]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card | |
3 | * and other Tigon based cards. | |
4 | * | |
5 | * Copyright 1998-2002 by Jes Sorensen, <[email protected]>. | |
6 | * | |
7 | * Thanks to Alteon and 3Com for providing hardware and documentation | |
8 | * enabling me to write this driver. | |
9 | * | |
10 | * A mailing list for discussing the use of this driver has been | |
11 | * setup, please subscribe to the lists if you have any questions | |
12 | * about the driver. Send mail to [email protected] to | |
13 | * see how to subscribe. | |
14 | * | |
15 | * This program is free software; you can redistribute it and/or modify | |
16 | * it under the terms of the GNU General Public License as published by | |
17 | * the Free Software Foundation; either version 2 of the License, or | |
18 | * (at your option) any later version. | |
19 | * | |
20 | * Additional credits: | |
21 | * Pete Wyckoff <[email protected]>: Initial Linux/Alpha and trace | |
22 | * dump support. The trace dump support has not been | |
23 | * integrated yet however. | |
24 | * Troy Benjegerdes: Big Endian (PPC) patches. | |
25 | * Nate Stahl: Better out of memory handling and stats support. | |
26 | * Aman Singla: Nasty race between interrupt handler and tx code dealing | |
27 | * with 'testing the tx_ret_csm and setting tx_full' | |
28 | * David S. Miller <[email protected]>: conversion to new PCI dma mapping | |
29 | * infrastructure and Sparc support | |
30 | * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the | |
31 | * driver under Linux/Sparc64 | |
32 | * Matt Domsch <[email protected]>: Detect Alteon 1000baseT cards | |
33 | * ETHTOOL_GDRVINFO support | |
34 | * Chip Salzenberg <[email protected]>: Fix race condition between tx | |
35 | * handler and close() cleanup. | |
36 | * Ken Aaker <[email protected]>: Correct check for whether | |
37 | * memory mapped IO is enabled to | |
38 | * make the driver work on RS/6000. | |
39 | * Takayoshi Kouchi <[email protected]>: Identifying problem | |
40 | * where the driver would disable | |
41 | * bus master mode if it had to disable | |
42 | * write and invalidate. | |
43 | * Stephen Hack <[email protected]>: Fixed ace_set_mac_addr for little | |
44 | * endian systems. | |
45 | * Val Henson <[email protected]>: Reset Jumbo skb producer and | |
46 | * rx producer index when | |
47 | * flushing the Jumbo ring. | |
48 | * Hans Grobler <[email protected]>: Memory leak fixes in the | |
49 | * driver init path. | |
50 | * Grant Grundler <[email protected]>: PCI write posting fixes. | |
51 | */ | |
52 | ||
53 | #include <linux/config.h> | |
54 | #include <linux/module.h> | |
55 | #include <linux/moduleparam.h> | |
56 | #include <linux/version.h> | |
57 | #include <linux/types.h> | |
58 | #include <linux/errno.h> | |
59 | #include <linux/ioport.h> | |
60 | #include <linux/pci.h> | |
1e7f0bd8 | 61 | #include <linux/dma-mapping.h> |
1da177e4 LT |
62 | #include <linux/kernel.h> |
63 | #include <linux/netdevice.h> | |
64 | #include <linux/etherdevice.h> | |
65 | #include <linux/skbuff.h> | |
66 | #include <linux/init.h> | |
67 | #include <linux/delay.h> | |
68 | #include <linux/mm.h> | |
69 | #include <linux/highmem.h> | |
70 | #include <linux/sockios.h> | |
71 | ||
72 | #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) | |
73 | #include <linux/if_vlan.h> | |
74 | #endif | |
75 | ||
76 | #ifdef SIOCETHTOOL | |
77 | #include <linux/ethtool.h> | |
78 | #endif | |
79 | ||
80 | #include <net/sock.h> | |
81 | #include <net/ip.h> | |
82 | ||
83 | #include <asm/system.h> | |
84 | #include <asm/io.h> | |
85 | #include <asm/irq.h> | |
86 | #include <asm/byteorder.h> | |
87 | #include <asm/uaccess.h> | |
88 | ||
89 | ||
90 | #define DRV_NAME "acenic" | |
91 | ||
92 | #undef INDEX_DEBUG | |
93 | ||
94 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | |
95 | #define ACE_IS_TIGON_I(ap) 0 | |
96 | #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES | |
97 | #else | |
98 | #define ACE_IS_TIGON_I(ap) (ap->version == 1) | |
99 | #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries | |
100 | #endif | |
101 | ||
102 | #ifndef PCI_VENDOR_ID_ALTEON | |
103 | #define PCI_VENDOR_ID_ALTEON 0x12ae | |
104 | #endif | |
105 | #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE | |
106 | #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001 | |
107 | #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 | |
108 | #endif | |
109 | #ifndef PCI_DEVICE_ID_3COM_3C985 | |
110 | #define PCI_DEVICE_ID_3COM_3C985 0x0001 | |
111 | #endif | |
112 | #ifndef PCI_VENDOR_ID_NETGEAR | |
113 | #define PCI_VENDOR_ID_NETGEAR 0x1385 | |
114 | #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a | |
115 | #endif | |
116 | #ifndef PCI_DEVICE_ID_NETGEAR_GA620T | |
117 | #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a | |
118 | #endif | |
119 | ||
120 | ||
121 | /* | |
122 | * Farallon used the DEC vendor ID by mistake and they seem not | |
123 | * to care - stinky! | |
124 | */ | |
125 | #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX | |
126 | #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a | |
127 | #endif | |
128 | #ifndef PCI_DEVICE_ID_FARALLON_PN9100T | |
129 | #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa | |
130 | #endif | |
131 | #ifndef PCI_VENDOR_ID_SGI | |
132 | #define PCI_VENDOR_ID_SGI 0x10a9 | |
133 | #endif | |
134 | #ifndef PCI_DEVICE_ID_SGI_ACENIC | |
135 | #define PCI_DEVICE_ID_SGI_ACENIC 0x0009 | |
136 | #endif | |
137 | ||
138 | static struct pci_device_id acenic_pci_tbl[] = { | |
139 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, | |
140 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
141 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, | |
142 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
143 | { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, | |
144 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
145 | { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, | |
146 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
147 | { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, | |
148 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
149 | /* | |
150 | * Farallon used the DEC vendor ID on their cards incorrectly, | |
151 | * then later Alteon's ID. | |
152 | */ | |
153 | { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, | |
154 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
155 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, | |
156 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
157 | { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, | |
158 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
159 | { } | |
160 | }; | |
161 | MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); | |
162 | ||
163 | #ifndef SET_NETDEV_DEV | |
164 | #define SET_NETDEV_DEV(net, pdev) do{} while(0) | |
165 | #endif | |
166 | ||
167 | #if LINUX_VERSION_CODE >= 0x2051c | |
168 | #define ace_sync_irq(irq) synchronize_irq(irq) | |
169 | #else | |
170 | #define ace_sync_irq(irq) synchronize_irq() | |
171 | #endif | |
172 | ||
173 | #ifndef offset_in_page | |
174 | #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK) | |
175 | #endif | |
176 | ||
177 | #define ACE_MAX_MOD_PARMS 8 | |
178 | #define BOARD_IDX_STATIC 0 | |
179 | #define BOARD_IDX_OVERFLOW -1 | |
180 | ||
181 | #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \ | |
182 | defined(NETIF_F_HW_VLAN_RX) | |
183 | #define ACENIC_DO_VLAN 1 | |
184 | #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST | |
185 | #else | |
186 | #define ACENIC_DO_VLAN 0 | |
187 | #define ACE_RCB_VLAN_FLAG 0 | |
188 | #endif | |
189 | ||
190 | #include "acenic.h" | |
191 | ||
192 | /* | |
193 | * These must be defined before the firmware is included. | |
194 | */ | |
195 | #define MAX_TEXT_LEN 96*1024 | |
196 | #define MAX_RODATA_LEN 8*1024 | |
197 | #define MAX_DATA_LEN 2*1024 | |
198 | ||
199 | #include "acenic_firmware.h" | |
200 | ||
201 | #ifndef tigon2FwReleaseLocal | |
202 | #define tigon2FwReleaseLocal 0 | |
203 | #endif | |
204 | ||
205 | /* | |
206 | * This driver currently supports Tigon I and Tigon II based cards | |
207 | * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear | |
208 | * GA620. The driver should also work on the SGI, DEC and Farallon | |
209 | * versions of the card, however I have not been able to test that | |
210 | * myself. | |
211 | * | |
212 | * This card is really neat, it supports receive hardware checksumming | |
213 | * and jumbo frames (up to 9000 bytes) and does a lot of work in the | |
214 | * firmware. Also the programming interface is quite neat, except for | |
215 | * the parts dealing with the i2c eeprom on the card ;-) | |
216 | * | |
217 | * Using jumbo frames: | |
218 | * | |
219 | * To enable jumbo frames, simply specify an mtu between 1500 and 9000 | |
220 | * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time | |
221 | * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet | |
222 | * interface number and <MTU> being the MTU value. | |
223 | * | |
224 | * Module parameters: | |
225 | * | |
226 | * When compiled as a loadable module, the driver allows for a number | |
227 | * of module parameters to be specified. The driver supports the | |
228 | * following module parameters: | |
229 | * | |
230 | * trace=<val> - Firmware trace level. This requires special traced | |
231 | * firmware to replace the firmware supplied with | |
232 | * the driver - for debugging purposes only. | |
233 | * | |
234 | * link=<val> - Link state. Normally you want to use the default link | |
235 | * parameters set by the driver. This can be used to | |
236 | * override these in case your switch doesn't negotiate | |
237 | * the link properly. Valid values are: | |
238 | * 0x0001 - Force half duplex link. | |
239 | * 0x0002 - Do not negotiate line speed with the other end. | |
240 | * 0x0010 - 10Mbit/sec link. | |
241 | * 0x0020 - 100Mbit/sec link. | |
242 | * 0x0040 - 1000Mbit/sec link. | |
243 | * 0x0100 - Do not negotiate flow control. | |
244 | * 0x0200 - Enable RX flow control Y | |
245 | * 0x0400 - Enable TX flow control Y (Tigon II NICs only). | |
246 | * Default value is 0x0270, ie. enable link+flow | |
247 | * control negotiation. Negotiating the highest | |
248 | * possible link speed with RX flow control enabled. | |
249 | * | |
250 | * When disabling link speed negotiation, only one link | |
251 | * speed is allowed to be specified! | |
252 | * | |
253 | * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | |
254 | * to wait for more packets to arive before | |
255 | * interrupting the host, from the time the first | |
256 | * packet arrives. | |
257 | * | |
258 | * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | |
259 | * to wait for more packets to arive in the transmit ring, | |
260 | * before interrupting the host, after transmitting the | |
261 | * first packet in the ring. | |
262 | * | |
263 | * max_tx_desc=<val> - maximum number of transmit descriptors | |
264 | * (packets) transmitted before interrupting the host. | |
265 | * | |
266 | * max_rx_desc=<val> - maximum number of receive descriptors | |
267 | * (packets) received before interrupting the host. | |
268 | * | |
269 | * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th | |
270 | * increments of the NIC's on board memory to be used for | |
271 | * transmit and receive buffers. For the 1MB NIC app. 800KB | |
272 | * is available, on the 1/2MB NIC app. 300KB is available. | |
273 | * 68KB will always be available as a minimum for both | |
274 | * directions. The default value is a 50/50 split. | |
275 | * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate | |
276 | * operations, default (1) is to always disable this as | |
277 | * that is what Alteon does on NT. I have not been able | |
278 | * to measure any real performance differences with | |
279 | * this on my systems. Set <val>=0 if you want to | |
280 | * enable these operations. | |
281 | * | |
282 | * If you use more than one NIC, specify the parameters for the | |
283 | * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to | |
284 | * run tracing on NIC #2 but not on NIC #1 and #3. | |
285 | * | |
286 | * TODO: | |
287 | * | |
288 | * - Proper multicast support. | |
289 | * - NIC dump support. | |
290 | * - More tuning parameters. | |
291 | * | |
292 | * The mini ring is not used under Linux and I am not sure it makes sense | |
293 | * to actually use it. | |
294 | * | |
295 | * New interrupt handler strategy: | |
296 | * | |
297 | * The old interrupt handler worked using the traditional method of | |
298 | * replacing an skbuff with a new one when a packet arrives. However | |
299 | * the rx rings do not need to contain a static number of buffer | |
300 | * descriptors, thus it makes sense to move the memory allocation out | |
301 | * of the main interrupt handler and do it in a bottom half handler | |
302 | * and only allocate new buffers when the number of buffers in the | |
303 | * ring is below a certain threshold. In order to avoid starving the | |
304 | * NIC under heavy load it is however necessary to force allocation | |
305 | * when hitting a minimum threshold. The strategy for alloction is as | |
306 | * follows: | |
307 | * | |
308 | * RX_LOW_BUF_THRES - allocate buffers in the bottom half | |
309 | * RX_PANIC_LOW_THRES - we are very low on buffers, allocate | |
310 | * the buffers in the interrupt handler | |
311 | * RX_RING_THRES - maximum number of buffers in the rx ring | |
312 | * RX_MINI_THRES - maximum number of buffers in the mini ring | |
313 | * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring | |
314 | * | |
315 | * One advantagous side effect of this allocation approach is that the | |
316 | * entire rx processing can be done without holding any spin lock | |
317 | * since the rx rings and registers are totally independent of the tx | |
318 | * ring and its registers. This of course includes the kmalloc's of | |
319 | * new skb's. Thus start_xmit can run in parallel with rx processing | |
320 | * and the memory allocation on SMP systems. | |
321 | * | |
322 | * Note that running the skb reallocation in a bottom half opens up | |
323 | * another can of races which needs to be handled properly. In | |
324 | * particular it can happen that the interrupt handler tries to run | |
325 | * the reallocation while the bottom half is either running on another | |
