]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/oom_kill.c | |
3 | * | |
4 | * Copyright (C) 1998,2000 Rik van Riel | |
5 | * Thanks go out to Claus Fischer for some serious inspiration and | |
6 | * for goading me into coding this file... | |
7 | * | |
8 | * The routines in this file are used to kill a process when | |
a49335cc PJ |
9 | * we're seriously out of memory. This gets called from __alloc_pages() |
10 | * in mm/page_alloc.c when we really run out of memory. | |
1da177e4 LT |
11 | * |
12 | * Since we won't call these routines often (on a well-configured | |
13 | * machine) this file will double as a 'coding guide' and a signpost | |
14 | * for newbie kernel hackers. It features several pointers to major | |
15 | * kernel subsystems and hints as to where to find out what things do. | |
16 | */ | |
17 | ||
8ac773b4 | 18 | #include <linux/oom.h> |
1da177e4 | 19 | #include <linux/mm.h> |
4e950f6f | 20 | #include <linux/err.h> |
1da177e4 LT |
21 | #include <linux/sched.h> |
22 | #include <linux/swap.h> | |
23 | #include <linux/timex.h> | |
24 | #include <linux/jiffies.h> | |
ef08e3b4 | 25 | #include <linux/cpuset.h> |
8bc719d3 MS |
26 | #include <linux/module.h> |
27 | #include <linux/notifier.h> | |
c7ba5c9e | 28 | #include <linux/memcontrol.h> |
1da177e4 | 29 | |
fadd8fbd | 30 | int sysctl_panic_on_oom; |
fe071d7e | 31 | int sysctl_oom_kill_allocating_task; |
fef1bdd6 | 32 | int sysctl_oom_dump_tasks; |
ae74138d | 33 | static DEFINE_SPINLOCK(zone_scan_mutex); |
1da177e4 LT |
34 | /* #define DEBUG */ |
35 | ||
36 | /** | |
6937a25c | 37 | * badness - calculate a numeric value for how bad this task has been |
1da177e4 | 38 | * @p: task struct of which task we should calculate |
a49335cc | 39 | * @uptime: current uptime in seconds |
1da177e4 LT |
40 | * |
41 | * The formula used is relatively simple and documented inline in the | |
42 | * function. The main rationale is that we want to select a good task | |
43 | * to kill when we run out of memory. | |
44 | * | |
45 | * Good in this context means that: | |
46 | * 1) we lose the minimum amount of work done | |
47 | * 2) we recover a large amount of memory | |
48 | * 3) we don't kill anything innocent of eating tons of memory | |
49 | * 4) we want to kill the minimum amount of processes (one) | |
50 | * 5) we try to kill the process the user expects us to kill, this | |
51 | * algorithm has been meticulously tuned to meet the principle | |
52 | * of least surprise ... (be careful when you change it) | |
53 | */ | |
54 | ||
c7ba5c9e PE |
55 | unsigned long badness(struct task_struct *p, unsigned long uptime, |
56 | struct mem_cgroup *mem) | |
1da177e4 LT |
57 | { |
58 | unsigned long points, cpu_time, run_time, s; | |
97c2c9b8 AM |
59 | struct mm_struct *mm; |
60 | struct task_struct *child; | |
1da177e4 | 61 | |
97c2c9b8 AM |
62 | task_lock(p); |
63 | mm = p->mm; | |
64 | if (!mm) { | |
65 | task_unlock(p); | |
1da177e4 | 66 | return 0; |
97c2c9b8 | 67 | } |
1da177e4 LT |
68 | |
69 | /* | |
70 | * The memory size of the process is the basis for the badness. | |
71 | */ | |
97c2c9b8 AM |
72 | points = mm->total_vm; |
