]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
7b718769 NS |
2 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
3 | * All Rights Reserved. | |
1da177e4 | 4 | * |
7b718769 NS |
5 | * This program is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
7 | * published by the Free Software Foundation. |
8 | * | |
7b718769 NS |
9 | * This program is distributed in the hope that it would be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
1da177e4 | 13 | * |
7b718769 NS |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 17 | */ |
1da177e4 | 18 | #include "xfs.h" |
a844f451 | 19 | #include "xfs_fs.h" |
1da177e4 | 20 | #include "xfs_types.h" |
a844f451 | 21 | #include "xfs_bit.h" |
1da177e4 | 22 | #include "xfs_log.h" |
a844f451 | 23 | #include "xfs_inum.h" |
1da177e4 | 24 | #include "xfs_trans.h" |
1da177e4 | 25 | #include "xfs_sb.h" |
da353b0d | 26 | #include "xfs_ag.h" |
1da177e4 LT |
27 | #include "xfs_dmapi.h" |
28 | #include "xfs_mount.h" | |
a844f451 | 29 | #include "xfs_buf_item.h" |
1da177e4 | 30 | #include "xfs_trans_priv.h" |
1da177e4 | 31 | #include "xfs_error.h" |
0b1b213f | 32 | #include "xfs_trace.h" |
1da177e4 LT |
33 | |
34 | ||
35 | kmem_zone_t *xfs_buf_item_zone; | |
36 | ||
37 | #ifdef XFS_TRANS_DEBUG | |
38 | /* | |
39 | * This function uses an alternate strategy for tracking the bytes | |
40 | * that the user requests to be logged. This can then be used | |
41 | * in conjunction with the bli_orig array in the buf log item to | |
42 | * catch bugs in our callers' code. | |
43 | * | |
44 | * We also double check the bits set in xfs_buf_item_log using a | |
45 | * simple algorithm to check that every byte is accounted for. | |
46 | */ | |
47 | STATIC void | |
48 | xfs_buf_item_log_debug( | |
49 | xfs_buf_log_item_t *bip, | |
50 | uint first, | |
51 | uint last) | |
52 | { | |
53 | uint x; | |
54 | uint byte; | |
55 | uint nbytes; | |
56 | uint chunk_num; | |
57 | uint word_num; | |
58 | uint bit_num; | |
59 | uint bit_set; | |
60 | uint *wordp; | |
61 | ||
62 | ASSERT(bip->bli_logged != NULL); | |
63 | byte = first; | |
64 | nbytes = last - first + 1; | |
65 | bfset(bip->bli_logged, first, nbytes); | |
66 | for (x = 0; x < nbytes; x++) { | |
67 | chunk_num = byte >> XFS_BLI_SHIFT; | |
68 | word_num = chunk_num >> BIT_TO_WORD_SHIFT; | |
69 | bit_num = chunk_num & (NBWORD - 1); | |
70 | wordp = &(bip->bli_format.blf_data_map[word_num]); | |
71 | bit_set = *wordp & (1 << bit_num); | |
72 | ASSERT(bit_set); | |
73 | byte++; | |
74 | } | |
75 | } | |
76 | ||
77 | /* | |
78 | * This function is called when we flush something into a buffer without | |
79 | * logging it. This happens for things like inodes which are logged | |
80 | * separately from the buffer. | |
81 | */ | |
82 | void | |
83 | xfs_buf_item_flush_log_debug( | |
84 | xfs_buf_t *bp, | |
85 | uint first, | |
86 | uint last) | |
87 | { | |
88 | xfs_buf_log_item_t *bip; | |
89 | uint nbytes; | |
90 | ||
91 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
92 | if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) { | |
93 | return; | |
94 | } | |
95 | ||
96 | ASSERT(bip->bli_logged != NULL); | |
97 | nbytes = last - first + 1; | |
98 | bfset(bip->bli_logged, first, nbytes); | |
99 | } | |
100 | ||
101 | /* | |
c41564b5 | 102 | * This function is called to verify that our callers have logged |
1da177e4 LT |
103 | * all the bytes that they changed. |
104 | * | |
105 | * It does this by comparing the original copy of the buffer stored in | |
106 | * the buf log item's bli_orig array to the current copy of the buffer | |
c41564b5 | 107 | * and ensuring that all bytes which mismatch are set in the bli_logged |
1da177e4 LT |
108 | * array of the buf log item. |
109 | */ | |
110 | STATIC void | |
111 | xfs_buf_item_log_check( | |
112 | xfs_buf_log_item_t *bip) | |
113 | { | |
114 | char *orig; | |
115 | char *buffer; | |
116 | int x; | |
117 | xfs_buf_t *bp; | |
118 | ||
119 | ASSERT(bip->bli_orig != NULL); | |
120 | ASSERT(bip->bli_logged != NULL); | |
121 | ||
122 | bp = bip->bli_buf; | |
123 | ASSERT(XFS_BUF_COUNT(bp) > 0); | |
124 | ASSERT(XFS_BUF_PTR(bp) != NULL); | |
125 | orig = bip->bli_orig; | |
126 | buffer = XFS_BUF_PTR(bp); | |
127 | for (x = 0; x < XFS_BUF_COUNT(bp); x++) { | |
128 | if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) | |
129 | cmn_err(CE_PANIC, | |
130 | "xfs_buf_item_log_check bip %x buffer %x orig %x index %d", | |
131 | bip, bp, orig, x); | |
132 | } | |
133 | } | |
134 | #else | |
135 | #define xfs_buf_item_log_debug(x,y,z) | |
136 | #define xfs_buf_item_log_check(x) | |
137 | #endif | |
138 | ||
139 | STATIC void xfs_buf_error_relse(xfs_buf_t *bp); | |
140 | STATIC void xfs_buf_do_callbacks(xfs_buf_t *bp, xfs_log_item_t *lip); | |
141 | ||
142 | /* | |
143 | * This returns the number of log iovecs needed to log the | |
144 | * given buf log item. | |
145 | * | |
146 | * It calculates this as 1 iovec for the buf log format structure | |
147 | * and 1 for each stretch of non-contiguous chunks to be logged. | |
148 | * Contiguous chunks are logged in a single iovec. | |
149 | * | |
150 | * If the XFS_BLI_STALE flag has been set, then log nothing. | |
151 | */ | |
ba0f32d4 | 152 | STATIC uint |
1da177e4 LT |
153 | xfs_buf_item_size( |
