cache_release(page); | |
862 | return -ENOTBLK; | |
863 | } | |
864 | ||
865 | if (dio->block_in_file >= | |
866 | i_size_read(dio->inode)>>blkbits) { | |
867 | /* We hit eof */ | |
868 | page_cache_release(page); | |
869 | goto out; | |
870 | } | |
871 | kaddr = kmap_atomic(page, KM_USER0); | |
872 | memset(kaddr + (block_in_page << blkbits), | |
873 | 0, 1 << blkbits); | |
874 | flush_dcache_page(page); | |
875 | kunmap_atomic(kaddr, KM_USER0); | |
876 | dio->block_in_file++; | |
877 | block_in_page++; | |
878 | goto next_block; | |
879 | } | |
880 | ||
881 | /* | |
882 | * If we're performing IO which has an alignment which | |
883 | * is finer than the underlying fs, go check to see if | |
884 | * we must zero out the start of this block. | |
885 | */ | |
886 | if (unlikely(dio->blkfactor && !dio->start_zero_done)) | |
887 | dio_zero_block(dio, 0); | |
888 | ||
889 | /* | |
890 | * Work out, in this_chunk_blocks, how much disk we | |
891 | * can add to this page | |
892 | */ | |
893 | this_chunk_blocks = dio->blocks_available; | |
894 | u = (PAGE_SIZE - offset_in_page) >> blkbits; | |
895 | if (this_chunk_blocks > u) | |
896 | this_chunk_blocks = u; | |
897 | u = dio->final_block_in_request - dio->block_in_file; | |
898 | if (this_chunk_blocks > u) | |
899 | this_chunk_blocks = u; | |
900 | this_chunk_bytes = this_chunk_blocks << blkbits; | |
901 | BUG_ON(this_chunk_bytes == 0); | |
902 | ||
903 | dio->boundary = buffer_boundary(map_bh); | |
904 | ret = submit_page_section(dio, page, offset_in_page, | |
905 | this_chunk_bytes, dio->next_block_for_io); | |
906 | if (ret) { | |
907 | page_cache_release(page); | |
908 | goto out; | |
909 | } | |
910 | dio->next_block_for_io += this_chunk_blocks; | |
911 | ||
912 | dio->block_in_file += this_chunk_blocks; | |
913 | block_in_page += this_chunk_blocks; | |
914 | dio->blocks_available -= this_chunk_blocks; | |
915 | next_block: | |
916 | if (dio->block_in_file > dio->final_block_in_request) | |
917 | BUG(); | |
918 | if (dio->block_in_file == dio->final_block_in_request) | |
919 | break; | |
920 | } | |
921 | ||
922 | /* Drop the ref which was taken in get_user_pages() */ | |
923 | page_cache_release(page); | |
924 | block_in_page = 0; | |
925 | } | |
926 | out: | |
927 | return ret; | |
928 | } | |
929 | ||
930 | /* | |
931 | * Releases both i_sem and i_alloc_sem | |
932 | */ | |
933 | static ssize_t | |
934 | direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, | |
935 | const struct iovec *iov, loff_t offset, unsigned long nr_segs, | |
936 | unsigned blkbits, get_blocks_t get_blocks, dio_iodone_t end_io, | |
937 | struct dio *dio) | |
938 | { | |
939 | unsigned long user_addr; | |
940 | int seg; | |
941 | ssize_t ret = 0; | |
942 | ssize_t ret2; | |
943 | size_t bytes; | |
944 | ||
945 | dio->bio = NULL; | |
946 | dio->inode = inode; | |
947 | dio->rw = rw; | |
948 | dio->blkbits = blkbits; | |
949 | dio->blkfactor = inode->i_blkbits - blkbits; | |
950 | dio->start_zero_done = 0; | |
951 | dio->size = 0; | |
952 | dio->block_in_file = offset >> blkbits; | |
953 | dio->blocks_available = 0; | |
954 | dio->cur_page = NULL; | |
955 | ||
956 | dio->boundary = 0; | |
957 | dio->reap_counter = 0; | |
958 | dio->get_blocks = get_blocks; | |
959 | dio->end_io = end_io; | |
960 | dio->map_bh.b_private = NULL; | |
961 | dio->final_block_in_bio = -1; | |
962 | dio->next_block_for_io = -1; | |
963 | ||
964 | dio->page_errors = 0; | |
965 | dio->result = 0; | |
966 | dio->iocb = iocb; | |
29504ff3 | 967 | dio->i_size = i_size_read(inode); |
1da177e4 LT |
968 | |
969 | /* | |
970 | * BIO completion state. | |
971 | * | |
