]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Implement CPU time clocks for the POSIX clock interface. | |
3 | */ | |
4 | ||
5 | #include <linux/sched.h> | |
6 | #include <linux/posix-timers.h> | |
1da177e4 | 7 | #include <linux/errno.h> |
f8bd2258 RZ |
8 | #include <linux/math64.h> |
9 | #include <asm/uaccess.h> | |
bb34d92f | 10 | #include <linux/kernel_stat.h> |
3f0a525e | 11 | #include <trace/events/timer.h> |
1da177e4 | 12 | |
f06febc9 | 13 | /* |
f55db609 SG |
14 | * Called after updating RLIMIT_CPU to run cpu timer and update |
15 | * tsk->signal->cputime_expires expiration cache if necessary. Needs | |
16 | * siglock protection since other code may update expiration cache as | |
17 | * well. | |
f06febc9 | 18 | */ |
5ab46b34 | 19 | void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) |
f06febc9 | 20 | { |
42c4ab41 | 21 | cputime_t cputime = secs_to_cputime(rlim_new); |
f06febc9 | 22 | |
5ab46b34 JS |
23 | spin_lock_irq(&task->sighand->siglock); |
24 | set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); | |
25 | spin_unlock_irq(&task->sighand->siglock); | |
f06febc9 FM |
26 | } |
27 | ||
a924b04d | 28 | static int check_clock(const clockid_t which_clock) |
1da177e4 LT |
29 | { |
30 | int error = 0; | |
31 | struct task_struct *p; | |
32 | const pid_t pid = CPUCLOCK_PID(which_clock); | |
33 | ||
34 | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) | |
35 | return -EINVAL; | |
36 | ||
37 | if (pid == 0) | |
38 | return 0; | |
39 | ||
c0deae8c | 40 | rcu_read_lock(); |
8dc86af0 | 41 | p = find_task_by_vpid(pid); |
bac0abd6 | 42 | if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? |
c0deae8c | 43 | same_thread_group(p, current) : has_group_leader_pid(p))) { |
1da177e4 LT |
44 | error = -EINVAL; |
45 | } | |
c0deae8c | 46 | rcu_read_unlock(); |
1da177e4 LT |
47 | |
48 | return error; | |
49 | } | |
50 | ||
51 | static inline union cpu_time_count | |
a924b04d | 52 | timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) |
1da177e4 LT |
53 | { |
54 | union cpu_time_count ret; | |
55 | ret.sched = 0; /* high half always zero when .cpu used */ | |
56 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
ee500f27 | 57 | ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; |
1da177e4 LT |
58 | } else { |
59 | ret.cpu = timespec_to_cputime(tp); | |
60 | } | |
61 | return ret; | |
62 | } | |
63 | ||
a924b04d | 64 | static void sample_to_timespec(const clockid_t which_clock, |
1da177e4 LT |
65 | union cpu_time_count cpu, |
66 | struct timespec *tp) | |
67 | { | |
f8bd2258 RZ |
68 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) |
69 | *tp = ns_to_timespec(cpu.sched); | |
70 | else | |
1da177e4 | 71 | cputime_to_timespec(cpu.cpu, tp); |
1da177e4 LT |
72 | } |
73 | ||
a924b04d | 74 | static inline int cpu_time_before(const clockid_t which_clock, |
1da177e4 LT |
75 | union cpu_time_count now, |
76 | union cpu_time_count then) | |
77 | { | |
78 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
79 | return now.sched < then.sched; | |
80 | } else { | |
64861634 | 81 | return now.cpu < then.cpu; |
1da177e4 LT |
82 | } |
83 | } | |
a924b04d | 84 | static inline void cpu_time_add(const clockid_t which_clock, |
1da177e4 LT |
85 | union cpu_time_count *acc, |
86 | union cpu_time_count val) | |
87 | { | |
88 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
89 | acc->sched += val.sched; | |
90 | } else { | |
64861634 | 91 | acc->cpu += val.cpu; |
1da177e4 LT |
92 | } |
93 | } | |
a924b04d | 94 | static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, |
1da177e4 LT |
95 | union cpu_time_count a, |
96 | union cpu_time_count b) | |
97 | { | |
98 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
99 | a.sched -= b.sched; | |
100 | } else { | |
64861634 | 101 | a.cpu -= b.cpu; |
1da177e4 LT |
102 | } |
103 | return a; | |
104 | } | |
105 | ||
106 | /* | |
107 | * Update expiry time from increment, and increase overrun count, | |
108 | * given the current clock sample. | |
109 | */ | |
7a4ed937 | 110 | static void bump_cpu_timer(struct k_itimer *timer, |
1da177e4 LT |
111 | union cpu_time_count now) |
112 | { | |
113 | int i; | |
114 | ||
115 | if (timer->it.cpu.incr.sched == 0) | |
116 | return; | |
117 | ||
118 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | |
119 | unsigned long long delta, incr; | |
120 | ||
121 | if (now.sched < timer->it.cpu.expires.sched) | |
122 | return; | |
123 | incr = timer->it.cpu.incr.sched; | |
124 | delta = now.sched + incr - timer->it.cpu.expires.sched; | |
125 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | |
126 | for (i = 0; incr < delta - incr; i++) | |
127 | incr = incr << 1; | |
128 | for (; i >= 0; incr >>= 1, i--) { | |
7a4ed937 | 129 | if (delta < incr) |
1da177e4 LT |
130 | continue; |
131 | timer->it.cpu.expires.sched += incr; | |
132 | timer->it_overrun += 1 << i; | |
133 | delta -= incr; | |
134 | } | |
135 | } else { | |
136 | cputime_t delta, incr; | |
137 | ||
64861634 | 138 | if (now.cpu < timer->it.cpu.expires.cpu) |
1da177e4 LT |
139 | return; |
140 | incr = timer->it.cpu.incr.cpu; | |
64861634 | 141 | delta = now.cpu + incr - timer->it.cpu.expires.cpu; |
1da177e4 | 142 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
64861634 MS |
143 | for (i = 0; incr < delta - incr; i++) |
144 | incr += incr; | |
145 | for (; i >= 0; incr = incr >> 1, i--) { | |
146 | if (delta < incr) | |
1da177e4 | 147 | continue; |
64861634 | 148 | timer->it.cpu.expires.cpu += incr; |
1da177e4 | 149 | timer->it_overrun += 1 << i; |
64861634 | 150 | delta -= incr; |
1da177e4 LT |
151 | } |
152 | } | |
153 | } | |
154 | ||
155 | static inline cputime_t prof_ticks(struct task_struct *p) | |
156 | { | |
64861634 | 157 | return p->utime + p->stime; |
1da177e4 LT |
158 | } |
159 | static inline cputime_t virt_ticks(struct task_struct *p) | |
160 | { | |
161 | return p->utime; | |
162 | } | |
1da177e4 | 163 | |
bc2c8ea4 TG |
164 | static int |
165 | posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) | |
1da177e4 LT |
166 | { |
167 | int error = check_clock(which_clock); | |
168 | if (!error) { | |
169 | tp->tv_sec = 0; | |
170 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | |
171 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
172 | /* | |
173 | * If sched_clock is using a cycle counter, we | |
174 | * don't have any idea of its true resolution | |
175 | * exported, but it is much more than 1s/HZ. | |
176 | */ | |
177 | tp->tv_nsec = 1; | |
178 | } | |
179 | } | |
180 | return error; | |
181 | } | |
182 | ||
bc2c8ea4 TG |
183 | static int |
184 | posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) | |
1da177e4 LT |
185 | { |
186 | /* | |
187 | * You can never reset a CPU clock, but we check for other errors | |
188 | * in the call before failing with EPERM. | |
189 | */ | |
190 | int error = check_clock(which_clock); | |
191 | if (error == 0) { | |
192 | error = -EPERM; | |
193 | } | |
194 | return error; | |
195 | } | |
196 | ||
197 | ||
198 | /* | |
199 | * Sample a per-thread clock for the given task. | |
200 | */ | |
a924b04d | 201 | static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, |
1da177e4 LT |
202 | union cpu_time_count *cpu) |
203 | { | |
204 | switch (CPUCLOCK_WHICH(which_clock)) { | |
205 | default: | |
206 | return -EINVAL; | |
207 | case CPUCLOCK_PROF: | |
208 | cpu->cpu = prof_ticks(p); | |
209 | break; | |
210 | case CPUCLOCK_VIRT: | |
211 | cpu->cpu = virt_ticks(p); | |
212 | break; | |
213 | case CPUCLOCK_SCHED: | |
c5f8d995 | 214 | cpu->sched = task_sched_runtime(p); |
1da177e4 LT |
215 | break; |