154 | xfs_buf_log_item_t *bip) | |
155 | { | |
156 | uint nvecs; | |
157 | int next_bit; | |
158 | int last_bit; | |
159 | xfs_buf_t *bp; | |
160 | ||
161 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
162 | if (bip->bli_flags & XFS_BLI_STALE) { | |
163 | /* | |
164 | * The buffer is stale, so all we need to log | |
165 | * is the buf log format structure with the | |
166 | * cancel flag in it. | |
167 | */ | |
0b1b213f | 168 | trace_xfs_buf_item_size_stale(bip); |
1da177e4 LT |
169 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); |
170 | return 1; | |
171 | } | |
172 | ||
173 | bp = bip->bli_buf; | |
174 | ASSERT(bip->bli_flags & XFS_BLI_LOGGED); | |
175 | nvecs = 1; | |
176 | last_bit = xfs_next_bit(bip->bli_format.blf_data_map, | |
177 | bip->bli_format.blf_map_size, 0); | |
178 | ASSERT(last_bit != -1); | |
179 | nvecs++; | |
180 | while (last_bit != -1) { | |
181 | /* | |
182 | * This takes the bit number to start looking from and | |
183 | * returns the next set bit from there. It returns -1 | |
184 | * if there are no more bits set or the start bit is | |
185 | * beyond the end of the bitmap. | |
186 | */ | |
187 | next_bit = xfs_next_bit(bip->bli_format.blf_data_map, | |
188 | bip->bli_format.blf_map_size, | |
189 | last_bit + 1); | |
190 | /* | |
191 | * If we run out of bits, leave the loop, | |
192 | * else if we find a new set of bits bump the number of vecs, | |
193 | * else keep scanning the current set of bits. | |
194 | */ | |
195 | if (next_bit == -1) { | |
196 | last_bit = -1; | |
197 | } else if (next_bit != last_bit + 1) { | |
198 | last_bit = next_bit; | |
199 | nvecs++; | |
200 | } else if (xfs_buf_offset(bp, next_bit * XFS_BLI_CHUNK) != | |
201 | (xfs_buf_offset(bp, last_bit * XFS_BLI_CHUNK) + | |
202 | XFS_BLI_CHUNK)) { | |
203 | last_bit = next_bit; | |
204 | nvecs++; | |
205 | } else { | |
206 | last_bit++; | |
207 | } | |
208 | } | |
209 | ||
0b1b213f | 210 | trace_xfs_buf_item_size(bip); |
1da177e4 LT |
211 | return nvecs; |
212 | } | |
213 | ||
214 | /* | |
215 | * This is called to fill in the vector of log iovecs for the | |
216 | * given log buf item. It fills the first entry with a buf log | |
217 | * format structure, and the rest point to contiguous chunks | |
218 | * within the buffer. | |
219 | */ | |
ba0f32d4 | 220 | STATIC void |
1da177e4 LT |
221 | xfs_buf_item_format( |
222 | xfs_buf_log_item_t *bip, | |
223 | xfs_log_iovec_t *log_vector) | |
224 | { | |
225 | uint base_size; | |
226 | uint nvecs; | |
227 | xfs_log_iovec_t *vecp; | |
228 | xfs_buf_t *bp; | |
229 | int first_bit; | |
230 | int last_bit; | |
231 | int next_bit; | |
232 | uint nbits; | |
233 | uint buffer_offset; | |
234 | ||
235 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
236 | ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || | |
237 | (bip->bli_flags & XFS_BLI_STALE)); | |
238 | bp = bip->bli_buf; | |
1da177e4 LT |
239 | vecp = log_vector; |
240 | ||
241 | /* | |
242 | * The size of the base structure is the size of the | |
243 | * declared structure plus the space for the extra words | |
244 | * of the bitmap. We subtract one from the map size, because | |
245 | * the first element of the bitmap is accounted for in the | |
246 | * size of the base structure. | |
247 | */ | |
248 | base_size = | |
249 | (uint)(sizeof(xfs_buf_log_format_t) + | |
250 | ((bip->bli_format.blf_map_size - 1) * sizeof(uint))); | |
251 | vecp->i_addr = (xfs_caddr_t)&bip->bli_format; | |
252 | vecp->i_len = base_size; | |
4139b3b3 | 253 | vecp->i_type = XLOG_REG_TYPE_BFORMAT; |
1da177e4 LT |
254 | vecp++; |
255 | nvecs = 1; | |
256 | ||
257 | if (bip->bli_flags & XFS_BLI_STALE) { | |
258 | /* | |
259 | * The buffer is stale, so all we need to log | |
260 | * is the buf log format structure with the | |
261 | * cancel flag in it. | |
262 | */ | |
0b1b213f | 263 | trace_xfs_buf_item_format_stale(bip); |
1da177e4 LT |
264 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); |
265 | bip->bli_format.blf_size = nvecs; | |
266 | return; | |
267 | } | |
268 | ||
269 | /* | |
270 | * Fill in an iovec for each set of contiguous chunks. | |
271 | */ | |
272 | first_bit = xfs_next_bit(bip->bli_format.blf_data_map, | |
273 | bip->bli_format.blf_map_size, 0); | |
274 | ASSERT(first_bit != -1); | |
275 | last_bit = first_bit; | |
276 | nbits = 1; | |
277 | for (;;) { | |
278 | /* | |
279 | * This takes the bit number to start looking from and | |
280 | * returns the next set bit from there. It returns -1 | |
281 | * if there are no more bits set or the start bit is | |
282 | * beyond the end of the bitmap. | |
283 | */ | |
284 | next_bit = xfs_next_bit(bip->bli_format.blf_data_map, | |
285 | bip->bli_format.blf_map_size, | |
286 | (uint)last_bit + 1); | |
287 | /* | |
288 | * If we run out of bits fill in the last iovec and get | |
289 | * out of the loop. | |
290 | * Else if we start a new set of bits then fill in the | |
291 | * iovec for the series we were looking at and start | |
292 | * counting the bits in the new one. | |
293 | * Else we're still in the same set of bits so just | |
294 | * keep counting and scanning. | |
295 | */ | |
296 | if (next_bit == -1) { | |
297 | buffer_offset = first_bit * XFS_BLI_CHUNK; | |
298 | vecp->i_addr = xfs_buf_offset(bp, buffer_offset); | |