972 | * ->bio_count starts out at one, and we decrement it to zero after all | |
973 | * BIOs are submitted. This to avoid the situation where a really fast | |
974 | * (or synchronous) device could take the count to zero while we're | |
975 | * still submitting BIOs. | |
976 | */ | |
977 | dio->bio_count = 1; | |
978 | dio->bios_in_flight = 0; | |
979 | spin_lock_init(&dio->bio_lock); | |
980 | dio->bio_list = NULL; | |
981 | dio->waiter = NULL; | |
982 | ||
983 | /* | |
984 | * In case of non-aligned buffers, we may need 2 more | |
985 | * pages since we need to zero out first and last block. | |
986 | */ | |
987 | if (unlikely(dio->blkfactor)) | |
988 | dio->pages_in_io = 2; | |
989 | else | |
990 | dio->pages_in_io = 0; | |
991 | ||
992 | for (seg = 0; seg < nr_segs; seg++) { | |
993 | user_addr = (unsigned long)iov[seg].iov_base; | |
994 | dio->pages_in_io += | |
995 | ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE | |
996 | - user_addr/PAGE_SIZE); | |
997 | } | |
998 | ||
999 | for (seg = 0; seg < nr_segs; seg++) { | |
1000 | user_addr = (unsigned long)iov[seg].iov_base; | |
1001 | dio->size += bytes = iov[seg].iov_len; | |
1002 | ||
1003 | /* Index into the first page of the first block */ | |
1004 | dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; | |
1005 | dio->final_block_in_request = dio->block_in_file + | |
1006 | (bytes >> blkbits); | |
1007 | /* Page fetching state */ | |
1008 | dio->head = 0; | |
1009 | dio->tail = 0; | |
1010 | dio->curr_page = 0; | |
1011 | ||
1012 | dio->total_pages = 0; | |
1013 | if (user_addr & (PAGE_SIZE-1)) { | |
1014 | dio->total_pages++; | |
1015 | bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); | |
1016 | } | |
1017 | dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; | |
1018 | dio->curr_user_address = user_addr; | |
1019 | ||
1020 | ret = do_direct_IO(dio); | |
1021 | ||
1022 | dio->result += iov[seg].iov_len - | |
1023 | ((dio->final_block_in_request - dio->block_in_file) << | |
1024 | blkbits); | |
1025 | ||
1026 | if (ret) { | |
1027 | dio_cleanup(dio); | |
1028 | break; | |
1029 | } | |
1030 | } /* end iovec loop */ | |
1031 | ||
1032 | if (ret == -ENOTBLK && rw == WRITE) { | |
1033 | /* | |
1034 | * The remaining part of the request will be | |
1035 | * be handled by buffered I/O when we return | |
1036 | */ | |
1037 | ret = 0; | |
1038 | } | |
1039 | /* | |
1040 | * There may be some unwritten disk at the end of a part-written | |
1041 | * fs-block-sized block. Go zero that now. | |
1042 | */ | |
1043 | dio_zero_block(dio, 1); | |
1044 | ||
1045 | if (dio->cur_page) { | |
1046 | ret2 = dio_send_cur_page(dio); | |
1047 | if (ret == 0) | |
1048 | ret = ret2; | |
1049 | page_cache_release(dio->cur_page); | |
1050 | dio->cur_page = NULL; | |
1051 | } | |
1052 | if (dio->bio) | |
1053 | dio_bio_submit(dio); | |
1054 | ||
1055 | /* | |
1056 | * It is possible that, we return short IO due to end of file. | |
1057 | * In that case, we need to release all the pages we got hold on. | |
1058 | */ | |
1059 | dio_cleanup(dio); | |
1060 | ||
1061 | /* | |
1062 | * All block lookups have been performed. For READ requests | |
1063 | * we can let i_sem go now that its achieved its purpose | |
1064 | * of protecting us from looking up uninitialized blocks. | |
1065 | */ | |
1066 | if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) | |
1067 | up(&dio->inode->i_sem); | |
1068 | ||
1069 | /* | |
1070 | * OK, all BIOs are submitted, so we can decrement bio_count to truly | |
1071 | * reflect the number of to-be-processed BIOs. | |
1072 | */ | |
1073 | if (dio->is_async) { | |
1074 | int should_wait = 0; | |
1075 | ||