216 | } | |
217 | return 0; | |
218 | } | |
219 | ||
4cd4c1b4 PZ |
220 | void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) |
221 | { | |
bfac7009 | 222 | struct signal_struct *sig = tsk->signal; |
4cd4c1b4 PZ |
223 | struct task_struct *t; |
224 | ||
bfac7009 ON |
225 | times->utime = sig->utime; |
226 | times->stime = sig->stime; | |
227 | times->sum_exec_runtime = sig->sum_sched_runtime; | |
4cd4c1b4 PZ |
228 | |
229 | rcu_read_lock(); | |
bfac7009 ON |
230 | /* make sure we can trust tsk->thread_group list */ |
231 | if (!likely(pid_alive(tsk))) | |
4cd4c1b4 PZ |
232 | goto out; |
233 | ||
4cd4c1b4 PZ |
234 | t = tsk; |
235 | do { | |
64861634 MS |
236 | times->utime += t->utime; |
237 | times->stime += t->stime; | |
d670ec13 | 238 | times->sum_exec_runtime += task_sched_runtime(t); |
bfac7009 | 239 | } while_each_thread(tsk, t); |
4cd4c1b4 PZ |
240 | out: |
241 | rcu_read_unlock(); | |
242 | } | |
243 | ||
4da94d49 PZ |
244 | static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b) |
245 | { | |
64861634 | 246 | if (b->utime > a->utime) |
4da94d49 PZ |
247 | a->utime = b->utime; |
248 | ||
64861634 | 249 | if (b->stime > a->stime) |
4da94d49 PZ |
250 | a->stime = b->stime; |
251 | ||
252 | if (b->sum_exec_runtime > a->sum_exec_runtime) | |
253 | a->sum_exec_runtime = b->sum_exec_runtime; | |
254 | } | |
255 | ||
256 | void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) | |
257 | { | |
258 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | |
259 | struct task_cputime sum; | |
260 | unsigned long flags; | |
261 | ||
4da94d49 | 262 | if (!cputimer->running) { |
4da94d49 PZ |
263 | /* |
264 | * The POSIX timer interface allows for absolute time expiry | |
265 | * values through the TIMER_ABSTIME flag, therefore we have | |
266 | * to synchronize the timer to the clock every time we start | |
267 | * it. | |
268 | */ | |
269 | thread_group_cputime(tsk, &sum); | |
3cfef952 | 270 | raw_spin_lock_irqsave(&cputimer->lock, flags); |
bcd5cff7 | 271 | cputimer->running = 1; |
4da94d49 | 272 | update_gt_cputime(&cputimer->cputime, &sum); |
bcd5cff7 | 273 | } else |
3cfef952 | 274 | raw_spin_lock_irqsave(&cputimer->lock, flags); |
4da94d49 | 275 | *times = cputimer->cputime; |
ee30a7b2 | 276 | raw_spin_unlock_irqrestore(&cputimer->lock, flags); |
4da94d49 PZ |
277 | } |
278 | ||
1da177e4 LT |
279 | /* |
280 | * Sample a process (thread group) clock for the given group_leader task. | |
281 | * Must be called with tasklist_lock held for reading. | |
1da177e4 | 282 | */ |
bb34d92f FM |
283 | static int cpu_clock_sample_group(const clockid_t which_clock, |
284 | struct task_struct *p, | |
285 | union cpu_time_count *cpu) | |
1da177e4 | 286 | { |
f06febc9 FM |
287 | struct task_cputime cputime; |
288 | ||
eccdaeaf | 289 | switch (CPUCLOCK_WHICH(which_clock)) { |
1da177e4 LT |
290 | default: |
291 | return -EINVAL; | |
292 | case CPUCLOCK_PROF: | |
c5f8d995 | 293 | thread_group_cputime(p, &cputime); |
64861634 | 294 | cpu->cpu = cputime.utime + cputime.stime; |
1da177e4 LT |
295 | break; |
296 | case CPUCLOCK_VIRT: | |
c5f8d995 | 297 | thread_group_cputime(p, &cputime); |
f06febc9 | 298 | cpu->cpu = cputime.utime; |
1da177e4 LT |
299 | break; |
300 | case CPUCLOCK_SCHED: | |
d670ec13 PZ |
301 | thread_group_cputime(p, &cputime); |
302 | cpu->sched = cputime.sum_exec_runtime; | |
1da177e4 LT |
303 | break; |
304 | } | |
305 | return 0; | |
306 | } | |
307 | ||
1da177e4 | 308 | |
bc2c8ea4 | 309 | static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) |
1da177e4 LT |
310 | { |
311 | const pid_t pid = CPUCLOCK_PID(which_clock); | |
312 | int error = -EINVAL; | |
313 | union cpu_time_count rtn; | |
314 | ||
315 | if (pid == 0) { | |
316 | /* | |
317 | * Special case constant value for our own clocks. | |
318 | * We don't have to do any lookup to find ourselves. | |
319 | */ | |
320 | if (CPUCLOCK_PERTHREAD(which_clock)) { | |
321 | /* | |
322 | * Sampling just ourselves we can do with no locking. | |
323 | */ | |
324 | error = cpu_clock_sample(which_clock, | |
325 | current, &rtn); | |
326 | } else { | |
327 | read_lock(&tasklist_lock); | |
328 | error = cpu_clock_sample_group(which_clock, | |
329 | current, &rtn); | |
330 | read_unlock(&tasklist_lock); | |
331 | } | |
332 | } else { | |
333 | /* | |
334 | * Find the given PID, and validate that the caller | |
335 | * should be able to see it. | |
336 | */ | |
337 | struct task_struct *p; | |
1f2ea083 | 338 | rcu_read_lock(); |
8dc86af0 | 339 | p = find_task_by_vpid(pid); |
1da177e4 LT |
340 | if (p) { |
341 | if (CPUCLOCK_PERTHREAD(which_clock)) { | |
bac0abd6 | 342 | if (same_thread_group(p, current)) { |
1da177e4 LT |
343 | error = cpu_clock_sample(which_clock, |
344 | p, &rtn); | |
345 | } | |
1f2ea083 PM |
346 | } else { |
347 | read_lock(&tasklist_lock); | |
d30fda35 | 348 | if (thread_group_leader(p) && p->sighand) { |
1f2ea083 PM |
349 | error = |
350 | cpu_clock_sample_group(which_clock, | |
351 | p, &rtn); | |
352 | } | |
353 | read_unlock(&tasklist_lock); | |
1da177e4 LT |
354 | } |
355 | } | |
1f2ea083 | 356 | rcu_read_unlock(); |
1da177e4 LT |
357 | } |
358 | ||
359 | if (error) | |
360 | return error; | |
361 | sample_to_timespec(which_clock, rtn, tp); | |
362 | return 0; | |
363 | } | |
364 | ||
365 | ||
366 | /* | |
367 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | |
ba5ea951 SG |
368 | * This is called from sys_timer_create() and do_cpu_nanosleep() with the |
369 | * new timer already all-zeros initialized. | |
1da177e4 | 370 | */ |
bc2c8ea4 | 371 | static int posix_cpu_timer_create(struct k_itimer *new_timer) |
1da177e4 LT |
372 | { |
373 | int ret = 0; | |
374 | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); | |
375 | struct task_struct *p; | |
376 | ||
377 | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) | |
378 | return -EINVAL; | |
379 | ||
380 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); | |
1da177e4 | 381 | |
c0deae8c | 382 | rcu_read_lock(); |
1da177e4 LT |
383 | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { |
384 | if (pid == 0) { | |
385 | p = current; | |
386 | } else { | |
8dc86af0 | 387 | p = find_task_by_vpid(pid); |
bac0abd6 | 388 | if (p && !same_thread_group(p, current)) |
1da177e4 LT |
389 | p = NULL; |
390 | } | |
391 | } else { | |
392 | if (pid == 0) { | |
393 | p = current->group_leader; | |
394 | } else { | |
8dc86af0 | 395 | p = find_task_by_vpid(pid); |
c0deae8c | 396 | if (p && !has_group_leader_pid(p)) |
1da177e4 LT |
397 | p = NULL; |
398 | } | |
399 | } | |
400 | new_timer->it.cpu.task = p; | |
401 | if (p) { | |
402 | get_task_struct(p); | |
403 | } else { | |
404 | ret = -EINVAL; | |
405 | } | |
c0deae8c | 406 | rcu_read_unlock(); |
1da177e4 LT |
407 | |
408 | return ret; | |
409 | } | |
410 | ||
411 | /* | |
412 | * Clean up a CPU-clock timer that is about to be destroyed. | |
413 | * This is called from timer deletion with the timer already locked. | |
414 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | |
415 | * and try again. (This happens when the timer is in the middle of firing.) | |
416 | */ | |
bc2c8ea4 | 417 | static int posix_cpu_timer_del(struct k_itimer *timer) |
1da177e4 LT |
418 | { |
419 | struct task_struct *p = timer->it.cpu.task; | |
108150ea | 420 | int ret = 0; |
1da177e4 | 421 | |
108150ea | 422 | if (likely(p != NULL)) { |
9465bee8 | 423 | read_lock(&tasklist_lock); |
d30fda35 | 424 | if (unlikely(p->sighand == NULL)) { |
9465bee8 LT |
425 | /* |
426 | * We raced with the reaping of the task. | |
427 | * The deletion should have cleared us off the list. | |
