]> Git Repo - linux.git/blame - block/blk-core.c
Merge branch 'dsa-multi-cpu-port-part-two'
[linux.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <[email protected]> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <[email protected]>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <[email protected]>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <[email protected]> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
52abca64 19#include <linux/blk-pm.h>
fe45e630 20#include <linux/blk-integrity.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
b8e24a93 40#include <linux/psi.h>
82d981d4 41#include <linux/part_stat.h>
71ac860a 42#include <linux/sched/sysctl.h>
a892c8d5 43#include <linux/blk-crypto.h>
55782138
LZ
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/block.h>
1da177e4 47
8324aa91 48#include "blk.h"
2aa7745b 49#include "blk-mq-sched.h"
bca6b067 50#include "blk-pm.h"
672fdcf0 51#include "blk-cgroup.h"
a7b36ee6 52#include "blk-throttle.h"
8324aa91 53
18fbda91 54struct dentry *blk_debugfs_root;
18fbda91 55
d07335e5 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 62
a73f730d
TH
63DEFINE_IDA(blk_queue_ida);
64
1da177e4
LT
65/*
66 * For queue allocation
67 */
6728cb0e 68struct kmem_cache *blk_requestq_cachep;
704b914f 69struct kmem_cache *blk_requestq_srcu_cachep;
1da177e4 70
1da177e4
LT
71/*
72 * Controlling structure to kblockd
73 */
ff856bad 74static struct workqueue_struct *kblockd_workqueue;
1da177e4 75
8814ce8a
BVA
76/**
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
79 * @q: request queue
80 */
81void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82{
57d74df9 83 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
84}
85EXPORT_SYMBOL(blk_queue_flag_set);
86
87/**
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
90 * @q: request queue
91 */
92void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93{
57d74df9 94 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
95}
96EXPORT_SYMBOL(blk_queue_flag_clear);
97
98/**
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
101 * @q: request queue
102 *
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
105 */
106bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107{
57d74df9 108 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
109}
110EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111
e47bc4ed
CK
112#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
113static const char *const blk_op_name[] = {
114 REQ_OP_NAME(READ),
115 REQ_OP_NAME(WRITE),
116 REQ_OP_NAME(FLUSH),
117 REQ_OP_NAME(DISCARD),
118 REQ_OP_NAME(SECURE_ERASE),
119 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 120 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
121 REQ_OP_NAME(ZONE_OPEN),
122 REQ_OP_NAME(ZONE_CLOSE),
123 REQ_OP_NAME(ZONE_FINISH),
0512a75b 124 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed 125 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
126 REQ_OP_NAME(DRV_IN),
127 REQ_OP_NAME(DRV_OUT),
128};
129#undef REQ_OP_NAME
130
131/**
132 * blk_op_str - Return string XXX in the REQ_OP_XXX.
133 * @op: REQ_OP_XXX.
134 *
135 * Description: Centralize block layer function to convert REQ_OP_XXX into
136 * string format. Useful in the debugging and tracing bio or request. For
137 * invalid REQ_OP_XXX it returns string "UNKNOWN".
138 */
139inline const char *blk_op_str(unsigned int op)
140{
141 const char *op_str = "UNKNOWN";
142
143 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
144 op_str = blk_op_name[op];
145
146 return op_str;
147}
148EXPORT_SYMBOL_GPL(blk_op_str);
149
2a842aca
CH
150static const struct {
151 int errno;
152 const char *name;
153} blk_errors[] = {
154 [BLK_STS_OK] = { 0, "" },
155 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
156 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
157 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
158 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
159 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
160 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
161 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
162 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
163 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 164 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 165 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
7d32c027 166 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
2a842aca 167
4e4cbee9
CH
168 /* device mapper special case, should not leak out: */
169 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
170
3b481d91
KB
171 /* zone device specific errors */
172 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
173 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
174
2a842aca
CH
175 /* everything else not covered above: */
176 [BLK_STS_IOERR] = { -EIO, "I/O" },
177};
178
179blk_status_t errno_to_blk_status(int errno)
180{
181 int i;
182
183 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
184 if (blk_errors[i].errno == errno)
185 return (__force blk_status_t)i;
186 }
187
188 return BLK_STS_IOERR;
189}
190EXPORT_SYMBOL_GPL(errno_to_blk_status);
191
192int blk_status_to_errno(blk_status_t status)
193{
194 int idx = (__force int)status;
195
34bd9c1c 196 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
197 return -EIO;
198 return blk_errors[idx].errno;
199}
200EXPORT_SYMBOL_GPL(blk_status_to_errno);
201
0d7a29a2 202const char *blk_status_to_str(blk_status_t status)
2a842aca
CH
203{
204 int idx = (__force int)status;
205
34bd9c1c 206 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
0d7a29a2
CH
207 return "<null>";
208 return blk_errors[idx].name;
2a842aca
CH
209}
210
1da177e4
LT
211/**
212 * blk_sync_queue - cancel any pending callbacks on a queue
213 * @q: the queue
214 *
215 * Description:
216 * The block layer may perform asynchronous callback activity
217 * on a queue, such as calling the unplug function after a timeout.
218 * A block device may call blk_sync_queue to ensure that any
219 * such activity is cancelled, thus allowing it to release resources
59c51591 220 * that the callbacks might use. The caller must already have made sure
c62b37d9 221 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
222 * this function.
