]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/net/sunrpc/sched.c | |
3 | * | |
4 | * Scheduling for synchronous and asynchronous RPC requests. | |
5 | * | |
6 | * Copyright (C) 1996 Olaf Kirch, <[email protected]> | |
7 | * | |
8 | * TCP NFS related read + write fixes | |
9 | * (C) 1999 Dave Airlie, University of Limerick, Ireland <[email protected]> | |
10 | */ | |
11 | ||
12 | #include <linux/module.h> | |
13 | ||
14 | #include <linux/sched.h> | |
15 | #include <linux/interrupt.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/mempool.h> | |
18 | #include <linux/smp.h> | |
19 | #include <linux/smp_lock.h> | |
20 | #include <linux/spinlock.h> | |
21 | ||
22 | #include <linux/sunrpc/clnt.h> | |
23 | #include <linux/sunrpc/xprt.h> | |
24 | ||
25 | #ifdef RPC_DEBUG | |
26 | #define RPCDBG_FACILITY RPCDBG_SCHED | |
27 | #define RPC_TASK_MAGIC_ID 0xf00baa | |
28 | static int rpc_task_id; | |
29 | #endif | |
30 | ||
31 | /* | |
32 | * RPC slabs and memory pools | |
33 | */ | |
34 | #define RPC_BUFFER_MAXSIZE (2048) | |
35 | #define RPC_BUFFER_POOLSIZE (8) | |
36 | #define RPC_TASK_POOLSIZE (8) | |
ba89966c ED |
37 | static kmem_cache_t *rpc_task_slabp __read_mostly; |
38 | static kmem_cache_t *rpc_buffer_slabp __read_mostly; | |
39 | static mempool_t *rpc_task_mempool __read_mostly; | |
40 | static mempool_t *rpc_buffer_mempool __read_mostly; | |
1da177e4 LT |
41 | |
42 | static void __rpc_default_timer(struct rpc_task *task); | |
43 | static void rpciod_killall(void); | |
1da177e4 LT |
44 | static void rpc_async_schedule(void *); |
45 | ||
46 | /* | |
47 | * RPC tasks that create another task (e.g. for contacting the portmapper) | |
48 | * will wait on this queue for their child's completion | |
49 | */ | |
50 | static RPC_WAITQ(childq, "childq"); | |
51 | ||
52 | /* | |
53 | * RPC tasks sit here while waiting for conditions to improve. | |
54 | */ | |
55 | static RPC_WAITQ(delay_queue, "delayq"); | |
56 | ||
57 | /* | |
58 | * All RPC tasks are linked into this list | |
59 | */ | |
60 | static LIST_HEAD(all_tasks); | |
61 | ||
62 | /* | |
63 | * rpciod-related stuff | |
64 | */ | |
65 | static DECLARE_MUTEX(rpciod_sema); | |
66 | static unsigned int rpciod_users; | |
24c5d9d7 | 67 | struct workqueue_struct *rpciod_workqueue; |
1da177e4 LT |
68 | |
69 | /* | |
70 | * Spinlock for other critical sections of code. | |
71 | */ | |
72 | static DEFINE_SPINLOCK(rpc_sched_lock); | |
73 | ||
74 | /* | |
75 | * Disable the timer for a given RPC task. Should be called with | |
76 | * queue->lock and bh_disabled in order to avoid races within | |
77 | * rpc_run_timer(). | |
78 | */ | |
79 | static inline void | |
80 | __rpc_disable_timer(struct rpc_task *task) | |
81 | { | |
82 | dprintk("RPC: %4d disabling timer\n", task->tk_pid); | |
83 | task->tk_timeout_fn = NULL; | |
84 | task->tk_timeout = 0; | |
85 | } | |
86 | ||
87 | /* | |
88 | * Run a timeout function. | |
89 | * We use the callback in order to allow __rpc_wake_up_task() | |
90 | * and friends to disable the timer synchronously on SMP systems | |
91 | * without calling del_timer_sync(). The latter could cause a | |
92 | * deadlock if called while we're holding spinlocks... | |
93 | */ | |
94 | static void rpc_run_timer(struct rpc_task *task) | |
95 | { | |
96 | void (*callback)(struct rpc_task *); | |
97 | ||
98 | callback = task->tk_timeout_fn; | |
99 | task->tk_timeout_fn = NULL; | |
100 | if (callback && RPC_IS_QUEUED(task)) { | |
101 | dprintk("RPC: %4d running timer\n", task->tk_pid); | |
102 | callback(task); | |
103 | } | |
104 | smp_mb__before_clear_bit(); | |
105 | clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); | |
106 | smp_mb__after_clear_bit(); | |
107 | } | |
108 | ||
109 | /* | |
110 | * Set up a timer for the current task. | |
111 | */ | |
112 | static inline void | |
113 | __rpc_add_timer(struct rpc_task *task, rpc_action timer) | |
114 | { | |
115 | if (!task->tk_timeout) | |
116 | return; | |
117 | ||
118 | dprintk("RPC: %4d setting alarm for %lu ms\n", | |
119 | task->tk_pid, task->tk_timeout * 1000 / HZ); | |
120 | ||
121 | if (timer) | |
122 | task->tk_timeout_fn = timer; | |
123 | else | |
124 | task->tk_timeout_fn = __rpc_default_timer; | |
125 | set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); | |
126 | mod_timer(&task->tk_timer, jiffies + task->tk_timeout); | |
127 | } | |
128 | ||
129 | /* | |
130 | * Delete any timer for the current task. Because we use del_timer_sync(), | |
131 | * this function should never be called while holding queue->lock. | |
132 | */ | |
133 | static void | |
134 | rpc_delete_timer(struct rpc_task *task) | |
135 | { | |
136 | if (RPC_IS_QUEUED(task)) | |
137 | return; | |
138 | if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) { | |
139 | del_singleshot_timer_sync(&task->tk_timer); | |
140 | dprintk("RPC: %4d deleting timer\n", task->tk_pid); | |
141 | } | |
142 | } | |
143 | ||
144 | /* | |
145 | * Add new request to a priority queue. | |
