]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* drivers/net/eepro100.c: An Intel i82557-559 Ethernet driver for Linux. */ |
2 | /* | |
3 | Written 1996-1999 by Donald Becker. | |
4 | ||
5 | The driver also contains updates by different kernel developers | |
6 | (see incomplete list below). | |
7 | Current maintainer is Andrey V. Savochkin <[email protected]>. | |
8 | Please use this email address and linux-kernel mailing list for bug reports. | |
9 | ||
10 | This software may be used and distributed according to the terms | |
11 | of the GNU General Public License, incorporated herein by reference. | |
12 | ||
13 | This driver is for the Intel EtherExpress Pro100 (Speedo3) design. | |
14 | It should work with all i82557/558/559 boards. | |
15 | ||
16 | Version history: | |
17 | 1998 Apr - 2000 Feb Andrey V. Savochkin <[email protected]> | |
18 | Serious fixes for multicast filter list setting, TX timeout routine; | |
19 | RX ring refilling logic; other stuff | |
20 | 2000 Feb Jeff Garzik <[email protected]> | |
21 | Convert to new PCI driver interface | |
22 | 2000 Mar 24 Dragan Stancevic <[email protected]> | |
23 | Disabled FC and ER, to avoid lockups when when we get FCP interrupts. | |
24 | 2000 Jul 17 Goutham Rao <[email protected]> | |
25 | PCI DMA API fixes, adding pci_dma_sync_single calls where neccesary | |
26 | 2000 Aug 31 David Mosberger <[email protected]> | |
27 | rx_align support: enables rx DMA without causing unaligned accesses. | |
28 | */ | |
29 | ||
f71e1309 | 30 | static const char * const version = |
1da177e4 LT |
31 | "eepro100.c:v1.09j-t 9/29/99 Donald Becker http://www.scyld.com/network/eepro100.html\n" |
32 | "eepro100.c: $Revision: 1.36 $ 2000/11/17 Modified by Andrey V. Savochkin <[email protected]> and others\n"; | |
33 | ||
34 | /* A few user-configurable values that apply to all boards. | |
35 | First set is undocumented and spelled per Intel recommendations. */ | |
36 | ||
37 | static int congenb /* = 0 */; /* Enable congestion control in the DP83840. */ | |
38 | static int txfifo = 8; /* Tx FIFO threshold in 4 byte units, 0-15 */ | |
39 | static int rxfifo = 8; /* Rx FIFO threshold, default 32 bytes. */ | |
40 | /* Tx/Rx DMA burst length, 0-127, 0 == no preemption, tx==128 -> disabled. */ | |
41 | static int txdmacount = 128; | |
42 | static int rxdmacount /* = 0 */; | |
43 | ||
44 | #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) || defined(__mips__) || \ | |
45 | defined(__arm__) | |
46 | /* align rx buffers to 2 bytes so that IP header is aligned */ | |
47 | # define rx_align(skb) skb_reserve((skb), 2) | |
48 | # define RxFD_ALIGNMENT __attribute__ ((aligned (2), packed)) | |
49 | #else | |
50 | # define rx_align(skb) | |
51 | # define RxFD_ALIGNMENT | |
52 | #endif | |
53 | ||
54 | /* Set the copy breakpoint for the copy-only-tiny-buffer Rx method. | |
55 | Lower values use more memory, but are faster. */ | |
56 | static int rx_copybreak = 200; | |
57 | ||
58 | /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ | |
59 | static int max_interrupt_work = 20; | |
60 | ||
61 | /* Maximum number of multicast addresses to filter (vs. rx-all-multicast) */ | |
62 | static int multicast_filter_limit = 64; | |
63 | ||
64 | /* 'options' is used to pass a transceiver override or full-duplex flag | |
65 | e.g. "options=16" for FD, "options=32" for 100mbps-only. */ | |
66 | static int full_duplex[] = {-1, -1, -1, -1, -1, -1, -1, -1}; | |
67 | static int options[] = {-1, -1, -1, -1, -1, -1, -1, -1}; | |
68 | ||
69 | /* A few values that may be tweaked. */ | |
70 | /* The ring sizes should be a power of two for efficiency. */ | |
71 | #define TX_RING_SIZE 64 | |
72 | #define RX_RING_SIZE 64 | |
73 | /* How much slots multicast filter setup may take. | |
74 | Do not descrease without changing set_rx_mode() implementaion. */ | |
75 | #define TX_MULTICAST_SIZE 2 | |
76 | #define TX_MULTICAST_RESERV (TX_MULTICAST_SIZE*2) | |
77 | /* Actual number of TX packets queued, must be | |
78 | <= TX_RING_SIZE-TX_MULTICAST_RESERV. */ | |
79 | #define TX_QUEUE_LIMIT (TX_RING_SIZE-TX_MULTICAST_RESERV) | |
80 | /* Hysteresis marking queue as no longer full. */ | |
81 | #define TX_QUEUE_UNFULL (TX_QUEUE_LIMIT-4) | |
82 | ||
83 | /* Operational parameters that usually are not changed. */ | |
84 | ||
85 | /* Time in jiffies before concluding the transmitter is hung. */ | |
86 | #define TX_TIMEOUT (2*HZ) | |
87 | /* Size of an pre-allocated Rx buffer: <Ethernet MTU> + slack.*/ | |
88 | #define PKT_BUF_SZ 1536 | |
89 | ||
1da177e4 LT |
90 | #include <linux/module.h> |
91 | ||
92 | #include <linux/kernel.h> | |
93 | #include <linux/string.h> | |
94 | #include <linux/errno.h> | |
95 | #include <linux/ioport.h> | |
96 | #include <linux/slab.h> | |
97 | #include <linux/interrupt.h> | |
98 | #include <linux/timer.h> | |
99 | #include <linux/pci.h> | |
100 | #include <linux/spinlock.h> | |
101 | #include <linux/init.h> | |
102 | #include <linux/mii.h> | |
103 | #include <linux/delay.h> | |
104 | #include <linux/bitops.h> | |
105 | ||
106 | #include <asm/io.h> | |
107 | #include <asm/uaccess.h> | |
108 | #include <asm/irq.h> | |
109 | ||
110 | #include <linux/netdevice.h> | |
111 | #include <linux/etherdevice.h> | |
112 | #include <linux/rtnetlink.h> | |
113 | #include <linux/skbuff.h> | |
114 | #include <linux/ethtool.h> | |
115 | ||
116 | static int use_io; | |
117 | static int debug = -1; | |
118 | #define DEBUG_DEFAULT (NETIF_MSG_DRV | \ | |
119 | NETIF_MSG_HW | \ | |
120 | NETIF_MSG_RX_ERR | \ | |
121 | NETIF_MSG_TX_ERR) | |
122 | #define DEBUG ((debug >= 0) ? (1<<debug)-1 : DEBUG_DEFAULT) | |
123 | ||
124 | ||
125 | MODULE_AUTHOR("Maintainer: Andrey V. Savochkin <[email protected]>"); | |
126 | MODULE_DESCRIPTION("Intel i82557/i82558/i82559 PCI EtherExpressPro driver"); | |
127 | MODULE_LICENSE("GPL"); | |
128 | module_param(use_io, int, 0); | |
129 | module_param(debug, int, 0); | |
130 | module_param_array(options, int, NULL, 0); | |
131 | module_param_array(full_duplex, int, NULL, 0); | |
132 | module_param(congenb, int, 0); | |
133 | module_param(txfifo, int, 0); | |
134 | module_param(rxfifo, int, 0); | |
135 | module_param(txdmacount, int, 0); | |
136 | module_param(rxdmacount, int, 0); | |
137 | module_param(rx_copybreak, int, 0); | |
138 | module_param(max_interrupt_work, int, 0); | |
139 | module_param(multicast_filter_limit, int, 0); | |
140 | MODULE_PARM_DESC(debug, "debug level (0-6)"); | |
141 | MODULE_PARM_DESC(options, "Bits 0-3: transceiver type, bit 4: full duplex, bit 5: 100Mbps"); | |
142 | MODULE_PARM_DESC(full_duplex, "full duplex setting(s) (1)"); | |
143 | MODULE_PARM_DESC(congenb, "Enable congestion control (1)"); | |
144 | MODULE_PARM_DESC(txfifo, "Tx FIFO threshold in 4 byte units, (0-15)"); | |
145 | MODULE_PARM_DESC(rxfifo, "Rx FIFO threshold in 4 byte units, (0-15)"); | |
146 | MODULE_PARM_DESC(txdmacount, "Tx DMA burst length; 128 - disable (0-128)"); | |
147 | MODULE_PARM_DESC(rxdmacount, "Rx DMA burst length; 128 - disable (0-128)"); | |
148 | MODULE_PARM_DESC(rx_copybreak, "copy breakpoint for copy-only-tiny-frames"); | |
149 | MODULE_PARM_DESC(max_interrupt_work, "maximum events handled per interrupt"); | |
150 | MODULE_PARM_DESC(multicast_filter_limit, "maximum number of filtered multicast addresses"); | |
151 | ||
152 | #define RUN_AT(x) (jiffies + (x)) | |
153 | ||
154 | #define netdevice_start(dev) | |
155 | #define netdevice_stop(dev) | |
156 | #define netif_set_tx_timeout(dev, tf, tm) \ | |
157 | do { \ | |
158 | (dev)->tx_timeout = (tf); \ | |
159 | (dev)->watchdog_timeo = (tm); \ | |
160 | } while(0) | |
161 | ||
162 | ||
163 | ||
164 | /* | |
165 | Theory of Operation | |
166 | ||
167 | I. Board Compatibility | |
168 | ||
169 | This device driver is designed for the Intel i82557 "Speedo3" chip, Intel's | |
170 | single-chip fast Ethernet controller for PCI, as used on the Intel | |
171 | EtherExpress Pro 100 adapter. | |
172 | ||
173 | II. Board-specific settings | |
174 | ||
175 | PCI bus devices are configured by the system at boot time, so no jumpers | |
176 | need to be set on the board. The system BIOS should be set to assign the | |
177 | PCI INTA signal to an otherwise unused system IRQ line. While it's | |
178 | possible to share PCI interrupt lines, it negatively impacts performance and | |
179 | only recent kernels support it. | |
180 | ||
181 | III. Driver operation | |
182 | ||
183 | IIIA. General | |
184 | The Speedo3 is very similar to other Intel network chips, that is to say | |
185 | "apparently designed on a different planet". This chips retains the complex | |
186 | Rx and Tx descriptors and multiple buffers pointers as previous chips, but | |
187 | also has simplified Tx and Rx buffer modes. This driver uses the "flexible" | |
188 | Tx mode, but in a simplified lower-overhead manner: it associates only a | |
189 | single buffer descriptor with each frame descriptor. | |
190 | ||
191 | Despite the extra space overhead in each receive skbuff, the driver must use | |
192 | the simplified Rx buffer mode to assure that only a single data buffer is | |
193 | associated with each RxFD. The driver implements this by reserving space | |
194 | for the Rx descriptor at the head of each Rx skbuff. | |
195 | ||
196 | The Speedo-3 has receive and command unit base addresses that are added to | |
197 | almost all descriptor pointers. The driver sets these to zero, so that all | |
198 | pointer fields are absolute addresses. | |
199 | ||
200 | The System Control Block (SCB) of some previous Intel chips exists on the | |
201 | chip in both PCI I/O and memory space. This driver uses the I/O space | |
202 | registers, but might switch to memory mapped mode to better support non-x86 | |
203 | processors. | |
204 | ||
205 | IIIB. Transmit structure | |
206 | ||
207 | The driver must use the complex Tx command+descriptor mode in order to | |
208 | have a indirect pointer to the skbuff data section. Each Tx command block | |
209 | (TxCB) is associated with two immediately appended Tx Buffer Descriptor | |
210 | (TxBD). A fixed ring of these TxCB+TxBD pairs are kept as part of the | |
211 | speedo_private data structure for each adapter instance. | |
212 | ||
213 | The newer i82558 explicitly supports this structure, and can read the two | |
214 | TxBDs in the same PCI burst as the TxCB. | |
215 | ||
216 | This ring structure is used for all normal transmit packets, but the | |
217 | transmit packet descriptors aren't long enough for most non-Tx commands such | |
218 | as CmdConfigure. This is complicated by the possibility that the chip has | |
219 | already loaded the link address in the previous descriptor. So for these | |
220 | commands we convert the next free descriptor on the ring to a NoOp, and point | |
221 | that descriptor's link to the complex command. | |
222 | ||
223 | An additional complexity of these non-transmit commands are that they may be | |
224 | added asynchronous to the normal transmit queue, so we disable interrupts | |
225 | whenever the Tx descriptor ring is manipulated. | |
226 | ||
227 | A notable aspect of these special configure commands is that they do | |
228 | work with the normal Tx ring entry scavenge method. The Tx ring scavenge | |
229 | is done at interrupt time using the 'dirty_tx' index, and checking for the | |
230 | command-complete bit. While the setup frames may have the NoOp command on the | |
231 | Tx ring marked as complete, but not have completed the setup command, this | |
232 | is not a problem. The tx_ring entry can be still safely reused, as the | |
233 | tx_skbuff[] entry is always empty for config_cmd and mc_setup frames. | |
234 | ||
235 | Commands may have bits set e.g. CmdSuspend in the command word to either | |
236 | suspend or stop the transmit/command unit. This driver always flags the last | |
237 | command with CmdSuspend, erases the CmdSuspend in the previous command, and | |
238 | then issues a CU_RESUME. | |
239 | Note: Watch out for the potential race condition here: imagine | |
240 | erasing the previous suspend | |
241 | the chip processes the previous command | |
242 | the chip processes the final command, and suspends | |
243 | doing the CU_RESUME | |
244 | the chip processes the next-yet-valid post-final-command. | |
245 | So blindly sending a CU_RESUME is only safe if we do it immediately after | |
246 | after erasing the previous CmdSuspend, without the possibility of an | |
247 | intervening delay. Thus the resume command is always within the | |
248 | interrupts-disabled region. This is a timing dependence, but handling this | |
249 | condition in a timing-independent way would considerably complicate the code. | |
250 | ||