1076 | if (dio->result < dio->size && rw == WRITE) { | |
1077 | dio->waiter = current; | |
1078 | should_wait = 1; | |
1079 | } | |
1080 | if (ret == 0) | |
1081 | ret = dio->result; | |
1082 | finished_one_bio(dio); /* This can free the dio */ | |
1083 | blk_run_address_space(inode->i_mapping); | |
1084 | if (should_wait) { | |
1085 | unsigned long flags; | |
1086 | /* | |
1087 | * Wait for already issued I/O to drain out and | |
1088 | * release its references to user-space pages | |
1089 | * before returning to fallback on buffered I/O | |
1090 | */ | |
1091 | ||
1092 | spin_lock_irqsave(&dio->bio_lock, flags); | |
1093 | set_current_state(TASK_UNINTERRUPTIBLE); | |
1094 | while (dio->bio_count) { | |
1095 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
1096 | io_schedule(); | |
1097 | spin_lock_irqsave(&dio->bio_lock, flags); | |
1098 | set_current_state(TASK_UNINTERRUPTIBLE); | |
1099 | } | |
1100 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
1101 | set_current_state(TASK_RUNNING); | |
1102 | kfree(dio); | |
1103 | } | |
1104 | } else { | |
1105 | ssize_t transferred = 0; | |
1106 | ||
1107 | finished_one_bio(dio); | |
1108 | ret2 = dio_await_completion(dio); | |
1109 | if (ret == 0) | |
1110 | ret = ret2; | |
1111 | if (ret == 0) | |
1112 | ret = dio->page_errors; | |
1113 | if (dio->result) { | |
1114 | loff_t i_size = i_size_read(inode); | |
1115 | ||
1116 | transferred = dio->result; | |
1117 | /* | |
1118 | * Adjust the return value if the read crossed a | |
1119 | * non-block-aligned EOF. | |
1120 | */ | |
1121 | if (rw == READ && (offset + transferred > i_size)) | |
1122 | transferred = i_size - offset; | |
1123 | } | |
1124 | dio_complete(dio, offset, transferred); | |
1125 | if (ret == 0) | |
1126 | ret = transferred; | |
1127 | ||
1128 | /* We could have also come here on an AIO file extend */ | |
1129 | if (!is_sync_kiocb(iocb) && rw == WRITE && | |
1130 | ret >= 0 && dio->result == dio->size) | |
1131 | /* | |
1132 | * For AIO writes where we have completed the | |
1133 | * i/o, we have to mark the the aio complete. | |
1134 | */ | |
1135 | aio_complete(iocb, ret, 0); | |
1136 | kfree(dio); | |
1137 | } | |
1138 | return ret; | |
1139 | } | |
1140 | ||
1141 | /* | |
1142 | * This is a library function for use by filesystem drivers. | |
1143 | * The locking rules are governed by the dio_lock_type parameter. | |
1144 | * | |
1145 | * DIO_NO_LOCKING (no locking, for raw block device access) | |
1146 | * For writes, i_sem is not held on entry; it is never taken. | |
1147 | * | |
1148 | * DIO_LOCKING (simple locking for regular files) | |
1149 | * For writes we are called under i_sem and return with i_sem held, even though | |
1150 | * it is internally dropped. | |
1151 | * For reads, i_sem is not held on entry, but it is taken and dropped before | |
1152 | * returning. | |
1153 | * | |
1154 | * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of | |
1155 | * uninitialised data, allowing parallel direct readers and writers) | |
1156 | * For writes we are called without i_sem, return without it, never touch it. | |
1157 | * For reads, i_sem is held on entry and will be released before returning. | |
1158 | * | |
1159 | * Additional i_alloc_sem locking requirements described inline below. | |
1160 | */ | |
1161 | ssize_t | |
1162 | __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, | |
1163 | struct block_device *bdev, const struct iovec *iov, loff_t offset, | |
1164 | unsigned long nr_segs, get_blocks_t get_blocks, dio_iodone_t end_io, | |
1165 | int dio_lock_type) | |
1166 | { | |
1167 | int seg; | |
1168 | size_t size; | |
1169 | unsigned long addr; | |
