]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
97d06609 CL |
2 | #ifndef MM_SLAB_H |
3 | #define MM_SLAB_H | |
4 | /* | |
5 | * Internal slab definitions | |
6 | */ | |
7 | ||
07f361b2 JK |
8 | #ifdef CONFIG_SLOB |
9 | /* | |
10 | * Common fields provided in kmem_cache by all slab allocators | |
11 | * This struct is either used directly by the allocator (SLOB) | |
12 | * or the allocator must include definitions for all fields | |
13 | * provided in kmem_cache_common in their definition of kmem_cache. | |
14 | * | |
15 | * Once we can do anonymous structs (C11 standard) we could put a | |
16 | * anonymous struct definition in these allocators so that the | |
17 | * separate allocations in the kmem_cache structure of SLAB and | |
18 | * SLUB is no longer needed. | |
19 | */ | |
20 | struct kmem_cache { | |
21 | unsigned int object_size;/* The original size of the object */ | |
22 | unsigned int size; /* The aligned/padded/added on size */ | |
23 | unsigned int align; /* Alignment as calculated */ | |
d50112ed | 24 | slab_flags_t flags; /* Active flags on the slab */ |
7bbdb81e AD |
25 | unsigned int useroffset;/* Usercopy region offset */ |
26 | unsigned int usersize; /* Usercopy region size */ | |
07f361b2 JK |
27 | const char *name; /* Slab name for sysfs */ |
28 | int refcount; /* Use counter */ | |
29 | void (*ctor)(void *); /* Called on object slot creation */ | |
30 | struct list_head list; /* List of all slab caches on the system */ | |
31 | }; | |
32 | ||
9adeaa22 WL |
33 | #else /* !CONFIG_SLOB */ |
34 | ||
35 | struct memcg_cache_array { | |
36 | struct rcu_head rcu; | |
37 | struct kmem_cache *entries[0]; | |
38 | }; | |
39 | ||
40 | /* | |
41 | * This is the main placeholder for memcg-related information in kmem caches. | |
42 | * Both the root cache and the child caches will have it. For the root cache, | |
43 | * this will hold a dynamically allocated array large enough to hold | |
44 | * information about the currently limited memcgs in the system. To allow the | |
45 | * array to be accessed without taking any locks, on relocation we free the old | |
46 | * version only after a grace period. | |
47 | * | |
48 | * Root and child caches hold different metadata. | |
49 | * | |
50 | * @root_cache: Common to root and child caches. NULL for root, pointer to | |
51 | * the root cache for children. | |
52 | * | |
53 | * The following fields are specific to root caches. | |
54 | * | |
55 | * @memcg_caches: kmemcg ID indexed table of child caches. This table is | |
56 | * used to index child cachces during allocation and cleared | |
57 | * early during shutdown. | |
58 | * | |
59 | * @root_caches_node: List node for slab_root_caches list. | |
60 | * | |
61 | * @children: List of all child caches. While the child caches are also | |
62 | * reachable through @memcg_caches, a child cache remains on | |
63 | * this list until it is actually destroyed. | |
64 | * | |
65 | * The following fields are specific to child caches. | |
66 | * | |
67 | * @memcg: Pointer to the memcg this cache belongs to. | |
68 | * | |
69 | * @children_node: List node for @root_cache->children list. | |
70 | * | |
71 | * @kmem_caches_node: List node for @memcg->kmem_caches list. | |
72 | */ | |
73 | struct memcg_cache_params { | |
74 | struct kmem_cache *root_cache; | |
75 | union { | |
76 | struct { | |
77 | struct memcg_cache_array __rcu *memcg_caches; | |
78 | struct list_head __root_caches_node; | |
