]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
f30c2269 | 2 | * mm/page-writeback.c |
1da177e4 LT |
3 | * |
4 | * Copyright (C) 2002, Linus Torvalds. | |
90eec103 | 5 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
1da177e4 LT |
6 | * |
7 | * Contains functions related to writing back dirty pages at the | |
8 | * address_space level. | |
9 | * | |
e1f8e874 | 10 | * 10Apr2002 Andrew Morton |
1da177e4 LT |
11 | * Initial version |
12 | */ | |
13 | ||
14 | #include <linux/kernel.h> | |
b95f1b31 | 15 | #include <linux/export.h> |
1da177e4 LT |
16 | #include <linux/spinlock.h> |
17 | #include <linux/fs.h> | |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/slab.h> | |
21 | #include <linux/pagemap.h> | |
22 | #include <linux/writeback.h> | |
23 | #include <linux/init.h> | |
24 | #include <linux/backing-dev.h> | |
55e829af | 25 | #include <linux/task_io_accounting_ops.h> |
1da177e4 LT |
26 | #include <linux/blkdev.h> |
27 | #include <linux/mpage.h> | |
d08b3851 | 28 | #include <linux/rmap.h> |
1da177e4 LT |
29 | #include <linux/percpu.h> |
30 | #include <linux/notifier.h> | |
31 | #include <linux/smp.h> | |
32 | #include <linux/sysctl.h> | |
33 | #include <linux/cpu.h> | |
34 | #include <linux/syscalls.h> | |
ff01bb48 | 35 | #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ |
811d736f | 36 | #include <linux/pagevec.h> |
eb608e3a | 37 | #include <linux/timer.h> |
8bd75c77 | 38 | #include <linux/sched/rt.h> |
6e543d57 | 39 | #include <linux/mm_inline.h> |
028c2dd1 | 40 | #include <trace/events/writeback.h> |
1da177e4 | 41 | |
6e543d57 LD |
42 | #include "internal.h" |
43 | ||
ffd1f609 WF |
44 | /* |
45 | * Sleep at most 200ms at a time in balance_dirty_pages(). | |
46 | */ | |
47 | #define MAX_PAUSE max(HZ/5, 1) | |
48 | ||
5b9b3574 WF |
49 | /* |
50 | * Try to keep balance_dirty_pages() call intervals higher than this many pages | |
51 | * by raising pause time to max_pause when falls below it. | |
52 | */ | |
53 | #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) | |
54 | ||
e98be2d5 WF |
55 | /* |
56 | * Estimate write bandwidth at 200ms intervals. | |
57 | */ | |
58 | #define BANDWIDTH_INTERVAL max(HZ/5, 1) | |
59 | ||
6c14ae1e WF |
60 | #define RATELIMIT_CALC_SHIFT 10 |
61 | ||
1da177e4 LT |
62 | /* |
63 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited | |
64 | * will look to see if it needs to force writeback or throttling. | |
65 | */ | |
66 | static long ratelimit_pages = 32; | |
67 | ||
1da177e4 LT |
68 | /* The following parameters are exported via /proc/sys/vm */ |
69 | ||
70 | /* | |
5b0830cb | 71 | * Start background writeback (via writeback threads) at this percentage |
1da177e4 | 72 | */ |
1b5e62b4 | 73 | int dirty_background_ratio = 10; |
1da177e4 | 74 | |
2da02997 DR |
75 | /* |
76 | * dirty_background_bytes starts at 0 (disabled) so that it is a function of | |
77 | * dirty_background_ratio * the amount of dirtyable memory | |
78 | */ | |
79 | unsigned long dirty_background_bytes; | |
80 | ||
195cf453 BG |
81 | /* |
82 | * free highmem will not be subtracted from the total free memory | |
83 | * for calculating free ratios if vm_highmem_is_dirtyable is true | |
84 | */ | |
85 | int vm_highmem_is_dirtyable; | |
86 | ||
1da177e4 LT |
87 | /* |
88 | * The generator of dirty data starts writeback at this percentage | |
89 | */ | |
1b5e62b4 | 90 | int vm_dirty_ratio = 20; |
1da177e4 | 91 | |
2da02997 DR |
92 | /* |
93 | * vm_dirty_bytes starts at 0 (disabled) so that it is a function of | |
94 | * vm_dirty_ratio * the amount of dirtyable memory | |
95 | */ | |
96 | unsigned long vm_dirty_bytes; | |
97 | ||
1da177e4 | 98 | /* |
704503d8 | 99 | * The interval between `kupdate'-style writebacks |
1da177e4 | 100 | */ |
22ef37ee | 101 | unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ |
1da177e4 | 102 | |
91913a29 AB |
103 | EXPORT_SYMBOL_GPL(dirty_writeback_interval); |
104 | ||
1da177e4 | 105 | /* |
704503d8 | 106 | * The longest time for which data is allowed to remain dirty |
1da177e4 | 107 | */ |
22ef37ee | 108 | unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ |
1da177e4 LT |
109 | |
110 | /* | |
111 | * Flag that makes the machine dump writes/reads and block dirtyings. | |
112 | */ | |
113 | int block_dump; | |
114 | ||
115 | /* | |
ed5b43f1 BS |
116 | * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: |
117 | * a full sync is triggered after this time elapses without any disk activity. | |
1da177e4 LT |
118 | */ |
119 | int laptop_mode; | |
120 | ||
121 | EXPORT_SYMBOL(laptop_mode); | |
122 | ||
123 | /* End of sysctl-exported parameters */ | |
124 | ||
dcc25ae7 | 125 | struct wb_domain global_wb_domain; |
1da177e4 | 126 | |
2bc00aef TH |
127 | /* consolidated parameters for balance_dirty_pages() and its subroutines */ |
128 | struct dirty_throttle_control { | |
e9f07dfd TH |
129 | #ifdef CONFIG_CGROUP_WRITEBACK |
130 | struct wb_domain *dom; | |
9fc3a43e | 131 | struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ |
e9f07dfd | 132 | #endif |
2bc00aef | 133 | struct bdi_writeback *wb; |
e9770b34 | 134 | struct fprop_local_percpu *wb_completions; |
eb608e3a | 135 | |
9fc3a43e | 136 | unsigned long avail; /* dirtyable */ |
2bc00aef TH |
137 | unsigned long dirty; /* file_dirty + write + nfs */ |
138 | unsigned long thresh; /* dirty threshold */ | |
139 | unsigned long bg_thresh; /* dirty background threshold */ | |
140 | ||
141 | unsigned long wb_dirty; /* per-wb counterparts */ | |
142 | unsigned long wb_thresh; | |
970fb01a | 143 | unsigned long wb_bg_thresh; |
daddfa3c TH |
144 | |
145 | unsigned long pos_ratio; | |
2bc00aef TH |
146 | }; |
147 | ||
eb608e3a JK |
148 | /* |
149 | * Length of period for aging writeout fractions of bdis. This is an | |
150 | * arbitrarily chosen number. The longer the period, the slower fractions will | |
151 | * reflect changes in current writeout rate. | |
152 | */ | |
153 | #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) | |
04fbfdc1 | 154 | |
693108a8 TH |
155 | #ifdef CONFIG_CGROUP_WRITEBACK |
156 | ||
d60d1bdd TH |
157 | #define GDTC_INIT(__wb) .wb = (__wb), \ |
158 | .dom = &global_wb_domain, \ | |
159 | .wb_completions = &(__wb)->completions | |
160 | ||
9fc3a43e | 161 | #define GDTC_INIT_NO_WB .dom = &global_wb_domain |
d60d1bdd TH |
162 | |
163 | #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ | |
164 | .dom = mem_cgroup_wb_domain(__wb), \ | |
165 | .wb_completions = &(__wb)->memcg_completions, \ | |
166 | .gdtc = __gdtc | |
c2aa723a TH |
167 | |
168 | static bool mdtc_valid(struct dirty_throttle_control *dtc) | |
169 | { | |
170 | return dtc->dom; | |
171 | } | |
e9f07dfd TH |
172 | |
173 | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) | |
174 | { | |
175 | return dtc->dom; | |
176 | } | |
177 | ||
9fc3a43e TH |
178 | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) |
179 | { | |
180 | return mdtc->gdtc; | |
181 | } | |
182 | ||
841710aa TH |
183 | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) |
184 | { | |
185 | return &wb->memcg_completions; | |
186 | } | |
187 | ||
693108a8 TH |
188 | static void wb_min_max_ratio(struct bdi_writeback *wb, |
189 | unsigned long *minp, unsigned long *maxp) | |
190 | { | |
191 | unsigned long this_bw = wb->avg_write_bandwidth; | |
192 | unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); | |
193 | unsigned long long min = wb->bdi->min_ratio; | |
194 | unsigned long long max = wb->bdi->max_ratio; | |
195 | ||
196 | /* | |
197 | * @wb may already be clean by the time control reaches here and | |
198 | * the total may not include its bw. | |
199 | */ | |
200 | if (this_bw < tot_bw) { | |
201 | if (min) { | |
202 | min *= this_bw; | |
203 | do_div(min, tot_bw); | |
204 | } | |
205 | if (max < 100) { | |
206 | max *= this_bw; | |
207 | do_div(max, tot_bw); | |
208 | } | |
209 | } | |
210 | ||
211 | *minp = min; | |
212 | *maxp = max; | |
213 | } | |
214 | ||
215 | #else /* CONFIG_CGROUP_WRITEBACK */ | |
216 | ||
d60d1bdd TH |
217 | #define GDTC_INIT(__wb) .wb = (__wb), \ |
218 | .wb_completions = &(__wb)->completions | |
9fc3a43e | 219 | #define GDTC_INIT_NO_WB |
c2aa723a TH |
220 | #define MDTC_INIT(__wb, __gdtc) |
221 | ||
222 | static bool mdtc_valid(struct dirty_throttle_control *dtc) | |
223 | { | |
224 | return false; | |
225 | } | |
e9f07dfd TH |
226 | |
227 | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) | |
228 | { | |
229 | return &global_wb_domain; | |
230 | } | |
231 | ||
9fc3a43e TH |
232 | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) |
233 | { | |
234 | return NULL; | |
235 | } | |
236 | ||
841710aa TH |
237 | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) |
238 | { | |
239 | return NULL; | |
240 | } | |
241 | ||
693108a8 TH |
242 | static void wb_min_max_ratio(struct bdi_writeback *wb, |
243 | unsigned long *minp, unsigned long *maxp) | |
244 | { | |
245 | *minp = wb->bdi->min_ratio; | |
246 | *maxp = wb->bdi->max_ratio; | |
247 | } | |
248 | ||
249 | #endif /* CONFIG_CGROUP_WRITEBACK */ | |
250 | ||
a756cf59 JW |
251 | /* |
252 | * In a memory zone, there is a certain amount of pages we consider | |
253 | * available for the page cache, which is essentially the number of | |
254 | * free and reclaimable pages, minus some zone reserves to protect | |
255 | * lowmem and the ability to uphold the zone's watermarks without | |
256 | * requiring writeback. | |
257 | * | |
258 | * This number of dirtyable pages is the base value of which the | |
259 | * user-configurable dirty ratio is the effictive number of pages that | |
260 | * are allowed to be actually dirtied. Per individual zone, or | |
261 | * globally by using the sum of dirtyable pages over all zones. | |
262 | * | |
263 | * Because the user is allowed to specify the dirty limit globally as | |
264 | * absolute number of bytes, calculating the per-zone dirty limit can | |
265 | * require translating the configured limit into a percentage of | |
266 | * global dirtyable memory first. | |
267 | */ | |
268 | ||
a804552b JW |
269 | /** |
270 | * zone_dirtyable_memory - number of dirtyable pages in a zone | |
271 | * @zone: the zone | |
272 | * | |
273 | * Returns the zone's number of pages potentially available for dirty | |
274 | * page cache. This is the base value for the per-zone dirty limits. | |
275 | */ | |
276 | static unsigned long zone_dirtyable_memory(struct zone *zone) | |
277 | { | |
278 | unsigned long nr_pages; | |
279 | ||
280 | nr_pages = zone_page_state(zone, NR_FREE_PAGES); | |
a8d01437 JW |
281 | /* |
282 | * Pages reserved for the kernel should not be considered | |
283 | * dirtyable, to prevent a situation where reclaim has to | |
284 | * clean pages in order to balance the zones. | |
285 | */ | |
286 | nr_pages -= min(nr_pages, zone->totalreserve_pages); | |
a804552b | 287 | |
a1c3bfb2 JW |
288 | nr_pages += zone_page_state(zone, NR_INACTIVE_FILE); |
289 | nr_pages += zone_page_state(zone, NR_ACTIVE_FILE); | |
a804552b JW |
290 | |
291 | return nr_pages; | |
292 | } | |
293 | ||
1edf2234 JW |
294 | static unsigned long highmem_dirtyable_memory(unsigned long total) |
295 | { | |
296 | #ifdef CONFIG_HIGHMEM | |
297 | int node; | |
298 | unsigned long x = 0; | |
299 | ||
300 | for_each_node_state(node, N_HIGH_MEMORY) { | |
a804552b | 301 | struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; |
1edf2234 | 302 | |
a804552b | 303 | x += zone_dirtyable_memory(z); |
1edf2234 | 304 | } |
c8b74c2f SR |
305 | /* |
306 | * Unreclaimable memory (kernel memory or anonymous memory | |
307 | * without swap) can bring down the dirtyable pages below | |
308 | * the zone's dirty balance reserve and the above calculation | |
309 | * will underflow. However we still want to add in nodes | |
310 | * which are below threshold (negative values) to get a more | |
311 | * accurate calculation but make sure that the total never | |
312 | * underflows. | |
313 | */ | |
314 | if ((long)x < 0) | |
315 | x = 0; | |
316 | ||
1edf2234 JW |
317 | /* |
318 | * Make sure that the number of highmem pages is never larger | |
319 | * than the number of the total dirtyable memory. This can only | |
320 | * occur in very strange VM situations but we want to make sure | |
321 | * that this does not occur. | |
322 | */ | |
323 | return min(x, total); | |
324 | #else | |
325 | return 0; | |
326 | #endif | |
327 | } | |
328 | ||
329 | /** | |
ccafa287 | 330 | * global_dirtyable_memory - number of globally dirtyable pages |
1edf2234 | 331 | * |
ccafa287 JW |
332 | * Returns the global number of pages potentially available for dirty |
333 | * page cache. This is the base value for the global dirty limits. | |
1edf2234 | 334 | */ |
18cf8cf8 | 335 | static unsigned long global_dirtyable_memory(void) |
1edf2234 JW |
336 | { |
337 | unsigned long x; | |
338 | ||
a804552b | 339 | x = global_page_state(NR_FREE_PAGES); |
a8d01437 JW |
340 | /* |
341 | * Pages reserved for the kernel should not be considered | |
342 | * dirtyable, to prevent a situation where reclaim has to | |
343 | * clean pages in order to balance the zones. | |
344 | */ | |
345 | x -= min(x, totalreserve_pages); | |
1edf2234 | 346 | |
a1c3bfb2 JW |
347 | x += global_page_state(NR_INACTIVE_FILE); |
348 | x += global_page_state(NR_ACTIVE_FILE); | |
a804552b | 349 | |
1edf2234 JW |
350 | if (!vm_highmem_is_dirtyable) |
351 | x -= highmem_dirtyable_memory(x); | |
352 | ||
353 | return x + 1; /* Ensure that we never return 0 */ | |
354 | } | |
355 | ||
9fc3a43e TH |
356 | /** |
357 | * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain | |
358 | * @dtc: dirty_throttle_control of interest | |
ccafa287 | 359 | * |
9fc3a43e TH |
360 | * Calculate @dtc->thresh and ->bg_thresh considering |
361 | * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller | |
362 | * must ensure that @dtc->avail is set before calling this function. The | |
363 | * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and | |
ccafa287 JW |
364 | * real-time tasks. |
365 | */ | |
9fc3a43e | 366 | static void domain_dirty_limits(struct dirty_throttle_control *dtc) |
ccafa287 | 367 | { |
9fc3a43e TH |
368 | const unsigned long available_memory = dtc->avail; |
369 | struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); | |
370 | unsigned long bytes = vm_dirty_bytes; | |
371 | unsigned long bg_bytes = dirty_background_bytes; | |
372 | unsigned long ratio = vm_dirty_ratio; | |
373 | unsigned long bg_ratio = dirty_background_ratio; | |
374 | unsigned long thresh; | |
375 | unsigned long bg_thresh; | |
ccafa287 JW |
376 | struct task_struct *tsk; |
377 | ||
9fc3a43e TH |
378 | /* gdtc is !NULL iff @dtc is for memcg domain */ |
379 | if (gdtc) { | |
380 | unsigned long global_avail = gdtc->avail; | |
381 | ||
382 | /* | |
383 | * The byte settings can't be applied directly to memcg | |
384 | * domains. Convert them to ratios by scaling against | |
385 | * globally available memory. | |
386 | */ | |
387 | if (bytes) | |
388 | ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 / | |