146 | */ | |
147 | static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) | |
148 | { | |
149 | struct list_head *q; | |
150 | struct rpc_task *t; | |
151 | ||
152 | INIT_LIST_HEAD(&task->u.tk_wait.links); | |
153 | q = &queue->tasks[task->tk_priority]; | |
154 | if (unlikely(task->tk_priority > queue->maxpriority)) | |
155 | q = &queue->tasks[queue->maxpriority]; | |
156 | list_for_each_entry(t, q, u.tk_wait.list) { | |
157 | if (t->tk_cookie == task->tk_cookie) { | |
158 | list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); | |
159 | return; | |
160 | } | |
161 | } | |
162 | list_add_tail(&task->u.tk_wait.list, q); | |
163 | } | |
164 | ||
165 | /* | |
166 | * Add new request to wait queue. | |
167 | * | |
168 | * Swapper tasks always get inserted at the head of the queue. | |
169 | * This should avoid many nasty memory deadlocks and hopefully | |
170 | * improve overall performance. | |
171 | * Everyone else gets appended to the queue to ensure proper FIFO behavior. | |
172 | */ | |
173 | static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) | |
174 | { | |
175 | BUG_ON (RPC_IS_QUEUED(task)); | |
176 | ||
177 | if (RPC_IS_PRIORITY(queue)) | |
178 | __rpc_add_wait_queue_priority(queue, task); | |
179 | else if (RPC_IS_SWAPPER(task)) | |
180 | list_add(&task->u.tk_wait.list, &queue->tasks[0]); | |
181 | else | |
182 | list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); | |
183 | task->u.tk_wait.rpc_waitq = queue; | |
184 | rpc_set_queued(task); | |
185 | ||
186 | dprintk("RPC: %4d added to queue %p \"%s\"\n", | |
187 | task->tk_pid, queue, rpc_qname(queue)); | |
188 | } | |
189 | ||
190 | /* | |
191 | * Remove request from a priority queue. | |
192 | */ | |
193 | static void __rpc_remove_wait_queue_priority(struct rpc_task *task) | |
194 | { | |
195 | struct rpc_task *t; | |
196 | ||
197 | if (!list_empty(&task->u.tk_wait.links)) { | |
198 | t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); | |
199 | list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); | |
200 | list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); | |
201 | } | |
202 | list_del(&task->u.tk_wait.list); | |
203 | } | |
204 | ||
205 | /* | |
206 | * Remove request from queue. | |
207 | * Note: must be called with spin lock held. | |
208 | */ | |
209 | static void __rpc_remove_wait_queue(struct rpc_task *task) | |
210 | { | |
211 | struct rpc_wait_queue *queue; | |
212 | queue = task->u.tk_wait.rpc_waitq; | |
213 | ||
214 | if (RPC_IS_PRIORITY(queue)) | |
215 | __rpc_remove_wait_queue_priority(task); | |
216 | else | |
217 | list_del(&task->u.tk_wait.list); | |
218 | dprintk("RPC: %4d removed from queue %p \"%s\"\n", | |
219 | task->tk_pid, queue, rpc_qname(queue)); | |
220 | } | |
221 | ||
222 | static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) | |
223 | { | |
224 | queue->priority = priority; | |
225 | queue->count = 1 << (priority * 2); | |
226 | } | |
227 | ||
228 | static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie) | |
229 | { | |
230 | queue->cookie = cookie; | |
231 | queue->nr = RPC_BATCH_COUNT; | |
232 | } | |
233 | ||
234 | static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) | |
235 | { | |
236 | rpc_set_waitqueue_priority(queue, queue->maxpriority); | |
237 | rpc_set_waitqueue_cookie(queue, 0); | |
238 | } | |
239 | ||
240 | static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio) | |
241 | { | |
242 | int i; | |
243 | ||
244 | spin_lock_init(&queue->lock); | |
245 | for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) | |
246 | INIT_LIST_HEAD(&queue->tasks[i]); | |
247 | queue->maxpriority = maxprio; | |
248 | rpc_reset_waitqueue_priority(queue); | |
249 | #ifdef RPC_DEBUG | |
250 | queue->name = qname; | |
251 | #endif | |
252 | } | |
253 | ||
254 | void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) | |
255 | { | |
256 | __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH); | |
257 | } | |
258 | ||
259 | void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) | |
260 | { | |
261 | __rpc_init_priority_wait_queue(queue, qname, 0); | |
262 | } | |
263 | EXPORT_SYMBOL(rpc_init_wait_queue); | |
264 | ||
44c28873 TM |
265 | static int rpc_wait_bit_interruptible(void *word) |
266 | { | |
267 | if (signal_pending(current)) | |
268 | return -ERESTARTSYS; | |
269 | schedule(); | |
270 | return 0; | |
271 | } | |
272 | ||
273 | /* | |
274 | * Mark an RPC call as having completed by clearing the 'active' bit | |
275 | */ | |
276 | static inline void rpc_mark_complete_task(struct rpc_task *task) | |
277 | { | |
278 | rpc_clear_active(task); | |
279 | wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); | |
280 | } | |
281 | ||
282 | /* | |
283 | * Allow callers to wait for completion of an RPC call | |
284 | */ | |
285 | int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) | |
286 | { | |
287 | if (action == NULL) | |
288 | action = rpc_wait_bit_interruptible; | |