79 | struct list_head children; | |
80 | bool dying; | |
81 | }; | |
82 | struct { | |
83 | struct mem_cgroup *memcg; | |
84 | struct list_head children_node; | |
85 | struct list_head kmem_caches_node; | |
86 | struct percpu_ref refcnt; | |
87 | ||
88 | void (*work_fn)(struct kmem_cache *); | |
89 | union { | |
90 | struct rcu_head rcu_head; | |
91 | struct work_struct work; | |
92 | }; | |
93 | }; | |
94 | }; | |
95 | }; | |
07f361b2 JK |
96 | #endif /* CONFIG_SLOB */ |
97 | ||
98 | #ifdef CONFIG_SLAB | |
99 | #include <linux/slab_def.h> | |
100 | #endif | |
101 | ||
102 | #ifdef CONFIG_SLUB | |
103 | #include <linux/slub_def.h> | |
104 | #endif | |
105 | ||
106 | #include <linux/memcontrol.h> | |
11c7aec2 | 107 | #include <linux/fault-inject.h> |
11c7aec2 JDB |
108 | #include <linux/kasan.h> |
109 | #include <linux/kmemleak.h> | |
7c00fce9 | 110 | #include <linux/random.h> |
d92a8cfc | 111 | #include <linux/sched/mm.h> |
07f361b2 | 112 | |
97d06609 CL |
113 | /* |
114 | * State of the slab allocator. | |
115 | * | |
116 | * This is used to describe the states of the allocator during bootup. | |
117 | * Allocators use this to gradually bootstrap themselves. Most allocators | |
118 | * have the problem that the structures used for managing slab caches are | |
119 | * allocated from slab caches themselves. | |
120 | */ | |
121 | enum slab_state { | |
122 | DOWN, /* No slab functionality yet */ | |
123 | PARTIAL, /* SLUB: kmem_cache_node available */ | |
ce8eb6c4 | 124 | PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ |
97d06609 CL |
125 | UP, /* Slab caches usable but not all extras yet */ |
126 | FULL /* Everything is working */ | |
127 | }; | |
128 | ||
129 | extern enum slab_state slab_state; | |
130 | ||
18004c5d CL |
131 | /* The slab cache mutex protects the management structures during changes */ |
132 | extern struct mutex slab_mutex; | |
9b030cb8 CL |
133 | |
134 | /* The list of all slab caches on the system */ | |
18004c5d CL |
135 | extern struct list_head slab_caches; |
136 | ||
9b030cb8 CL |
137 | /* The slab cache that manages slab cache information */ |
138 | extern struct kmem_cache *kmem_cache; | |
139 | ||
af3b5f87 VB |
140 | /* A table of kmalloc cache names and sizes */ |
141 | extern const struct kmalloc_info_struct { | |
142 | const char *name; | |
55de8b9c | 143 | unsigned int size; |
af3b5f87 VB |
144 | } kmalloc_info[]; |
145 | ||
f97d5f63 CL |
146 | #ifndef CONFIG_SLOB |
147 | /* Kmalloc array related functions */ | |
34cc6990 | 148 | void setup_kmalloc_cache_index_table(void); |
d50112ed | 149 | void create_kmalloc_caches(slab_flags_t); |
2c59dd65 CL |
150 | |
151 | /* Find the kmalloc slab corresponding for a certain size */ | |
152 | struct kmem_cache *kmalloc_slab(size_t, gfp_t); | |
f97d5f63 CL |
153 | #endif |
154 | ||
155 | ||
9b030cb8 | 156 | /* Functions provided by the slab allocators */ |
d50112ed | 157 | int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); |
97d06609 | 158 | |
55de8b9c AD |
159 | struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size, |
160 | slab_flags_t flags, unsigned int useroffset, | |
161 | unsigned int usersize); | |
45530c44 | 162 | extern void create_boot_cache(struct kmem_cache *, const char *name, |
361d575e AD |
163 | unsigned int size, slab_flags_t flags, |
164 | unsigned int useroffset, unsigned int usersize); | |
45530c44 | 165 | |
423c929c | 166 | int slab_unmergeable(struct kmem_cache *s); |