223 *
da527770 224 * This function does not cancel any asynchronous activity arising
da3dae54 225 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 226 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 227 *
1da177e4
LT
228 */
229void blk_sync_queue(struct request_queue *q)
230{
70ed28b9 231 del_timer_sync(&q->timeout);
4e9b6f20 232 cancel_work_sync(&q->timeout_work);
1da177e4
LT
233}
234EXPORT_SYMBOL(blk_sync_queue);
235
c9254f2d 236/**
cd84a62e 237 * blk_set_pm_only - increment pm_only counter
c9254f2d 238 * @q: request queue pointer
c9254f2d 239 */
cd84a62e 240void blk_set_pm_only(struct request_queue *q)
c9254f2d 241{
cd84a62e 242 atomic_inc(&q->pm_only);
c9254f2d 243}
cd84a62e 244EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 245
cd84a62e 246void blk_clear_pm_only(struct request_queue *q)
c9254f2d 247{
cd84a62e
BVA
248 int pm_only;
249
250 pm_only = atomic_dec_return(&q->pm_only);
251 WARN_ON_ONCE(pm_only < 0);
252 if (pm_only == 0)
253 wake_up_all(&q->mq_freeze_wq);
c9254f2d 254}
cd84a62e 255EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 256
b5bd357c
LC
257/**
258 * blk_put_queue - decrement the request_queue refcount
259 * @q: the request_queue structure to decrement the refcount for
260 *
261 * Decrements the refcount of the request_queue kobject. When this reaches 0
262 * we'll have blk_release_queue() called.
e8c7d14a
LC
263 *
264 * Context: Any context, but the last reference must not be dropped from
265 * atomic context.
b5bd357c 266 */
165125e1 267void blk_put_queue(struct request_queue *q)
483f4afc
AV
268{
269 kobject_put(&q->kobj);
270}
d86e0e83 271EXPORT_SYMBOL(blk_put_queue);
483f4afc 272
8e141f9e 273void blk_queue_start_drain(struct request_queue *q)
aed3ea94 274{
d3cfb2a0
ML
275 /*
276 * When queue DYING flag is set, we need to block new req
277 * entering queue, so we call blk_freeze_queue_start() to
278 * prevent I/O from crossing blk_queue_enter().
279 */
280 blk_freeze_queue_start(q);
344e9ffc 281 if (queue_is_mq(q))
aed3ea94 282 blk_mq_wake_waiters(q);
055f6e18
ML
283 /* Make blk_queue_enter() reexamine the DYING flag. */
284 wake_up_all(&q->mq_freeze_wq);
aed3ea94 285}
8e141f9e 286
c9a929dd
TH
287/**
288 * blk_cleanup_queue - shutdown a request queue
289 * @q: request queue to shutdown
290 *
c246e80d
BVA
291 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
292 * put it. All future requests will be failed immediately with -ENODEV.
e8c7d14a
LC
293 *
294 * Context: can sleep
c94a96ac 295 */
6728cb0e 296void blk_cleanup_queue(struct request_queue *q)
483f4afc 297{
e8c7d14a
LC
298 /* cannot be called from atomic context */
299 might_sleep();
300
bae85c15
BVA
301 WARN_ON_ONCE(blk_queue_registered(q));
302
3f3299d5 303 /* mark @q DYING, no new request or merges will be allowed afterwards */
7a5428dc
CH
304 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
305 blk_queue_start_drain(q);
6ecf23af 306
57d74df9
CH
307 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
308 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
c9a929dd 309
c246e80d
BVA
310 /*
311 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
312 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
313 * after draining finished.
c246e80d 314 */
3ef28e83 315 blk_freeze_queue(q);
c57cdf7a 316
57d74df9 317 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 318
c9a929dd 319 blk_sync_queue(q);
2a19b28f
ML
320 if (queue_is_mq(q)) {
321 blk_mq_cancel_work_sync(q);
c7e2d94b 322 blk_mq_exit_queue(q);
2a19b28f 323 }
a1ce35fa 324
c3e22192
ML
325 /*
326 * In theory, request pool of sched_tags belongs to request queue.
327 * However, the current implementation requires tag_set for freeing
328 * requests, so free the pool now.
329 *
330 * Queue has become frozen, there can't be any in-queue requests, so
331 * it is safe to free requests now.
332 */
333 mutex_lock(&q->sysfs_lock);
334 if (q->elevator)
1820f4f0 335 blk_mq_sched_free_rqs(q);
c3e22192
ML
336 mutex_unlock(&q->sysfs_lock);
337
c9a929dd 338 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
339 blk_put_queue(q);
340}
1da177e4
LT
341EXPORT_SYMBOL(blk_cleanup_queue);
342
3a0a5299
BVA
343/**
344 * blk_queue_enter() - try to increase q->q_usage_counter
345 * @q: request queue pointer
a4d34da7 346 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 347 */
9a95e4ef 348int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 349{
a4d34da7 350 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 351
1f14a098 352 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 353 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
354 return -EBUSY;
355
5ed61d3f 356 /*
1f14a098
CH
357 * read pair of barrier in blk_freeze_queue_start(), we need to
358 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
359 * reading .mq_freeze_depth or queue dying flag, otherwise the
360 * following wait may never return if the two reads are
361 * reordered.