389 | global_avail, 100UL); | |
390 | if (bg_bytes) | |
391 | bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 / | |
392 | global_avail, 100UL); | |
393 | bytes = bg_bytes = 0; | |
394 | } | |
395 | ||
396 | if (bytes) | |
397 | thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); | |
ccafa287 | 398 | else |
9fc3a43e | 399 | thresh = (ratio * available_memory) / 100; |
ccafa287 | 400 | |
9fc3a43e TH |
401 | if (bg_bytes) |
402 | bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); | |
ccafa287 | 403 | else |
9fc3a43e | 404 | bg_thresh = (bg_ratio * available_memory) / 100; |
ccafa287 | 405 | |
9fc3a43e TH |
406 | if (bg_thresh >= thresh) |
407 | bg_thresh = thresh / 2; | |
ccafa287 JW |
408 | tsk = current; |
409 | if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { | |
9fc3a43e TH |
410 | bg_thresh += bg_thresh / 4; |
411 | thresh += thresh / 4; | |
ccafa287 | 412 | } |
9fc3a43e TH |
413 | dtc->thresh = thresh; |
414 | dtc->bg_thresh = bg_thresh; | |
415 | ||
416 | /* we should eventually report the domain in the TP */ | |
417 | if (!gdtc) | |
418 | trace_global_dirty_state(bg_thresh, thresh); | |
419 | } | |
420 | ||
421 | /** | |
422 | * global_dirty_limits - background-writeback and dirty-throttling thresholds | |
423 | * @pbackground: out parameter for bg_thresh | |
424 | * @pdirty: out parameter for thresh | |
425 | * | |
426 | * Calculate bg_thresh and thresh for global_wb_domain. See | |
427 | * domain_dirty_limits() for details. | |
428 | */ | |
429 | void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) | |
430 | { | |
431 | struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; | |
432 | ||
433 | gdtc.avail = global_dirtyable_memory(); | |
434 | domain_dirty_limits(&gdtc); | |
435 | ||
436 | *pbackground = gdtc.bg_thresh; | |
437 | *pdirty = gdtc.thresh; | |
ccafa287 JW |
438 | } |
439 | ||
a756cf59 JW |
440 | /** |
441 | * zone_dirty_limit - maximum number of dirty pages allowed in a zone | |
442 | * @zone: the zone | |
443 | * | |
444 | * Returns the maximum number of dirty pages allowed in a zone, based | |
445 | * on the zone's dirtyable memory. | |
446 | */ | |
447 | static unsigned long zone_dirty_limit(struct zone *zone) | |
448 | { | |
449 | unsigned long zone_memory = zone_dirtyable_memory(zone); | |
450 | struct task_struct *tsk = current; | |
451 | unsigned long dirty; | |
452 | ||
453 | if (vm_dirty_bytes) | |
454 | dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * | |
455 | zone_memory / global_dirtyable_memory(); | |
456 | else | |
457 | dirty = vm_dirty_ratio * zone_memory / 100; | |
458 | ||
459 | if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) | |
460 | dirty += dirty / 4; | |
461 | ||
462 | return dirty; | |
463 | } | |
464 | ||
465 | /** | |
466 | * zone_dirty_ok - tells whether a zone is within its dirty limits | |
467 | * @zone: the zone to check | |
468 | * | |
469 | * Returns %true when the dirty pages in @zone are within the zone's | |
470 | * dirty limit, %false if the limit is exceeded. | |
471 | */ | |
472 | bool zone_dirty_ok(struct zone *zone) | |
473 | { | |
474 | unsigned long limit = zone_dirty_limit(zone); | |
475 | ||
476 | return zone_page_state(zone, NR_FILE_DIRTY) + | |
477 | zone_page_state(zone, NR_UNSTABLE_NFS) + | |
478 | zone_page_state(zone, NR_WRITEBACK) <= limit; | |
479 | } | |
480 | ||
2da02997 | 481 | int dirty_background_ratio_handler(struct ctl_table *table, int write, |
8d65af78 | 482 | void __user *buffer, size_t *lenp, |
2da02997 DR |
483 | loff_t *ppos) |
484 | { | |
485 | int ret; | |
486 | ||
8d65af78 | 487 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
2da02997 DR |
488 | if (ret == 0 && write) |
489 | dirty_background_bytes = 0; | |
490 | return ret; | |
491 | } | |
492 | ||
493 | int dirty_background_bytes_handler(struct ctl_table *table, int write, | |
8d65af78 | 494 | void __user *buffer, size_t *lenp, |
2da02997 DR |
495 | loff_t *ppos) |
496 | { | |
497 | int ret; | |
498 | ||
8d65af78 | 499 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
2da02997 DR |
500 | if (ret == 0 && write) |
501 | dirty_background_ratio = 0; | |
502 | return ret; | |
503 | } | |
504 | ||
04fbfdc1 | 505 | int dirty_ratio_handler(struct ctl_table *table, int write, |
8d65af78 | 506 | void __user *buffer, size_t *lenp, |
04fbfdc1 PZ |
507 | loff_t *ppos) |
508 | { | |
509 | int old_ratio = vm_dirty_ratio; | |
2da02997 DR |
510 | int ret; |
511 | ||
8d65af78 | 512 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
04fbfdc1 | 513 | if (ret == 0 && write && vm_dirty_ratio != old_ratio) { |
eb608e3a | 514 | writeback_set_ratelimit(); |
2da02997 DR |
515 | vm_dirty_bytes = 0; |
516 | } | |
517 | return ret; | |
518 | } | |
519 | ||
2da02997 | 520 | int dirty_bytes_handler(struct ctl_table *table, int write, |
8d65af78 | 521 | void __user *buffer, size_t *lenp, |
2da02997 DR |
522 | loff_t *ppos) |
523 | { | |
fc3501d4 | 524 | unsigned long old_bytes = vm_dirty_bytes; |
2da02997 DR |
525 | int ret; |
526 | ||
8d65af78 | 527 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
2da02997 | 528 | if (ret == 0 && write && vm_dirty_bytes != old_bytes) { |
eb608e3a | 529 | writeback_set_ratelimit(); |
2da02997 | 530 | vm_dirty_ratio = 0; |
04fbfdc1 PZ |
531 | } |
532 | return ret; | |
533 | } | |
534 | ||
eb608e3a JK |
535 | static unsigned long wp_next_time(unsigned long cur_time) |
536 | { | |
537 | cur_time += VM_COMPLETIONS_PERIOD_LEN; | |
538 | /* 0 has a special meaning... */ | |
539 | if (!cur_time) | |
540 | return 1; | |
541 | return cur_time; | |
542 | } | |
543 | ||
c7981433 TH |
544 | static void wb_domain_writeout_inc(struct wb_domain *dom, |
545 | struct fprop_local_percpu *completions, | |
546 | unsigned int max_prop_frac) | |
04fbfdc1 | 547 | { |
c7981433 TH |
548 | __fprop_inc_percpu_max(&dom->completions, completions, |
549 | max_prop_frac); | |
eb608e3a | 550 | /* First event after period switching was turned off? */ |
380c27ca | 551 | if (!unlikely(dom->period_time)) { |
eb608e3a JK |
552 | /* |
553 | * We can race with other __bdi_writeout_inc calls here but | |
554 | * it does not cause any harm since the resulting time when | |
555 | * timer will fire and what is in writeout_period_time will be | |
556 | * roughly the same. | |
557 | */ | |
380c27ca TH |
558 | dom->period_time = wp_next_time(jiffies); |
559 | mod_timer(&dom->period_timer, dom->period_time); | |
eb608e3a | 560 | } |
04fbfdc1 PZ |
561 | } |
562 | ||
c7981433 TH |
563 | /* |
564 | * Increment @wb's writeout completion count and the global writeout | |
565 | * completion count. Called from test_clear_page_writeback(). | |
566 | */ | |
567 | static inline void __wb_writeout_inc(struct bdi_writeback *wb) | |
dd5656e5 | 568 | { |
841710aa | 569 | struct wb_domain *cgdom; |
dd5656e5 | 570 | |
c7981433 TH |
571 | __inc_wb_stat(wb, WB_WRITTEN); |
572 | wb_domain_writeout_inc(&global_wb_domain, &wb->completions, | |
573 | wb->bdi->max_prop_frac); | |
841710aa TH |
574 | |
575 | cgdom = mem_cgroup_wb_domain(wb); | |
576 | if (cgdom) | |
577 | wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), | |
578 | wb->bdi->max_prop_frac); | |
dd5656e5 | 579 | } |
dd5656e5 | 580 | |
93f78d88 | 581 | void wb_writeout_inc(struct bdi_writeback *wb) |
04fbfdc1 | 582 | { |
dd5656e5 MS |
583 | unsigned long flags; |
584 | ||
585 | local_irq_save(flags); | |
93f78d88 | 586 | __wb_writeout_inc(wb); |
dd5656e5 | 587 | local_irq_restore(flags); |
04fbfdc1 | 588 | } |
93f78d88 | 589 | EXPORT_SYMBOL_GPL(wb_writeout_inc); |
04fbfdc1 | 590 | |
eb608e3a JK |
591 | /* |
592 | * On idle system, we can be called long after we scheduled because we use | |
593 | * deferred timers so count with missed periods. | |
594 | */ | |
595 | static void writeout_period(unsigned long t) | |
596 | { | |
380c27ca TH |
597 | struct wb_domain *dom = (void *)t; |
598 | int miss_periods = (jiffies - dom->period_time) / | |
eb608e3a JK |
599 | VM_COMPLETIONS_PERIOD_LEN; |
600 | ||
380c27ca TH |
601 | if (fprop_new_period(&dom->completions, miss_periods + 1)) { |
602 | dom->period_time = wp_next_time(dom->period_time + | |
eb608e3a | 603 | miss_periods * VM_COMPLETIONS_PERIOD_LEN); |
380c27ca | 604 | mod_timer(&dom->period_timer, dom->period_time); |
eb608e3a JK |
605 | } else { |
606 | /* | |
607 | * Aging has zeroed all fractions. Stop wasting CPU on period | |
608 | * updates. | |
609 | */ | |
380c27ca | 610 | dom->period_time = 0; |
eb608e3a JK |
611 | } |
612 | } | |
613 | ||
380c27ca TH |
614 | int wb_domain_init(struct wb_domain *dom, gfp_t gfp) |
615 | { | |
616 | memset(dom, 0, sizeof(*dom)); | |
dcc25ae7 TH |
617 | |
618 | spin_lock_init(&dom->lock); | |
619 | ||
380c27ca TH |
620 | init_timer_deferrable(&dom->period_timer); |
621 | dom->period_timer.function = writeout_period; | |
622 | dom->period_timer.data = (unsigned long)dom; | |
dcc25ae7 TH |
623 | |
624 | dom->dirty_limit_tstamp = jiffies; | |
625 | ||
380c27ca TH |
626 | return fprop_global_init(&dom->completions, gfp); |
627 | } | |
628 | ||
841710aa TH |
629 | #ifdef CONFIG_CGROUP_WRITEBACK |
630 | void wb_domain_exit(struct wb_domain *dom) | |
631 | { | |
632 | del_timer_sync(&dom->period_timer); | |
633 | fprop_global_destroy(&dom->completions); | |
634 | } | |
635 | #endif | |
636 | ||
189d3c4a | 637 | /* |
d08c429b JW |
638 | * bdi_min_ratio keeps the sum of the minimum dirty shares of all |
639 | * registered backing devices, which, for obvious reasons, can not | |
640 | * exceed 100%. | |
189d3c4a | 641 | */ |
189d3c4a PZ |
642 | static unsigned int bdi_min_ratio; |
643 | ||
644 | int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) | |
645 | { | |
646 | int ret = 0; | |
189d3c4a | 647 | |
cfc4ba53 | 648 | spin_lock_bh(&bdi_lock); |
a42dde04 | 649 | if (min_ratio > bdi->max_ratio) { |
189d3c4a | 650 | ret = -EINVAL; |
a42dde04 PZ |
651 | } else { |
652 | min_ratio -= bdi->min_ratio; | |
653 | if (bdi_min_ratio + min_ratio < 100) { | |
654 | bdi_min_ratio += min_ratio; | |
655 | bdi->min_ratio += min_ratio; | |
656 | } else { | |
657 | ret = -EINVAL; | |
658 | } | |
659 | } | |
cfc4ba53 | 660 | spin_unlock_bh(&bdi_lock); |
a42dde04 PZ |
661 | |
662 | return ret; | |
663 | } | |
664 | ||
665 | int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) | |
666 | { | |
a42dde04 PZ |
667 | int ret = 0; |
668 | ||
669 | if (max_ratio > 100) | |
670 | return -EINVAL; | |
671 | ||
cfc4ba53 | 672 | spin_lock_bh(&bdi_lock); |
a42dde04 PZ |
673 | if (bdi->min_ratio > max_ratio) { |
674 | ret = -EINVAL; | |
675 | } else { | |
676 | bdi->max_ratio = max_ratio; | |
eb608e3a | 677 | bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; |
a42dde04 | 678 | } |
cfc4ba53 | 679 | spin_unlock_bh(&bdi_lock); |
189d3c4a PZ |
680 | |
681 | return ret; | |
682 | } | |
a42dde04 | 683 | EXPORT_SYMBOL(bdi_set_max_ratio); |
189d3c4a | 684 | |
6c14ae1e WF |
685 | static unsigned long dirty_freerun_ceiling(unsigned long thresh, |
686 | unsigned long bg_thresh) | |
687 | { | |
688 | return (thresh + bg_thresh) / 2; | |
689 | } | |
690 | ||
c7981433 TH |
691 | static unsigned long hard_dirty_limit(struct wb_domain *dom, |
692 | unsigned long thresh) | |
ffd1f609 | 693 | { |
dcc25ae7 | 694 | return max(thresh, dom->dirty_limit); |
ffd1f609 WF |
695 | } |
696 | ||
c5edf9cd TH |
697 | /* |
698 | * Memory which can be further allocated to a memcg domain is capped by | |
699 | * system-wide clean memory excluding the amount being used in the domain. | |
700 | */ | |
701 | static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, | |
702 | unsigned long filepages, unsigned long headroom) | |
c2aa723a TH |
703 | { |
704 | struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); | |
c5edf9cd TH |
705 | unsigned long clean = filepages - min(filepages, mdtc->dirty); |
706 | unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); | |
707 | unsigned long other_clean = global_clean - min(global_clean, clean); | |
c2aa723a | 708 | |
c5edf9cd | 709 | mdtc->avail = filepages + min(headroom, other_clean); |
ffd1f609 WF |
710 | } |
711 | ||
6f718656 | 712 | /** |
b1cbc6d4 TH |
713 | * __wb_calc_thresh - @wb's share of dirty throttling threshold |
714 | * @dtc: dirty_throttle_context of interest | |
1babe183 | 715 | * |
a88a341a | 716 | * Returns @wb's dirty limit in pages. The term "dirty" in the context of |
6f718656 | 717 | * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. |
aed21ad2 WF |
718 | * |
719 | * Note that balance_dirty_pages() will only seriously take it as a hard limit | |
720 | * when sleeping max_pause per page is not enough to keep the dirty pages under | |
721 | * control. For example, when the device is completely stalled due to some error | |
722 | * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. | |
723 | * In the other normal situations, it acts more gently by throttling the tasks | |
a88a341a | 724 | * more (rather than completely block them) when the wb dirty pages go high. |
1babe183 | 725 | * |
6f718656 | 726 | * It allocates high/low dirty limits to fast/slow devices, in order to prevent |
1babe183 WF |
727 | * - starving fast devices |
728 | * - piling up dirty pages (that will take long time to sync) on slow devices | |
729 | * | |
a88a341a | 730 | * The wb's share of dirty limit will be adapting to its throughput and |
1babe183 WF |
731 | * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. |
732 | */ | |
b1cbc6d4 | 733 | static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) |
16c4042f | 734 | { |
e9f07dfd | 735 | struct wb_domain *dom = dtc_dom(dtc); |
b1cbc6d4 | 736 | unsigned long thresh = dtc->thresh; |
0d960a38 | 737 | u64 wb_thresh; |
16c4042f | 738 | long numerator, denominator; |
693108a8 | 739 | unsigned long wb_min_ratio, wb_max_ratio; |
04fbfdc1 | 740 | |
16c4042f | 741 | /* |
0d960a38 | 742 | * Calculate this BDI's share of the thresh ratio. |
16c4042f | 743 | */ |
e9770b34 | 744 | fprop_fraction_percpu(&dom->completions, dtc->wb_completions, |
380c27ca | 745 | &numerator, &denominator); |
04fbfdc1 | 746 | |
0d960a38 TH |
747 | wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; |
748 | wb_thresh *= numerator; | |
749 | do_div(wb_thresh, denominator); | |
04fbfdc1 | 750 | |
b1cbc6d4 | 751 | wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); |
04fbfdc1 | 752 | |
0d960a38 TH |
753 | wb_thresh += (thresh * wb_min_ratio) / 100; |
754 | if (wb_thresh > (thresh * wb_max_ratio) / 100) | |
755 | wb_thresh = thresh * wb_max_ratio / 100; | |
16c4042f | 756 | |
0d960a38 | 757 | return wb_thresh; |
1da177e4 LT |
758 | } |
759 | ||
b1cbc6d4 TH |
760 | unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) |
761 | { | |
762 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb), | |
763 | .thresh = thresh }; | |
764 | return __wb_calc_thresh(&gdtc); | |
1da177e4 LT |
765 | } |
766 | ||
5a537485 MP |
767 | /* |
768 | * setpoint - dirty 3 | |
769 | * f(dirty) := 1.0 + (----------------) | |
770 | * limit - setpoint | |