f4957d5b | 167 | struct kmem_cache *find_mergeable(unsigned size, unsigned align, |
d50112ed | 168 | slab_flags_t flags, const char *name, void (*ctor)(void *)); |
12220dea | 169 | #ifndef CONFIG_SLOB |
2633d7a0 | 170 | struct kmem_cache * |
f4957d5b | 171 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 172 | slab_flags_t flags, void (*ctor)(void *)); |
423c929c | 173 | |
0293d1fd | 174 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 175 | slab_flags_t flags, const char *name, |
423c929c | 176 | void (*ctor)(void *)); |
cbb79694 | 177 | #else |
2633d7a0 | 178 | static inline struct kmem_cache * |
f4957d5b | 179 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 180 | slab_flags_t flags, void (*ctor)(void *)) |
cbb79694 | 181 | { return NULL; } |
423c929c | 182 | |
0293d1fd | 183 | static inline slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 184 | slab_flags_t flags, const char *name, |
423c929c JK |
185 | void (*ctor)(void *)) |
186 | { | |
187 | return flags; | |
188 | } | |
cbb79694 CL |
189 | #endif |
190 | ||
191 | ||
d8843922 | 192 | /* Legal flag mask for kmem_cache_create(), for various configurations */ |
6d6ea1e9 NB |
193 | #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ |
194 | SLAB_CACHE_DMA32 | SLAB_PANIC | \ | |
5f0d5a3a | 195 | SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) |
d8843922 GC |
196 | |
197 | #if defined(CONFIG_DEBUG_SLAB) | |
198 | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) | |
199 | #elif defined(CONFIG_SLUB_DEBUG) | |
200 | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
becfda68 | 201 | SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) |
d8843922 GC |
202 | #else |
203 | #define SLAB_DEBUG_FLAGS (0) | |
204 | #endif | |
205 | ||
206 | #if defined(CONFIG_SLAB) | |
207 | #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ | |
230e9fc2 | 208 | SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ |
75f296d9 | 209 | SLAB_ACCOUNT) |
d8843922 GC |
210 | #elif defined(CONFIG_SLUB) |
211 | #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ | |
75f296d9 | 212 | SLAB_TEMPORARY | SLAB_ACCOUNT) |
d8843922 GC |
213 | #else |
214 | #define SLAB_CACHE_FLAGS (0) | |
215 | #endif | |
216 | ||
e70954fd | 217 | /* Common flags available with current configuration */ |
d8843922 GC |
218 | #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) |
219 | ||
e70954fd TG |
220 | /* Common flags permitted for kmem_cache_create */ |
221 | #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ | |
222 | SLAB_RED_ZONE | \ | |
223 | SLAB_POISON | \ | |
224 | SLAB_STORE_USER | \ | |
225 | SLAB_TRACE | \ | |
226 | SLAB_CONSISTENCY_CHECKS | \ | |
227 | SLAB_MEM_SPREAD | \ | |
228 | SLAB_NOLEAKTRACE | \ | |
229 | SLAB_RECLAIM_ACCOUNT | \ | |
230 | SLAB_TEMPORARY | \ | |
e70954fd TG |
231 | SLAB_ACCOUNT) |
232 | ||
f9e13c0a | 233 | bool __kmem_cache_empty(struct kmem_cache *); |
945cf2b6 | 234 | int __kmem_cache_shutdown(struct kmem_cache *); |
52b4b950 | 235 | void __kmem_cache_release(struct kmem_cache *); |
c9fc5864 TH |
236 | int __kmem_cache_shrink(struct kmem_cache *); |
237 | void __kmemcg_cache_deactivate(struct kmem_cache *s); | |
43486694 | 238 | void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s); |
41a21285 | 239 | void slab_kmem_cache_release(struct kmem_cache *); |
04f768a3 | 240 | void kmem_cache_shrink_all(struct kmem_cache *s); |
945cf2b6 | 241 | |
b7454ad3 GC |