5ed61d3f
ML
362 */
363 smp_rmb();
1dc3039b 364 wait_event(q->mq_freeze_wq,
7996a8b5 365 (!q->mq_freeze_depth &&
52abca64 366 blk_pm_resume_queue(pm, q)) ||
1dc3039b 367 blk_queue_dying(q));
3ef28e83
DW
368 if (blk_queue_dying(q))
369 return -ENODEV;
3ef28e83 370 }
1f14a098
CH
371
372 return 0;
3ef28e83
DW
373}
374
c98cb5bb 375int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 376{
a6741536 377 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
378 struct gendisk *disk = bio->bi_bdev->bd_disk;
379
a6741536 380 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 381 if (test_bit(GD_DEAD, &disk->state))
a6741536 382 goto dead;
accea322 383 bio_wouldblock_error(bio);
a6741536
CH
384 return -EBUSY;
385 }
386
387 /*
388 * read pair of barrier in blk_freeze_queue_start(), we need to
389 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
390 * reading .mq_freeze_depth or queue dying flag, otherwise the
391 * following wait may never return if the two reads are
392 * reordered.
393 */
394 smp_rmb();
395 wait_event(q->mq_freeze_wq,
396 (!q->mq_freeze_depth &&
397 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
398 test_bit(GD_DEAD, &disk->state));
399 if (test_bit(GD_DEAD, &disk->state))
a6741536 400 goto dead;
accea322
CH
401 }
402
a6741536
CH
403 return 0;
404dead:
405 bio_io_error(bio);
406 return -ENODEV;
accea322
CH
407}
408
3ef28e83
DW
409void blk_queue_exit(struct request_queue *q)
410{
411 percpu_ref_put(&q->q_usage_counter);
412}
413
414static void blk_queue_usage_counter_release(struct percpu_ref *ref)
415{
416 struct request_queue *q =
417 container_of(ref, struct request_queue, q_usage_counter);
418
419 wake_up_all(&q->mq_freeze_wq);
420}
421
bca237a5 422static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 423{
bca237a5 424 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
425
426 kblockd_schedule_work(&q->timeout_work);
427}
428
2e3c18d0
TH
429static void blk_timeout_work(struct work_struct *work)
430{
431}
432
704b914f 433struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
1946089a 434{
165125e1 435 struct request_queue *q;
338aa96d 436 int ret;
1946089a 437
704b914f
ML
438 q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
439 GFP_KERNEL | __GFP_ZERO, node_id);
1da177e4
LT
440 if (!q)
441 return NULL;
442
704b914f
ML
443 if (alloc_srcu) {
444 blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
445 if (init_srcu_struct(q->srcu) != 0)
446 goto fail_q;
447 }
448
cbf62af3 449 q->last_merge = NULL;
cbf62af3 450
3d745ea5 451 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
a73f730d 452 if (q->id < 0)
704b914f 453 goto fail_srcu;
a73f730d 454
c495a176 455 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
338aa96d 456 if (ret)
54efd50b
KO
457 goto fail_id;
458
a83b576c
JA
459 q->stats = blk_alloc_queue_stats();
460 if (!q->stats)
edb0872f 461 goto fail_split;
a83b576c 462
5151412d 463 q->node = node_id;
0989a025 464
079a2e3e 465 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 466
bca237a5 467 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 468 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 469 INIT_LIST_HEAD(&q->icq_list);
483f4afc 470
8324aa91 471 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 472
85e0cbbb 473 mutex_init(&q->debugfs_mutex);
483f4afc 474 mutex_init(&q->sysfs_lock);
cecf5d87 475 mutex_init(&q->sysfs_dir_lock);
0d945c1f 476 spin_lock_init(&q->queue_lock);
c94a96ac 477
320ae51f 478 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 479 mutex_init(&q->mq_freeze_lock);
320ae51f 480
3ef28e83
DW
481 /*
482 * Init percpu_ref in atomic mode so that it's faster to shutdown.
483 * See blk_register_queue() for details.
484 */
485 if (percpu_ref_init(&q->q_usage_counter,
486 blk_queue_usage_counter_release,
487 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 488 goto fail_stats;
f51b802c 489
3d745ea5
CH
490 blk_queue_dma_alignment(q, 511);
491 blk_set_default_limits(&q->limits);
d2a27964 492 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 493
1da177e4 494 return q;
a73f730d 495
a83b576c 496fail_stats:
edb0872f 497 blk_free_queue_stats(q->stats);
54efd50b 498fail_split:
338aa96d 499 bioset_exit(&q->bio_split);
a73f730d
TH
500fail_id:
501 ida_simple_remove(&blk_queue_ida, q->id);
704b914f
ML
502fail_srcu:
503 if (alloc_srcu)
504 cleanup_srcu_struct(q->srcu);
a73f730d 505fail_q:
704b914f 506 kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
a73f730d 507 return NULL;
1da177e4 508}
1da177e4 509
b5bd357c
LC
510/**
511 * blk_get_queue - increment the request_queue refcount
512 * @q: the request_queue structure to increment the refcount for
513 *
514 * Increment the refcount of the request_queue kobject.