326 | * CPU or was interrupted on the same CPU. To get around this the | |
327 | * driver uses bitops to prevent the reallocation routines from being | |
328 | * reentered. | |
329 | * | |
330 | * TX handling can also be done without holding any spin lock, wheee | |
331 | * this is fun! since tx_ret_csm is only written to by the interrupt | |
332 | * handler. The case to be aware of is when shutting down the device | |
333 | * and cleaning up where it is necessary to make sure that | |
334 | * start_xmit() is not running while this is happening. Well DaveM | |
335 | * informs me that this case is already protected against ... bye bye | |
336 | * Mr. Spin Lock, it was nice to know you. | |
337 | * | |
338 | * TX interrupts are now partly disabled so the NIC will only generate | |
339 | * TX interrupts for the number of coal ticks, not for the number of | |
340 | * TX packets in the queue. This should reduce the number of TX only, | |
341 | * ie. when no RX processing is done, interrupts seen. | |
342 | */ | |
343 | ||
344 | /* | |
345 | * Threshold values for RX buffer allocation - the low water marks for | |
346 | * when to start refilling the rings are set to 75% of the ring | |
347 | * sizes. It seems to make sense to refill the rings entirely from the | |
348 | * intrrupt handler once it gets below the panic threshold, that way | |
349 | * we don't risk that the refilling is moved to another CPU when the | |
350 | * one running the interrupt handler just got the slab code hot in its | |
351 | * cache. | |
352 | */ | |
353 | #define RX_RING_SIZE 72 | |
354 | #define RX_MINI_SIZE 64 | |
355 | #define RX_JUMBO_SIZE 48 | |
356 | ||
357 | #define RX_PANIC_STD_THRES 16 | |
358 | #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2 | |
359 | #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4 | |
360 | #define RX_PANIC_MINI_THRES 12 | |
361 | #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2 | |
362 | #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4 | |
363 | #define RX_PANIC_JUMBO_THRES 6 | |
364 | #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2 | |
365 | #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4 | |
366 | ||
367 | ||
368 | /* | |
369 | * Size of the mini ring entries, basically these just should be big | |
370 | * enough to take TCP ACKs | |
371 | */ | |
372 | #define ACE_MINI_SIZE 100 | |
373 | ||
374 | #define ACE_MINI_BUFSIZE ACE_MINI_SIZE | |
375 | #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4) | |
376 | #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4) | |
377 | ||
378 | /* | |
379 | * There seems to be a magic difference in the effect between 995 and 996 | |
380 | * but little difference between 900 and 995 ... no idea why. | |
381 | * | |
382 | * There is now a default set of tuning parameters which is set, depending | |
383 | * on whether or not the user enables Jumbo frames. It's assumed that if | |
384 | * Jumbo frames are enabled, the user wants optimal tuning for that case. | |
385 | */ | |
386 | #define DEF_TX_COAL 400 /* 996 */ | |
387 | #define DEF_TX_MAX_DESC 60 /* was 40 */ | |
388 | #define DEF_RX_COAL 120 /* 1000 */ | |
389 | #define DEF_RX_MAX_DESC 25 | |
390 | #define DEF_TX_RATIO 21 /* 24 */ | |
391 | ||
392 | #define DEF_JUMBO_TX_COAL 20 | |
393 | #define DEF_JUMBO_TX_MAX_DESC 60 | |
394 | #define DEF_JUMBO_RX_COAL 30 | |
395 | #define DEF_JUMBO_RX_MAX_DESC 6 | |
396 | #define DEF_JUMBO_TX_RATIO 21 | |
397 | ||
398 | #if tigon2FwReleaseLocal < 20001118 | |
399 | /* | |
400 | * Standard firmware and early modifications duplicate | |
401 | * IRQ load without this flag (coal timer is never reset). | |
402 | * Note that with this flag tx_coal should be less than | |
403 | * time to xmit full tx ring. | |
404 | * 400usec is not so bad for tx ring size of 128. | |
405 | */ | |
406 | #define TX_COAL_INTS_ONLY 1 /* worth it */ | |
407 | #else | |
408 | /* | |
409 | * With modified firmware, this is not necessary, but still useful. | |
410 | */ | |
411 | #define TX_COAL_INTS_ONLY 1 | |
412 | #endif | |
413 | ||
414 | #define DEF_TRACE 0 | |
415 | #define DEF_STAT (2 * TICKS_PER_SEC) | |
416 | ||
417 | ||
418 | static int link[ACE_MAX_MOD_PARMS]; | |
419 | static int trace[ACE_MAX_MOD_PARMS]; | |
420 | static int tx_coal_tick[ACE_MAX_MOD_PARMS]; | |
421 | static int rx_coal_tick[ACE_MAX_MOD_PARMS]; | |
422 | static int max_tx_desc[ACE_MAX_MOD_PARMS]; | |
423 | static int max_rx_desc[ACE_MAX_MOD_PARMS]; | |
424 | static int tx_ratio[ACE_MAX_MOD_PARMS]; | |
425 | static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; | |
426 | ||
427 | MODULE_AUTHOR("Jes Sorensen <[email protected]>"); | |
428 | MODULE_LICENSE("GPL"); | |
429 | MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); | |
430 | ||
431 | module_param_array(link, int, NULL, 0); | |
432 | module_param_array(trace, int, NULL, 0); | |
433 | module_param_array(tx_coal_tick, int, NULL, 0); | |
434 | module_param_array(max_tx_desc, int, NULL, 0); | |
435 | module_param_array(rx_coal_tick, int, NULL, 0); | |
436 | module_param_array(max_rx_desc, int, NULL, 0); | |
437 | module_param_array(tx_ratio, int, NULL, 0); | |
438 | MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); | |
439 | MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); | |
440 | MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); | |
441 | MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); | |
442 | MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); | |
443 | MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); | |
444 | MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); | |
445 | ||
446 | ||
447 | static char version[] __devinitdata = | |
448 | "acenic.c: v0.92 08/05/2002 Jes Sorensen, [email protected]\n" | |
449 | " http://home.cern.ch/~jes/gige/acenic.html\n"; | |
450 | ||
451 | static int ace_get_settings(struct net_device *, struct ethtool_cmd *); | |
452 | static int ace_set_settings(struct net_device *, struct ethtool_cmd *); | |
453 | static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); | |
454 | ||
455 | static struct ethtool_ops ace_ethtool_ops = { | |
456 | .get_settings = ace_get_settings, | |
457 | .set_settings = ace_set_settings, | |
458 | .get_drvinfo = ace_get_drvinfo, | |
459 | }; | |
460 | ||
461 | static void ace_watchdog(struct net_device *dev); | |
462 | ||
463 | static int __devinit acenic_probe_one(struct pci_dev *pdev, | |
464 | const struct pci_device_id *id) | |
465 | { | |
466 | struct net_device *dev; | |
467 | struct ace_private *ap; | |
468 | static int boards_found; | |
469 | ||
470 | dev = alloc_etherdev(sizeof(struct ace_private)); | |
471 | if (dev == NULL) { | |
472 | printk(KERN_ERR "acenic: Unable to allocate " | |
473 | "net_device structure!\n"); | |
474 | return -ENOMEM; | |
475 | } | |
476 | ||
477 | SET_MODULE_OWNER(dev); | |
478 | SET_NETDEV_DEV(dev, &pdev->dev); | |
479 | ||
480 | ap = dev->priv; | |
481 | ap->pdev = pdev; | |
482 | ap->name = pci_name(pdev); | |
483 | ||
484 | dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; | |
485 | #if ACENIC_DO_VLAN | |
486 | dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | |
487 | dev->vlan_rx_register = ace_vlan_rx_register; | |
488 | dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid; | |
489 | #endif | |
490 | if (1) { | |
491 | dev->tx_timeout = &ace_watchdog; | |
492 | dev->watchdog_timeo = 5*HZ; | |
493 | } | |
494 | ||
495 | dev->open = &ace_open; | |
496 | dev->stop = &ace_close; | |
497 | dev->hard_start_xmit = &ace_start_xmit; | |
498 | dev->get_stats = &ace_get_stats; | |
499 | dev->set_multicast_list = &ace_set_multicast_list; | |
500 | SET_ETHTOOL_OPS(dev, &ace_ethtool_ops); | |
501 | dev->set_mac_address = &ace_set_mac_addr; | |
502 | dev->change_mtu = &ace_change_mtu; | |
503 | ||
504 | /* we only display this string ONCE */ | |
505 | if (!boards_found) | |
506 | printk(version); | |
507 | ||
508 | if (pci_enable_device(pdev)) | |
509 | goto fail_free_netdev; | |
510 | ||
511 | /* | |
512 | * Enable master mode before we start playing with the | |
513 | * pci_command word since pci_set_master() will modify | |
514 | * it. | |
515 | */ | |
516 | pci_set_master(pdev); | |
517 | ||
518 | pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); | |
519 | ||
520 | /* OpenFirmware on Mac's does not set this - DOH.. */ | |
521 | if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { | |
522 | printk(KERN_INFO "%s: Enabling PCI Memory Mapped " | |
523 | "access - was not enabled by BIOS/Firmware\n", | |
524 | ap->name); | |
525 | ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; | |
526 | pci_write_config_word(ap->pdev, PCI_COMMAND, | |
527 | ap->pci_command); | |
528 | wmb(); | |
529 | } | |
530 | ||
531 | pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); | |
532 | if (ap->pci_latency <= 0x40) { | |
533 | ap->pci_latency = 0x40; | |
534 | pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); | |
535 | } | |
536 | ||
537 | /* | |
538 | * Remap the regs into kernel space - this is abuse of | |
539 | * dev->base_addr since it was means for I/O port | |
540 | * addresses but who gives a damn. | |
541 | */ | |
542 | dev->base_addr = pci_resource_start(pdev, 0); | |
543 | ap->regs = ioremap(dev->base_addr, 0x4000); | |
544 | if (!ap->regs) { | |
545 | printk(KERN_ERR "%s: Unable to map I/O register, " | |
546 | "AceNIC %i will be disabled.\n", | |
547 | ap->name, boards_found); | |
548 | goto fail_free_netdev; | |
549 | } | |
550 | ||
551 | switch(pdev->vendor) { | |
552 | case PCI_VENDOR_ID_ALTEON: | |
553 | if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { | |
554 | printk(KERN_INFO "%s: Farallon PN9100-T ", | |
555 | ap->name); | |
556 | } else { | |
557 | printk(KERN_INFO "%s: Alteon AceNIC ", | |
558 | ap->name); | |
559 | } | |
560 | break; | |
561 | case PCI_VENDOR_ID_3COM: | |
562 | printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); | |
563 | break; | |
564 | case PCI_VENDOR_ID_NETGEAR: | |
565 | printk(KERN_INFO "%s: NetGear GA620 ", ap->name); | |
566 | break; | |
567 | case PCI_VENDOR_ID_DEC: | |
568 | if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { | |
569 | printk(KERN_INFO "%s: Farallon PN9000-SX ", | |
570 | ap->name); | |
571 | break; | |
572 | } | |
573 | case PCI_VENDOR_ID_SGI: | |
574 | printk(KERN_INFO "%s: SGI AceNIC ", ap->name); | |
575 | break; | |
576 | default: | |
577 | printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); | |
578 | break; | |
579 | } | |
580 | ||
581 | printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); | |
582 | #ifdef __sparc__ | |
583 | printk("irq %s\n", __irq_itoa(pdev->irq)); | |
584 | #else | |
585 | printk("irq %i\n", pdev->irq); | |
586 | #endif | |
587 | ||
588 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | |
589 | if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { | |
590 | printk(KERN_ERR "%s: Driver compiled without Tigon I" | |
591 | " support - NIC disabled\n", dev->name); | |
592 | goto fail_uninit; | |
593 | } | |
594 | #endif | |
595 | ||
596 | if (ace_allocate_descriptors(dev)) | |
597 | goto fail_free_netdev; | |
598 | ||
599 | #ifdef MODULE | |
600 | if (boards_found >= ACE_MAX_MOD_PARMS) | |
601 | ap->board_idx = BOARD_IDX_OVERFLOW; | |
602 | else | |
603 | ap->board_idx = boards_found; | |
604 | #else | |
605 | ap->board_idx = BOARD_IDX_STATIC; | |
606 | #endif | |
607 | ||
608 | if (ace_init(dev)) | |
609 | goto fail_free_netdev; | |
610 | ||
611 | if (register_netdev(dev)) { | |
612 | printk(KERN_ERR "acenic: device registration failed\n"); | |
613 | goto fail_uninit; | |
614 | } | |
615 | ap->name = dev->name; | |
616 | ||
617 | if (ap->pci_using_dac) | |
618 | dev->features |= NETIF_F_HIGHDMA; | |
619 | ||
620 | pci_set_drvdata(pdev, dev); | |
621 | ||
622 | boards_found++; | |
623 | return 0; | |
624 | ||
625 | fail_uninit: | |
626 | ace_init_cleanup(dev); | |
627 | fail_free_netdev: | |
628 | free_netdev(dev); | |
629 | return -ENODEV; | |
630 | } | |
631 | ||
632 | static void __devexit acenic_remove_one(struct pci_dev *pdev) | |
633 | { | |
634 | struct net_device *dev = pci_get_drvdata(pdev); | |
635 | struct ace_private *ap = netdev_priv(dev); | |
636 | struct ace_regs __iomem *regs = ap->regs; | |
637 | short i; | |
638 | ||
639 | unregister_netdev(dev); | |
640 | ||
641 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | |
642 | if (ap->version >= 2) | |
643 | writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | |
644 | ||
645 | /* | |
646 | * This clears any pending interrupts | |
647 | */ | |
648 | writel(1, ®s->Mb0Lo); | |
649 | readl(®s->CpuCtrl); /* flush */ | |
650 | ||
651 | /* | |
652 | * Make sure no other CPUs are processing interrupts | |
653 | * on the card before the buffers are being released. | |
654 | * Otherwise one might experience some `interesting' | |
655 | * effects. | |
656 | * | |
657 | * Then release the RX buffers - jumbo buffers were | |
658 | * already released in ace_close(). | |
659 | */ | |
660 | ace_sync_irq(dev->irq); | |
661 | ||
662 | for (i = 0; i < RX_STD_RING_ENTRIES; i++) { | |
663 | struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; | |
664 | ||
665 | if (skb) { | |
666 | struct ring_info *ringp; | |
667 | dma_addr_t mapping; | |
668 | ||
669 | ringp = &ap->skb->rx_std_skbuff[i]; | |
670 | mapping = pci_unmap_addr(ringp, mapping); | |
671 | pci_unmap_page(ap->pdev, mapping, | |
672 | ACE_STD_BUFSIZE, | |
673 | PCI_DMA_FROMDEVICE); | |
674 | ||
675 | ap->rx_std_ring[i].size = 0; | |
676 | ap->skb->rx_std_skbuff[i].skb = NULL; | |
677 | dev_kfree_skb(skb); | |
678 | } | |
679 | } | |
680 | ||
681 | if (ap->version >= 2) { | |
682 | for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { | |
683 | struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; | |
684 | ||
685 | if (skb) { | |
686 | struct ring_info *ringp; | |
687 | dma_addr_t mapping; | |
688 | ||
689 | ringp = &ap->skb->rx_mini_skbuff[i]; | |
690 | mapping = pci_unmap_addr(ringp,mapping); | |
691 | pci_unmap_page(ap->pdev, mapping, | |
692 | ACE_MINI_BUFSIZE, | |
693 | PCI_DMA_FROMDEVICE); | |
694 | ||
695 | ap->rx_mini_ring[i].size = 0; | |
696 | ap->skb->rx_mini_skbuff[i].skb = NULL; | |
697 | dev_kfree_skb(skb); | |
698 | } | |
699 | } | |
700 | } | |
701 | ||
702 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | |
703 | struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; | |
704 | if (skb) { | |