242 | struct seq_file; |
243 | struct file; | |
b7454ad3 | 244 | |
0d7561c6 GC |
245 | struct slabinfo { |
246 | unsigned long active_objs; | |
247 | unsigned long num_objs; | |
248 | unsigned long active_slabs; | |
249 | unsigned long num_slabs; | |
250 | unsigned long shared_avail; | |
251 | unsigned int limit; | |
252 | unsigned int batchcount; | |
253 | unsigned int shared; | |
254 | unsigned int objects_per_slab; | |
255 | unsigned int cache_order; | |
256 | }; | |
257 | ||
258 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); | |
259 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); | |
b7454ad3 GC |
260 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
261 | size_t count, loff_t *ppos); | |
ba6c496e | 262 | |
484748f0 CL |
263 | /* |
264 | * Generic implementation of bulk operations | |
265 | * These are useful for situations in which the allocator cannot | |
9f706d68 | 266 | * perform optimizations. In that case segments of the object listed |
484748f0 CL |
267 | * may be allocated or freed using these operations. |
268 | */ | |
269 | void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); | |
865762a8 | 270 | int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); |
484748f0 | 271 | |
6cea1d56 RG |
272 | static inline int cache_vmstat_idx(struct kmem_cache *s) |
273 | { | |
274 | return (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
275 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE; | |
276 | } | |
277 | ||
84c07d11 | 278 | #ifdef CONFIG_MEMCG_KMEM |
510ded33 TH |
279 | |
280 | /* List of all root caches. */ | |
281 | extern struct list_head slab_root_caches; | |
282 | #define root_caches_node memcg_params.__root_caches_node | |
283 | ||
426589f5 VD |
284 | /* |
285 | * Iterate over all memcg caches of the given root cache. The caller must hold | |
286 | * slab_mutex. | |
287 | */ | |
288 | #define for_each_memcg_cache(iter, root) \ | |
9eeadc8b TH |
289 | list_for_each_entry(iter, &(root)->memcg_params.children, \ |
290 | memcg_params.children_node) | |
426589f5 | 291 | |
ba6c496e GC |
292 | static inline bool is_root_cache(struct kmem_cache *s) |
293 | { | |
9eeadc8b | 294 | return !s->memcg_params.root_cache; |
ba6c496e | 295 | } |
2633d7a0 | 296 | |
b9ce5ef4 | 297 | static inline bool slab_equal_or_root(struct kmem_cache *s, |
f7ce3190 | 298 | struct kmem_cache *p) |
b9ce5ef4 | 299 | { |
f7ce3190 | 300 | return p == s || p == s->memcg_params.root_cache; |
b9ce5ef4 | 301 | } |
749c5415 GC |
302 | |
303 | /* | |
304 | * We use suffixes to the name in memcg because we can't have caches | |
305 | * created in the system with the same name. But when we print them | |
306 | * locally, better refer to them with the base name | |
307 | */ | |
308 | static inline const char *cache_name(struct kmem_cache *s) | |
309 | { | |
310 | if (!is_root_cache(s)) | |
f7ce3190 | 311 | s = s->memcg_params.root_cache; |
749c5415 GC |
312 | return s->name; |
313 | } | |
314 | ||
943a451a GC |
315 | static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) |
316 | { | |
317 | if (is_root_cache(s)) | |
318 | return s; | |
f7ce3190 | 319 | return s->memcg_params.root_cache; |
943a451a | 320 | } |
5dfb4175 | 321 | |
4d96ba35 RG |
322 | /* |
323 | * Expects a pointer to a slab page. Please note, that PageSlab() check | |
324 | * isn't sufficient, as it returns true also for tail compound slab pages, | |
325 | * which do not have slab_cache pointer set. | |