771 | * | |
772 | * it's a 3rd order polynomial that subjects to | |
773 | * | |
774 | * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast | |
775 | * (2) f(setpoint) = 1.0 => the balance point | |
776 | * (3) f(limit) = 0 => the hard limit | |
777 | * (4) df/dx <= 0 => negative feedback control | |
778 | * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) | |
779 | * => fast response on large errors; small oscillation near setpoint | |
780 | */ | |
d5c9fde3 | 781 | static long long pos_ratio_polynom(unsigned long setpoint, |
5a537485 MP |
782 | unsigned long dirty, |
783 | unsigned long limit) | |
784 | { | |
785 | long long pos_ratio; | |
786 | long x; | |
787 | ||
d5c9fde3 | 788 | x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, |
464d1387 | 789 | (limit - setpoint) | 1); |
5a537485 MP |
790 | pos_ratio = x; |
791 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; | |
792 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; | |
793 | pos_ratio += 1 << RATELIMIT_CALC_SHIFT; | |
794 | ||
795 | return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); | |
796 | } | |
797 | ||
6c14ae1e WF |
798 | /* |
799 | * Dirty position control. | |
800 | * | |
801 | * (o) global/bdi setpoints | |
802 | * | |
de1fff37 | 803 | * We want the dirty pages be balanced around the global/wb setpoints. |
6c14ae1e WF |
804 | * When the number of dirty pages is higher/lower than the setpoint, the |
805 | * dirty position control ratio (and hence task dirty ratelimit) will be | |
806 | * decreased/increased to bring the dirty pages back to the setpoint. | |
807 | * | |
808 | * pos_ratio = 1 << RATELIMIT_CALC_SHIFT | |
809 | * | |
810 | * if (dirty < setpoint) scale up pos_ratio | |
811 | * if (dirty > setpoint) scale down pos_ratio | |
812 | * | |
de1fff37 TH |
813 | * if (wb_dirty < wb_setpoint) scale up pos_ratio |
814 | * if (wb_dirty > wb_setpoint) scale down pos_ratio | |
6c14ae1e WF |
815 | * |
816 | * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT | |
817 | * | |
818 | * (o) global control line | |
819 | * | |
820 | * ^ pos_ratio | |
821 | * | | |
822 | * | |<===== global dirty control scope ======>| | |
823 | * 2.0 .............* | |
824 | * | .* | |
825 | * | . * | |
826 | * | . * | |
827 | * | . * | |
828 | * | . * | |
829 | * | . * | |
830 | * 1.0 ................................* | |
831 | * | . . * | |
832 | * | . . * | |
833 | * | . . * | |
834 | * | . . * | |
835 | * | . . * | |
836 | * 0 +------------.------------------.----------------------*-------------> | |
837 | * freerun^ setpoint^ limit^ dirty pages | |
838 | * | |
de1fff37 | 839 | * (o) wb control line |
6c14ae1e WF |
840 | * |
841 | * ^ pos_ratio | |
842 | * | | |
843 | * | * | |
844 | * | * | |
845 | * | * | |
846 | * | * | |
847 | * | * |<=========== span ============>| | |
848 | * 1.0 .......................* | |
849 | * | . * | |
850 | * | . * | |
851 | * | . * | |
852 | * | . * | |
853 | * | . * | |
854 | * | . * | |
855 | * | . * | |
856 | * | . * | |
857 | * | . * | |
858 | * | . * | |
859 | * | . * | |
860 | * 1/4 ...............................................* * * * * * * * * * * * | |
861 | * | . . | |
862 | * | . . | |
863 | * | . . | |
864 | * 0 +----------------------.-------------------------------.-------------> | |
de1fff37 | 865 | * wb_setpoint^ x_intercept^ |
6c14ae1e | 866 | * |
de1fff37 | 867 | * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can |
6c14ae1e WF |
868 | * be smoothly throttled down to normal if it starts high in situations like |
869 | * - start writing to a slow SD card and a fast disk at the same time. The SD | |
de1fff37 TH |
870 | * card's wb_dirty may rush to many times higher than wb_setpoint. |
871 | * - the wb dirty thresh drops quickly due to change of JBOD workload | |
6c14ae1e | 872 | */ |
daddfa3c | 873 | static void wb_position_ratio(struct dirty_throttle_control *dtc) |
6c14ae1e | 874 | { |
2bc00aef | 875 | struct bdi_writeback *wb = dtc->wb; |
a88a341a | 876 | unsigned long write_bw = wb->avg_write_bandwidth; |
2bc00aef | 877 | unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); |
c7981433 | 878 | unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); |
2bc00aef | 879 | unsigned long wb_thresh = dtc->wb_thresh; |
6c14ae1e WF |
880 | unsigned long x_intercept; |
881 | unsigned long setpoint; /* dirty pages' target balance point */ | |
de1fff37 | 882 | unsigned long wb_setpoint; |
6c14ae1e WF |
883 | unsigned long span; |
884 | long long pos_ratio; /* for scaling up/down the rate limit */ | |
885 | long x; | |
886 | ||
daddfa3c TH |
887 | dtc->pos_ratio = 0; |
888 | ||
2bc00aef | 889 | if (unlikely(dtc->dirty >= limit)) |
daddfa3c | 890 | return; |
6c14ae1e WF |
891 | |
892 | /* | |
893 | * global setpoint | |
894 | * | |
5a537485 MP |
895 | * See comment for pos_ratio_polynom(). |
896 | */ | |
897 | setpoint = (freerun + limit) / 2; | |
2bc00aef | 898 | pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); |
5a537485 MP |
899 | |
900 | /* | |
901 | * The strictlimit feature is a tool preventing mistrusted filesystems | |
902 | * from growing a large number of dirty pages before throttling. For | |
de1fff37 TH |
903 | * such filesystems balance_dirty_pages always checks wb counters |
904 | * against wb limits. Even if global "nr_dirty" is under "freerun". | |
5a537485 MP |
905 | * This is especially important for fuse which sets bdi->max_ratio to |
906 | * 1% by default. Without strictlimit feature, fuse writeback may | |
907 | * consume arbitrary amount of RAM because it is accounted in | |
908 | * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". | |
6c14ae1e | 909 | * |
a88a341a | 910 | * Here, in wb_position_ratio(), we calculate pos_ratio based on |
de1fff37 | 911 | * two values: wb_dirty and wb_thresh. Let's consider an example: |
5a537485 MP |
912 | * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global |
913 | * limits are set by default to 10% and 20% (background and throttle). | |
de1fff37 | 914 | * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. |
0d960a38 | 915 | * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is |
de1fff37 | 916 | * about ~6K pages (as the average of background and throttle wb |
5a537485 | 917 | * limits). The 3rd order polynomial will provide positive feedback if |
de1fff37 | 918 | * wb_dirty is under wb_setpoint and vice versa. |
6c14ae1e | 919 | * |
5a537485 | 920 | * Note, that we cannot use global counters in these calculations |
de1fff37 | 921 | * because we want to throttle process writing to a strictlimit wb |
5a537485 MP |
922 | * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB |
923 | * in the example above). | |
6c14ae1e | 924 | */ |
a88a341a | 925 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { |
de1fff37 | 926 | long long wb_pos_ratio; |
5a537485 | 927 | |
daddfa3c TH |
928 | if (dtc->wb_dirty < 8) { |
929 | dtc->pos_ratio = min_t(long long, pos_ratio * 2, | |
930 | 2 << RATELIMIT_CALC_SHIFT); | |
931 | return; | |
932 | } | |
5a537485 | 933 | |
2bc00aef | 934 | if (dtc->wb_dirty >= wb_thresh) |
daddfa3c | 935 | return; |
5a537485 | 936 | |
970fb01a TH |
937 | wb_setpoint = dirty_freerun_ceiling(wb_thresh, |
938 | dtc->wb_bg_thresh); | |
5a537485 | 939 | |
de1fff37 | 940 | if (wb_setpoint == 0 || wb_setpoint == wb_thresh) |
daddfa3c | 941 | return; |
5a537485 | 942 | |
2bc00aef | 943 | wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, |
de1fff37 | 944 | wb_thresh); |
5a537485 MP |
945 | |
946 | /* | |
de1fff37 TH |
947 | * Typically, for strictlimit case, wb_setpoint << setpoint |
948 | * and pos_ratio >> wb_pos_ratio. In the other words global | |
5a537485 | 949 | * state ("dirty") is not limiting factor and we have to |
de1fff37 | 950 | * make decision based on wb counters. But there is an |
5a537485 MP |
951 | * important case when global pos_ratio should get precedence: |
952 | * global limits are exceeded (e.g. due to activities on other | |
de1fff37 | 953 | * wb's) while given strictlimit wb is below limit. |
5a537485 | 954 | * |
de1fff37 | 955 | * "pos_ratio * wb_pos_ratio" would work for the case above, |
5a537485 | 956 | * but it would look too non-natural for the case of all |
de1fff37 | 957 | * activity in the system coming from a single strictlimit wb |
5a537485 MP |
958 | * with bdi->max_ratio == 100%. |
959 | * | |
960 | * Note that min() below somewhat changes the dynamics of the | |
961 | * control system. Normally, pos_ratio value can be well over 3 | |
de1fff37 | 962 | * (when globally we are at freerun and wb is well below wb |
5a537485 MP |
963 | * setpoint). Now the maximum pos_ratio in the same situation |
964 | * is 2. We might want to tweak this if we observe the control | |
965 | * system is too slow to adapt. | |
966 | */ | |
daddfa3c TH |
967 | dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); |
968 | return; | |
5a537485 | 969 | } |
6c14ae1e WF |
970 | |
971 | /* | |
972 | * We have computed basic pos_ratio above based on global situation. If | |
de1fff37 | 973 | * the wb is over/under its share of dirty pages, we want to scale |
6c14ae1e WF |
974 | * pos_ratio further down/up. That is done by the following mechanism. |
975 | */ | |
976 | ||
977 | /* | |
de1fff37 | 978 | * wb setpoint |
6c14ae1e | 979 | * |
de1fff37 | 980 | * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) |
6c14ae1e | 981 | * |
de1fff37 | 982 | * x_intercept - wb_dirty |
6c14ae1e | 983 | * := -------------------------- |
de1fff37 | 984 | * x_intercept - wb_setpoint |
6c14ae1e | 985 | * |
de1fff37 | 986 | * The main wb control line is a linear function that subjects to |
6c14ae1e | 987 | * |
de1fff37 TH |
988 | * (1) f(wb_setpoint) = 1.0 |
989 | * (2) k = - 1 / (8 * write_bw) (in single wb case) | |
990 | * or equally: x_intercept = wb_setpoint + 8 * write_bw | |
6c14ae1e | 991 | * |
de1fff37 | 992 | * For single wb case, the dirty pages are observed to fluctuate |
6c14ae1e | 993 | * regularly within range |
de1fff37 | 994 | * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] |
6c14ae1e WF |
995 | * for various filesystems, where (2) can yield in a reasonable 12.5% |
996 | * fluctuation range for pos_ratio. | |
997 | * | |
de1fff37 | 998 | * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its |
6c14ae1e | 999 | * own size, so move the slope over accordingly and choose a slope that |
de1fff37 | 1000 | * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. |
6c14ae1e | 1001 | */ |
2bc00aef TH |
1002 | if (unlikely(wb_thresh > dtc->thresh)) |
1003 | wb_thresh = dtc->thresh; | |
aed21ad2 | 1004 | /* |
de1fff37 | 1005 | * It's very possible that wb_thresh is close to 0 not because the |
aed21ad2 WF |
1006 | * device is slow, but that it has remained inactive for long time. |
1007 | * Honour such devices a reasonable good (hopefully IO efficient) | |
1008 | * threshold, so that the occasional writes won't be blocked and active | |
1009 | * writes can rampup the threshold quickly. | |
1010 | */ | |
2bc00aef | 1011 | wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); |
6c14ae1e | 1012 | /* |
de1fff37 TH |
1013 | * scale global setpoint to wb's: |
1014 | * wb_setpoint = setpoint * wb_thresh / thresh | |
6c14ae1e | 1015 | */ |
e4bc13ad | 1016 | x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); |
de1fff37 | 1017 | wb_setpoint = setpoint * (u64)x >> 16; |
6c14ae1e | 1018 | /* |
de1fff37 TH |
1019 | * Use span=(8*write_bw) in single wb case as indicated by |
1020 | * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. | |
6c14ae1e | 1021 | * |
de1fff37 TH |
1022 | * wb_thresh thresh - wb_thresh |
1023 | * span = --------- * (8 * write_bw) + ------------------ * wb_thresh | |
1024 | * thresh thresh | |
6c14ae1e | 1025 | */ |
2bc00aef | 1026 | span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; |
de1fff37 | 1027 | x_intercept = wb_setpoint + span; |
6c14ae1e | 1028 | |
2bc00aef TH |
1029 | if (dtc->wb_dirty < x_intercept - span / 4) { |
1030 | pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), | |
e4bc13ad | 1031 | (x_intercept - wb_setpoint) | 1); |
6c14ae1e WF |
1032 | } else |
1033 | pos_ratio /= 4; | |
1034 | ||
8927f66c | 1035 | /* |
de1fff37 | 1036 | * wb reserve area, safeguard against dirty pool underrun and disk idle |
8927f66c WF |
1037 | * It may push the desired control point of global dirty pages higher |
1038 | * than setpoint. | |
1039 | */ | |
de1fff37 | 1040 | x_intercept = wb_thresh / 2; |
2bc00aef TH |
1041 | if (dtc->wb_dirty < x_intercept) { |
1042 | if (dtc->wb_dirty > x_intercept / 8) | |
1043 | pos_ratio = div_u64(pos_ratio * x_intercept, | |
1044 | dtc->wb_dirty); | |
50657fc4 | 1045 | else |
8927f66c WF |
1046 | pos_ratio *= 8; |
1047 | } | |
1048 | ||
daddfa3c | 1049 | dtc->pos_ratio = pos_ratio; |
6c14ae1e WF |
1050 | } |
1051 | ||
a88a341a TH |
1052 | static void wb_update_write_bandwidth(struct bdi_writeback *wb, |
1053 | unsigned long elapsed, | |
1054 | unsigned long written) | |
e98be2d5 WF |
1055 | { |
1056 | const unsigned long period = roundup_pow_of_two(3 * HZ); | |
a88a341a TH |
1057 | unsigned long avg = wb->avg_write_bandwidth; |
1058 | unsigned long old = wb->write_bandwidth; | |
e98be2d5 WF |
1059 | u64 bw; |
1060 | ||
1061 | /* | |
1062 | * bw = written * HZ / elapsed | |
1063 | * | |
1064 | * bw * elapsed + write_bandwidth * (period - elapsed) | |
1065 | * write_bandwidth = --------------------------------------------------- | |
1066 | * period | |
c72efb65 TH |
1067 | * |
1068 | * @written may have decreased due to account_page_redirty(). | |
1069 | * Avoid underflowing @bw calculation. | |
e98be2d5 | 1070 | */ |
a88a341a | 1071 | bw = written - min(written, wb->written_stamp); |
e98be2d5 WF |
1072 | bw *= HZ; |
1073 | if (unlikely(elapsed > period)) { | |
1074 | do_div(bw, elapsed); | |
1075 | avg = bw; | |
1076 | goto out; | |
1077 | } | |
a88a341a | 1078 | bw += (u64)wb->write_bandwidth * (period - elapsed); |
e98be2d5 WF |
1079 | bw >>= ilog2(period); |
1080 | ||
1081 | /* | |
1082 | * one more level of smoothing, for filtering out sudden spikes | |
1083 | */ | |
1084 | if (avg > old && old >= (unsigned long)bw) | |
1085 | avg -= (avg - old) >> 3; | |
1086 | ||
1087 | if (avg < old && old <= (unsigned long)bw) | |
1088 | avg += (old - avg) >> 3; | |
1089 | ||
1090 | out: | |
95a46c65 TH |
1091 | /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ |
1092 | avg = max(avg, 1LU); | |
1093 | if (wb_has_dirty_io(wb)) { | |
1094 | long delta = avg - wb->avg_write_bandwidth; | |
1095 | WARN_ON_ONCE(atomic_long_add_return(delta, | |
1096 | &wb->bdi->tot_write_bandwidth) <= 0); | |
1097 | } | |
a88a341a TH |
1098 | wb->write_bandwidth = bw; |
1099 | wb->avg_write_bandwidth = avg; | |
e98be2d5 WF |
1100 | } |
1101 | ||
2bc00aef | 1102 | static void update_dirty_limit(struct dirty_throttle_control *dtc) |
c42843f2 | 1103 | { |
e9f07dfd | 1104 | struct wb_domain *dom = dtc_dom(dtc); |
2bc00aef | 1105 | unsigned long thresh = dtc->thresh; |