299 | vecp->i_len = nbits * XFS_BLI_CHUNK; | |
4139b3b3 | 300 | vecp->i_type = XLOG_REG_TYPE_BCHUNK; |
1da177e4 LT |
301 | nvecs++; |
302 | break; | |
303 | } else if (next_bit != last_bit + 1) { | |
304 | buffer_offset = first_bit * XFS_BLI_CHUNK; | |
305 | vecp->i_addr = xfs_buf_offset(bp, buffer_offset); | |
306 | vecp->i_len = nbits * XFS_BLI_CHUNK; | |
4139b3b3 | 307 | vecp->i_type = XLOG_REG_TYPE_BCHUNK; |
1da177e4 LT |
308 | nvecs++; |
309 | vecp++; | |
310 | first_bit = next_bit; | |
311 | last_bit = next_bit; | |
312 | nbits = 1; | |
313 | } else if (xfs_buf_offset(bp, next_bit << XFS_BLI_SHIFT) != | |
314 | (xfs_buf_offset(bp, last_bit << XFS_BLI_SHIFT) + | |
315 | XFS_BLI_CHUNK)) { | |
316 | buffer_offset = first_bit * XFS_BLI_CHUNK; | |
317 | vecp->i_addr = xfs_buf_offset(bp, buffer_offset); | |
318 | vecp->i_len = nbits * XFS_BLI_CHUNK; | |
4139b3b3 | 319 | vecp->i_type = XLOG_REG_TYPE_BCHUNK; |
1da177e4 LT |
320 | /* You would think we need to bump the nvecs here too, but we do not |
321 | * this number is used by recovery, and it gets confused by the boundary | |
322 | * split here | |
323 | * nvecs++; | |
324 | */ | |
325 | vecp++; | |
326 | first_bit = next_bit; | |
327 | last_bit = next_bit; | |
328 | nbits = 1; | |
329 | } else { | |
330 | last_bit++; | |
331 | nbits++; | |
332 | } | |
333 | } | |
334 | bip->bli_format.blf_size = nvecs; | |
335 | ||
336 | /* | |
337 | * Check to make sure everything is consistent. | |
338 | */ | |
0b1b213f | 339 | trace_xfs_buf_item_format(bip); |
1da177e4 LT |
340 | xfs_buf_item_log_check(bip); |
341 | } | |
342 | ||
343 | /* | |
344 | * This is called to pin the buffer associated with the buf log | |
345 | * item in memory so it cannot be written out. Simply call bpin() | |
346 | * on the buffer to do this. | |
347 | */ | |
ba0f32d4 | 348 | STATIC void |
1da177e4 LT |
349 | xfs_buf_item_pin( |
350 | xfs_buf_log_item_t *bip) | |
351 | { | |
352 | xfs_buf_t *bp; | |
353 | ||
354 | bp = bip->bli_buf; | |
355 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
356 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
357 | ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || | |
358 | (bip->bli_flags & XFS_BLI_STALE)); | |
0b1b213f | 359 | trace_xfs_buf_item_pin(bip); |
1da177e4 LT |
360 | xfs_bpin(bp); |
361 | } | |
362 | ||
363 | ||
364 | /* | |
365 | * This is called to unpin the buffer associated with the buf log | |
366 | * item which was previously pinned with a call to xfs_buf_item_pin(). | |
367 | * Just call bunpin() on the buffer to do this. | |
368 | * | |
369 | * Also drop the reference to the buf item for the current transaction. | |
370 | * If the XFS_BLI_STALE flag is set and we are the last reference, | |
371 | * then free up the buf log item and unlock the buffer. | |
372 | */ | |
ba0f32d4 | 373 | STATIC void |
1da177e4 LT |
374 | xfs_buf_item_unpin( |
375 | xfs_buf_log_item_t *bip, | |
376 | int stale) | |
377 | { | |
783a2f65 | 378 | struct xfs_ail *ailp; |
1da177e4 LT |
379 | xfs_buf_t *bp; |
380 | int freed; | |
1da177e4 LT |
381 | |
382 | bp = bip->bli_buf; | |
383 | ASSERT(bp != NULL); | |
384 | ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip); | |
385 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
0b1b213f | 386 | trace_xfs_buf_item_unpin(bip); |
1da177e4 LT |
387 | |
388 | freed = atomic_dec_and_test(&bip->bli_refcount); | |
783a2f65 | 389 | ailp = bip->bli_item.li_ailp; |
1da177e4 LT |
390 | xfs_bunpin(bp); |
391 | if (freed && stale) { | |
392 | ASSERT(bip->bli_flags & XFS_BLI_STALE); | |
393 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
394 | ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); | |
395 | ASSERT(XFS_BUF_ISSTALE(bp)); | |
396 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); | |
0b1b213f CH |
397 | trace_xfs_buf_item_unpin_stale(bip); |
398 | ||
1da177e4 LT |
399 | /* |
400 | * If we get called here because of an IO error, we may | |
783a2f65 | 401 | * or may not have the item on the AIL. xfs_trans_ail_delete() |
1da177e4 | 402 | * will take care of that situation. |
783a2f65 | 403 | * xfs_trans_ail_delete() drops the AIL lock. |
1da177e4 LT |
404 | */ |
405 | if (bip->bli_flags & XFS_BLI_STALE_INODE) { | |
406 | xfs_buf_do_callbacks(bp, (xfs_log_item_t *)bip); | |
407 | XFS_BUF_SET_FSPRIVATE(bp, NULL); | |
408 | XFS_BUF_CLR_IODONE_FUNC(bp); | |
409 | } else { | |
783a2f65 DC |
410 | spin_lock(&ailp->xa_lock); |
411 | xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip); | |
1da177e4 LT |
412 | xfs_buf_item_relse(bp); |
413 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL); | |
414 | } | |
415 | xfs_buf_relse(bp); | |
416 | } | |
417 | } | |
418 | ||
419 | /* | |
420 | * this is called from uncommit in the forced-shutdown path. | |
421 | * we need to check to see if the reference count on the log item | |
422 | * is going to drop to zero. If so, unpin will free the log item | |
423 | * so we need to free the item's descriptor (that points to the item) | |
424 | * in the transaction. | |
425 | */ | |
ba0f32d4 | 426 | STATIC void |
1da177e4 LT |
427 | xfs_buf_item_unpin_remove( |
428 | xfs_buf_log_item_t *bip, | |
429 | xfs_trans_t *tp) | |
430 | { | |
431 | xfs_buf_t *bp; | |
432 | xfs_log_item_desc_t *lidp; | |
433 | int stale = 0; | |