289 | return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, | |
290 | action, TASK_INTERRUPTIBLE); | |
291 | } | |
292 | EXPORT_SYMBOL(__rpc_wait_for_completion_task); | |
293 | ||
1da177e4 LT |
294 | /* |
295 | * Make an RPC task runnable. | |
296 | * | |
297 | * Note: If the task is ASYNC, this must be called with | |
298 | * the spinlock held to protect the wait queue operation. | |
299 | */ | |
300 | static void rpc_make_runnable(struct rpc_task *task) | |
301 | { | |
302 | int do_ret; | |
303 | ||
304 | BUG_ON(task->tk_timeout_fn); | |
305 | do_ret = rpc_test_and_set_running(task); | |
306 | rpc_clear_queued(task); | |
307 | if (do_ret) | |
308 | return; | |
309 | if (RPC_IS_ASYNC(task)) { | |
310 | int status; | |
311 | ||
312 | INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task); | |
313 | status = queue_work(task->tk_workqueue, &task->u.tk_work); | |
314 | if (status < 0) { | |
315 | printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); | |
316 | task->tk_status = status; | |
317 | return; | |
318 | } | |
319 | } else | |
96651ab3 | 320 | wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); |
1da177e4 LT |
321 | } |
322 | ||
323 | /* | |
324 | * Place a newly initialized task on the workqueue. | |
325 | */ | |
326 | static inline void | |
327 | rpc_schedule_run(struct rpc_task *task) | |
328 | { | |
44c28873 | 329 | rpc_set_active(task); |
1da177e4 LT |
330 | rpc_make_runnable(task); |
331 | } | |
332 | ||
333 | /* | |
334 | * Prepare for sleeping on a wait queue. | |
335 | * By always appending tasks to the list we ensure FIFO behavior. | |
336 | * NB: An RPC task will only receive interrupt-driven events as long | |
337 | * as it's on a wait queue. | |
338 | */ | |
339 | static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, | |
340 | rpc_action action, rpc_action timer) | |
341 | { | |
342 | dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid, | |
343 | rpc_qname(q), jiffies); | |
344 | ||
345 | if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { | |
346 | printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); | |
347 | return; | |
348 | } | |
349 | ||
350 | /* Mark the task as being activated if so needed */ | |
44c28873 | 351 | rpc_set_active(task); |
1da177e4 LT |
352 | |
353 | __rpc_add_wait_queue(q, task); | |
354 | ||
355 | BUG_ON(task->tk_callback != NULL); | |
356 | task->tk_callback = action; | |
357 | __rpc_add_timer(task, timer); | |
358 | } | |
359 | ||
360 | void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, | |
361 | rpc_action action, rpc_action timer) | |
362 | { | |
363 | /* | |
364 | * Protect the queue operations. | |
365 | */ | |
366 | spin_lock_bh(&q->lock); | |
367 | __rpc_sleep_on(q, task, action, timer); | |
368 | spin_unlock_bh(&q->lock); | |
369 | } | |
370 | ||
371 | /** | |
372 | * __rpc_do_wake_up_task - wake up a single rpc_task | |
373 | * @task: task to be woken up | |
374 | * | |
375 | * Caller must hold queue->lock, and have cleared the task queued flag. | |
376 | */ | |
377 | static void __rpc_do_wake_up_task(struct rpc_task *task) | |
378 | { | |
379 | dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies); | |
380 | ||
381 | #ifdef RPC_DEBUG | |
382 | BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); | |
383 | #endif | |
384 | /* Has the task been executed yet? If not, we cannot wake it up! */ | |
385 | if (!RPC_IS_ACTIVATED(task)) { | |
386 | printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); | |
387 | return; | |
388 | } | |
389 | ||
390 | __rpc_disable_timer(task); | |
391 | __rpc_remove_wait_queue(task); | |
392 | ||
393 | rpc_make_runnable(task); | |
394 | ||
395 | dprintk("RPC: __rpc_wake_up_task done\n"); | |
396 | } | |
397 | ||
398 | /* | |
399 | * Wake up the specified task | |
400 | */ | |
401 | static void __rpc_wake_up_task(struct rpc_task *task) | |
402 | { | |
403 | if (rpc_start_wakeup(task)) { | |
404 | if (RPC_IS_QUEUED(task)) | |
405 | __rpc_do_wake_up_task(task); | |
406 | rpc_finish_wakeup(task); | |
407 | } | |
408 | } | |
409 | ||
410 | /* | |
411 | * Default timeout handler if none specified by user | |
412 | */ | |
413 | static void | |
414 | __rpc_default_timer(struct rpc_task *task) | |
415 | { | |
416 | dprintk("RPC: %d timeout (default timer)\n", task->tk_pid); | |
417 | task->tk_status = -ETIMEDOUT; | |
418 | rpc_wake_up_task(task); | |
419 | } | |
420 | ||
421 | /* | |
422 | * Wake up the specified task | |
423 | */ | |
424 | void rpc_wake_up_task(struct rpc_task *task) | |
425 | { | |
426 | if (rpc_start_wakeup(task)) { | |
427 | if (RPC_IS_QUEUED(task)) { | |
428 | struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq; | |
429 | ||
430 | spin_lock_bh(&queue->lock); | |
431 | __rpc_do_wake_up_task(task); | |
432 | spin_unlock_bh(&queue->lock); | |
433 | } | |
434 | rpc_finish_wakeup(task); | |
435 | } | |
436 | } | |
437 | ||
438 | /* | |
439 | * Wake up the next task on a priority queue. | |
440 | */ | |
441 | static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) | |