1170 | unsigned blkbits = inode->i_blkbits; | |
1171 | unsigned bdev_blkbits = 0; | |
1172 | unsigned blocksize_mask = (1 << blkbits) - 1; | |
1173 | ssize_t retval = -EINVAL; | |
1174 | loff_t end = offset; | |
1175 | struct dio *dio; | |
1176 | int reader_with_isem = (rw == READ && dio_lock_type == DIO_OWN_LOCKING); | |
1177 | ||
1178 | if (rw & WRITE) | |
1179 | current->flags |= PF_SYNCWRITE; | |
1180 | ||
1181 | if (bdev) | |
1182 | bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); | |
1183 | ||
1184 | if (offset & blocksize_mask) { | |
1185 | if (bdev) | |
1186 | blkbits = bdev_blkbits; | |
1187 | blocksize_mask = (1 << blkbits) - 1; | |
1188 | if (offset & blocksize_mask) | |
1189 | goto out; | |
1190 | } | |
1191 | ||
1192 | /* Check the memory alignment. Blocks cannot straddle pages */ | |
1193 | for (seg = 0; seg < nr_segs; seg++) { | |
1194 | addr = (unsigned long)iov[seg].iov_base; | |
1195 | size = iov[seg].iov_len; | |
1196 | end += size; | |
1197 | if ((addr & blocksize_mask) || (size & blocksize_mask)) { | |
1198 | if (bdev) | |
1199 | blkbits = bdev_blkbits; | |
1200 | blocksize_mask = (1 << blkbits) - 1; | |
1201 | if ((addr & blocksize_mask) || (size & blocksize_mask)) | |
1202 | goto out; | |
1203 | } | |
1204 | } | |
1205 | ||
1206 | dio = kmalloc(sizeof(*dio), GFP_KERNEL); | |
1207 | retval = -ENOMEM; | |
1208 | if (!dio) | |
1209 | goto out; | |
1210 | ||
1211 | /* | |
1212 | * For block device access DIO_NO_LOCKING is used, | |
1213 | * neither readers nor writers do any locking at all | |
1214 | * For regular files using DIO_LOCKING, | |
1215 | * readers need to grab i_sem and i_alloc_sem | |
1216 | * writers need to grab i_alloc_sem only (i_sem is already held) | |
1217 | * For regular files using DIO_OWN_LOCKING, | |
1218 | * neither readers nor writers take any locks here | |
1219 | * (i_sem is already held and release for writers here) | |
1220 | */ | |
1221 | dio->lock_type = dio_lock_type; | |
1222 | if (dio_lock_type != DIO_NO_LOCKING) { | |
1223 | /* watch out for a 0 len io from a tricksy fs */ | |
1224 | if (rw == READ && end > offset) { | |
1225 | struct address_space *mapping; | |
1226 | ||
1227 | mapping = iocb->ki_filp->f_mapping; | |
1228 | if (dio_lock_type != DIO_OWN_LOCKING) { | |
1229 | down(&inode->i_sem); | |
1230 | reader_with_isem = 1; | |
1231 | } | |
1232 | ||
1233 | retval = filemap_write_and_wait_range(mapping, offset, | |
1234 | end - 1); | |
1235 | if (retval) { | |
1236 | kfree(dio); | |
1237 | goto out; | |
1238 | } | |
1239 | ||
1240 | if (dio_lock_type == DIO_OWN_LOCKING) { | |
1241 | up(&inode->i_sem); | |
1242 | reader_with_isem = 0; | |
1243 | } | |
1244 | } | |
1245 | ||
1246 | if (dio_lock_type == DIO_LOCKING) | |
1247 | down_read(&inode->i_alloc_sem); | |
1248 | } | |
1249 | ||
1250 | /* | |
1251 | * For file extending writes updating i_size before data | |
1252 | * writeouts complete can expose uninitialized blocks. So | |
1253 | * even for AIO, we need to wait for i/o to complete before | |
1254 | * returning in this case. | |
1255 | */ | |
1256 | dio->is_async = !is_sync_kiocb(iocb) && !((rw == WRITE) && | |
1257 | (end > i_size_read(inode))); | |
1258 | ||
1259 | retval = direct_io_worker(rw, iocb, inode, iov, offset, | |
1260 | nr_segs, blkbits, get_blocks, end_io, dio); | |
1261 | ||
1262 | if (rw == READ && dio_lock_type == DIO_LOCKING) | |
1263 | reader_with_isem = 0; | |
1264 | ||
1265 | out: | |
1266 | if (reader_with_isem) | |
1267 | up(&inode->i_sem); | |
1268 | if (rw & WRITE) | |
1269 | current->flags &= ~PF_SYNCWRITE; | |
1270 | return retval; | |
1271 | } | |
1272 | EXPORT_SYMBOL(__blockdev_direct_IO); |