73 | ||
74 | /* | |
75 | * After this unlock we can no longer dereference local variable `mm' | |
76 | */ | |
77 | task_unlock(p); | |
1da177e4 | 78 | |
7ba34859 HD |
79 | /* |
80 | * swapoff can easily use up all memory, so kill those first. | |
81 | */ | |
82 | if (p->flags & PF_SWAPOFF) | |
83 | return ULONG_MAX; | |
84 | ||
1da177e4 LT |
85 | /* |
86 | * Processes which fork a lot of child processes are likely | |
9827b781 | 87 | * a good choice. We add half the vmsize of the children if they |
1da177e4 | 88 | * have an own mm. This prevents forking servers to flood the |
9827b781 KG |
89 | * machine with an endless amount of children. In case a single |
90 | * child is eating the vast majority of memory, adding only half | |
91 | * to the parents will make the child our kill candidate of choice. | |
1da177e4 | 92 | */ |
97c2c9b8 AM |
93 | list_for_each_entry(child, &p->children, sibling) { |
94 | task_lock(child); | |
95 | if (child->mm != mm && child->mm) | |
96 | points += child->mm->total_vm/2 + 1; | |
97 | task_unlock(child); | |
1da177e4 LT |
98 | } |
99 | ||
100 | /* | |
101 | * CPU time is in tens of seconds and run time is in thousands | |
102 | * of seconds. There is no particular reason for this other than | |
103 | * that it turned out to work very well in practice. | |
104 | */ | |
105 | cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) | |
106 | >> (SHIFT_HZ + 3); | |
107 | ||
108 | if (uptime >= p->start_time.tv_sec) | |
109 | run_time = (uptime - p->start_time.tv_sec) >> 10; | |
110 | else | |
111 | run_time = 0; | |
112 | ||
113 | s = int_sqrt(cpu_time); | |
114 | if (s) | |
115 | points /= s; | |
116 | s = int_sqrt(int_sqrt(run_time)); | |
117 | if (s) | |
118 | points /= s; | |
119 | ||
120 | /* | |
121 | * Niced processes are most likely less important, so double | |
122 | * their badness points. | |
123 | */ | |
124 | if (task_nice(p) > 0) | |
125 | points *= 2; | |
126 | ||
127 | /* | |
128 | * Superuser processes are usually more important, so we make it | |
129 | * less likely that we kill those. | |
130 | */ | |
97829955 | 131 | if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE)) |
1da177e4 LT |
132 | points /= 4; |
133 | ||
134 | /* | |
135 | * We don't want to kill a process with direct hardware access. | |
136 | * Not only could that mess up the hardware, but usually users | |
137 | * tend to only have this flag set on applications they think | |
138 | * of as important. | |
139 | */ | |
e338d263 | 140 | if (__capable(p, CAP_SYS_RAWIO)) |
1da177e4 LT |
141 | points /= 4; |
142 | ||
7887a3da NP |
143 | /* |
144 | * If p's nodes don't overlap ours, it may still help to kill p | |
145 | * because p may have allocated or otherwise mapped memory on | |
146 | * this node before. However it will be less likely. | |
147 | */ | |
bbe373f2 | 148 | if (!cpuset_mems_allowed_intersects(current, p)) |
7887a3da NP |
149 | points /= 8; |
150 | ||
1da177e4 LT |
151 | /* |
152 | * Adjust the score by oomkilladj. | |
153 | */ | |
154 | if (p->oomkilladj) { | |
9a82782f JP |
155 | if (p->oomkilladj > 0) { |
156 | if (!points) | |
157 | points = 1; | |