442 | { | |
443 | struct list_head *q; | |
444 | struct rpc_task *task; | |
445 | ||
446 | /* | |
447 | * Service a batch of tasks from a single cookie. | |
448 | */ | |
449 | q = &queue->tasks[queue->priority]; | |
450 | if (!list_empty(q)) { | |
451 | task = list_entry(q->next, struct rpc_task, u.tk_wait.list); | |
452 | if (queue->cookie == task->tk_cookie) { | |
453 | if (--queue->nr) | |
454 | goto out; | |
455 | list_move_tail(&task->u.tk_wait.list, q); | |
456 | } | |
457 | /* | |
458 | * Check if we need to switch queues. | |
459 | */ | |
460 | if (--queue->count) | |
461 | goto new_cookie; | |
462 | } | |
463 | ||
464 | /* | |
465 | * Service the next queue. | |
466 | */ | |
467 | do { | |
468 | if (q == &queue->tasks[0]) | |
469 | q = &queue->tasks[queue->maxpriority]; | |
470 | else | |
471 | q = q - 1; | |
472 | if (!list_empty(q)) { | |
473 | task = list_entry(q->next, struct rpc_task, u.tk_wait.list); | |
474 | goto new_queue; | |
475 | } | |
476 | } while (q != &queue->tasks[queue->priority]); | |
477 | ||
478 | rpc_reset_waitqueue_priority(queue); | |
479 | return NULL; | |
480 | ||
481 | new_queue: | |
482 | rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); | |
483 | new_cookie: | |
484 | rpc_set_waitqueue_cookie(queue, task->tk_cookie); | |
485 | out: | |
486 | __rpc_wake_up_task(task); | |
487 | return task; | |
488 | } | |
489 | ||
490 | /* | |
491 | * Wake up the next task on the wait queue. | |
492 | */ | |
493 | struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) | |
494 | { | |
495 | struct rpc_task *task = NULL; | |
496 | ||
497 | dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue)); | |
498 | spin_lock_bh(&queue->lock); | |
499 | if (RPC_IS_PRIORITY(queue)) | |
500 | task = __rpc_wake_up_next_priority(queue); | |
501 | else { | |
502 | task_for_first(task, &queue->tasks[0]) | |
503 | __rpc_wake_up_task(task); | |
504 | } | |
505 | spin_unlock_bh(&queue->lock); | |
506 | ||
507 | return task; | |
508 | } | |
509 | ||
510 | /** | |
511 | * rpc_wake_up - wake up all rpc_tasks | |
512 | * @queue: rpc_wait_queue on which the tasks are sleeping | |
513 | * | |
514 | * Grabs queue->lock | |
515 | */ | |
516 | void rpc_wake_up(struct rpc_wait_queue *queue) | |
517 | { | |
e6d83d55 | 518 | struct rpc_task *task, *next; |
1da177e4 | 519 | struct list_head *head; |
e6d83d55 | 520 | |
1da177e4 LT |
521 | spin_lock_bh(&queue->lock); |
522 | head = &queue->tasks[queue->maxpriority]; | |
523 | for (;;) { | |
e6d83d55 | 524 | list_for_each_entry_safe(task, next, head, u.tk_wait.list) |
1da177e4 | 525 | __rpc_wake_up_task(task); |
1da177e4 LT |
526 | if (head == &queue->tasks[0]) |
527 | break; | |
528 | head--; | |
529 | } | |
530 | spin_unlock_bh(&queue->lock); | |
531 | } | |
532 | ||
533 | /** | |
534 | * rpc_wake_up_status - wake up all rpc_tasks and set their status value. | |
535 | * @queue: rpc_wait_queue on which the tasks are sleeping | |
536 | * @status: status value to set | |
537 | * | |
538 | * Grabs queue->lock | |
539 | */ | |
540 | void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) | |
541 | { | |
e6d83d55 | 542 | struct rpc_task *task, *next; |
1da177e4 | 543 | struct list_head *head; |
1da177e4 LT |
544 | |
545 | spin_lock_bh(&queue->lock); | |
546 | head = &queue->tasks[queue->maxpriority]; | |
547 | for (;;) { | |
e6d83d55 | 548 | list_for_each_entry_safe(task, next, head, u.tk_wait.list) { |
1da177e4 LT |
549 | task->tk_status = status; |
550 | __rpc_wake_up_task(task); | |
551 | } | |
552 | if (head == &queue->tasks[0]) | |
553 | break; | |
554 | head--; | |
555 | } | |
556 | spin_unlock_bh(&queue->lock); | |
557 | } | |
558 | ||
559 | /* | |
560 | * Run a task at a later time | |
561 | */ | |
562 | static void __rpc_atrun(struct rpc_task *); | |
563 | void | |
564 | rpc_delay(struct rpc_task *task, unsigned long delay) | |
565 | { | |
566 | task->tk_timeout = delay; | |
567 | rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun); | |
568 | } | |
569 | ||
570 | static void | |
571 | __rpc_atrun(struct rpc_task *task) | |
572 | { | |
573 | task->tk_status = 0; | |
574 | rpc_wake_up_task(task); | |
575 | } | |
576 | ||
4ce70ada TM |
577 | /* |
578 | * Helper to call task->tk_ops->rpc_call_prepare | |
579 | */ | |
580 | static void rpc_prepare_task(struct rpc_task *task) | |
581 | { | |
582 | task->tk_ops->rpc_call_prepare(task, task->tk_calldata); | |
583 | } | |
584 | ||
d05fdb0c | 585 | /* |
963d8fe5 | 586 | * Helper that calls task->tk_ops->rpc_call_done if it exists |
d05fdb0c | 587 | */ |
abbcf28f | 588 | void rpc_exit_task(struct rpc_task *task) |
d05fdb0c | 589 | { |
abbcf28f | 590 | task->tk_action = NULL; |
963d8fe5 TM |
591 | if (task->tk_ops->rpc_call_done != NULL) { |
592 | task->tk_ops->rpc_call_done(task, task->tk_calldata); | |
d05fdb0c | 593 | if (task->tk_action != NULL) { |
abbcf28f TM |
594 | WARN_ON(RPC_ASSASSINATED(task)); |
595 | /* Always release the RPC slot and buffer memory */ | |