251 | Note: In previous generation Intel chips, restarting the command unit was a | |
252 | notoriously slow process. This is presumably no longer true. | |
253 | ||
254 | IIIC. Receive structure | |
255 | ||
256 | Because of the bus-master support on the Speedo3 this driver uses the new | |
257 | SKBUFF_RX_COPYBREAK scheme, rather than a fixed intermediate receive buffer. | |
258 | This scheme allocates full-sized skbuffs as receive buffers. The value | |
259 | SKBUFF_RX_COPYBREAK is used as the copying breakpoint: it is chosen to | |
260 | trade-off the memory wasted by passing the full-sized skbuff to the queue | |
261 | layer for all frames vs. the copying cost of copying a frame to a | |
262 | correctly-sized skbuff. | |
263 | ||
264 | For small frames the copying cost is negligible (esp. considering that we | |
265 | are pre-loading the cache with immediately useful header information), so we | |
266 | allocate a new, minimally-sized skbuff. For large frames the copying cost | |
267 | is non-trivial, and the larger copy might flush the cache of useful data, so | |
268 | we pass up the skbuff the packet was received into. | |
269 | ||
270 | IV. Notes | |
271 | ||
272 | Thanks to Steve Williams of Intel for arranging the non-disclosure agreement | |
273 | that stated that I could disclose the information. But I still resent | |
274 | having to sign an Intel NDA when I'm helping Intel sell their own product! | |
275 | ||
276 | */ | |
277 | ||
278 | static int speedo_found1(struct pci_dev *pdev, void __iomem *ioaddr, int fnd_cnt, int acpi_idle_state); | |
279 | ||
1da177e4 LT |
280 | /* Offsets to the various registers. |
281 | All accesses need not be longword aligned. */ | |
282 | enum speedo_offsets { | |
283 | SCBStatus = 0, SCBCmd = 2, /* Rx/Command Unit command and status. */ | |
284 | SCBIntmask = 3, | |
285 | SCBPointer = 4, /* General purpose pointer. */ | |
286 | SCBPort = 8, /* Misc. commands and operands. */ | |
287 | SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */ | |
288 | SCBCtrlMDI = 16, /* MDI interface control. */ | |
289 | SCBEarlyRx = 20, /* Early receive byte count. */ | |
290 | }; | |
291 | /* Commands that can be put in a command list entry. */ | |
292 | enum commands { | |
293 | CmdNOp = 0, CmdIASetup = 0x10000, CmdConfigure = 0x20000, | |
294 | CmdMulticastList = 0x30000, CmdTx = 0x40000, CmdTDR = 0x50000, | |
295 | CmdDump = 0x60000, CmdDiagnose = 0x70000, | |
296 | CmdSuspend = 0x40000000, /* Suspend after completion. */ | |
297 | CmdIntr = 0x20000000, /* Interrupt after completion. */ | |
298 | CmdTxFlex = 0x00080000, /* Use "Flexible mode" for CmdTx command. */ | |
299 | }; | |
300 | /* Clear CmdSuspend (1<<30) avoiding interference with the card access to the | |
301 | status bits. Previous driver versions used separate 16 bit fields for | |
302 | commands and statuses. --SAW | |
303 | */ | |
304 | #if defined(__alpha__) | |
305 | # define clear_suspend(cmd) clear_bit(30, &(cmd)->cmd_status); | |
306 | #else | |
307 | # if defined(__LITTLE_ENDIAN) | |
308 | # define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x4000 | |
309 | # elif defined(__BIG_ENDIAN) | |
310 | # define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x0040 | |
311 | # else | |
312 | # error Unsupported byteorder | |
313 | # endif | |
314 | #endif | |
315 | ||
316 | enum SCBCmdBits { | |
317 | SCBMaskCmdDone=0x8000, SCBMaskRxDone=0x4000, SCBMaskCmdIdle=0x2000, | |
318 | SCBMaskRxSuspend=0x1000, SCBMaskEarlyRx=0x0800, SCBMaskFlowCtl=0x0400, | |
319 | SCBTriggerIntr=0x0200, SCBMaskAll=0x0100, | |
320 | /* The rest are Rx and Tx commands. */ | |
321 | CUStart=0x0010, CUResume=0x0020, CUStatsAddr=0x0040, CUShowStats=0x0050, | |
322 | CUCmdBase=0x0060, /* CU Base address (set to zero) . */ | |
323 | CUDumpStats=0x0070, /* Dump then reset stats counters. */ | |
324 | RxStart=0x0001, RxResume=0x0002, RxAbort=0x0004, RxAddrLoad=0x0006, | |
325 | RxResumeNoResources=0x0007, | |
326 | }; | |
327 | ||
328 | enum SCBPort_cmds { | |
329 | PortReset=0, PortSelfTest=1, PortPartialReset=2, PortDump=3, | |
330 | }; | |
331 | ||
332 | /* The Speedo3 Rx and Tx frame/buffer descriptors. */ | |
333 | struct descriptor { /* A generic descriptor. */ | |
334 | volatile s32 cmd_status; /* All command and status fields. */ | |
335 | u32 link; /* struct descriptor * */ | |
336 | unsigned char params[0]; | |
337 | }; | |
338 | ||
339 | /* The Speedo3 Rx and Tx buffer descriptors. */ | |
340 | struct RxFD { /* Receive frame descriptor. */ | |
341 | volatile s32 status; | |
342 | u32 link; /* struct RxFD * */ | |
343 | u32 rx_buf_addr; /* void * */ | |
344 | u32 count; | |
345 | } RxFD_ALIGNMENT; | |
346 | ||
347 | /* Selected elements of the Tx/RxFD.status word. */ | |
348 | enum RxFD_bits { | |
349 | RxComplete=0x8000, RxOK=0x2000, | |
350 | RxErrCRC=0x0800, RxErrAlign=0x0400, RxErrTooBig=0x0200, RxErrSymbol=0x0010, | |
351 | RxEth2Type=0x0020, RxNoMatch=0x0004, RxNoIAMatch=0x0002, | |
352 | TxUnderrun=0x1000, StatusComplete=0x8000, | |
353 | }; | |
354 | ||
355 | #define CONFIG_DATA_SIZE 22 | |
356 | struct TxFD { /* Transmit frame descriptor set. */ | |
357 | s32 status; | |
358 | u32 link; /* void * */ | |
359 | u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */ | |
360 | s32 count; /* # of TBD (=1), Tx start thresh., etc. */ | |
361 | /* This constitutes two "TBD" entries -- we only use one. */ | |
362 | #define TX_DESCR_BUF_OFFSET 16 | |
363 | u32 tx_buf_addr0; /* void *, frame to be transmitted. */ | |
364 | s32 tx_buf_size0; /* Length of Tx frame. */ | |
365 | u32 tx_buf_addr1; /* void *, frame to be transmitted. */ | |
366 | s32 tx_buf_size1; /* Length of Tx frame. */ | |
367 | /* the structure must have space for at least CONFIG_DATA_SIZE starting | |
368 | * from tx_desc_addr field */ | |
369 | }; | |
370 | ||
371 | /* Multicast filter setting block. --SAW */ | |
372 | struct speedo_mc_block { | |
373 | struct speedo_mc_block *next; | |
374 | unsigned int tx; | |
375 | dma_addr_t frame_dma; | |
376 | unsigned int len; | |
377 | struct descriptor frame __attribute__ ((__aligned__(16))); | |
378 | }; | |
379 | ||
380 | /* Elements of the dump_statistics block. This block must be lword aligned. */ | |
381 | struct speedo_stats { | |
382 | u32 tx_good_frames; | |
383 | u32 tx_coll16_errs; | |
384 | u32 tx_late_colls; | |
385 | u32 tx_underruns; | |
386 | u32 tx_lost_carrier; | |
387 | u32 tx_deferred; | |
388 | u32 tx_one_colls; | |
389 | u32 tx_multi_colls; | |
390 | u32 tx_total_colls; | |
391 | u32 rx_good_frames; | |
392 | u32 rx_crc_errs; | |
393 | u32 rx_align_errs; | |
394 | u32 rx_resource_errs; | |
395 | u32 rx_overrun_errs; | |
396 | u32 rx_colls_errs; | |
397 | u32 rx_runt_errs; | |
398 | u32 done_marker; | |
399 | }; | |
400 | ||
401 | enum Rx_ring_state_bits { | |
402 | RrNoMem=1, RrPostponed=2, RrNoResources=4, RrOOMReported=8, | |
403 | }; | |
404 | ||
405 | /* Do not change the position (alignment) of the first few elements! | |
406 | The later elements are grouped for cache locality. | |
407 | ||
408 | Unfortunately, all the positions have been shifted since there. | |
409 | A new re-alignment is required. 2000/03/06 SAW */ | |
410 | struct speedo_private { | |
411 | void __iomem *regs; | |
412 | struct TxFD *tx_ring; /* Commands (usually CmdTxPacket). */ | |
413 | struct RxFD *rx_ringp[RX_RING_SIZE]; /* Rx descriptor, used as ring. */ | |
414 | /* The addresses of a Tx/Rx-in-place packets/buffers. */ | |
415 | struct sk_buff *tx_skbuff[TX_RING_SIZE]; | |
416 | struct sk_buff *rx_skbuff[RX_RING_SIZE]; | |
417 | /* Mapped addresses of the rings. */ | |
418 | dma_addr_t tx_ring_dma; | |
419 | #define TX_RING_ELEM_DMA(sp, n) ((sp)->tx_ring_dma + (n)*sizeof(struct TxFD)) | |
420 | dma_addr_t rx_ring_dma[RX_RING_SIZE]; | |
421 | struct descriptor *last_cmd; /* Last command sent. */ | |
422 | unsigned int cur_tx, dirty_tx; /* The ring entries to be free()ed. */ | |
423 | spinlock_t lock; /* Group with Tx control cache line. */ | |
424 | u32 tx_threshold; /* The value for txdesc.count. */ | |
425 | struct RxFD *last_rxf; /* Last filled RX buffer. */ | |
426 | dma_addr_t last_rxf_dma; | |
427 | unsigned int cur_rx, dirty_rx; /* The next free ring entry */ | |
428 | long last_rx_time; /* Last Rx, in jiffies, to handle Rx hang. */ | |
429 | struct net_device_stats stats; | |
430 | struct speedo_stats *lstats; | |
431 | dma_addr_t lstats_dma; | |
432 | int chip_id; | |
433 | struct pci_dev *pdev; | |
434 | struct timer_list timer; /* Media selection timer. */ | |
435 | struct speedo_mc_block *mc_setup_head; /* Multicast setup frame list head. */ | |
436 | struct speedo_mc_block *mc_setup_tail; /* Multicast setup frame list tail. */ | |
437 | long in_interrupt; /* Word-aligned dev->interrupt */ | |
438 | unsigned char acpi_pwr; | |
439 | signed char rx_mode; /* Current PROMISC/ALLMULTI setting. */ | |
440 | unsigned int tx_full:1; /* The Tx queue is full. */ | |
441 | unsigned int flow_ctrl:1; /* Use 802.3x flow control. */ | |
442 | unsigned int rx_bug:1; /* Work around receiver hang errata. */ | |
443 | unsigned char default_port:8; /* Last dev->if_port value. */ | |
444 | unsigned char rx_ring_state; /* RX ring status flags. */ | |
445 | unsigned short phy[2]; /* PHY media interfaces available. */ | |
446 | unsigned short partner; /* Link partner caps. */ | |
447 | struct mii_if_info mii_if; /* MII API hooks, info */ | |
448 | u32 msg_enable; /* debug message level */ | |
449 | }; | |
450 | ||
451 | /* The parameters for a CmdConfigure operation. | |
452 | There are so many options that it would be difficult to document each bit. | |
453 | We mostly use the default or recommended settings. */ | |
454 | static const char i82557_config_cmd[CONFIG_DATA_SIZE] = { | |
455 | 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */ | |
456 | 0, 0x2E, 0, 0x60, 0, | |
457 | 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */ | |
458 | 0x3f, 0x05, }; | |
459 | static const char i82558_config_cmd[CONFIG_DATA_SIZE] = { | |
460 | 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */ | |
461 | 0, 0x2E, 0, 0x60, 0x08, 0x88, | |
462 | 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */ | |
463 | 0x31, 0x05, }; | |
464 | ||
465 | /* PHY media interface chips. */ | |
f71e1309 | 466 | static const char * const phys[] = { |
1da177e4 LT |
467 | "None", "i82553-A/B", "i82553-C", "i82503", |
468 | "DP83840", "80c240", "80c24", "i82555", | |
469 | "unknown-8", "unknown-9", "DP83840A", "unknown-11", | |
470 | "unknown-12", "unknown-13", "unknown-14", "unknown-15", }; | |
471 | enum phy_chips { NonSuchPhy=0, I82553AB, I82553C, I82503, DP83840, S80C240, | |
472 | S80C24, I82555, DP83840A=10, }; | |
473 | static const char is_mii[] = { 0, 1, 1, 0, 1, 1, 0, 1 }; | |
474 | #define EE_READ_CMD (6) | |
475 | ||
476 | static int eepro100_init_one(struct pci_dev *pdev, | |
477 | const struct pci_device_id *ent); | |
478 | ||
479 | static int do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len); | |
480 | static int mdio_read(struct net_device *dev, int phy_id, int location); | |
481 | static void mdio_write(struct net_device *dev, int phy_id, int location, int value); | |
482 | static int speedo_open(struct net_device *dev); | |
483 | static void speedo_resume(struct net_device *dev); | |
484 | static void speedo_timer(unsigned long data); | |
485 | static void speedo_init_rx_ring(struct net_device *dev); | |
486 | static void speedo_tx_timeout(struct net_device *dev); | |
487 | static int speedo_start_xmit(struct sk_buff *skb, struct net_device *dev); | |
488 | static void speedo_refill_rx_buffers(struct net_device *dev, int force); | |
489 | static int speedo_rx(struct net_device *dev); | |
490 | static void speedo_tx_buffer_gc(struct net_device *dev); | |
491 | static irqreturn_t speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs); | |
492 | static int speedo_close(struct net_device *dev); | |
493 | static struct net_device_stats *speedo_get_stats(struct net_device *dev); | |
494 | static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); | |
495 | static void set_rx_mode(struct net_device *dev); | |
496 | static void speedo_show_state(struct net_device *dev); | |
497 | static struct ethtool_ops ethtool_ops; | |
498 | ||
6aa20a22 | 499 | |
1da177e4 LT |
500 | |
501 | #ifdef honor_default_port | |
502 | /* Optional driver feature to allow forcing the transceiver setting. | |
503 | Not recommended. */ | |
504 | static int mii_ctrl[8] = { 0x3300, 0x3100, 0x0000, 0x0100, | |
505 | 0x2000, 0x2100, 0x0400, 0x3100}; | |
506 | #endif | |
507 | ||
508 | /* How to wait for the command unit to accept a command. | |
509 | Typically this takes 0 ticks. */ | |
510 | static inline unsigned char wait_for_cmd_done(struct net_device *dev, | |