434 | ||
435 | bp = bip->bli_buf; | |
436 | /* | |
437 | * will xfs_buf_item_unpin() call xfs_buf_item_relse()? | |
438 | */ | |
439 | if ((atomic_read(&bip->bli_refcount) == 1) && | |
440 | (bip->bli_flags & XFS_BLI_STALE)) { | |
441 | ASSERT(XFS_BUF_VALUSEMA(bip->bli_buf) <= 0); | |
0b1b213f CH |
442 | trace_xfs_buf_item_unpin_stale(bip); |
443 | ||
1da177e4 LT |
444 | /* |
445 | * yes -- clear the xaction descriptor in-use flag | |
446 | * and free the chunk if required. We can safely | |
447 | * do some work here and then call buf_item_unpin | |
448 | * to do the rest because if the if is true, then | |
449 | * we are holding the buffer locked so no one else | |
450 | * will be able to bump up the refcount. | |
451 | */ | |
452 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) bip); | |
453 | stale = lidp->lid_flags & XFS_LID_BUF_STALE; | |
454 | xfs_trans_free_item(tp, lidp); | |
455 | /* | |
456 | * Since the transaction no longer refers to the buffer, | |
457 | * the buffer should no longer refer to the transaction. | |
458 | */ | |
459 | XFS_BUF_SET_FSPRIVATE2(bp, NULL); | |
460 | } | |
461 | ||
462 | xfs_buf_item_unpin(bip, stale); | |
463 | ||
464 | return; | |
465 | } | |
466 | ||
467 | /* | |
468 | * This is called to attempt to lock the buffer associated with this | |
469 | * buf log item. Don't sleep on the buffer lock. If we can't get | |
d808f617 DC |
470 | * the lock right away, return 0. If we can get the lock, take a |
471 | * reference to the buffer. If this is a delayed write buffer that | |
472 | * needs AIL help to be written back, invoke the pushbuf routine | |
473 | * rather than the normal success path. | |
1da177e4 | 474 | */ |
ba0f32d4 | 475 | STATIC uint |
1da177e4 LT |
476 | xfs_buf_item_trylock( |
477 | xfs_buf_log_item_t *bip) | |
478 | { | |
479 | xfs_buf_t *bp; | |
480 | ||
481 | bp = bip->bli_buf; | |
d808f617 | 482 | if (XFS_BUF_ISPINNED(bp)) |
1da177e4 | 483 | return XFS_ITEM_PINNED; |
d808f617 | 484 | if (!XFS_BUF_CPSEMA(bp)) |
1da177e4 | 485 | return XFS_ITEM_LOCKED; |
1da177e4 | 486 | |
d808f617 | 487 | /* take a reference to the buffer. */ |
1da177e4 LT |
488 | XFS_BUF_HOLD(bp); |
489 | ||
490 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
0b1b213f | 491 | trace_xfs_buf_item_trylock(bip); |
d808f617 DC |
492 | if (XFS_BUF_ISDELAYWRITE(bp)) |
493 | return XFS_ITEM_PUSHBUF; | |
1da177e4 LT |
494 | return XFS_ITEM_SUCCESS; |
495 | } | |
496 | ||
497 | /* | |
498 | * Release the buffer associated with the buf log item. | |
499 | * If there is no dirty logged data associated with the | |
500 | * buffer recorded in the buf log item, then free the | |
501 | * buf log item and remove the reference to it in the | |
502 | * buffer. | |
503 | * | |
504 | * This call ignores the recursion count. It is only called | |
505 | * when the buffer should REALLY be unlocked, regardless | |
506 | * of the recursion count. | |
507 | * | |
508 | * If the XFS_BLI_HOLD flag is set in the buf log item, then | |
509 | * free the log item if necessary but do not unlock the buffer. | |
510 | * This is for support of xfs_trans_bhold(). Make sure the | |
511 | * XFS_BLI_HOLD field is cleared if we don't free the item. | |
512 | */ | |
ba0f32d4 | 513 | STATIC void |
1da177e4 LT |
514 | xfs_buf_item_unlock( |
515 | xfs_buf_log_item_t *bip) | |
516 | { | |
517 | int aborted; | |
518 | xfs_buf_t *bp; | |
519 | uint hold; | |
520 | ||
521 | bp = bip->bli_buf; | |
1da177e4 LT |
522 | |
523 | /* | |
524 | * Clear the buffer's association with this transaction. | |
525 | */ | |
526 | XFS_BUF_SET_FSPRIVATE2(bp, NULL); | |
527 | ||
528 | /* | |
529 | * If this is a transaction abort, don't return early. | |
530 | * Instead, allow the brelse to happen. | |
531 | * Normally it would be done for stale (cancelled) buffers | |
532 | * at unpin time, but we'll never go through the pin/unpin | |
533 | * cycle if we abort inside commit. | |
534 | */ | |
535 | aborted = (bip->bli_item.li_flags & XFS_LI_ABORTED) != 0; | |
536 | ||
537 | /* | |
538 | * If the buf item is marked stale, then don't do anything. | |
539 | * We'll unlock the buffer and free the buf item when the | |
540 | * buffer is unpinned for the last time. | |
541 | */ | |
542 | if (bip->bli_flags & XFS_BLI_STALE) { | |
543 | bip->bli_flags &= ~XFS_BLI_LOGGED; | |
0b1b213f | 544 | trace_xfs_buf_item_unlock_stale(bip); |
1da177e4 LT |
545 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); |
546 | if (!aborted) | |
547 | return; | |
548 | } | |
549 | ||
550 | /* | |
551 | * Drop the transaction's reference to the log item if | |
552 | * it was not logged as part of the transaction. Otherwise | |
553 | * we'll drop the reference in xfs_buf_item_unpin() when | |
554 | * the transaction is really through with the buffer. | |
555 | */ | |
556 | if (!(bip->bli_flags & XFS_BLI_LOGGED)) { | |
557 | atomic_dec(&bip->bli_refcount); | |
558 | } else { | |
559 | /* | |
560 | * Clear the logged flag since this is per | |
561 | * transaction state. | |
562 | */ | |
563 | bip->bli_flags &= ~XFS_BLI_LOGGED; | |
564 | } | |
565 | ||
566 | /* | |
567 | * Before possibly freeing the buf item, determine if we should | |
568 | * release the buffer at the end of this routine. | |
569 | */ | |