596 | xprt_release(task); | |
d05fdb0c TM |
597 | } |
598 | } | |
d05fdb0c | 599 | } |
abbcf28f | 600 | EXPORT_SYMBOL(rpc_exit_task); |
d05fdb0c | 601 | |
1da177e4 LT |
602 | /* |
603 | * This is the RPC `scheduler' (or rather, the finite state machine). | |
604 | */ | |
605 | static int __rpc_execute(struct rpc_task *task) | |
606 | { | |
607 | int status = 0; | |
608 | ||
609 | dprintk("RPC: %4d rpc_execute flgs %x\n", | |
610 | task->tk_pid, task->tk_flags); | |
611 | ||
612 | BUG_ON(RPC_IS_QUEUED(task)); | |
613 | ||
d05fdb0c | 614 | for (;;) { |
1da177e4 LT |
615 | /* |
616 | * Garbage collection of pending timers... | |
617 | */ | |
618 | rpc_delete_timer(task); | |
619 | ||
620 | /* | |
621 | * Execute any pending callback. | |
622 | */ | |
623 | if (RPC_DO_CALLBACK(task)) { | |
624 | /* Define a callback save pointer */ | |
625 | void (*save_callback)(struct rpc_task *); | |
626 | ||
627 | /* | |
628 | * If a callback exists, save it, reset it, | |
629 | * call it. | |
630 | * The save is needed to stop from resetting | |
631 | * another callback set within the callback handler | |
632 | * - Dave | |
633 | */ | |
634 | save_callback=task->tk_callback; | |
635 | task->tk_callback=NULL; | |
636 | lock_kernel(); | |
637 | save_callback(task); | |
638 | unlock_kernel(); | |
639 | } | |
640 | ||
641 | /* | |
642 | * Perform the next FSM step. | |
643 | * tk_action may be NULL when the task has been killed | |
644 | * by someone else. | |
645 | */ | |
646 | if (!RPC_IS_QUEUED(task)) { | |
abbcf28f | 647 | if (task->tk_action == NULL) |
1da177e4 | 648 | break; |
abbcf28f TM |
649 | lock_kernel(); |
650 | task->tk_action(task); | |
651 | unlock_kernel(); | |
1da177e4 LT |
652 | } |
653 | ||
654 | /* | |
655 | * Lockless check for whether task is sleeping or not. | |
656 | */ | |
657 | if (!RPC_IS_QUEUED(task)) | |
658 | continue; | |
659 | rpc_clear_running(task); | |
660 | if (RPC_IS_ASYNC(task)) { | |
661 | /* Careful! we may have raced... */ | |
662 | if (RPC_IS_QUEUED(task)) | |
663 | return 0; | |
664 | if (rpc_test_and_set_running(task)) | |
665 | return 0; | |
666 | continue; | |
667 | } | |
668 | ||
669 | /* sync task: sleep here */ | |
670 | dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid); | |
96651ab3 TM |
671 | /* Note: Caller should be using rpc_clnt_sigmask() */ |
672 | status = out_of_line_wait_on_bit(&task->tk_runstate, | |
673 | RPC_TASK_QUEUED, rpc_wait_bit_interruptible, | |
674 | TASK_INTERRUPTIBLE); | |
675 | if (status == -ERESTARTSYS) { | |
1da177e4 LT |
676 | /* |
677 | * When a sync task receives a signal, it exits with | |
678 | * -ERESTARTSYS. In order to catch any callbacks that | |
679 | * clean up after sleeping on some queue, we don't | |
680 | * break the loop here, but go around once more. | |
681 | */ | |
96651ab3 TM |
682 | dprintk("RPC: %4d got signal\n", task->tk_pid); |
683 | task->tk_flags |= RPC_TASK_KILLED; | |
684 | rpc_exit(task, -ERESTARTSYS); | |
685 | rpc_wake_up_task(task); | |
1da177e4 LT |
686 | } |
687 | rpc_set_running(task); | |
688 | dprintk("RPC: %4d sync task resuming\n", task->tk_pid); | |
689 | } | |
690 | ||
e60859ac | 691 | dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status); |
44c28873 TM |
692 | /* Wake up anyone who is waiting for task completion */ |
693 | rpc_mark_complete_task(task); | |
1da177e4 LT |
694 | /* Release all resources associated with the task */ |
695 | rpc_release_task(task); | |
696 | return status; | |
697 | } | |
698 | ||
699 | /* | |
700 | * User-visible entry point to the scheduler. | |
701 | * | |
702 | * This may be called recursively if e.g. an async NFS task updates | |
703 | * the attributes and finds that dirty pages must be flushed. | |
704 | * NOTE: Upon exit of this function the task is guaranteed to be | |
705 | * released. In particular note that tk_release() will have | |
706 | * been called, so your task memory may have been freed. | |
707 | */ | |
708 | int | |
709 | rpc_execute(struct rpc_task *task) | |
710 | { | |
44c28873 | 711 | rpc_set_active(task); |
1da177e4 LT |
712 | rpc_set_running(task); |
713 | return __rpc_execute(task); | |
714 | } | |
715 | ||
716 | static void rpc_async_schedule(void *arg) | |
717 | { | |
718 | __rpc_execute((struct rpc_task *)arg); | |
719 | } | |
720 | ||
02107148 CL |
721 | /** |
722 | * rpc_malloc - allocate an RPC buffer | |
723 | * @task: RPC task that will use this buffer | |
724 | * @size: requested byte size | |
1da177e4 LT |
725 | * |
726 | * We try to ensure that some NFS reads and writes can always proceed | |
727 | * by using a mempool when allocating 'small' buffers. | |
728 | * In order to avoid memory starvation triggering more writebacks of | |
729 | * NFS requests, we use GFP_NOFS rather than GFP_KERNEL. | |
730 | */ | |
02107148 | 731 | void * rpc_malloc(struct rpc_task *task, size_t size) |
1da177e4 | 732 | { |
02107148 | 733 | struct rpc_rqst *req = task->tk_rqstp; |
dd0fc66f | 734 | gfp_t gfp; |