705 | struct ring_info *ringp; | |
706 | dma_addr_t mapping; | |
707 | ||
708 | ringp = &ap->skb->rx_jumbo_skbuff[i]; | |
709 | mapping = pci_unmap_addr(ringp, mapping); | |
710 | pci_unmap_page(ap->pdev, mapping, | |
711 | ACE_JUMBO_BUFSIZE, | |
712 | PCI_DMA_FROMDEVICE); | |
713 | ||
714 | ap->rx_jumbo_ring[i].size = 0; | |
715 | ap->skb->rx_jumbo_skbuff[i].skb = NULL; | |
716 | dev_kfree_skb(skb); | |
717 | } | |
718 | } | |
719 | ||
720 | ace_init_cleanup(dev); | |
721 | free_netdev(dev); | |
722 | } | |
723 | ||
724 | static struct pci_driver acenic_pci_driver = { | |
725 | .name = "acenic", | |
726 | .id_table = acenic_pci_tbl, | |
727 | .probe = acenic_probe_one, | |
728 | .remove = __devexit_p(acenic_remove_one), | |
729 | }; | |
730 | ||
731 | static int __init acenic_init(void) | |
732 | { | |
733 | return pci_module_init(&acenic_pci_driver); | |
734 | } | |
735 | ||
736 | static void __exit acenic_exit(void) | |
737 | { | |
738 | pci_unregister_driver(&acenic_pci_driver); | |
739 | } | |
740 | ||
741 | module_init(acenic_init); | |
742 | module_exit(acenic_exit); | |
743 | ||
744 | static void ace_free_descriptors(struct net_device *dev) | |
745 | { | |
746 | struct ace_private *ap = netdev_priv(dev); | |
747 | int size; | |
748 | ||
749 | if (ap->rx_std_ring != NULL) { | |
750 | size = (sizeof(struct rx_desc) * | |
751 | (RX_STD_RING_ENTRIES + | |
752 | RX_JUMBO_RING_ENTRIES + | |
753 | RX_MINI_RING_ENTRIES + | |
754 | RX_RETURN_RING_ENTRIES)); | |
755 | pci_free_consistent(ap->pdev, size, ap->rx_std_ring, | |
756 | ap->rx_ring_base_dma); | |
757 | ap->rx_std_ring = NULL; | |
758 | ap->rx_jumbo_ring = NULL; | |
759 | ap->rx_mini_ring = NULL; | |
760 | ap->rx_return_ring = NULL; | |
761 | } | |
762 | if (ap->evt_ring != NULL) { | |
763 | size = (sizeof(struct event) * EVT_RING_ENTRIES); | |
764 | pci_free_consistent(ap->pdev, size, ap->evt_ring, | |
765 | ap->evt_ring_dma); | |
766 | ap->evt_ring = NULL; | |
767 | } | |
768 | if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { | |
769 | size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | |
770 | pci_free_consistent(ap->pdev, size, ap->tx_ring, | |
771 | ap->tx_ring_dma); | |
772 | } | |
773 | ap->tx_ring = NULL; | |
774 | ||
775 | if (ap->evt_prd != NULL) { | |
776 | pci_free_consistent(ap->pdev, sizeof(u32), | |
777 | (void *)ap->evt_prd, ap->evt_prd_dma); | |
778 | ap->evt_prd = NULL; | |
779 | } | |
780 | if (ap->rx_ret_prd != NULL) { | |
781 | pci_free_consistent(ap->pdev, sizeof(u32), | |
782 | (void *)ap->rx_ret_prd, | |
783 | ap->rx_ret_prd_dma); | |
784 | ap->rx_ret_prd = NULL; | |
785 | } | |
786 | if (ap->tx_csm != NULL) { | |
787 | pci_free_consistent(ap->pdev, sizeof(u32), | |
788 | (void *)ap->tx_csm, ap->tx_csm_dma); | |
789 | ap->tx_csm = NULL; | |
790 | } | |
791 | } | |
792 | ||
793 | ||
794 | static int ace_allocate_descriptors(struct net_device *dev) | |
795 | { | |
796 | struct ace_private *ap = netdev_priv(dev); | |
797 | int size; | |
798 | ||
799 | size = (sizeof(struct rx_desc) * | |
800 | (RX_STD_RING_ENTRIES + | |
801 | RX_JUMBO_RING_ENTRIES + | |
802 | RX_MINI_RING_ENTRIES + | |
803 | RX_RETURN_RING_ENTRIES)); | |
804 | ||
805 | ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size, | |
806 | &ap->rx_ring_base_dma); | |
807 | if (ap->rx_std_ring == NULL) | |
808 | goto fail; | |
809 | ||
810 | ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; | |
811 | ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; | |
812 | ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; | |
813 | ||
814 | size = (sizeof(struct event) * EVT_RING_ENTRIES); | |
815 | ||
816 | ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma); | |
817 | ||
818 | if (ap->evt_ring == NULL) | |
819 | goto fail; | |
820 | ||
821 | /* | |
822 | * Only allocate a host TX ring for the Tigon II, the Tigon I | |
823 | * has to use PCI registers for this ;-( | |
824 | */ | |
825 | if (!ACE_IS_TIGON_I(ap)) { | |
826 | size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | |
827 | ||
828 | ap->tx_ring = pci_alloc_consistent(ap->pdev, size, | |
829 | &ap->tx_ring_dma); | |
830 | ||
831 | if (ap->tx_ring == NULL) | |
832 | goto fail; | |
833 | } | |
834 | ||
835 | ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | |
836 | &ap->evt_prd_dma); | |
837 | if (ap->evt_prd == NULL) | |
838 | goto fail; | |
839 | ||
840 | ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | |
841 | &ap->rx_ret_prd_dma); | |
842 | if (ap->rx_ret_prd == NULL) | |
843 | goto fail; | |
844 | ||
845 | ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32), | |
846 | &ap->tx_csm_dma); | |
847 | if (ap->tx_csm == NULL) | |
848 | goto fail; | |
849 | ||
850 | return 0; | |
851 | ||
852 | fail: | |
853 | /* Clean up. */ | |
854 | ace_init_cleanup(dev); | |
855 | return 1; | |
856 | } | |
857 | ||
858 | ||
859 | /* | |
860 | * Generic cleanup handling data allocated during init. Used when the | |
861 | * module is unloaded or if an error occurs during initialization | |
862 | */ | |
863 | static void ace_init_cleanup(struct net_device *dev) | |
864 | { | |
865 | struct ace_private *ap; | |
866 | ||
867 | ap = netdev_priv(dev); | |
868 | ||
869 | ace_free_descriptors(dev); | |
870 | ||
871 | if (ap->info) | |
872 | pci_free_consistent(ap->pdev, sizeof(struct ace_info), | |
873 | ap->info, ap->info_dma); | |
b4558ea9 JJ |
874 | kfree(ap->skb); |
875 | kfree(ap->trace_buf); | |
1da177e4 LT |
876 | |
877 | if (dev->irq) | |
878 | free_irq(dev->irq, dev); | |
879 | ||
880 | iounmap(ap->regs); | |
881 | } | |
882 | ||
883 | ||
884 | /* | |
885 | * Commands are considered to be slow. | |
886 | */ | |
887 | static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) | |
888 | { | |
889 | u32 idx; | |
890 | ||
891 | idx = readl(®s->CmdPrd); | |
892 | ||
893 | writel(*(u32 *)(cmd), ®s->CmdRng[idx]); | |
894 | idx = (idx + 1) % CMD_RING_ENTRIES; | |
895 | ||
896 | writel(idx, ®s->CmdPrd); | |
897 | } | |
898 | ||
899 | ||
900 | static int __devinit ace_init(struct net_device *dev) | |
901 | { | |
902 | struct ace_private *ap; | |
903 | struct ace_regs __iomem *regs; | |
904 | struct ace_info *info = NULL; | |
905 | struct pci_dev *pdev; | |
906 | unsigned long myjif; | |
907 | u64 tmp_ptr; | |
908 | u32 tig_ver, mac1, mac2, tmp, pci_state; | |
909 | int board_idx, ecode = 0; | |
910 | short i; | |
911 | unsigned char cache_size; | |
912 | ||
913 | ap = netdev_priv(dev); | |
914 | regs = ap->regs; | |
915 | ||
916 | board_idx = ap->board_idx; | |
917 | ||
918 | /* | |
919 | * [email protected] - its useful to do a NIC reset here to | |
920 | * address the `Firmware not running' problem subsequent | |
921 | * to any crashes involving the NIC | |
922 | */ | |
923 | writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); | |
924 | readl(®s->HostCtrl); /* PCI write posting */ | |
925 | udelay(5); | |
926 | ||
927 | /* | |
928 | * Don't access any other registers before this point! | |
929 | */ | |
930 | #ifdef __BIG_ENDIAN | |
931 | /* | |
932 | * This will most likely need BYTE_SWAP once we switch | |
933 | * to using __raw_writel() | |
934 | */ | |
935 | writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), | |
936 | ®s->HostCtrl); | |
937 | #else | |
938 | writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), | |
939 | ®s->HostCtrl); | |
940 | #endif | |
941 | readl(®s->HostCtrl); /* PCI write posting */ | |
942 | ||
943 | /* | |
944 | * Stop the NIC CPU and clear pending interrupts | |
945 | */ | |
946 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | |
947 | readl(®s->CpuCtrl); /* PCI write posting */ | |
948 | writel(0, ®s->Mb0Lo); | |
949 | ||
950 | tig_ver = readl(®s->HostCtrl) >> 28; | |
951 | ||
952 | switch(tig_ver){ | |
953 | #ifndef CONFIG_ACENIC_OMIT_TIGON_I | |
954 | case 4: | |
955 | case 5: | |
956 | printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ", | |
957 | tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor, | |
958 | tigonFwReleaseFix); | |
959 | writel(0, ®s->LocalCtrl); | |
960 | ap->version = 1; | |
961 | ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; | |
962 | break; | |
963 | #endif | |
964 | case 6: | |
965 | printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ", | |
966 | tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor, | |
967 | tigon2FwReleaseFix); | |
968 | writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | |
969 | readl(®s->CpuBCtrl); /* PCI write posting */ | |
970 | /* | |
971 | * The SRAM bank size does _not_ indicate the amount | |
972 | * of memory on the card, it controls the _bank_ size! | |
973 | * Ie. a 1MB AceNIC will have two banks of 512KB. | |
974 | */ | |
975 | writel(SRAM_BANK_512K, ®s->LocalCtrl); | |
976 | writel(SYNC_SRAM_TIMING, ®s->MiscCfg); | |
977 | ap->version = 2; | |
978 | ap->tx_ring_entries = MAX_TX_RING_ENTRIES; | |
979 | break; | |
980 | default: | |
981 | printk(KERN_WARNING " Unsupported Tigon version detected " | |
982 | "(%i)\n", tig_ver); | |
983 | ecode = -ENODEV; | |
984 | goto init_error; | |
985 | } | |
986 | ||
987 | /* | |
988 | * ModeStat _must_ be set after the SRAM settings as this change | |
989 | * seems to corrupt the ModeStat and possible other registers. | |
990 | * The SRAM settings survive resets and setting it to the same | |
991 | * value a second time works as well. This is what caused the | |
992 | * `Firmware not running' problem on the Tigon II. | |
993 | */ | |
994 | #ifdef __BIG_ENDIAN | |
995 | writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | | |
996 | ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | |
997 | #else | |
998 | writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | | |
999 | ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | |
1000 | #endif | |
1001 | readl(®s->ModeStat); /* PCI write posting */ | |
1002 | ||
1003 | mac1 = 0; | |
1004 | for(i = 0; i < 4; i++) { | |
1005 | mac1 = mac1 << 8; | |
1006 | tmp = read_eeprom_byte(dev, 0x8c+i); | |
1007 | if (tmp < 0) { | |
1008 | ecode = -EIO; | |
1009 | goto init_error; | |
1010 | } else | |
1011 | mac1 |= (tmp & 0xff); | |
1012 | } | |
1013 | mac2 = 0; | |
1014 | for(i = 4; i < 8; i++) { | |
1015 | mac2 = mac2 << 8; | |
1016 | tmp = read_eeprom_byte(dev, 0x8c+i); | |
1017 | if (tmp < 0) { | |
1018 | ecode = -EIO; | |
1019 | goto init_error; | |
1020 | } else | |
1021 | mac2 |= (tmp & 0xff); | |
1022 | } | |
1023 | ||
1024 | writel(mac1, ®s->MacAddrHi); | |
1025 | writel(mac2, ®s->MacAddrLo); | |
1026 | ||
1027 | printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", | |
1028 | (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff, | |
1029 | (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff); | |
1030 | ||
1031 | dev->dev_addr[0] = (mac1 >> 8) & 0xff; | |
1032 | dev->dev_addr[1] = mac1 & 0xff; | |
1033 | dev->dev_addr[2] = (mac2 >> 24) & 0xff; | |
1034 | dev->dev_addr[3] = (mac2 >> 16) & 0xff; | |
1035 | dev->dev_addr[4] = (mac2 >> 8) & 0xff; | |
1036 | dev->dev_addr[5] = mac2 & 0xff; | |
1037 | ||
1038 | /* | |
1039 | * Looks like this is necessary to deal with on all architectures, | |
1040 | * even this %$#%$# N440BX Intel based thing doesn't get it right. | |
1041 | * Ie. having two NICs in the machine, one will have the cache | |
1042 | * line set at boot time, the other will not. | |
1043 | */ | |
1044 | pdev = ap->pdev; | |
1045 | pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); | |
1046 | cache_size <<= 2; | |
1047 | if (cache_size != SMP_CACHE_BYTES) { | |
1048 | printk(KERN_INFO " PCI cache line size set incorrectly " | |
1049 | "(%i bytes) by BIOS/FW, ", cache_size); | |
1050 | if (cache_size > SMP_CACHE_BYTES) | |
1051 | printk("expecting %i\n", SMP_CACHE_BYTES); | |
1052 | else { | |
1053 | printk("correcting to %i\n", SMP_CACHE_BYTES); | |
1054 | pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, | |
1055 | SMP_CACHE_BYTES >> 2); | |
1056 | } | |
1057 | } | |
1058 | ||
1059 | pci_state = readl(®s->PciState); | |
1060 | printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, " | |
1061 | "latency: %i clks\n", | |
1062 | (pci_state & PCI_32BIT) ? 32 : 64, | |
1063 | (pci_state & PCI_66MHZ) ? 66 : 33, | |
1064 | ap->pci_latency); | |
1065 | ||
1066 | /* | |
1067 | * Set the max DMA transfer size. Seems that for most systems | |
1068 | * the performance is better when no MAX parameter is | |
1069 | * set. However for systems enabling PCI write and invalidate, | |
1070 | * DMA writes must be set to the L1 cache line size to get | |
1071 | * optimal performance. | |
1072 | * | |
1073 | * The default is now to turn the PCI write and invalidate off | |
1074 | * - that is what Alteon does for NT. | |
1075 | */ | |
1076 | tmp = READ_CMD_MEM | WRITE_CMD_MEM; | |
1077 | if (ap->version >= 2) { | |
1078 | tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); | |
1079 | /* | |
1080 | * Tuning parameters only supported for 8 cards | |
1081 | */ | |
1082 | if (board_idx == BOARD_IDX_OVERFLOW || | |
1083 | dis_pci_mem_inval[board_idx]) { | |
1084 | if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | |
1085 | ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | |
1086 | pci_write_config_word(pdev, PCI_COMMAND, | |
1087 | ap->pci_command); | |
1088 | printk(KERN_INFO " Disabling PCI memory " | |
1089 | "write and invalidate\n"); | |
1090 | } | |
1091 | } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | |
1092 | printk(KERN_INFO " PCI memory write & invalidate " | |
1093 | "enabled by BIOS, enabling counter measures\n"); | |
1094 | ||
1095 | switch(SMP_CACHE_BYTES) { | |
1096 | case 16: | |
1097 | tmp |= DMA_WRITE_MAX_16; | |
1098 | break; | |
1099 | case 32: | |
1100 | tmp |= DMA_WRITE_MAX_32; | |
1101 | break; | |
1102 | case 64: | |
1103 | tmp |= DMA_WRITE_MAX_64; | |
1104 | break; | |
1105 | case 128: | |
1106 | tmp |= DMA_WRITE_MAX_128; | |
1107 | break; | |
1108 | default: | |
1109 | printk(KERN_INFO " Cache line size %i not " | |
1110 | "supported, PCI write and invalidate " | |
1111 | "disabled\n", SMP_CACHE_BYTES); | |
1112 | ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | |
1113 | pci_write_config_word(pdev, PCI_COMMAND, | |
1114 | ap->pci_command); | |
1115 | } | |
1116 | } | |
1117 | } | |
1118 | ||
1119 | #ifdef __sparc__ | |
1120 | /* | |
1121 | * On this platform, we know what the best dma settings | |
1122 | * are. We use 64-byte maximum bursts, because if we | |
1123 | * burst larger than the cache line size (or even cross | |