1da177e4 | 158 | points <<= p->oomkilladj; |
9a82782f | 159 | } else |
1da177e4 LT |
160 | points >>= -(p->oomkilladj); |
161 | } | |
162 | ||
163 | #ifdef DEBUG | |
a5e58a61 | 164 | printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", |
1da177e4 LT |
165 | p->pid, p->comm, points); |
166 | #endif | |
167 | return points; | |
168 | } | |
169 | ||
9b0f8b04 CL |
170 | /* |
171 | * Determine the type of allocation constraint. | |
172 | */ | |
70e24bdf DR |
173 | static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist, |
174 | gfp_t gfp_mask) | |
9b0f8b04 CL |
175 | { |
176 | #ifdef CONFIG_NUMA | |
177 | struct zone **z; | |
ee31af5d | 178 | nodemask_t nodes = node_states[N_HIGH_MEMORY]; |
9b0f8b04 CL |
179 | |
180 | for (z = zonelist->zones; *z; z++) | |
02a0e53d | 181 | if (cpuset_zone_allowed_softwall(*z, gfp_mask)) |
89fa3024 | 182 | node_clear(zone_to_nid(*z), nodes); |
9b0f8b04 CL |
183 | else |
184 | return CONSTRAINT_CPUSET; | |
185 | ||
186 | if (!nodes_empty(nodes)) | |
187 | return CONSTRAINT_MEMORY_POLICY; | |
188 | #endif | |
189 | ||
190 | return CONSTRAINT_NONE; | |
191 | } | |
192 | ||
1da177e4 LT |
193 | /* |
194 | * Simple selection loop. We chose the process with the highest | |
195 | * number of 'points'. We expect the caller will lock the tasklist. | |
196 | * | |
197 | * (not docbooked, we don't want this one cluttering up the manual) | |
198 | */ | |
c7ba5c9e PE |
199 | static struct task_struct *select_bad_process(unsigned long *ppoints, |
200 | struct mem_cgroup *mem) | |
1da177e4 | 201 | { |
1da177e4 LT |
202 | struct task_struct *g, *p; |
203 | struct task_struct *chosen = NULL; | |
204 | struct timespec uptime; | |
9827b781 | 205 | *ppoints = 0; |
1da177e4 LT |
206 | |
207 | do_posix_clock_monotonic_gettime(&uptime); | |
a49335cc PJ |
208 | do_each_thread(g, p) { |
209 | unsigned long points; | |
a49335cc | 210 | |
28324d1d ON |
211 | /* |
212 | * skip kernel threads and tasks which have already released | |
213 | * their mm. | |
214 | */ | |
5081dde3 NP |
215 | if (!p->mm) |
216 | continue; | |
28324d1d | 217 | /* skip the init task */ |
b460cbc5 | 218 | if (is_global_init(p)) |
a49335cc | 219 | continue; |
4c4a2214 DR |
220 | if (mem && !task_in_mem_cgroup(p, mem)) |
221 | continue; | |
ef08e3b4 | 222 | |
b78483a4 NP |
223 | /* |
224 | * This task already has access to memory reserves and is | |
225 | * being killed. Don't allow any other task access to the | |
226 | * memory reserve. | |
227 | * | |
228 | * Note: this may have a chance of deadlock if it gets | |
229 | * blocked waiting for another task which itself is waiting | |
230 | * for memory. Is there a better alternative? | |
231 | */ | |
232 | if (test_tsk_thread_flag(p, TIF_MEMDIE)) | |
233 | return ERR_PTR(-1UL); | |
234 | ||
a49335cc | 235 | /* |
6937a25c | 236 | * This is in the process of releasing memory so wait for it |
a49335cc | 237 | * to finish before killing some other task by mistake. |
50ec3bbf NP |
238 | * |
239 | * However, if p is the current task, we allow the 'kill' to | |
240 | * go ahead if it is exiting: this will simply set TIF_MEMDIE, | |
