]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 29 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
30 | * kmem_cache_free. |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
a737b3e2 | 53 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
54 | * it's changed with a smp_call_function(). |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
343e0d7a | 58 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
18004c5d | 71 | * The global cache-chain is protected by the mutex 'slab_mutex'. |
1da177e4 LT |
72 | * The sem is only needed when accessing/extending the cache-chain, which |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
1da177e4 LT |
89 | #include <linux/slab.h> |
90 | #include <linux/mm.h> | |
c9cf5528 | 91 | #include <linux/poison.h> |
1da177e4 LT |
92 | #include <linux/swap.h> |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
101a5001 | 97 | #include <linux/cpuset.h> |
a0ec95a8 | 98 | #include <linux/proc_fs.h> |
1da177e4 LT |
99 | #include <linux/seq_file.h> |
100 | #include <linux/notifier.h> | |
101 | #include <linux/kallsyms.h> | |
102 | #include <linux/cpu.h> | |
103 | #include <linux/sysctl.h> | |
104 | #include <linux/module.h> | |
105 | #include <linux/rcupdate.h> | |
543537bd | 106 | #include <linux/string.h> |
138ae663 | 107 | #include <linux/uaccess.h> |
e498be7d | 108 | #include <linux/nodemask.h> |
d5cff635 | 109 | #include <linux/kmemleak.h> |
dc85da15 | 110 | #include <linux/mempolicy.h> |
fc0abb14 | 111 | #include <linux/mutex.h> |
8a8b6502 | 112 | #include <linux/fault-inject.h> |
e7eebaf6 | 113 | #include <linux/rtmutex.h> |
6a2d7a95 | 114 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 115 | #include <linux/debugobjects.h> |
c175eea4 | 116 | #include <linux/kmemcheck.h> |
8f9f8d9e | 117 | #include <linux/memory.h> |
268bb0ce | 118 | #include <linux/prefetch.h> |
1da177e4 | 119 | |
381760ea MG |
120 | #include <net/sock.h> |
121 | ||
1da177e4 LT |
122 | #include <asm/cacheflush.h> |
123 | #include <asm/tlbflush.h> | |
124 | #include <asm/page.h> | |
125 | ||
4dee6b64 SR |
126 | #include <trace/events/kmem.h> |
127 | ||
072bb0aa MG |
128 | #include "internal.h" |
129 | ||
b9ce5ef4 GC |
130 | #include "slab.h" |
131 | ||
1da177e4 | 132 | /* |
50953fe9 | 133 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
134 | * 0 for faster, smaller code (especially in the critical paths). |
135 | * | |
136 | * STATS - 1 to collect stats for /proc/slabinfo. | |
137 | * 0 for faster, smaller code (especially in the critical paths). | |
138 | * | |
139 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
140 | */ | |
141 | ||
142 | #ifdef CONFIG_DEBUG_SLAB | |
143 | #define DEBUG 1 | |
144 | #define STATS 1 | |
145 | #define FORCED_DEBUG 1 | |
146 | #else | |
147 | #define DEBUG 0 | |
148 | #define STATS 0 | |
149 | #define FORCED_DEBUG 0 | |
150 | #endif | |
151 | ||
1da177e4 LT |
152 | /* Shouldn't this be in a header file somewhere? */ |
153 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 154 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 155 | |
1da177e4 LT |
156 | #ifndef ARCH_KMALLOC_FLAGS |
157 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
158 | #endif | |
159 | ||
f315e3fa JK |
160 | #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ |
161 | <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) | |
162 | ||
163 | #if FREELIST_BYTE_INDEX | |
164 | typedef unsigned char freelist_idx_t; | |
165 | #else | |
166 | typedef unsigned short freelist_idx_t; | |
167 | #endif | |
168 | ||
30321c7b | 169 | #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) |
f315e3fa | 170 | |
1da177e4 LT |
171 | /* |
172 | * struct array_cache | |
173 | * | |
1da177e4 LT |
174 | * Purpose: |
175 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
176 | * - reduce the number of linked list operations | |
177 | * - reduce spinlock operations | |
178 | * | |
179 | * The limit is stored in the per-cpu structure to reduce the data cache | |
180 | * footprint. | |
181 | * | |
182 | */ | |
183 | struct array_cache { | |
184 | unsigned int avail; | |
185 | unsigned int limit; | |
186 | unsigned int batchcount; | |
187 | unsigned int touched; | |
bda5b655 | 188 | void *entry[]; /* |
a737b3e2 AM |
189 | * Must have this definition in here for the proper |
190 | * alignment of array_cache. Also simplifies accessing | |
191 | * the entries. | |
a737b3e2 | 192 | */ |
1da177e4 LT |
193 | }; |
194 | ||
c8522a3a JK |
195 | struct alien_cache { |
196 | spinlock_t lock; | |
197 | struct array_cache ac; | |
198 | }; | |
199 | ||
e498be7d CL |
200 | /* |
201 | * Need this for bootstrapping a per node allocator. | |
202 | */ | |
bf0dea23 | 203 | #define NUM_INIT_LISTS (2 * MAX_NUMNODES) |
ce8eb6c4 | 204 | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; |
e498be7d | 205 | #define CACHE_CACHE 0 |
bf0dea23 | 206 | #define SIZE_NODE (MAX_NUMNODES) |
e498be7d | 207 | |
ed11d9eb | 208 | static int drain_freelist(struct kmem_cache *cache, |
ce8eb6c4 | 209 | struct kmem_cache_node *n, int tofree); |
ed11d9eb | 210 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, |