dcc25ae7 | 1106 | unsigned long limit = dom->dirty_limit; |
c42843f2 WF |
1107 | |
1108 | /* | |
1109 | * Follow up in one step. | |
1110 | */ | |
1111 | if (limit < thresh) { | |
1112 | limit = thresh; | |
1113 | goto update; | |
1114 | } | |
1115 | ||
1116 | /* | |
1117 | * Follow down slowly. Use the higher one as the target, because thresh | |
1118 | * may drop below dirty. This is exactly the reason to introduce | |
dcc25ae7 | 1119 | * dom->dirty_limit which is guaranteed to lie above the dirty pages. |
c42843f2 | 1120 | */ |
2bc00aef | 1121 | thresh = max(thresh, dtc->dirty); |
c42843f2 WF |
1122 | if (limit > thresh) { |
1123 | limit -= (limit - thresh) >> 5; | |
1124 | goto update; | |
1125 | } | |
1126 | return; | |
1127 | update: | |
dcc25ae7 | 1128 | dom->dirty_limit = limit; |
c42843f2 WF |
1129 | } |
1130 | ||
e9f07dfd | 1131 | static void domain_update_bandwidth(struct dirty_throttle_control *dtc, |
c42843f2 WF |
1132 | unsigned long now) |
1133 | { | |
e9f07dfd | 1134 | struct wb_domain *dom = dtc_dom(dtc); |
c42843f2 WF |
1135 | |
1136 | /* | |
1137 | * check locklessly first to optimize away locking for the most time | |
1138 | */ | |
dcc25ae7 | 1139 | if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) |
c42843f2 WF |
1140 | return; |
1141 | ||
dcc25ae7 TH |
1142 | spin_lock(&dom->lock); |
1143 | if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { | |
2bc00aef | 1144 | update_dirty_limit(dtc); |
dcc25ae7 | 1145 | dom->dirty_limit_tstamp = now; |
c42843f2 | 1146 | } |
dcc25ae7 | 1147 | spin_unlock(&dom->lock); |
c42843f2 WF |
1148 | } |
1149 | ||
be3ffa27 | 1150 | /* |
de1fff37 | 1151 | * Maintain wb->dirty_ratelimit, the base dirty throttle rate. |
be3ffa27 | 1152 | * |
de1fff37 | 1153 | * Normal wb tasks will be curbed at or below it in long term. |
be3ffa27 WF |
1154 | * Obviously it should be around (write_bw / N) when there are N dd tasks. |
1155 | */ | |
2bc00aef | 1156 | static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, |
a88a341a TH |
1157 | unsigned long dirtied, |
1158 | unsigned long elapsed) | |
be3ffa27 | 1159 | { |
2bc00aef TH |
1160 | struct bdi_writeback *wb = dtc->wb; |
1161 | unsigned long dirty = dtc->dirty; | |
1162 | unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); | |
c7981433 | 1163 | unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); |
7381131c | 1164 | unsigned long setpoint = (freerun + limit) / 2; |
a88a341a TH |
1165 | unsigned long write_bw = wb->avg_write_bandwidth; |
1166 | unsigned long dirty_ratelimit = wb->dirty_ratelimit; | |
be3ffa27 WF |
1167 | unsigned long dirty_rate; |
1168 | unsigned long task_ratelimit; | |
1169 | unsigned long balanced_dirty_ratelimit; | |
7381131c WF |
1170 | unsigned long step; |
1171 | unsigned long x; | |
d59b1087 | 1172 | unsigned long shift; |
be3ffa27 WF |
1173 | |
1174 | /* | |
1175 | * The dirty rate will match the writeout rate in long term, except | |
1176 | * when dirty pages are truncated by userspace or re-dirtied by FS. | |
1177 | */ | |
a88a341a | 1178 | dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; |
be3ffa27 | 1179 | |
be3ffa27 WF |
1180 | /* |
1181 | * task_ratelimit reflects each dd's dirty rate for the past 200ms. | |
1182 | */ | |
1183 | task_ratelimit = (u64)dirty_ratelimit * | |
daddfa3c | 1184 | dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; |
be3ffa27 WF |
1185 | task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ |
1186 | ||
1187 | /* | |
1188 | * A linear estimation of the "balanced" throttle rate. The theory is, | |
de1fff37 | 1189 | * if there are N dd tasks, each throttled at task_ratelimit, the wb's |
be3ffa27 WF |
1190 | * dirty_rate will be measured to be (N * task_ratelimit). So the below |
1191 | * formula will yield the balanced rate limit (write_bw / N). | |
1192 | * | |
1193 | * Note that the expanded form is not a pure rate feedback: | |
1194 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) | |
1195 | * but also takes pos_ratio into account: | |
1196 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) | |
1197 | * | |
1198 | * (1) is not realistic because pos_ratio also takes part in balancing | |
1199 | * the dirty rate. Consider the state | |
1200 | * pos_ratio = 0.5 (3) | |
1201 | * rate = 2 * (write_bw / N) (4) | |
1202 | * If (1) is used, it will stuck in that state! Because each dd will | |
1203 | * be throttled at | |
1204 | * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) | |
1205 | * yielding | |
1206 | * dirty_rate = N * task_ratelimit = write_bw (6) | |
1207 | * put (6) into (1) we get | |
1208 | * rate_(i+1) = rate_(i) (7) | |
1209 | * | |
1210 | * So we end up using (2) to always keep | |
1211 | * rate_(i+1) ~= (write_bw / N) (8) | |
1212 | * regardless of the value of pos_ratio. As long as (8) is satisfied, | |
1213 | * pos_ratio is able to drive itself to 1.0, which is not only where | |
1214 | * the dirty count meet the setpoint, but also where the slope of | |
1215 | * pos_ratio is most flat and hence task_ratelimit is least fluctuated. | |
1216 | */ | |
1217 | balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, | |
1218 | dirty_rate | 1); | |
bdaac490 WF |
1219 | /* |
1220 | * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw | |
1221 | */ | |
1222 | if (unlikely(balanced_dirty_ratelimit > write_bw)) | |
1223 | balanced_dirty_ratelimit = write_bw; | |
be3ffa27 | 1224 | |
7381131c WF |
1225 | /* |
1226 | * We could safely do this and return immediately: | |
1227 | * | |
de1fff37 | 1228 | * wb->dirty_ratelimit = balanced_dirty_ratelimit; |
7381131c WF |
1229 | * |
1230 | * However to get a more stable dirty_ratelimit, the below elaborated | |
331cbdee | 1231 | * code makes use of task_ratelimit to filter out singular points and |
7381131c WF |
1232 | * limit the step size. |
1233 | * | |
1234 | * The below code essentially only uses the relative value of | |
1235 | * | |
1236 | * task_ratelimit - dirty_ratelimit | |
1237 | * = (pos_ratio - 1) * dirty_ratelimit | |
1238 | * | |
1239 | * which reflects the direction and size of dirty position error. | |
1240 | */ | |
1241 | ||
1242 | /* | |
1243 | * dirty_ratelimit will follow balanced_dirty_ratelimit iff | |
1244 | * task_ratelimit is on the same side of dirty_ratelimit, too. | |
1245 | * For example, when | |
1246 | * - dirty_ratelimit > balanced_dirty_ratelimit | |
1247 | * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) | |
1248 | * lowering dirty_ratelimit will help meet both the position and rate | |
1249 | * control targets. Otherwise, don't update dirty_ratelimit if it will | |
1250 | * only help meet the rate target. After all, what the users ultimately | |
1251 | * feel and care are stable dirty rate and small position error. | |
1252 | * | |
1253 | * |task_ratelimit - dirty_ratelimit| is used to limit the step size | |
331cbdee | 1254 | * and filter out the singular points of balanced_dirty_ratelimit. Which |
7381131c WF |
1255 | * keeps jumping around randomly and can even leap far away at times |
1256 | * due to the small 200ms estimation period of dirty_rate (we want to | |
1257 | * keep that period small to reduce time lags). | |
1258 | */ | |
1259 | step = 0; | |
5a537485 MP |
1260 | |
1261 | /* | |
de1fff37 | 1262 | * For strictlimit case, calculations above were based on wb counters |
a88a341a | 1263 | * and limits (starting from pos_ratio = wb_position_ratio() and up to |
5a537485 | 1264 | * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). |
de1fff37 TH |
1265 | * Hence, to calculate "step" properly, we have to use wb_dirty as |
1266 | * "dirty" and wb_setpoint as "setpoint". | |
5a537485 | 1267 | * |
de1fff37 TH |
1268 | * We rampup dirty_ratelimit forcibly if wb_dirty is low because |
1269 | * it's possible that wb_thresh is close to zero due to inactivity | |
970fb01a | 1270 | * of backing device. |
5a537485 | 1271 | */ |
a88a341a | 1272 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { |
2bc00aef TH |
1273 | dirty = dtc->wb_dirty; |
1274 | if (dtc->wb_dirty < 8) | |
1275 | setpoint = dtc->wb_dirty + 1; | |
5a537485 | 1276 | else |
970fb01a | 1277 | setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; |
5a537485 MP |
1278 | } |
1279 | ||
7381131c | 1280 | if (dirty < setpoint) { |
a88a341a | 1281 | x = min3(wb->balanced_dirty_ratelimit, |
7c809968 | 1282 | balanced_dirty_ratelimit, task_ratelimit); |
7381131c WF |
1283 | if (dirty_ratelimit < x) |
1284 | step = x - dirty_ratelimit; | |
1285 | } else { | |
a88a341a | 1286 | x = max3(wb->balanced_dirty_ratelimit, |
7c809968 | 1287 | balanced_dirty_ratelimit, task_ratelimit); |
7381131c WF |
1288 | if (dirty_ratelimit > x) |
1289 | step = dirty_ratelimit - x; | |
1290 | } | |
1291 | ||
1292 | /* | |
1293 | * Don't pursue 100% rate matching. It's impossible since the balanced | |
1294 | * rate itself is constantly fluctuating. So decrease the track speed | |
1295 | * when it gets close to the target. Helps eliminate pointless tremors. | |
1296 | */ | |
d59b1087 AR |
1297 | shift = dirty_ratelimit / (2 * step + 1); |
1298 | if (shift < BITS_PER_LONG) | |
1299 | step = DIV_ROUND_UP(step >> shift, 8); | |
1300 | else | |
1301 | step = 0; | |
7381131c WF |
1302 | |
1303 | if (dirty_ratelimit < balanced_dirty_ratelimit) | |
1304 | dirty_ratelimit += step; | |
1305 | else | |
1306 | dirty_ratelimit -= step; | |
1307 | ||
a88a341a TH |
1308 | wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); |
1309 | wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; | |
b48c104d | 1310 | |
5634cc2a | 1311 | trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); |
be3ffa27 WF |
1312 | } |
1313 | ||
c2aa723a TH |
1314 | static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, |
1315 | struct dirty_throttle_control *mdtc, | |
8a731799 TH |
1316 | unsigned long start_time, |
1317 | bool update_ratelimit) | |
e98be2d5 | 1318 | { |
c2aa723a | 1319 | struct bdi_writeback *wb = gdtc->wb; |
e98be2d5 | 1320 | unsigned long now = jiffies; |
a88a341a | 1321 | unsigned long elapsed = now - wb->bw_time_stamp; |
be3ffa27 | 1322 | unsigned long dirtied; |
e98be2d5 WF |
1323 | unsigned long written; |
1324 | ||
8a731799 TH |
1325 | lockdep_assert_held(&wb->list_lock); |
1326 | ||
e98be2d5 WF |
1327 | /* |
1328 | * rate-limit, only update once every 200ms. | |
1329 | */ | |
1330 | if (elapsed < BANDWIDTH_INTERVAL) | |
1331 | return; | |
1332 | ||
a88a341a TH |
1333 | dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); |
1334 | written = percpu_counter_read(&wb->stat[WB_WRITTEN]); | |
e98be2d5 WF |
1335 | |
1336 | /* | |
1337 | * Skip quiet periods when disk bandwidth is under-utilized. | |
1338 | * (at least 1s idle time between two flusher runs) | |
1339 | */ | |
a88a341a | 1340 | if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) |
e98be2d5 WF |
1341 | goto snapshot; |
1342 | ||
8a731799 | 1343 | if (update_ratelimit) { |
c2aa723a TH |
1344 | domain_update_bandwidth(gdtc, now); |
1345 | wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); | |
1346 | ||
1347 | /* | |
1348 | * @mdtc is always NULL if !CGROUP_WRITEBACK but the | |
1349 | * compiler has no way to figure that out. Help it. | |
1350 | */ | |
1351 | if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { | |
1352 | domain_update_bandwidth(mdtc, now); | |
1353 | wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); | |
1354 | } | |
be3ffa27 | 1355 | } |
a88a341a | 1356 | wb_update_write_bandwidth(wb, elapsed, written); |
e98be2d5 WF |
1357 | |
1358 | snapshot: | |
a88a341a TH |
1359 | wb->dirtied_stamp = dirtied; |
1360 | wb->written_stamp = written; | |
1361 | wb->bw_time_stamp = now; | |
e98be2d5 WF |
1362 | } |
1363 | ||
8a731799 | 1364 | void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) |
e98be2d5 | 1365 | { |
2bc00aef TH |
1366 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; |
1367 | ||
c2aa723a | 1368 | __wb_update_bandwidth(&gdtc, NULL, start_time, false); |
e98be2d5 WF |
1369 | } |
1370 | ||
9d823e8f | 1371 | /* |
d0e1d66b | 1372 | * After a task dirtied this many pages, balance_dirty_pages_ratelimited() |
9d823e8f WF |
1373 | * will look to see if it needs to start dirty throttling. |
1374 | * | |
1375 | * If dirty_poll_interval is too low, big NUMA machines will call the expensive | |
1376 | * global_page_state() too often. So scale it near-sqrt to the safety margin | |
1377 | * (the number of pages we may dirty without exceeding the dirty limits). | |
1378 | */ | |
1379 | static unsigned long dirty_poll_interval(unsigned long dirty, | |
1380 | unsigned long thresh) | |
1381 | { | |
1382 | if (thresh > dirty) | |
1383 | return 1UL << (ilog2(thresh - dirty) >> 1); | |
1384 | ||
1385 | return 1; | |
1386 | } | |
1387 | ||
a88a341a | 1388 | static unsigned long wb_max_pause(struct bdi_writeback *wb, |
de1fff37 | 1389 | unsigned long wb_dirty) |
c8462cc9 | 1390 | { |
a88a341a | 1391 | unsigned long bw = wb->avg_write_bandwidth; |
e3b6c655 | 1392 | unsigned long t; |
c8462cc9 | 1393 | |
7ccb9ad5 WF |
1394 | /* |
1395 | * Limit pause time for small memory systems. If sleeping for too long | |
1396 | * time, a small pool of dirty/writeback pages may go empty and disk go | |
1397 | * idle. | |
1398 | * | |
1399 | * 8 serves as the safety ratio. | |
1400 | */ | |
de1fff37 | 1401 | t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); |
7ccb9ad5 WF |
1402 | t++; |
1403 | ||
e3b6c655 | 1404 | return min_t(unsigned long, t, MAX_PAUSE); |
7ccb9ad5 WF |
1405 | } |
1406 | ||
a88a341a TH |
1407 | static long wb_min_pause(struct bdi_writeback *wb, |
1408 | long max_pause, | |
1409 | unsigned long task_ratelimit, | |
1410 | unsigned long dirty_ratelimit, | |
1411 | int *nr_dirtied_pause) | |
c8462cc9 | 1412 | { |
a88a341a TH |
1413 | long hi = ilog2(wb->avg_write_bandwidth); |
1414 | long lo = ilog2(wb->dirty_ratelimit); | |
7ccb9ad5 WF |
1415 | long t; /* target pause */ |
1416 | long pause; /* estimated next pause */ | |
1417 | int pages; /* target nr_dirtied_pause */ | |
c8462cc9 | 1418 | |
7ccb9ad5 WF |
1419 | /* target for 10ms pause on 1-dd case */ |
1420 | t = max(1, HZ / 100); | |
c8462cc9 WF |
1421 | |
1422 | /* | |
1423 | * Scale up pause time for concurrent dirtiers in order to reduce CPU | |
1424 | * overheads. | |
1425 | * | |
7ccb9ad5 | 1426 | * (N * 10ms) on 2^N concurrent tasks. |
c8462cc9 WF |
1427 | */ |
1428 | if (hi > lo) | |
7ccb9ad5 | 1429 | t += (hi - lo) * (10 * HZ) / 1024; |
c8462cc9 WF |
1430 | |
1431 | /* | |
7ccb9ad5 WF |
1432 | * This is a bit convoluted. We try to base the next nr_dirtied_pause |
1433 | * on the much more stable dirty_ratelimit. However the next pause time | |
1434 | * will be computed based on task_ratelimit and the two rate limits may | |
1435 | * depart considerably at some time. Especially if task_ratelimit goes | |
1436 | * below dirty_ratelimit/2 and the target pause is max_pause, the next | |
1437 | * pause time will be max_pause*2 _trimmed down_ to max_pause. As a | |