428 | */ | |
429 | BUG_ON(!list_empty(&timer->it.cpu.entry)); | |
430 | } else { | |
9465bee8 | 431 | spin_lock(&p->sighand->siglock); |
108150ea ON |
432 | if (timer->it.cpu.firing) |
433 | ret = TIMER_RETRY; | |
434 | else | |
435 | list_del(&timer->it.cpu.entry); | |
9465bee8 LT |
436 | spin_unlock(&p->sighand->siglock); |
437 | } | |
438 | read_unlock(&tasklist_lock); | |
108150ea ON |
439 | |
440 | if (!ret) | |
441 | put_task_struct(p); | |
1da177e4 | 442 | } |
1da177e4 | 443 | |
108150ea | 444 | return ret; |
1da177e4 LT |
445 | } |
446 | ||
447 | /* | |
448 | * Clean out CPU timers still ticking when a thread exited. The task | |
449 | * pointer is cleared, and the expiry time is replaced with the residual | |
450 | * time for later timer_gettime calls to return. | |
451 | * This must be called with the siglock held. | |
452 | */ | |
453 | static void cleanup_timers(struct list_head *head, | |
454 | cputime_t utime, cputime_t stime, | |
41b86e9c | 455 | unsigned long long sum_exec_runtime) |
1da177e4 LT |
456 | { |
457 | struct cpu_timer_list *timer, *next; | |
64861634 | 458 | cputime_t ptime = utime + stime; |
1da177e4 LT |
459 | |
460 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 | 461 | list_del_init(&timer->entry); |
64861634 MS |
462 | if (timer->expires.cpu < ptime) { |
463 | timer->expires.cpu = 0; | |
1da177e4 | 464 | } else { |
64861634 | 465 | timer->expires.cpu -= ptime; |
1da177e4 LT |
466 | } |
467 | } | |
468 | ||
469 | ++head; | |
470 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 | 471 | list_del_init(&timer->entry); |
64861634 MS |
472 | if (timer->expires.cpu < utime) { |
473 | timer->expires.cpu = 0; | |
1da177e4 | 474 | } else { |
64861634 | 475 | timer->expires.cpu -= utime; |
1da177e4 LT |
476 | } |
477 | } | |
478 | ||
479 | ++head; | |
480 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 | 481 | list_del_init(&timer->entry); |
41b86e9c | 482 | if (timer->expires.sched < sum_exec_runtime) { |
1da177e4 LT |
483 | timer->expires.sched = 0; |
484 | } else { | |
41b86e9c | 485 | timer->expires.sched -= sum_exec_runtime; |
1da177e4 LT |
486 | } |
487 | } | |
488 | } | |
489 | ||
490 | /* | |
491 | * These are both called with the siglock held, when the current thread | |
492 | * is being reaped. When the final (leader) thread in the group is reaped, | |
493 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | |
494 | */ | |
495 | void posix_cpu_timers_exit(struct task_struct *tsk) | |
496 | { | |
497 | cleanup_timers(tsk->cpu_timers, | |
41b86e9c | 498 | tsk->utime, tsk->stime, tsk->se.sum_exec_runtime); |
1da177e4 LT |
499 | |
500 | } | |
501 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | |
502 | { | |
17d42c1c | 503 | struct signal_struct *const sig = tsk->signal; |
ca531a0a | 504 | |
f06febc9 | 505 | cleanup_timers(tsk->signal->cpu_timers, |
64861634 | 506 | tsk->utime + sig->utime, tsk->stime + sig->stime, |
17d42c1c | 507 | tsk->se.sum_exec_runtime + sig->sum_sched_runtime); |
1da177e4 LT |
508 | } |
509 | ||
510 | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |
511 | { | |
512 | /* | |
513 | * That's all for this thread or process. | |
514 | * We leave our residual in expires to be reported. | |
515 | */ | |
516 | put_task_struct(timer->it.cpu.task); | |
517 | timer->it.cpu.task = NULL; | |
518 | timer->it.cpu.expires = cpu_time_sub(timer->it_clock, | |
519 | timer->it.cpu.expires, | |
520 | now); | |
521 | } | |
522 | ||
d1e3b6d1 SG |
523 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) |
524 | { | |
64861634 | 525 | return expires == 0 || expires > new_exp; |
d1e3b6d1 SG |
526 | } |
527 | ||
1da177e4 LT |
528 | /* |
529 | * Insert the timer on the appropriate list before any timers that | |
530 | * expire later. This must be called with the tasklist_lock held | |
c2873937 | 531 | * for reading, interrupts disabled and p->sighand->siglock taken. |
1da177e4 | 532 | */ |
5eb9aa64 | 533 | static void arm_timer(struct k_itimer *timer) |
1da177e4 LT |
534 | { |
535 | struct task_struct *p = timer->it.cpu.task; | |
536 | struct list_head *head, *listpos; | |
5eb9aa64 | 537 | struct task_cputime *cputime_expires; |
1da177e4 LT |
538 | struct cpu_timer_list *const nt = &timer->it.cpu; |
539 | struct cpu_timer_list *next; | |
1da177e4 | 540 | |
5eb9aa64 SG |
541 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
542 | head = p->cpu_timers; | |
543 | cputime_expires = &p->cputime_expires; | |
544 | } else { | |
545 | head = p->signal->cpu_timers; | |
546 | cputime_expires = &p->signal->cputime_expires; | |
547 | } | |
1da177e4 LT |
548 | head += CPUCLOCK_WHICH(timer->it_clock); |
549 | ||
1da177e4 | 550 | listpos = head; |
5eb9aa64 SG |
551 | list_for_each_entry(next, head, entry) { |
552 | if (cpu_time_before(timer->it_clock, nt->expires, next->expires)) | |
553 | break; | |
554 | listpos = &next->entry; | |
1da177e4 LT |
555 | } |
556 | list_add(&nt->entry, listpos); | |
557 | ||
558 | if (listpos == head) { | |
5eb9aa64 SG |
559 | union cpu_time_count *exp = &nt->expires; |
560 | ||
1da177e4 | 561 | /* |
5eb9aa64 SG |
562 | * We are the new earliest-expiring POSIX 1.b timer, hence |
563 | * need to update expiration cache. Take into account that | |
564 | * for process timers we share expiration cache with itimers | |
565 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. | |
1da177e4 LT |
566 | */ |
567 | ||
5eb9aa64 SG |
568 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
569 | case CPUCLOCK_PROF: | |
570 | if (expires_gt(cputime_expires->prof_exp, exp->cpu)) | |
571 | cputime_expires->prof_exp = exp->cpu; | |
572 | break; | |
573 | case CPUCLOCK_VIRT: | |
574 | if (expires_gt(cputime_expires->virt_exp, exp->cpu)) | |
575 | cputime_expires->virt_exp = exp->cpu; | |
576 | break; | |
577 | case CPUCLOCK_SCHED: | |
578 | if (cputime_expires->sched_exp == 0 || | |
579 | cputime_expires->sched_exp > exp->sched) | |
580 | cputime_expires->sched_exp = exp->sched; | |
581 | break; | |
1da177e4 LT |
582 | } |
583 | } | |
1da177e4 LT |
584 | } |
585 | ||
586 | /* | |
587 | * The timer is locked, fire it and arrange for its reload. | |
588 | */ | |
589 | static void cpu_timer_fire(struct k_itimer *timer) | |
590 | { | |
1f169f84 SG |
591 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
592 | /* | |
593 | * User don't want any signal. | |
594 | */ | |
595 | timer->it.cpu.expires.sched = 0; | |
596 | } else if (unlikely(timer->sigq == NULL)) { | |
1da177e4 LT |
597 | /* |
598 | * This a special case for clock_nanosleep, | |
599 | * not a normal timer from sys_timer_create. | |
600 | */ | |
601 | wake_up_process(timer->it_process); | |
602 | timer->it.cpu.expires.sched = 0; | |
603 | } else if (timer->it.cpu.incr.sched == 0) { | |
604 | /* | |
605 | * One-shot timer. Clear it as soon as it's fired. | |
606 | */ | |
607 | posix_timer_event(timer, 0); | |
608 | timer->it.cpu.expires.sched = 0; | |
609 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { | |
610 | /* | |
611 | * The signal did not get queued because the signal | |
612 | * was ignored, so we won't get any callback to | |
613 | * reload the timer. But we need to keep it | |
614 | * ticking in case the signal is deliverable next time. | |
615 | */ | |
616 | posix_cpu_timer_schedule(timer); | |
617 | } | |
618 | } | |
619 | ||
3997ad31 PZ |
620 | /* |
621 | * Sample a process (thread group) timer for the given group_leader task. | |
622 | * Must be called with tasklist_lock held for reading. | |
623 | */ | |
624 | static int cpu_timer_sample_group(const clockid_t which_clock, | |