763b5892
LC
515 *
516 * Context: Any context.
b5bd357c 517 */
09ac46c4 518bool blk_get_queue(struct request_queue *q)
1da177e4 519{
3f3299d5 520 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
521 __blk_get_queue(q);
522 return true;
1da177e4
LT
523 }
524
09ac46c4 525 return false;
1da177e4 526}
d86e0e83 527EXPORT_SYMBOL(blk_get_queue);
1da177e4 528
c17bb495
AM
529#ifdef CONFIG_FAIL_MAKE_REQUEST
530
531static DECLARE_FAULT_ATTR(fail_make_request);
532
533static int __init setup_fail_make_request(char *str)
534{
535 return setup_fault_attr(&fail_make_request, str);
536}
537__setup("fail_make_request=", setup_fail_make_request);
538
06c8c691 539bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 540{
8446fe92 541 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
542}
543
544static int __init fail_make_request_debugfs(void)
545{
dd48c085
AM
546 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
547 NULL, &fail_make_request);
548
21f9fcd8 549 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
550}
551
552late_initcall(fail_make_request_debugfs);
c17bb495
AM
553#endif /* CONFIG_FAIL_MAKE_REQUEST */
554
2f9f6221 555static inline bool bio_check_ro(struct bio *bio)
721c7fc7 556{
2f9f6221 557 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
8b2ded1c
MP
558 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
559 return false;
57e95e46
CH
560 pr_warn("Trying to write to read-only block-device %pg\n",
561 bio->bi_bdev);
a32e236e
LT
562 /* Older lvm-tools actually trigger this */
563 return false;
721c7fc7
ID
564 }
565
566 return false;
567}
568
30abb3a6
HM
569static noinline int should_fail_bio(struct bio *bio)
570{
309dca30 571 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
572 return -EIO;
573 return 0;
574}
575ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
576
52c5e62d
CH
577/*
578 * Check whether this bio extends beyond the end of the device or partition.
579 * This may well happen - the kernel calls bread() without checking the size of
580 * the device, e.g., when mounting a file system.
581 */
2f9f6221 582static inline int bio_check_eod(struct bio *bio)
52c5e62d 583{
2f9f6221 584 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
585 unsigned int nr_sectors = bio_sectors(bio);
586
587 if (nr_sectors && maxsector &&
588 (nr_sectors > maxsector ||
589 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
ad740780
CH
590 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
591 "%pg: rw=%d, want=%llu, limit=%llu\n",
592 current->comm,
593 bio->bi_bdev, bio->bi_opf,
594 bio_end_sector(bio), maxsector);
52c5e62d
CH
595 return -EIO;
596 }
597 return 0;
598}
599
74d46992
CH
600/*
601 * Remap block n of partition p to block n+start(p) of the disk.
602 */
2f9f6221 603static int blk_partition_remap(struct bio *bio)
74d46992 604{
309dca30 605 struct block_device *p = bio->bi_bdev;
74d46992 606
52c5e62d 607 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 608 return -EIO;
5eac3eb3 609 if (bio_sectors(bio)) {
8446fe92 610 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 611 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 612 bio->bi_iter.bi_sector -
8446fe92 613 p->bd_start_sect);
52c5e62d 614 }
30c5d345 615 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 616 return 0;
74d46992
CH
617}
618
0512a75b
KB
619/*
620 * Check write append to a zoned block device.
621 */
622static inline blk_status_t blk_check_zone_append(struct request_queue *q,
623 struct bio *bio)
624{
625 sector_t pos = bio->bi_iter.bi_sector;
626 int nr_sectors = bio_sectors(bio);
627
628 /* Only applicable to zoned block devices */
629 if (!blk_queue_is_zoned(q))
630 return BLK_STS_NOTSUPP;
631
632 /* The bio sector must point to the start of a sequential zone */
633 if (pos & (blk_queue_zone_sectors(q) - 1) ||
634 !blk_queue_zone_is_seq(q, pos))
635 return BLK_STS_IOERR;
636
637 /*
638 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
639 * split and could result in non-contiguous sectors being written in
640 * different zones.
641 */
642 if (nr_sectors > q->limits.chunk_sectors)
643 return BLK_STS_IOERR;
644
645 /* Make sure the BIO is small enough and will not get split */
646 if (nr_sectors > q->limits.max_zone_append_sectors)
647 return BLK_STS_IOERR;
648
649 bio->bi_opf |= REQ_NOMERGE;
650
651 return BLK_STS_OK;
652}
653
900e0807
JA
654static void __submit_bio(struct bio *bio)
655{
656 struct gendisk *disk = bio->bi_bdev->bd_disk;
cc9c884d 657
7f36b7d0
ML
658 if (unlikely(!blk_crypto_bio_prep(&bio)))
659 return;
660
661 if (!disk->fops->submit_bio) {
3e08773c 662 blk_mq_submit_bio(bio);
7f36b7d0
ML
663 } else if (likely(bio_queue_enter(bio) == 0)) {
664 disk->fops->submit_bio(bio);
665 blk_queue_exit(disk->queue);
666 }
ac7c5675
CH
667}
668
566acf2d
CH
669/*
670 * The loop in this function may be a bit non-obvious, and so deserves some
671 * explanation:
672 *
673 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
674 * that), so we have a list with a single bio.
675 * - We pretend that we have just taken it off a longer list, so we assign
676 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
677 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
678 * bios through a recursive call to submit_bio_noacct. If it did, we find a
679 * non-NULL value in bio_list and re-enter the loop from the top.
680 * - In this case we really did just take the bio of the top of the list (no
681 * pretending) and so remove it from bio_list, and call into ->submit_bio()
682 * again.
683 *
684 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
685 * bio_list_on_stack[1] contains bios that were submitted before the current
69fe0f29 686 * ->submit_bio, but that haven't been processed yet.
566acf2d 687 */
3e08773c 688static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
689{
690 struct bio_list bio_list_on_stack[2];
566acf2d
CH
691
692 BUG_ON(bio->bi_next);
693
694 bio_list_init(&bio_list_on_stack[0]);
695 current->bio_list = bio_list_on_stack;
696
697 do {
eab4e027 698 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
699 struct bio_list lower, same;
700
566acf2d
CH
701 /*
702 * Create a fresh bio_list for all subordinate requests.