570 | hold = bip->bli_flags & XFS_BLI_HOLD; | |
0b1b213f | 571 | trace_xfs_buf_item_unlock(bip); |
1da177e4 LT |
572 | |
573 | /* | |
574 | * If the buf item isn't tracking any data, free it. | |
575 | * Otherwise, if XFS_BLI_HOLD is set clear it. | |
576 | */ | |
24ad33ff ES |
577 | if (xfs_bitmap_empty(bip->bli_format.blf_data_map, |
578 | bip->bli_format.blf_map_size)) { | |
1da177e4 LT |
579 | xfs_buf_item_relse(bp); |
580 | } else if (hold) { | |
581 | bip->bli_flags &= ~XFS_BLI_HOLD; | |
582 | } | |
583 | ||
584 | /* | |
585 | * Release the buffer if XFS_BLI_HOLD was not set. | |
586 | */ | |
587 | if (!hold) { | |
588 | xfs_buf_relse(bp); | |
589 | } | |
590 | } | |
591 | ||
592 | /* | |
593 | * This is called to find out where the oldest active copy of the | |
594 | * buf log item in the on disk log resides now that the last log | |
595 | * write of it completed at the given lsn. | |
596 | * We always re-log all the dirty data in a buffer, so usually the | |
597 | * latest copy in the on disk log is the only one that matters. For | |
598 | * those cases we simply return the given lsn. | |
599 | * | |
600 | * The one exception to this is for buffers full of newly allocated | |
601 | * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF | |
602 | * flag set, indicating that only the di_next_unlinked fields from the | |
603 | * inodes in the buffers will be replayed during recovery. If the | |
604 | * original newly allocated inode images have not yet been flushed | |
605 | * when the buffer is so relogged, then we need to make sure that we | |
606 | * keep the old images in the 'active' portion of the log. We do this | |
607 | * by returning the original lsn of that transaction here rather than | |
608 | * the current one. | |
609 | */ | |
ba0f32d4 | 610 | STATIC xfs_lsn_t |
1da177e4 LT |
611 | xfs_buf_item_committed( |
612 | xfs_buf_log_item_t *bip, | |
613 | xfs_lsn_t lsn) | |
614 | { | |
0b1b213f CH |
615 | trace_xfs_buf_item_committed(bip); |
616 | ||
1da177e4 LT |
617 | if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && |
618 | (bip->bli_item.li_lsn != 0)) { | |
619 | return bip->bli_item.li_lsn; | |
620 | } | |
621 | return (lsn); | |
622 | } | |
623 | ||
1da177e4 | 624 | /* |
d808f617 DC |
625 | * The buffer is locked, but is not a delayed write buffer. This happens |
626 | * if we race with IO completion and hence we don't want to try to write it | |
627 | * again. Just release the buffer. | |
1da177e4 | 628 | */ |
ba0f32d4 | 629 | STATIC void |
1da177e4 LT |
630 | xfs_buf_item_push( |
631 | xfs_buf_log_item_t *bip) | |
632 | { | |
633 | xfs_buf_t *bp; | |
634 | ||
635 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
0b1b213f | 636 | trace_xfs_buf_item_push(bip); |
1da177e4 LT |
637 | |
638 | bp = bip->bli_buf; | |
d808f617 DC |
639 | ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); |
640 | xfs_buf_relse(bp); | |
641 | } | |
1da177e4 | 642 | |
d808f617 DC |
643 | /* |
644 | * The buffer is locked and is a delayed write buffer. Promote the buffer | |
645 | * in the delayed write queue as the caller knows that they must invoke | |
646 | * the xfsbufd to get this buffer written. We have to unlock the buffer | |
647 | * to allow the xfsbufd to write it, too. | |
648 | */ | |
649 | STATIC void | |
650 | xfs_buf_item_pushbuf( | |
651 | xfs_buf_log_item_t *bip) | |
652 | { | |
653 | xfs_buf_t *bp; | |
654 | ||
655 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
656 | trace_xfs_buf_item_pushbuf(bip); | |
657 | ||
658 | bp = bip->bli_buf; | |
659 | ASSERT(XFS_BUF_ISDELAYWRITE(bp)); | |
660 | xfs_buf_delwri_promote(bp); | |
661 | xfs_buf_relse(bp); | |
1da177e4 LT |
662 | } |
663 | ||
664 | /* ARGSUSED */ | |
ba0f32d4 | 665 | STATIC void |
1da177e4 LT |
666 | xfs_buf_item_committing(xfs_buf_log_item_t *bip, xfs_lsn_t commit_lsn) |
667 | { | |
668 | } | |
669 | ||
670 | /* | |
671 | * This is the ops vector shared by all buf log items. | |
672 | */ | |
7989cb8e | 673 | static struct xfs_item_ops xfs_buf_item_ops = { |
1da177e4 LT |
674 | .iop_size = (uint(*)(xfs_log_item_t*))xfs_buf_item_size, |
675 | .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) | |
676 | xfs_buf_item_format, | |
677 | .iop_pin = (void(*)(xfs_log_item_t*))xfs_buf_item_pin, | |
678 | .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_buf_item_unpin, | |
679 | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *)) | |
680 | xfs_buf_item_unpin_remove, | |
681 | .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_buf_item_trylock, | |
682 | .iop_unlock = (void(*)(xfs_log_item_t*))xfs_buf_item_unlock, | |
683 | .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) | |
684 | xfs_buf_item_committed, | |
685 | .iop_push = (void(*)(xfs_log_item_t*))xfs_buf_item_push, | |
d808f617 | 686 | .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_buf_item_pushbuf, |
1da177e4 LT |
687 | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) |
688 | xfs_buf_item_committing | |
689 | }; | |
690 | ||
691 | ||
692 | /* | |
693 | * Allocate a new buf log item to go with the given buffer. | |
694 | * Set the buffer's b_fsprivate field to point to the new | |
695 | * buf log item. If there are other item's attached to the | |
696 | * buffer (see xfs_buf_attach_iodone() below), then put the | |