241 | * which will allow it to gain access to memory reserves in | |
242 | * the process of exiting and releasing its resources. | |
b78483a4 | 243 | * Otherwise we could get an easy OOM deadlock. |
a49335cc | 244 | */ |
b78483a4 NP |
245 | if (p->flags & PF_EXITING) { |
246 | if (p != current) | |
247 | return ERR_PTR(-1UL); | |
248 | ||
972c4ea5 ON |
249 | chosen = p; |
250 | *ppoints = ULONG_MAX; | |
50ec3bbf | 251 | } |
972c4ea5 | 252 | |
4a3ede10 NP |
253 | if (p->oomkilladj == OOM_DISABLE) |
254 | continue; | |
a49335cc | 255 | |
c7ba5c9e | 256 | points = badness(p, uptime.tv_sec, mem); |
9827b781 | 257 | if (points > *ppoints || !chosen) { |
a49335cc | 258 | chosen = p; |
9827b781 | 259 | *ppoints = points; |
1da177e4 | 260 | } |
a49335cc | 261 | } while_each_thread(g, p); |
972c4ea5 | 262 | |
1da177e4 LT |
263 | return chosen; |
264 | } | |
265 | ||
fef1bdd6 DR |
266 | /** |
267 | * Dumps the current memory state of all system tasks, excluding kernel threads. | |
268 | * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj | |
269 | * score, and name. | |
270 | * | |
271 | * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are | |
272 | * shown. | |
273 | * | |
274 | * Call with tasklist_lock read-locked. | |
275 | */ | |
276 | static void dump_tasks(const struct mem_cgroup *mem) | |
277 | { | |
278 | struct task_struct *g, *p; | |
279 | ||
280 | printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " | |
281 | "name\n"); | |
282 | do_each_thread(g, p) { | |
283 | /* | |
284 | * total_vm and rss sizes do not exist for tasks with a | |
285 | * detached mm so there's no need to report them. | |
286 | */ | |
287 | if (!p->mm) | |
288 | continue; | |
289 | if (mem && !task_in_mem_cgroup(p, mem)) | |
290 | continue; | |
291 | ||
292 | task_lock(p); | |
293 | printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n", | |
294 | p->pid, p->uid, p->tgid, p->mm->total_vm, | |
295 | get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj, | |
296 | p->comm); | |
297 | task_unlock(p); | |
298 | } while_each_thread(g, p); | |
299 | } | |
300 | ||
1da177e4 | 301 | /** |
5a291b98 RG |
302 | * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO |
303 | * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO | |
304 | * set. | |
1da177e4 | 305 | */ |
f3af38d3 | 306 | static void __oom_kill_task(struct task_struct *p, int verbose) |
1da177e4 | 307 | { |
b460cbc5 | 308 | if (is_global_init(p)) { |
1da177e4 LT |
309 | WARN_ON(1); |
310 | printk(KERN_WARNING "tried to kill init!\n"); | |
311 | return; | |
312 | } | |
313 | ||
01017a22 | 314 | if (!p->mm) { |
1da177e4 LT |
315 | WARN_ON(1); |
316 | printk(KERN_WARNING "tried to kill an mm-less task!\n"); | |
1da177e4 LT |
317 | return; |
318 | } | |
50ec3bbf | 319 | |
f3af38d3 | 320 | if (verbose) |
ba25f9dc PE |
321 | printk(KERN_ERR "Killed process %d (%s)\n", |
322 | task_pid_nr(p), p->comm); | |
1da177e4 LT |
323 | |
324 | /* | |
325 | * We give our sacrificial lamb high priority and access to | |
326 | * all the memory it needs. That way it should be able to | |
327 | * exit() and clear out its resources quickly... | |
328 | */ | |