511 | struct speedo_private *sp) | |
512 | { | |
513 | int wait = 1000; | |
514 | void __iomem *cmd_ioaddr = sp->regs + SCBCmd; | |
515 | unsigned char r; | |
516 | ||
517 | do { | |
518 | udelay(1); | |
519 | r = ioread8(cmd_ioaddr); | |
520 | } while(r && --wait >= 0); | |
521 | ||
522 | if (wait < 0) | |
523 | printk(KERN_ALERT "%s: wait_for_cmd_done timeout!\n", dev->name); | |
524 | return r; | |
525 | } | |
526 | ||
527 | static int __devinit eepro100_init_one (struct pci_dev *pdev, | |
528 | const struct pci_device_id *ent) | |
529 | { | |
530 | void __iomem *ioaddr; | |
531 | int irq, pci_bar; | |
532 | int acpi_idle_state = 0, pm; | |
533 | static int cards_found /* = 0 */; | |
534 | unsigned long pci_base; | |
535 | ||
536 | #ifndef MODULE | |
537 | /* when built-in, we only print version if device is found */ | |
538 | static int did_version; | |
539 | if (did_version++ == 0) | |
540 | printk(version); | |
541 | #endif | |
542 | ||
543 | /* save power state before pci_enable_device overwrites it */ | |
544 | pm = pci_find_capability(pdev, PCI_CAP_ID_PM); | |
545 | if (pm) { | |
546 | u16 pwr_command; | |
547 | pci_read_config_word(pdev, pm + PCI_PM_CTRL, &pwr_command); | |
548 | acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK; | |
549 | } | |
550 | ||
551 | if (pci_enable_device(pdev)) | |
552 | goto err_out_free_mmio_region; | |
553 | ||
554 | pci_set_master(pdev); | |
555 | ||
556 | if (!request_region(pci_resource_start(pdev, 1), | |
557 | pci_resource_len(pdev, 1), "eepro100")) { | |
9b91cf9d | 558 | dev_err(&pdev->dev, "eepro100: cannot reserve I/O ports\n"); |
1da177e4 LT |
559 | goto err_out_none; |
560 | } | |
561 | if (!request_mem_region(pci_resource_start(pdev, 0), | |
562 | pci_resource_len(pdev, 0), "eepro100")) { | |
9b91cf9d | 563 | dev_err(&pdev->dev, "eepro100: cannot reserve MMIO region\n"); |
1da177e4 LT |
564 | goto err_out_free_pio_region; |
565 | } | |
566 | ||
567 | irq = pdev->irq; | |
568 | pci_bar = use_io ? 1 : 0; | |
569 | pci_base = pci_resource_start(pdev, pci_bar); | |
570 | if (DEBUG & NETIF_MSG_PROBE) | |
571 | printk("Found Intel i82557 PCI Speedo at %#lx, IRQ %d.\n", | |
572 | pci_base, irq); | |
573 | ||
574 | ioaddr = pci_iomap(pdev, pci_bar, 0); | |
575 | if (!ioaddr) { | |
9b91cf9d | 576 | dev_err(&pdev->dev, "eepro100: cannot remap IO\n"); |
1da177e4 LT |
577 | goto err_out_free_mmio_region; |
578 | } | |
579 | ||
580 | if (speedo_found1(pdev, ioaddr, cards_found, acpi_idle_state) == 0) | |
581 | cards_found++; | |
582 | else | |
583 | goto err_out_iounmap; | |
584 | ||
585 | return 0; | |
586 | ||
587 | err_out_iounmap: ; | |
588 | pci_iounmap(pdev, ioaddr); | |
589 | err_out_free_mmio_region: | |
590 | release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); | |
591 | err_out_free_pio_region: | |
592 | release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); | |
593 | err_out_none: | |
594 | return -ENODEV; | |
595 | } | |
596 | ||
597 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
598 | /* | |
599 | * Polling 'interrupt' - used by things like netconsole to send skbs | |
600 | * without having to re-enable interrupts. It's not called while | |
601 | * the interrupt routine is executing. | |
602 | */ | |
603 | ||
604 | static void poll_speedo (struct net_device *dev) | |
605 | { | |
606 | /* disable_irq is not very nice, but with the funny lockless design | |
607 | we have no other choice. */ | |
608 | disable_irq(dev->irq); | |
609 | speedo_interrupt (dev->irq, dev, NULL); | |
610 | enable_irq(dev->irq); | |
611 | } | |
612 | #endif | |
613 | ||
614 | static int __devinit speedo_found1(struct pci_dev *pdev, | |
615 | void __iomem *ioaddr, int card_idx, int acpi_idle_state) | |
616 | { | |
617 | struct net_device *dev; | |
618 | struct speedo_private *sp; | |
619 | const char *product; | |
620 | int i, option; | |
621 | u16 eeprom[0x100]; | |
622 | int size; | |
623 | void *tx_ring_space; | |
624 | dma_addr_t tx_ring_dma; | |
625 | ||
626 | size = TX_RING_SIZE * sizeof(struct TxFD) + sizeof(struct speedo_stats); | |
627 | tx_ring_space = pci_alloc_consistent(pdev, size, &tx_ring_dma); | |
628 | if (tx_ring_space == NULL) | |
629 | return -1; | |
630 | ||
631 | dev = alloc_etherdev(sizeof(struct speedo_private)); | |
632 | if (dev == NULL) { | |
633 | printk(KERN_ERR "eepro100: Could not allocate ethernet device.\n"); | |
634 | pci_free_consistent(pdev, size, tx_ring_space, tx_ring_dma); | |
635 | return -1; | |
636 | } | |
637 | ||
638 | SET_MODULE_OWNER(dev); | |
639 | SET_NETDEV_DEV(dev, &pdev->dev); | |
640 | ||
641 | if (dev->mem_start > 0) | |
642 | option = dev->mem_start; | |
643 | else if (card_idx >= 0 && options[card_idx] >= 0) | |
644 | option = options[card_idx]; | |
645 | else | |
646 | option = 0; | |
647 | ||
648 | rtnl_lock(); | |
6aa20a22 | 649 | if (dev_alloc_name(dev, dev->name) < 0) |
1da177e4 LT |
650 | goto err_free_unlock; |
651 | ||
652 | /* Read the station address EEPROM before doing the reset. | |
653 | Nominally his should even be done before accepting the device, but | |
654 | then we wouldn't have a device name with which to report the error. | |
655 | The size test is for 6 bit vs. 8 bit address serial EEPROMs. | |
656 | */ | |
657 | { | |
658 | void __iomem *iobase; | |
659 | int read_cmd, ee_size; | |
660 | u16 sum; | |
661 | int j; | |
662 | ||
663 | /* Use IO only to avoid postponed writes and satisfy EEPROM timing | |
664 | requirements. */ | |
665 | iobase = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); | |
666 | if (!iobase) | |
667 | goto err_free_unlock; | |
668 | if ((do_eeprom_cmd(iobase, EE_READ_CMD << 24, 27) & 0xffe0000) | |
669 | == 0xffe0000) { | |
670 | ee_size = 0x100; | |
671 | read_cmd = EE_READ_CMD << 24; | |
672 | } else { | |
673 | ee_size = 0x40; | |
674 | read_cmd = EE_READ_CMD << 22; | |
675 | } | |
676 | ||
677 | for (j = 0, i = 0, sum = 0; i < ee_size; i++) { | |
678 | u16 value = do_eeprom_cmd(iobase, read_cmd | (i << 16), 27); | |
679 | eeprom[i] = value; | |
680 | sum += value; | |
681 | if (i < 3) { | |
682 | dev->dev_addr[j++] = value; | |
683 | dev->dev_addr[j++] = value >> 8; | |
684 | } | |
685 | } | |
686 | if (sum != 0xBABA) | |
687 | printk(KERN_WARNING "%s: Invalid EEPROM checksum %#4.4x, " | |
688 | "check settings before activating this device!\n", | |
689 | dev->name, sum); | |
690 | /* Don't unregister_netdev(dev); as the EEPro may actually be | |
691 | usable, especially if the MAC address is set later. | |
692 | On the other hand, it may be unusable if MDI data is corrupted. */ | |
693 | ||
694 | pci_iounmap(pdev, iobase); | |
695 | } | |
696 | ||
697 | /* Reset the chip: stop Tx and Rx processes and clear counters. | |
698 | This takes less than 10usec and will easily finish before the next | |
699 | action. */ | |
700 | iowrite32(PortReset, ioaddr + SCBPort); | |
701 | ioread32(ioaddr + SCBPort); | |
702 | udelay(10); | |
703 | ||
704 | if (eeprom[3] & 0x0100) | |
705 | product = "OEM i82557/i82558 10/100 Ethernet"; | |
706 | else | |
707 | product = pci_name(pdev); | |
708 | ||
709 | printk(KERN_INFO "%s: %s, ", dev->name, product); | |
710 | ||
711 | for (i = 0; i < 5; i++) | |
712 | printk("%2.2X:", dev->dev_addr[i]); | |
713 | printk("%2.2X, ", dev->dev_addr[i]); | |
714 | printk("IRQ %d.\n", pdev->irq); | |
715 | ||
716 | sp = netdev_priv(dev); | |
717 | ||
718 | /* we must initialize this early, for mdio_{read,write} */ | |
719 | sp->regs = ioaddr; | |
720 | ||
721 | #if 1 || defined(kernel_bloat) | |
722 | /* OK, this is pure kernel bloat. I don't like it when other drivers | |
723 | waste non-pageable kernel space to emit similar messages, but I need | |
724 | them for bug reports. */ | |
725 | { | |
726 | const char *connectors[] = {" RJ45", " BNC", " AUI", " MII"}; | |
727 | /* The self-test results must be paragraph aligned. */ | |
728 | volatile s32 *self_test_results; | |
729 | int boguscnt = 16000; /* Timeout for set-test. */ | |
730 | if ((eeprom[3] & 0x03) != 0x03) | |
731 | printk(KERN_INFO " Receiver lock-up bug exists -- enabling" | |
732 | " work-around.\n"); | |
733 | printk(KERN_INFO " Board assembly %4.4x%2.2x-%3.3d, Physical" | |
734 | " connectors present:", | |
735 | eeprom[8], eeprom[9]>>8, eeprom[9] & 0xff); | |
736 | for (i = 0; i < 4; i++) | |
737 | if (eeprom[5] & (1<<i)) | |
738 | printk(connectors[i]); | |
739 | printk("\n"KERN_INFO" Primary interface chip %s PHY #%d.\n", | |
740 | phys[(eeprom[6]>>8)&15], eeprom[6] & 0x1f); | |
741 | if (eeprom[7] & 0x0700) | |
742 | printk(KERN_INFO " Secondary interface chip %s.\n", | |
743 | phys[(eeprom[7]>>8)&7]); | |
744 | if (((eeprom[6]>>8) & 0x3f) == DP83840 | |
745 | || ((eeprom[6]>>8) & 0x3f) == DP83840A) { | |
746 | int mdi_reg23 = mdio_read(dev, eeprom[6] & 0x1f, 23) | 0x0422; | |
747 | if (congenb) | |
748 | mdi_reg23 |= 0x0100; | |
749 | printk(KERN_INFO" DP83840 specific setup, setting register 23 to %4.4x.\n", | |
750 | mdi_reg23); | |
751 | mdio_write(dev, eeprom[6] & 0x1f, 23, mdi_reg23); | |
752 | } | |
753 | if ((option >= 0) && (option & 0x70)) { | |
754 | printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n", | |
755 | (option & 0x20 ? 100 : 10), | |
756 | (option & 0x10 ? "full" : "half")); | |
757 | mdio_write(dev, eeprom[6] & 0x1f, MII_BMCR, | |
758 | ((option & 0x20) ? 0x2000 : 0) | /* 100mbps? */ | |
759 | ((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */ | |
760 | } | |
761 | ||
762 | /* Perform a system self-test. */ | |
763 | self_test_results = (s32*) ((((long) tx_ring_space) + 15) & ~0xf); | |
764 | self_test_results[0] = 0; | |
765 | self_test_results[1] = -1; | |
766 | iowrite32(tx_ring_dma | PortSelfTest, ioaddr + SCBPort); | |
767 | do { | |
768 | udelay(10); | |
769 | } while (self_test_results[1] == -1 && --boguscnt >= 0); | |
770 | ||
771 | if (boguscnt < 0) { /* Test optimized out. */ | |
772 | printk(KERN_ERR "Self test failed, status %8.8x:\n" | |
773 | KERN_ERR " Failure to initialize the i82557.\n" | |
774 | KERN_ERR " Verify that the card is a bus-master" | |
775 | " capable slot.\n", | |
776 | self_test_results[1]); | |
777 | } else | |
778 | printk(KERN_INFO " General self-test: %s.\n" | |
779 | KERN_INFO " Serial sub-system self-test: %s.\n" | |
780 | KERN_INFO " Internal registers self-test: %s.\n" | |
781 | KERN_INFO " ROM checksum self-test: %s (%#8.8x).\n", | |
782 | self_test_results[1] & 0x1000 ? "failed" : "passed", | |
783 | self_test_results[1] & 0x0020 ? "failed" : "passed", | |
784 | self_test_results[1] & 0x0008 ? "failed" : "passed", | |
785 | self_test_results[1] & 0x0004 ? "failed" : "passed", | |
786 | self_test_results[0]); | |
787 | } | |
788 | #endif /* kernel_bloat */ | |
789 | ||
790 | iowrite32(PortReset, ioaddr + SCBPort); | |
791 | ioread32(ioaddr + SCBPort); | |
792 | udelay(10); | |
793 | ||
794 | /* Return the chip to its original power state. */ | |
795 | pci_set_power_state(pdev, acpi_idle_state); | |
796 | ||
797 | pci_set_drvdata (pdev, dev); | |
798 | SET_NETDEV_DEV(dev, &pdev->dev); | |
799 | ||
800 | dev->irq = pdev->irq; | |
801 | ||
802 | sp->pdev = pdev; | |
803 | sp->msg_enable = DEBUG; | |
804 | sp->acpi_pwr = acpi_idle_state; | |
805 | sp->tx_ring = tx_ring_space; | |
806 | sp->tx_ring_dma = tx_ring_dma; | |
807 | sp->lstats = (struct speedo_stats *)(sp->tx_ring + TX_RING_SIZE); | |
808 | sp->lstats_dma = TX_RING_ELEM_DMA(sp, TX_RING_SIZE); | |
809 | init_timer(&sp->timer); /* used in ioctl() */ | |
810 | spin_lock_init(&sp->lock); | |
811 | ||
812 | sp->mii_if.full_duplex = option >= 0 && (option & 0x10) ? 1 : 0; | |
813 | if (card_idx >= 0) { | |
814 | if (full_duplex[card_idx] >= 0) | |
815 | sp->mii_if.full_duplex = full_duplex[card_idx]; | |
816 | } | |
817 | sp->default_port = option >= 0 ? (option & 0x0f) : 0; | |
818 | ||
819 | sp->phy[0] = eeprom[6]; | |
820 | sp->phy[1] = eeprom[7]; | |
821 | ||
822 | sp->mii_if.phy_id = eeprom[6] & 0x1f; | |
823 | sp->mii_if.phy_id_mask = 0x1f; | |
824 | sp->mii_if.reg_num_mask = 0x1f; | |
825 | sp->mii_if.dev = dev; | |
826 | sp->mii_if.mdio_read = mdio_read; | |
827 | sp->mii_if.mdio_write = mdio_write; | |
6aa20a22 | 828 | |
1da177e4 | 829 | sp->rx_bug = (eeprom[3] & 0x03) == 3 ? 0 : 1; |
6aa20a22 JG |
830 | if (((pdev->device > 0x1030 && (pdev->device < 0x103F))) |
831 | || (pdev->device == 0x2449) || (pdev->device == 0x2459) | |
1da177e4 LT |
832 | || (pdev->device == 0x245D)) { |
833 | sp->chip_id = 1; | |
834 | } | |
835 | ||
836 | if (sp->rx_bug) | |
837 | printk(KERN_INFO " Receiver lock-up workaround activated.\n"); | |
838 | ||
839 | /* The Speedo-specific entries in the device structure. */ | |
840 | dev->open = &speedo_open; | |