703 */
704 bio_list_on_stack[1] = bio_list_on_stack[0];
705 bio_list_init(&bio_list_on_stack[0]);
706
3e08773c 707 __submit_bio(bio);
566acf2d
CH
708
709 /*
710 * Sort new bios into those for a lower level and those for the
711 * same level.
712 */
713 bio_list_init(&lower);
714 bio_list_init(&same);
715 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 716 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
717 bio_list_add(&same, bio);
718 else
719 bio_list_add(&lower, bio);
720
721 /*
722 * Now assemble so we handle the lowest level first.
723 */
724 bio_list_merge(&bio_list_on_stack[0], &lower);
725 bio_list_merge(&bio_list_on_stack[0], &same);
726 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
727 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
728
729 current->bio_list = NULL;
566acf2d
CH
730}
731
3e08773c 732static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 733{
7c792f33 734 struct bio_list bio_list[2] = { };
ff93ea0c 735
7c792f33 736 current->bio_list = bio_list;
ff93ea0c
CH
737
738 do {
3e08773c 739 __submit_bio(bio);
7c792f33 740 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
741
742 current->bio_list = NULL;
ff93ea0c
CH
743}
744
3f98c753 745void submit_bio_noacct_nocheck(struct bio *bio)
d89d8796 746{
27a84d54 747 /*
566acf2d
CH
748 * We only want one ->submit_bio to be active at a time, else stack
749 * usage with stacked devices could be a problem. Use current->bio_list
750 * to collect a list of requests submited by a ->submit_bio method while
751 * it is active, and then process them after it returned.
27a84d54 752 */
3e08773c 753 if (current->bio_list)
f5fe1b51 754 bio_list_add(&current->bio_list[0], bio);
3e08773c
CH
755 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
756 __submit_bio_noacct_mq(bio);
757 else
758 __submit_bio_noacct(bio);
d89d8796 759}
3f98c753
ML
760
761/**
762 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
763 * @bio: The bio describing the location in memory and on the device.
764 *
765 * This is a version of submit_bio() that shall only be used for I/O that is
766 * resubmitted to lower level drivers by stacking block drivers. All file
767 * systems and other upper level users of the block layer should use
768 * submit_bio() instead.
769 */
770void submit_bio_noacct(struct bio *bio)
1da177e4 771{
309dca30 772 struct block_device *bdev = bio->bi_bdev;
eab4e027 773 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 774 blk_status_t status = BLK_STS_IOERR;
5a473e83 775 struct blk_plug *plug;
1da177e4
LT
776
777 might_sleep();
1da177e4 778
5a473e83
JA
779 plug = blk_mq_plug(q, bio);
780 if (plug && plug->nowait)
781 bio->bi_opf |= REQ_NOWAIT;
782
03a07c92 783 /*
b0beb280 784 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 785 * if queue does not support NOWAIT.
03a07c92 786 */
021a2446 787 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
b0beb280 788 goto not_supported;
03a07c92 789
30abb3a6 790 if (should_fail_bio(bio))
5a7bbad2 791 goto end_io;
2f9f6221
CH
792 if (unlikely(bio_check_ro(bio)))
793 goto end_io;
3a905c37
CH
794 if (!bio_flagged(bio, BIO_REMAPPED)) {
795 if (unlikely(bio_check_eod(bio)))
796 goto end_io;
797 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
798 goto end_io;
799 }
2056a782 800
5a7bbad2 801 /*
ed00aabd
CH
802 * Filter flush bio's early so that bio based drivers without flush
803 * support don't have to worry about them.
5a7bbad2 804 */
f3a8ab7d 805 if (op_is_flush(bio->bi_opf) &&
c888a8f9 806 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 807 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 808 if (!bio_sectors(bio)) {
4e4cbee9 809 status = BLK_STS_OK;
51fd77bd
JA
810 goto end_io;
811 }
5a7bbad2 812 }
5ddfe969 813
d04c406f 814 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
6ce913fe 815 bio_clear_polled(bio);
d04c406f 816
288dab8a
CH
817 switch (bio_op(bio)) {
818 case REQ_OP_DISCARD:
819 if (!blk_queue_discard(q))
820 goto not_supported;
821 break;
822 case REQ_OP_SECURE_ERASE:
823 if (!blk_queue_secure_erase(q))
824 goto not_supported;
825 break;
0512a75b
KB
826 case REQ_OP_ZONE_APPEND:
827 status = blk_check_zone_append(q, bio);
828 if (status != BLK_STS_OK)
829 goto end_io;
830 break;
2d253440 831 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
832 case REQ_OP_ZONE_OPEN:
833 case REQ_OP_ZONE_CLOSE:
834 case REQ_OP_ZONE_FINISH:
74d46992 835 if (!blk_queue_is_zoned(q))
2d253440 836 goto not_supported;
288dab8a 837 break;
6e33dbf2
CK
838 case REQ_OP_ZONE_RESET_ALL:
839 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
840 goto not_supported;
841 break;
a6f0788e 842 case REQ_OP_WRITE_ZEROES:
74d46992 843 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
844 goto not_supported;
845 break;
288dab8a
CH
846 default:
847 break;
5a7bbad2 848 }
01edede4 849
b781d8db 850 if (blk_throtl_bio(bio))
3f98c753 851 return;
db18a53e
CH
852
853 blk_cgroup_bio_start(bio);
854 blkcg_bio_issue_init(bio);
27a84d54 855
fbbaf700 856 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
e8a676d6 857 trace_block_bio_queue(bio);
fbbaf700
N
858 /* Now that enqueuing has been traced, we need to trace
859 * completion as well.