326 | * So this function assumes that the page can pass PageHead() and PageSlab() | |
327 | * checks. | |
fb2f2b0a RG |
328 | * |
329 | * The kmem_cache can be reparented asynchronously. The caller must ensure | |
330 | * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex. | |
4d96ba35 RG |
331 | */ |
332 | static inline struct mem_cgroup *memcg_from_slab_page(struct page *page) | |
333 | { | |
334 | struct kmem_cache *s; | |
335 | ||
336 | s = READ_ONCE(page->slab_cache); | |
337 | if (s && !is_root_cache(s)) | |
fb2f2b0a | 338 | return READ_ONCE(s->memcg_params.memcg); |
4d96ba35 RG |
339 | |
340 | return NULL; | |
341 | } | |
342 | ||
343 | /* | |
344 | * Charge the slab page belonging to the non-root kmem_cache. | |
345 | * Can be called for non-root kmem_caches only. | |
346 | */ | |
f3ccb2c4 VD |
347 | static __always_inline int memcg_charge_slab(struct page *page, |
348 | gfp_t gfp, int order, | |
349 | struct kmem_cache *s) | |
5dfb4175 | 350 | { |
4d96ba35 RG |
351 | struct mem_cgroup *memcg; |
352 | struct lruvec *lruvec; | |
f0a3a24b RG |
353 | int ret; |
354 | ||
fb2f2b0a RG |
355 | rcu_read_lock(); |
356 | memcg = READ_ONCE(s->memcg_params.memcg); | |
357 | while (memcg && !css_tryget_online(&memcg->css)) | |
358 | memcg = parent_mem_cgroup(memcg); | |
359 | rcu_read_unlock(); | |
360 | ||
361 | if (unlikely(!memcg || mem_cgroup_is_root(memcg))) { | |
362 | mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), | |
363 | (1 << order)); | |
364 | percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order); | |
365 | return 0; | |
366 | } | |
367 | ||
4d96ba35 | 368 | ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); |
f0a3a24b | 369 | if (ret) |
fb2f2b0a | 370 | goto out; |
f0a3a24b | 371 | |
4d96ba35 RG |
372 | lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg); |
373 | mod_lruvec_state(lruvec, cache_vmstat_idx(s), 1 << order); | |
374 | ||
375 | /* transer try_charge() page references to kmem_cache */ | |
f0a3a24b | 376 | percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order); |
4d96ba35 | 377 | css_put_many(&memcg->css, 1 << order); |
fb2f2b0a RG |
378 | out: |
379 | css_put(&memcg->css); | |
380 | return ret; | |
27ee57c9 VD |
381 | } |
382 | ||
4d96ba35 RG |
383 | /* |
384 | * Uncharge a slab page belonging to a non-root kmem_cache. | |
385 | * Can be called for non-root kmem_caches only. | |
386 | */ | |
27ee57c9 VD |
387 | static __always_inline void memcg_uncharge_slab(struct page *page, int order, |
388 | struct kmem_cache *s) | |
389 | { | |
4d96ba35 RG |
390 | struct mem_cgroup *memcg; |
391 | struct lruvec *lruvec; | |
392 | ||
fb2f2b0a RG |
393 | rcu_read_lock(); |
394 | memcg = READ_ONCE(s->memcg_params.memcg); | |
395 | if (likely(!mem_cgroup_is_root(memcg))) { | |
396 | lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg); | |
397 | mod_lruvec_state(lruvec, cache_vmstat_idx(s), -(1 << order)); | |
398 | memcg_kmem_uncharge_memcg(page, order, memcg); | |
399 | } else { | |
400 | mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), | |
401 | -(1 << order)); | |
402 | } | |
403 | rcu_read_unlock(); | |
4d96ba35 RG |
404 | |
405 | percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order); | |
5dfb4175 | 406 | } |
f7ce3190 VD |
407 | |
408 | extern void slab_init_memcg_params(struct kmem_cache *); | |
c03914b7 | 409 | extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg); |
f7ce3190 | 410 | |