841 | dev->hard_start_xmit = &speedo_start_xmit; | |
842 | netif_set_tx_timeout(dev, &speedo_tx_timeout, TX_TIMEOUT); | |
843 | dev->stop = &speedo_close; | |
844 | dev->get_stats = &speedo_get_stats; | |
845 | dev->set_multicast_list = &set_rx_mode; | |
846 | dev->do_ioctl = &speedo_ioctl; | |
847 | SET_ETHTOOL_OPS(dev, ðtool_ops); | |
848 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
849 | dev->poll_controller = &poll_speedo; | |
850 | #endif | |
851 | ||
852 | if (register_netdevice(dev)) | |
853 | goto err_free_unlock; | |
854 | rtnl_unlock(); | |
855 | ||
856 | return 0; | |
857 | ||
858 | err_free_unlock: | |
859 | rtnl_unlock(); | |
860 | free_netdev(dev); | |
861 | return -1; | |
862 | } | |
863 | ||
864 | static void do_slow_command(struct net_device *dev, struct speedo_private *sp, int cmd) | |
865 | { | |
866 | void __iomem *cmd_ioaddr = sp->regs + SCBCmd; | |
867 | int wait = 0; | |
868 | do | |
869 | if (ioread8(cmd_ioaddr) == 0) break; | |
870 | while(++wait <= 200); | |
871 | if (wait > 100) | |
872 | printk(KERN_ERR "Command %4.4x never accepted (%d polls)!\n", | |
873 | ioread8(cmd_ioaddr), wait); | |
874 | ||
875 | iowrite8(cmd, cmd_ioaddr); | |
876 | ||
877 | for (wait = 0; wait <= 100; wait++) | |
878 | if (ioread8(cmd_ioaddr) == 0) return; | |
879 | for (; wait <= 20000; wait++) | |
880 | if (ioread8(cmd_ioaddr) == 0) return; | |
881 | else udelay(1); | |
882 | printk(KERN_ERR "Command %4.4x was not accepted after %d polls!" | |
883 | " Current status %8.8x.\n", | |
884 | cmd, wait, ioread32(sp->regs + SCBStatus)); | |
885 | } | |
886 | ||
887 | /* Serial EEPROM section. | |
888 | A "bit" grungy, but we work our way through bit-by-bit :->. */ | |
889 | /* EEPROM_Ctrl bits. */ | |
890 | #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */ | |
891 | #define EE_CS 0x02 /* EEPROM chip select. */ | |
892 | #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ | |
893 | #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ | |
894 | #define EE_ENB (0x4800 | EE_CS) | |
895 | #define EE_WRITE_0 0x4802 | |
896 | #define EE_WRITE_1 0x4806 | |
897 | #define EE_OFFSET SCBeeprom | |
898 | ||
899 | /* The fixes for the code were kindly provided by Dragan Stancevic | |
900 | <[email protected]> to strictly follow Intel specifications of EEPROM | |
901 | access timing. | |
902 | The publicly available sheet 64486302 (sec. 3.1) specifies 1us access | |
903 | interval for serial EEPROM. However, it looks like that there is an | |
904 | additional requirement dictating larger udelay's in the code below. | |
905 | 2000/05/24 SAW */ | |
906 | static int __devinit do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len) | |
907 | { | |
908 | unsigned retval = 0; | |
909 | void __iomem *ee_addr = ioaddr + SCBeeprom; | |
910 | ||
911 | iowrite16(EE_ENB, ee_addr); udelay(2); | |
912 | iowrite16(EE_ENB | EE_SHIFT_CLK, ee_addr); udelay(2); | |
913 | ||
914 | /* Shift the command bits out. */ | |
915 | do { | |
916 | short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0; | |
917 | iowrite16(dataval, ee_addr); udelay(2); | |
918 | iowrite16(dataval | EE_SHIFT_CLK, ee_addr); udelay(2); | |
919 | retval = (retval << 1) | ((ioread16(ee_addr) & EE_DATA_READ) ? 1 : 0); | |
920 | } while (--cmd_len >= 0); | |
921 | iowrite16(EE_ENB, ee_addr); udelay(2); | |
922 | ||
923 | /* Terminate the EEPROM access. */ | |
924 | iowrite16(EE_ENB & ~EE_CS, ee_addr); | |
925 | return retval; | |
926 | } | |
927 | ||
928 | static int mdio_read(struct net_device *dev, int phy_id, int location) | |
929 | { | |
930 | struct speedo_private *sp = netdev_priv(dev); | |
931 | void __iomem *ioaddr = sp->regs; | |
932 | int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */ | |
933 | iowrite32(0x08000000 | (location<<16) | (phy_id<<21), ioaddr + SCBCtrlMDI); | |
934 | do { | |
935 | val = ioread32(ioaddr + SCBCtrlMDI); | |
936 | if (--boguscnt < 0) { | |
937 | printk(KERN_ERR " mdio_read() timed out with val = %8.8x.\n", val); | |
938 | break; | |
939 | } | |
940 | } while (! (val & 0x10000000)); | |
941 | return val & 0xffff; | |
942 | } | |
943 | ||
944 | static void mdio_write(struct net_device *dev, int phy_id, int location, int value) | |
945 | { | |
946 | struct speedo_private *sp = netdev_priv(dev); | |
947 | void __iomem *ioaddr = sp->regs; | |
948 | int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */ | |
949 | iowrite32(0x04000000 | (location<<16) | (phy_id<<21) | value, | |
950 | ioaddr + SCBCtrlMDI); | |
951 | do { | |
952 | val = ioread32(ioaddr + SCBCtrlMDI); | |
953 | if (--boguscnt < 0) { | |
954 | printk(KERN_ERR" mdio_write() timed out with val = %8.8x.\n", val); | |
955 | break; | |
956 | } | |
957 | } while (! (val & 0x10000000)); | |
958 | } | |
959 | ||
960 | static int | |
961 | speedo_open(struct net_device *dev) | |
962 | { | |
963 | struct speedo_private *sp = netdev_priv(dev); | |
964 | void __iomem *ioaddr = sp->regs; | |
965 | int retval; | |
966 | ||
967 | if (netif_msg_ifup(sp)) | |
968 | printk(KERN_DEBUG "%s: speedo_open() irq %d.\n", dev->name, dev->irq); | |
969 | ||
970 | pci_set_power_state(sp->pdev, PCI_D0); | |
971 | ||
972 | /* Set up the Tx queue early.. */ | |
973 | sp->cur_tx = 0; | |
974 | sp->dirty_tx = 0; | |
975 | sp->last_cmd = NULL; | |
976 | sp->tx_full = 0; | |
977 | sp->in_interrupt = 0; | |
978 | ||
979 | /* .. we can safely take handler calls during init. */ | |
1fb9df5d | 980 | retval = request_irq(dev->irq, &speedo_interrupt, IRQF_SHARED, dev->name, dev); |
1da177e4 LT |
981 | if (retval) { |
982 | return retval; | |
983 | } | |
984 | ||
985 | dev->if_port = sp->default_port; | |
986 | ||
987 | #ifdef oh_no_you_dont_unless_you_honour_the_options_passed_in_to_us | |
988 | /* Retrigger negotiation to reset previous errors. */ | |
989 | if ((sp->phy[0] & 0x8000) == 0) { | |
990 | int phy_addr = sp->phy[0] & 0x1f ; | |
991 | /* Use 0x3300 for restarting NWay, other values to force xcvr: | |
992 | 0x0000 10-HD | |
993 | 0x0100 10-FD | |
994 | 0x2000 100-HD | |
995 | 0x2100 100-FD | |
996 | */ | |
997 | #ifdef honor_default_port | |
998 | mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]); | |
999 | #else | |
1000 | mdio_write(dev, phy_addr, MII_BMCR, 0x3300); | |
1001 | #endif | |
1002 | } | |
1003 | #endif | |
1004 | ||
1005 | speedo_init_rx_ring(dev); | |
1006 | ||
1007 | /* Fire up the hardware. */ | |
1008 | iowrite16(SCBMaskAll, ioaddr + SCBCmd); | |
1009 | speedo_resume(dev); | |
1010 | ||
1011 | netdevice_start(dev); | |
1012 | netif_start_queue(dev); | |
1013 | ||
1014 | /* Setup the chip and configure the multicast list. */ | |
1015 | sp->mc_setup_head = NULL; | |
1016 | sp->mc_setup_tail = NULL; | |
1017 | sp->flow_ctrl = sp->partner = 0; | |
1018 | sp->rx_mode = -1; /* Invalid -> always reset the mode. */ | |
1019 | set_rx_mode(dev); | |
1020 | if ((sp->phy[0] & 0x8000) == 0) | |
1021 | sp->mii_if.advertising = mdio_read(dev, sp->phy[0] & 0x1f, MII_ADVERTISE); | |
1022 | ||
1023 | mii_check_link(&sp->mii_if); | |
1024 | ||
1025 | if (netif_msg_ifup(sp)) { | |
1026 | printk(KERN_DEBUG "%s: Done speedo_open(), status %8.8x.\n", | |
1027 | dev->name, ioread16(ioaddr + SCBStatus)); | |
1028 | } | |
1029 | ||
1030 | /* Set the timer. The timer serves a dual purpose: | |
1031 | 1) to monitor the media interface (e.g. link beat) and perhaps switch | |
1032 | to an alternate media type | |
1033 | 2) to monitor Rx activity, and restart the Rx process if the receiver | |
1034 | hangs. */ | |
1035 | sp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */ | |
1036 | sp->timer.data = (unsigned long)dev; | |
1037 | sp->timer.function = &speedo_timer; /* timer handler */ | |
1038 | add_timer(&sp->timer); | |
1039 | ||
1040 | /* No need to wait for the command unit to accept here. */ | |
1041 | if ((sp->phy[0] & 0x8000) == 0) | |
1042 | mdio_read(dev, sp->phy[0] & 0x1f, MII_BMCR); | |
1043 | ||
1044 | return 0; | |
1045 | } | |
1046 | ||
1047 | /* Start the chip hardware after a full reset. */ | |
1048 | static void speedo_resume(struct net_device *dev) | |
1049 | { | |
1050 | struct speedo_private *sp = netdev_priv(dev); | |
1051 | void __iomem *ioaddr = sp->regs; | |
1052 | ||
1053 | /* Start with a Tx threshold of 256 (0x..20.... 8 byte units). */ | |
1054 | sp->tx_threshold = 0x01208000; | |
1055 | ||
1056 | /* Set the segment registers to '0'. */ | |
1057 | if (wait_for_cmd_done(dev, sp) != 0) { | |
1058 | iowrite32(PortPartialReset, ioaddr + SCBPort); | |
1059 | udelay(10); | |
1060 | } | |
1061 | ||
1062 | iowrite32(0, ioaddr + SCBPointer); | |
1063 | ioread32(ioaddr + SCBPointer); /* Flush to PCI. */ | |
1064 | udelay(10); /* Bogus, but it avoids the bug. */ | |
1065 | ||
1066 | /* Note: these next two operations can take a while. */ | |
1067 | do_slow_command(dev, sp, RxAddrLoad); | |
1068 | do_slow_command(dev, sp, CUCmdBase); | |
1069 | ||
1070 | /* Load the statistics block and rx ring addresses. */ | |
1071 | iowrite32(sp->lstats_dma, ioaddr + SCBPointer); | |
1072 | ioread32(ioaddr + SCBPointer); /* Flush to PCI */ | |
1073 | ||
1074 | iowrite8(CUStatsAddr, ioaddr + SCBCmd); | |
1075 | sp->lstats->done_marker = 0; | |
1076 | wait_for_cmd_done(dev, sp); | |
1077 | ||
1078 | if (sp->rx_ringp[sp->cur_rx % RX_RING_SIZE] == NULL) { | |
1079 | if (netif_msg_rx_err(sp)) | |
1080 | printk(KERN_DEBUG "%s: NULL cur_rx in speedo_resume().\n", | |
1081 | dev->name); | |
1082 | } else { | |
1083 | iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE], | |
1084 | ioaddr + SCBPointer); | |
1085 | ioread32(ioaddr + SCBPointer); /* Flush to PCI */ | |
1086 | } | |
1087 | ||
1088 | /* Note: RxStart should complete instantly. */ | |
1089 | do_slow_command(dev, sp, RxStart); | |
1090 | do_slow_command(dev, sp, CUDumpStats); | |
1091 | ||
1092 | /* Fill the first command with our physical address. */ | |
1093 | { | |
1094 | struct descriptor *ias_cmd; | |
1095 | ||
1096 | ias_cmd = | |
1097 | (struct descriptor *)&sp->tx_ring[sp->cur_tx++ % TX_RING_SIZE]; | |
1098 | /* Avoid a bug(?!) here by marking the command already completed. */ | |
1099 | ias_cmd->cmd_status = cpu_to_le32((CmdSuspend | CmdIASetup) | 0xa000); | |
1100 | ias_cmd->link = | |
1101 | cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE)); | |
1102 | memcpy(ias_cmd->params, dev->dev_addr, 6); | |
1103 | if (sp->last_cmd) | |
1104 | clear_suspend(sp->last_cmd); | |
1105 | sp->last_cmd = ias_cmd; | |
1106 | } | |
1107 | ||
1108 | /* Start the chip's Tx process and unmask interrupts. */ | |
1109 | iowrite32(TX_RING_ELEM_DMA(sp, sp->dirty_tx % TX_RING_SIZE), | |
1110 | ioaddr + SCBPointer); | |
1111 | /* We are not ACK-ing FCP and ER in the interrupt handler yet so they should | |
1112 | remain masked --Dragan */ | |
1113 | iowrite16(CUStart | SCBMaskEarlyRx | SCBMaskFlowCtl, ioaddr + SCBCmd); | |
1114 | } | |
1115 | ||
1116 | /* | |
1117 | * Sometimes the receiver stops making progress. This routine knows how to | |
1118 | * get it going again, without losing packets or being otherwise nasty like | |
1119 | * a chip reset would be. Previously the driver had a whole sequence | |
1120 | * of if RxSuspended, if it's no buffers do one thing, if it's no resources, | |
1121 | * do another, etc. But those things don't really matter. Separate logic | |
1122 | * in the ISR provides for allocating buffers--the other half of operation | |
1123 | * is just making sure the receiver is active. speedo_rx_soft_reset does that. | |
1124 | * This problem with the old, more involved algorithm is shown up under | |
1125 | * ping floods on the order of 60K packets/second on a 100Mbps fdx network. | |
1126 | */ | |
1127 | static void | |
1128 | speedo_rx_soft_reset(struct net_device *dev) | |
1129 | { | |
1130 | struct speedo_private *sp = netdev_priv(dev); | |
1131 | struct RxFD *rfd; | |
1132 | void __iomem *ioaddr; | |
1133 | ||
1134 | ioaddr = sp->regs; | |
1135 | if (wait_for_cmd_done(dev, sp) != 0) { | |
1136 | printk("%s: previous command stalled\n", dev->name); | |
1137 | return; | |
1138 | } | |
1139 | /* | |
1140 | * Put the hardware into a known state. | |
1141 | */ | |
1142 | iowrite8(RxAbort, ioaddr + SCBCmd); | |
1143 | ||
1144 | rfd = sp->rx_ringp[sp->cur_rx % RX_RING_SIZE]; | |
1145 | ||
1146 | rfd->rx_buf_addr = 0xffffffff; | |
1147 | ||
1148 | if (wait_for_cmd_done(dev, sp) != 0) { | |
1149 | printk("%s: RxAbort command stalled\n", dev->name); | |
1150 | return; | |
1151 | } | |
1152 | iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE], | |
1153 | ioaddr + SCBPointer); | |
1154 | iowrite8(RxStart, ioaddr + SCBCmd); | |
1155 | } | |
1156 | ||
1157 | ||
1158 | /* Media monitoring and control. */ | |
1159 | static void speedo_timer(unsigned long data) | |
1160 | { | |