1124 | * a 64byte boundary in a single burst) the UltraSparc | |
1125 | * PCI controller will disconnect at 64-byte multiples. | |
1126 | * | |
1127 | * Read-multiple will be properly enabled above, and when | |
1128 | * set will give the PCI controller proper hints about | |
1129 | * prefetching. | |
1130 | */ | |
1131 | tmp &= ~DMA_READ_WRITE_MASK; | |
1132 | tmp |= DMA_READ_MAX_64; | |
1133 | tmp |= DMA_WRITE_MAX_64; | |
1134 | #endif | |
1135 | #ifdef __alpha__ | |
1136 | tmp &= ~DMA_READ_WRITE_MASK; | |
1137 | tmp |= DMA_READ_MAX_128; | |
1138 | /* | |
1139 | * All the docs say MUST NOT. Well, I did. | |
1140 | * Nothing terrible happens, if we load wrong size. | |
1141 | * Bit w&i still works better! | |
1142 | */ | |
1143 | tmp |= DMA_WRITE_MAX_128; | |
1144 | #endif | |
1145 | writel(tmp, ®s->PciState); | |
1146 | ||
1147 | #if 0 | |
1148 | /* | |
1149 | * The Host PCI bus controller driver has to set FBB. | |
1150 | * If all devices on that PCI bus support FBB, then the controller | |
1151 | * can enable FBB support in the Host PCI Bus controller (or on | |
1152 | * the PCI-PCI bridge if that applies). | |
1153 | * -ggg | |
1154 | */ | |
1155 | /* | |
1156 | * I have received reports from people having problems when this | |
1157 | * bit is enabled. | |
1158 | */ | |
1159 | if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { | |
1160 | printk(KERN_INFO " Enabling PCI Fast Back to Back\n"); | |
1161 | ap->pci_command |= PCI_COMMAND_FAST_BACK; | |
1162 | pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); | |
1163 | } | |
1164 | #endif | |
1165 | ||
1166 | /* | |
1167 | * Configure DMA attributes. | |
1168 | */ | |
1e7f0bd8 | 1169 | if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { |
1da177e4 | 1170 | ap->pci_using_dac = 1; |
1e7f0bd8 | 1171 | } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { |
1da177e4 LT |
1172 | ap->pci_using_dac = 0; |
1173 | } else { | |
1174 | ecode = -ENODEV; | |
1175 | goto init_error; | |
1176 | } | |
1177 | ||
1178 | /* | |
1179 | * Initialize the generic info block and the command+event rings | |
1180 | * and the control blocks for the transmit and receive rings | |
1181 | * as they need to be setup once and for all. | |
1182 | */ | |
1183 | if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info), | |
1184 | &ap->info_dma))) { | |
1185 | ecode = -EAGAIN; | |
1186 | goto init_error; | |
1187 | } | |
1188 | ap->info = info; | |
1189 | ||
1190 | /* | |
1191 | * Get the memory for the skb rings. | |
1192 | */ | |
1193 | if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) { | |
1194 | ecode = -EAGAIN; | |
1195 | goto init_error; | |
1196 | } | |
1197 | ||
1198 | ecode = request_irq(pdev->irq, ace_interrupt, SA_SHIRQ, | |
1199 | DRV_NAME, dev); | |
1200 | if (ecode) { | |
1201 | printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", | |
1202 | DRV_NAME, pdev->irq); | |
1203 | goto init_error; | |
1204 | } else | |
1205 | dev->irq = pdev->irq; | |
1206 | ||
1207 | #ifdef INDEX_DEBUG | |
1208 | spin_lock_init(&ap->debug_lock); | |
1209 | ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; | |
1210 | ap->last_std_rx = 0; | |
1211 | ap->last_mini_rx = 0; | |
1212 | #endif | |
1213 | ||
1214 | memset(ap->info, 0, sizeof(struct ace_info)); | |
1215 | memset(ap->skb, 0, sizeof(struct ace_skb)); | |
1216 | ||
1217 | ace_load_firmware(dev); | |
1218 | ap->fw_running = 0; | |
1219 | ||
1220 | tmp_ptr = ap->info_dma; | |
1221 | writel(tmp_ptr >> 32, ®s->InfoPtrHi); | |
1222 | writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); | |
1223 | ||
1224 | memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); | |
1225 | ||
1226 | set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); | |
1227 | info->evt_ctrl.flags = 0; | |
1228 | ||
1229 | *(ap->evt_prd) = 0; | |
1230 | wmb(); | |
1231 | set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); | |
1232 | writel(0, ®s->EvtCsm); | |
1233 | ||
1234 | set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); | |
1235 | info->cmd_ctrl.flags = 0; | |
1236 | info->cmd_ctrl.max_len = 0; | |
1237 | ||
1238 | for (i = 0; i < CMD_RING_ENTRIES; i++) | |
1239 | writel(0, ®s->CmdRng[i]); | |
1240 | ||
1241 | writel(0, ®s->CmdPrd); | |
1242 | writel(0, ®s->CmdCsm); | |
1243 | ||
1244 | tmp_ptr = ap->info_dma; | |
1245 | tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); | |
1246 | set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); | |
1247 | ||
1248 | set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); | |
1249 | info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; | |
1250 | info->rx_std_ctrl.flags = | |
1251 | RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | |
1252 | ||
1253 | memset(ap->rx_std_ring, 0, | |
1254 | RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); | |
1255 | ||
1256 | for (i = 0; i < RX_STD_RING_ENTRIES; i++) | |
1257 | ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; | |
1258 | ||
1259 | ap->rx_std_skbprd = 0; | |
1260 | atomic_set(&ap->cur_rx_bufs, 0); | |
1261 | ||
1262 | set_aceaddr(&info->rx_jumbo_ctrl.rngptr, | |
1263 | (ap->rx_ring_base_dma + | |
1264 | (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); | |
1265 | info->rx_jumbo_ctrl.max_len = 0; | |
1266 | info->rx_jumbo_ctrl.flags = | |
1267 | RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | |
1268 | ||
1269 | memset(ap->rx_jumbo_ring, 0, | |
1270 | RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); | |
1271 | ||
1272 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) | |
1273 | ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; | |
1274 | ||
1275 | ap->rx_jumbo_skbprd = 0; | |
1276 | atomic_set(&ap->cur_jumbo_bufs, 0); | |
1277 | ||
1278 | memset(ap->rx_mini_ring, 0, | |
1279 | RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); | |
1280 | ||
1281 | if (ap->version >= 2) { | |
1282 | set_aceaddr(&info->rx_mini_ctrl.rngptr, | |
1283 | (ap->rx_ring_base_dma + | |
1284 | (sizeof(struct rx_desc) * | |
1285 | (RX_STD_RING_ENTRIES + | |
1286 | RX_JUMBO_RING_ENTRIES)))); | |
1287 | info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; | |
1288 | info->rx_mini_ctrl.flags = | |
1289 | RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG; | |
1290 | ||
1291 | for (i = 0; i < RX_MINI_RING_ENTRIES; i++) | |
1292 | ap->rx_mini_ring[i].flags = | |
1293 | BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; | |
1294 | } else { | |
1295 | set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); | |
1296 | info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; | |
1297 | info->rx_mini_ctrl.max_len = 0; | |
1298 | } | |
1299 | ||
1300 | ap->rx_mini_skbprd = 0; | |
1301 | atomic_set(&ap->cur_mini_bufs, 0); | |
1302 | ||
1303 | set_aceaddr(&info->rx_return_ctrl.rngptr, | |
1304 | (ap->rx_ring_base_dma + | |
1305 | (sizeof(struct rx_desc) * | |
1306 | (RX_STD_RING_ENTRIES + | |
1307 | RX_JUMBO_RING_ENTRIES + | |
1308 | RX_MINI_RING_ENTRIES)))); | |
1309 | info->rx_return_ctrl.flags = 0; | |
1310 | info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; | |
1311 | ||
1312 | memset(ap->rx_return_ring, 0, | |
1313 | RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); | |
1314 | ||
1315 | set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); | |
1316 | *(ap->rx_ret_prd) = 0; | |
1317 | ||
1318 | writel(TX_RING_BASE, ®s->WinBase); | |
1319 | ||
1320 | if (ACE_IS_TIGON_I(ap)) { | |
1321 | ap->tx_ring = (struct tx_desc *) regs->Window; | |
1322 | for (i = 0; i < (TIGON_I_TX_RING_ENTRIES | |
1323 | * sizeof(struct tx_desc)) / sizeof(u32); i++) | |
1324 | writel(0, (void __iomem *)ap->tx_ring + i * 4); | |
1325 | ||
1326 | set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); | |
1327 | } else { | |
1328 | memset(ap->tx_ring, 0, | |
1329 | MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); | |
1330 | ||
1331 | set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); | |
1332 | } | |
1333 | ||
1334 | info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); | |
1335 | tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | |
1336 | ||
1337 | /* | |
1338 | * The Tigon I does not like having the TX ring in host memory ;-( | |
1339 | */ | |
1340 | if (!ACE_IS_TIGON_I(ap)) | |
1341 | tmp |= RCB_FLG_TX_HOST_RING; | |
1342 | #if TX_COAL_INTS_ONLY | |
1343 | tmp |= RCB_FLG_COAL_INT_ONLY; | |
1344 | #endif | |
1345 | info->tx_ctrl.flags = tmp; | |
1346 | ||
1347 | set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); | |
1348 | ||
1349 | /* | |
1350 | * Potential item for tuning parameter | |
1351 | */ | |
1352 | #if 0 /* NO */ | |
1353 | writel(DMA_THRESH_16W, ®s->DmaReadCfg); | |
1354 | writel(DMA_THRESH_16W, ®s->DmaWriteCfg); | |
1355 | #else | |
1356 | writel(DMA_THRESH_8W, ®s->DmaReadCfg); | |
1357 | writel(DMA_THRESH_8W, ®s->DmaWriteCfg); | |
1358 | #endif | |
1359 | ||
1360 | writel(0, ®s->MaskInt); | |
1361 | writel(1, ®s->IfIdx); | |
1362 | #if 0 | |
1363 | /* | |
1364 | * McKinley boxes do not like us fiddling with AssistState | |
1365 | * this early | |
1366 | */ | |
1367 | writel(1, ®s->AssistState); | |
1368 | #endif | |
1369 | ||
1370 | writel(DEF_STAT, ®s->TuneStatTicks); | |
1371 | writel(DEF_TRACE, ®s->TuneTrace); | |
1372 | ||
1373 | ace_set_rxtx_parms(dev, 0); | |
1374 | ||
1375 | if (board_idx == BOARD_IDX_OVERFLOW) { | |
1376 | printk(KERN_WARNING "%s: more than %i NICs detected, " | |
1377 | "ignoring module parameters!\n", | |
1378 | ap->name, ACE_MAX_MOD_PARMS); | |
1379 | } else if (board_idx >= 0) { | |
1380 | if (tx_coal_tick[board_idx]) | |
1381 | writel(tx_coal_tick[board_idx], | |
1382 | ®s->TuneTxCoalTicks); | |
1383 | if (max_tx_desc[board_idx]) | |
1384 | writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); | |
1385 | ||
1386 | if (rx_coal_tick[board_idx]) | |
1387 | writel(rx_coal_tick[board_idx], | |
1388 | ®s->TuneRxCoalTicks); | |
1389 | if (max_rx_desc[board_idx]) | |
1390 | writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); | |
1391 | ||
1392 | if (trace[board_idx]) | |
1393 | writel(trace[board_idx], ®s->TuneTrace); | |
1394 | ||
1395 | if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) | |
1396 | writel(tx_ratio[board_idx], ®s->TxBufRat); | |
1397 | } | |
1398 | ||
1399 | /* | |
1400 | * Default link parameters | |
1401 | */ | |
1402 | tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | | |
1403 | LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; | |
1404 | if(ap->version >= 2) | |
1405 | tmp |= LNK_TX_FLOW_CTL_Y; | |
1406 | ||
1407 | /* | |
1408 | * Override link default parameters | |
1409 | */ | |
1410 | if ((board_idx >= 0) && link[board_idx]) { | |
1411 | int option = link[board_idx]; | |
1412 | ||
1413 | tmp = LNK_ENABLE; | |
1414 | ||
1415 | if (option & 0x01) { | |
1416 | printk(KERN_INFO "%s: Setting half duplex link\n", | |
1417 | ap->name); | |
1418 | tmp &= ~LNK_FULL_DUPLEX; | |
1419 | } | |
1420 | if (option & 0x02) | |
1421 | tmp &= ~LNK_NEGOTIATE; | |
1422 | if (option & 0x10) | |
1423 | tmp |= LNK_10MB; | |
1424 | if (option & 0x20) | |
1425 | tmp |= LNK_100MB; | |
1426 | if (option & 0x40) | |
1427 | tmp |= LNK_1000MB; | |
1428 | if ((option & 0x70) == 0) { | |
1429 | printk(KERN_WARNING "%s: No media speed specified, " | |
1430 | "forcing auto negotiation\n", ap->name); | |
1431 | tmp |= LNK_NEGOTIATE | LNK_1000MB | | |
1432 | LNK_100MB | LNK_10MB; | |
1433 | } | |
1434 | if ((option & 0x100) == 0) | |
1435 | tmp |= LNK_NEG_FCTL; | |
1436 | else | |
1437 | printk(KERN_INFO "%s: Disabling flow control " | |
1438 | "negotiation\n", ap->name); | |
1439 | if (option & 0x200) | |
1440 | tmp |= LNK_RX_FLOW_CTL_Y; | |
1441 | if ((option & 0x400) && (ap->version >= 2)) { | |
1442 | printk(KERN_INFO "%s: Enabling TX flow control\n", | |
1443 | ap->name); | |
1444 | tmp |= LNK_TX_FLOW_CTL_Y; | |
1445 | } | |
1446 | } | |
1447 | ||
1448 | ap->link = tmp; | |
1449 | writel(tmp, ®s->TuneLink); | |
1450 | if (ap->version >= 2) | |
1451 | writel(tmp, ®s->TuneFastLink); | |
1452 | ||
1453 | if (ACE_IS_TIGON_I(ap)) | |
1454 | writel(tigonFwStartAddr, ®s->Pc); | |
1455 | if (ap->version == 2) | |
1456 | writel(tigon2FwStartAddr, ®s->Pc); | |
1457 | ||
1458 | writel(0, ®s->Mb0Lo); | |
1459 | ||
1460 | /* | |
1461 | * Set tx_csm before we start receiving interrupts, otherwise | |
1462 | * the interrupt handler might think it is supposed to process | |
1463 | * tx ints before we are up and running, which may cause a null | |
1464 | * pointer access in the int handler. | |
1465 | */ | |
1466 | ap->cur_rx = 0; | |
1467 | ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; | |
1468 | ||
1469 | wmb(); | |
1470 | ace_set_txprd(regs, ap, 0); | |
1471 | writel(0, ®s->RxRetCsm); | |
1472 | ||
1473 | /* | |
1474 | * Zero the stats before starting the interface | |
1475 | */ | |
1476 | memset(&ap->stats, 0, sizeof(ap->stats)); | |
1477 | ||
1478 | /* | |
1479 | * Enable DMA engine now. | |
1480 | * If we do this sooner, Mckinley box pukes. | |
1481 | * I assume it's because Tigon II DMA engine wants to check | |
1482 | * *something* even before the CPU is started. | |
1483 | */ | |
1484 | writel(1, ®s->AssistState); /* enable DMA */ | |
1485 | ||
1486 | /* | |
1487 | * Start the NIC CPU | |
1488 | */ | |
1489 | writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); | |
1490 | readl(®s->CpuCtrl); | |
1491 | ||
1492 | /* | |
1493 | * Wait for the firmware to spin up - max 3 seconds. | |
1494 | */ | |
1495 | myjif = jiffies + 3 * HZ; | |
1496 | while (time_before(jiffies, myjif) && !ap->fw_running) | |
1497 | cpu_relax(); | |
1498 | ||
1499 | if (!ap->fw_running) { | |
1500 | printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); | |
1501 | ||
1502 | ace_dump_trace(ap); | |
1503 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | |
1504 | readl(®s->CpuCtrl); | |
1505 | ||
1506 | /* [email protected] - account for badly behaving firmware/NIC: | |
1507 | * - have observed that the NIC may continue to generate | |
1508 | * interrupts for some reason; attempt to stop it - halt | |
1509 | * second CPU for Tigon II cards, and also clear Mb0 | |
1510 | * - if we're a module, we'll fail to load if this was | |
1511 | * the only GbE card in the system => if the kernel does | |
1512 | * see an interrupt from the NIC, code to handle it is | |
1513 | * gone and OOps! - so free_irq also | |
1514 | */ | |
1515 | if (ap->version >= 2) | |
1516 | writel(readl(®s->CpuBCtrl) | CPU_HALT, | |
1517 | ®s->CpuBCtrl); | |