625 | struct task_struct *p, | |
626 | union cpu_time_count *cpu) | |
627 | { | |
628 | struct task_cputime cputime; | |
629 | ||
630 | thread_group_cputimer(p, &cputime); | |
631 | switch (CPUCLOCK_WHICH(which_clock)) { | |
632 | default: | |
633 | return -EINVAL; | |
634 | case CPUCLOCK_PROF: | |
64861634 | 635 | cpu->cpu = cputime.utime + cputime.stime; |
3997ad31 PZ |
636 | break; |
637 | case CPUCLOCK_VIRT: | |
638 | cpu->cpu = cputime.utime; | |
639 | break; | |
640 | case CPUCLOCK_SCHED: | |
641 | cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p); | |
642 | break; | |
643 | } | |
644 | return 0; | |
645 | } | |
646 | ||
1da177e4 LT |
647 | /* |
648 | * Guts of sys_timer_settime for CPU timers. | |
649 | * This is called with the timer locked and interrupts disabled. | |
650 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | |
651 | * and try again. (This happens when the timer is in the middle of firing.) | |
652 | */ | |
bc2c8ea4 TG |
653 | static int posix_cpu_timer_set(struct k_itimer *timer, int flags, |
654 | struct itimerspec *new, struct itimerspec *old) | |
1da177e4 LT |
655 | { |
656 | struct task_struct *p = timer->it.cpu.task; | |
ae1a78ee | 657 | union cpu_time_count old_expires, new_expires, old_incr, val; |
1da177e4 LT |
658 | int ret; |
659 | ||
660 | if (unlikely(p == NULL)) { | |
661 | /* | |
662 | * Timer refers to a dead task's clock. | |
663 | */ | |
664 | return -ESRCH; | |
665 | } | |
666 | ||
667 | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); | |
668 | ||
669 | read_lock(&tasklist_lock); | |
670 | /* | |
671 | * We need the tasklist_lock to protect against reaping that | |
d30fda35 | 672 | * clears p->sighand. If p has just been reaped, we can no |
1da177e4 LT |
673 | * longer get any information about it at all. |
674 | */ | |
d30fda35 | 675 | if (unlikely(p->sighand == NULL)) { |
1da177e4 LT |
676 | read_unlock(&tasklist_lock); |
677 | put_task_struct(p); | |
678 | timer->it.cpu.task = NULL; | |
679 | return -ESRCH; | |
680 | } | |
681 | ||
682 | /* | |
683 | * Disarm any old timer after extracting its expiry time. | |
684 | */ | |
685 | BUG_ON(!irqs_disabled()); | |
a69ac4a7 ON |
686 | |
687 | ret = 0; | |
ae1a78ee | 688 | old_incr = timer->it.cpu.incr; |
1da177e4 LT |
689 | spin_lock(&p->sighand->siglock); |
690 | old_expires = timer->it.cpu.expires; | |
a69ac4a7 ON |
691 | if (unlikely(timer->it.cpu.firing)) { |
692 | timer->it.cpu.firing = -1; | |
693 | ret = TIMER_RETRY; | |
694 | } else | |
695 | list_del_init(&timer->it.cpu.entry); | |
1da177e4 LT |
696 | |
697 | /* | |
698 | * We need to sample the current value to convert the new | |
699 | * value from to relative and absolute, and to convert the | |
700 | * old value from absolute to relative. To set a process | |
701 | * timer, we need a sample to balance the thread expiry | |
702 | * times (in arm_timer). With an absolute time, we must | |
703 | * check if it's already passed. In short, we need a sample. | |
704 | */ | |
705 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
706 | cpu_clock_sample(timer->it_clock, p, &val); | |
707 | } else { | |
3997ad31 | 708 | cpu_timer_sample_group(timer->it_clock, p, &val); |
1da177e4 LT |
709 | } |
710 | ||
711 | if (old) { | |
712 | if (old_expires.sched == 0) { | |
713 | old->it_value.tv_sec = 0; | |
714 | old->it_value.tv_nsec = 0; | |
715 | } else { | |
716 | /* | |
717 | * Update the timer in case it has | |
718 | * overrun already. If it has, | |
719 | * we'll report it as having overrun | |
720 | * and with the next reloaded timer | |
721 | * already ticking, though we are | |
722 | * swallowing that pending | |
723 | * notification here to install the | |
724 | * new setting. | |
725 | */ | |
726 | bump_cpu_timer(timer, val); | |
727 | if (cpu_time_before(timer->it_clock, val, | |
728 | timer->it.cpu.expires)) { | |
729 | old_expires = cpu_time_sub( | |
730 | timer->it_clock, | |
731 | timer->it.cpu.expires, val); | |
732 | sample_to_timespec(timer->it_clock, | |
733 | old_expires, | |
734 | &old->it_value); | |
735 | } else { | |
736 | old->it_value.tv_nsec = 1; | |
737 | old->it_value.tv_sec = 0; | |
738 | } | |
739 | } | |
740 | } | |
741 | ||
a69ac4a7 | 742 | if (unlikely(ret)) { |
1da177e4 LT |
743 | /* |
744 | * We are colliding with the timer actually firing. | |
745 | * Punt after filling in the timer's old value, and | |
746 | * disable this firing since we are already reporting | |
747 | * it as an overrun (thanks to bump_cpu_timer above). | |
748 | */ | |
c2873937 | 749 | spin_unlock(&p->sighand->siglock); |
1da177e4 | 750 | read_unlock(&tasklist_lock); |
1da177e4 LT |
751 | goto out; |
752 | } | |
753 | ||
754 | if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { | |
755 | cpu_time_add(timer->it_clock, &new_expires, val); | |
756 | } | |
757 | ||
758 | /* | |
759 | * Install the new expiry time (or zero). | |
760 | * For a timer with no notification action, we don't actually | |
761 | * arm the timer (we'll just fake it for timer_gettime). | |
762 | */ | |
763 | timer->it.cpu.expires = new_expires; | |
764 | if (new_expires.sched != 0 && | |
1da177e4 | 765 | cpu_time_before(timer->it_clock, val, new_expires)) { |
5eb9aa64 | 766 | arm_timer(timer); |
1da177e4 LT |
767 | } |
768 | ||
c2873937 | 769 | spin_unlock(&p->sighand->siglock); |
1da177e4 LT |
770 | read_unlock(&tasklist_lock); |
771 | ||
772 | /* | |
773 | * Install the new reload setting, and | |
774 | * set up the signal and overrun bookkeeping. | |
775 | */ | |
776 | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, | |
777 | &new->it_interval); | |
778 | ||
779 | /* | |
780 | * This acts as a modification timestamp for the timer, | |
781 | * so any automatic reload attempt will punt on seeing | |
782 | * that we have reset the timer manually. | |
783 | */ | |
784 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & | |
785 | ~REQUEUE_PENDING; | |
786 | timer->it_overrun_last = 0; | |
787 | timer->it_overrun = -1; | |
788 | ||
789 | if (new_expires.sched != 0 && | |
1da177e4 LT |
790 | !cpu_time_before(timer->it_clock, val, new_expires)) { |
791 | /* | |
792 | * The designated time already passed, so we notify | |
793 | * immediately, even if the thread never runs to | |
794 | * accumulate more time on this clock. | |
795 | */ | |
796 | cpu_timer_fire(timer); | |
797 | } | |
798 | ||
799 | ret = 0; | |
800 | out: | |
801 | if (old) { | |
802 | sample_to_timespec(timer->it_clock, | |
ae1a78ee | 803 | old_incr, &old->it_interval); |
1da177e4 LT |
804 | } |
805 | return ret; | |
806 | } | |
807 | ||
bc2c8ea4 | 808 | static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) |
1da177e4 LT |
809 | { |
810 | union cpu_time_count now; | |
811 | struct task_struct *p = timer->it.cpu.task; | |
812 | int clear_dead; | |
813 | ||
814 | /* | |
815 | * Easy part: convert the reload time. | |
816 | */ | |
817 | sample_to_timespec(timer->it_clock, | |
818 | timer->it.cpu.incr, &itp->it_interval); | |
819 | ||
820 | if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */ | |
821 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | |
822 | return; | |
823 | } | |
824 | ||
825 | if (unlikely(p == NULL)) { | |
826 | /* | |
827 | * This task already died and the timer will never fire. | |
828 | * In this case, expires is actually the dead value. | |
829 | */ | |
830 | dead: | |
831 | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, | |
832 | &itp->it_value); | |
833 | return; | |
834 | } | |
835 | ||
836 | /* | |
837 | * Sample the clock to take the difference with the expiry time. | |