1161 | struct net_device *dev = (struct net_device *)data; | |
1162 | struct speedo_private *sp = netdev_priv(dev); | |
1163 | void __iomem *ioaddr = sp->regs; | |
1164 | int phy_num = sp->phy[0] & 0x1f; | |
1165 | ||
1166 | /* We have MII and lost link beat. */ | |
1167 | if ((sp->phy[0] & 0x8000) == 0) { | |
1168 | int partner = mdio_read(dev, phy_num, MII_LPA); | |
1169 | if (partner != sp->partner) { | |
1170 | int flow_ctrl = sp->mii_if.advertising & partner & 0x0400 ? 1 : 0; | |
1171 | if (netif_msg_link(sp)) { | |
1172 | printk(KERN_DEBUG "%s: Link status change.\n", dev->name); | |
1173 | printk(KERN_DEBUG "%s: Old partner %x, new %x, adv %x.\n", | |
1174 | dev->name, sp->partner, partner, sp->mii_if.advertising); | |
1175 | } | |
1176 | sp->partner = partner; | |
1177 | if (flow_ctrl != sp->flow_ctrl) { | |
1178 | sp->flow_ctrl = flow_ctrl; | |
1179 | sp->rx_mode = -1; /* Trigger a reload. */ | |
1180 | } | |
1181 | } | |
1182 | } | |
1183 | mii_check_link(&sp->mii_if); | |
1184 | if (netif_msg_timer(sp)) { | |
1185 | printk(KERN_DEBUG "%s: Media control tick, status %4.4x.\n", | |
1186 | dev->name, ioread16(ioaddr + SCBStatus)); | |
1187 | } | |
1188 | if (sp->rx_mode < 0 || | |
1189 | (sp->rx_bug && jiffies - sp->last_rx_time > 2*HZ)) { | |
1190 | /* We haven't received a packet in a Long Time. We might have been | |
1191 | bitten by the receiver hang bug. This can be cleared by sending | |
1192 | a set multicast list command. */ | |
1193 | if (netif_msg_timer(sp)) | |
1194 | printk(KERN_DEBUG "%s: Sending a multicast list set command" | |
1195 | " from a timer routine," | |
1196 | " m=%d, j=%ld, l=%ld.\n", | |
1197 | dev->name, sp->rx_mode, jiffies, sp->last_rx_time); | |
1198 | set_rx_mode(dev); | |
1199 | } | |
1200 | /* We must continue to monitor the media. */ | |
1201 | sp->timer.expires = RUN_AT(2*HZ); /* 2.0 sec. */ | |
1202 | add_timer(&sp->timer); | |
1203 | } | |
1204 | ||
1205 | static void speedo_show_state(struct net_device *dev) | |
1206 | { | |
1207 | struct speedo_private *sp = netdev_priv(dev); | |
1208 | int i; | |
1209 | ||
1210 | if (netif_msg_pktdata(sp)) { | |
6aa20a22 | 1211 | printk(KERN_DEBUG "%s: Tx ring dump, Tx queue %u / %u:\n", |
1da177e4 LT |
1212 | dev->name, sp->cur_tx, sp->dirty_tx); |
1213 | for (i = 0; i < TX_RING_SIZE; i++) | |
1214 | printk(KERN_DEBUG "%s: %c%c%2d %8.8x.\n", dev->name, | |
1215 | i == sp->dirty_tx % TX_RING_SIZE ? '*' : ' ', | |
1216 | i == sp->cur_tx % TX_RING_SIZE ? '=' : ' ', | |
1217 | i, sp->tx_ring[i].status); | |
1218 | ||
1219 | printk(KERN_DEBUG "%s: Printing Rx ring" | |
1220 | " (next to receive into %u, dirty index %u).\n", | |
1221 | dev->name, sp->cur_rx, sp->dirty_rx); | |
1222 | for (i = 0; i < RX_RING_SIZE; i++) | |
1223 | printk(KERN_DEBUG "%s: %c%c%c%2d %8.8x.\n", dev->name, | |
1224 | sp->rx_ringp[i] == sp->last_rxf ? 'l' : ' ', | |
1225 | i == sp->dirty_rx % RX_RING_SIZE ? '*' : ' ', | |
1226 | i == sp->cur_rx % RX_RING_SIZE ? '=' : ' ', | |
1227 | i, (sp->rx_ringp[i] != NULL) ? | |
1228 | (unsigned)sp->rx_ringp[i]->status : 0); | |
1229 | } | |
1230 | ||
1231 | #if 0 | |
1232 | { | |
1233 | void __iomem *ioaddr = sp->regs; | |
1234 | int phy_num = sp->phy[0] & 0x1f; | |
1235 | for (i = 0; i < 16; i++) { | |
1236 | /* FIXME: what does it mean? --SAW */ | |
1237 | if (i == 6) i = 21; | |
1238 | printk(KERN_DEBUG "%s: PHY index %d register %d is %4.4x.\n", | |
1239 | dev->name, phy_num, i, mdio_read(dev, phy_num, i)); | |
1240 | } | |
1241 | } | |
1242 | #endif | |
1243 | ||
1244 | } | |
1245 | ||
1246 | /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ | |
1247 | static void | |
1248 | speedo_init_rx_ring(struct net_device *dev) | |
1249 | { | |
1250 | struct speedo_private *sp = netdev_priv(dev); | |
1251 | struct RxFD *rxf, *last_rxf = NULL; | |
1252 | dma_addr_t last_rxf_dma = 0 /* to shut up the compiler */; | |
1253 | int i; | |
1254 | ||
1255 | sp->cur_rx = 0; | |
1256 | ||
1257 | for (i = 0; i < RX_RING_SIZE; i++) { | |
1258 | struct sk_buff *skb; | |
1259 | skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD)); | |
9f7f0098 JG |
1260 | if (skb) |
1261 | rx_align(skb); /* Align IP on 16 byte boundary */ | |
1da177e4 LT |
1262 | sp->rx_skbuff[i] = skb; |
1263 | if (skb == NULL) | |
1264 | break; /* OK. Just initially short of Rx bufs. */ | |
1265 | skb->dev = dev; /* Mark as being used by this device. */ | |
689be439 | 1266 | rxf = (struct RxFD *)skb->data; |
1da177e4 LT |
1267 | sp->rx_ringp[i] = rxf; |
1268 | sp->rx_ring_dma[i] = | |
1269 | pci_map_single(sp->pdev, rxf, | |
1270 | PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_BIDIRECTIONAL); | |
1271 | skb_reserve(skb, sizeof(struct RxFD)); | |
1272 | if (last_rxf) { | |
1273 | last_rxf->link = cpu_to_le32(sp->rx_ring_dma[i]); | |
1274 | pci_dma_sync_single_for_device(sp->pdev, last_rxf_dma, | |
1275 | sizeof(struct RxFD), PCI_DMA_TODEVICE); | |
1276 | } | |
1277 | last_rxf = rxf; | |
1278 | last_rxf_dma = sp->rx_ring_dma[i]; | |
1279 | rxf->status = cpu_to_le32(0x00000001); /* '1' is flag value only. */ | |
1280 | rxf->link = 0; /* None yet. */ | |
1281 | /* This field unused by i82557. */ | |
1282 | rxf->rx_buf_addr = 0xffffffff; | |
1283 | rxf->count = cpu_to_le32(PKT_BUF_SZ << 16); | |
1284 | pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[i], | |
1285 | sizeof(struct RxFD), PCI_DMA_TODEVICE); | |
1286 | } | |
1287 | sp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); | |
1288 | /* Mark the last entry as end-of-list. */ | |
1289 | last_rxf->status = cpu_to_le32(0xC0000002); /* '2' is flag value only. */ | |
1290 | pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[RX_RING_SIZE-1], | |
1291 | sizeof(struct RxFD), PCI_DMA_TODEVICE); | |
1292 | sp->last_rxf = last_rxf; | |
1293 | sp->last_rxf_dma = last_rxf_dma; | |
1294 | } | |
1295 | ||
1296 | static void speedo_purge_tx(struct net_device *dev) | |
1297 | { | |
1298 | struct speedo_private *sp = netdev_priv(dev); | |
1299 | int entry; | |
1300 | ||
1301 | while ((int)(sp->cur_tx - sp->dirty_tx) > 0) { | |
1302 | entry = sp->dirty_tx % TX_RING_SIZE; | |
1303 | if (sp->tx_skbuff[entry]) { | |
1304 | sp->stats.tx_errors++; | |
1305 | pci_unmap_single(sp->pdev, | |
1306 | le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0), | |
1307 | sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE); | |
1308 | dev_kfree_skb_irq(sp->tx_skbuff[entry]); | |
1309 | sp->tx_skbuff[entry] = NULL; | |
1310 | } | |
1311 | sp->dirty_tx++; | |
1312 | } | |
1313 | while (sp->mc_setup_head != NULL) { | |
1314 | struct speedo_mc_block *t; | |
1315 | if (netif_msg_tx_err(sp)) | |
1316 | printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name); | |
1317 | pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma, | |
1318 | sp->mc_setup_head->len, PCI_DMA_TODEVICE); | |
1319 | t = sp->mc_setup_head->next; | |
1320 | kfree(sp->mc_setup_head); | |
1321 | sp->mc_setup_head = t; | |
1322 | } | |
1323 | sp->mc_setup_tail = NULL; | |
1324 | sp->tx_full = 0; | |
1325 | netif_wake_queue(dev); | |
1326 | } | |
1327 | ||
1328 | static void reset_mii(struct net_device *dev) | |
1329 | { | |
1330 | struct speedo_private *sp = netdev_priv(dev); | |
1331 | ||
1332 | /* Reset the MII transceiver, suggested by Fred Young @ scalable.com. */ | |
1333 | if ((sp->phy[0] & 0x8000) == 0) { | |
1334 | int phy_addr = sp->phy[0] & 0x1f; | |
1335 | int advertising = mdio_read(dev, phy_addr, MII_ADVERTISE); | |
1336 | int mii_bmcr = mdio_read(dev, phy_addr, MII_BMCR); | |
1337 | mdio_write(dev, phy_addr, MII_BMCR, 0x0400); | |
1338 | mdio_write(dev, phy_addr, MII_BMSR, 0x0000); | |
1339 | mdio_write(dev, phy_addr, MII_ADVERTISE, 0x0000); | |
1340 | mdio_write(dev, phy_addr, MII_BMCR, 0x8000); | |
1341 | #ifdef honor_default_port | |
1342 | mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]); | |
1343 | #else | |
1344 | mdio_read(dev, phy_addr, MII_BMCR); | |
1345 | mdio_write(dev, phy_addr, MII_BMCR, mii_bmcr); | |
1346 | mdio_write(dev, phy_addr, MII_ADVERTISE, advertising); | |
1347 | #endif | |
1348 | } | |
1349 | } | |
1350 | ||
1351 | static void speedo_tx_timeout(struct net_device *dev) | |
1352 | { | |
1353 | struct speedo_private *sp = netdev_priv(dev); | |
1354 | void __iomem *ioaddr = sp->regs; | |
1355 | int status = ioread16(ioaddr + SCBStatus); | |
1356 | unsigned long flags; | |
1357 | ||
1358 | if (netif_msg_tx_err(sp)) { | |
1359 | printk(KERN_WARNING "%s: Transmit timed out: status %4.4x " | |
1360 | " %4.4x at %d/%d command %8.8x.\n", | |
1361 | dev->name, status, ioread16(ioaddr + SCBCmd), | |
1362 | sp->dirty_tx, sp->cur_tx, | |
1363 | sp->tx_ring[sp->dirty_tx % TX_RING_SIZE].status); | |
1364 | ||
1365 | } | |
1366 | speedo_show_state(dev); | |
1367 | #if 0 | |
1368 | if ((status & 0x00C0) != 0x0080 | |
1369 | && (status & 0x003C) == 0x0010) { | |
1370 | /* Only the command unit has stopped. */ | |
1371 | printk(KERN_WARNING "%s: Trying to restart the transmitter...\n", | |
1372 | dev->name); | |
1373 | iowrite32(TX_RING_ELEM_DMA(sp, dirty_tx % TX_RING_SIZE]), | |
1374 | ioaddr + SCBPointer); | |
1375 | iowrite16(CUStart, ioaddr + SCBCmd); | |
1376 | reset_mii(dev); | |
1377 | } else { | |
1378 | #else | |
1379 | { | |
1380 | #endif | |
1381 | del_timer_sync(&sp->timer); | |
1382 | /* Reset the Tx and Rx units. */ | |
1383 | iowrite32(PortReset, ioaddr + SCBPort); | |
1384 | /* We may get spurious interrupts here. But I don't think that they | |
1385 | may do much harm. 1999/12/09 SAW */ | |
1386 | udelay(10); | |
1387 | /* Disable interrupts. */ | |
1388 | iowrite16(SCBMaskAll, ioaddr + SCBCmd); | |
1389 | synchronize_irq(dev->irq); | |
1390 | speedo_tx_buffer_gc(dev); | |
1391 | /* Free as much as possible. | |
1392 | It helps to recover from a hang because of out-of-memory. | |
1393 | It also simplifies speedo_resume() in case TX ring is full or | |
1394 | close-to-be full. */ | |
1395 | speedo_purge_tx(dev); | |
1396 | speedo_refill_rx_buffers(dev, 1); | |
1397 | spin_lock_irqsave(&sp->lock, flags); | |
1398 | speedo_resume(dev); | |
1399 | sp->rx_mode = -1; | |
1400 | dev->trans_start = jiffies; | |
1401 | spin_unlock_irqrestore(&sp->lock, flags); | |
1402 | set_rx_mode(dev); /* it takes the spinlock itself --SAW */ | |
1403 | /* Reset MII transceiver. Do it before starting the timer to serialize | |
1404 | mdio_xxx operations. Yes, it's a paranoya :-) 2000/05/09 SAW */ | |
1405 | reset_mii(dev); | |
1406 | sp->timer.expires = RUN_AT(2*HZ); | |
1407 | add_timer(&sp->timer); | |
1408 | } | |
1409 | return; | |
1410 | } | |
1411 | ||
1412 | static int | |
1413 | speedo_start_xmit(struct sk_buff *skb, struct net_device *dev) | |
1414 | { | |
1415 | struct speedo_private *sp = netdev_priv(dev); | |
1416 | void __iomem *ioaddr = sp->regs; | |
1417 | int entry; | |
1418 | ||
1419 | /* Prevent interrupts from changing the Tx ring from underneath us. */ | |
1420 | unsigned long flags; | |
1421 | ||
1422 | spin_lock_irqsave(&sp->lock, flags); | |
1423 | ||
1424 | /* Check if there are enough space. */ | |
1425 | if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) { | |
1426 | printk(KERN_ERR "%s: incorrect tbusy state, fixed.\n", dev->name); | |
1427 | netif_stop_queue(dev); | |
1428 | sp->tx_full = 1; | |
1429 | spin_unlock_irqrestore(&sp->lock, flags); | |
1430 | return 1; | |
1431 | } | |
1432 | ||
1433 | /* Calculate the Tx descriptor entry. */ | |
1434 | entry = sp->cur_tx++ % TX_RING_SIZE; | |
1435 | ||
1436 | sp->tx_skbuff[entry] = skb; | |
1437 | sp->tx_ring[entry].status = | |
1438 | cpu_to_le32(CmdSuspend | CmdTx | CmdTxFlex); | |
1439 | if (!(entry & ((TX_RING_SIZE>>2)-1))) | |
1440 | sp->tx_ring[entry].status |= cpu_to_le32(CmdIntr); | |
1441 | sp->tx_ring[entry].link = | |
1442 | cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE)); | |
1443 | sp->tx_ring[entry].tx_desc_addr = | |
1444 | cpu_to_le32(TX_RING_ELEM_DMA(sp, entry) + TX_DESCR_BUF_OFFSET); | |
1445 | /* The data region is always in one buffer descriptor. */ | |
1446 | sp->tx_ring[entry].count = cpu_to_le32(sp->tx_threshold); | |
1447 | sp->tx_ring[entry].tx_buf_addr0 = | |
1448 | cpu_to_le32(pci_map_single(sp->pdev, skb->data, | |
1449 | skb->len, PCI_DMA_TODEVICE)); | |
1450 | sp->tx_ring[entry].tx_buf_size0 = cpu_to_le32(skb->len); | |
1451 | ||
1452 | /* workaround for hardware bug on 10 mbit half duplex */ | |
1453 | ||
1454 | if ((sp->partner == 0) && (sp->chip_id == 1)) { | |
1455 | wait_for_cmd_done(dev, sp); | |
1456 | iowrite8(0 , ioaddr + SCBCmd); | |
1457 | udelay(1); | |
1458 | } | |
1459 | ||
1460 | /* Trigger the command unit resume. */ | |
1461 | wait_for_cmd_done(dev, sp); | |
1462 | clear_suspend(sp->last_cmd); | |
1463 | /* We want the time window between clearing suspend flag on the previous | |