1518 | writel(0, ®s->Mb0Lo); | |
1519 | readl(®s->Mb0Lo); | |
1520 | ||
1521 | ecode = -EBUSY; | |
1522 | goto init_error; | |
1523 | } | |
1524 | ||
1525 | /* | |
1526 | * We load the ring here as there seem to be no way to tell the | |
1527 | * firmware to wipe the ring without re-initializing it. | |
1528 | */ | |
1529 | if (!test_and_set_bit(0, &ap->std_refill_busy)) | |
1530 | ace_load_std_rx_ring(ap, RX_RING_SIZE); | |
1531 | else | |
1532 | printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", | |
1533 | ap->name); | |
1534 | if (ap->version >= 2) { | |
1535 | if (!test_and_set_bit(0, &ap->mini_refill_busy)) | |
1536 | ace_load_mini_rx_ring(ap, RX_MINI_SIZE); | |
1537 | else | |
1538 | printk(KERN_ERR "%s: Someone is busy refilling " | |
1539 | "the RX mini ring\n", ap->name); | |
1540 | } | |
1541 | return 0; | |
1542 | ||
1543 | init_error: | |
1544 | ace_init_cleanup(dev); | |
1545 | return ecode; | |
1546 | } | |
1547 | ||
1548 | ||
1549 | static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) | |
1550 | { | |
1551 | struct ace_private *ap = netdev_priv(dev); | |
1552 | struct ace_regs __iomem *regs = ap->regs; | |
1553 | int board_idx = ap->board_idx; | |
1554 | ||
1555 | if (board_idx >= 0) { | |
1556 | if (!jumbo) { | |
1557 | if (!tx_coal_tick[board_idx]) | |
1558 | writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); | |
1559 | if (!max_tx_desc[board_idx]) | |
1560 | writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); | |
1561 | if (!rx_coal_tick[board_idx]) | |
1562 | writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); | |
1563 | if (!max_rx_desc[board_idx]) | |
1564 | writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); | |
1565 | if (!tx_ratio[board_idx]) | |
1566 | writel(DEF_TX_RATIO, ®s->TxBufRat); | |
1567 | } else { | |
1568 | if (!tx_coal_tick[board_idx]) | |
1569 | writel(DEF_JUMBO_TX_COAL, | |
1570 | ®s->TuneTxCoalTicks); | |
1571 | if (!max_tx_desc[board_idx]) | |
1572 | writel(DEF_JUMBO_TX_MAX_DESC, | |
1573 | ®s->TuneMaxTxDesc); | |
1574 | if (!rx_coal_tick[board_idx]) | |
1575 | writel(DEF_JUMBO_RX_COAL, | |
1576 | ®s->TuneRxCoalTicks); | |
1577 | if (!max_rx_desc[board_idx]) | |
1578 | writel(DEF_JUMBO_RX_MAX_DESC, | |
1579 | ®s->TuneMaxRxDesc); | |
1580 | if (!tx_ratio[board_idx]) | |
1581 | writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); | |
1582 | } | |
1583 | } | |
1584 | } | |
1585 | ||
1586 | ||
1587 | static void ace_watchdog(struct net_device *data) | |
1588 | { | |
1589 | struct net_device *dev = data; | |
1590 | struct ace_private *ap = netdev_priv(dev); | |
1591 | struct ace_regs __iomem *regs = ap->regs; | |
1592 | ||
1593 | /* | |
1594 | * We haven't received a stats update event for more than 2.5 | |
1595 | * seconds and there is data in the transmit queue, thus we | |
1596 | * asume the card is stuck. | |
1597 | */ | |
1598 | if (*ap->tx_csm != ap->tx_ret_csm) { | |
1599 | printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", | |
1600 | dev->name, (unsigned int)readl(®s->HostCtrl)); | |
1601 | /* This can happen due to ieee flow control. */ | |
1602 | } else { | |
1603 | printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", | |
1604 | dev->name); | |
1605 | #if 0 | |
1606 | netif_wake_queue(dev); | |
1607 | #endif | |
1608 | } | |
1609 | } | |
1610 | ||
1611 | ||
1612 | static void ace_tasklet(unsigned long dev) | |
1613 | { | |
1614 | struct ace_private *ap = netdev_priv((struct net_device *)dev); | |
1615 | int cur_size; | |
1616 | ||
1617 | cur_size = atomic_read(&ap->cur_rx_bufs); | |
1618 | if ((cur_size < RX_LOW_STD_THRES) && | |
1619 | !test_and_set_bit(0, &ap->std_refill_busy)) { | |
1620 | #ifdef DEBUG | |
1621 | printk("refilling buffers (current %i)\n", cur_size); | |
1622 | #endif | |
1623 | ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size); | |
1624 | } | |
1625 | ||
1626 | if (ap->version >= 2) { | |
1627 | cur_size = atomic_read(&ap->cur_mini_bufs); | |
1628 | if ((cur_size < RX_LOW_MINI_THRES) && | |
1629 | !test_and_set_bit(0, &ap->mini_refill_busy)) { | |
1630 | #ifdef DEBUG | |
1631 | printk("refilling mini buffers (current %i)\n", | |
1632 | cur_size); | |
1633 | #endif | |
1634 | ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); | |
1635 | } | |
1636 | } | |
1637 | ||
1638 | cur_size = atomic_read(&ap->cur_jumbo_bufs); | |
1639 | if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && | |
1640 | !test_and_set_bit(0, &ap->jumbo_refill_busy)) { | |
1641 | #ifdef DEBUG | |
1642 | printk("refilling jumbo buffers (current %i)\n", cur_size); | |
1643 | #endif | |
1644 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); | |
1645 | } | |
1646 | ap->tasklet_pending = 0; | |
1647 | } | |
1648 | ||
1649 | ||
1650 | /* | |
1651 | * Copy the contents of the NIC's trace buffer to kernel memory. | |
1652 | */ | |
1653 | static void ace_dump_trace(struct ace_private *ap) | |
1654 | { | |
1655 | #if 0 | |
1656 | if (!ap->trace_buf) | |
1657 | if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) | |
1658 | return; | |
1659 | #endif | |
1660 | } | |
1661 | ||
1662 | ||
1663 | /* | |
1664 | * Load the standard rx ring. | |
1665 | * | |
1666 | * Loading rings is safe without holding the spin lock since this is | |
1667 | * done only before the device is enabled, thus no interrupts are | |
1668 | * generated and by the interrupt handler/tasklet handler. | |
1669 | */ | |
1670 | static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs) | |
1671 | { | |
1672 | struct ace_regs __iomem *regs = ap->regs; | |
1673 | short i, idx; | |
1674 | ||
1675 | ||
1676 | prefetchw(&ap->cur_rx_bufs); | |
1677 | ||
1678 | idx = ap->rx_std_skbprd; | |
1679 | ||
1680 | for (i = 0; i < nr_bufs; i++) { | |
1681 | struct sk_buff *skb; | |
1682 | struct rx_desc *rd; | |
1683 | dma_addr_t mapping; | |
1684 | ||
1685 | skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | |
1686 | if (!skb) | |
1687 | break; | |
1688 | ||
1689 | skb_reserve(skb, NET_IP_ALIGN); | |
1690 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | |
1691 | offset_in_page(skb->data), | |
1692 | ACE_STD_BUFSIZE, | |
1693 | PCI_DMA_FROMDEVICE); | |
1694 | ap->skb->rx_std_skbuff[idx].skb = skb; | |
1695 | pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], | |
1696 | mapping, mapping); | |
1697 | ||
1698 | rd = &ap->rx_std_ring[idx]; | |
1699 | set_aceaddr(&rd->addr, mapping); | |
1700 | rd->size = ACE_STD_BUFSIZE; | |
1701 | rd->idx = idx; | |
1702 | idx = (idx + 1) % RX_STD_RING_ENTRIES; | |
1703 | } | |
1704 | ||
1705 | if (!i) | |
1706 | goto error_out; | |
1707 | ||
1708 | atomic_add(i, &ap->cur_rx_bufs); | |
1709 | ap->rx_std_skbprd = idx; | |
1710 | ||
1711 | if (ACE_IS_TIGON_I(ap)) { | |
1712 | struct cmd cmd; | |
1713 | cmd.evt = C_SET_RX_PRD_IDX; | |
1714 | cmd.code = 0; | |
1715 | cmd.idx = ap->rx_std_skbprd; | |
1716 | ace_issue_cmd(regs, &cmd); | |
1717 | } else { | |
1718 | writel(idx, ®s->RxStdPrd); | |
1719 | wmb(); | |
1720 | } | |
1721 | ||
1722 | out: | |
1723 | clear_bit(0, &ap->std_refill_busy); | |
1724 | return; | |
1725 | ||
1726 | error_out: | |
1727 | printk(KERN_INFO "Out of memory when allocating " | |
1728 | "standard receive buffers\n"); | |
1729 | goto out; | |
1730 | } | |
1731 | ||
1732 | ||
1733 | static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs) | |
1734 | { | |
1735 | struct ace_regs __iomem *regs = ap->regs; | |
1736 | short i, idx; | |
1737 | ||
1738 | prefetchw(&ap->cur_mini_bufs); | |
1739 | ||
1740 | idx = ap->rx_mini_skbprd; | |
1741 | for (i = 0; i < nr_bufs; i++) { | |
1742 | struct sk_buff *skb; | |
1743 | struct rx_desc *rd; | |
1744 | dma_addr_t mapping; | |
1745 | ||
1746 | skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | |
1747 | if (!skb) | |
1748 | break; | |
1749 | ||
1750 | skb_reserve(skb, NET_IP_ALIGN); | |
1751 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | |
1752 | offset_in_page(skb->data), | |
1753 | ACE_MINI_BUFSIZE, | |
1754 | PCI_DMA_FROMDEVICE); | |
1755 | ap->skb->rx_mini_skbuff[idx].skb = skb; | |
1756 | pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], | |
1757 | mapping, mapping); | |
1758 | ||
1759 | rd = &ap->rx_mini_ring[idx]; | |
1760 | set_aceaddr(&rd->addr, mapping); | |
1761 | rd->size = ACE_MINI_BUFSIZE; | |
1762 | rd->idx = idx; | |
1763 | idx = (idx + 1) % RX_MINI_RING_ENTRIES; | |
1764 | } | |
1765 | ||
1766 | if (!i) | |
1767 | goto error_out; | |
1768 | ||
1769 | atomic_add(i, &ap->cur_mini_bufs); | |
1770 | ||
1771 | ap->rx_mini_skbprd = idx; | |
1772 | ||
1773 | writel(idx, ®s->RxMiniPrd); | |
1774 | wmb(); | |
1775 | ||
1776 | out: | |
1777 | clear_bit(0, &ap->mini_refill_busy); | |
1778 | return; | |
1779 | error_out: | |
1780 | printk(KERN_INFO "Out of memory when allocating " | |
1781 | "mini receive buffers\n"); | |
1782 | goto out; | |
1783 | } | |
1784 | ||
1785 | ||
1786 | /* | |
1787 | * Load the jumbo rx ring, this may happen at any time if the MTU | |
1788 | * is changed to a value > 1500. | |
1789 | */ | |
1790 | static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs) | |
1791 | { | |
1792 | struct ace_regs __iomem *regs = ap->regs; | |
1793 | short i, idx; | |
1794 | ||
1795 | idx = ap->rx_jumbo_skbprd; | |
1796 | ||
1797 | for (i = 0; i < nr_bufs; i++) { | |
1798 | struct sk_buff *skb; | |
1799 | struct rx_desc *rd; | |
1800 | dma_addr_t mapping; | |
1801 | ||
1802 | skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | |
1803 | if (!skb) | |
1804 | break; | |
1805 | ||
1806 | skb_reserve(skb, NET_IP_ALIGN); | |
1807 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | |
1808 | offset_in_page(skb->data), | |
1809 | ACE_JUMBO_BUFSIZE, | |
1810 | PCI_DMA_FROMDEVICE); | |
1811 | ap->skb->rx_jumbo_skbuff[idx].skb = skb; | |
1812 | pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], | |
1813 | mapping, mapping); | |
1814 | ||
1815 | rd = &ap->rx_jumbo_ring[idx]; | |
1816 | set_aceaddr(&rd->addr, mapping); | |
1817 | rd->size = ACE_JUMBO_BUFSIZE; | |
1818 | rd->idx = idx; | |
1819 | idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; | |
1820 | } | |
1821 | ||
1822 | if (!i) | |
1823 | goto error_out; | |
1824 | ||
1825 | atomic_add(i, &ap->cur_jumbo_bufs); | |
1826 | ap->rx_jumbo_skbprd = idx; | |
1827 | ||
1828 | if (ACE_IS_TIGON_I(ap)) { | |
1829 | struct cmd cmd; | |
1830 | cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | |
1831 | cmd.code = 0; | |
1832 | cmd.idx = ap->rx_jumbo_skbprd; | |
1833 | ace_issue_cmd(regs, &cmd); | |
1834 | } else { | |
1835 | writel(idx, ®s->RxJumboPrd); | |
1836 | wmb(); | |
1837 | } | |
1838 | ||
1839 | out: | |
1840 | clear_bit(0, &ap->jumbo_refill_busy); | |
1841 | return; | |
1842 | error_out: | |
1843 | if (net_ratelimit()) | |
1844 | printk(KERN_INFO "Out of memory when allocating " | |
1845 | "jumbo receive buffers\n"); | |
1846 | goto out; | |
1847 | } | |
1848 | ||
1849 | ||
1850 | /* | |
1851 | * All events are considered to be slow (RX/TX ints do not generate | |
1852 | * events) and are handled here, outside the main interrupt handler, | |
1853 | * to reduce the size of the handler. | |
1854 | */ | |
1855 | static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) | |
1856 | { | |
1857 | struct ace_private *ap; | |
1858 | ||
1859 | ap = netdev_priv(dev); | |
1860 | ||
1861 | while (evtcsm != evtprd) { | |
1862 | switch (ap->evt_ring[evtcsm].evt) { | |
1863 | case E_FW_RUNNING: | |
1864 | printk(KERN_INFO "%s: Firmware up and running\n", | |
1865 | ap->name); | |
1866 | ap->fw_running = 1; | |
1867 | wmb(); | |
1868 | break; | |
1869 | case E_STATS_UPDATED: | |
1870 | break; | |
1871 | case E_LNK_STATE: | |
1872 | { | |
1873 | u16 code = ap->evt_ring[evtcsm].code; | |
1874 | switch (code) { | |
1875 | case E_C_LINK_UP: | |
1876 | { | |
1877 | u32 state = readl(&ap->regs->GigLnkState); | |
1878 | printk(KERN_WARNING "%s: Optical link UP " | |
1879 | "(%s Duplex, Flow Control: %s%s)\n", | |
1880 | ap->name, | |
1881 | state & LNK_FULL_DUPLEX ? "Full":"Half", | |
1882 | state & LNK_TX_FLOW_CTL_Y ? "TX " : "", | |
1883 | state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); | |
1884 | break; | |
1885 | } | |
1886 | case E_C_LINK_DOWN: | |
1887 | printk(KERN_WARNING "%s: Optical link DOWN\n", | |
1888 | ap->name); | |
1889 | break; | |
1890 | case E_C_LINK_10_100: | |
1891 | printk(KERN_WARNING "%s: 10/100BaseT link " | |
1892 | "UP\n", ap->name); | |
1893 | break; | |
1894 | default: | |
1895 | printk(KERN_ERR "%s: Unknown optical link " | |
1896 | "state %02x\n", ap->name, code); | |
1897 | } | |
1898 | break; | |
1899 | } | |
1900 | case E_ERROR: | |
1901 | switch(ap->evt_ring[evtcsm].code) { | |
1902 | case E_C_ERR_INVAL_CMD: | |
1903 | printk(KERN_ERR "%s: invalid command error\n", | |
1904 | ap->name); | |
1905 | break; | |
1906 | case E_C_ERR_UNIMP_CMD: | |
1907 | printk(KERN_ERR "%s: unimplemented command " | |
1908 | "error\n", ap->name); | |
1909 | break; | |
1910 | case E_C_ERR_BAD_CFG: | |
1911 | printk(KERN_ERR "%s: bad config error\n", | |
1912 | ap->name); | |
1913 | break; | |
1914 | default: | |
1915 | printk(KERN_ERR "%s: unknown error %02x\n", | |
1916 | ap->name, ap->evt_ring[evtcsm].code); | |
1917 | } | |
1918 | break; | |
1919 | case E_RESET_JUMBO_RNG: | |
1920 | { | |
1921 | int i; | |
1922 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | |
1923 | if (ap->skb->rx_jumbo_skbuff[i].skb) { | |
1924 | ap->rx_jumbo_ring[i].size = 0; | |
1925 | set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); | |
1926 | dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); | |
1927 | ap->skb->rx_jumbo_skbuff[i].skb = NULL; | |
1928 | } | |
1929 | } | |
1930 | ||
1931 | if (ACE_IS_TIGON_I(ap)) { | |
1932 | struct cmd cmd; | |
1933 | cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | |
1934 | cmd.code = 0; | |
1935 | cmd.idx = 0; | |
1936 | ace_issue_cmd(ap->regs, &cmd); | |
1937 | } else { | |
1938 | writel(0, &((ap->regs)->RxJumboPrd)); | |
1939 | wmb(); | |
1940 | } | |
1941 | ||
1942 | ap->jumbo = 0; | |
1943 | ap->rx_jumbo_skbprd = 0; | |
1944 | printk(KERN_INFO "%s: Jumbo ring flushed\n", | |
1945 | ap->name); | |
1946 | clear_bit(0, &ap->jumbo_refill_busy); | |
1947 | break; | |
1948 | } | |
1949 | default: | |
1950 | printk(KERN_ERR "%s: Unhandled event 0x%02x\n", | |
1951 | ap->name, ap->evt_ring[evtcsm].evt); | |
1952 | } | |
1953 | evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; | |
1954 | } | |
1955 | ||
1956 | return evtcsm; | |