84c07d11 | 411 | #else /* CONFIG_MEMCG_KMEM */ |
f7ce3190 | 412 | |
510ded33 TH |
413 | /* If !memcg, all caches are root. */ |
414 | #define slab_root_caches slab_caches | |
415 | #define root_caches_node list | |
416 | ||
426589f5 VD |
417 | #define for_each_memcg_cache(iter, root) \ |
418 | for ((void)(iter), (void)(root); 0; ) | |
426589f5 | 419 | |
ba6c496e GC |
420 | static inline bool is_root_cache(struct kmem_cache *s) |
421 | { | |
422 | return true; | |
423 | } | |
424 | ||
b9ce5ef4 GC |
425 | static inline bool slab_equal_or_root(struct kmem_cache *s, |
426 | struct kmem_cache *p) | |
427 | { | |
598a0717 | 428 | return s == p; |
b9ce5ef4 | 429 | } |
749c5415 GC |
430 | |
431 | static inline const char *cache_name(struct kmem_cache *s) | |
432 | { | |
433 | return s->name; | |
434 | } | |
435 | ||
943a451a GC |
436 | static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) |
437 | { | |
438 | return s; | |
439 | } | |
5dfb4175 | 440 | |
4d96ba35 RG |
441 | static inline struct mem_cgroup *memcg_from_slab_page(struct page *page) |
442 | { | |
443 | return NULL; | |
444 | } | |
445 | ||
f3ccb2c4 VD |
446 | static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, |
447 | struct kmem_cache *s) | |
5dfb4175 VD |
448 | { |
449 | return 0; | |
450 | } | |
451 | ||
27ee57c9 VD |
452 | static inline void memcg_uncharge_slab(struct page *page, int order, |
453 | struct kmem_cache *s) | |
454 | { | |
455 | } | |
456 | ||
f7ce3190 VD |
457 | static inline void slab_init_memcg_params(struct kmem_cache *s) |
458 | { | |
459 | } | |
510ded33 | 460 | |
c03914b7 RG |
461 | static inline void memcg_link_cache(struct kmem_cache *s, |
462 | struct mem_cgroup *memcg) | |
510ded33 TH |
463 | { |
464 | } | |
465 | ||
84c07d11 | 466 | #endif /* CONFIG_MEMCG_KMEM */ |
b9ce5ef4 | 467 | |
a64b5378 KC |
468 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
469 | { | |
470 | struct page *page; | |
471 | ||
472 | page = virt_to_head_page(obj); | |
473 | if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n", | |
474 | __func__)) | |
475 | return NULL; | |
476 | return page->slab_cache; | |
477 | } | |
478 | ||
6cea1d56 RG |
479 | static __always_inline int charge_slab_page(struct page *page, |
480 | gfp_t gfp, int order, | |
481 | struct kmem_cache *s) | |
482 | { | |
4d96ba35 RG |
483 | if (is_root_cache(s)) { |
484 | mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), | |
485 | 1 << order); | |
486 | return 0; | |
487 | } | |
6cea1d56 | 488 | |
4d96ba35 | 489 | return memcg_charge_slab(page, gfp, order, s); |
6cea1d56 RG |
490 | } |
491 | ||
492 | static __always_inline void uncharge_slab_page(struct page *page, int order, | |
493 | struct kmem_cache *s) | |
494 | { | |
4d96ba35 RG |
495 | if (is_root_cache(s)) { |
496 | mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), | |
497 | -(1 << order)); | |
498 | return; | |
499 | } | |
500 | ||
6cea1d56 RG |
501 | memcg_uncharge_slab(page, order, s); |
502 | } | |
503 | ||
b9ce5ef4 GC |
504 | static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) |
505 | { | |
506 | struct kmem_cache *cachep; | |
b9ce5ef4 GC |
507 | |
508 | /* | |
509 | * When kmemcg is not being used, both assignments should return the | |
510 | * same value. but we don't want to pay the assignment price in that | |
511 | * case. If it is not compiled in, the compiler should be smart enough | |
512 | * to not do even the assignment. In that case, slab_equal_or_root | |