fa717060 | 329 | p->rt.time_slice = HZ; |
1da177e4 LT |
330 | set_tsk_thread_flag(p, TIF_MEMDIE); |
331 | ||
332 | force_sig(SIGKILL, p); | |
333 | } | |
334 | ||
f3af38d3 | 335 | static int oom_kill_task(struct task_struct *p) |
1da177e4 | 336 | { |
01315922 | 337 | struct mm_struct *mm; |
36c8b586 | 338 | struct task_struct *g, *q; |
1da177e4 | 339 | |
01315922 DP |
340 | mm = p->mm; |
341 | ||
342 | /* WARNING: mm may not be dereferenced since we did not obtain its | |
343 | * value from get_task_mm(p). This is OK since all we need to do is | |
344 | * compare mm to q->mm below. | |
345 | * | |
346 | * Furthermore, even if mm contains a non-NULL value, p->mm may | |
347 | * change to NULL at any time since we do not hold task_lock(p). | |
348 | * However, this is of no concern to us. | |
349 | */ | |
350 | ||
01017a22 | 351 | if (mm == NULL) |
01315922 | 352 | return 1; |
1da177e4 | 353 | |
c33e0fca NP |
354 | /* |
355 | * Don't kill the process if any threads are set to OOM_DISABLE | |
356 | */ | |
357 | do_each_thread(g, q) { | |
35ae834f | 358 | if (q->mm == mm && q->oomkilladj == OOM_DISABLE) |
c33e0fca NP |
359 | return 1; |
360 | } while_each_thread(g, q); | |
361 | ||
f3af38d3 | 362 | __oom_kill_task(p, 1); |
c33e0fca | 363 | |
1da177e4 LT |
364 | /* |
365 | * kill all processes that share the ->mm (i.e. all threads), | |
f2a2a710 NP |
366 | * but are in a different thread group. Don't let them have access |
367 | * to memory reserves though, otherwise we might deplete all memory. | |
1da177e4 | 368 | */ |
c33e0fca | 369 | do_each_thread(g, q) { |
bac0abd6 | 370 | if (q->mm == mm && !same_thread_group(q, p)) |
650a7c97 | 371 | force_sig(SIGKILL, q); |
c33e0fca | 372 | } while_each_thread(g, q); |
1da177e4 | 373 | |
01315922 | 374 | return 0; |
1da177e4 LT |
375 | } |
376 | ||
7213f506 | 377 | static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, |
fef1bdd6 DR |
378 | unsigned long points, struct mem_cgroup *mem, |
379 | const char *message) | |
1da177e4 | 380 | { |
1da177e4 | 381 | struct task_struct *c; |
1da177e4 | 382 | |
7213f506 DR |
383 | if (printk_ratelimit()) { |
384 | printk(KERN_WARNING "%s invoked oom-killer: " | |
385 | "gfp_mask=0x%x, order=%d, oomkilladj=%d\n", | |
386 | current->comm, gfp_mask, order, current->oomkilladj); | |
387 | dump_stack(); | |
388 | show_mem(); | |
fef1bdd6 DR |
389 | if (sysctl_oom_dump_tasks) |
390 | dump_tasks(mem); | |
7213f506 DR |
391 | } |
392 | ||
50ec3bbf NP |
393 | /* |
394 | * If the task is already exiting, don't alarm the sysadmin or kill | |
395 | * its children or threads, just set TIF_MEMDIE so it can die quickly | |
396 | */ | |
397 | if (p->flags & PF_EXITING) { | |
f3af38d3 | 398 | __oom_kill_task(p, 0); |
50ec3bbf NP |
399 | return 0; |
400 | } | |
401 | ||
f3af38d3 | 402 | printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", |
ba25f9dc | 403 | message, task_pid_nr(p), p->comm, points); |
f3af38d3 | 404 | |
1da177e4 | 405 | /* Try to kill a child first */ |
7b1915a9 | 406 | list_for_each_entry(c, &p->children, sibling) { |
1da177e4 LT |
407 | if (c->mm == p->mm) |
408 | continue; | |