1957 | } | |
1958 | ||
1959 | ||
1960 | static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) | |
1961 | { | |
1962 | struct ace_private *ap = netdev_priv(dev); | |
1963 | u32 idx; | |
1964 | int mini_count = 0, std_count = 0; | |
1965 | ||
1966 | idx = rxretcsm; | |
1967 | ||
1968 | prefetchw(&ap->cur_rx_bufs); | |
1969 | prefetchw(&ap->cur_mini_bufs); | |
1970 | ||
1971 | while (idx != rxretprd) { | |
1972 | struct ring_info *rip; | |
1973 | struct sk_buff *skb; | |
1974 | struct rx_desc *rxdesc, *retdesc; | |
1975 | u32 skbidx; | |
1976 | int bd_flags, desc_type, mapsize; | |
1977 | u16 csum; | |
1978 | ||
1979 | ||
1980 | /* make sure the rx descriptor isn't read before rxretprd */ | |
1981 | if (idx == rxretcsm) | |
1982 | rmb(); | |
1983 | ||
1984 | retdesc = &ap->rx_return_ring[idx]; | |
1985 | skbidx = retdesc->idx; | |
1986 | bd_flags = retdesc->flags; | |
1987 | desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); | |
1988 | ||
1989 | switch(desc_type) { | |
1990 | /* | |
1991 | * Normal frames do not have any flags set | |
1992 | * | |
1993 | * Mini and normal frames arrive frequently, | |
1994 | * so use a local counter to avoid doing | |
1995 | * atomic operations for each packet arriving. | |
1996 | */ | |
1997 | case 0: | |
1998 | rip = &ap->skb->rx_std_skbuff[skbidx]; | |
1999 | mapsize = ACE_STD_BUFSIZE; | |
2000 | rxdesc = &ap->rx_std_ring[skbidx]; | |
2001 | std_count++; | |
2002 | break; | |
2003 | case BD_FLG_JUMBO: | |
2004 | rip = &ap->skb->rx_jumbo_skbuff[skbidx]; | |
2005 | mapsize = ACE_JUMBO_BUFSIZE; | |
2006 | rxdesc = &ap->rx_jumbo_ring[skbidx]; | |
2007 | atomic_dec(&ap->cur_jumbo_bufs); | |
2008 | break; | |
2009 | case BD_FLG_MINI: | |
2010 | rip = &ap->skb->rx_mini_skbuff[skbidx]; | |
2011 | mapsize = ACE_MINI_BUFSIZE; | |
2012 | rxdesc = &ap->rx_mini_ring[skbidx]; | |
2013 | mini_count++; | |
2014 | break; | |
2015 | default: | |
2016 | printk(KERN_INFO "%s: unknown frame type (0x%02x) " | |
2017 | "returned by NIC\n", dev->name, | |
2018 | retdesc->flags); | |
2019 | goto error; | |
2020 | } | |
2021 | ||
2022 | skb = rip->skb; | |
2023 | rip->skb = NULL; | |
2024 | pci_unmap_page(ap->pdev, | |
2025 | pci_unmap_addr(rip, mapping), | |
2026 | mapsize, | |
2027 | PCI_DMA_FROMDEVICE); | |
2028 | skb_put(skb, retdesc->size); | |
2029 | ||
2030 | /* | |
2031 | * Fly baby, fly! | |
2032 | */ | |
2033 | csum = retdesc->tcp_udp_csum; | |
2034 | ||
2035 | skb->dev = dev; | |
2036 | skb->protocol = eth_type_trans(skb, dev); | |
2037 | ||
2038 | /* | |
2039 | * Instead of forcing the poor tigon mips cpu to calculate | |
2040 | * pseudo hdr checksum, we do this ourselves. | |
2041 | */ | |
2042 | if (bd_flags & BD_FLG_TCP_UDP_SUM) { | |
2043 | skb->csum = htons(csum); | |
2044 | skb->ip_summed = CHECKSUM_HW; | |
2045 | } else { | |
2046 | skb->ip_summed = CHECKSUM_NONE; | |
2047 | } | |
2048 | ||
2049 | /* send it up */ | |
2050 | #if ACENIC_DO_VLAN | |
2051 | if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) { | |
2052 | vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan); | |
2053 | } else | |
2054 | #endif | |
2055 | netif_rx(skb); | |
2056 | ||
2057 | dev->last_rx = jiffies; | |
2058 | ap->stats.rx_packets++; | |
2059 | ap->stats.rx_bytes += retdesc->size; | |
2060 | ||
2061 | idx = (idx + 1) % RX_RETURN_RING_ENTRIES; | |
2062 | } | |
2063 | ||
2064 | atomic_sub(std_count, &ap->cur_rx_bufs); | |
2065 | if (!ACE_IS_TIGON_I(ap)) | |
2066 | atomic_sub(mini_count, &ap->cur_mini_bufs); | |
2067 | ||
2068 | out: | |
2069 | /* | |
2070 | * According to the documentation RxRetCsm is obsolete with | |
2071 | * the 12.3.x Firmware - my Tigon I NICs seem to disagree! | |
2072 | */ | |
2073 | if (ACE_IS_TIGON_I(ap)) { | |
2074 | writel(idx, &ap->regs->RxRetCsm); | |
2075 | } | |
2076 | ap->cur_rx = idx; | |
2077 | ||
2078 | return; | |
2079 | error: | |
2080 | idx = rxretprd; | |
2081 | goto out; | |
2082 | } | |
2083 | ||
2084 | ||
2085 | static inline void ace_tx_int(struct net_device *dev, | |
2086 | u32 txcsm, u32 idx) | |
2087 | { | |
2088 | struct ace_private *ap = netdev_priv(dev); | |
2089 | ||
2090 | do { | |
2091 | struct sk_buff *skb; | |
2092 | dma_addr_t mapping; | |
2093 | struct tx_ring_info *info; | |
2094 | ||
2095 | info = ap->skb->tx_skbuff + idx; | |
2096 | skb = info->skb; | |
2097 | mapping = pci_unmap_addr(info, mapping); | |
2098 | ||
2099 | if (mapping) { | |
2100 | pci_unmap_page(ap->pdev, mapping, | |
2101 | pci_unmap_len(info, maplen), | |
2102 | PCI_DMA_TODEVICE); | |
2103 | pci_unmap_addr_set(info, mapping, 0); | |
2104 | } | |
2105 | ||
2106 | if (skb) { | |
2107 | ap->stats.tx_packets++; | |
2108 | ap->stats.tx_bytes += skb->len; | |
2109 | dev_kfree_skb_irq(skb); | |
2110 | info->skb = NULL; | |
2111 | } | |
2112 | ||
2113 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | |
2114 | } while (idx != txcsm); | |
2115 | ||
2116 | if (netif_queue_stopped(dev)) | |
2117 | netif_wake_queue(dev); | |
2118 | ||
2119 | wmb(); | |
2120 | ap->tx_ret_csm = txcsm; | |
2121 | ||
2122 | /* So... tx_ret_csm is advanced _after_ check for device wakeup. | |
2123 | * | |
2124 | * We could try to make it before. In this case we would get | |
2125 | * the following race condition: hard_start_xmit on other cpu | |
2126 | * enters after we advanced tx_ret_csm and fills space, | |
2127 | * which we have just freed, so that we make illegal device wakeup. | |
2128 | * There is no good way to workaround this (at entry | |
2129 | * to ace_start_xmit detects this condition and prevents | |
2130 | * ring corruption, but it is not a good workaround.) | |
2131 | * | |
2132 | * When tx_ret_csm is advanced after, we wake up device _only_ | |
2133 | * if we really have some space in ring (though the core doing | |
2134 | * hard_start_xmit can see full ring for some period and has to | |
2135 | * synchronize.) Superb. | |
2136 | * BUT! We get another subtle race condition. hard_start_xmit | |
2137 | * may think that ring is full between wakeup and advancing | |
2138 | * tx_ret_csm and will stop device instantly! It is not so bad. | |
2139 | * We are guaranteed that there is something in ring, so that | |
2140 | * the next irq will resume transmission. To speedup this we could | |
2141 | * mark descriptor, which closes ring with BD_FLG_COAL_NOW | |
2142 | * (see ace_start_xmit). | |
2143 | * | |
2144 | * Well, this dilemma exists in all lock-free devices. | |
2145 | * We, following scheme used in drivers by Donald Becker, | |
2146 | * select the least dangerous. | |
2147 | * --ANK | |
2148 | */ | |
2149 | } | |
2150 | ||
2151 | ||
2152 | static irqreturn_t ace_interrupt(int irq, void *dev_id, struct pt_regs *ptregs) | |
2153 | { | |
2154 | struct net_device *dev = (struct net_device *)dev_id; | |
2155 | struct ace_private *ap = netdev_priv(dev); | |
2156 | struct ace_regs __iomem *regs = ap->regs; | |
2157 | u32 idx; | |
2158 | u32 txcsm, rxretcsm, rxretprd; | |
2159 | u32 evtcsm, evtprd; | |
2160 | ||
2161 | /* | |
2162 | * In case of PCI shared interrupts or spurious interrupts, | |
2163 | * we want to make sure it is actually our interrupt before | |
2164 | * spending any time in here. | |
2165 | */ | |
2166 | if (!(readl(®s->HostCtrl) & IN_INT)) | |
2167 | return IRQ_NONE; | |
2168 | ||
2169 | /* | |
2170 | * ACK intr now. Otherwise we will lose updates to rx_ret_prd, | |
2171 | * which happened _after_ rxretprd = *ap->rx_ret_prd; but before | |
2172 | * writel(0, ®s->Mb0Lo). | |
2173 | * | |
2174 | * "IRQ avoidance" recommended in docs applies to IRQs served | |
2175 | * threads and it is wrong even for that case. | |
2176 | */ | |
2177 | writel(0, ®s->Mb0Lo); | |
2178 | readl(®s->Mb0Lo); | |
2179 | ||
2180 | /* | |
2181 | * There is no conflict between transmit handling in | |
2182 | * start_xmit and receive processing, thus there is no reason | |
2183 | * to take a spin lock for RX handling. Wait until we start | |
2184 | * working on the other stuff - hey we don't need a spin lock | |
2185 | * anymore. | |
2186 | */ | |
2187 | rxretprd = *ap->rx_ret_prd; | |
2188 | rxretcsm = ap->cur_rx; | |
2189 | ||
2190 | if (rxretprd != rxretcsm) | |
2191 | ace_rx_int(dev, rxretprd, rxretcsm); | |
2192 | ||
2193 | txcsm = *ap->tx_csm; | |
2194 | idx = ap->tx_ret_csm; | |
2195 | ||
2196 | if (txcsm != idx) { | |
2197 | /* | |
2198 | * If each skb takes only one descriptor this check degenerates | |
2199 | * to identity, because new space has just been opened. | |
2200 | * But if skbs are fragmented we must check that this index | |
2201 | * update releases enough of space, otherwise we just | |
2202 | * wait for device to make more work. | |
2203 | */ | |
2204 | if (!tx_ring_full(ap, txcsm, ap->tx_prd)) | |
2205 | ace_tx_int(dev, txcsm, idx); | |
2206 | } | |
2207 | ||
2208 | evtcsm = readl(®s->EvtCsm); | |
2209 | evtprd = *ap->evt_prd; | |
2210 | ||
2211 | if (evtcsm != evtprd) { | |
2212 | evtcsm = ace_handle_event(dev, evtcsm, evtprd); | |
2213 | writel(evtcsm, ®s->EvtCsm); | |
2214 | } | |
2215 | ||
2216 | /* | |
2217 | * This has to go last in the interrupt handler and run with | |
2218 | * the spin lock released ... what lock? | |
2219 | */ | |
2220 | if (netif_running(dev)) { | |
2221 | int cur_size; | |
2222 | int run_tasklet = 0; | |
2223 | ||
2224 | cur_size = atomic_read(&ap->cur_rx_bufs); | |
2225 | if (cur_size < RX_LOW_STD_THRES) { | |
2226 | if ((cur_size < RX_PANIC_STD_THRES) && | |
2227 | !test_and_set_bit(0, &ap->std_refill_busy)) { | |
2228 | #ifdef DEBUG | |
2229 | printk("low on std buffers %i\n", cur_size); | |
2230 | #endif | |
2231 | ace_load_std_rx_ring(ap, | |
2232 | RX_RING_SIZE - cur_size); | |
2233 | } else | |
2234 | run_tasklet = 1; | |
2235 | } | |
2236 | ||
2237 | if (!ACE_IS_TIGON_I(ap)) { | |
2238 | cur_size = atomic_read(&ap->cur_mini_bufs); | |
2239 | if (cur_size < RX_LOW_MINI_THRES) { | |
2240 | if ((cur_size < RX_PANIC_MINI_THRES) && | |
2241 | !test_and_set_bit(0, | |
2242 | &ap->mini_refill_busy)) { | |
2243 | #ifdef DEBUG | |
2244 | printk("low on mini buffers %i\n", | |
2245 | cur_size); | |
2246 | #endif | |
2247 | ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); | |
2248 | } else | |
2249 | run_tasklet = 1; | |
2250 | } | |
2251 | } | |
2252 | ||
2253 | if (ap->jumbo) { | |
2254 | cur_size = atomic_read(&ap->cur_jumbo_bufs); | |
2255 | if (cur_size < RX_LOW_JUMBO_THRES) { | |
2256 | if ((cur_size < RX_PANIC_JUMBO_THRES) && | |
2257 | !test_and_set_bit(0, | |
2258 | &ap->jumbo_refill_busy)){ | |
2259 | #ifdef DEBUG | |
2260 | printk("low on jumbo buffers %i\n", | |
2261 | cur_size); | |
2262 | #endif | |
2263 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); | |
2264 | } else | |
2265 | run_tasklet = 1; | |
2266 | } | |
2267 | } | |
2268 | if (run_tasklet && !ap->tasklet_pending) { | |
2269 | ap->tasklet_pending = 1; | |
2270 | tasklet_schedule(&ap->ace_tasklet); | |
2271 | } | |
2272 | } | |
2273 | ||
2274 | return IRQ_HANDLED; | |
2275 | } | |
2276 | ||
2277 | ||
2278 | #if ACENIC_DO_VLAN | |
2279 | static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) | |
2280 | { | |
2281 | struct ace_private *ap = netdev_priv(dev); | |
2282 | unsigned long flags; | |
2283 | ||
2284 | local_irq_save(flags); | |
2285 | ace_mask_irq(dev); | |
2286 | ||
2287 | ap->vlgrp = grp; | |
2288 | ||
2289 | ace_unmask_irq(dev); | |
2290 | local_irq_restore(flags); | |
2291 | } | |
2292 | ||
2293 | ||
2294 | static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) | |
2295 | { | |
2296 | struct ace_private *ap = netdev_priv(dev); | |
2297 | unsigned long flags; | |
2298 | ||
2299 | local_irq_save(flags); | |
2300 | ace_mask_irq(dev); | |
2301 | ||
2302 | if (ap->vlgrp) | |
2303 | ap->vlgrp->vlan_devices[vid] = NULL; | |
2304 | ||
2305 | ace_unmask_irq(dev); | |
2306 | local_irq_restore(flags); | |
2307 | } | |
2308 | #endif /* ACENIC_DO_VLAN */ | |
2309 | ||
2310 | ||
2311 | static int ace_open(struct net_device *dev) | |
2312 | { | |
2313 | struct ace_private *ap = netdev_priv(dev); | |
2314 | struct ace_regs __iomem *regs = ap->regs; | |
2315 | struct cmd cmd; | |
2316 | ||
2317 | if (!(ap->fw_running)) { | |
2318 | printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); | |
2319 | return -EBUSY; | |
2320 | } | |
2321 | ||
2322 | writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); | |
2323 | ||
2324 | cmd.evt = C_CLEAR_STATS; | |
2325 | cmd.code = 0; | |
2326 | cmd.idx = 0; | |
2327 | ace_issue_cmd(regs, &cmd); | |
2328 | ||
2329 | cmd.evt = C_HOST_STATE; | |
2330 | cmd.code = C_C_STACK_UP; | |
2331 | cmd.idx = 0; | |
2332 | ace_issue_cmd(regs, &cmd); | |
2333 | ||
2334 | if (ap->jumbo && | |
2335 | !test_and_set_bit(0, &ap->jumbo_refill_busy)) | |
2336 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); | |
2337 | ||
2338 | if (dev->flags & IFF_PROMISC) { | |
2339 | cmd.evt = C_SET_PROMISC_MODE; | |
2340 | cmd.code = C_C_PROMISC_ENABLE; | |
2341 | cmd.idx = 0; | |
2342 | ace_issue_cmd(regs, &cmd); | |
2343 | ||
2344 | ap->promisc = 1; | |
2345 | }else | |
2346 | ap->promisc = 0; | |
2347 | ap->mcast_all = 0; | |
2348 | ||
2349 | #if 0 | |
2350 | cmd.evt = C_LNK_NEGOTIATION; | |
2351 | cmd.code = 0; | |
2352 | cmd.idx = 0; | |
2353 | ace_issue_cmd(regs, &cmd); | |
2354 | #endif | |
2355 | ||
2356 | netif_start_queue(dev); | |
2357 | ||
2358 | /* | |
2359 | * Setup the bottom half rx ring refill handler | |
2360 | */ | |
2361 | tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev); | |
2362 | return 0; | |
2363 | } | |
2364 | ||
2365 | ||
2366 | static int ace_close(struct net_device *dev) | |
2367 | { | |
2368 | struct ace_private *ap = netdev_priv(dev); | |
2369 | struct ace_regs __iomem *regs = ap->regs; | |
2370 | struct cmd cmd; | |
2371 | unsigned long flags; | |
2372 | short i; | |
2373 | ||
2374 | /* | |
2375 | * Without (or before) releasing irq and stopping hardware, this | |
2376 | * is an absolute non-sense, by the way. It will be reset instantly | |
2377 | * by the first irq. | |
2378 | */ | |
2379 | netif_stop_queue(dev); | |
2380 | ||
2381 | ||
2382 | if (ap->promisc) { | |
2383 | cmd.evt = C_SET_PROMISC_MODE; | |
2384 | cmd.code = C_C_PROMISC_DISABLE; | |
2385 | cmd.idx = 0; | |
2386 | ace_issue_cmd(regs, &cmd); | |
2387 | ap->promisc = 0; | |
2388 | } | |
2389 | ||
2390 | cmd.evt = C_HOST_STATE; | |
2391 | cmd.code = C_C_STACK_DOWN; | |
2392 | cmd.idx = 0; | |
2393 | ace_issue_cmd(regs, &cmd); | |
2394 | ||