513 | * will also be a constant. | |
514 | */ | |
becfda68 | 515 | if (!memcg_kmem_enabled() && |
598a0717 | 516 | !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && |
becfda68 | 517 | !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS)) |
b9ce5ef4 GC |
518 | return s; |
519 | ||
a64b5378 KC |
520 | cachep = virt_to_cache(x); |
521 | WARN_ONCE(cachep && !slab_equal_or_root(cachep, s), | |
598a0717 KC |
522 | "%s: Wrong slab cache. %s but object is from %s\n", |
523 | __func__, s->name, cachep->name); | |
524 | return cachep; | |
b9ce5ef4 | 525 | } |
ca34956b | 526 | |
11c7aec2 JDB |
527 | static inline size_t slab_ksize(const struct kmem_cache *s) |
528 | { | |
529 | #ifndef CONFIG_SLUB | |
530 | return s->object_size; | |
531 | ||
532 | #else /* CONFIG_SLUB */ | |
533 | # ifdef CONFIG_SLUB_DEBUG | |
534 | /* | |
535 | * Debugging requires use of the padding between object | |
536 | * and whatever may come after it. | |
537 | */ | |
538 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | |
539 | return s->object_size; | |
540 | # endif | |
80a9201a AP |
541 | if (s->flags & SLAB_KASAN) |
542 | return s->object_size; | |
11c7aec2 JDB |
543 | /* |
544 | * If we have the need to store the freelist pointer | |
545 | * back there or track user information then we can | |
546 | * only use the space before that information. | |
547 | */ | |
5f0d5a3a | 548 | if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) |
11c7aec2 JDB |
549 | return s->inuse; |
550 | /* | |
551 | * Else we can use all the padding etc for the allocation | |
552 | */ | |
553 | return s->size; | |
554 | #endif | |
555 | } | |
556 | ||
557 | static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, | |
558 | gfp_t flags) | |
559 | { | |
560 | flags &= gfp_allowed_mask; | |
d92a8cfc PZ |
561 | |
562 | fs_reclaim_acquire(flags); | |
563 | fs_reclaim_release(flags); | |
564 | ||
11c7aec2 JDB |
565 | might_sleep_if(gfpflags_allow_blocking(flags)); |
566 | ||
fab9963a | 567 | if (should_failslab(s, flags)) |
11c7aec2 JDB |
568 | return NULL; |
569 | ||
45264778 VD |
570 | if (memcg_kmem_enabled() && |
571 | ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT))) | |
572 | return memcg_kmem_get_cache(s); | |
573 | ||
574 | return s; | |
11c7aec2 JDB |
575 | } |
576 | ||
577 | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, | |
578 | size_t size, void **p) | |
579 | { | |
580 | size_t i; | |
581 | ||
582 | flags &= gfp_allowed_mask; | |
583 | for (i = 0; i < size; i++) { | |
53128245 | 584 | p[i] = kasan_slab_alloc(s, p[i], flags); |
a2f77575 | 585 | /* As p[i] might get tagged, call kmemleak hook after KASAN. */ |
53128245 | 586 | kmemleak_alloc_recursive(p[i], s->object_size, 1, |
11c7aec2 | 587 | s->flags, flags); |
11c7aec2 | 588 | } |
45264778 VD |
589 | |
590 | if (memcg_kmem_enabled()) | |
591 | memcg_kmem_put_cache(s); | |
11c7aec2 JDB |
592 | } |
593 | ||
44c5356f | 594 | #ifndef CONFIG_SLOB |
ca34956b CL |
595 | /* |
596 | * The slab lists for all objects. | |
597 | */ | |
598 | struct kmem_cache_node { | |
599 | spinlock_t list_lock; | |
600 | ||
601 | #ifdef CONFIG_SLAB | |
602 | struct list_head slabs_partial; /* partial list first, better asm code */ | |
603 | struct list_head slabs_full; | |
604 | struct list_head slabs_free; | |
bf00bd34 DR |
605 | unsigned long total_slabs; /* length of all slab lists */ |
606 | unsigned long free_slabs; /* length of free slab list only */ | |