838 | */ | |
839 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
840 | cpu_clock_sample(timer->it_clock, p, &now); | |
841 | clear_dead = p->exit_state; | |
842 | } else { | |
843 | read_lock(&tasklist_lock); | |
d30fda35 | 844 | if (unlikely(p->sighand == NULL)) { |
1da177e4 LT |
845 | /* |
846 | * The process has been reaped. | |
847 | * We can't even collect a sample any more. | |
848 | * Call the timer disarmed, nothing else to do. | |
849 | */ | |
850 | put_task_struct(p); | |
851 | timer->it.cpu.task = NULL; | |
852 | timer->it.cpu.expires.sched = 0; | |
853 | read_unlock(&tasklist_lock); | |
854 | goto dead; | |
855 | } else { | |
3997ad31 | 856 | cpu_timer_sample_group(timer->it_clock, p, &now); |
1da177e4 LT |
857 | clear_dead = (unlikely(p->exit_state) && |
858 | thread_group_empty(p)); | |
859 | } | |
860 | read_unlock(&tasklist_lock); | |
861 | } | |
862 | ||
1da177e4 LT |
863 | if (unlikely(clear_dead)) { |
864 | /* | |
865 | * We've noticed that the thread is dead, but | |
866 | * not yet reaped. Take this opportunity to | |
867 | * drop our task ref. | |
868 | */ | |
869 | clear_dead_task(timer, now); | |
870 | goto dead; | |
871 | } | |
872 | ||
873 | if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { | |
874 | sample_to_timespec(timer->it_clock, | |
875 | cpu_time_sub(timer->it_clock, | |
876 | timer->it.cpu.expires, now), | |
877 | &itp->it_value); | |
878 | } else { | |
879 | /* | |
880 | * The timer should have expired already, but the firing | |
881 | * hasn't taken place yet. Say it's just about to expire. | |
882 | */ | |
883 | itp->it_value.tv_nsec = 1; | |
884 | itp->it_value.tv_sec = 0; | |
885 | } | |
886 | } | |
887 | ||
888 | /* | |
889 | * Check for any per-thread CPU timers that have fired and move them off | |
890 | * the tsk->cpu_timers[N] list onto the firing list. Here we update the | |
891 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | |
892 | */ | |
893 | static void check_thread_timers(struct task_struct *tsk, | |
894 | struct list_head *firing) | |
895 | { | |
e80eda94 | 896 | int maxfire; |
1da177e4 | 897 | struct list_head *timers = tsk->cpu_timers; |
78f2c7db | 898 | struct signal_struct *const sig = tsk->signal; |
d4bb5274 | 899 | unsigned long soft; |
1da177e4 | 900 | |
e80eda94 | 901 | maxfire = 20; |
64861634 | 902 | tsk->cputime_expires.prof_exp = 0; |
1da177e4 | 903 | while (!list_empty(timers)) { |
b5e61818 | 904 | struct cpu_timer_list *t = list_first_entry(timers, |
1da177e4 LT |
905 | struct cpu_timer_list, |
906 | entry); | |
64861634 | 907 | if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) { |
f06febc9 | 908 | tsk->cputime_expires.prof_exp = t->expires.cpu; |
1da177e4 LT |
909 | break; |
910 | } | |
911 | t->firing = 1; | |
912 | list_move_tail(&t->entry, firing); | |
913 | } | |
914 | ||
915 | ++timers; | |
e80eda94 | 916 | maxfire = 20; |
64861634 | 917 | tsk->cputime_expires.virt_exp = 0; |
1da177e4 | 918 | while (!list_empty(timers)) { |
b5e61818 | 919 | struct cpu_timer_list *t = list_first_entry(timers, |
1da177e4 LT |
920 | struct cpu_timer_list, |
921 | entry); | |
64861634 | 922 | if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) { |
f06febc9 | 923 | tsk->cputime_expires.virt_exp = t->expires.cpu; |
1da177e4 LT |
924 | break; |
925 | } | |
926 | t->firing = 1; | |
927 | list_move_tail(&t->entry, firing); | |
928 | } | |
929 | ||
930 | ++timers; | |
e80eda94 | 931 | maxfire = 20; |
f06febc9 | 932 | tsk->cputime_expires.sched_exp = 0; |
1da177e4 | 933 | while (!list_empty(timers)) { |
b5e61818 | 934 | struct cpu_timer_list *t = list_first_entry(timers, |
1da177e4 LT |
935 | struct cpu_timer_list, |
936 | entry); | |
41b86e9c | 937 | if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) { |
f06febc9 | 938 | tsk->cputime_expires.sched_exp = t->expires.sched; |
1da177e4 LT |
939 | break; |
940 | } | |
941 | t->firing = 1; | |
942 | list_move_tail(&t->entry, firing); | |
943 | } | |
78f2c7db PZ |
944 | |
945 | /* | |
946 | * Check for the special case thread timers. | |
947 | */ | |
78d7d407 | 948 | soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); |
d4bb5274 | 949 | if (soft != RLIM_INFINITY) { |
78d7d407 JS |
950 | unsigned long hard = |
951 | ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); | |
78f2c7db | 952 | |
5a52dd50 PZ |
953 | if (hard != RLIM_INFINITY && |
954 | tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { | |
78f2c7db PZ |
955 | /* |
956 | * At the hard limit, we just die. | |
957 | * No need to calculate anything else now. | |
958 | */ | |
959 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | |
960 | return; | |
961 | } | |
d4bb5274 | 962 | if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { |
78f2c7db PZ |
963 | /* |
964 | * At the soft limit, send a SIGXCPU every second. | |
965 | */ | |
d4bb5274 JS |
966 | if (soft < hard) { |
967 | soft += USEC_PER_SEC; | |
968 | sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; | |
78f2c7db | 969 | } |
81d50bb2 HS |
970 | printk(KERN_INFO |
971 | "RT Watchdog Timeout: %s[%d]\n", | |
972 | tsk->comm, task_pid_nr(tsk)); | |
78f2c7db PZ |
973 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
974 | } | |
975 | } | |
1da177e4 LT |
976 | } |
977 | ||
15365c10 | 978 | static void stop_process_timers(struct signal_struct *sig) |
3fccfd67 | 979 | { |
15365c10 | 980 | struct thread_group_cputimer *cputimer = &sig->cputimer; |
3fccfd67 PZ |
981 | unsigned long flags; |
982 | ||
ee30a7b2 | 983 | raw_spin_lock_irqsave(&cputimer->lock, flags); |
3fccfd67 | 984 | cputimer->running = 0; |
ee30a7b2 | 985 | raw_spin_unlock_irqrestore(&cputimer->lock, flags); |
3fccfd67 PZ |
986 | } |
987 | ||
8356b5f9 SG |
988 | static u32 onecputick; |
989 | ||
42c4ab41 SG |
990 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, |
991 | cputime_t *expires, cputime_t cur_time, int signo) | |
992 | { | |
64861634 | 993 | if (!it->expires) |
42c4ab41 SG |
994 | return; |
995 | ||
64861634 MS |
996 | if (cur_time >= it->expires) { |
997 | if (it->incr) { | |
998 | it->expires += it->incr; | |
8356b5f9 SG |
999 | it->error += it->incr_error; |
1000 | if (it->error >= onecputick) { | |
64861634 | 1001 | it->expires -= cputime_one_jiffy; |
8356b5f9 SG |
1002 | it->error -= onecputick; |
1003 | } | |
3f0a525e | 1004 | } else { |
64861634 | 1005 | it->expires = 0; |
3f0a525e | 1006 | } |
42c4ab41 | 1007 | |
3f0a525e XG |
1008 | trace_itimer_expire(signo == SIGPROF ? |
1009 | ITIMER_PROF : ITIMER_VIRTUAL, | |
1010 | tsk->signal->leader_pid, cur_time); | |
42c4ab41 SG |
1011 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); |
1012 | } | |
1013 | ||
64861634 | 1014 | if (it->expires && (!*expires || it->expires < *expires)) { |
42c4ab41 SG |
1015 | *expires = it->expires; |
1016 | } | |
1017 | } | |
1018 | ||
29f87b79 SG |
1019 | /** |
1020 | * task_cputime_zero - Check a task_cputime struct for all zero fields. | |
1021 | * | |
1022 | * @cputime: The struct to compare. | |
1023 | * | |
1024 | * Checks @cputime to see if all fields are zero. Returns true if all fields | |
1025 | * are zero, false if any field is nonzero. | |
1026 | */ | |
1027 | static inline int task_cputime_zero(const struct task_cputime *cputime) | |
1028 | { | |
64861634 | 1029 | if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) |
29f87b79 SG |
1030 | return 1; |
1031 | return 0; | |
1032 | } | |
1033 | ||
1da177e4 LT |
1034 | /* |
1035 | * Check for any per-thread CPU timers that have fired and move them | |
1036 | * off the tsk->*_timers list onto the firing list. Per-thread timers | |