1438 | * result task_ratelimit won't be executed faithfully, which could | |
1439 | * eventually bring down dirty_ratelimit. | |
c8462cc9 | 1440 | * |
7ccb9ad5 WF |
1441 | * We apply two rules to fix it up: |
1442 | * 1) try to estimate the next pause time and if necessary, use a lower | |
1443 | * nr_dirtied_pause so as not to exceed max_pause. When this happens, | |
1444 | * nr_dirtied_pause will be "dancing" with task_ratelimit. | |
1445 | * 2) limit the target pause time to max_pause/2, so that the normal | |
1446 | * small fluctuations of task_ratelimit won't trigger rule (1) and | |
1447 | * nr_dirtied_pause will remain as stable as dirty_ratelimit. | |
c8462cc9 | 1448 | */ |
7ccb9ad5 WF |
1449 | t = min(t, 1 + max_pause / 2); |
1450 | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); | |
c8462cc9 WF |
1451 | |
1452 | /* | |
5b9b3574 WF |
1453 | * Tiny nr_dirtied_pause is found to hurt I/O performance in the test |
1454 | * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. | |
1455 | * When the 16 consecutive reads are often interrupted by some dirty | |
1456 | * throttling pause during the async writes, cfq will go into idles | |
1457 | * (deadline is fine). So push nr_dirtied_pause as high as possible | |
1458 | * until reaches DIRTY_POLL_THRESH=32 pages. | |
c8462cc9 | 1459 | */ |
5b9b3574 WF |
1460 | if (pages < DIRTY_POLL_THRESH) { |
1461 | t = max_pause; | |
1462 | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); | |
1463 | if (pages > DIRTY_POLL_THRESH) { | |
1464 | pages = DIRTY_POLL_THRESH; | |
1465 | t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; | |
1466 | } | |
1467 | } | |
1468 | ||
7ccb9ad5 WF |
1469 | pause = HZ * pages / (task_ratelimit + 1); |
1470 | if (pause > max_pause) { | |
1471 | t = max_pause; | |
1472 | pages = task_ratelimit * t / roundup_pow_of_two(HZ); | |
1473 | } | |
c8462cc9 | 1474 | |
7ccb9ad5 | 1475 | *nr_dirtied_pause = pages; |
c8462cc9 | 1476 | /* |
7ccb9ad5 | 1477 | * The minimal pause time will normally be half the target pause time. |
c8462cc9 | 1478 | */ |
5b9b3574 | 1479 | return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; |
c8462cc9 WF |
1480 | } |
1481 | ||
970fb01a | 1482 | static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) |
5a537485 | 1483 | { |
2bc00aef | 1484 | struct bdi_writeback *wb = dtc->wb; |
93f78d88 | 1485 | unsigned long wb_reclaimable; |
5a537485 MP |
1486 | |
1487 | /* | |
de1fff37 | 1488 | * wb_thresh is not treated as some limiting factor as |
5a537485 | 1489 | * dirty_thresh, due to reasons |
de1fff37 | 1490 | * - in JBOD setup, wb_thresh can fluctuate a lot |
5a537485 | 1491 | * - in a system with HDD and USB key, the USB key may somehow |
de1fff37 TH |
1492 | * go into state (wb_dirty >> wb_thresh) either because |
1493 | * wb_dirty starts high, or because wb_thresh drops low. | |
5a537485 | 1494 | * In this case we don't want to hard throttle the USB key |
de1fff37 TH |
1495 | * dirtiers for 100 seconds until wb_dirty drops under |
1496 | * wb_thresh. Instead the auxiliary wb control line in | |
a88a341a | 1497 | * wb_position_ratio() will let the dirtier task progress |
de1fff37 | 1498 | * at some rate <= (write_bw / 2) for bringing down wb_dirty. |
5a537485 | 1499 | */ |
b1cbc6d4 | 1500 | dtc->wb_thresh = __wb_calc_thresh(dtc); |
970fb01a TH |
1501 | dtc->wb_bg_thresh = dtc->thresh ? |
1502 | div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; | |
5a537485 MP |
1503 | |
1504 | /* | |
1505 | * In order to avoid the stacked BDI deadlock we need | |
1506 | * to ensure we accurately count the 'dirty' pages when | |
1507 | * the threshold is low. | |
1508 | * | |
1509 | * Otherwise it would be possible to get thresh+n pages | |
1510 | * reported dirty, even though there are thresh-m pages | |
1511 | * actually dirty; with m+n sitting in the percpu | |
1512 | * deltas. | |
1513 | */ | |
2bc00aef | 1514 | if (dtc->wb_thresh < 2 * wb_stat_error(wb)) { |
93f78d88 | 1515 | wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); |
2bc00aef | 1516 | dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); |
5a537485 | 1517 | } else { |
93f78d88 | 1518 | wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); |
2bc00aef | 1519 | dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); |
5a537485 MP |
1520 | } |
1521 | } | |
1522 | ||
1da177e4 LT |
1523 | /* |
1524 | * balance_dirty_pages() must be called by processes which are generating dirty | |
1525 | * data. It looks at the number of dirty pages in the machine and will force | |
143dfe86 | 1526 | * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. |
5b0830cb JA |
1527 | * If we're over `background_thresh' then the writeback threads are woken to |
1528 | * perform some writeout. | |
1da177e4 | 1529 | */ |
3a2e9a5a | 1530 | static void balance_dirty_pages(struct address_space *mapping, |
dfb8ae56 | 1531 | struct bdi_writeback *wb, |
143dfe86 | 1532 | unsigned long pages_dirtied) |
1da177e4 | 1533 | { |
2bc00aef | 1534 | struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; |
c2aa723a | 1535 | struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; |
2bc00aef | 1536 | struct dirty_throttle_control * const gdtc = &gdtc_stor; |
c2aa723a TH |
1537 | struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? |
1538 | &mdtc_stor : NULL; | |
1539 | struct dirty_throttle_control *sdtc; | |
143dfe86 | 1540 | unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ |
83712358 | 1541 | long period; |
7ccb9ad5 WF |
1542 | long pause; |
1543 | long max_pause; | |
1544 | long min_pause; | |
1545 | int nr_dirtied_pause; | |
e50e3720 | 1546 | bool dirty_exceeded = false; |
143dfe86 | 1547 | unsigned long task_ratelimit; |
7ccb9ad5 | 1548 | unsigned long dirty_ratelimit; |
dfb8ae56 | 1549 | struct backing_dev_info *bdi = wb->bdi; |
5a537485 | 1550 | bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; |
e98be2d5 | 1551 | unsigned long start_time = jiffies; |
1da177e4 LT |
1552 | |
1553 | for (;;) { | |
83712358 | 1554 | unsigned long now = jiffies; |
2bc00aef | 1555 | unsigned long dirty, thresh, bg_thresh; |
50e55bf6 YS |
1556 | unsigned long m_dirty = 0; /* stop bogus uninit warnings */ |
1557 | unsigned long m_thresh = 0; | |
1558 | unsigned long m_bg_thresh = 0; | |
83712358 | 1559 | |
143dfe86 WF |
1560 | /* |
1561 | * Unstable writes are a feature of certain networked | |
1562 | * filesystems (i.e. NFS) in which data may have been | |
1563 | * written to the server's write cache, but has not yet | |
1564 | * been flushed to permanent storage. | |
1565 | */ | |
5fce25a9 PZ |
1566 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + |
1567 | global_page_state(NR_UNSTABLE_NFS); | |
9fc3a43e | 1568 | gdtc->avail = global_dirtyable_memory(); |
2bc00aef | 1569 | gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); |
5fce25a9 | 1570 | |
9fc3a43e | 1571 | domain_dirty_limits(gdtc); |
16c4042f | 1572 | |
5a537485 | 1573 | if (unlikely(strictlimit)) { |
970fb01a | 1574 | wb_dirty_limits(gdtc); |
5a537485 | 1575 | |
2bc00aef TH |
1576 | dirty = gdtc->wb_dirty; |
1577 | thresh = gdtc->wb_thresh; | |
970fb01a | 1578 | bg_thresh = gdtc->wb_bg_thresh; |
5a537485 | 1579 | } else { |
2bc00aef TH |
1580 | dirty = gdtc->dirty; |
1581 | thresh = gdtc->thresh; | |
1582 | bg_thresh = gdtc->bg_thresh; | |
5a537485 MP |
1583 | } |
1584 | ||
c2aa723a | 1585 | if (mdtc) { |
c5edf9cd | 1586 | unsigned long filepages, headroom, writeback; |
c2aa723a TH |
1587 | |
1588 | /* | |
1589 | * If @wb belongs to !root memcg, repeat the same | |
1590 | * basic calculations for the memcg domain. | |
1591 | */ | |
c5edf9cd TH |
1592 | mem_cgroup_wb_stats(wb, &filepages, &headroom, |
1593 | &mdtc->dirty, &writeback); | |
c2aa723a | 1594 | mdtc->dirty += writeback; |
c5edf9cd | 1595 | mdtc_calc_avail(mdtc, filepages, headroom); |
c2aa723a TH |
1596 | |
1597 | domain_dirty_limits(mdtc); | |
1598 | ||
1599 | if (unlikely(strictlimit)) { | |
1600 | wb_dirty_limits(mdtc); | |
1601 | m_dirty = mdtc->wb_dirty; | |
1602 | m_thresh = mdtc->wb_thresh; | |
1603 | m_bg_thresh = mdtc->wb_bg_thresh; | |
1604 | } else { | |
1605 | m_dirty = mdtc->dirty; | |
1606 | m_thresh = mdtc->thresh; | |
1607 | m_bg_thresh = mdtc->bg_thresh; | |
1608 | } | |
5a537485 MP |
1609 | } |
1610 | ||
16c4042f WF |
1611 | /* |
1612 | * Throttle it only when the background writeback cannot | |
1613 | * catch-up. This avoids (excessively) small writeouts | |
de1fff37 | 1614 | * when the wb limits are ramping up in case of !strictlimit. |
5a537485 | 1615 | * |
de1fff37 TH |
1616 | * In strictlimit case make decision based on the wb counters |
1617 | * and limits. Small writeouts when the wb limits are ramping | |
5a537485 | 1618 | * up are the price we consciously pay for strictlimit-ing. |
c2aa723a TH |
1619 | * |
1620 | * If memcg domain is in effect, @dirty should be under | |
1621 | * both global and memcg freerun ceilings. | |
16c4042f | 1622 | */ |
c2aa723a TH |
1623 | if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && |
1624 | (!mdtc || | |
1625 | m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { | |
1626 | unsigned long intv = dirty_poll_interval(dirty, thresh); | |
1627 | unsigned long m_intv = ULONG_MAX; | |
1628 | ||
83712358 WF |
1629 | current->dirty_paused_when = now; |
1630 | current->nr_dirtied = 0; | |
c2aa723a TH |
1631 | if (mdtc) |
1632 | m_intv = dirty_poll_interval(m_dirty, m_thresh); | |
1633 | current->nr_dirtied_pause = min(intv, m_intv); | |
16c4042f | 1634 | break; |
83712358 | 1635 | } |
16c4042f | 1636 | |
bc05873d | 1637 | if (unlikely(!writeback_in_progress(wb))) |
9ecf4866 | 1638 | wb_start_background_writeback(wb); |
143dfe86 | 1639 | |
c2aa723a TH |
1640 | /* |
1641 | * Calculate global domain's pos_ratio and select the | |
1642 | * global dtc by default. | |
1643 | */ | |
5a537485 | 1644 | if (!strictlimit) |
970fb01a | 1645 | wb_dirty_limits(gdtc); |
5fce25a9 | 1646 | |
2bc00aef TH |
1647 | dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && |
1648 | ((gdtc->dirty > gdtc->thresh) || strictlimit); | |
daddfa3c TH |
1649 | |
1650 | wb_position_ratio(gdtc); | |
c2aa723a TH |
1651 | sdtc = gdtc; |
1652 | ||
1653 | if (mdtc) { | |
1654 | /* | |
1655 | * If memcg domain is in effect, calculate its | |
1656 | * pos_ratio. @wb should satisfy constraints from | |
1657 | * both global and memcg domains. Choose the one | |
1658 | * w/ lower pos_ratio. | |
1659 | */ | |
1660 | if (!strictlimit) | |
1661 | wb_dirty_limits(mdtc); | |
1662 | ||
1663 | dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && | |
1664 | ((mdtc->dirty > mdtc->thresh) || strictlimit); | |
1665 | ||
1666 | wb_position_ratio(mdtc); | |
1667 | if (mdtc->pos_ratio < gdtc->pos_ratio) | |
1668 | sdtc = mdtc; | |
1669 | } | |
daddfa3c | 1670 | |
a88a341a TH |
1671 | if (dirty_exceeded && !wb->dirty_exceeded) |
1672 | wb->dirty_exceeded = 1; | |
1da177e4 | 1673 | |
8a731799 TH |
1674 | if (time_is_before_jiffies(wb->bw_time_stamp + |
1675 | BANDWIDTH_INTERVAL)) { | |
1676 | spin_lock(&wb->list_lock); | |
c2aa723a | 1677 | __wb_update_bandwidth(gdtc, mdtc, start_time, true); |
8a731799 TH |
1678 | spin_unlock(&wb->list_lock); |
1679 | } | |
e98be2d5 | 1680 | |
c2aa723a | 1681 | /* throttle according to the chosen dtc */ |
a88a341a | 1682 | dirty_ratelimit = wb->dirty_ratelimit; |
c2aa723a | 1683 | task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> |
3a73dbbc | 1684 | RATELIMIT_CALC_SHIFT; |
c2aa723a | 1685 | max_pause = wb_max_pause(wb, sdtc->wb_dirty); |
a88a341a TH |
1686 | min_pause = wb_min_pause(wb, max_pause, |
1687 | task_ratelimit, dirty_ratelimit, | |
1688 | &nr_dirtied_pause); | |
7ccb9ad5 | 1689 | |
3a73dbbc | 1690 | if (unlikely(task_ratelimit == 0)) { |
83712358 | 1691 | period = max_pause; |
c8462cc9 | 1692 | pause = max_pause; |
143dfe86 | 1693 | goto pause; |
04fbfdc1 | 1694 | } |
83712358 WF |
1695 | period = HZ * pages_dirtied / task_ratelimit; |
1696 | pause = period; | |
1697 | if (current->dirty_paused_when) | |
1698 | pause -= now - current->dirty_paused_when; | |
1699 | /* | |
1700 | * For less than 1s think time (ext3/4 may block the dirtier | |
1701 | * for up to 800ms from time to time on 1-HDD; so does xfs, | |
1702 | * however at much less frequency), try to compensate it in | |
1703 | * future periods by updating the virtual time; otherwise just | |
1704 | * do a reset, as it may be a light dirtier. | |
1705 | */ | |
7ccb9ad5 | 1706 | if (pause < min_pause) { |
5634cc2a | 1707 | trace_balance_dirty_pages(wb, |
c2aa723a TH |
1708 | sdtc->thresh, |
1709 | sdtc->bg_thresh, | |
1710 | sdtc->dirty, | |
1711 | sdtc->wb_thresh, | |
1712 | sdtc->wb_dirty, | |
ece13ac3 WF |
1713 | dirty_ratelimit, |
1714 | task_ratelimit, | |
1715 | pages_dirtied, | |
83712358 | 1716 | period, |
7ccb9ad5 | 1717 | min(pause, 0L), |
ece13ac3 | 1718 | start_time); |
83712358 WF |
1719 | if (pause < -HZ) { |
1720 | current->dirty_paused_when = now; | |
1721 | current->nr_dirtied = 0; | |
1722 | } else if (period) { | |
1723 | current->dirty_paused_when += period; | |
1724 | current->nr_dirtied = 0; | |
7ccb9ad5 WF |
1725 | } else if (current->nr_dirtied_pause <= pages_dirtied) |
1726 | current->nr_dirtied_pause += pages_dirtied; | |
57fc978c | 1727 | break; |
04fbfdc1 | 1728 | } |
7ccb9ad5 WF |
1729 | if (unlikely(pause > max_pause)) { |
1730 | /* for occasional dropped task_ratelimit */ | |
1731 | now += min(pause - max_pause, max_pause); | |
1732 | pause = max_pause; | |
1733 | } | |
143dfe86 WF |
1734 | |
1735 | pause: | |
5634cc2a | 1736 | trace_balance_dirty_pages(wb, |
c2aa723a TH |
1737 | sdtc->thresh, |
1738 | sdtc->bg_thresh, | |
1739 | sdtc->dirty, | |
1740 | sdtc->wb_thresh, | |
1741 | sdtc->wb_dirty, | |
ece13ac3 WF |
1742 | dirty_ratelimit, |
1743 | task_ratelimit, | |
1744 | pages_dirtied, | |
83712358 | 1745 | period, |
ece13ac3 WF |
1746 | pause, |
1747 | start_time); | |
499d05ec | 1748 | __set_current_state(TASK_KILLABLE); |
d25105e8 | 1749 | io_schedule_timeout(pause); |
87c6a9b2 | 1750 | |
83712358 WF |
1751 | current->dirty_paused_when = now + pause; |
1752 | current->nr_dirtied = 0; | |
7ccb9ad5 | 1753 | current->nr_dirtied_pause = nr_dirtied_pause; |
83712358 | 1754 | |
ffd1f609 | 1755 | /* |
2bc00aef TH |
1756 | * This is typically equal to (dirty < thresh) and can also |
1757 | * keep "1000+ dd on a slow USB stick" under control. | |
ffd1f609 | 1758 | */ |
1df64719 | 1759 | if (task_ratelimit) |
ffd1f609 | 1760 | break; |
499d05ec | 1761 | |
c5c6343c WF |
1762 | /* |
1763 | * In the case of an unresponding NFS server and the NFS dirty | |
de1fff37 | 1764 | * pages exceeds dirty_thresh, give the other good wb's a pipe |
c5c6343c WF |
1765 | * to go through, so that tasks on them still remain responsive. |
1766 | * | |
1767 | * In theory 1 page is enough to keep the comsumer-producer | |
1768 | * pipe going: the flusher cleans 1 page => the task dirties 1 | |
de1fff37 | 1769 | * more page. However wb_dirty has accounting errors. So use |