1464 | command and resuming CU to be as small as possible. | |
1465 | Interrupts in between are very undesired. --SAW */ | |
1466 | iowrite8(CUResume, ioaddr + SCBCmd); | |
1467 | sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry]; | |
1468 | ||
1469 | /* Leave room for set_rx_mode(). If there is no more space than reserved | |
1470 | for multicast filter mark the ring as full. */ | |
1471 | if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) { | |
1472 | netif_stop_queue(dev); | |
1473 | sp->tx_full = 1; | |
1474 | } | |
1475 | ||
1476 | spin_unlock_irqrestore(&sp->lock, flags); | |
1477 | ||
1478 | dev->trans_start = jiffies; | |
1479 | ||
1480 | return 0; | |
1481 | } | |
1482 | ||
1483 | static void speedo_tx_buffer_gc(struct net_device *dev) | |
1484 | { | |
1485 | unsigned int dirty_tx; | |
1486 | struct speedo_private *sp = netdev_priv(dev); | |
1487 | ||
1488 | dirty_tx = sp->dirty_tx; | |
1489 | while ((int)(sp->cur_tx - dirty_tx) > 0) { | |
1490 | int entry = dirty_tx % TX_RING_SIZE; | |
1491 | int status = le32_to_cpu(sp->tx_ring[entry].status); | |
1492 | ||
1493 | if (netif_msg_tx_done(sp)) | |
1494 | printk(KERN_DEBUG " scavenge candidate %d status %4.4x.\n", | |
1495 | entry, status); | |
1496 | if ((status & StatusComplete) == 0) | |
1497 | break; /* It still hasn't been processed. */ | |
1498 | if (status & TxUnderrun) | |
1499 | if (sp->tx_threshold < 0x01e08000) { | |
1500 | if (netif_msg_tx_err(sp)) | |
1501 | printk(KERN_DEBUG "%s: TX underrun, threshold adjusted.\n", | |
1502 | dev->name); | |
1503 | sp->tx_threshold += 0x00040000; | |
1504 | } | |
1505 | /* Free the original skb. */ | |
1506 | if (sp->tx_skbuff[entry]) { | |
1507 | sp->stats.tx_packets++; /* Count only user packets. */ | |
1508 | sp->stats.tx_bytes += sp->tx_skbuff[entry]->len; | |
1509 | pci_unmap_single(sp->pdev, | |
1510 | le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0), | |
1511 | sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE); | |
1512 | dev_kfree_skb_irq(sp->tx_skbuff[entry]); | |
1513 | sp->tx_skbuff[entry] = NULL; | |
1514 | } | |
1515 | dirty_tx++; | |
1516 | } | |
1517 | ||
1518 | if (netif_msg_tx_err(sp) && (int)(sp->cur_tx - dirty_tx) > TX_RING_SIZE) { | |
1519 | printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d," | |
1520 | " full=%d.\n", | |
1521 | dirty_tx, sp->cur_tx, sp->tx_full); | |
1522 | dirty_tx += TX_RING_SIZE; | |
1523 | } | |
1524 | ||
1525 | while (sp->mc_setup_head != NULL | |
1526 | && (int)(dirty_tx - sp->mc_setup_head->tx - 1) > 0) { | |
1527 | struct speedo_mc_block *t; | |
1528 | if (netif_msg_tx_err(sp)) | |
1529 | printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name); | |
1530 | pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma, | |
1531 | sp->mc_setup_head->len, PCI_DMA_TODEVICE); | |
1532 | t = sp->mc_setup_head->next; | |
1533 | kfree(sp->mc_setup_head); | |
1534 | sp->mc_setup_head = t; | |
1535 | } | |
1536 | if (sp->mc_setup_head == NULL) | |
1537 | sp->mc_setup_tail = NULL; | |
1538 | ||
1539 | sp->dirty_tx = dirty_tx; | |
1540 | } | |
1541 | ||
1542 | /* The interrupt handler does all of the Rx thread work and cleans up | |
1543 | after the Tx thread. */ | |
1544 | static irqreturn_t speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs) | |
1545 | { | |
1546 | struct net_device *dev = (struct net_device *)dev_instance; | |
1547 | struct speedo_private *sp; | |
1548 | void __iomem *ioaddr; | |
1549 | long boguscnt = max_interrupt_work; | |
1550 | unsigned short status; | |
1551 | unsigned int handled = 0; | |
1552 | ||
1553 | sp = netdev_priv(dev); | |
1554 | ioaddr = sp->regs; | |
1555 | ||
1556 | #ifndef final_version | |
1557 | /* A lock to prevent simultaneous entry on SMP machines. */ | |
1558 | if (test_and_set_bit(0, (void*)&sp->in_interrupt)) { | |
1559 | printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n", | |
1560 | dev->name); | |
1561 | sp->in_interrupt = 0; /* Avoid halting machine. */ | |
1562 | return IRQ_NONE; | |
1563 | } | |
1564 | #endif | |
1565 | ||
1566 | do { | |
1567 | status = ioread16(ioaddr + SCBStatus); | |
1568 | /* Acknowledge all of the current interrupt sources ASAP. */ | |
1569 | /* Will change from 0xfc00 to 0xff00 when we start handling | |
1570 | FCP and ER interrupts --Dragan */ | |
1571 | iowrite16(status & 0xfc00, ioaddr + SCBStatus); | |
1572 | ||
1573 | if (netif_msg_intr(sp)) | |
1574 | printk(KERN_DEBUG "%s: interrupt status=%#4.4x.\n", | |
1575 | dev->name, status); | |
1576 | ||
1577 | if ((status & 0xfc00) == 0) | |
1578 | break; | |
1579 | handled = 1; | |
1580 | ||
1581 | ||
1582 | if ((status & 0x5000) || /* Packet received, or Rx error. */ | |
1583 | (sp->rx_ring_state&(RrNoMem|RrPostponed)) == RrPostponed) | |
1584 | /* Need to gather the postponed packet. */ | |
1585 | speedo_rx(dev); | |
1586 | ||
1587 | /* Always check if all rx buffers are allocated. --SAW */ | |
1588 | speedo_refill_rx_buffers(dev, 0); | |
6aa20a22 | 1589 | |
1da177e4 LT |
1590 | spin_lock(&sp->lock); |
1591 | /* | |
1592 | * The chip may have suspended reception for various reasons. | |
1593 | * Check for that, and re-prime it should this be the case. | |
1594 | */ | |
1595 | switch ((status >> 2) & 0xf) { | |
1596 | case 0: /* Idle */ | |
1597 | break; | |
1598 | case 1: /* Suspended */ | |
1599 | case 2: /* No resources (RxFDs) */ | |
1600 | case 9: /* Suspended with no more RBDs */ | |
1601 | case 10: /* No resources due to no RBDs */ | |
1602 | case 12: /* Ready with no RBDs */ | |
1603 | speedo_rx_soft_reset(dev); | |
1604 | break; | |
1605 | case 3: case 5: case 6: case 7: case 8: | |
1606 | case 11: case 13: case 14: case 15: | |
1607 | /* these are all reserved values */ | |
1608 | break; | |
1609 | } | |
6aa20a22 JG |
1610 | |
1611 | ||
1da177e4 LT |
1612 | /* User interrupt, Command/Tx unit interrupt or CU not active. */ |
1613 | if (status & 0xA400) { | |
1614 | speedo_tx_buffer_gc(dev); | |
1615 | if (sp->tx_full | |
1616 | && (int)(sp->cur_tx - sp->dirty_tx) < TX_QUEUE_UNFULL) { | |
1617 | /* The ring is no longer full. */ | |
1618 | sp->tx_full = 0; | |
1619 | netif_wake_queue(dev); /* Attention: under a spinlock. --SAW */ | |
1620 | } | |
1621 | } | |
6aa20a22 | 1622 | |
1da177e4 LT |
1623 | spin_unlock(&sp->lock); |
1624 | ||
1625 | if (--boguscnt < 0) { | |
1626 | printk(KERN_ERR "%s: Too much work at interrupt, status=0x%4.4x.\n", | |
1627 | dev->name, status); | |
1628 | /* Clear all interrupt sources. */ | |
1629 | /* Will change from 0xfc00 to 0xff00 when we start handling | |
1630 | FCP and ER interrupts --Dragan */ | |
1631 | iowrite16(0xfc00, ioaddr + SCBStatus); | |
1632 | break; | |
1633 | } | |
1634 | } while (1); | |
1635 | ||
1636 | if (netif_msg_intr(sp)) | |
1637 | printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", | |
1638 | dev->name, ioread16(ioaddr + SCBStatus)); | |
1639 | ||
1640 | clear_bit(0, (void*)&sp->in_interrupt); | |
1641 | return IRQ_RETVAL(handled); | |
1642 | } | |
1643 | ||
1644 | static inline struct RxFD *speedo_rx_alloc(struct net_device *dev, int entry) | |
1645 | { | |
1646 | struct speedo_private *sp = netdev_priv(dev); | |
1647 | struct RxFD *rxf; | |
1648 | struct sk_buff *skb; | |
1649 | /* Get a fresh skbuff to replace the consumed one. */ | |
1650 | skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD)); | |
9f7f0098 JG |
1651 | if (skb) |
1652 | rx_align(skb); /* Align IP on 16 byte boundary */ | |
1da177e4 LT |
1653 | sp->rx_skbuff[entry] = skb; |
1654 | if (skb == NULL) { | |
1655 | sp->rx_ringp[entry] = NULL; | |
1656 | return NULL; | |
1657 | } | |
689be439 | 1658 | rxf = sp->rx_ringp[entry] = (struct RxFD *)skb->data; |
1da177e4 LT |
1659 | sp->rx_ring_dma[entry] = |
1660 | pci_map_single(sp->pdev, rxf, | |
1661 | PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE); | |
1662 | skb->dev = dev; | |
1663 | skb_reserve(skb, sizeof(struct RxFD)); | |
1664 | rxf->rx_buf_addr = 0xffffffff; | |
1665 | pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry], | |
1666 | sizeof(struct RxFD), PCI_DMA_TODEVICE); | |
1667 | return rxf; | |
1668 | } | |
1669 | ||
1670 | static inline void speedo_rx_link(struct net_device *dev, int entry, | |
1671 | struct RxFD *rxf, dma_addr_t rxf_dma) | |
1672 | { | |
1673 | struct speedo_private *sp = netdev_priv(dev); | |
1674 | rxf->status = cpu_to_le32(0xC0000001); /* '1' for driver use only. */ | |
1675 | rxf->link = 0; /* None yet. */ | |
1676 | rxf->count = cpu_to_le32(PKT_BUF_SZ << 16); | |
1677 | sp->last_rxf->link = cpu_to_le32(rxf_dma); | |
1678 | sp->last_rxf->status &= cpu_to_le32(~0xC0000000); | |
1679 | pci_dma_sync_single_for_device(sp->pdev, sp->last_rxf_dma, | |
1680 | sizeof(struct RxFD), PCI_DMA_TODEVICE); | |
1681 | sp->last_rxf = rxf; | |
1682 | sp->last_rxf_dma = rxf_dma; | |
1683 | } | |
1684 | ||
1685 | static int speedo_refill_rx_buf(struct net_device *dev, int force) | |
1686 | { | |
1687 | struct speedo_private *sp = netdev_priv(dev); | |
1688 | int entry; | |
1689 | struct RxFD *rxf; | |
1690 | ||
1691 | entry = sp->dirty_rx % RX_RING_SIZE; | |
1692 | if (sp->rx_skbuff[entry] == NULL) { | |
1693 | rxf = speedo_rx_alloc(dev, entry); | |
1694 | if (rxf == NULL) { | |
1695 | unsigned int forw; | |
1696 | int forw_entry; | |
1697 | if (netif_msg_rx_err(sp) || !(sp->rx_ring_state & RrOOMReported)) { | |
1698 | printk(KERN_WARNING "%s: can't fill rx buffer (force %d)!\n", | |
1699 | dev->name, force); | |
1700 | sp->rx_ring_state |= RrOOMReported; | |
1701 | } | |
1702 | speedo_show_state(dev); | |
1703 | if (!force) | |
1704 | return -1; /* Better luck next time! */ | |
1705 | /* Borrow an skb from one of next entries. */ | |
1706 | for (forw = sp->dirty_rx + 1; forw != sp->cur_rx; forw++) | |
1707 | if (sp->rx_skbuff[forw % RX_RING_SIZE] != NULL) | |
1708 | break; | |
1709 | if (forw == sp->cur_rx) | |
1710 | return -1; | |
1711 | forw_entry = forw % RX_RING_SIZE; | |
1712 | sp->rx_skbuff[entry] = sp->rx_skbuff[forw_entry]; | |
1713 | sp->rx_skbuff[forw_entry] = NULL; | |
1714 | rxf = sp->rx_ringp[forw_entry]; | |
1715 | sp->rx_ringp[forw_entry] = NULL; | |
1716 | sp->rx_ringp[entry] = rxf; | |
1717 | } | |
1718 | } else { | |
1719 | rxf = sp->rx_ringp[entry]; | |
1720 | } | |
1721 | speedo_rx_link(dev, entry, rxf, sp->rx_ring_dma[entry]); | |
1722 | sp->dirty_rx++; | |
1723 | sp->rx_ring_state &= ~(RrNoMem|RrOOMReported); /* Mark the progress. */ | |
1724 | return 0; | |
1725 | } | |
1726 | ||
1727 | static void speedo_refill_rx_buffers(struct net_device *dev, int force) | |
1728 | { | |
1729 | struct speedo_private *sp = netdev_priv(dev); | |
1730 | ||
1731 | /* Refill the RX ring. */ | |
1732 | while ((int)(sp->cur_rx - sp->dirty_rx) > 0 && | |
1733 | speedo_refill_rx_buf(dev, force) != -1); | |
1734 | } | |
1735 | ||
1736 | static int | |
1737 | speedo_rx(struct net_device *dev) | |
1738 | { | |
1739 | struct speedo_private *sp = netdev_priv(dev); | |
1740 | int entry = sp->cur_rx % RX_RING_SIZE; | |
1741 | int rx_work_limit = sp->dirty_rx + RX_RING_SIZE - sp->cur_rx; | |
1742 | int alloc_ok = 1; | |
1743 | int npkts = 0; | |
1744 | ||
1745 | if (netif_msg_intr(sp)) | |
1746 | printk(KERN_DEBUG " In speedo_rx().\n"); | |
1747 | /* If we own the next entry, it's a new packet. Send it up. */ | |
1748 | while (sp->rx_ringp[entry] != NULL) { | |
1749 | int status; | |
1750 | int pkt_len; | |
1751 | ||
1752 | pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry], | |
1753 | sizeof(struct RxFD), PCI_DMA_FROMDEVICE); | |
1754 | status = le32_to_cpu(sp->rx_ringp[entry]->status); | |
1755 | pkt_len = le32_to_cpu(sp->rx_ringp[entry]->count) & 0x3fff; | |
1756 | ||
1757 | if (!(status & RxComplete)) | |
1758 | break; | |
1759 | ||
1760 | if (--rx_work_limit < 0) | |
1761 | break; | |
1762 | ||
1763 | /* Check for a rare out-of-memory case: the current buffer is | |
1764 | the last buffer allocated in the RX ring. --SAW */ | |
1765 | if (sp->last_rxf == sp->rx_ringp[entry]) { | |
1766 | /* Postpone the packet. It'll be reaped at an interrupt when this | |
1767 | packet is no longer the last packet in the ring. */ | |
1768 | if (netif_msg_rx_err(sp)) | |
1769 | printk(KERN_DEBUG "%s: RX packet postponed!\n", | |
1770 | dev->name); | |
1771 | sp->rx_ring_state |= RrPostponed; | |
1772 | break; | |
1773 | } | |
1774 | ||
1775 | if (netif_msg_rx_status(sp)) | |
1776 | printk(KERN_DEBUG " speedo_rx() status %8.8x len %d.\n", status, | |
1777 | pkt_len); | |
1778 | if ((status & (RxErrTooBig|RxOK|0x0f90)) != RxOK) { | |
1779 | if (status & RxErrTooBig) | |
1780 | printk(KERN_ERR "%s: Ethernet frame overran the Rx buffer, " | |
1781 | "status %8.8x!\n", dev->name, status); | |
1782 | else if (! (status & RxOK)) { | |