1037 | * have already been taken off. | |
1038 | */ | |
1039 | static void check_process_timers(struct task_struct *tsk, | |
1040 | struct list_head *firing) | |
1041 | { | |
e80eda94 | 1042 | int maxfire; |
1da177e4 | 1043 | struct signal_struct *const sig = tsk->signal; |
f06febc9 | 1044 | cputime_t utime, ptime, virt_expires, prof_expires; |
41b86e9c | 1045 | unsigned long long sum_sched_runtime, sched_expires; |
1da177e4 | 1046 | struct list_head *timers = sig->cpu_timers; |
f06febc9 | 1047 | struct task_cputime cputime; |
d4bb5274 | 1048 | unsigned long soft; |
1da177e4 | 1049 | |
1da177e4 LT |
1050 | /* |
1051 | * Collect the current process totals. | |
1052 | */ | |
4cd4c1b4 | 1053 | thread_group_cputimer(tsk, &cputime); |
f06febc9 | 1054 | utime = cputime.utime; |
64861634 | 1055 | ptime = utime + cputime.stime; |
f06febc9 | 1056 | sum_sched_runtime = cputime.sum_exec_runtime; |
e80eda94 | 1057 | maxfire = 20; |
64861634 | 1058 | prof_expires = 0; |
1da177e4 | 1059 | while (!list_empty(timers)) { |
ee7dd205 | 1060 | struct cpu_timer_list *tl = list_first_entry(timers, |
1da177e4 LT |
1061 | struct cpu_timer_list, |
1062 | entry); | |
64861634 | 1063 | if (!--maxfire || ptime < tl->expires.cpu) { |
ee7dd205 | 1064 | prof_expires = tl->expires.cpu; |
1da177e4 LT |
1065 | break; |
1066 | } | |
ee7dd205 WC |
1067 | tl->firing = 1; |
1068 | list_move_tail(&tl->entry, firing); | |
1da177e4 LT |
1069 | } |
1070 | ||
1071 | ++timers; | |
e80eda94 | 1072 | maxfire = 20; |
64861634 | 1073 | virt_expires = 0; |
1da177e4 | 1074 | while (!list_empty(timers)) { |
ee7dd205 | 1075 | struct cpu_timer_list *tl = list_first_entry(timers, |
1da177e4 LT |
1076 | struct cpu_timer_list, |
1077 | entry); | |
64861634 | 1078 | if (!--maxfire || utime < tl->expires.cpu) { |
ee7dd205 | 1079 | virt_expires = tl->expires.cpu; |
1da177e4 LT |
1080 | break; |
1081 | } | |
ee7dd205 WC |
1082 | tl->firing = 1; |
1083 | list_move_tail(&tl->entry, firing); | |
1da177e4 LT |
1084 | } |
1085 | ||
1086 | ++timers; | |
e80eda94 | 1087 | maxfire = 20; |
1da177e4 LT |
1088 | sched_expires = 0; |
1089 | while (!list_empty(timers)) { | |
ee7dd205 | 1090 | struct cpu_timer_list *tl = list_first_entry(timers, |
1da177e4 LT |
1091 | struct cpu_timer_list, |
1092 | entry); | |
ee7dd205 WC |
1093 | if (!--maxfire || sum_sched_runtime < tl->expires.sched) { |
1094 | sched_expires = tl->expires.sched; | |
1da177e4 LT |
1095 | break; |
1096 | } | |
ee7dd205 WC |
1097 | tl->firing = 1; |
1098 | list_move_tail(&tl->entry, firing); | |
1da177e4 LT |
1099 | } |
1100 | ||
1101 | /* | |
1102 | * Check for the special case process timers. | |
1103 | */ | |
42c4ab41 SG |
1104 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
1105 | SIGPROF); | |
1106 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, | |
1107 | SIGVTALRM); | |
78d7d407 | 1108 | soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); |
d4bb5274 | 1109 | if (soft != RLIM_INFINITY) { |
1da177e4 | 1110 | unsigned long psecs = cputime_to_secs(ptime); |
78d7d407 JS |
1111 | unsigned long hard = |
1112 | ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); | |
1da177e4 | 1113 | cputime_t x; |
d4bb5274 | 1114 | if (psecs >= hard) { |
1da177e4 LT |
1115 | /* |
1116 | * At the hard limit, we just die. | |
1117 | * No need to calculate anything else now. | |
1118 | */ | |
1119 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | |
1120 | return; | |
1121 | } | |
d4bb5274 | 1122 | if (psecs >= soft) { |
1da177e4 LT |
1123 | /* |
1124 | * At the soft limit, send a SIGXCPU every second. | |
1125 | */ | |
1126 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | |
d4bb5274 JS |
1127 | if (soft < hard) { |
1128 | soft++; | |
1129 | sig->rlim[RLIMIT_CPU].rlim_cur = soft; | |
1da177e4 LT |
1130 | } |
1131 | } | |
d4bb5274 | 1132 | x = secs_to_cputime(soft); |
64861634 | 1133 | if (!prof_expires || x < prof_expires) { |
1da177e4 LT |
1134 | prof_expires = x; |
1135 | } | |
1136 | } | |
1137 | ||
29f87b79 SG |
1138 | sig->cputime_expires.prof_exp = prof_expires; |
1139 | sig->cputime_expires.virt_exp = virt_expires; | |
1140 | sig->cputime_expires.sched_exp = sched_expires; | |
1141 | if (task_cputime_zero(&sig->cputime_expires)) | |
1142 | stop_process_timers(sig); | |
1da177e4 LT |
1143 | } |
1144 | ||
1145 | /* | |
1146 | * This is called from the signal code (via do_schedule_next_timer) | |
1147 | * when the last timer signal was delivered and we have to reload the timer. | |
1148 | */ | |
1149 | void posix_cpu_timer_schedule(struct k_itimer *timer) | |
1150 | { | |
1151 | struct task_struct *p = timer->it.cpu.task; | |
1152 | union cpu_time_count now; | |
1153 | ||
1154 | if (unlikely(p == NULL)) | |
1155 | /* | |
1156 | * The task was cleaned up already, no future firings. | |
1157 | */ | |
708f430d | 1158 | goto out; |
1da177e4 LT |
1159 | |
1160 | /* | |
1161 | * Fetch the current sample and update the timer's expiry time. | |
1162 | */ | |
1163 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
1164 | cpu_clock_sample(timer->it_clock, p, &now); | |
1165 | bump_cpu_timer(timer, now); | |
1166 | if (unlikely(p->exit_state)) { | |
1167 | clear_dead_task(timer, now); | |
708f430d | 1168 | goto out; |
1da177e4 LT |
1169 | } |
1170 | read_lock(&tasklist_lock); /* arm_timer needs it. */ | |
c2873937 | 1171 | spin_lock(&p->sighand->siglock); |
1da177e4 LT |
1172 | } else { |
1173 | read_lock(&tasklist_lock); | |
d30fda35 | 1174 | if (unlikely(p->sighand == NULL)) { |
1da177e4 LT |
1175 | /* |
1176 | * The process has been reaped. | |
1177 | * We can't even collect a sample any more. | |
1178 | */ | |
1179 | put_task_struct(p); | |
1180 | timer->it.cpu.task = p = NULL; | |
1181 | timer->it.cpu.expires.sched = 0; | |
708f430d | 1182 | goto out_unlock; |
1da177e4 LT |
1183 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { |
1184 | /* | |
1185 | * We've noticed that the thread is dead, but | |
1186 | * not yet reaped. Take this opportunity to | |
1187 | * drop our task ref. | |
1188 | */ | |
1189 | clear_dead_task(timer, now); | |
708f430d | 1190 | goto out_unlock; |
1da177e4 | 1191 | } |
c2873937 | 1192 | spin_lock(&p->sighand->siglock); |
3997ad31 | 1193 | cpu_timer_sample_group(timer->it_clock, p, &now); |
1da177e4 LT |
1194 | bump_cpu_timer(timer, now); |
1195 | /* Leave the tasklist_lock locked for the call below. */ | |
1196 | } | |
1197 | ||
1198 | /* | |
1199 | * Now re-arm for the new expiry time. | |
1200 | */ | |
c2873937 | 1201 | BUG_ON(!irqs_disabled()); |
5eb9aa64 | 1202 | arm_timer(timer); |
c2873937 | 1203 | spin_unlock(&p->sighand->siglock); |
1da177e4 | 1204 | |
708f430d | 1205 | out_unlock: |
1da177e4 | 1206 | read_unlock(&tasklist_lock); |
708f430d RM |
1207 | |
1208 | out: | |
1209 | timer->it_overrun_last = timer->it_overrun; | |
1210 | timer->it_overrun = -1; | |
1211 | ++timer->it_requeue_pending; | |
1da177e4 LT |
1212 | } |
1213 | ||
f06febc9 FM |
1214 | /** |
1215 | * task_cputime_expired - Compare two task_cputime entities. | |
1216 | * | |
1217 | * @sample: The task_cputime structure to be checked for expiration. | |
1218 | * @expires: Expiration times, against which @sample will be checked. | |
1219 | * | |
1220 | * Checks @sample against @expires to see if any field of @sample has expired. | |
1221 | * Returns true if any field of the former is greater than the corresponding | |
1222 | * field of the latter if the latter field is set. Otherwise returns false. | |
1223 | */ | |
1224 | static inline int task_cputime_expired(const struct task_cputime *sample, | |