93f78d88 | 1770 | * the larger and more IO friendly wb_stat_error. |
c5c6343c | 1771 | */ |
c2aa723a | 1772 | if (sdtc->wb_dirty <= wb_stat_error(wb)) |
c5c6343c WF |
1773 | break; |
1774 | ||
499d05ec JK |
1775 | if (fatal_signal_pending(current)) |
1776 | break; | |
1da177e4 LT |
1777 | } |
1778 | ||
a88a341a TH |
1779 | if (!dirty_exceeded && wb->dirty_exceeded) |
1780 | wb->dirty_exceeded = 0; | |
1da177e4 | 1781 | |
bc05873d | 1782 | if (writeback_in_progress(wb)) |
5b0830cb | 1783 | return; |
1da177e4 LT |
1784 | |
1785 | /* | |
1786 | * In laptop mode, we wait until hitting the higher threshold before | |
1787 | * starting background writeout, and then write out all the way down | |
1788 | * to the lower threshold. So slow writers cause minimal disk activity. | |
1789 | * | |
1790 | * In normal mode, we start background writeout at the lower | |
1791 | * background_thresh, to keep the amount of dirty memory low. | |
1792 | */ | |
143dfe86 WF |
1793 | if (laptop_mode) |
1794 | return; | |
1795 | ||
2bc00aef | 1796 | if (nr_reclaimable > gdtc->bg_thresh) |
9ecf4866 | 1797 | wb_start_background_writeback(wb); |
1da177e4 LT |
1798 | } |
1799 | ||
9d823e8f | 1800 | static DEFINE_PER_CPU(int, bdp_ratelimits); |
245b2e70 | 1801 | |
54848d73 WF |
1802 | /* |
1803 | * Normal tasks are throttled by | |
1804 | * loop { | |
1805 | * dirty tsk->nr_dirtied_pause pages; | |
1806 | * take a snap in balance_dirty_pages(); | |
1807 | * } | |
1808 | * However there is a worst case. If every task exit immediately when dirtied | |
1809 | * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be | |
1810 | * called to throttle the page dirties. The solution is to save the not yet | |
1811 | * throttled page dirties in dirty_throttle_leaks on task exit and charge them | |
1812 | * randomly into the running tasks. This works well for the above worst case, | |
1813 | * as the new task will pick up and accumulate the old task's leaked dirty | |
1814 | * count and eventually get throttled. | |
1815 | */ | |
1816 | DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; | |
1817 | ||
1da177e4 | 1818 | /** |
d0e1d66b | 1819 | * balance_dirty_pages_ratelimited - balance dirty memory state |
67be2dd1 | 1820 | * @mapping: address_space which was dirtied |
1da177e4 LT |
1821 | * |
1822 | * Processes which are dirtying memory should call in here once for each page | |
1823 | * which was newly dirtied. The function will periodically check the system's | |
1824 | * dirty state and will initiate writeback if needed. | |
1825 | * | |
1826 | * On really big machines, get_writeback_state is expensive, so try to avoid | |
1827 | * calling it too often (ratelimiting). But once we're over the dirty memory | |
1828 | * limit we decrease the ratelimiting by a lot, to prevent individual processes | |
1829 | * from overshooting the limit by (ratelimit_pages) each. | |
1830 | */ | |
d0e1d66b | 1831 | void balance_dirty_pages_ratelimited(struct address_space *mapping) |
1da177e4 | 1832 | { |
dfb8ae56 TH |
1833 | struct inode *inode = mapping->host; |
1834 | struct backing_dev_info *bdi = inode_to_bdi(inode); | |
1835 | struct bdi_writeback *wb = NULL; | |
9d823e8f WF |
1836 | int ratelimit; |
1837 | int *p; | |
1da177e4 | 1838 | |
36715cef WF |
1839 | if (!bdi_cap_account_dirty(bdi)) |
1840 | return; | |
1841 | ||
dfb8ae56 TH |
1842 | if (inode_cgwb_enabled(inode)) |
1843 | wb = wb_get_create_current(bdi, GFP_KERNEL); | |
1844 | if (!wb) | |
1845 | wb = &bdi->wb; | |
1846 | ||
9d823e8f | 1847 | ratelimit = current->nr_dirtied_pause; |
a88a341a | 1848 | if (wb->dirty_exceeded) |
9d823e8f WF |
1849 | ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); |
1850 | ||
9d823e8f | 1851 | preempt_disable(); |
1da177e4 | 1852 | /* |
9d823e8f WF |
1853 | * This prevents one CPU to accumulate too many dirtied pages without |
1854 | * calling into balance_dirty_pages(), which can happen when there are | |
1855 | * 1000+ tasks, all of them start dirtying pages at exactly the same | |
1856 | * time, hence all honoured too large initial task->nr_dirtied_pause. | |
1da177e4 | 1857 | */ |
7c8e0181 | 1858 | p = this_cpu_ptr(&bdp_ratelimits); |
9d823e8f | 1859 | if (unlikely(current->nr_dirtied >= ratelimit)) |
fa5a734e | 1860 | *p = 0; |
d3bc1fef WF |
1861 | else if (unlikely(*p >= ratelimit_pages)) { |
1862 | *p = 0; | |
1863 | ratelimit = 0; | |
1da177e4 | 1864 | } |
54848d73 WF |
1865 | /* |
1866 | * Pick up the dirtied pages by the exited tasks. This avoids lots of | |
1867 | * short-lived tasks (eg. gcc invocations in a kernel build) escaping | |
1868 | * the dirty throttling and livelock other long-run dirtiers. | |
1869 | */ | |
7c8e0181 | 1870 | p = this_cpu_ptr(&dirty_throttle_leaks); |
54848d73 | 1871 | if (*p > 0 && current->nr_dirtied < ratelimit) { |
d0e1d66b | 1872 | unsigned long nr_pages_dirtied; |
54848d73 WF |
1873 | nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); |
1874 | *p -= nr_pages_dirtied; | |
1875 | current->nr_dirtied += nr_pages_dirtied; | |
1da177e4 | 1876 | } |
fa5a734e | 1877 | preempt_enable(); |
9d823e8f WF |
1878 | |
1879 | if (unlikely(current->nr_dirtied >= ratelimit)) | |
dfb8ae56 TH |
1880 | balance_dirty_pages(mapping, wb, current->nr_dirtied); |
1881 | ||
1882 | wb_put(wb); | |
1da177e4 | 1883 | } |
d0e1d66b | 1884 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited); |
1da177e4 | 1885 | |
aa661bbe TH |
1886 | /** |
1887 | * wb_over_bg_thresh - does @wb need to be written back? | |
1888 | * @wb: bdi_writeback of interest | |
1889 | * | |
1890 | * Determines whether background writeback should keep writing @wb or it's | |
1891 | * clean enough. Returns %true if writeback should continue. | |
1892 | */ | |
1893 | bool wb_over_bg_thresh(struct bdi_writeback *wb) | |
1894 | { | |
947e9762 | 1895 | struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; |
c2aa723a | 1896 | struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; |
947e9762 | 1897 | struct dirty_throttle_control * const gdtc = &gdtc_stor; |
c2aa723a TH |
1898 | struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? |
1899 | &mdtc_stor : NULL; | |
aa661bbe | 1900 | |
947e9762 TH |
1901 | /* |
1902 | * Similar to balance_dirty_pages() but ignores pages being written | |
1903 | * as we're trying to decide whether to put more under writeback. | |
1904 | */ | |
1905 | gdtc->avail = global_dirtyable_memory(); | |
1906 | gdtc->dirty = global_page_state(NR_FILE_DIRTY) + | |
1907 | global_page_state(NR_UNSTABLE_NFS); | |
1908 | domain_dirty_limits(gdtc); | |
aa661bbe | 1909 | |
947e9762 | 1910 | if (gdtc->dirty > gdtc->bg_thresh) |
aa661bbe TH |
1911 | return true; |
1912 | ||
74d36944 HC |
1913 | if (wb_stat(wb, WB_RECLAIMABLE) > |
1914 | wb_calc_thresh(gdtc->wb, gdtc->bg_thresh)) | |
aa661bbe TH |
1915 | return true; |
1916 | ||
c2aa723a | 1917 | if (mdtc) { |
c5edf9cd | 1918 | unsigned long filepages, headroom, writeback; |
c2aa723a | 1919 | |
c5edf9cd TH |
1920 | mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, |
1921 | &writeback); | |
1922 | mdtc_calc_avail(mdtc, filepages, headroom); | |
c2aa723a TH |
1923 | domain_dirty_limits(mdtc); /* ditto, ignore writeback */ |
1924 | ||
1925 | if (mdtc->dirty > mdtc->bg_thresh) | |
1926 | return true; | |
1927 | ||
74d36944 HC |
1928 | if (wb_stat(wb, WB_RECLAIMABLE) > |
1929 | wb_calc_thresh(mdtc->wb, mdtc->bg_thresh)) | |
c2aa723a TH |
1930 | return true; |
1931 | } | |
1932 | ||
aa661bbe TH |
1933 | return false; |
1934 | } | |
1935 | ||
232ea4d6 | 1936 | void throttle_vm_writeout(gfp_t gfp_mask) |
1da177e4 | 1937 | { |
364aeb28 DR |
1938 | unsigned long background_thresh; |
1939 | unsigned long dirty_thresh; | |
1da177e4 LT |
1940 | |
1941 | for ( ; ; ) { | |
16c4042f | 1942 | global_dirty_limits(&background_thresh, &dirty_thresh); |
c7981433 | 1943 | dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh); |
1da177e4 LT |
1944 | |
1945 | /* | |
1946 | * Boost the allowable dirty threshold a bit for page | |
1947 | * allocators so they don't get DoS'ed by heavy writers | |
1948 | */ | |
1949 | dirty_thresh += dirty_thresh / 10; /* wheeee... */ | |
1950 | ||
c24f21bd CL |
1951 | if (global_page_state(NR_UNSTABLE_NFS) + |
1952 | global_page_state(NR_WRITEBACK) <= dirty_thresh) | |
1953 | break; | |
8aa7e847 | 1954 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
369f2389 FW |
1955 | |
1956 | /* | |
1957 | * The caller might hold locks which can prevent IO completion | |
1958 | * or progress in the filesystem. So we cannot just sit here | |
1959 | * waiting for IO to complete. | |
1960 | */ | |
1961 | if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) | |
1962 | break; | |
1da177e4 LT |
1963 | } |
1964 | } | |
1965 | ||
1da177e4 LT |
1966 | /* |
1967 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs | |
1968 | */ | |
cccad5b9 | 1969 | int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, |
8d65af78 | 1970 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 1971 | { |
8d65af78 | 1972 | proc_dointvec(table, write, buffer, length, ppos); |
1da177e4 LT |
1973 | return 0; |
1974 | } | |
1975 | ||
c2c4986e | 1976 | #ifdef CONFIG_BLOCK |
31373d09 | 1977 | void laptop_mode_timer_fn(unsigned long data) |
1da177e4 | 1978 | { |
31373d09 MG |
1979 | struct request_queue *q = (struct request_queue *)data; |
1980 | int nr_pages = global_page_state(NR_FILE_DIRTY) + | |
1981 | global_page_state(NR_UNSTABLE_NFS); | |
a06fd6b1 | 1982 | struct bdi_writeback *wb; |
1da177e4 | 1983 | |
31373d09 MG |
1984 | /* |
1985 | * We want to write everything out, not just down to the dirty | |
1986 | * threshold | |
1987 | */ | |
a06fd6b1 TH |
1988 | if (!bdi_has_dirty_io(&q->backing_dev_info)) |
1989 | return; | |
1990 | ||
9ad18ab9 | 1991 | rcu_read_lock(); |
b817525a | 1992 | list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node) |
a06fd6b1 TH |
1993 | if (wb_has_dirty_io(wb)) |
1994 | wb_start_writeback(wb, nr_pages, true, | |
1995 | WB_REASON_LAPTOP_TIMER); | |
9ad18ab9 | 1996 | rcu_read_unlock(); |
1da177e4 LT |
1997 | } |
1998 | ||
1999 | /* | |
2000 | * We've spun up the disk and we're in laptop mode: schedule writeback | |
2001 | * of all dirty data a few seconds from now. If the flush is already scheduled | |
2002 | * then push it back - the user is still using the disk. | |
2003 | */ | |
31373d09 | 2004 | void laptop_io_completion(struct backing_dev_info *info) |
1da177e4 | 2005 | { |
31373d09 | 2006 | mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); |
1da177e4 LT |
2007 | } |
2008 | ||
2009 | /* | |
2010 | * We're in laptop mode and we've just synced. The sync's writes will have | |
2011 | * caused another writeback to be scheduled by laptop_io_completion. | |
2012 | * Nothing needs to be written back anymore, so we unschedule the writeback. | |
2013 | */ | |
2014 | void laptop_sync_completion(void) | |
2015 | { | |
31373d09 MG |
2016 | struct backing_dev_info *bdi; |
2017 | ||
2018 | rcu_read_lock(); | |
2019 | ||
2020 | list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) | |
2021 | del_timer(&bdi->laptop_mode_wb_timer); | |
2022 | ||
2023 | rcu_read_unlock(); | |
1da177e4 | 2024 | } |
c2c4986e | 2025 | #endif |
1da177e4 LT |
2026 | |
2027 | /* | |
2028 | * If ratelimit_pages is too high then we can get into dirty-data overload | |
2029 | * if a large number of processes all perform writes at the same time. | |
2030 | * If it is too low then SMP machines will call the (expensive) | |
2031 | * get_writeback_state too often. | |
2032 | * | |
2033 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are | |
2034 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory | |
9d823e8f | 2035 | * thresholds. |
1da177e4 LT |
2036 | */ |
2037 | ||
2d1d43f6 | 2038 | void writeback_set_ratelimit(void) |
1da177e4 | 2039 | { |
dcc25ae7 | 2040 | struct wb_domain *dom = &global_wb_domain; |
9d823e8f WF |
2041 | unsigned long background_thresh; |
2042 | unsigned long dirty_thresh; | |
dcc25ae7 | 2043 | |
9d823e8f | 2044 | global_dirty_limits(&background_thresh, &dirty_thresh); |
dcc25ae7 | 2045 | dom->dirty_limit = dirty_thresh; |
9d823e8f | 2046 | ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); |
1da177e4 LT |
2047 | if (ratelimit_pages < 16) |
2048 | ratelimit_pages = 16; | |
1da177e4 LT |
2049 | } |
2050 | ||
0db0628d | 2051 | static int |
2f60d628 SB |
2052 | ratelimit_handler(struct notifier_block *self, unsigned long action, |
2053 | void *hcpu) | |
1da177e4 | 2054 | { |
2f60d628 SB |
2055 | |
2056 | switch (action & ~CPU_TASKS_FROZEN) { | |
2057 | case CPU_ONLINE: | |
2058 | case CPU_DEAD: | |
2059 | writeback_set_ratelimit(); | |
2060 | return NOTIFY_OK; | |
2061 | default: | |
2062 | return NOTIFY_DONE; | |
2063 | } | |
1da177e4 LT |
2064 | } |
2065 | ||
0db0628d | 2066 | static struct notifier_block ratelimit_nb = { |
1da177e4 LT |
2067 | .notifier_call = ratelimit_handler, |
2068 | .next = NULL, | |
2069 | }; | |
2070 | ||
2071 | /* | |
dc6e29da LT |
2072 | * Called early on to tune the page writeback dirty limits. |
2073 | * | |
2074 | * We used to scale dirty pages according to how total memory | |
2075 | * related to pages that could be allocated for buffers (by | |
2076 | * comparing nr_free_buffer_pages() to vm_total_pages. | |
2077 | * | |
2078 | * However, that was when we used "dirty_ratio" to scale with | |
2079 | * all memory, and we don't do that any more. "dirty_ratio" | |
2080 | * is now applied to total non-HIGHPAGE memory (by subtracting | |
2081 | * totalhigh_pages from vm_total_pages), and as such we can't | |
2082 | * get into the old insane situation any more where we had | |
2083 | * large amounts of dirty pages compared to a small amount of | |
2084 | * non-HIGHMEM memory. | |
2085 | * | |
2086 | * But we might still want to scale the dirty_ratio by how | |
2087 | * much memory the box has.. | |
1da177e4 LT |
2088 | */ |
2089 | void __init page_writeback_init(void) | |
2090 | { | |
a50fcb51 RV |
2091 | BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); |
2092 | ||
2d1d43f6 | 2093 | writeback_set_ratelimit(); |
1da177e4 LT |
2094 | register_cpu_notifier(&ratelimit_nb); |
2095 | } | |
2096 | ||
f446daae JK |
2097 | /** |
2098 | * tag_pages_for_writeback - tag pages to be written by write_cache_pages | |
2099 | * @mapping: address space structure to write | |
2100 | * @start: starting page index | |
2101 | * @end: ending page index (inclusive) | |
2102 | * | |
2103 | * This function scans the page range from @start to @end (inclusive) and tags | |
2104 | * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is | |
2105 | * that write_cache_pages (or whoever calls this function) will then use | |
2106 | * TOWRITE tag to identify pages eligible for writeback. This mechanism is | |
2107 | * used to avoid livelocking of writeback by a process steadily creating new | |
2108 | * dirty pages in the file (thus it is important for this function to be quick | |