1da177e4 LT |
735 | |
736 | if (task->tk_flags & RPC_TASK_SWAPPER) | |
737 | gfp = GFP_ATOMIC; | |
738 | else | |
739 | gfp = GFP_NOFS; | |
740 | ||
741 | if (size > RPC_BUFFER_MAXSIZE) { | |
02107148 CL |
742 | req->rq_buffer = kmalloc(size, gfp); |
743 | if (req->rq_buffer) | |
744 | req->rq_bufsize = size; | |
1da177e4 | 745 | } else { |
02107148 CL |
746 | req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp); |
747 | if (req->rq_buffer) | |
748 | req->rq_bufsize = RPC_BUFFER_MAXSIZE; | |
1da177e4 | 749 | } |
02107148 | 750 | return req->rq_buffer; |
1da177e4 LT |
751 | } |
752 | ||
02107148 CL |
753 | /** |
754 | * rpc_free - free buffer allocated via rpc_malloc | |
755 | * @task: RPC task with a buffer to be freed | |
756 | * | |
757 | */ | |
758 | void rpc_free(struct rpc_task *task) | |
1da177e4 | 759 | { |
02107148 CL |
760 | struct rpc_rqst *req = task->tk_rqstp; |
761 | ||
762 | if (req->rq_buffer) { | |
763 | if (req->rq_bufsize == RPC_BUFFER_MAXSIZE) | |
764 | mempool_free(req->rq_buffer, rpc_buffer_mempool); | |
1da177e4 | 765 | else |
02107148 CL |
766 | kfree(req->rq_buffer); |
767 | req->rq_buffer = NULL; | |
768 | req->rq_bufsize = 0; | |
1da177e4 LT |
769 | } |
770 | } | |
771 | ||
772 | /* | |
773 | * Creation and deletion of RPC task structures | |
774 | */ | |
963d8fe5 | 775 | void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) |
1da177e4 LT |
776 | { |
777 | memset(task, 0, sizeof(*task)); | |
778 | init_timer(&task->tk_timer); | |
779 | task->tk_timer.data = (unsigned long) task; | |
780 | task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer; | |
44c28873 | 781 | atomic_set(&task->tk_count, 1); |
1da177e4 LT |
782 | task->tk_client = clnt; |
783 | task->tk_flags = flags; | |
963d8fe5 | 784 | task->tk_ops = tk_ops; |
4ce70ada TM |
785 | if (tk_ops->rpc_call_prepare != NULL) |
786 | task->tk_action = rpc_prepare_task; | |
963d8fe5 | 787 | task->tk_calldata = calldata; |
1da177e4 LT |
788 | |
789 | /* Initialize retry counters */ | |
790 | task->tk_garb_retry = 2; | |
791 | task->tk_cred_retry = 2; | |
792 | ||
793 | task->tk_priority = RPC_PRIORITY_NORMAL; | |
794 | task->tk_cookie = (unsigned long)current; | |
795 | ||
796 | /* Initialize workqueue for async tasks */ | |
797 | task->tk_workqueue = rpciod_workqueue; | |
1da177e4 LT |
798 | |
799 | if (clnt) { | |
800 | atomic_inc(&clnt->cl_users); | |
801 | if (clnt->cl_softrtry) | |
802 | task->tk_flags |= RPC_TASK_SOFT; | |
803 | if (!clnt->cl_intr) | |
804 | task->tk_flags |= RPC_TASK_NOINTR; | |
805 | } | |
806 | ||
807 | #ifdef RPC_DEBUG | |
808 | task->tk_magic = RPC_TASK_MAGIC_ID; | |
809 | task->tk_pid = rpc_task_id++; | |
810 | #endif | |
811 | /* Add to global list of all tasks */ | |
812 | spin_lock(&rpc_sched_lock); | |
813 | list_add_tail(&task->tk_task, &all_tasks); | |
814 | spin_unlock(&rpc_sched_lock); | |
815 | ||
963d8fe5 TM |
816 | BUG_ON(task->tk_ops == NULL); |
817 | ||
1da177e4 LT |
818 | dprintk("RPC: %4d new task procpid %d\n", task->tk_pid, |
819 | current->pid); | |
820 | } | |
821 | ||
822 | static struct rpc_task * | |
823 | rpc_alloc_task(void) | |
824 | { | |
825 | return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); | |
826 | } | |
827 | ||
963d8fe5 | 828 | static void rpc_free_task(struct rpc_task *task) |
1da177e4 LT |
829 | { |
830 | dprintk("RPC: %4d freeing task\n", task->tk_pid); | |
831 | mempool_free(task, rpc_task_mempool); | |
832 | } | |
833 | ||
834 | /* | |
835 | * Create a new task for the specified client. We have to | |
836 | * clean up after an allocation failure, as the client may | |
837 | * have specified "oneshot". | |
838 | */ | |
963d8fe5 | 839 | struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) |
1da177e4 LT |
840 | { |
841 | struct rpc_task *task; | |
842 | ||
843 | task = rpc_alloc_task(); | |
844 | if (!task) | |
845 | goto cleanup; | |
846 | ||
963d8fe5 | 847 | rpc_init_task(task, clnt, flags, tk_ops, calldata); |
1da177e4 LT |
848 | |
849 | dprintk("RPC: %4d allocated task\n", task->tk_pid); | |
850 | task->tk_flags |= RPC_TASK_DYNAMIC; | |
851 | out: | |
852 | return task; | |
853 | ||
854 | cleanup: | |
855 | /* Check whether to release the client */ | |
856 | if (clnt) { | |
857 | printk("rpc_new_task: failed, users=%d, oneshot=%d\n", | |
858 | atomic_read(&clnt->cl_users), clnt->cl_oneshot); | |
859 | atomic_inc(&clnt->cl_users); /* pretend we were used ... */ | |
860 | rpc_release_client(clnt); | |
861 | } | |
862 | goto out; | |
863 | } | |
864 | ||
865 | void rpc_release_task(struct rpc_task *task) | |
866 | { | |
963d8fe5 TM |
867 | const struct rpc_call_ops *tk_ops = task->tk_ops; |
868 | void *calldata = task->tk_calldata; | |
1da177e4 LT |
869 | |
870 | #ifdef RPC_DEBUG | |
871 | BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); | |
872 | #endif | |
44c28873 TM |
873 | if (!atomic_dec_and_test(&task->tk_count)) |
874 | return; | |
875 | dprintk("RPC: %4d release task\n", task->tk_pid); | |