2395 | tasklet_kill(&ap->ace_tasklet); | |
2396 | ||
2397 | /* | |
2398 | * Make sure one CPU is not processing packets while | |
2399 | * buffers are being released by another. | |
2400 | */ | |
2401 | ||
2402 | local_irq_save(flags); | |
2403 | ace_mask_irq(dev); | |
2404 | ||
2405 | for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { | |
2406 | struct sk_buff *skb; | |
2407 | dma_addr_t mapping; | |
2408 | struct tx_ring_info *info; | |
2409 | ||
2410 | info = ap->skb->tx_skbuff + i; | |
2411 | skb = info->skb; | |
2412 | mapping = pci_unmap_addr(info, mapping); | |
2413 | ||
2414 | if (mapping) { | |
2415 | if (ACE_IS_TIGON_I(ap)) { | |
2416 | struct tx_desc __iomem *tx | |
2417 | = (struct tx_desc __iomem *) &ap->tx_ring[i]; | |
2418 | writel(0, &tx->addr.addrhi); | |
2419 | writel(0, &tx->addr.addrlo); | |
2420 | writel(0, &tx->flagsize); | |
2421 | } else | |
2422 | memset(ap->tx_ring + i, 0, | |
2423 | sizeof(struct tx_desc)); | |
2424 | pci_unmap_page(ap->pdev, mapping, | |
2425 | pci_unmap_len(info, maplen), | |
2426 | PCI_DMA_TODEVICE); | |
2427 | pci_unmap_addr_set(info, mapping, 0); | |
2428 | } | |
2429 | if (skb) { | |
2430 | dev_kfree_skb(skb); | |
2431 | info->skb = NULL; | |
2432 | } | |
2433 | } | |
2434 | ||
2435 | if (ap->jumbo) { | |
2436 | cmd.evt = C_RESET_JUMBO_RNG; | |
2437 | cmd.code = 0; | |
2438 | cmd.idx = 0; | |
2439 | ace_issue_cmd(regs, &cmd); | |
2440 | } | |
2441 | ||
2442 | ace_unmask_irq(dev); | |
2443 | local_irq_restore(flags); | |
2444 | ||
2445 | return 0; | |
2446 | } | |
2447 | ||
2448 | ||
2449 | static inline dma_addr_t | |
2450 | ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, | |
2451 | struct sk_buff *tail, u32 idx) | |
2452 | { | |
2453 | dma_addr_t mapping; | |
2454 | struct tx_ring_info *info; | |
2455 | ||
2456 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | |
2457 | offset_in_page(skb->data), | |
2458 | skb->len, PCI_DMA_TODEVICE); | |
2459 | ||
2460 | info = ap->skb->tx_skbuff + idx; | |
2461 | info->skb = tail; | |
2462 | pci_unmap_addr_set(info, mapping, mapping); | |
2463 | pci_unmap_len_set(info, maplen, skb->len); | |
2464 | return mapping; | |
2465 | } | |
2466 | ||
2467 | ||
2468 | static inline void | |
2469 | ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, | |
2470 | u32 flagsize, u32 vlan_tag) | |
2471 | { | |
2472 | #if !USE_TX_COAL_NOW | |
2473 | flagsize &= ~BD_FLG_COAL_NOW; | |
2474 | #endif | |
2475 | ||
2476 | if (ACE_IS_TIGON_I(ap)) { | |
2477 | struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc; | |
2478 | writel(addr >> 32, &io->addr.addrhi); | |
2479 | writel(addr & 0xffffffff, &io->addr.addrlo); | |
2480 | writel(flagsize, &io->flagsize); | |
2481 | #if ACENIC_DO_VLAN | |
2482 | writel(vlan_tag, &io->vlanres); | |
2483 | #endif | |
2484 | } else { | |
2485 | desc->addr.addrhi = addr >> 32; | |
2486 | desc->addr.addrlo = addr; | |
2487 | desc->flagsize = flagsize; | |
2488 | #if ACENIC_DO_VLAN | |
2489 | desc->vlanres = vlan_tag; | |
2490 | #endif | |
2491 | } | |
2492 | } | |
2493 | ||
2494 | ||
2495 | static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev) | |
2496 | { | |
2497 | struct ace_private *ap = netdev_priv(dev); | |
2498 | struct ace_regs __iomem *regs = ap->regs; | |
2499 | struct tx_desc *desc; | |
2500 | u32 idx, flagsize; | |
2501 | unsigned long maxjiff = jiffies + 3*HZ; | |
2502 | ||
2503 | restart: | |
2504 | idx = ap->tx_prd; | |
2505 | ||
2506 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | |
2507 | goto overflow; | |
2508 | ||
2509 | if (!skb_shinfo(skb)->nr_frags) { | |
2510 | dma_addr_t mapping; | |
2511 | u32 vlan_tag = 0; | |
2512 | ||
2513 | mapping = ace_map_tx_skb(ap, skb, skb, idx); | |
2514 | flagsize = (skb->len << 16) | (BD_FLG_END); | |
2515 | if (skb->ip_summed == CHECKSUM_HW) | |
2516 | flagsize |= BD_FLG_TCP_UDP_SUM; | |
2517 | #if ACENIC_DO_VLAN | |
2518 | if (vlan_tx_tag_present(skb)) { | |
2519 | flagsize |= BD_FLG_VLAN_TAG; | |
2520 | vlan_tag = vlan_tx_tag_get(skb); | |
2521 | } | |
2522 | #endif | |
2523 | desc = ap->tx_ring + idx; | |
2524 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | |
2525 | ||
2526 | /* Look at ace_tx_int for explanations. */ | |
2527 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | |
2528 | flagsize |= BD_FLG_COAL_NOW; | |
2529 | ||
2530 | ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | |
2531 | } else { | |
2532 | dma_addr_t mapping; | |
2533 | u32 vlan_tag = 0; | |
2534 | int i, len = 0; | |
2535 | ||
2536 | mapping = ace_map_tx_skb(ap, skb, NULL, idx); | |
2537 | flagsize = (skb_headlen(skb) << 16); | |
2538 | if (skb->ip_summed == CHECKSUM_HW) | |
2539 | flagsize |= BD_FLG_TCP_UDP_SUM; | |
2540 | #if ACENIC_DO_VLAN | |
2541 | if (vlan_tx_tag_present(skb)) { | |
2542 | flagsize |= BD_FLG_VLAN_TAG; | |
2543 | vlan_tag = vlan_tx_tag_get(skb); | |
2544 | } | |
2545 | #endif | |
2546 | ||
2547 | ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); | |
2548 | ||
2549 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | |
2550 | ||
2551 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | |
2552 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | |
2553 | struct tx_ring_info *info; | |
2554 | ||
2555 | len += frag->size; | |
2556 | info = ap->skb->tx_skbuff + idx; | |
2557 | desc = ap->tx_ring + idx; | |
2558 | ||
2559 | mapping = pci_map_page(ap->pdev, frag->page, | |
2560 | frag->page_offset, frag->size, | |
2561 | PCI_DMA_TODEVICE); | |
2562 | ||
2563 | flagsize = (frag->size << 16); | |
2564 | if (skb->ip_summed == CHECKSUM_HW) | |
2565 | flagsize |= BD_FLG_TCP_UDP_SUM; | |
2566 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | |
2567 | ||
2568 | if (i == skb_shinfo(skb)->nr_frags - 1) { | |
2569 | flagsize |= BD_FLG_END; | |
2570 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | |
2571 | flagsize |= BD_FLG_COAL_NOW; | |
2572 | ||
2573 | /* | |
2574 | * Only the last fragment frees | |
2575 | * the skb! | |
2576 | */ | |
2577 | info->skb = skb; | |
2578 | } else { | |
2579 | info->skb = NULL; | |
2580 | } | |
2581 | pci_unmap_addr_set(info, mapping, mapping); | |
2582 | pci_unmap_len_set(info, maplen, frag->size); | |
2583 | ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | |
2584 | } | |
2585 | } | |
2586 | ||
2587 | wmb(); | |
2588 | ap->tx_prd = idx; | |
2589 | ace_set_txprd(regs, ap, idx); | |
2590 | ||
2591 | if (flagsize & BD_FLG_COAL_NOW) { | |
2592 | netif_stop_queue(dev); | |
2593 | ||
2594 | /* | |
2595 | * A TX-descriptor producer (an IRQ) might have gotten | |
2596 | * inbetween, making the ring free again. Since xmit is | |
2597 | * serialized, this is the only situation we have to | |
2598 | * re-test. | |
2599 | */ | |
2600 | if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) | |
2601 | netif_wake_queue(dev); | |
2602 | } | |
2603 | ||
2604 | dev->trans_start = jiffies; | |
2605 | return NETDEV_TX_OK; | |
2606 | ||
2607 | overflow: | |
2608 | /* | |
2609 | * This race condition is unavoidable with lock-free drivers. | |
2610 | * We wake up the queue _before_ tx_prd is advanced, so that we can | |
2611 | * enter hard_start_xmit too early, while tx ring still looks closed. | |
2612 | * This happens ~1-4 times per 100000 packets, so that we can allow | |
2613 | * to loop syncing to other CPU. Probably, we need an additional | |
2614 | * wmb() in ace_tx_intr as well. | |
2615 | * | |
2616 | * Note that this race is relieved by reserving one more entry | |
2617 | * in tx ring than it is necessary (see original non-SG driver). | |
2618 | * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which | |
2619 | * is already overkill. | |
2620 | * | |
2621 | * Alternative is to return with 1 not throttling queue. In this | |
2622 | * case loop becomes longer, no more useful effects. | |
2623 | */ | |
2624 | if (time_before(jiffies, maxjiff)) { | |
2625 | barrier(); | |
2626 | cpu_relax(); | |
2627 | goto restart; | |
2628 | } | |
2629 | ||
2630 | /* The ring is stuck full. */ | |
2631 | printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); | |
2632 | return NETDEV_TX_BUSY; | |
2633 | } | |
2634 | ||
2635 | ||
2636 | static int ace_change_mtu(struct net_device *dev, int new_mtu) | |
2637 | { | |
2638 | struct ace_private *ap = netdev_priv(dev); | |
2639 | struct ace_regs __iomem *regs = ap->regs; | |
2640 | ||
2641 | if (new_mtu > ACE_JUMBO_MTU) | |
2642 | return -EINVAL; | |
2643 | ||
2644 | writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); | |
2645 | dev->mtu = new_mtu; | |
2646 | ||
2647 | if (new_mtu > ACE_STD_MTU) { | |
2648 | if (!(ap->jumbo)) { | |
2649 | printk(KERN_INFO "%s: Enabling Jumbo frame " | |
2650 | "support\n", dev->name); | |
2651 | ap->jumbo = 1; | |
2652 | if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) | |
2653 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); | |
2654 | ace_set_rxtx_parms(dev, 1); | |
2655 | } | |
2656 | } else { | |
2657 | while (test_and_set_bit(0, &ap->jumbo_refill_busy)); | |
2658 | ace_sync_irq(dev->irq); | |
2659 | ace_set_rxtx_parms(dev, 0); | |
2660 | if (ap->jumbo) { | |
2661 | struct cmd cmd; | |
2662 | ||
2663 | cmd.evt = C_RESET_JUMBO_RNG; | |
2664 | cmd.code = 0; | |
2665 | cmd.idx = 0; | |
2666 | ace_issue_cmd(regs, &cmd); | |
2667 | } | |
2668 | } | |
2669 | ||
2670 | return 0; | |
2671 | } | |
2672 | ||
2673 | static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | |
2674 | { | |
2675 | struct ace_private *ap = netdev_priv(dev); | |
2676 | struct ace_regs __iomem *regs = ap->regs; | |
2677 | u32 link; | |
2678 | ||
2679 | memset(ecmd, 0, sizeof(struct ethtool_cmd)); | |
2680 | ecmd->supported = | |
2681 | (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | | |
2682 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | | |
2683 | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | | |
2684 | SUPPORTED_Autoneg | SUPPORTED_FIBRE); | |
2685 | ||
2686 | ecmd->port = PORT_FIBRE; | |
2687 | ecmd->transceiver = XCVR_INTERNAL; | |
2688 | ||
2689 | link = readl(®s->GigLnkState); | |
2690 | if (link & LNK_1000MB) | |
2691 | ecmd->speed = SPEED_1000; | |
2692 | else { | |
2693 | link = readl(®s->FastLnkState); | |
2694 | if (link & LNK_100MB) | |
2695 | ecmd->speed = SPEED_100; | |
2696 | else if (link & LNK_10MB) | |
2697 | ecmd->speed = SPEED_10; | |
2698 | else | |
2699 | ecmd->speed = 0; | |
2700 | } | |
2701 | if (link & LNK_FULL_DUPLEX) | |
2702 | ecmd->duplex = DUPLEX_FULL; | |
2703 | else | |
2704 | ecmd->duplex = DUPLEX_HALF; | |
2705 | ||
2706 | if (link & LNK_NEGOTIATE) | |
2707 | ecmd->autoneg = AUTONEG_ENABLE; | |
2708 | else | |
2709 | ecmd->autoneg = AUTONEG_DISABLE; | |
2710 | ||
2711 | #if 0 | |
2712 | /* | |
2713 | * Current struct ethtool_cmd is insufficient | |
2714 | */ | |
2715 | ecmd->trace = readl(®s->TuneTrace); | |
2716 | ||
2717 | ecmd->txcoal = readl(®s->TuneTxCoalTicks); | |
2718 | ecmd->rxcoal = readl(®s->TuneRxCoalTicks); | |
2719 | #endif | |
2720 | ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc); | |
2721 | ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc); | |
2722 | ||
2723 | return 0; | |
2724 | } | |
2725 | ||
2726 | static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | |
2727 | { | |
2728 | struct ace_private *ap = netdev_priv(dev); | |
2729 | struct ace_regs __iomem *regs = ap->regs; | |
2730 | u32 link, speed; | |
2731 | ||
2732 | link = readl(®s->GigLnkState); | |
2733 | if (link & LNK_1000MB) | |
2734 | speed = SPEED_1000; | |
2735 | else { | |
2736 | link = readl(®s->FastLnkState); | |
2737 | if (link & LNK_100MB) | |
2738 | speed = SPEED_100; | |
2739 | else if (link & LNK_10MB) | |
2740 | speed = SPEED_10; | |
2741 | else | |
2742 | speed = SPEED_100; | |
2743 | } | |
2744 | ||
2745 | link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | | |
2746 | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; | |
2747 | if (!ACE_IS_TIGON_I(ap)) | |
2748 | link |= LNK_TX_FLOW_CTL_Y; | |
2749 | if (ecmd->autoneg == AUTONEG_ENABLE) | |
2750 | link |= LNK_NEGOTIATE; | |
2751 | if (ecmd->speed != speed) { | |
2752 | link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); | |
2753 | switch (speed) { | |
2754 | case SPEED_1000: | |
2755 | link |= LNK_1000MB; | |
2756 | break; | |
2757 | case SPEED_100: | |
2758 | link |= LNK_100MB; | |
2759 | break; | |
2760 | case SPEED_10: | |
2761 | link |= LNK_10MB; | |
2762 | break; | |
2763 | } | |
2764 | } | |
2765 | ||
2766 | if (ecmd->duplex == DUPLEX_FULL) | |
2767 | link |= LNK_FULL_DUPLEX; | |
2768 | ||
2769 | if (link != ap->link) { | |
2770 | struct cmd cmd; | |
2771 | printk(KERN_INFO "%s: Renegotiating link state\n", | |
2772 | dev->name); | |
2773 | ||
2774 | ap->link = link; | |
2775 | writel(link, ®s->TuneLink); | |
2776 | if (!ACE_IS_TIGON_I(ap)) | |
2777 | writel(link, ®s->TuneFastLink); | |
2778 | wmb(); | |
2779 | ||
2780 | cmd.evt = C_LNK_NEGOTIATION; | |
2781 | cmd.code = 0; | |
2782 | cmd.idx = 0; | |
2783 | ace_issue_cmd(regs, &cmd); | |
2784 | } | |
2785 | return 0; | |
2786 | } | |
2787 | ||
2788 | static void ace_get_drvinfo(struct net_device *dev, | |
2789 | struct ethtool_drvinfo *info) | |
2790 | { | |
2791 | struct ace_private *ap = netdev_priv(dev); | |
2792 | ||
2793 | strlcpy(info->driver, "acenic", sizeof(info->driver)); | |
2794 | snprintf(info->version, sizeof(info->version), "%i.%i.%i", | |
2795 | tigonFwReleaseMajor, tigonFwReleaseMinor, | |
2796 | tigonFwReleaseFix); | |
2797 | ||
2798 | if (ap->pdev) | |
2799 | strlcpy(info->bus_info, pci_name(ap->pdev), | |
2800 | sizeof(info->bus_info)); | |
2801 | ||
2802 | } | |
2803 | ||
2804 | /* | |
2805 | * Set the hardware MAC address. | |
2806 | */ | |
2807 | static int ace_set_mac_addr(struct net_device *dev, void *p) | |
2808 | { | |
2809 | struct ace_private *ap = netdev_priv(dev); | |
2810 | struct ace_regs __iomem *regs = ap->regs; | |
2811 | struct sockaddr *addr=p; | |
2812 | u8 *da; | |
2813 | struct cmd cmd; | |
2814 | ||
2815 | if(netif_running(dev)) | |
2816 | return -EBUSY; | |
2817 | ||
2818 | memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); | |
2819 | ||
2820 | da = (u8 *)dev->dev_addr; | |
2821 | ||
2822 | writel(da[0] << 8 | da[1], ®s->MacAddrHi); | |
2823 | writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], | |
2824 | ®s->MacAddrLo); | |
2825 | ||
2826 | cmd.evt = C_SET_MAC_ADDR; | |
2827 | cmd.code = 0; | |
2828 | cmd.idx = 0; | |
2829 | ace_issue_cmd(regs, &cmd); | |
2830 | ||
2831 | return 0; | |
2832 | } | |