697 | * buf log item at the front. | |
698 | */ | |
699 | void | |
700 | xfs_buf_item_init( | |
701 | xfs_buf_t *bp, | |
702 | xfs_mount_t *mp) | |
703 | { | |
704 | xfs_log_item_t *lip; | |
705 | xfs_buf_log_item_t *bip; | |
706 | int chunks; | |
707 | int map_size; | |
708 | ||
709 | /* | |
710 | * Check to see if there is already a buf log item for | |
711 | * this buffer. If there is, it is guaranteed to be | |
712 | * the first. If we do already have one, there is | |
713 | * nothing to do here so return. | |
714 | */ | |
15ac08a8 CH |
715 | if (bp->b_mount != mp) |
716 | bp->b_mount = mp; | |
1da177e4 LT |
717 | XFS_BUF_SET_BDSTRAT_FUNC(bp, xfs_bdstrat_cb); |
718 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | |
719 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
720 | if (lip->li_type == XFS_LI_BUF) { | |
721 | return; | |
722 | } | |
723 | } | |
724 | ||
725 | /* | |
726 | * chunks is the number of XFS_BLI_CHUNK size pieces | |
727 | * the buffer can be divided into. Make sure not to | |
728 | * truncate any pieces. map_size is the size of the | |
729 | * bitmap needed to describe the chunks of the buffer. | |
730 | */ | |
731 | chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLI_CHUNK - 1)) >> XFS_BLI_SHIFT); | |
732 | map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT); | |
733 | ||
734 | bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone, | |
735 | KM_SLEEP); | |
736 | bip->bli_item.li_type = XFS_LI_BUF; | |
737 | bip->bli_item.li_ops = &xfs_buf_item_ops; | |
738 | bip->bli_item.li_mountp = mp; | |
fc1829f3 | 739 | bip->bli_item.li_ailp = mp->m_ail; |
1da177e4 | 740 | bip->bli_buf = bp; |
e1f5dbd7 | 741 | xfs_buf_hold(bp); |
1da177e4 LT |
742 | bip->bli_format.blf_type = XFS_LI_BUF; |
743 | bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp); | |
744 | bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp)); | |
745 | bip->bli_format.blf_map_size = map_size; | |
1da177e4 LT |
746 | |
747 | #ifdef XFS_TRANS_DEBUG | |
748 | /* | |
749 | * Allocate the arrays for tracking what needs to be logged | |
750 | * and what our callers request to be logged. bli_orig | |
751 | * holds a copy of the original, clean buffer for comparison | |
752 | * against, and bli_logged keeps a 1 bit flag per byte in | |
753 | * the buffer to indicate which bytes the callers have asked | |
754 | * to have logged. | |
755 | */ | |
756 | bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP); | |
757 | memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp)); | |
758 | bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP); | |
759 | #endif | |
760 | ||
761 | /* | |
762 | * Put the buf item into the list of items attached to the | |
763 | * buffer at the front. | |
764 | */ | |
765 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | |
766 | bip->bli_item.li_bio_list = | |
767 | XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
768 | } | |
769 | XFS_BUF_SET_FSPRIVATE(bp, bip); | |
770 | } | |
771 | ||
772 | ||
773 | /* | |
774 | * Mark bytes first through last inclusive as dirty in the buf | |
775 | * item's bitmap. | |
776 | */ | |
777 | void | |
778 | xfs_buf_item_log( | |
779 | xfs_buf_log_item_t *bip, | |
780 | uint first, | |
781 | uint last) | |
782 | { | |
783 | uint first_bit; | |
784 | uint last_bit; | |
785 | uint bits_to_set; | |
786 | uint bits_set; | |
787 | uint word_num; | |
788 | uint *wordp; | |
789 | uint bit; | |
790 | uint end_bit; | |
791 | uint mask; | |
792 | ||
793 | /* | |
794 | * Mark the item as having some dirty data for | |
795 | * quick reference in xfs_buf_item_dirty. | |
796 | */ | |
797 | bip->bli_flags |= XFS_BLI_DIRTY; | |
798 | ||
799 | /* | |
800 | * Convert byte offsets to bit numbers. | |
801 | */ | |
802 | first_bit = first >> XFS_BLI_SHIFT; | |
803 | last_bit = last >> XFS_BLI_SHIFT; | |
804 | ||
805 | /* | |
806 | * Calculate the total number of bits to be set. | |
807 | */ | |
808 | bits_to_set = last_bit - first_bit + 1; | |
809 | ||
810 | /* | |
811 | * Get a pointer to the first word in the bitmap | |
812 | * to set a bit in. | |
813 | */ | |
814 | word_num = first_bit >> BIT_TO_WORD_SHIFT; | |
815 | wordp = &(bip->bli_format.blf_data_map[word_num]); | |
816 | ||
817 | /* | |
818 | * Calculate the starting bit in the first word. | |
819 | */ | |
820 | bit = first_bit & (uint)(NBWORD - 1); | |
821 | ||
822 | /* | |
823 | * First set any bits in the first word of our range. | |
824 | * If it starts at bit 0 of the word, it will be | |
825 | * set below rather than here. That is what the variable | |
826 | * bit tells us. The variable bits_set tracks the number | |
827 | * of bits that have been set so far. End_bit is the number | |
828 | * of the last bit to be set in this word plus one. | |
829 | */ | |
830 | if (bit) { | |
831 | end_bit = MIN(bit + bits_to_set, (uint)NBWORD); | |
832 | mask = ((1 << (end_bit - bit)) - 1) << bit; | |
833 | *wordp |= mask; | |
834 | wordp++; | |
835 | bits_set = end_bit - bit; | |
836 | } else { | |
837 | bits_set = 0; | |
838 | } | |
839 | ||
840 | /* | |
841 | * Now set bits a whole word at a time that are between | |
842 | * first_bit and last_bit. | |
843 | */ | |
844 | while ((bits_to_set - bits_set) >= NBWORD) { | |
845 | *wordp |= 0xffffffff; | |