f3af38d3 | 409 | if (!oom_kill_task(c)) |
01315922 | 410 | return 0; |
1da177e4 | 411 | } |
f3af38d3 | 412 | return oom_kill_task(p); |
1da177e4 LT |
413 | } |
414 | ||
c7ba5c9e PE |
415 | #ifdef CONFIG_CGROUP_MEM_CONT |
416 | void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) | |
417 | { | |
418 | unsigned long points = 0; | |
419 | struct task_struct *p; | |
420 | ||
421 | cgroup_lock(); | |
422 | rcu_read_lock(); | |
423 | retry: | |
424 | p = select_bad_process(&points, mem); | |
425 | if (PTR_ERR(p) == -1UL) | |
426 | goto out; | |
427 | ||
428 | if (!p) | |
429 | p = current; | |
430 | ||
fef1bdd6 | 431 | if (oom_kill_process(p, gfp_mask, 0, points, mem, |
c7ba5c9e PE |
432 | "Memory cgroup out of memory")) |
433 | goto retry; | |
434 | out: | |
435 | rcu_read_unlock(); | |
436 | cgroup_unlock(); | |
437 | } | |
438 | #endif | |
439 | ||
8bc719d3 MS |
440 | static BLOCKING_NOTIFIER_HEAD(oom_notify_list); |
441 | ||
442 | int register_oom_notifier(struct notifier_block *nb) | |
443 | { | |
444 | return blocking_notifier_chain_register(&oom_notify_list, nb); | |
445 | } | |
446 | EXPORT_SYMBOL_GPL(register_oom_notifier); | |
447 | ||
448 | int unregister_oom_notifier(struct notifier_block *nb) | |
449 | { | |
450 | return blocking_notifier_chain_unregister(&oom_notify_list, nb); | |
451 | } | |
452 | EXPORT_SYMBOL_GPL(unregister_oom_notifier); | |
453 | ||
098d7f12 DR |
454 | /* |
455 | * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero | |
456 | * if a parallel OOM killing is already taking place that includes a zone in | |
457 | * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. | |
458 | */ | |
459 | int try_set_zone_oom(struct zonelist *zonelist) | |
460 | { | |
461 | struct zone **z; | |
462 | int ret = 1; | |
463 | ||
464 | z = zonelist->zones; | |
465 | ||
ae74138d | 466 | spin_lock(&zone_scan_mutex); |
098d7f12 DR |
467 | do { |
468 | if (zone_is_oom_locked(*z)) { | |
469 | ret = 0; | |
470 | goto out; | |
471 | } | |
472 | } while (*(++z) != NULL); | |
473 | ||
474 | /* | |
475 | * Lock each zone in the zonelist under zone_scan_mutex so a parallel | |
476 | * invocation of try_set_zone_oom() doesn't succeed when it shouldn't. | |
477 | */ | |
478 | z = zonelist->zones; | |
479 | do { | |
480 | zone_set_flag(*z, ZONE_OOM_LOCKED); | |
481 | } while (*(++z) != NULL); | |
482 | out: | |
ae74138d | 483 | spin_unlock(&zone_scan_mutex); |
098d7f12 DR |
484 | return ret; |
485 | } | |
486 | ||
487 | /* | |
488 | * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed | |
489 | * allocation attempts with zonelists containing them may now recall the OOM | |
490 | * killer, if necessary. | |
491 | */ | |
492 | void clear_zonelist_oom(struct zonelist *zonelist) | |
493 | { | |
494 | struct zone **z; | |
495 | ||
496 | z = zonelist->zones; | |
497 | ||
ae74138d | 498 | spin_lock(&zone_scan_mutex); |
098d7f12 DR |
499 | do { |
500 | zone_clear_flag(*z, ZONE_OOM_LOCKED); | |
501 | } while (*(++z) != NULL); | |
ae74138d | 502 | spin_unlock(&zone_scan_mutex); |
098d7f12 DR |
503 | } |
504 | ||
1da177e4 | 505 | /** |
6937a25c | 506 | * out_of_memory - kill the "best" process when we run out of memory |