860 */
861 bio_set_flag(bio, BIO_TRACE_COMPLETION);
862 }
3f98c753 863 submit_bio_noacct_nocheck(bio);
d24c670e 864 return;
a7384677 865
288dab8a 866not_supported:
4e4cbee9 867 status = BLK_STS_NOTSUPP;
a7384677 868end_io:
4e4cbee9 869 bio->bi_status = status;
4246a0b6 870 bio_endio(bio);
d89d8796 871}
ed00aabd 872EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
873
874/**
710027a4 875 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
876 * @bio: The &struct bio which describes the I/O
877 *
3fdd4086
CH
878 * submit_bio() is used to submit I/O requests to block devices. It is passed a
879 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 880 * bio will be send to the device described by the bi_bdev field.
1da177e4 881 *
3fdd4086
CH
882 * The success/failure status of the request, along with notification of
883 * completion, is delivered asynchronously through the ->bi_end_io() callback
884 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
885 * been called.
1da177e4 886 */
3e08773c 887void submit_bio(struct bio *bio)
1da177e4 888{
d3f77dfd 889 if (blkcg_punt_bio_submit(bio))
3e08773c 890 return;
d3f77dfd 891
bf2de6f5
JA
892 /*
893 * If it's a regular read/write or a barrier with data attached,
894 * go through the normal accounting stuff before submission.
895 */
e2a60da7 896 if (bio_has_data(bio)) {
73bd66d9 897 unsigned int count = bio_sectors(bio);
4363ac7c 898
a8ebb056 899 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
900 count_vm_events(PGPGOUT, count);
901 } else {
4f024f37 902 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
903 count_vm_events(PGPGIN, count);
904 }
1da177e4
LT
905 }
906
b8e24a93 907 /*
760f83ea
CH
908 * If we're reading data that is part of the userspace workingset, count
909 * submission time as memory stall. When the device is congested, or
910 * the submitting cgroup IO-throttled, submission can be a significant
911 * part of overall IO time.
b8e24a93 912 */
760f83ea
CH
913 if (unlikely(bio_op(bio) == REQ_OP_READ &&
914 bio_flagged(bio, BIO_WORKINGSET))) {
915 unsigned long pflags;
b8e24a93 916
760f83ea 917 psi_memstall_enter(&pflags);
3e08773c 918 submit_bio_noacct(bio);
b8e24a93 919 psi_memstall_leave(&pflags);
3e08773c 920 return;
760f83ea
CH
921 }
922
3e08773c 923 submit_bio_noacct(bio);
1da177e4 924}
1da177e4
LT
925EXPORT_SYMBOL(submit_bio);
926
3e08773c
CH
927/**
928 * bio_poll - poll for BIO completions
929 * @bio: bio to poll for
e30028ac 930 * @iob: batches of IO
3e08773c
CH
931 * @flags: BLK_POLL_* flags that control the behavior
932 *
933 * Poll for completions on queue associated with the bio. Returns number of
934 * completed entries found.
935 *
936 * Note: the caller must either be the context that submitted @bio, or
937 * be in a RCU critical section to prevent freeing of @bio.
938 */
5a72e899 939int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 940{
859897c3 941 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3e08773c 942 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
69fe0f29 943 int ret = 0;
3e08773c
CH
944
945 if (cookie == BLK_QC_T_NONE ||
946 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
947 return 0;
948
aa8dccca 949 blk_flush_plug(current->plug, false);
3e08773c
CH
950
951 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
952 return 0;
69fe0f29 953 if (queue_is_mq(q)) {
5a72e899 954 ret = blk_mq_poll(q, cookie, iob, flags);
69fe0f29
ML
955 } else {
956 struct gendisk *disk = q->disk;
957
958 if (disk && disk->fops->poll_bio)
959 ret = disk->fops->poll_bio(bio, iob, flags);
960 }
3e08773c
CH
961 blk_queue_exit(q);
962 return ret;
963}
964EXPORT_SYMBOL_GPL(bio_poll);
965
966/*
967 * Helper to implement file_operations.iopoll. Requires the bio to be stored
968 * in iocb->private, and cleared before freeing the bio.
969 */
5a72e899
JA
970int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
971 unsigned int flags)
3e08773c
CH
972{
973 struct bio *bio;
974 int ret = 0;
975
976 /*
977 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
978 * point to a freshly allocated bio at this point. If that happens
979 * we have a few cases to consider:
980 *
981 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
982 * simply nothing in this case
983 * 2) the bio points to a not poll enabled device. bio_poll will catch
984 * this and return 0
985 * 3) the bio points to a poll capable device, including but not
986 * limited to the one that the original bio pointed to. In this
987 * case we will call into the actual poll method and poll for I/O,
988 * even if we don't need to, but it won't cause harm either.
989 *
990 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
991 * is still allocated. Because partitions hold a reference to the whole
992 * device bdev and thus disk, the disk is also still valid. Grabbing
993 * a reference to the queue in bio_poll() ensures the hctxs and requests
994 * are still valid as well.