1783 | /* There was a fatal error. This *should* be impossible. */ | |
1784 | sp->stats.rx_errors++; | |
1785 | printk(KERN_ERR "%s: Anomalous event in speedo_rx(), " | |
1786 | "status %8.8x.\n", | |
1787 | dev->name, status); | |
1788 | } | |
1789 | } else { | |
1790 | struct sk_buff *skb; | |
1791 | ||
1792 | /* Check if the packet is long enough to just accept without | |
1793 | copying to a properly sized skbuff. */ | |
1794 | if (pkt_len < rx_copybreak | |
1795 | && (skb = dev_alloc_skb(pkt_len + 2)) != 0) { | |
1796 | skb->dev = dev; | |
1797 | skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ | |
1798 | /* 'skb_put()' points to the start of sk_buff data area. */ | |
1799 | pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry], | |
1800 | sizeof(struct RxFD) + pkt_len, | |
1801 | PCI_DMA_FROMDEVICE); | |
1802 | ||
1803 | #if 1 || USE_IP_CSUM | |
1804 | /* Packet is in one chunk -- we can copy + cksum. */ | |
689be439 | 1805 | eth_copy_and_sum(skb, sp->rx_skbuff[entry]->data, pkt_len, 0); |
1da177e4 LT |
1806 | skb_put(skb, pkt_len); |
1807 | #else | |
689be439 | 1808 | memcpy(skb_put(skb, pkt_len), sp->rx_skbuff[entry]->data, |
1da177e4 LT |
1809 | pkt_len); |
1810 | #endif | |
1811 | pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry], | |
1812 | sizeof(struct RxFD) + pkt_len, | |
1813 | PCI_DMA_FROMDEVICE); | |
1814 | npkts++; | |
1815 | } else { | |
1816 | /* Pass up the already-filled skbuff. */ | |
1817 | skb = sp->rx_skbuff[entry]; | |
1818 | if (skb == NULL) { | |
1819 | printk(KERN_ERR "%s: Inconsistent Rx descriptor chain.\n", | |
1820 | dev->name); | |
1821 | break; | |
1822 | } | |
1823 | sp->rx_skbuff[entry] = NULL; | |
1824 | skb_put(skb, pkt_len); | |
1825 | npkts++; | |
1826 | sp->rx_ringp[entry] = NULL; | |
1827 | pci_unmap_single(sp->pdev, sp->rx_ring_dma[entry], | |
1828 | PKT_BUF_SZ + sizeof(struct RxFD), | |
1829 | PCI_DMA_FROMDEVICE); | |
1830 | } | |
1831 | skb->protocol = eth_type_trans(skb, dev); | |
1832 | netif_rx(skb); | |
1833 | dev->last_rx = jiffies; | |
1834 | sp->stats.rx_packets++; | |
1835 | sp->stats.rx_bytes += pkt_len; | |
1836 | } | |
1837 | entry = (++sp->cur_rx) % RX_RING_SIZE; | |
1838 | sp->rx_ring_state &= ~RrPostponed; | |
1839 | /* Refill the recently taken buffers. | |
1840 | Do it one-by-one to handle traffic bursts better. */ | |
1841 | if (alloc_ok && speedo_refill_rx_buf(dev, 0) == -1) | |
1842 | alloc_ok = 0; | |
1843 | } | |
1844 | ||
1845 | /* Try hard to refill the recently taken buffers. */ | |
1846 | speedo_refill_rx_buffers(dev, 1); | |
1847 | ||
1848 | if (npkts) | |
1849 | sp->last_rx_time = jiffies; | |
1850 | ||
1851 | return 0; | |
1852 | } | |
1853 | ||
1854 | static int | |
1855 | speedo_close(struct net_device *dev) | |
1856 | { | |
1857 | struct speedo_private *sp = netdev_priv(dev); | |
1858 | void __iomem *ioaddr = sp->regs; | |
1859 | int i; | |
1860 | ||
1861 | netdevice_stop(dev); | |
1862 | netif_stop_queue(dev); | |
1863 | ||
1864 | if (netif_msg_ifdown(sp)) | |
1865 | printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n", | |
1866 | dev->name, ioread16(ioaddr + SCBStatus)); | |
1867 | ||
1868 | /* Shut off the media monitoring timer. */ | |
1869 | del_timer_sync(&sp->timer); | |
1870 | ||
1871 | iowrite16(SCBMaskAll, ioaddr + SCBCmd); | |
1872 | ||
1873 | /* Shutting down the chip nicely fails to disable flow control. So.. */ | |
1874 | iowrite32(PortPartialReset, ioaddr + SCBPort); | |
1875 | ioread32(ioaddr + SCBPort); /* flush posted write */ | |
1876 | /* | |
1877 | * The chip requires a 10 microsecond quiet period. Wait here! | |
1878 | */ | |
1879 | udelay(10); | |
1880 | ||
1881 | free_irq(dev->irq, dev); | |
1882 | speedo_show_state(dev); | |
1883 | ||
1884 | /* Free all the skbuffs in the Rx and Tx queues. */ | |
1885 | for (i = 0; i < RX_RING_SIZE; i++) { | |
1886 | struct sk_buff *skb = sp->rx_skbuff[i]; | |
1887 | sp->rx_skbuff[i] = NULL; | |
1888 | /* Clear the Rx descriptors. */ | |
1889 | if (skb) { | |
1890 | pci_unmap_single(sp->pdev, | |
1891 | sp->rx_ring_dma[i], | |
1892 | PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE); | |
1893 | dev_kfree_skb(skb); | |
1894 | } | |
1895 | } | |
1896 | ||
1897 | for (i = 0; i < TX_RING_SIZE; i++) { | |
1898 | struct sk_buff *skb = sp->tx_skbuff[i]; | |
1899 | sp->tx_skbuff[i] = NULL; | |
1900 | /* Clear the Tx descriptors. */ | |
1901 | if (skb) { | |
1902 | pci_unmap_single(sp->pdev, | |
1903 | le32_to_cpu(sp->tx_ring[i].tx_buf_addr0), | |
1904 | skb->len, PCI_DMA_TODEVICE); | |
1905 | dev_kfree_skb(skb); | |
1906 | } | |
1907 | } | |
1908 | ||
1909 | /* Free multicast setting blocks. */ | |
1910 | for (i = 0; sp->mc_setup_head != NULL; i++) { | |
1911 | struct speedo_mc_block *t; | |
1912 | t = sp->mc_setup_head->next; | |
1913 | kfree(sp->mc_setup_head); | |
1914 | sp->mc_setup_head = t; | |
1915 | } | |
1916 | sp->mc_setup_tail = NULL; | |
1917 | if (netif_msg_ifdown(sp)) | |
1918 | printk(KERN_DEBUG "%s: %d multicast blocks dropped.\n", dev->name, i); | |
1919 | ||
1920 | pci_set_power_state(sp->pdev, PCI_D2); | |
1921 | ||
1922 | return 0; | |
1923 | } | |
1924 | ||
1925 | /* The Speedo-3 has an especially awkward and unusable method of getting | |
1926 | statistics out of the chip. It takes an unpredictable length of time | |
1927 | for the dump-stats command to complete. To avoid a busy-wait loop we | |
1928 | update the stats with the previous dump results, and then trigger a | |
1929 | new dump. | |
1930 | ||
1931 | Oh, and incoming frames are dropped while executing dump-stats! | |
1932 | */ | |
1933 | static struct net_device_stats * | |
1934 | speedo_get_stats(struct net_device *dev) | |
1935 | { | |
1936 | struct speedo_private *sp = netdev_priv(dev); | |
1937 | void __iomem *ioaddr = sp->regs; | |
1938 | ||
1939 | /* Update only if the previous dump finished. */ | |
1940 | if (sp->lstats->done_marker == le32_to_cpu(0xA007)) { | |
1941 | sp->stats.tx_aborted_errors += le32_to_cpu(sp->lstats->tx_coll16_errs); | |
1942 | sp->stats.tx_window_errors += le32_to_cpu(sp->lstats->tx_late_colls); | |
1943 | sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_underruns); | |
1944 | sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_lost_carrier); | |
1945 | /*sp->stats.tx_deferred += le32_to_cpu(sp->lstats->tx_deferred);*/ | |
1946 | sp->stats.collisions += le32_to_cpu(sp->lstats->tx_total_colls); | |
1947 | sp->stats.rx_crc_errors += le32_to_cpu(sp->lstats->rx_crc_errs); | |
1948 | sp->stats.rx_frame_errors += le32_to_cpu(sp->lstats->rx_align_errs); | |
1949 | sp->stats.rx_over_errors += le32_to_cpu(sp->lstats->rx_resource_errs); | |
1950 | sp->stats.rx_fifo_errors += le32_to_cpu(sp->lstats->rx_overrun_errs); | |
1951 | sp->stats.rx_length_errors += le32_to_cpu(sp->lstats->rx_runt_errs); | |
1952 | sp->lstats->done_marker = 0x0000; | |
1953 | if (netif_running(dev)) { | |
1954 | unsigned long flags; | |
1955 | /* Take a spinlock to make wait_for_cmd_done and sending the | |
1956 | command atomic. --SAW */ | |
1957 | spin_lock_irqsave(&sp->lock, flags); | |
1958 | wait_for_cmd_done(dev, sp); | |
1959 | iowrite8(CUDumpStats, ioaddr + SCBCmd); | |
1960 | spin_unlock_irqrestore(&sp->lock, flags); | |
1961 | } | |
1962 | } | |
1963 | return &sp->stats; | |
1964 | } | |
1965 | ||
1966 | static void speedo_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | |
1967 | { | |
1968 | struct speedo_private *sp = netdev_priv(dev); | |
1969 | strncpy(info->driver, "eepro100", sizeof(info->driver)-1); | |
1970 | strncpy(info->version, version, sizeof(info->version)-1); | |
1971 | if (sp->pdev) | |
1972 | strcpy(info->bus_info, pci_name(sp->pdev)); | |
1973 | } | |
1974 | ||
1975 | static int speedo_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | |
1976 | { | |
1977 | struct speedo_private *sp = netdev_priv(dev); | |
1978 | spin_lock_irq(&sp->lock); | |
1979 | mii_ethtool_gset(&sp->mii_if, ecmd); | |
1980 | spin_unlock_irq(&sp->lock); | |
1981 | return 0; | |
1982 | } | |
1983 | ||
1984 | static int speedo_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | |
1985 | { | |
1986 | struct speedo_private *sp = netdev_priv(dev); | |
1987 | int res; | |
1988 | spin_lock_irq(&sp->lock); | |
1989 | res = mii_ethtool_sset(&sp->mii_if, ecmd); | |
1990 | spin_unlock_irq(&sp->lock); | |
1991 | return res; | |
1992 | } | |
1993 | ||
1994 | static int speedo_nway_reset(struct net_device *dev) | |
1995 | { | |
1996 | struct speedo_private *sp = netdev_priv(dev); | |
1997 | return mii_nway_restart(&sp->mii_if); | |
1998 | } | |
1999 | ||
2000 | static u32 speedo_get_link(struct net_device *dev) | |
2001 | { | |
2002 | struct speedo_private *sp = netdev_priv(dev); | |
2003 | return mii_link_ok(&sp->mii_if); | |
2004 | } | |
2005 | ||
2006 | static u32 speedo_get_msglevel(struct net_device *dev) | |
2007 | { | |
2008 | struct speedo_private *sp = netdev_priv(dev); | |
2009 | return sp->msg_enable; | |
2010 | } | |
2011 | ||
2012 | static void speedo_set_msglevel(struct net_device *dev, u32 v) | |
2013 | { | |
2014 | struct speedo_private *sp = netdev_priv(dev); | |
2015 | sp->msg_enable = v; | |
2016 | } | |
2017 | ||
2018 | static struct ethtool_ops ethtool_ops = { | |
2019 | .get_drvinfo = speedo_get_drvinfo, | |
2020 | .get_settings = speedo_get_settings, | |
2021 | .set_settings = speedo_set_settings, | |
2022 | .nway_reset = speedo_nway_reset, | |
2023 | .get_link = speedo_get_link, | |
2024 | .get_msglevel = speedo_get_msglevel, | |
2025 | .set_msglevel = speedo_set_msglevel, | |
2026 | }; | |
2027 | ||
2028 | static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | |
2029 | { | |
2030 | struct speedo_private *sp = netdev_priv(dev); | |
2031 | struct mii_ioctl_data *data = if_mii(rq); | |
2032 | int phy = sp->phy[0] & 0x1f; | |
2033 | int saved_acpi; | |
2034 | int t; | |
2035 | ||
2036 | switch(cmd) { | |
2037 | case SIOCGMIIPHY: /* Get address of MII PHY in use. */ | |
2038 | data->phy_id = phy; | |
2039 | ||
2040 | case SIOCGMIIREG: /* Read MII PHY register. */ | |
2041 | /* FIXME: these operations need to be serialized with MDIO | |
2042 | access from the timeout handler. | |
2043 | They are currently serialized only with MDIO access from the | |
2044 | timer routine. 2000/05/09 SAW */ | |
2045 | saved_acpi = pci_set_power_state(sp->pdev, PCI_D0); | |
2046 | t = del_timer_sync(&sp->timer); | |
2047 | data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f); | |
2048 | if (t) | |
2049 | add_timer(&sp->timer); /* may be set to the past --SAW */ | |
2050 | pci_set_power_state(sp->pdev, saved_acpi); | |
2051 | return 0; | |
2052 | ||
2053 | case SIOCSMIIREG: /* Write MII PHY register. */ | |
2054 | if (!capable(CAP_NET_ADMIN)) | |
2055 | return -EPERM; | |
2056 | saved_acpi = pci_set_power_state(sp->pdev, PCI_D0); | |
2057 | t = del_timer_sync(&sp->timer); | |
2058 | mdio_write(dev, data->phy_id, data->reg_num, data->val_in); | |
2059 | if (t) | |
2060 | add_timer(&sp->timer); /* may be set to the past --SAW */ | |
2061 | pci_set_power_state(sp->pdev, saved_acpi); | |
2062 | return 0; | |
2063 | default: | |
2064 | return -EOPNOTSUPP; | |
2065 | } | |
2066 | } | |
2067 | ||
2068 | /* Set or clear the multicast filter for this adaptor. | |
2069 | This is very ugly with Intel chips -- we usually have to execute an | |
2070 | entire configuration command, plus process a multicast command. | |
2071 | This is complicated. We must put a large configuration command and | |
2072 | an arbitrarily-sized multicast command in the transmit list. | |
2073 | To minimize the disruption -- the previous command might have already | |
2074 | loaded the link -- we convert the current command block, normally a Tx | |
2075 | command, into a no-op and link it to the new command. | |
2076 | */ | |
2077 | static void set_rx_mode(struct net_device *dev) | |
2078 | { | |
2079 | struct speedo_private *sp = netdev_priv(dev); | |
2080 | void __iomem *ioaddr = sp->regs; | |
2081 | struct descriptor *last_cmd; | |
2082 | char new_rx_mode; | |
2083 | unsigned long flags; | |
2084 | int entry, i; | |
2085 | ||
2086 | if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ | |
2087 | new_rx_mode = 3; | |
2088 | } else if ((dev->flags & IFF_ALLMULTI) || | |
2089 | dev->mc_count > multicast_filter_limit) { | |
2090 | new_rx_mode = 1; | |
2091 | } else | |
2092 | new_rx_mode = 0; | |
2093 | ||
2094 | if (netif_msg_rx_status(sp)) | |
2095 | printk(KERN_DEBUG "%s: set_rx_mode %d -> %d\n", dev->name, | |
2096 | sp->rx_mode, new_rx_mode); | |
2097 | ||
2098 | if ((int)(sp->cur_tx - sp->dirty_tx) > TX_RING_SIZE - TX_MULTICAST_SIZE) { | |
2099 | /* The Tx ring is full -- don't add anything! Hope the mode will be | |
2100 | * set again later. */ | |