846 | bits_set += NBWORD; | |
847 | wordp++; | |
848 | } | |
849 | ||
850 | /* | |
851 | * Finally, set any bits left to be set in one last partial word. | |
852 | */ | |
853 | end_bit = bits_to_set - bits_set; | |
854 | if (end_bit) { | |
855 | mask = (1 << end_bit) - 1; | |
856 | *wordp |= mask; | |
857 | } | |
858 | ||
859 | xfs_buf_item_log_debug(bip, first, last); | |
860 | } | |
861 | ||
862 | ||
863 | /* | |
864 | * Return 1 if the buffer has some data that has been logged (at any | |
865 | * point, not just the current transaction) and 0 if not. | |
866 | */ | |
867 | uint | |
868 | xfs_buf_item_dirty( | |
869 | xfs_buf_log_item_t *bip) | |
870 | { | |
871 | return (bip->bli_flags & XFS_BLI_DIRTY); | |
872 | } | |
873 | ||
e1f5dbd7 LM |
874 | STATIC void |
875 | xfs_buf_item_free( | |
876 | xfs_buf_log_item_t *bip) | |
877 | { | |
878 | #ifdef XFS_TRANS_DEBUG | |
879 | kmem_free(bip->bli_orig); | |
880 | kmem_free(bip->bli_logged); | |
881 | #endif /* XFS_TRANS_DEBUG */ | |
882 | ||
e1f5dbd7 LM |
883 | kmem_zone_free(xfs_buf_item_zone, bip); |
884 | } | |
885 | ||
1da177e4 LT |
886 | /* |
887 | * This is called when the buf log item is no longer needed. It should | |
888 | * free the buf log item associated with the given buffer and clear | |
889 | * the buffer's pointer to the buf log item. If there are no more | |
890 | * items in the list, clear the b_iodone field of the buffer (see | |
891 | * xfs_buf_attach_iodone() below). | |
892 | */ | |
893 | void | |
894 | xfs_buf_item_relse( | |
895 | xfs_buf_t *bp) | |
896 | { | |
897 | xfs_buf_log_item_t *bip; | |
898 | ||
0b1b213f CH |
899 | trace_xfs_buf_item_relse(bp, _RET_IP_); |
900 | ||
1da177e4 LT |
901 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); |
902 | XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list); | |
903 | if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) && | |
904 | (XFS_BUF_IODONE_FUNC(bp) != NULL)) { | |
1da177e4 LT |
905 | XFS_BUF_CLR_IODONE_FUNC(bp); |
906 | } | |
e1f5dbd7 LM |
907 | xfs_buf_rele(bp); |
908 | xfs_buf_item_free(bip); | |
1da177e4 LT |
909 | } |
910 | ||
911 | ||
912 | /* | |
913 | * Add the given log item with its callback to the list of callbacks | |
914 | * to be called when the buffer's I/O completes. If it is not set | |
915 | * already, set the buffer's b_iodone() routine to be | |
916 | * xfs_buf_iodone_callbacks() and link the log item into the list of | |
917 | * items rooted at b_fsprivate. Items are always added as the second | |
918 | * entry in the list if there is a first, because the buf item code | |
919 | * assumes that the buf log item is first. | |
920 | */ | |
921 | void | |
922 | xfs_buf_attach_iodone( | |
923 | xfs_buf_t *bp, | |
924 | void (*cb)(xfs_buf_t *, xfs_log_item_t *), | |
925 | xfs_log_item_t *lip) | |
926 | { | |
927 | xfs_log_item_t *head_lip; | |
928 | ||
929 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
930 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
931 | ||
932 | lip->li_cb = cb; | |
933 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | |
934 | head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
935 | lip->li_bio_list = head_lip->li_bio_list; | |
936 | head_lip->li_bio_list = lip; | |
937 | } else { | |
938 | XFS_BUF_SET_FSPRIVATE(bp, lip); | |
939 | } | |
940 | ||
941 | ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) || | |
942 | (XFS_BUF_IODONE_FUNC(bp) == NULL)); | |
943 | XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); | |
944 | } | |
945 | ||
946 | STATIC void | |
947 | xfs_buf_do_callbacks( | |
948 | xfs_buf_t *bp, | |
949 | xfs_log_item_t *lip) | |
950 | { | |
951 | xfs_log_item_t *nlip; | |
952 | ||
953 | while (lip != NULL) { | |
954 | nlip = lip->li_bio_list; | |
955 | ASSERT(lip->li_cb != NULL); | |
956 | /* | |
957 | * Clear the next pointer so we don't have any | |
958 | * confusion if the item is added to another buf. | |
959 | * Don't touch the log item after calling its | |
960 | * callback, because it could have freed itself. | |
961 | */ | |
962 | lip->li_bio_list = NULL; | |
963 | lip->li_cb(bp, lip); | |
964 | lip = nlip; | |
965 | } | |
966 | } | |
967 | ||
968 | /* | |
969 | * This is the iodone() function for buffers which have had callbacks | |
970 | * attached to them by xfs_buf_attach_iodone(). It should remove each | |
971 | * log item from the buffer's list and call the callback of each in turn. | |
972 | * When done, the buffer's fsprivate field is set to NULL and the buffer | |
973 | * is unlocked with a call to iodone(). | |
974 | */ | |
975 | void | |
976 | xfs_buf_iodone_callbacks( | |
977 | xfs_buf_t *bp) | |
978 | { | |
979 | xfs_log_item_t *lip; | |
980 | static ulong lasttime; | |
981 | static xfs_buftarg_t *lasttarg; | |
982 | xfs_mount_t *mp; | |
983 | ||
984 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
985 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
986 | ||
987 | if (XFS_BUF_GETERROR(bp) != 0) { | |
988 | /* | |
989 | * If we've already decided to shutdown the filesystem | |
990 | * because of IO errors, there's no point in giving this | |
991 | * a retry. | |
992 | */ | |
993 | mp = lip->li_mountp; | |
994 | if (XFS_FORCED_SHUTDOWN(mp)) { | |
995 | ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp); | |