1da177e4 LT |
876 | |
877 | /* Remove from global task list */ | |
878 | spin_lock(&rpc_sched_lock); | |
879 | list_del(&task->tk_task); | |
880 | spin_unlock(&rpc_sched_lock); | |
881 | ||
882 | BUG_ON (RPC_IS_QUEUED(task)); | |
1da177e4 LT |
883 | |
884 | /* Synchronously delete any running timer */ | |
885 | rpc_delete_timer(task); | |
886 | ||
887 | /* Release resources */ | |
888 | if (task->tk_rqstp) | |
889 | xprt_release(task); | |
890 | if (task->tk_msg.rpc_cred) | |
891 | rpcauth_unbindcred(task); | |
1da177e4 LT |
892 | if (task->tk_client) { |
893 | rpc_release_client(task->tk_client); | |
894 | task->tk_client = NULL; | |
895 | } | |
896 | ||
897 | #ifdef RPC_DEBUG | |
898 | task->tk_magic = 0; | |
899 | #endif | |
963d8fe5 TM |
900 | if (task->tk_flags & RPC_TASK_DYNAMIC) |
901 | rpc_free_task(task); | |
902 | if (tk_ops->rpc_release) | |
903 | tk_ops->rpc_release(calldata); | |
1da177e4 LT |
904 | } |
905 | ||
44c28873 TM |
906 | /** |
907 | * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it | |
99acf044 MW |
908 | * @clnt: pointer to RPC client |
909 | * @flags: RPC flags | |
910 | * @ops: RPC call ops | |
911 | * @data: user call data | |
44c28873 TM |
912 | */ |
913 | struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags, | |
914 | const struct rpc_call_ops *ops, | |
915 | void *data) | |
916 | { | |
917 | struct rpc_task *task; | |
918 | task = rpc_new_task(clnt, flags, ops, data); | |
919 | if (task == NULL) | |
920 | return ERR_PTR(-ENOMEM); | |
921 | atomic_inc(&task->tk_count); | |
922 | rpc_execute(task); | |
923 | return task; | |
924 | } | |
925 | EXPORT_SYMBOL(rpc_run_task); | |
926 | ||
1da177e4 LT |
927 | /** |
928 | * rpc_find_parent - find the parent of a child task. | |
929 | * @child: child task | |
99acf044 | 930 | * @parent: parent task |
1da177e4 LT |
931 | * |
932 | * Checks that the parent task is still sleeping on the | |
933 | * queue 'childq'. If so returns a pointer to the parent. | |
934 | * Upon failure returns NULL. | |
935 | * | |
936 | * Caller must hold childq.lock | |
937 | */ | |
963d8fe5 | 938 | static inline struct rpc_task *rpc_find_parent(struct rpc_task *child, struct rpc_task *parent) |
1da177e4 | 939 | { |
963d8fe5 | 940 | struct rpc_task *task; |
1da177e4 LT |
941 | struct list_head *le; |
942 | ||
1da177e4 LT |
943 | task_for_each(task, le, &childq.tasks[0]) |
944 | if (task == parent) | |
945 | return parent; | |
946 | ||
947 | return NULL; | |
948 | } | |
949 | ||
963d8fe5 | 950 | static void rpc_child_exit(struct rpc_task *child, void *calldata) |
1da177e4 LT |
951 | { |
952 | struct rpc_task *parent; | |
953 | ||
954 | spin_lock_bh(&childq.lock); | |
963d8fe5 | 955 | if ((parent = rpc_find_parent(child, calldata)) != NULL) { |
1da177e4 LT |
956 | parent->tk_status = child->tk_status; |
957 | __rpc_wake_up_task(parent); | |
958 | } | |
959 | spin_unlock_bh(&childq.lock); | |
960 | } | |
961 | ||
963d8fe5 TM |
962 | static const struct rpc_call_ops rpc_child_ops = { |
963 | .rpc_call_done = rpc_child_exit, | |
964 | }; | |
965 | ||
1da177e4 LT |
966 | /* |
967 | * Note: rpc_new_task releases the client after a failure. | |
968 | */ | |
969 | struct rpc_task * | |
970 | rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent) | |
971 | { | |
972 | struct rpc_task *task; | |
973 | ||
963d8fe5 | 974 | task = rpc_new_task(clnt, RPC_TASK_ASYNC | RPC_TASK_CHILD, &rpc_child_ops, parent); |
1da177e4 LT |
975 | if (!task) |
976 | goto fail; | |
1da177e4 LT |
977 | return task; |
978 | ||
979 | fail: | |
980 | parent->tk_status = -ENOMEM; | |
981 | return NULL; | |
982 | } | |
983 | ||
984 | void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func) | |
985 | { | |
986 | spin_lock_bh(&childq.lock); | |
987 | /* N.B. Is it possible for the child to have already finished? */ | |
988 | __rpc_sleep_on(&childq, task, func, NULL); | |
989 | rpc_schedule_run(child); | |
990 | spin_unlock_bh(&childq.lock); | |
991 | } | |
992 | ||
993 | /* | |
994 | * Kill all tasks for the given client. | |
995 | * XXX: kill their descendants as well? | |
996 | */ | |
997 | void rpc_killall_tasks(struct rpc_clnt *clnt) | |
998 | { | |
999 | struct rpc_task *rovr; | |
1000 | struct list_head *le; | |
1001 | ||
1002 | dprintk("RPC: killing all tasks for client %p\n", clnt); | |
1003 | ||
1004 | /* | |
1005 | * Spin lock all_tasks to prevent changes... | |
1006 | */ | |
1007 | spin_lock(&rpc_sched_lock); | |
1008 | alltask_for_each(rovr, le, &all_tasks) { | |
1009 | if (! RPC_IS_ACTIVATED(rovr)) | |
1010 | continue; | |
1011 | if (!clnt || rovr->tk_client == clnt) { | |
1012 | rovr->tk_flags |= RPC_TASK_KILLED; | |
1013 | rpc_exit(rovr, -EIO); | |
1014 | rpc_wake_up_task(rovr); | |
1015 | } | |
1016 | } | |
1017 | spin_unlock(&rpc_sched_lock); | |
1018 | } | |
1019 | ||
1020 | static DECLARE_MUTEX_LOCKED(rpciod_running); | |
1021 | ||
1022 | static void rpciod_killall(void) | |
1023 | { | |
1024 | unsigned long flags; | |