2833 | ||
2834 | ||
2835 | static void ace_set_multicast_list(struct net_device *dev) | |
2836 | { | |
2837 | struct ace_private *ap = netdev_priv(dev); | |
2838 | struct ace_regs __iomem *regs = ap->regs; | |
2839 | struct cmd cmd; | |
2840 | ||
2841 | if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { | |
2842 | cmd.evt = C_SET_MULTICAST_MODE; | |
2843 | cmd.code = C_C_MCAST_ENABLE; | |
2844 | cmd.idx = 0; | |
2845 | ace_issue_cmd(regs, &cmd); | |
2846 | ap->mcast_all = 1; | |
2847 | } else if (ap->mcast_all) { | |
2848 | cmd.evt = C_SET_MULTICAST_MODE; | |
2849 | cmd.code = C_C_MCAST_DISABLE; | |
2850 | cmd.idx = 0; | |
2851 | ace_issue_cmd(regs, &cmd); | |
2852 | ap->mcast_all = 0; | |
2853 | } | |
2854 | ||
2855 | if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { | |
2856 | cmd.evt = C_SET_PROMISC_MODE; | |
2857 | cmd.code = C_C_PROMISC_ENABLE; | |
2858 | cmd.idx = 0; | |
2859 | ace_issue_cmd(regs, &cmd); | |
2860 | ap->promisc = 1; | |
2861 | }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { | |
2862 | cmd.evt = C_SET_PROMISC_MODE; | |
2863 | cmd.code = C_C_PROMISC_DISABLE; | |
2864 | cmd.idx = 0; | |
2865 | ace_issue_cmd(regs, &cmd); | |
2866 | ap->promisc = 0; | |
2867 | } | |
2868 | ||
2869 | /* | |
2870 | * For the time being multicast relies on the upper layers | |
2871 | * filtering it properly. The Firmware does not allow one to | |
2872 | * set the entire multicast list at a time and keeping track of | |
2873 | * it here is going to be messy. | |
2874 | */ | |
2875 | if ((dev->mc_count) && !(ap->mcast_all)) { | |
2876 | cmd.evt = C_SET_MULTICAST_MODE; | |
2877 | cmd.code = C_C_MCAST_ENABLE; | |
2878 | cmd.idx = 0; | |
2879 | ace_issue_cmd(regs, &cmd); | |
2880 | }else if (!ap->mcast_all) { | |
2881 | cmd.evt = C_SET_MULTICAST_MODE; | |
2882 | cmd.code = C_C_MCAST_DISABLE; | |
2883 | cmd.idx = 0; | |
2884 | ace_issue_cmd(regs, &cmd); | |
2885 | } | |
2886 | } | |
2887 | ||
2888 | ||
2889 | static struct net_device_stats *ace_get_stats(struct net_device *dev) | |
2890 | { | |
2891 | struct ace_private *ap = netdev_priv(dev); | |
2892 | struct ace_mac_stats __iomem *mac_stats = | |
2893 | (struct ace_mac_stats __iomem *)ap->regs->Stats; | |
2894 | ||
2895 | ap->stats.rx_missed_errors = readl(&mac_stats->drop_space); | |
2896 | ap->stats.multicast = readl(&mac_stats->kept_mc); | |
2897 | ap->stats.collisions = readl(&mac_stats->coll); | |
2898 | ||
2899 | return &ap->stats; | |
2900 | } | |
2901 | ||
2902 | ||
2903 | static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src, | |
2904 | u32 dest, int size) | |
2905 | { | |
2906 | void __iomem *tdest; | |
2907 | u32 *wsrc; | |
2908 | short tsize, i; | |
2909 | ||
2910 | if (size <= 0) | |
2911 | return; | |
2912 | ||
2913 | while (size > 0) { | |
2914 | tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | |
2915 | min_t(u32, size, ACE_WINDOW_SIZE)); | |
2916 | tdest = (void __iomem *) ®s->Window + | |
2917 | (dest & (ACE_WINDOW_SIZE - 1)); | |
2918 | writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | |
2919 | /* | |
2920 | * This requires byte swapping on big endian, however | |
2921 | * writel does that for us | |
2922 | */ | |
2923 | wsrc = src; | |
2924 | for (i = 0; i < (tsize / 4); i++) { | |
2925 | writel(wsrc[i], tdest + i*4); | |
2926 | } | |
2927 | dest += tsize; | |
2928 | src += tsize; | |
2929 | size -= tsize; | |
2930 | } | |
2931 | ||
2932 | return; | |
2933 | } | |
2934 | ||
2935 | ||
2936 | static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) | |
2937 | { | |
2938 | void __iomem *tdest; | |
2939 | short tsize = 0, i; | |
2940 | ||
2941 | if (size <= 0) | |
2942 | return; | |
2943 | ||
2944 | while (size > 0) { | |
2945 | tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | |
2946 | min_t(u32, size, ACE_WINDOW_SIZE)); | |
2947 | tdest = (void __iomem *) ®s->Window + | |
2948 | (dest & (ACE_WINDOW_SIZE - 1)); | |
2949 | writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | |
2950 | ||
2951 | for (i = 0; i < (tsize / 4); i++) { | |
2952 | writel(0, tdest + i*4); | |
2953 | } | |
2954 | ||
2955 | dest += tsize; | |
2956 | size -= tsize; | |
2957 | } | |
2958 | ||
2959 | return; | |
2960 | } | |
2961 | ||
2962 | ||
2963 | /* | |
2964 | * Download the firmware into the SRAM on the NIC | |
2965 | * | |
2966 | * This operation requires the NIC to be halted and is performed with | |
2967 | * interrupts disabled and with the spinlock hold. | |
2968 | */ | |
2969 | int __devinit ace_load_firmware(struct net_device *dev) | |
2970 | { | |
2971 | struct ace_private *ap = netdev_priv(dev); | |
2972 | struct ace_regs __iomem *regs = ap->regs; | |
2973 | ||
2974 | if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { | |
2975 | printk(KERN_ERR "%s: trying to download firmware while the " | |
2976 | "CPU is running!\n", ap->name); | |
2977 | return -EFAULT; | |
2978 | } | |
2979 | ||
2980 | /* | |
2981 | * Do not try to clear more than 512KB or we end up seeing | |
2982 | * funny things on NICs with only 512KB SRAM | |
2983 | */ | |
2984 | ace_clear(regs, 0x2000, 0x80000-0x2000); | |
2985 | if (ACE_IS_TIGON_I(ap)) { | |
2986 | ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen); | |
2987 | ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen); | |
2988 | ace_copy(regs, tigonFwRodata, tigonFwRodataAddr, | |
2989 | tigonFwRodataLen); | |
2990 | ace_clear(regs, tigonFwBssAddr, tigonFwBssLen); | |
2991 | ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen); | |
2992 | }else if (ap->version == 2) { | |
2993 | ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen); | |
2994 | ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen); | |
2995 | ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen); | |
2996 | ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr, | |
2997 | tigon2FwRodataLen); | |
2998 | ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen); | |
2999 | } | |
3000 | ||
3001 | return 0; | |
3002 | } | |
3003 | ||
3004 | ||
3005 | /* | |
3006 | * The eeprom on the AceNIC is an Atmel i2c EEPROM. | |
3007 | * | |
3008 | * Accessing the EEPROM is `interesting' to say the least - don't read | |
3009 | * this code right after dinner. | |
3010 | * | |
3011 | * This is all about black magic and bit-banging the device .... I | |
3012 | * wonder in what hospital they have put the guy who designed the i2c | |
3013 | * specs. | |
3014 | * | |
3015 | * Oh yes, this is only the beginning! | |
3016 | * | |
3017 | * Thanks to Stevarino Webinski for helping tracking down the bugs in the | |
3018 | * code i2c readout code by beta testing all my hacks. | |
3019 | */ | |
3020 | static void __devinit eeprom_start(struct ace_regs __iomem *regs) | |
3021 | { | |
3022 | u32 local; | |
3023 | ||
3024 | readl(®s->LocalCtrl); | |
3025 | udelay(ACE_SHORT_DELAY); | |
3026 | local = readl(®s->LocalCtrl); | |
3027 | local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; | |
3028 | writel(local, ®s->LocalCtrl); | |
3029 | readl(®s->LocalCtrl); | |
3030 | mb(); | |
3031 | udelay(ACE_SHORT_DELAY); | |
3032 | local |= EEPROM_CLK_OUT; | |
3033 | writel(local, ®s->LocalCtrl); | |
3034 | readl(®s->LocalCtrl); | |
3035 | mb(); | |
3036 | udelay(ACE_SHORT_DELAY); | |
3037 | local &= ~EEPROM_DATA_OUT; | |
3038 | writel(local, ®s->LocalCtrl); | |
3039 | readl(®s->LocalCtrl); | |
3040 | mb(); | |
3041 | udelay(ACE_SHORT_DELAY); | |
3042 | local &= ~EEPROM_CLK_OUT; | |
3043 | writel(local, ®s->LocalCtrl); | |
3044 | readl(®s->LocalCtrl); | |
3045 | mb(); | |
3046 | } | |
3047 | ||
3048 | ||
3049 | static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic) | |
3050 | { | |
3051 | short i; | |
3052 | u32 local; | |
3053 | ||
3054 | udelay(ACE_SHORT_DELAY); | |
3055 | local = readl(®s->LocalCtrl); | |
3056 | local &= ~EEPROM_DATA_OUT; | |
3057 | local |= EEPROM_WRITE_ENABLE; | |
3058 | writel(local, ®s->LocalCtrl); | |
3059 | readl(®s->LocalCtrl); | |
3060 | mb(); | |
3061 | ||
3062 | for (i = 0; i < 8; i++, magic <<= 1) { | |
3063 | udelay(ACE_SHORT_DELAY); | |
3064 | if (magic & 0x80) | |
3065 | local |= EEPROM_DATA_OUT; | |
3066 | else | |
3067 | local &= ~EEPROM_DATA_OUT; | |
3068 | writel(local, ®s->LocalCtrl); | |
3069 | readl(®s->LocalCtrl); | |
3070 | mb(); | |
3071 | ||
3072 | udelay(ACE_SHORT_DELAY); | |
3073 | local |= EEPROM_CLK_OUT; | |
3074 | writel(local, ®s->LocalCtrl); | |
3075 | readl(®s->LocalCtrl); | |
3076 | mb(); | |
3077 | udelay(ACE_SHORT_DELAY); | |
3078 | local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); | |
3079 | writel(local, ®s->LocalCtrl); | |
3080 | readl(®s->LocalCtrl); | |
3081 | mb(); | |
3082 | } | |
3083 | } | |
3084 | ||
3085 | ||
3086 | static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs) | |
3087 | { | |
3088 | int state; | |
3089 | u32 local; | |
3090 | ||
3091 | local = readl(®s->LocalCtrl); | |
3092 | local &= ~EEPROM_WRITE_ENABLE; | |
3093 | writel(local, ®s->LocalCtrl); | |
3094 | readl(®s->LocalCtrl); | |
3095 | mb(); | |
3096 | udelay(ACE_LONG_DELAY); | |
3097 | local |= EEPROM_CLK_OUT; | |
3098 | writel(local, ®s->LocalCtrl); | |
3099 | readl(®s->LocalCtrl); | |
3100 | mb(); | |
3101 | udelay(ACE_SHORT_DELAY); | |
3102 | /* sample data in middle of high clk */ | |
3103 | state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; | |
3104 | udelay(ACE_SHORT_DELAY); | |
3105 | mb(); | |
3106 | writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | |
3107 | readl(®s->LocalCtrl); | |
3108 | mb(); | |
3109 | ||
3110 | return state; | |
3111 | } | |
3112 | ||
3113 | ||
3114 | static void __devinit eeprom_stop(struct ace_regs __iomem *regs) | |
3115 | { | |
3116 | u32 local; | |
3117 | ||
3118 | udelay(ACE_SHORT_DELAY); | |
3119 | local = readl(®s->LocalCtrl); | |
3120 | local |= EEPROM_WRITE_ENABLE; | |
3121 | writel(local, ®s->LocalCtrl); | |
3122 | readl(®s->LocalCtrl); | |
3123 | mb(); | |
3124 | udelay(ACE_SHORT_DELAY); | |
3125 | local &= ~EEPROM_DATA_OUT; | |
3126 | writel(local, ®s->LocalCtrl); | |
3127 | readl(®s->LocalCtrl); | |
3128 | mb(); | |
3129 | udelay(ACE_SHORT_DELAY); | |
3130 | local |= EEPROM_CLK_OUT; | |
3131 | writel(local, ®s->LocalCtrl); | |
3132 | readl(®s->LocalCtrl); | |
3133 | mb(); | |
3134 | udelay(ACE_SHORT_DELAY); | |
3135 | local |= EEPROM_DATA_OUT; | |
3136 | writel(local, ®s->LocalCtrl); | |
3137 | readl(®s->LocalCtrl); | |
3138 | mb(); | |
3139 | udelay(ACE_LONG_DELAY); | |
3140 | local &= ~EEPROM_CLK_OUT; | |
3141 | writel(local, ®s->LocalCtrl); | |
3142 | mb(); | |
3143 | } | |
3144 | ||
3145 | ||
3146 | /* | |
3147 | * Read a whole byte from the EEPROM. | |
3148 | */ | |
3149 | static int __devinit read_eeprom_byte(struct net_device *dev, | |
3150 | unsigned long offset) | |
3151 | { | |
3152 | struct ace_private *ap = netdev_priv(dev); | |
3153 | struct ace_regs __iomem *regs = ap->regs; | |
3154 | unsigned long flags; | |
3155 | u32 local; | |
3156 | int result = 0; | |
3157 | short i; | |
3158 | ||
3159 | if (!dev) { | |
3160 | printk(KERN_ERR "No device!\n"); | |
3161 | result = -ENODEV; | |
3162 | goto out; | |
3163 | } | |
3164 | ||
3165 | /* | |
3166 | * Don't take interrupts on this CPU will bit banging | |
3167 | * the %#%#@$ I2C device | |
3168 | */ | |
3169 | local_irq_save(flags); | |
3170 | ||
3171 | eeprom_start(regs); | |
3172 | ||
3173 | eeprom_prep(regs, EEPROM_WRITE_SELECT); | |
3174 | if (eeprom_check_ack(regs)) { | |
3175 | local_irq_restore(flags); | |
3176 | printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); | |
3177 | result = -EIO; | |
3178 | goto eeprom_read_error; | |
3179 | } | |
3180 | ||
3181 | eeprom_prep(regs, (offset >> 8) & 0xff); | |
3182 | if (eeprom_check_ack(regs)) { | |
3183 | local_irq_restore(flags); | |
3184 | printk(KERN_ERR "%s: Unable to set address byte 0\n", | |
3185 | ap->name); | |
3186 | result = -EIO; | |
3187 | goto eeprom_read_error; | |
3188 | } | |
3189 | ||
3190 | eeprom_prep(regs, offset & 0xff); | |
3191 | if (eeprom_check_ack(regs)) { | |
3192 | local_irq_restore(flags); | |
3193 | printk(KERN_ERR "%s: Unable to set address byte 1\n", | |
3194 | ap->name); | |
3195 | result = -EIO; | |
3196 | goto eeprom_read_error; | |
3197 | } | |
3198 | ||
3199 | eeprom_start(regs); | |
3200 | eeprom_prep(regs, EEPROM_READ_SELECT); | |
3201 | if (eeprom_check_ack(regs)) { | |
3202 | local_irq_restore(flags); | |
3203 | printk(KERN_ERR "%s: Unable to set READ_SELECT\n", | |
3204 | ap->name); | |
3205 | result = -EIO; | |
3206 | goto eeprom_read_error; | |
3207 | } | |
3208 | ||
3209 | for (i = 0; i < 8; i++) { | |
3210 | local = readl(®s->LocalCtrl); | |
3211 | local &= ~EEPROM_WRITE_ENABLE; | |
3212 | writel(local, ®s->LocalCtrl); | |
3213 | readl(®s->LocalCtrl); | |
3214 | udelay(ACE_LONG_DELAY); | |
3215 | mb(); | |
3216 | local |= EEPROM_CLK_OUT; | |
3217 | writel(local, ®s->LocalCtrl); | |
3218 | readl(®s->LocalCtrl); | |
3219 | mb(); | |
3220 | udelay(ACE_SHORT_DELAY); | |
3221 | /* sample data mid high clk */ | |
3222 | result = (result << 1) | | |
3223 | ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); | |
3224 | udelay(ACE_SHORT_DELAY); | |
3225 | mb(); | |
3226 | local = readl(®s->LocalCtrl); | |
3227 | local &= ~EEPROM_CLK_OUT; | |
3228 | writel(local, ®s->LocalCtrl); | |
3229 | readl(®s->LocalCtrl); | |
3230 | udelay(ACE_SHORT_DELAY); | |
3231 | mb(); | |
3232 | if (i == 7) { | |
3233 | local |= EEPROM_WRITE_ENABLE; | |
3234 | writel(local, ®s->LocalCtrl); | |
3235 | readl(®s->LocalCtrl); | |
3236 | mb(); | |
3237 | udelay(ACE_SHORT_DELAY); | |
3238 | } | |
3239 | } | |
3240 | ||
3241 | local |= EEPROM_DATA_OUT; | |
3242 | writel(local, ®s->LocalCtrl); | |
3243 | readl(®s->LocalCtrl); | |
3244 | mb(); | |
3245 | udelay(ACE_SHORT_DELAY); | |
3246 | writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); | |
3247 | readl(®s->LocalCtrl); | |
3248 | udelay(ACE_LONG_DELAY); | |
3249 | writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | |
3250 | readl(®s->LocalCtrl); | |
3251 | mb(); | |
3252 | udelay(ACE_SHORT_DELAY); | |
3253 | eeprom_stop(regs); | |
3254 | ||
3255 | local_irq_restore(flags); | |
3256 | out: | |
3257 | return result; | |
3258 | ||
3259 | eeprom_read_error: | |
3260 | printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", | |
3261 | ap->name, offset); | |
3262 | goto out; | |
3263 | } | |
3264 | ||
3265 | ||
3266 | /* | |
3267 | * Local variables: | |
3268 | * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c" | |
3269 | * End: | |
3270 | */ |