1225 | const struct task_cputime *expires) | |
1226 | { | |
64861634 | 1227 | if (expires->utime && sample->utime >= expires->utime) |
f06febc9 | 1228 | return 1; |
64861634 | 1229 | if (expires->stime && sample->utime + sample->stime >= expires->stime) |
f06febc9 FM |
1230 | return 1; |
1231 | if (expires->sum_exec_runtime != 0 && | |
1232 | sample->sum_exec_runtime >= expires->sum_exec_runtime) | |
1233 | return 1; | |
1234 | return 0; | |
1235 | } | |
1236 | ||
1237 | /** | |
1238 | * fastpath_timer_check - POSIX CPU timers fast path. | |
1239 | * | |
1240 | * @tsk: The task (thread) being checked. | |
f06febc9 | 1241 | * |
bb34d92f FM |
1242 | * Check the task and thread group timers. If both are zero (there are no |
1243 | * timers set) return false. Otherwise snapshot the task and thread group | |
1244 | * timers and compare them with the corresponding expiration times. Return | |
1245 | * true if a timer has expired, else return false. | |
f06febc9 | 1246 | */ |
bb34d92f | 1247 | static inline int fastpath_timer_check(struct task_struct *tsk) |
f06febc9 | 1248 | { |
ad133ba3 | 1249 | struct signal_struct *sig; |
bb34d92f | 1250 | |
bb34d92f FM |
1251 | if (!task_cputime_zero(&tsk->cputime_expires)) { |
1252 | struct task_cputime task_sample = { | |
1253 | .utime = tsk->utime, | |
1254 | .stime = tsk->stime, | |
1255 | .sum_exec_runtime = tsk->se.sum_exec_runtime | |
1256 | }; | |
1257 | ||
1258 | if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) | |
1259 | return 1; | |
1260 | } | |
ad133ba3 ON |
1261 | |
1262 | sig = tsk->signal; | |
29f87b79 | 1263 | if (sig->cputimer.running) { |
bb34d92f FM |
1264 | struct task_cputime group_sample; |
1265 | ||
ee30a7b2 | 1266 | raw_spin_lock(&sig->cputimer.lock); |
8d1f431c | 1267 | group_sample = sig->cputimer.cputime; |
ee30a7b2 | 1268 | raw_spin_unlock(&sig->cputimer.lock); |
8d1f431c | 1269 | |
bb34d92f FM |
1270 | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) |
1271 | return 1; | |
1272 | } | |
37bebc70 | 1273 | |
f55db609 | 1274 | return 0; |
f06febc9 FM |
1275 | } |
1276 | ||
1da177e4 LT |
1277 | /* |
1278 | * This is called from the timer interrupt handler. The irq handler has | |
1279 | * already updated our counts. We need to check if any timers fire now. | |
1280 | * Interrupts are disabled. | |
1281 | */ | |
1282 | void run_posix_cpu_timers(struct task_struct *tsk) | |
1283 | { | |
1284 | LIST_HEAD(firing); | |
1285 | struct k_itimer *timer, *next; | |
0bdd2ed4 | 1286 | unsigned long flags; |
1da177e4 LT |
1287 | |
1288 | BUG_ON(!irqs_disabled()); | |
1289 | ||
1da177e4 | 1290 | /* |
f06febc9 | 1291 | * The fast path checks that there are no expired thread or thread |
bb34d92f | 1292 | * group timers. If that's so, just return. |
1da177e4 | 1293 | */ |
bb34d92f | 1294 | if (!fastpath_timer_check(tsk)) |
f06febc9 | 1295 | return; |
5ce73a4a | 1296 | |
0bdd2ed4 ON |
1297 | if (!lock_task_sighand(tsk, &flags)) |
1298 | return; | |
bb34d92f FM |
1299 | /* |
1300 | * Here we take off tsk->signal->cpu_timers[N] and | |
1301 | * tsk->cpu_timers[N] all the timers that are firing, and | |
1302 | * put them on the firing list. | |
1303 | */ | |
1304 | check_thread_timers(tsk, &firing); | |
29f87b79 SG |
1305 | /* |
1306 | * If there are any active process wide timers (POSIX 1.b, itimers, | |
1307 | * RLIMIT_CPU) cputimer must be running. | |
1308 | */ | |
1309 | if (tsk->signal->cputimer.running) | |
1310 | check_process_timers(tsk, &firing); | |
1da177e4 | 1311 | |
bb34d92f FM |
1312 | /* |
1313 | * We must release these locks before taking any timer's lock. | |
1314 | * There is a potential race with timer deletion here, as the | |
1315 | * siglock now protects our private firing list. We have set | |
1316 | * the firing flag in each timer, so that a deletion attempt | |
1317 | * that gets the timer lock before we do will give it up and | |
1318 | * spin until we've taken care of that timer below. | |
1319 | */ | |
0bdd2ed4 | 1320 | unlock_task_sighand(tsk, &flags); |
1da177e4 LT |
1321 | |
1322 | /* | |
1323 | * Now that all the timers on our list have the firing flag, | |
25985edc | 1324 | * no one will touch their list entries but us. We'll take |
1da177e4 LT |
1325 | * each timer's lock before clearing its firing flag, so no |
1326 | * timer call will interfere. | |
1327 | */ | |
1328 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { | |
6e85c5ba HS |
1329 | int cpu_firing; |
1330 | ||
1da177e4 LT |
1331 | spin_lock(&timer->it_lock); |
1332 | list_del_init(&timer->it.cpu.entry); | |
6e85c5ba | 1333 | cpu_firing = timer->it.cpu.firing; |
1da177e4 LT |
1334 | timer->it.cpu.firing = 0; |
1335 | /* | |
1336 | * The firing flag is -1 if we collided with a reset | |
1337 | * of the timer, which already reported this | |
1338 | * almost-firing as an overrun. So don't generate an event. | |
1339 | */ | |
6e85c5ba | 1340 | if (likely(cpu_firing >= 0)) |
1da177e4 | 1341 | cpu_timer_fire(timer); |
1da177e4 LT |
1342 | spin_unlock(&timer->it_lock); |
1343 | } | |
1344 | } | |
1345 | ||
1346 | /* | |
f55db609 | 1347 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. |
f06febc9 | 1348 | * The tsk->sighand->siglock must be held by the caller. |
1da177e4 LT |
1349 | */ |
1350 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |
1351 | cputime_t *newval, cputime_t *oldval) | |
1352 | { | |
1353 | union cpu_time_count now; | |
1da177e4 LT |
1354 | |
1355 | BUG_ON(clock_idx == CPUCLOCK_SCHED); | |
4cd4c1b4 | 1356 | cpu_timer_sample_group(clock_idx, tsk, &now); |
1da177e4 LT |
1357 | |
1358 | if (oldval) { | |
f55db609 SG |
1359 | /* |
1360 | * We are setting itimer. The *oldval is absolute and we update | |
1361 | * it to be relative, *newval argument is relative and we update | |
1362 | * it to be absolute. | |
1363 | */ | |
64861634 MS |
1364 | if (*oldval) { |
1365 | if (*oldval <= now.cpu) { | |
1da177e4 | 1366 | /* Just about to fire. */ |
a42548a1 | 1367 | *oldval = cputime_one_jiffy; |
1da177e4 | 1368 | } else { |
64861634 | 1369 | *oldval -= now.cpu; |
1da177e4 LT |
1370 | } |
1371 | } | |
1372 | ||
64861634 | 1373 | if (!*newval) |
1da177e4 | 1374 | return; |
64861634 | 1375 | *newval += now.cpu; |
1da177e4 LT |
1376 | } |
1377 | ||
1378 | /* | |
f55db609 SG |
1379 | * Update expiration cache if we are the earliest timer, or eventually |
1380 | * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. | |
1da177e4 | 1381 | */ |
f55db609 SG |
1382 | switch (clock_idx) { |
1383 | case CPUCLOCK_PROF: | |
1384 | if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) | |
f06febc9 | 1385 | tsk->signal->cputime_expires.prof_exp = *newval; |
f55db609 SG |
1386 | break; |
1387 | case CPUCLOCK_VIRT: | |
1388 | if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) | |
f06febc9 | 1389 | tsk->signal->cputime_expires.virt_exp = *newval; |
f55db609 | 1390 | break; |
1da177e4 LT |
1391 | } |
1392 | } | |
1393 | ||
e4b76555 TA |
1394 | static int do_cpu_nanosleep(const clockid_t which_clock, int flags, |
1395 | struct timespec *rqtp, struct itimerspec *it) | |
1da177e4 | 1396 | { |
1da177e4 LT |
1397 | struct k_itimer timer; |
1398 | int error; | |
1399 | ||
1da177e4 LT |
1400 | /* |
1401 | * Set up a temporary timer and then wait for it to go off. | |
1402 | */ | |
1403 | memset(&timer, 0, sizeof timer); | |
1404 | spin_lock_init(&timer.it_lock); | |
1405 | timer.it_clock = which_clock; | |
1406 | timer.it_overrun = -1; | |
1407 | error = posix_cpu_timer_create(&timer); | |
1408 | timer.it_process = current; | |
1409 | if (!error) { | |