1025 | ||
1026 | while (!list_empty(&all_tasks)) { | |
1027 | clear_thread_flag(TIF_SIGPENDING); | |
1028 | rpc_killall_tasks(NULL); | |
1029 | flush_workqueue(rpciod_workqueue); | |
1030 | if (!list_empty(&all_tasks)) { | |
1031 | dprintk("rpciod_killall: waiting for tasks to exit\n"); | |
1032 | yield(); | |
1033 | } | |
1034 | } | |
1035 | ||
1036 | spin_lock_irqsave(¤t->sighand->siglock, flags); | |
1037 | recalc_sigpending(); | |
1038 | spin_unlock_irqrestore(¤t->sighand->siglock, flags); | |
1039 | } | |
1040 | ||
1041 | /* | |
1042 | * Start up the rpciod process if it's not already running. | |
1043 | */ | |
1044 | int | |
1045 | rpciod_up(void) | |
1046 | { | |
1047 | struct workqueue_struct *wq; | |
1048 | int error = 0; | |
1049 | ||
1050 | down(&rpciod_sema); | |
1051 | dprintk("rpciod_up: users %d\n", rpciod_users); | |
1052 | rpciod_users++; | |
1053 | if (rpciod_workqueue) | |
1054 | goto out; | |
1055 | /* | |
1056 | * If there's no pid, we should be the first user. | |
1057 | */ | |
1058 | if (rpciod_users > 1) | |
1059 | printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users); | |
1060 | /* | |
1061 | * Create the rpciod thread and wait for it to start. | |
1062 | */ | |
1063 | error = -ENOMEM; | |
1064 | wq = create_workqueue("rpciod"); | |
1065 | if (wq == NULL) { | |
1066 | printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error); | |
1067 | rpciod_users--; | |
1068 | goto out; | |
1069 | } | |
1070 | rpciod_workqueue = wq; | |
1071 | error = 0; | |
1072 | out: | |
1073 | up(&rpciod_sema); | |
1074 | return error; | |
1075 | } | |
1076 | ||
1077 | void | |
1078 | rpciod_down(void) | |
1079 | { | |
1080 | down(&rpciod_sema); | |
1081 | dprintk("rpciod_down sema %d\n", rpciod_users); | |
1082 | if (rpciod_users) { | |
1083 | if (--rpciod_users) | |
1084 | goto out; | |
1085 | } else | |
1086 | printk(KERN_WARNING "rpciod_down: no users??\n"); | |
1087 | ||
1088 | if (!rpciod_workqueue) { | |
1089 | dprintk("rpciod_down: Nothing to do!\n"); | |
1090 | goto out; | |
1091 | } | |
1092 | rpciod_killall(); | |
1093 | ||
1094 | destroy_workqueue(rpciod_workqueue); | |
1095 | rpciod_workqueue = NULL; | |
1096 | out: | |
1097 | up(&rpciod_sema); | |
1098 | } | |
1099 | ||
1100 | #ifdef RPC_DEBUG | |
1101 | void rpc_show_tasks(void) | |
1102 | { | |
1103 | struct list_head *le; | |
1104 | struct rpc_task *t; | |
1105 | ||
1106 | spin_lock(&rpc_sched_lock); | |
1107 | if (list_empty(&all_tasks)) { | |
1108 | spin_unlock(&rpc_sched_lock); | |
1109 | return; | |
1110 | } | |
1111 | printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout " | |
963d8fe5 | 1112 | "-rpcwait -action- ---ops--\n"); |
1da177e4 LT |
1113 | alltask_for_each(t, le, &all_tasks) { |
1114 | const char *rpc_waitq = "none"; | |
1115 | ||
1116 | if (RPC_IS_QUEUED(t)) | |
1117 | rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq); | |
1118 | ||
1119 | printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n", | |
1120 | t->tk_pid, | |
1121 | (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1), | |
1122 | t->tk_flags, t->tk_status, | |
1123 | t->tk_client, | |
1124 | (t->tk_client ? t->tk_client->cl_prog : 0), | |
1125 | t->tk_rqstp, t->tk_timeout, | |
1126 | rpc_waitq, | |
963d8fe5 | 1127 | t->tk_action, t->tk_ops); |
1da177e4 LT |
1128 | } |
1129 | spin_unlock(&rpc_sched_lock); | |
1130 | } | |
1131 | #endif | |
1132 | ||
1133 | void | |
1134 | rpc_destroy_mempool(void) | |
1135 | { | |
1136 | if (rpc_buffer_mempool) | |
1137 | mempool_destroy(rpc_buffer_mempool); | |
1138 | if (rpc_task_mempool) | |
1139 | mempool_destroy(rpc_task_mempool); | |
1140 | if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp)) | |
1141 | printk(KERN_INFO "rpc_task: not all structures were freed\n"); | |
1142 | if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp)) | |
1143 | printk(KERN_INFO "rpc_buffers: not all structures were freed\n"); | |
1144 | } | |
1145 | ||
1146 | int | |
1147 | rpc_init_mempool(void) | |
1148 | { | |
1149 | rpc_task_slabp = kmem_cache_create("rpc_tasks", | |
1150 | sizeof(struct rpc_task), | |
1151 | 0, SLAB_HWCACHE_ALIGN, | |
1152 | NULL, NULL); | |
1153 | if (!rpc_task_slabp) | |
1154 | goto err_nomem; | |
1155 | rpc_buffer_slabp = kmem_cache_create("rpc_buffers", | |
1156 | RPC_BUFFER_MAXSIZE, | |
1157 | 0, SLAB_HWCACHE_ALIGN, | |
1158 | NULL, NULL); | |
1159 | if (!rpc_buffer_slabp) | |
1160 | goto err_nomem; | |
1161 | rpc_task_mempool = mempool_create(RPC_TASK_POOLSIZE, | |
1162 | mempool_alloc_slab, | |
1163 | mempool_free_slab, | |
1164 | rpc_task_slabp); | |
1165 | if (!rpc_task_mempool) | |
1166 | goto err_nomem; | |
1167 | rpc_buffer_mempool = mempool_create(RPC_BUFFER_POOLSIZE, | |
1168 | mempool_alloc_slab, | |
1169 | mempool_free_slab, | |
1170 | rpc_buffer_slabp); | |
1171 | if (!rpc_buffer_mempool) | |
1172 | goto err_nomem; | |
1173 | return 0; | |
1174 | err_nomem: | |
1175 | rpc_destroy_mempool(); | |
1176 | return -ENOMEM; | |
1177 | } |