995 */
996 rcu_read_lock();
997 bio = READ_ONCE(kiocb->private);
998 if (bio && bio->bi_bdev)
5a72e899 999 ret = bio_poll(bio, iob, flags);
3e08773c
CH
1000 rcu_read_unlock();
1001
1002 return ret;
1003}
1004EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1005
450b7879 1006void update_io_ticks(struct block_device *part, unsigned long now, bool end)
9123bf6f
CH
1007{
1008 unsigned long stamp;
1009again:
8446fe92 1010 stamp = READ_ONCE(part->bd_stamp);
d80c228d 1011 if (unlikely(time_after(now, stamp))) {
8446fe92 1012 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
9123bf6f
CH
1013 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1014 }
8446fe92
CH
1015 if (part->bd_partno) {
1016 part = bdev_whole(part);
9123bf6f
CH
1017 goto again;
1018 }
1019}
1020
8446fe92 1021static unsigned long __part_start_io_acct(struct block_device *part,
e45c47d1
MS
1022 unsigned int sectors, unsigned int op,
1023 unsigned long start_time)
956d510e 1024{
956d510e 1025 const int sgrp = op_stat_group(op);
956d510e
CH
1026
1027 part_stat_lock();
e45c47d1 1028 update_io_ticks(part, start_time, false);
956d510e
CH
1029 part_stat_inc(part, ios[sgrp]);
1030 part_stat_add(part, sectors[sgrp], sectors);
1031 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1032 part_stat_unlock();
320ae51f 1033
e45c47d1
MS
1034 return start_time;
1035}
1036
1037/**
1038 * bio_start_io_acct_time - start I/O accounting for bio based drivers
1039 * @bio: bio to start account for
1040 * @start_time: start time that should be passed back to bio_end_io_acct().
1041 */
1042void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1043{
1044 __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1045 bio_op(bio), start_time);
956d510e 1046}
e45c47d1 1047EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
7b26410b 1048
99dfc43e
CH
1049/**
1050 * bio_start_io_acct - start I/O accounting for bio based drivers
1051 * @bio: bio to start account for
1052 *
1053 * Returns the start time that should be passed back to bio_end_io_acct().
1054 */
1055unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 1056{
e45c47d1
MS
1057 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1058 bio_op(bio), jiffies);
7b26410b 1059}
99dfc43e 1060EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b
SL
1061
1062unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1063 unsigned int op)
1064{
e45c47d1 1065 return __part_start_io_acct(disk->part0, sectors, op, jiffies);
7b26410b 1066}
956d510e
CH
1067EXPORT_SYMBOL(disk_start_io_acct);
1068
8446fe92 1069static void __part_end_io_acct(struct block_device *part, unsigned int op,
7b26410b 1070 unsigned long start_time)
956d510e 1071{
956d510e
CH
1072 const int sgrp = op_stat_group(op);
1073 unsigned long now = READ_ONCE(jiffies);
1074 unsigned long duration = now - start_time;
5b18b5a7 1075
956d510e
CH
1076 part_stat_lock();
1077 update_io_ticks(part, now, true);
1078 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1079 part_stat_local_dec(part, in_flight[op_is_write(op)]);
320ae51f
JA
1080 part_stat_unlock();
1081}
7b26410b 1082
99dfc43e
CH
1083void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1084 struct block_device *orig_bdev)
7b26410b 1085{
99dfc43e 1086 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
7b26410b 1087}
99dfc43e 1088EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b
SL
1089
1090void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1091 unsigned long start_time)
1092{
8446fe92 1093 __part_end_io_acct(disk->part0, op, start_time);
7b26410b 1094}
956d510e 1095EXPORT_SYMBOL(disk_end_io_acct);
320ae51f 1096
ef9e3fac
KU
1097/**
1098 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1099 * @q : the queue of the device being checked
1100 *
1101 * Description:
1102 * Check if underlying low-level drivers of a device are busy.
1103 * If the drivers want to export their busy state, they must set own
1104 * exporting function using blk_queue_lld_busy() first.
1105 *
1106 * Basically, this function is used only by request stacking drivers
1107 * to stop dispatching requests to underlying devices when underlying
1108 * devices are busy. This behavior helps more I/O merging on the queue
1109 * of the request stacking driver and prevents I/O throughput regression
1110 * on burst I/O load.
1111 *
1112 * Return:
1113 * 0 - Not busy (The request stacking driver should dispatch request)
1114 * 1 - Busy (The request stacking driver should stop dispatching request)
1115 */
1116int blk_lld_busy(struct request_queue *q)
1117{
344e9ffc 1118 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1119 return q->mq_ops->busy(q);
ef9e3fac
KU
1120
1121 return 0;
1122}
1123EXPORT_SYMBOL_GPL(blk_lld_busy);
1124
59c3d45e 1125int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1126{
1127 return queue_work(kblockd_workqueue, work);
1128}
1da177e4
LT
1129EXPORT_SYMBOL(kblockd_schedule_work);
1130
818cd1cb
JA
1131int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1132 unsigned long delay)
1133{
1134 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1135}
1136EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1137
47c122e3
JA
1138void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1139{
1140 struct task_struct *tsk = current;
1141
1142 /*
1143 * If this is a nested plug, don't actually assign it.