1da177e4 LT |
507 | * |
508 | * If we run out of memory, we have the choice between either | |
509 | * killing a random task (bad), letting the system crash (worse) | |
510 | * OR try to be smart about which process to kill. Note that we | |
511 | * don't have to be perfect here, we just have to be good. | |
512 | */ | |
9b0f8b04 | 513 | void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) |
1da177e4 | 514 | { |
36c8b586 | 515 | struct task_struct *p; |
d6713e04 | 516 | unsigned long points = 0; |
8bc719d3 | 517 | unsigned long freed = 0; |
70e24bdf | 518 | enum oom_constraint constraint; |
8bc719d3 MS |
519 | |
520 | blocking_notifier_call_chain(&oom_notify_list, 0, &freed); | |
521 | if (freed > 0) | |
522 | /* Got some memory back in the last second. */ | |
523 | return; | |
1da177e4 | 524 | |
2b744c01 YG |
525 | if (sysctl_panic_on_oom == 2) |
526 | panic("out of memory. Compulsory panic_on_oom is selected.\n"); | |
527 | ||
9b0f8b04 CL |
528 | /* |
529 | * Check if there were limitations on the allocation (only relevant for | |
530 | * NUMA) that may require different handling. | |
531 | */ | |
2b45ab33 | 532 | constraint = constrained_alloc(zonelist, gfp_mask); |
2b45ab33 DR |
533 | read_lock(&tasklist_lock); |
534 | ||
535 | switch (constraint) { | |
9b0f8b04 | 536 | case CONSTRAINT_MEMORY_POLICY: |
fef1bdd6 | 537 | oom_kill_process(current, gfp_mask, order, points, NULL, |
9b0f8b04 CL |
538 | "No available memory (MPOL_BIND)"); |
539 | break; | |
540 | ||
9b0f8b04 | 541 | case CONSTRAINT_NONE: |
fadd8fbd KH |
542 | if (sysctl_panic_on_oom) |
543 | panic("out of memory. panic_on_oom is selected\n"); | |
fe071d7e DR |
544 | /* Fall-through */ |
545 | case CONSTRAINT_CPUSET: | |
546 | if (sysctl_oom_kill_allocating_task) { | |
fef1bdd6 | 547 | oom_kill_process(current, gfp_mask, order, points, NULL, |
fe071d7e DR |
548 | "Out of memory (oom_kill_allocating_task)"); |
549 | break; | |
550 | } | |
1da177e4 | 551 | retry: |
9b0f8b04 CL |
552 | /* |
553 | * Rambo mode: Shoot down a process and hope it solves whatever | |
554 | * issues we may have. | |
555 | */ | |
c7ba5c9e | 556 | p = select_bad_process(&points, NULL); |
1da177e4 | 557 | |
9b0f8b04 CL |
558 | if (PTR_ERR(p) == -1UL) |
559 | goto out; | |
1da177e4 | 560 | |
9b0f8b04 CL |
561 | /* Found nothing?!?! Either we hang forever, or we panic. */ |
562 | if (!p) { | |
563 | read_unlock(&tasklist_lock); | |
9b0f8b04 CL |
564 | panic("Out of memory and no killable processes...\n"); |
565 | } | |
1da177e4 | 566 | |
fef1bdd6 | 567 | if (oom_kill_process(p, gfp_mask, order, points, NULL, |
7213f506 | 568 | "Out of memory")) |
9b0f8b04 CL |
569 | goto retry; |
570 | ||
571 | break; | |
572 | } | |
1da177e4 | 573 | |
9b0f8b04 | 574 | out: |
140ffcec | 575 | read_unlock(&tasklist_lock); |
1da177e4 LT |
576 | |
577 | /* | |
578 | * Give "p" a good chance of killing itself before we | |
2f659f46 | 579 | * retry to allocate memory unless "p" is current |
1da177e4 | 580 | */ |
2f659f46 | 581 | if (!test_thread_flag(TIF_MEMDIE)) |
140ffcec | 582 | schedule_timeout_uninterruptible(1); |
1da177e4 | 583 | } |