1da177e4 | 1410 | static struct itimerspec zero_it; |
e4b76555 TA |
1411 | |
1412 | memset(it, 0, sizeof *it); | |
1413 | it->it_value = *rqtp; | |
1da177e4 LT |
1414 | |
1415 | spin_lock_irq(&timer.it_lock); | |
e4b76555 | 1416 | error = posix_cpu_timer_set(&timer, flags, it, NULL); |
1da177e4 LT |
1417 | if (error) { |
1418 | spin_unlock_irq(&timer.it_lock); | |
1419 | return error; | |
1420 | } | |
1421 | ||
1422 | while (!signal_pending(current)) { | |
1423 | if (timer.it.cpu.expires.sched == 0) { | |
1424 | /* | |
1425 | * Our timer fired and was reset. | |
1426 | */ | |
1427 | spin_unlock_irq(&timer.it_lock); | |
1428 | return 0; | |
1429 | } | |
1430 | ||
1431 | /* | |
1432 | * Block until cpu_timer_fire (or a signal) wakes us. | |
1433 | */ | |
1434 | __set_current_state(TASK_INTERRUPTIBLE); | |
1435 | spin_unlock_irq(&timer.it_lock); | |
1436 | schedule(); | |
1437 | spin_lock_irq(&timer.it_lock); | |
1438 | } | |
1439 | ||
1440 | /* | |
1441 | * We were interrupted by a signal. | |
1442 | */ | |
1443 | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); | |
e4b76555 | 1444 | posix_cpu_timer_set(&timer, 0, &zero_it, it); |
1da177e4 LT |
1445 | spin_unlock_irq(&timer.it_lock); |
1446 | ||
e4b76555 | 1447 | if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { |
1da177e4 LT |
1448 | /* |
1449 | * It actually did fire already. | |
1450 | */ | |
1451 | return 0; | |
1452 | } | |
1453 | ||
e4b76555 TA |
1454 | error = -ERESTART_RESTARTBLOCK; |
1455 | } | |
1456 | ||
1457 | return error; | |
1458 | } | |
1459 | ||
bc2c8ea4 TG |
1460 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block); |
1461 | ||
1462 | static int posix_cpu_nsleep(const clockid_t which_clock, int flags, | |
1463 | struct timespec *rqtp, struct timespec __user *rmtp) | |
e4b76555 TA |
1464 | { |
1465 | struct restart_block *restart_block = | |
3751f9f2 | 1466 | ¤t_thread_info()->restart_block; |
e4b76555 TA |
1467 | struct itimerspec it; |
1468 | int error; | |
1469 | ||
1470 | /* | |
1471 | * Diagnose required errors first. | |
1472 | */ | |
1473 | if (CPUCLOCK_PERTHREAD(which_clock) && | |
1474 | (CPUCLOCK_PID(which_clock) == 0 || | |
1475 | CPUCLOCK_PID(which_clock) == current->pid)) | |
1476 | return -EINVAL; | |
1477 | ||
1478 | error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); | |
1479 | ||
1480 | if (error == -ERESTART_RESTARTBLOCK) { | |
1481 | ||
3751f9f2 | 1482 | if (flags & TIMER_ABSTIME) |
e4b76555 | 1483 | return -ERESTARTNOHAND; |
1da177e4 | 1484 | /* |
3751f9f2 TG |
1485 | * Report back to the user the time still remaining. |
1486 | */ | |
1487 | if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | |
1da177e4 LT |
1488 | return -EFAULT; |
1489 | ||
1711ef38 | 1490 | restart_block->fn = posix_cpu_nsleep_restart; |
ab8177bc | 1491 | restart_block->nanosleep.clockid = which_clock; |
3751f9f2 TG |
1492 | restart_block->nanosleep.rmtp = rmtp; |
1493 | restart_block->nanosleep.expires = timespec_to_ns(rqtp); | |
1da177e4 | 1494 | } |
1da177e4 LT |
1495 | return error; |
1496 | } | |
1497 | ||
bc2c8ea4 | 1498 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block) |
1da177e4 | 1499 | { |
ab8177bc | 1500 | clockid_t which_clock = restart_block->nanosleep.clockid; |
97735f25 | 1501 | struct timespec t; |
e4b76555 TA |
1502 | struct itimerspec it; |
1503 | int error; | |
97735f25 | 1504 | |
3751f9f2 | 1505 | t = ns_to_timespec(restart_block->nanosleep.expires); |
97735f25 | 1506 | |
e4b76555 TA |
1507 | error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); |
1508 | ||
1509 | if (error == -ERESTART_RESTARTBLOCK) { | |
3751f9f2 | 1510 | struct timespec __user *rmtp = restart_block->nanosleep.rmtp; |
e4b76555 | 1511 | /* |
3751f9f2 TG |
1512 | * Report back to the user the time still remaining. |
1513 | */ | |
1514 | if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | |
e4b76555 TA |
1515 | return -EFAULT; |
1516 | ||
3751f9f2 | 1517 | restart_block->nanosleep.expires = timespec_to_ns(&t); |
e4b76555 TA |
1518 | } |
1519 | return error; | |
1520 | ||
1da177e4 LT |
1521 | } |
1522 | ||
1da177e4 LT |
1523 | #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) |
1524 | #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) | |
1525 | ||
a924b04d TG |
1526 | static int process_cpu_clock_getres(const clockid_t which_clock, |
1527 | struct timespec *tp) | |
1da177e4 LT |
1528 | { |
1529 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | |
1530 | } | |
a924b04d TG |
1531 | static int process_cpu_clock_get(const clockid_t which_clock, |
1532 | struct timespec *tp) | |
1da177e4 LT |
1533 | { |
1534 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | |
1535 | } | |
1536 | static int process_cpu_timer_create(struct k_itimer *timer) | |
1537 | { | |
1538 | timer->it_clock = PROCESS_CLOCK; | |
1539 | return posix_cpu_timer_create(timer); | |
1540 | } | |
a924b04d | 1541 | static int process_cpu_nsleep(const clockid_t which_clock, int flags, |
97735f25 TG |
1542 | struct timespec *rqtp, |
1543 | struct timespec __user *rmtp) | |
1da177e4 | 1544 | { |
97735f25 | 1545 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); |
1da177e4 | 1546 | } |
1711ef38 TA |
1547 | static long process_cpu_nsleep_restart(struct restart_block *restart_block) |
1548 | { | |
1549 | return -EINVAL; | |
1550 | } | |
a924b04d TG |
1551 | static int thread_cpu_clock_getres(const clockid_t which_clock, |
1552 | struct timespec *tp) | |
1da177e4 LT |
1553 | { |
1554 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | |
1555 | } | |
a924b04d TG |
1556 | static int thread_cpu_clock_get(const clockid_t which_clock, |
1557 | struct timespec *tp) | |
1da177e4 LT |
1558 | { |
1559 | return posix_cpu_clock_get(THREAD_CLOCK, tp); | |
1560 | } | |
1561 | static int thread_cpu_timer_create(struct k_itimer *timer) | |
1562 | { | |
1563 | timer->it_clock = THREAD_CLOCK; | |
1564 | return posix_cpu_timer_create(timer); | |
1565 | } | |
1da177e4 | 1566 | |
1976945e TG |
1567 | struct k_clock clock_posix_cpu = { |
1568 | .clock_getres = posix_cpu_clock_getres, | |
1569 | .clock_set = posix_cpu_clock_set, | |
1570 | .clock_get = posix_cpu_clock_get, | |
1571 | .timer_create = posix_cpu_timer_create, | |
1572 | .nsleep = posix_cpu_nsleep, | |
1573 | .nsleep_restart = posix_cpu_nsleep_restart, | |
1574 | .timer_set = posix_cpu_timer_set, | |
1575 | .timer_del = posix_cpu_timer_del, | |
1576 | .timer_get = posix_cpu_timer_get, | |
1577 | }; | |
1578 | ||
1da177e4 LT |
1579 | static __init int init_posix_cpu_timers(void) |
1580 | { | |
1581 | struct k_clock process = { | |
2fd1f040 TG |
1582 | .clock_getres = process_cpu_clock_getres, |
1583 | .clock_get = process_cpu_clock_get, | |
2fd1f040 TG |
1584 | .timer_create = process_cpu_timer_create, |
1585 | .nsleep = process_cpu_nsleep, | |
1586 | .nsleep_restart = process_cpu_nsleep_restart, | |
1da177e4 LT |
1587 | }; |
1588 | struct k_clock thread = { | |
2fd1f040 TG |
1589 | .clock_getres = thread_cpu_clock_getres, |
1590 | .clock_get = thread_cpu_clock_get, | |
2fd1f040 | 1591 | .timer_create = thread_cpu_timer_create, |
1da177e4 | 1592 | }; |
8356b5f9 | 1593 | struct timespec ts; |
1da177e4 | 1594 | |
52708737 TG |
1595 | posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
1596 | posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | |
1da177e4 | 1597 | |
a42548a1 | 1598 | cputime_to_timespec(cputime_one_jiffy, &ts); |
8356b5f9 SG |
1599 | onecputick = ts.tv_nsec; |
1600 | WARN_ON(ts.tv_sec != 0); | |
1601 | ||
1da177e4 LT |
1602 | return 0; |
1603 | } | |
1604 | __initcall(init_posix_cpu_timers); |