2109 | * so that it can tag pages faster than a dirtying process can create them). | |
2110 | */ | |
2111 | /* | |
2112 | * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. | |
2113 | */ | |
f446daae JK |
2114 | void tag_pages_for_writeback(struct address_space *mapping, |
2115 | pgoff_t start, pgoff_t end) | |
2116 | { | |
3c111a07 | 2117 | #define WRITEBACK_TAG_BATCH 4096 |
f446daae JK |
2118 | unsigned long tagged; |
2119 | ||
2120 | do { | |
2121 | spin_lock_irq(&mapping->tree_lock); | |
2122 | tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, | |
2123 | &start, end, WRITEBACK_TAG_BATCH, | |
2124 | PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); | |
2125 | spin_unlock_irq(&mapping->tree_lock); | |
2126 | WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); | |
2127 | cond_resched(); | |
d5ed3a4a JK |
2128 | /* We check 'start' to handle wrapping when end == ~0UL */ |
2129 | } while (tagged >= WRITEBACK_TAG_BATCH && start); | |
f446daae JK |
2130 | } |
2131 | EXPORT_SYMBOL(tag_pages_for_writeback); | |
2132 | ||
811d736f | 2133 | /** |
0ea97180 | 2134 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. |
811d736f DH |
2135 | * @mapping: address space structure to write |
2136 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | |
0ea97180 MS |
2137 | * @writepage: function called for each page |
2138 | * @data: data passed to writepage function | |
811d736f | 2139 | * |
0ea97180 | 2140 | * If a page is already under I/O, write_cache_pages() skips it, even |
811d736f DH |
2141 | * if it's dirty. This is desirable behaviour for memory-cleaning writeback, |
2142 | * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() | |
2143 | * and msync() need to guarantee that all the data which was dirty at the time | |
2144 | * the call was made get new I/O started against them. If wbc->sync_mode is | |
2145 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | |
2146 | * existing IO to complete. | |
f446daae JK |
2147 | * |
2148 | * To avoid livelocks (when other process dirties new pages), we first tag | |
2149 | * pages which should be written back with TOWRITE tag and only then start | |
2150 | * writing them. For data-integrity sync we have to be careful so that we do | |
2151 | * not miss some pages (e.g., because some other process has cleared TOWRITE | |
2152 | * tag we set). The rule we follow is that TOWRITE tag can be cleared only | |
2153 | * by the process clearing the DIRTY tag (and submitting the page for IO). | |
811d736f | 2154 | */ |
0ea97180 MS |
2155 | int write_cache_pages(struct address_space *mapping, |
2156 | struct writeback_control *wbc, writepage_t writepage, | |
2157 | void *data) | |
811d736f | 2158 | { |
811d736f DH |
2159 | int ret = 0; |
2160 | int done = 0; | |
811d736f DH |
2161 | struct pagevec pvec; |
2162 | int nr_pages; | |
31a12666 | 2163 | pgoff_t uninitialized_var(writeback_index); |
811d736f DH |
2164 | pgoff_t index; |
2165 | pgoff_t end; /* Inclusive */ | |
bd19e012 | 2166 | pgoff_t done_index; |
31a12666 | 2167 | int cycled; |
811d736f | 2168 | int range_whole = 0; |
f446daae | 2169 | int tag; |
811d736f | 2170 | |
811d736f DH |
2171 | pagevec_init(&pvec, 0); |
2172 | if (wbc->range_cyclic) { | |
31a12666 NP |
2173 | writeback_index = mapping->writeback_index; /* prev offset */ |
2174 | index = writeback_index; | |
2175 | if (index == 0) | |
2176 | cycled = 1; | |
2177 | else | |
2178 | cycled = 0; | |
811d736f DH |
2179 | end = -1; |
2180 | } else { | |
09cbfeaf KS |
2181 | index = wbc->range_start >> PAGE_SHIFT; |
2182 | end = wbc->range_end >> PAGE_SHIFT; | |
811d736f DH |
2183 | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) |
2184 | range_whole = 1; | |
31a12666 | 2185 | cycled = 1; /* ignore range_cyclic tests */ |
811d736f | 2186 | } |
6e6938b6 | 2187 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
f446daae JK |
2188 | tag = PAGECACHE_TAG_TOWRITE; |
2189 | else | |
2190 | tag = PAGECACHE_TAG_DIRTY; | |
811d736f | 2191 | retry: |
6e6938b6 | 2192 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
f446daae | 2193 | tag_pages_for_writeback(mapping, index, end); |
bd19e012 | 2194 | done_index = index; |
5a3d5c98 NP |
2195 | while (!done && (index <= end)) { |
2196 | int i; | |
2197 | ||
f446daae | 2198 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, |
5a3d5c98 NP |
2199 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
2200 | if (nr_pages == 0) | |
2201 | break; | |
811d736f | 2202 | |
811d736f DH |
2203 | for (i = 0; i < nr_pages; i++) { |
2204 | struct page *page = pvec.pages[i]; | |
2205 | ||
2206 | /* | |
d5482cdf NP |
2207 | * At this point, the page may be truncated or |
2208 | * invalidated (changing page->mapping to NULL), or | |
2209 | * even swizzled back from swapper_space to tmpfs file | |
2210 | * mapping. However, page->index will not change | |
2211 | * because we have a reference on the page. | |
811d736f | 2212 | */ |
d5482cdf NP |
2213 | if (page->index > end) { |
2214 | /* | |
2215 | * can't be range_cyclic (1st pass) because | |
2216 | * end == -1 in that case. | |
2217 | */ | |
2218 | done = 1; | |
2219 | break; | |
2220 | } | |
2221 | ||
cf15b07c | 2222 | done_index = page->index; |
d5482cdf | 2223 | |
811d736f DH |
2224 | lock_page(page); |
2225 | ||
5a3d5c98 NP |
2226 | /* |
2227 | * Page truncated or invalidated. We can freely skip it | |
2228 | * then, even for data integrity operations: the page | |
2229 | * has disappeared concurrently, so there could be no | |
2230 | * real expectation of this data interity operation | |
2231 | * even if there is now a new, dirty page at the same | |
2232 | * pagecache address. | |
2233 | */ | |
811d736f | 2234 | if (unlikely(page->mapping != mapping)) { |
5a3d5c98 | 2235 | continue_unlock: |
811d736f DH |
2236 | unlock_page(page); |
2237 | continue; | |
2238 | } | |
2239 | ||
515f4a03 NP |
2240 | if (!PageDirty(page)) { |
2241 | /* someone wrote it for us */ | |
2242 | goto continue_unlock; | |
2243 | } | |
2244 | ||
2245 | if (PageWriteback(page)) { | |
2246 | if (wbc->sync_mode != WB_SYNC_NONE) | |
2247 | wait_on_page_writeback(page); | |
2248 | else | |
2249 | goto continue_unlock; | |
2250 | } | |
811d736f | 2251 | |
515f4a03 NP |
2252 | BUG_ON(PageWriteback(page)); |
2253 | if (!clear_page_dirty_for_io(page)) | |
5a3d5c98 | 2254 | goto continue_unlock; |
811d736f | 2255 | |
de1414a6 | 2256 | trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); |
0ea97180 | 2257 | ret = (*writepage)(page, wbc, data); |
00266770 NP |
2258 | if (unlikely(ret)) { |
2259 | if (ret == AOP_WRITEPAGE_ACTIVATE) { | |
2260 | unlock_page(page); | |
2261 | ret = 0; | |
2262 | } else { | |
2263 | /* | |
2264 | * done_index is set past this page, | |
2265 | * so media errors will not choke | |
2266 | * background writeout for the entire | |
2267 | * file. This has consequences for | |
2268 | * range_cyclic semantics (ie. it may | |
2269 | * not be suitable for data integrity | |
2270 | * writeout). | |
2271 | */ | |
cf15b07c | 2272 | done_index = page->index + 1; |
00266770 NP |
2273 | done = 1; |
2274 | break; | |
2275 | } | |
0b564927 | 2276 | } |
00266770 | 2277 | |
546a1924 DC |
2278 | /* |
2279 | * We stop writing back only if we are not doing | |
2280 | * integrity sync. In case of integrity sync we have to | |
2281 | * keep going until we have written all the pages | |
2282 | * we tagged for writeback prior to entering this loop. | |
2283 | */ | |
2284 | if (--wbc->nr_to_write <= 0 && | |
2285 | wbc->sync_mode == WB_SYNC_NONE) { | |
2286 | done = 1; | |
2287 | break; | |
05fe478d | 2288 | } |
811d736f DH |
2289 | } |
2290 | pagevec_release(&pvec); | |
2291 | cond_resched(); | |
2292 | } | |
3a4c6800 | 2293 | if (!cycled && !done) { |
811d736f | 2294 | /* |
31a12666 | 2295 | * range_cyclic: |
811d736f DH |
2296 | * We hit the last page and there is more work to be done: wrap |
2297 | * back to the start of the file | |
2298 | */ | |
31a12666 | 2299 | cycled = 1; |
811d736f | 2300 | index = 0; |
31a12666 | 2301 | end = writeback_index - 1; |
811d736f DH |
2302 | goto retry; |
2303 | } | |
0b564927 DC |
2304 | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) |
2305 | mapping->writeback_index = done_index; | |
06d6cf69 | 2306 | |
811d736f DH |
2307 | return ret; |
2308 | } | |
0ea97180 MS |
2309 | EXPORT_SYMBOL(write_cache_pages); |
2310 | ||
2311 | /* | |
2312 | * Function used by generic_writepages to call the real writepage | |
2313 | * function and set the mapping flags on error | |
2314 | */ | |
2315 | static int __writepage(struct page *page, struct writeback_control *wbc, | |
2316 | void *data) | |
2317 | { | |
2318 | struct address_space *mapping = data; | |
2319 | int ret = mapping->a_ops->writepage(page, wbc); | |
2320 | mapping_set_error(mapping, ret); | |
2321 | return ret; | |
2322 | } | |
2323 | ||
2324 | /** | |
2325 | * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. | |
2326 | * @mapping: address space structure to write | |
2327 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | |
2328 | * | |
2329 | * This is a library function, which implements the writepages() | |
2330 | * address_space_operation. | |
2331 | */ | |
2332 | int generic_writepages(struct address_space *mapping, | |
2333 | struct writeback_control *wbc) | |
2334 | { | |
9b6096a6 SL |
2335 | struct blk_plug plug; |
2336 | int ret; | |
2337 | ||
0ea97180 MS |
2338 | /* deal with chardevs and other special file */ |
2339 | if (!mapping->a_ops->writepage) | |
2340 | return 0; | |
2341 | ||
9b6096a6 SL |
2342 | blk_start_plug(&plug); |
2343 | ret = write_cache_pages(mapping, wbc, __writepage, mapping); | |
2344 | blk_finish_plug(&plug); | |
2345 | return ret; | |
0ea97180 | 2346 | } |
811d736f DH |
2347 | |
2348 | EXPORT_SYMBOL(generic_writepages); | |
2349 | ||
1da177e4 LT |
2350 | int do_writepages(struct address_space *mapping, struct writeback_control *wbc) |
2351 | { | |
22905f77 AM |
2352 | int ret; |
2353 | ||
1da177e4 LT |
2354 | if (wbc->nr_to_write <= 0) |
2355 | return 0; | |
2356 | if (mapping->a_ops->writepages) | |
d08b3851 | 2357 | ret = mapping->a_ops->writepages(mapping, wbc); |
22905f77 AM |
2358 | else |
2359 | ret = generic_writepages(mapping, wbc); | |
22905f77 | 2360 | return ret; |
1da177e4 LT |
2361 | } |
2362 | ||
2363 | /** | |
2364 | * write_one_page - write out a single page and optionally wait on I/O | |
67be2dd1 MW |
2365 | * @page: the page to write |
2366 | * @wait: if true, wait on writeout | |
1da177e4 LT |
2367 | * |
2368 | * The page must be locked by the caller and will be unlocked upon return. | |
2369 | * | |
2370 | * write_one_page() returns a negative error code if I/O failed. | |
2371 | */ | |
2372 | int write_one_page(struct page *page, int wait) | |
2373 | { | |
2374 | struct address_space *mapping = page->mapping; | |
2375 | int ret = 0; | |
2376 | struct writeback_control wbc = { | |
2377 | .sync_mode = WB_SYNC_ALL, | |
2378 | .nr_to_write = 1, | |
2379 | }; | |
2380 | ||
2381 | BUG_ON(!PageLocked(page)); | |
2382 | ||
2383 | if (wait) | |
2384 | wait_on_page_writeback(page); | |
2385 | ||
2386 | if (clear_page_dirty_for_io(page)) { | |
09cbfeaf | 2387 | get_page(page); |
1da177e4 LT |
2388 | ret = mapping->a_ops->writepage(page, &wbc); |
2389 | if (ret == 0 && wait) { | |
2390 | wait_on_page_writeback(page); | |
2391 | if (PageError(page)) | |
2392 | ret = -EIO; | |
2393 | } | |
09cbfeaf | 2394 | put_page(page); |
1da177e4 LT |
2395 | } else { |
2396 | unlock_page(page); | |
2397 | } | |
2398 | return ret; | |
2399 | } | |
2400 | EXPORT_SYMBOL(write_one_page); | |
2401 | ||
76719325 KC |
2402 | /* |
2403 | * For address_spaces which do not use buffers nor write back. | |
2404 | */ | |
2405 | int __set_page_dirty_no_writeback(struct page *page) | |
2406 | { | |
2407 | if (!PageDirty(page)) | |
c3f0da63 | 2408 | return !TestSetPageDirty(page); |
76719325 KC |
2409 | return 0; |
2410 | } | |
2411 | ||
e3a7cca1 ES |
2412 | /* |
2413 | * Helper function for set_page_dirty family. | |
c4843a75 | 2414 | * |
81f8c3a4 | 2415 | * Caller must hold lock_page_memcg(). |
c4843a75 | 2416 | * |
e3a7cca1 ES |
2417 | * NOTE: This relies on being atomic wrt interrupts. |
2418 | */ | |
62cccb8c | 2419 | void account_page_dirtied(struct page *page, struct address_space *mapping) |
e3a7cca1 | 2420 | { |
52ebea74 TH |
2421 | struct inode *inode = mapping->host; |
2422 | ||
9fb0a7da TH |
2423 | trace_writeback_dirty_page(page, mapping); |
2424 | ||
e3a7cca1 | 2425 | if (mapping_cap_account_dirty(mapping)) { |
52ebea74 | 2426 | struct bdi_writeback *wb; |
de1414a6 | 2427 | |
52ebea74 TH |
2428 | inode_attach_wb(inode, page); |
2429 | wb = inode_to_wb(inode); | |
de1414a6 | 2430 | |
62cccb8c | 2431 | mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY); |
e3a7cca1 | 2432 | __inc_zone_page_state(page, NR_FILE_DIRTY); |
ea941f0e | 2433 | __inc_zone_page_state(page, NR_DIRTIED); |
52ebea74 TH |
2434 | __inc_wb_stat(wb, WB_RECLAIMABLE); |
2435 | __inc_wb_stat(wb, WB_DIRTIED); | |
09cbfeaf | 2436 | task_io_account_write(PAGE_SIZE); |
d3bc1fef WF |
2437 | current->nr_dirtied++; |
2438 | this_cpu_inc(bdp_ratelimits); | |
e3a7cca1 ES |
2439 | } |
2440 | } | |
679ceace | 2441 | EXPORT_SYMBOL(account_page_dirtied); |
e3a7cca1 | 2442 | |
b9ea2515 KK |
2443 | /* |
2444 | * Helper function for deaccounting dirty page without writeback. | |
2445 | * | |
81f8c3a4 | 2446 | * Caller must hold lock_page_memcg(). |
b9ea2515 | 2447 | */ |
c4843a75 | 2448 | void account_page_cleaned(struct page *page, struct address_space *mapping, |
62cccb8c | 2449 | struct bdi_writeback *wb) |
b9ea2515 KK |
2450 | { |
2451 | if (mapping_cap_account_dirty(mapping)) { | |
62cccb8c | 2452 | mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY); |
b9ea2515 | 2453 | dec_zone_page_state(page, NR_FILE_DIRTY); |
682aa8e1 | 2454 | dec_wb_stat(wb, WB_RECLAIMABLE); |
09cbfeaf | 2455 | task_io_account_cancelled_write(PAGE_SIZE); |
b9ea2515 KK |
2456 | } |
2457 | } | |
b9ea2515 | 2458 | |
1da177e4 LT |
2459 | /* |
2460 | * For address_spaces which do not use buffers. Just tag the page as dirty in | |
2461 | * its radix tree. | |
2462 | * | |
2463 | * This is also used when a single buffer is being dirtied: we want to set the | |
2464 | * page dirty in that case, but not all the buffers. This is a "bottom-up" | |
2465 | * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. | |
2466 | * | |
2d6d7f98 JW |
2467 | * The caller must ensure this doesn't race with truncation. Most will simply |
2468 | * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and | |
2469 | * the pte lock held, which also locks out truncation. | |
1da177e4 LT |
2470 | */ |
2471 | int __set_page_dirty_nobuffers(struct page *page) | |
2472 | { | |
62cccb8c | 2473 | lock_page_memcg(page); |
1da177e4 LT |
2474 | if (!TestSetPageDirty(page)) { |
2475 | struct address_space *mapping = page_mapping(page); | |
a85d9df1 | 2476 | unsigned long flags; |
1da177e4 | 2477 | |
c4843a75 | 2478 | if (!mapping) { |