ca34956b CL |
607 | unsigned long free_objects; |
608 | unsigned int free_limit; | |
609 | unsigned int colour_next; /* Per-node cache coloring */ | |
610 | struct array_cache *shared; /* shared per node */ | |
c8522a3a | 611 | struct alien_cache **alien; /* on other nodes */ |
ca34956b CL |
612 | unsigned long next_reap; /* updated without locking */ |
613 | int free_touched; /* updated without locking */ | |
614 | #endif | |
615 | ||
616 | #ifdef CONFIG_SLUB | |
617 | unsigned long nr_partial; | |
618 | struct list_head partial; | |
619 | #ifdef CONFIG_SLUB_DEBUG | |
620 | atomic_long_t nr_slabs; | |
621 | atomic_long_t total_objects; | |
622 | struct list_head full; | |
623 | #endif | |
624 | #endif | |
625 | ||
626 | }; | |
e25839f6 | 627 | |
44c5356f CL |
628 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) |
629 | { | |
630 | return s->node[node]; | |
631 | } | |
632 | ||
633 | /* | |
634 | * Iterator over all nodes. The body will be executed for each node that has | |
635 | * a kmem_cache_node structure allocated (which is true for all online nodes) | |
636 | */ | |
637 | #define for_each_kmem_cache_node(__s, __node, __n) \ | |
9163582c MP |
638 | for (__node = 0; __node < nr_node_ids; __node++) \ |
639 | if ((__n = get_node(__s, __node))) | |
44c5356f CL |
640 | |
641 | #endif | |
642 | ||
1df3b26f | 643 | void *slab_start(struct seq_file *m, loff_t *pos); |
276a2439 WL |
644 | void *slab_next(struct seq_file *m, void *p, loff_t *pos); |
645 | void slab_stop(struct seq_file *m, void *p); | |
bc2791f8 TH |
646 | void *memcg_slab_start(struct seq_file *m, loff_t *pos); |
647 | void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos); | |
648 | void memcg_slab_stop(struct seq_file *m, void *p); | |
b047501c | 649 | int memcg_slab_show(struct seq_file *m, void *p); |
5240ab40 | 650 | |
852d8be0 YS |
651 | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) |
652 | void dump_unreclaimable_slab(void); | |
653 | #else | |
654 | static inline void dump_unreclaimable_slab(void) | |
655 | { | |
656 | } | |
657 | #endif | |
658 | ||
55834c59 AP |
659 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); |
660 | ||
7c00fce9 TG |
661 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
662 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | |
663 | gfp_t gfp); | |
664 | void cache_random_seq_destroy(struct kmem_cache *cachep); | |
665 | #else | |
666 | static inline int cache_random_seq_create(struct kmem_cache *cachep, | |
667 | unsigned int count, gfp_t gfp) | |
668 | { | |
669 | return 0; | |
670 | } | |
671 | static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } | |
672 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
673 | ||
6471384a AP |
674 | static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) |
675 | { | |
676 | if (static_branch_unlikely(&init_on_alloc)) { | |
677 | if (c->ctor) | |
678 | return false; | |
679 | if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) | |
680 | return flags & __GFP_ZERO; | |
681 | return true; | |
682 | } | |
683 | return flags & __GFP_ZERO; | |
684 | } | |
685 | ||
686 | static inline bool slab_want_init_on_free(struct kmem_cache *c) | |
687 | { | |
688 | if (static_branch_unlikely(&init_on_free)) | |
689 | return !(c->ctor || | |
690 | (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); | |
691 | return false; | |
692 | } | |
693 | ||
5240ab40 | 694 | #endif /* MM_SLAB_H */ |