1144 */
1145 if (tsk->plug)
1146 return;
1147
bc490f81 1148 plug->mq_list = NULL;
47c122e3
JA
1149 plug->cached_rq = NULL;
1150 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1151 plug->rq_count = 0;
1152 plug->multiple_queues = false;
dc5fc361 1153 plug->has_elevator = false;
47c122e3
JA
1154 plug->nowait = false;
1155 INIT_LIST_HEAD(&plug->cb_list);
1156
1157 /*
1158 * Store ordering should not be needed here, since a potential
1159 * preempt will imply a full memory barrier
1160 */
1161 tsk->plug = plug;
1162}
1163
75df7136
SJ
1164/**
1165 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1166 * @plug: The &struct blk_plug that needs to be initialized
1167 *
1168 * Description:
40405851
JM
1169 * blk_start_plug() indicates to the block layer an intent by the caller
1170 * to submit multiple I/O requests in a batch. The block layer may use
1171 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1172 * is called. However, the block layer may choose to submit requests
1173 * before a call to blk_finish_plug() if the number of queued I/Os
1174 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1175 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1176 * the task schedules (see below).
1177 *
75df7136
SJ
1178 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1179 * pending I/O should the task end up blocking between blk_start_plug() and
1180 * blk_finish_plug(). This is important from a performance perspective, but
1181 * also ensures that we don't deadlock. For instance, if the task is blocking
1182 * for a memory allocation, memory reclaim could end up wanting to free a
1183 * page belonging to that request that is currently residing in our private
1184 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1185 * this kind of deadlock.
1186 */
73c10101
JA
1187void blk_start_plug(struct blk_plug *plug)
1188{
47c122e3 1189 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1190}
1191EXPORT_SYMBOL(blk_start_plug);
1192
74018dc3 1193static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1194{
1195 LIST_HEAD(callbacks);
1196
2a7d5559
SL
1197 while (!list_empty(&plug->cb_list)) {
1198 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1199
2a7d5559
SL
1200 while (!list_empty(&callbacks)) {
1201 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1202 struct blk_plug_cb,
1203 list);
2a7d5559 1204 list_del(&cb->list);
74018dc3 1205 cb->callback(cb, from_schedule);
2a7d5559 1206 }
048c9374
N
1207 }
1208}
1209
9cbb1750
N
1210struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1211 int size)
1212{
1213 struct blk_plug *plug = current->plug;
1214 struct blk_plug_cb *cb;
1215
1216 if (!plug)
1217 return NULL;
1218
1219 list_for_each_entry(cb, &plug->cb_list, list)
1220 if (cb->callback == unplug && cb->data == data)
1221 return cb;
1222
1223 /* Not currently on the callback list */
1224 BUG_ON(size < sizeof(*cb));
1225 cb = kzalloc(size, GFP_ATOMIC);
1226 if (cb) {
1227 cb->data = data;
1228 cb->callback = unplug;
1229 list_add(&cb->list, &plug->cb_list);
1230 }
1231 return cb;
1232}
1233EXPORT_SYMBOL(blk_check_plugged);
1234
aa8dccca 1235void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1236{
b600455d
PB
1237 if (!list_empty(&plug->cb_list))
1238 flush_plug_callbacks(plug, from_schedule);
bc490f81 1239 if (!rq_list_empty(plug->mq_list))
320ae51f 1240 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1241 /*
1242 * Unconditionally flush out cached requests, even if the unplug
1243 * event came from schedule. Since we know hold references to the
1244 * queue for cached requests, we don't want a blocked task holding
1245 * up a queue freeze/quiesce event.
1246 */
1247 if (unlikely(!rq_list_empty(plug->cached_rq)))
47c122e3 1248 blk_mq_free_plug_rqs(plug);
73c10101 1249}
73c10101 1250
40405851
JM
1251/**
1252 * blk_finish_plug - mark the end of a batch of submitted I/O
1253 * @plug: The &struct blk_plug passed to blk_start_plug()
1254 *
1255 * Description:
1256 * Indicate that a batch of I/O submissions is complete. This function
1257 * must be paired with an initial call to blk_start_plug(). The intent
1258 * is to allow the block layer to optimize I/O submission. See the
1259 * documentation for blk_start_plug() for more information.
1260 */
73c10101
JA
1261void blk_finish_plug(struct blk_plug *plug)
1262{
008f75a2 1263 if (plug == current->plug) {
aa8dccca 1264 __blk_flush_plug(plug, false);
008f75a2
CH
1265 current->plug = NULL;
1266 }
73c10101 1267}
88b996cd 1268EXPORT_SYMBOL(blk_finish_plug);
73c10101 1269
71ac860a
ML
1270void blk_io_schedule(void)
1271{
1272 /* Prevent hang_check timer from firing at us during very long I/O */
1273 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1274
1275 if (timeout)
1276 io_schedule_timeout(timeout);
1277 else
1278 io_schedule();
1279}
1280EXPORT_SYMBOL_GPL(blk_io_schedule);
1281
1da177e4
LT
1282int __init blk_dev_init(void)
1283{
ef295ecf
CH
1284 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1285 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1286 sizeof_field(struct request, cmd_flags));
ef295ecf 1287 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1288 sizeof_field(struct bio, bi_opf));
704b914f
ML
1289 BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1290 __alignof__(struct request_queue)) !=
1291 sizeof(struct request_queue));
9eb55b03 1292
89b90be2
TH
1293 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1294 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1295 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1296 if (!kblockd_workqueue)
1297 panic("Failed to create kblockd\n");
1298
c2789bd4 1299 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1300 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1301
704b914f
ML
1302 blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1303 sizeof(struct request_queue) +
1304 sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1305
18fbda91 1306 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1307
d38ecf93 1308 return 0;
1da177e4 1309}
This page took 1.476697 seconds and 4 git commands to generate.