62cccb8c | 2479 | unlock_page_memcg(page); |
8c08540f | 2480 | return 1; |
c4843a75 | 2481 | } |
8c08540f | 2482 | |
a85d9df1 | 2483 | spin_lock_irqsave(&mapping->tree_lock, flags); |
2d6d7f98 JW |
2484 | BUG_ON(page_mapping(page) != mapping); |
2485 | WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); | |
62cccb8c | 2486 | account_page_dirtied(page, mapping); |
2d6d7f98 JW |
2487 | radix_tree_tag_set(&mapping->page_tree, page_index(page), |
2488 | PAGECACHE_TAG_DIRTY); | |
a85d9df1 | 2489 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
62cccb8c | 2490 | unlock_page_memcg(page); |
c4843a75 | 2491 | |
8c08540f AM |
2492 | if (mapping->host) { |
2493 | /* !PageAnon && !swapper_space */ | |
2494 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | |
1da177e4 | 2495 | } |
4741c9fd | 2496 | return 1; |
1da177e4 | 2497 | } |
62cccb8c | 2498 | unlock_page_memcg(page); |
4741c9fd | 2499 | return 0; |
1da177e4 LT |
2500 | } |
2501 | EXPORT_SYMBOL(__set_page_dirty_nobuffers); | |
2502 | ||
2f800fbd WF |
2503 | /* |
2504 | * Call this whenever redirtying a page, to de-account the dirty counters | |
2505 | * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written | |
2506 | * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to | |
2507 | * systematic errors in balanced_dirty_ratelimit and the dirty pages position | |
2508 | * control. | |
2509 | */ | |
2510 | void account_page_redirty(struct page *page) | |
2511 | { | |
2512 | struct address_space *mapping = page->mapping; | |
91018134 | 2513 | |
2f800fbd | 2514 | if (mapping && mapping_cap_account_dirty(mapping)) { |
682aa8e1 TH |
2515 | struct inode *inode = mapping->host; |
2516 | struct bdi_writeback *wb; | |
2517 | bool locked; | |
91018134 | 2518 | |
682aa8e1 | 2519 | wb = unlocked_inode_to_wb_begin(inode, &locked); |
2f800fbd WF |
2520 | current->nr_dirtied--; |
2521 | dec_zone_page_state(page, NR_DIRTIED); | |
91018134 | 2522 | dec_wb_stat(wb, WB_DIRTIED); |
682aa8e1 | 2523 | unlocked_inode_to_wb_end(inode, locked); |
2f800fbd WF |
2524 | } |
2525 | } | |
2526 | EXPORT_SYMBOL(account_page_redirty); | |
2527 | ||
1da177e4 LT |
2528 | /* |
2529 | * When a writepage implementation decides that it doesn't want to write this | |
2530 | * page for some reason, it should redirty the locked page via | |
2531 | * redirty_page_for_writepage() and it should then unlock the page and return 0 | |
2532 | */ | |
2533 | int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) | |
2534 | { | |
8d38633c KK |
2535 | int ret; |
2536 | ||
1da177e4 | 2537 | wbc->pages_skipped++; |
8d38633c | 2538 | ret = __set_page_dirty_nobuffers(page); |
2f800fbd | 2539 | account_page_redirty(page); |
8d38633c | 2540 | return ret; |
1da177e4 LT |
2541 | } |
2542 | EXPORT_SYMBOL(redirty_page_for_writepage); | |
2543 | ||
2544 | /* | |
6746aff7 WF |
2545 | * Dirty a page. |
2546 | * | |
2547 | * For pages with a mapping this should be done under the page lock | |
2548 | * for the benefit of asynchronous memory errors who prefer a consistent | |
2549 | * dirty state. This rule can be broken in some special cases, | |
2550 | * but should be better not to. | |
2551 | * | |
1da177e4 LT |
2552 | * If the mapping doesn't provide a set_page_dirty a_op, then |
2553 | * just fall through and assume that it wants buffer_heads. | |
2554 | */ | |
1cf6e7d8 | 2555 | int set_page_dirty(struct page *page) |
1da177e4 LT |
2556 | { |
2557 | struct address_space *mapping = page_mapping(page); | |
2558 | ||
2559 | if (likely(mapping)) { | |
2560 | int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; | |
278df9f4 MK |
2561 | /* |
2562 | * readahead/lru_deactivate_page could remain | |
2563 | * PG_readahead/PG_reclaim due to race with end_page_writeback | |
2564 | * About readahead, if the page is written, the flags would be | |
2565 | * reset. So no problem. | |
2566 | * About lru_deactivate_page, if the page is redirty, the flag | |
2567 | * will be reset. So no problem. but if the page is used by readahead | |
2568 | * it will confuse readahead and make it restart the size rampup | |
2569 | * process. But it's a trivial problem. | |
2570 | */ | |
a4bb3ecd NH |
2571 | if (PageReclaim(page)) |
2572 | ClearPageReclaim(page); | |
9361401e DH |
2573 | #ifdef CONFIG_BLOCK |
2574 | if (!spd) | |
2575 | spd = __set_page_dirty_buffers; | |
2576 | #endif | |
2577 | return (*spd)(page); | |
1da177e4 | 2578 | } |
4741c9fd AM |
2579 | if (!PageDirty(page)) { |
2580 | if (!TestSetPageDirty(page)) | |
2581 | return 1; | |
2582 | } | |
1da177e4 LT |
2583 | return 0; |
2584 | } | |
2585 | EXPORT_SYMBOL(set_page_dirty); | |
2586 | ||
2587 | /* | |
2588 | * set_page_dirty() is racy if the caller has no reference against | |
2589 | * page->mapping->host, and if the page is unlocked. This is because another | |
2590 | * CPU could truncate the page off the mapping and then free the mapping. | |
2591 | * | |
2592 | * Usually, the page _is_ locked, or the caller is a user-space process which | |
2593 | * holds a reference on the inode by having an open file. | |
2594 | * | |
2595 | * In other cases, the page should be locked before running set_page_dirty(). | |
2596 | */ | |
2597 | int set_page_dirty_lock(struct page *page) | |
2598 | { | |
2599 | int ret; | |
2600 | ||
7eaceacc | 2601 | lock_page(page); |
1da177e4 LT |
2602 | ret = set_page_dirty(page); |
2603 | unlock_page(page); | |
2604 | return ret; | |
2605 | } | |
2606 | EXPORT_SYMBOL(set_page_dirty_lock); | |
2607 | ||
11f81bec TH |
2608 | /* |
2609 | * This cancels just the dirty bit on the kernel page itself, it does NOT | |
2610 | * actually remove dirty bits on any mmap's that may be around. It also | |
2611 | * leaves the page tagged dirty, so any sync activity will still find it on | |
2612 | * the dirty lists, and in particular, clear_page_dirty_for_io() will still | |
2613 | * look at the dirty bits in the VM. | |
2614 | * | |
2615 | * Doing this should *normally* only ever be done when a page is truncated, | |
2616 | * and is not actually mapped anywhere at all. However, fs/buffer.c does | |
2617 | * this when it notices that somebody has cleaned out all the buffers on a | |
2618 | * page without actually doing it through the VM. Can you say "ext3 is | |
2619 | * horribly ugly"? Thought you could. | |
2620 | */ | |
2621 | void cancel_dirty_page(struct page *page) | |
2622 | { | |
c4843a75 GT |
2623 | struct address_space *mapping = page_mapping(page); |
2624 | ||
2625 | if (mapping_cap_account_dirty(mapping)) { | |
682aa8e1 TH |
2626 | struct inode *inode = mapping->host; |
2627 | struct bdi_writeback *wb; | |
682aa8e1 | 2628 | bool locked; |
c4843a75 | 2629 | |
62cccb8c | 2630 | lock_page_memcg(page); |
682aa8e1 | 2631 | wb = unlocked_inode_to_wb_begin(inode, &locked); |
c4843a75 GT |
2632 | |
2633 | if (TestClearPageDirty(page)) | |
62cccb8c | 2634 | account_page_cleaned(page, mapping, wb); |
c4843a75 | 2635 | |
682aa8e1 | 2636 | unlocked_inode_to_wb_end(inode, locked); |
62cccb8c | 2637 | unlock_page_memcg(page); |
c4843a75 GT |
2638 | } else { |
2639 | ClearPageDirty(page); | |
2640 | } | |
11f81bec TH |
2641 | } |
2642 | EXPORT_SYMBOL(cancel_dirty_page); | |
2643 | ||
1da177e4 LT |
2644 | /* |
2645 | * Clear a page's dirty flag, while caring for dirty memory accounting. | |
2646 | * Returns true if the page was previously dirty. | |
2647 | * | |
2648 | * This is for preparing to put the page under writeout. We leave the page | |
2649 | * tagged as dirty in the radix tree so that a concurrent write-for-sync | |
2650 | * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage | |
2651 | * implementation will run either set_page_writeback() or set_page_dirty(), | |
2652 | * at which stage we bring the page's dirty flag and radix-tree dirty tag | |
2653 | * back into sync. | |
2654 | * | |
2655 | * This incoherency between the page's dirty flag and radix-tree tag is | |
2656 | * unfortunate, but it only exists while the page is locked. | |
2657 | */ | |
2658 | int clear_page_dirty_for_io(struct page *page) | |
2659 | { | |
2660 | struct address_space *mapping = page_mapping(page); | |
c4843a75 | 2661 | int ret = 0; |
1da177e4 | 2662 | |
79352894 NP |
2663 | BUG_ON(!PageLocked(page)); |
2664 | ||
7658cc28 | 2665 | if (mapping && mapping_cap_account_dirty(mapping)) { |
682aa8e1 TH |
2666 | struct inode *inode = mapping->host; |
2667 | struct bdi_writeback *wb; | |
682aa8e1 TH |
2668 | bool locked; |
2669 | ||
7658cc28 LT |
2670 | /* |
2671 | * Yes, Virginia, this is indeed insane. | |
2672 | * | |
2673 | * We use this sequence to make sure that | |
2674 | * (a) we account for dirty stats properly | |
2675 | * (b) we tell the low-level filesystem to | |
2676 | * mark the whole page dirty if it was | |
2677 | * dirty in a pagetable. Only to then | |
2678 | * (c) clean the page again and return 1 to | |
2679 | * cause the writeback. | |
2680 | * | |
2681 | * This way we avoid all nasty races with the | |
2682 | * dirty bit in multiple places and clearing | |
2683 | * them concurrently from different threads. | |
2684 | * | |
2685 | * Note! Normally the "set_page_dirty(page)" | |
2686 | * has no effect on the actual dirty bit - since | |
2687 | * that will already usually be set. But we | |
2688 | * need the side effects, and it can help us | |
2689 | * avoid races. | |
2690 | * | |
2691 | * We basically use the page "master dirty bit" | |
2692 | * as a serialization point for all the different | |
2693 | * threads doing their things. | |
7658cc28 LT |
2694 | */ |
2695 | if (page_mkclean(page)) | |
2696 | set_page_dirty(page); | |
79352894 NP |
2697 | /* |
2698 | * We carefully synchronise fault handlers against | |
2699 | * installing a dirty pte and marking the page dirty | |
2d6d7f98 JW |
2700 | * at this point. We do this by having them hold the |
2701 | * page lock while dirtying the page, and pages are | |
2702 | * always locked coming in here, so we get the desired | |
2703 | * exclusion. | |
79352894 | 2704 | */ |
682aa8e1 | 2705 | wb = unlocked_inode_to_wb_begin(inode, &locked); |
7658cc28 | 2706 | if (TestClearPageDirty(page)) { |
62cccb8c | 2707 | mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY); |
8c08540f | 2708 | dec_zone_page_state(page, NR_FILE_DIRTY); |
682aa8e1 | 2709 | dec_wb_stat(wb, WB_RECLAIMABLE); |
c4843a75 | 2710 | ret = 1; |
1da177e4 | 2711 | } |
682aa8e1 | 2712 | unlocked_inode_to_wb_end(inode, locked); |
c4843a75 | 2713 | return ret; |
1da177e4 | 2714 | } |
7658cc28 | 2715 | return TestClearPageDirty(page); |
1da177e4 | 2716 | } |
58bb01a9 | 2717 | EXPORT_SYMBOL(clear_page_dirty_for_io); |
1da177e4 LT |
2718 | |
2719 | int test_clear_page_writeback(struct page *page) | |
2720 | { | |
2721 | struct address_space *mapping = page_mapping(page); | |
d7365e78 | 2722 | int ret; |
1da177e4 | 2723 | |
62cccb8c | 2724 | lock_page_memcg(page); |
1da177e4 | 2725 | if (mapping) { |
91018134 TH |
2726 | struct inode *inode = mapping->host; |
2727 | struct backing_dev_info *bdi = inode_to_bdi(inode); | |
1da177e4 LT |
2728 | unsigned long flags; |
2729 | ||
19fd6231 | 2730 | spin_lock_irqsave(&mapping->tree_lock, flags); |
1da177e4 | 2731 | ret = TestClearPageWriteback(page); |
69cb51d1 | 2732 | if (ret) { |
1da177e4 LT |
2733 | radix_tree_tag_clear(&mapping->page_tree, |
2734 | page_index(page), | |
2735 | PAGECACHE_TAG_WRITEBACK); | |
e4ad08fe | 2736 | if (bdi_cap_account_writeback(bdi)) { |
91018134 TH |
2737 | struct bdi_writeback *wb = inode_to_wb(inode); |
2738 | ||
2739 | __dec_wb_stat(wb, WB_WRITEBACK); | |
2740 | __wb_writeout_inc(wb); | |
04fbfdc1 | 2741 | } |
69cb51d1 | 2742 | } |
19fd6231 | 2743 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
1da177e4 LT |
2744 | } else { |
2745 | ret = TestClearPageWriteback(page); | |
2746 | } | |
99b12e3d | 2747 | if (ret) { |
62cccb8c | 2748 | mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); |
d688abf5 | 2749 | dec_zone_page_state(page, NR_WRITEBACK); |
99b12e3d WF |
2750 | inc_zone_page_state(page, NR_WRITTEN); |
2751 | } | |
62cccb8c | 2752 | unlock_page_memcg(page); |
1da177e4 LT |
2753 | return ret; |
2754 | } | |
2755 | ||
1c8349a1 | 2756 | int __test_set_page_writeback(struct page *page, bool keep_write) |
1da177e4 LT |
2757 | { |
2758 | struct address_space *mapping = page_mapping(page); | |
d7365e78 | 2759 | int ret; |
1da177e4 | 2760 | |
62cccb8c | 2761 | lock_page_memcg(page); |
1da177e4 | 2762 | if (mapping) { |
91018134 TH |
2763 | struct inode *inode = mapping->host; |
2764 | struct backing_dev_info *bdi = inode_to_bdi(inode); | |
1da177e4 LT |
2765 | unsigned long flags; |
2766 | ||
19fd6231 | 2767 | spin_lock_irqsave(&mapping->tree_lock, flags); |
1da177e4 | 2768 | ret = TestSetPageWriteback(page); |
69cb51d1 | 2769 | if (!ret) { |
1da177e4 LT |
2770 | radix_tree_tag_set(&mapping->page_tree, |
2771 | page_index(page), | |
2772 | PAGECACHE_TAG_WRITEBACK); | |
e4ad08fe | 2773 | if (bdi_cap_account_writeback(bdi)) |
91018134 | 2774 | __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); |
69cb51d1 | 2775 | } |
1da177e4 LT |
2776 | if (!PageDirty(page)) |
2777 | radix_tree_tag_clear(&mapping->page_tree, | |
2778 | page_index(page), | |
2779 | PAGECACHE_TAG_DIRTY); | |
1c8349a1 NJ |
2780 | if (!keep_write) |
2781 | radix_tree_tag_clear(&mapping->page_tree, | |
2782 | page_index(page), | |
2783 | PAGECACHE_TAG_TOWRITE); | |
19fd6231 | 2784 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
1da177e4 LT |
2785 | } else { |
2786 | ret = TestSetPageWriteback(page); | |
2787 | } | |
3a3c02ec | 2788 | if (!ret) { |
62cccb8c | 2789 | mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); |
3a3c02ec JW |
2790 | inc_zone_page_state(page, NR_WRITEBACK); |
2791 | } | |
62cccb8c | 2792 | unlock_page_memcg(page); |
1da177e4 LT |
2793 | return ret; |
2794 | ||
2795 | } | |
1c8349a1 | 2796 | EXPORT_SYMBOL(__test_set_page_writeback); |
1da177e4 LT |
2797 | |
2798 | /* | |
00128188 | 2799 | * Return true if any of the pages in the mapping are marked with the |
1da177e4 LT |
2800 | * passed tag. |
2801 | */ | |
2802 | int mapping_tagged(struct address_space *mapping, int tag) | |
2803 | { | |
72c47832 | 2804 | return radix_tree_tagged(&mapping->page_tree, tag); |
1da177e4 LT |
2805 | } |
2806 | EXPORT_SYMBOL(mapping_tagged); | |
1d1d1a76 DW |
2807 | |
2808 | /** | |
2809 | * wait_for_stable_page() - wait for writeback to finish, if necessary. | |
2810 | * @page: The page to wait on. | |
2811 | * | |
2812 | * This function determines if the given page is related to a backing device | |
2813 | * that requires page contents to be held stable during writeback. If so, then | |
2814 | * it will wait for any pending writeback to complete. | |
2815 | */ | |
2816 | void wait_for_stable_page(struct page *page) | |
2817 | { | |
de1414a6 CH |
2818 | if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) |
2819 | wait_on_page_writeback(page); | |
1d1d1a76 DW |
2820 | } |
2821 | EXPORT_SYMBOL_GPL(wait_for_stable_page); |