2101 | sp->rx_mode = -1; | |
2102 | return; | |
2103 | } | |
2104 | ||
2105 | if (new_rx_mode != sp->rx_mode) { | |
2106 | u8 *config_cmd_data; | |
2107 | ||
2108 | spin_lock_irqsave(&sp->lock, flags); | |
2109 | entry = sp->cur_tx++ % TX_RING_SIZE; | |
2110 | last_cmd = sp->last_cmd; | |
2111 | sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry]; | |
2112 | ||
2113 | sp->tx_skbuff[entry] = NULL; /* Redundant. */ | |
2114 | sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdConfigure); | |
2115 | sp->tx_ring[entry].link = | |
2116 | cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE)); | |
2117 | config_cmd_data = (void *)&sp->tx_ring[entry].tx_desc_addr; | |
2118 | /* Construct a full CmdConfig frame. */ | |
2119 | memcpy(config_cmd_data, i82558_config_cmd, CONFIG_DATA_SIZE); | |
2120 | config_cmd_data[1] = (txfifo << 4) | rxfifo; | |
2121 | config_cmd_data[4] = rxdmacount; | |
2122 | config_cmd_data[5] = txdmacount + 0x80; | |
2123 | config_cmd_data[15] |= (new_rx_mode & 2) ? 1 : 0; | |
2124 | /* 0x80 doesn't disable FC 0x84 does. | |
2125 | Disable Flow control since we are not ACK-ing any FC interrupts | |
2126 | for now. --Dragan */ | |
2127 | config_cmd_data[19] = 0x84; | |
2128 | config_cmd_data[19] |= sp->mii_if.full_duplex ? 0x40 : 0; | |
2129 | config_cmd_data[21] = (new_rx_mode & 1) ? 0x0D : 0x05; | |
2130 | if (sp->phy[0] & 0x8000) { /* Use the AUI port instead. */ | |
2131 | config_cmd_data[15] |= 0x80; | |
2132 | config_cmd_data[8] = 0; | |
2133 | } | |
2134 | /* Trigger the command unit resume. */ | |
2135 | wait_for_cmd_done(dev, sp); | |
2136 | clear_suspend(last_cmd); | |
2137 | iowrite8(CUResume, ioaddr + SCBCmd); | |
2138 | if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) { | |
2139 | netif_stop_queue(dev); | |
2140 | sp->tx_full = 1; | |
2141 | } | |
2142 | spin_unlock_irqrestore(&sp->lock, flags); | |
2143 | } | |
2144 | ||
2145 | if (new_rx_mode == 0 && dev->mc_count < 4) { | |
2146 | /* The simple case of 0-3 multicast list entries occurs often, and | |
2147 | fits within one tx_ring[] entry. */ | |
2148 | struct dev_mc_list *mclist; | |
2149 | u16 *setup_params, *eaddrs; | |
2150 | ||
2151 | spin_lock_irqsave(&sp->lock, flags); | |
2152 | entry = sp->cur_tx++ % TX_RING_SIZE; | |
2153 | last_cmd = sp->last_cmd; | |
2154 | sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry]; | |
2155 | ||
2156 | sp->tx_skbuff[entry] = NULL; | |
2157 | sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdMulticastList); | |
2158 | sp->tx_ring[entry].link = | |
2159 | cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE)); | |
2160 | sp->tx_ring[entry].tx_desc_addr = 0; /* Really MC list count. */ | |
2161 | setup_params = (u16 *)&sp->tx_ring[entry].tx_desc_addr; | |
2162 | *setup_params++ = cpu_to_le16(dev->mc_count*6); | |
2163 | /* Fill in the multicast addresses. */ | |
2164 | for (i = 0, mclist = dev->mc_list; i < dev->mc_count; | |
2165 | i++, mclist = mclist->next) { | |
2166 | eaddrs = (u16 *)mclist->dmi_addr; | |
2167 | *setup_params++ = *eaddrs++; | |
2168 | *setup_params++ = *eaddrs++; | |
2169 | *setup_params++ = *eaddrs++; | |
2170 | } | |
2171 | ||
2172 | wait_for_cmd_done(dev, sp); | |
2173 | clear_suspend(last_cmd); | |
2174 | /* Immediately trigger the command unit resume. */ | |
2175 | iowrite8(CUResume, ioaddr + SCBCmd); | |
2176 | ||
2177 | if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) { | |
2178 | netif_stop_queue(dev); | |
2179 | sp->tx_full = 1; | |
2180 | } | |
2181 | spin_unlock_irqrestore(&sp->lock, flags); | |
2182 | } else if (new_rx_mode == 0) { | |
2183 | struct dev_mc_list *mclist; | |
2184 | u16 *setup_params, *eaddrs; | |
2185 | struct speedo_mc_block *mc_blk; | |
2186 | struct descriptor *mc_setup_frm; | |
2187 | int i; | |
2188 | ||
2189 | mc_blk = kmalloc(sizeof(*mc_blk) + 2 + multicast_filter_limit*6, | |
2190 | GFP_ATOMIC); | |
2191 | if (mc_blk == NULL) { | |
2192 | printk(KERN_ERR "%s: Failed to allocate a setup frame.\n", | |
2193 | dev->name); | |
2194 | sp->rx_mode = -1; /* We failed, try again. */ | |
2195 | return; | |
2196 | } | |
2197 | mc_blk->next = NULL; | |
2198 | mc_blk->len = 2 + multicast_filter_limit*6; | |
2199 | mc_blk->frame_dma = | |
2200 | pci_map_single(sp->pdev, &mc_blk->frame, mc_blk->len, | |
2201 | PCI_DMA_TODEVICE); | |
2202 | mc_setup_frm = &mc_blk->frame; | |
2203 | ||
2204 | /* Fill the setup frame. */ | |
2205 | if (netif_msg_ifup(sp)) | |
2206 | printk(KERN_DEBUG "%s: Constructing a setup frame at %p.\n", | |
2207 | dev->name, mc_setup_frm); | |
2208 | mc_setup_frm->cmd_status = | |
2209 | cpu_to_le32(CmdSuspend | CmdIntr | CmdMulticastList); | |
2210 | /* Link set below. */ | |
2211 | setup_params = (u16 *)&mc_setup_frm->params; | |
2212 | *setup_params++ = cpu_to_le16(dev->mc_count*6); | |
2213 | /* Fill in the multicast addresses. */ | |
2214 | for (i = 0, mclist = dev->mc_list; i < dev->mc_count; | |
2215 | i++, mclist = mclist->next) { | |
2216 | eaddrs = (u16 *)mclist->dmi_addr; | |
2217 | *setup_params++ = *eaddrs++; | |
2218 | *setup_params++ = *eaddrs++; | |
2219 | *setup_params++ = *eaddrs++; | |
2220 | } | |
2221 | ||
2222 | /* Disable interrupts while playing with the Tx Cmd list. */ | |
2223 | spin_lock_irqsave(&sp->lock, flags); | |
2224 | ||
2225 | if (sp->mc_setup_tail) | |
2226 | sp->mc_setup_tail->next = mc_blk; | |
2227 | else | |
2228 | sp->mc_setup_head = mc_blk; | |
2229 | sp->mc_setup_tail = mc_blk; | |
2230 | mc_blk->tx = sp->cur_tx; | |
2231 | ||
2232 | entry = sp->cur_tx++ % TX_RING_SIZE; | |
2233 | last_cmd = sp->last_cmd; | |
2234 | sp->last_cmd = mc_setup_frm; | |
2235 | ||
2236 | /* Change the command to a NoOp, pointing to the CmdMulti command. */ | |
2237 | sp->tx_skbuff[entry] = NULL; | |
2238 | sp->tx_ring[entry].status = cpu_to_le32(CmdNOp); | |
2239 | sp->tx_ring[entry].link = cpu_to_le32(mc_blk->frame_dma); | |
2240 | ||
2241 | /* Set the link in the setup frame. */ | |
2242 | mc_setup_frm->link = | |
2243 | cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE)); | |
2244 | ||
2245 | pci_dma_sync_single_for_device(sp->pdev, mc_blk->frame_dma, | |
2246 | mc_blk->len, PCI_DMA_TODEVICE); | |
2247 | ||
2248 | wait_for_cmd_done(dev, sp); | |
2249 | clear_suspend(last_cmd); | |
2250 | /* Immediately trigger the command unit resume. */ | |
2251 | iowrite8(CUResume, ioaddr + SCBCmd); | |
2252 | ||
2253 | if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) { | |
2254 | netif_stop_queue(dev); | |
2255 | sp->tx_full = 1; | |
2256 | } | |
2257 | spin_unlock_irqrestore(&sp->lock, flags); | |
2258 | ||
2259 | if (netif_msg_rx_status(sp)) | |
2260 | printk(" CmdMCSetup frame length %d in entry %d.\n", | |
2261 | dev->mc_count, entry); | |
2262 | } | |
2263 | ||
2264 | sp->rx_mode = new_rx_mode; | |
2265 | } | |
6aa20a22 | 2266 | |
1da177e4 LT |
2267 | #ifdef CONFIG_PM |
2268 | static int eepro100_suspend(struct pci_dev *pdev, pm_message_t state) | |
2269 | { | |
2270 | struct net_device *dev = pci_get_drvdata (pdev); | |
2271 | struct speedo_private *sp = netdev_priv(dev); | |
2272 | void __iomem *ioaddr = sp->regs; | |
2273 | ||
2274 | pci_save_state(pdev); | |
2275 | ||
2276 | if (!netif_running(dev)) | |
2277 | return 0; | |
6aa20a22 | 2278 | |
1da177e4 LT |
2279 | del_timer_sync(&sp->timer); |
2280 | ||
2281 | netif_device_detach(dev); | |
2282 | iowrite32(PortPartialReset, ioaddr + SCBPort); | |
6aa20a22 | 2283 | |
1da177e4 LT |
2284 | /* XXX call pci_set_power_state ()? */ |
2285 | pci_disable_device(pdev); | |
2286 | pci_set_power_state (pdev, PCI_D3hot); | |
2287 | return 0; | |
2288 | } | |
2289 | ||
2290 | static int eepro100_resume(struct pci_dev *pdev) | |
2291 | { | |
2292 | struct net_device *dev = pci_get_drvdata (pdev); | |
2293 | struct speedo_private *sp = netdev_priv(dev); | |
2294 | void __iomem *ioaddr = sp->regs; | |
2295 | ||
2296 | pci_set_power_state(pdev, PCI_D0); | |
2297 | pci_restore_state(pdev); | |
2298 | pci_enable_device(pdev); | |
2299 | pci_set_master(pdev); | |
2300 | ||
2301 | if (!netif_running(dev)) | |
2302 | return 0; | |
2303 | ||
2304 | /* I'm absolutely uncertain if this part of code may work. | |
2305 | The problems are: | |
2306 | - correct hardware reinitialization; | |
2307 | - correct driver behavior between different steps of the | |
2308 | reinitialization; | |
2309 | - serialization with other driver calls. | |
2310 | 2000/03/08 SAW */ | |
2311 | iowrite16(SCBMaskAll, ioaddr + SCBCmd); | |
2312 | speedo_resume(dev); | |
2313 | netif_device_attach(dev); | |
2314 | sp->rx_mode = -1; | |
2315 | sp->flow_ctrl = sp->partner = 0; | |
2316 | set_rx_mode(dev); | |
2317 | sp->timer.expires = RUN_AT(2*HZ); | |
2318 | add_timer(&sp->timer); | |
2319 | return 0; | |
2320 | } | |
2321 | #endif /* CONFIG_PM */ | |
2322 | ||
2323 | static void __devexit eepro100_remove_one (struct pci_dev *pdev) | |
2324 | { | |
2325 | struct net_device *dev = pci_get_drvdata (pdev); | |
2326 | struct speedo_private *sp = netdev_priv(dev); | |
6aa20a22 | 2327 | |
1da177e4 LT |
2328 | unregister_netdev(dev); |
2329 | ||
2330 | release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); | |
2331 | release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); | |
2332 | ||
2333 | pci_iounmap(pdev, sp->regs); | |
2334 | pci_free_consistent(pdev, TX_RING_SIZE * sizeof(struct TxFD) | |
2335 | + sizeof(struct speedo_stats), | |
2336 | sp->tx_ring, sp->tx_ring_dma); | |
2337 | pci_disable_device(pdev); | |
2338 | free_netdev(dev); | |
2339 | } | |
6aa20a22 | 2340 | |
1da177e4 LT |
2341 | static struct pci_device_id eepro100_pci_tbl[] = { |
2342 | { PCI_VENDOR_ID_INTEL, 0x1229, PCI_ANY_ID, PCI_ANY_ID, }, | |
2343 | { PCI_VENDOR_ID_INTEL, 0x1209, PCI_ANY_ID, PCI_ANY_ID, }, | |
2344 | { PCI_VENDOR_ID_INTEL, 0x1029, PCI_ANY_ID, PCI_ANY_ID, }, | |
2345 | { PCI_VENDOR_ID_INTEL, 0x1030, PCI_ANY_ID, PCI_ANY_ID, }, | |
2346 | { PCI_VENDOR_ID_INTEL, 0x1031, PCI_ANY_ID, PCI_ANY_ID, }, | |
2347 | { PCI_VENDOR_ID_INTEL, 0x1032, PCI_ANY_ID, PCI_ANY_ID, }, | |
2348 | { PCI_VENDOR_ID_INTEL, 0x1033, PCI_ANY_ID, PCI_ANY_ID, }, | |
2349 | { PCI_VENDOR_ID_INTEL, 0x1034, PCI_ANY_ID, PCI_ANY_ID, }, | |
2350 | { PCI_VENDOR_ID_INTEL, 0x1035, PCI_ANY_ID, PCI_ANY_ID, }, | |
2351 | { PCI_VENDOR_ID_INTEL, 0x1036, PCI_ANY_ID, PCI_ANY_ID, }, | |
2352 | { PCI_VENDOR_ID_INTEL, 0x1037, PCI_ANY_ID, PCI_ANY_ID, }, | |
2353 | { PCI_VENDOR_ID_INTEL, 0x1038, PCI_ANY_ID, PCI_ANY_ID, }, | |
2354 | { PCI_VENDOR_ID_INTEL, 0x1039, PCI_ANY_ID, PCI_ANY_ID, }, | |
2355 | { PCI_VENDOR_ID_INTEL, 0x103A, PCI_ANY_ID, PCI_ANY_ID, }, | |
2356 | { PCI_VENDOR_ID_INTEL, 0x103B, PCI_ANY_ID, PCI_ANY_ID, }, | |
2357 | { PCI_VENDOR_ID_INTEL, 0x103C, PCI_ANY_ID, PCI_ANY_ID, }, | |
2358 | { PCI_VENDOR_ID_INTEL, 0x103D, PCI_ANY_ID, PCI_ANY_ID, }, | |
2359 | { PCI_VENDOR_ID_INTEL, 0x103E, PCI_ANY_ID, PCI_ANY_ID, }, | |
2360 | { PCI_VENDOR_ID_INTEL, 0x1050, PCI_ANY_ID, PCI_ANY_ID, }, | |
2361 | { PCI_VENDOR_ID_INTEL, 0x1059, PCI_ANY_ID, PCI_ANY_ID, }, | |
2362 | { PCI_VENDOR_ID_INTEL, 0x1227, PCI_ANY_ID, PCI_ANY_ID, }, | |
2363 | { PCI_VENDOR_ID_INTEL, 0x2449, PCI_ANY_ID, PCI_ANY_ID, }, | |
2364 | { PCI_VENDOR_ID_INTEL, 0x2459, PCI_ANY_ID, PCI_ANY_ID, }, | |
2365 | { PCI_VENDOR_ID_INTEL, 0x245D, PCI_ANY_ID, PCI_ANY_ID, }, | |
2366 | { PCI_VENDOR_ID_INTEL, 0x5200, PCI_ANY_ID, PCI_ANY_ID, }, | |
2367 | { PCI_VENDOR_ID_INTEL, 0x5201, PCI_ANY_ID, PCI_ANY_ID, }, | |
2368 | { 0,} | |
2369 | }; | |
2370 | MODULE_DEVICE_TABLE(pci, eepro100_pci_tbl); | |
6aa20a22 | 2371 | |
1da177e4 LT |
2372 | static struct pci_driver eepro100_driver = { |
2373 | .name = "eepro100", | |
2374 | .id_table = eepro100_pci_tbl, | |
2375 | .probe = eepro100_init_one, | |
2376 | .remove = __devexit_p(eepro100_remove_one), | |
2377 | #ifdef CONFIG_PM | |
2378 | .suspend = eepro100_suspend, | |
2379 | .resume = eepro100_resume, | |
2380 | #endif /* CONFIG_PM */ | |
2381 | }; | |
2382 | ||
2383 | static int __init eepro100_init_module(void) | |
2384 | { | |
2385 | #ifdef MODULE | |
2386 | printk(version); | |
2387 | #endif | |
29917620 | 2388 | return pci_register_driver(&eepro100_driver); |
1da177e4 LT |
2389 | } |
2390 | ||
2391 | static void __exit eepro100_cleanup_module(void) | |
2392 | { | |
2393 | pci_unregister_driver(&eepro100_driver); | |
2394 | } | |
2395 | ||
2396 | module_init(eepro100_init_module); | |
2397 | module_exit(eepro100_cleanup_module); | |
6aa20a22 | 2398 | |
1da177e4 LT |
2399 | /* |
2400 | * Local variables: | |
2401 | * compile-command: "gcc -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c eepro100.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`" | |
2402 | * c-indent-level: 4 | |
2403 | * c-basic-offset: 4 | |
2404 | * tab-width: 4 | |
2405 | * End: | |
2406 | */ |