996 | XFS_BUF_SUPER_STALE(bp); | |
0b1b213f | 997 | trace_xfs_buf_item_iodone(bp, _RET_IP_); |
1da177e4 LT |
998 | xfs_buf_do_callbacks(bp, lip); |
999 | XFS_BUF_SET_FSPRIVATE(bp, NULL); | |
1000 | XFS_BUF_CLR_IODONE_FUNC(bp); | |
4fdc7781 | 1001 | xfs_biodone(bp); |
1da177e4 LT |
1002 | return; |
1003 | } | |
1004 | ||
1005 | if ((XFS_BUF_TARGET(bp) != lasttarg) || | |
1006 | (time_after(jiffies, (lasttime + 5*HZ)))) { | |
1007 | lasttime = jiffies; | |
b6574520 NS |
1008 | cmn_err(CE_ALERT, "Device %s, XFS metadata write error" |
1009 | " block 0x%llx in %s", | |
1010 | XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)), | |
1da177e4 LT |
1011 | (__uint64_t)XFS_BUF_ADDR(bp), mp->m_fsname); |
1012 | } | |
1013 | lasttarg = XFS_BUF_TARGET(bp); | |
1014 | ||
1015 | if (XFS_BUF_ISASYNC(bp)) { | |
1016 | /* | |
1017 | * If the write was asynchronous then noone will be | |
1018 | * looking for the error. Clear the error state | |
1019 | * and write the buffer out again delayed write. | |
1020 | * | |
1021 | * XXXsup This is OK, so long as we catch these | |
1022 | * before we start the umount; we don't want these | |
1023 | * DELWRI metadata bufs to be hanging around. | |
1024 | */ | |
1025 | XFS_BUF_ERROR(bp,0); /* errno of 0 unsets the flag */ | |
1026 | ||
1027 | if (!(XFS_BUF_ISSTALE(bp))) { | |
1028 | XFS_BUF_DELAYWRITE(bp); | |
1029 | XFS_BUF_DONE(bp); | |
1030 | XFS_BUF_SET_START(bp); | |
1031 | } | |
1032 | ASSERT(XFS_BUF_IODONE_FUNC(bp)); | |
0b1b213f | 1033 | trace_xfs_buf_item_iodone_async(bp, _RET_IP_); |
1da177e4 LT |
1034 | xfs_buf_relse(bp); |
1035 | } else { | |
1036 | /* | |
1037 | * If the write of the buffer was not asynchronous, | |
1038 | * then we want to make sure to return the error | |
1039 | * to the caller of bwrite(). Because of this we | |
1040 | * cannot clear the B_ERROR state at this point. | |
1041 | * Instead we install a callback function that | |
1042 | * will be called when the buffer is released, and | |
1043 | * that routine will clear the error state and | |
1044 | * set the buffer to be written out again after | |
1045 | * some delay. | |
1046 | */ | |
1047 | /* We actually overwrite the existing b-relse | |
1048 | function at times, but we're gonna be shutting down | |
1049 | anyway. */ | |
1050 | XFS_BUF_SET_BRELSE_FUNC(bp,xfs_buf_error_relse); | |
1051 | XFS_BUF_DONE(bp); | |
b4dd330b | 1052 | XFS_BUF_FINISH_IOWAIT(bp); |
1da177e4 LT |
1053 | } |
1054 | return; | |
1055 | } | |
0b1b213f | 1056 | |
1da177e4 LT |
1057 | xfs_buf_do_callbacks(bp, lip); |
1058 | XFS_BUF_SET_FSPRIVATE(bp, NULL); | |
1059 | XFS_BUF_CLR_IODONE_FUNC(bp); | |
1060 | xfs_biodone(bp); | |
1061 | } | |
1062 | ||
1063 | /* | |
1064 | * This is a callback routine attached to a buffer which gets an error | |
1065 | * when being written out synchronously. | |
1066 | */ | |
1067 | STATIC void | |
1068 | xfs_buf_error_relse( | |
1069 | xfs_buf_t *bp) | |
1070 | { | |
1071 | xfs_log_item_t *lip; | |
1072 | xfs_mount_t *mp; | |
1073 | ||
1074 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
1075 | mp = (xfs_mount_t *)lip->li_mountp; | |
1076 | ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp); | |
1077 | ||
1078 | XFS_BUF_STALE(bp); | |
1079 | XFS_BUF_DONE(bp); | |
1080 | XFS_BUF_UNDELAYWRITE(bp); | |
1081 | XFS_BUF_ERROR(bp,0); | |
0b1b213f CH |
1082 | |
1083 | trace_xfs_buf_error_relse(bp, _RET_IP_); | |
1084 | ||
1da177e4 | 1085 | if (! XFS_FORCED_SHUTDOWN(mp)) |
7d04a335 | 1086 | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); |
1da177e4 LT |
1087 | /* |
1088 | * We have to unpin the pinned buffers so do the | |
1089 | * callbacks. | |
1090 | */ | |
1091 | xfs_buf_do_callbacks(bp, lip); | |
1092 | XFS_BUF_SET_FSPRIVATE(bp, NULL); | |
1093 | XFS_BUF_CLR_IODONE_FUNC(bp); | |
1094 | XFS_BUF_SET_BRELSE_FUNC(bp,NULL); | |
1095 | xfs_buf_relse(bp); | |
1096 | } | |
1097 | ||
1098 | ||
1099 | /* | |
1100 | * This is the iodone() function for buffers which have been | |
1101 | * logged. It is called when they are eventually flushed out. | |
1102 | * It should remove the buf item from the AIL, and free the buf item. | |
1103 | * It is called by xfs_buf_iodone_callbacks() above which will take | |
1104 | * care of cleaning up the buffer itself. | |
1105 | */ | |
1106 | /* ARGSUSED */ | |
1107 | void | |
1108 | xfs_buf_iodone( | |
1109 | xfs_buf_t *bp, | |
1110 | xfs_buf_log_item_t *bip) | |
1111 | { | |
783a2f65 | 1112 | struct xfs_ail *ailp = bip->bli_item.li_ailp; |
1da177e4 LT |
1113 | |
1114 | ASSERT(bip->bli_buf == bp); | |
1115 | ||
e1f5dbd7 | 1116 | xfs_buf_rele(bp); |
1da177e4 LT |
1117 | |
1118 | /* | |
1119 | * If we are forcibly shutting down, this may well be | |
1120 | * off the AIL already. That's because we simulate the | |
1121 | * log-committed callbacks to unpin these buffers. Or we may never | |
1122 | * have put this item on AIL because of the transaction was | |
783a2f65 | 1123 | * aborted forcibly. xfs_trans_ail_delete() takes care of these. |
1da177e4 LT |
1124 | * |
1125 | * Either way, AIL is useless if we're forcing a shutdown. | |
1126 | */ | |
fc1829f3 | 1127 | spin_lock(&ailp->xa_lock); |
783a2f65 | 1128 | xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip); |
e1f5dbd7 | 1129 | xfs_buf_item_free(bip); |
1da177e4 | 1130 | } |