97654dfa JK |
211 | int node, struct list_head *list); |
212 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); | |
83b519e8 | 213 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 214 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 215 | |
76b342bd JK |
216 | static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
217 | void **list); | |
218 | static inline void fixup_slab_list(struct kmem_cache *cachep, | |
219 | struct kmem_cache_node *n, struct page *page, | |
220 | void **list); | |
e0a42726 IM |
221 | static int slab_early_init = 1; |
222 | ||
ce8eb6c4 | 223 | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) |
1da177e4 | 224 | |
ce8eb6c4 | 225 | static void kmem_cache_node_init(struct kmem_cache_node *parent) |
e498be7d CL |
226 | { |
227 | INIT_LIST_HEAD(&parent->slabs_full); | |
228 | INIT_LIST_HEAD(&parent->slabs_partial); | |
229 | INIT_LIST_HEAD(&parent->slabs_free); | |
bf00bd34 | 230 | parent->total_slabs = 0; |
f728b0a5 | 231 | parent->free_slabs = 0; |
e498be7d CL |
232 | parent->shared = NULL; |
233 | parent->alien = NULL; | |
2e1217cf | 234 | parent->colour_next = 0; |
e498be7d CL |
235 | spin_lock_init(&parent->list_lock); |
236 | parent->free_objects = 0; | |
237 | parent->free_touched = 0; | |
238 | } | |
239 | ||
a737b3e2 AM |
240 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
241 | do { \ | |
242 | INIT_LIST_HEAD(listp); \ | |
18bf8541 | 243 | list_splice(&get_node(cachep, nodeid)->slab, listp); \ |
e498be7d CL |
244 | } while (0) |
245 | ||
a737b3e2 AM |
246 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
247 | do { \ | |
e498be7d CL |
248 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
249 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
250 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
251 | } while (0) | |
1da177e4 | 252 | |
b03a017b | 253 | #define CFLGS_OBJFREELIST_SLAB (0x40000000UL) |
1da177e4 | 254 | #define CFLGS_OFF_SLAB (0x80000000UL) |
b03a017b | 255 | #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) |
1da177e4 LT |
256 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) |
257 | ||
258 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 AM |
259 | /* |
260 | * Optimization question: fewer reaps means less probability for unnessary | |
261 | * cpucache drain/refill cycles. | |
1da177e4 | 262 | * |
dc6f3f27 | 263 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
264 | * which could lock up otherwise freeable slabs. |
265 | */ | |
5f0985bb JZ |
266 | #define REAPTIMEOUT_AC (2*HZ) |
267 | #define REAPTIMEOUT_NODE (4*HZ) | |
1da177e4 LT |
268 | |
269 | #if STATS | |
270 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
271 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
272 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
273 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
ed11d9eb | 274 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
a737b3e2 AM |
275 | #define STATS_SET_HIGH(x) \ |
276 | do { \ | |
277 | if ((x)->num_active > (x)->high_mark) \ | |
278 | (x)->high_mark = (x)->num_active; \ | |
279 | } while (0) | |
1da177e4 LT |
280 | #define STATS_INC_ERR(x) ((x)->errors++) |
281 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 282 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 283 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
284 | #define STATS_SET_FREEABLE(x, i) \ |
285 | do { \ | |
286 | if ((x)->max_freeable < i) \ | |
287 | (x)->max_freeable = i; \ | |
288 | } while (0) | |
1da177e4 LT |
289 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
290 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
291 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
292 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
293 | #else | |
294 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
295 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
296 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
297 | #define STATS_INC_GROWN(x) do { } while (0) | |
4e60c86b | 298 | #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) |
1da177e4 LT |
299 | #define STATS_SET_HIGH(x) do { } while (0) |
300 | #define STATS_INC_ERR(x) do { } while (0) | |
301 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 302 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 303 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 304 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
305 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
306 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
307 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
308 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
309 | #endif | |
310 | ||
311 | #if DEBUG | |
1da177e4 | 312 | |
a737b3e2 AM |
313 | /* |
314 | * memory layout of objects: | |
1da177e4 | 315 | * 0 : objp |
3dafccf2 | 316 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
317 | * the end of an object is aligned with the end of the real |
318 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 319 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 320 | * redzone word. |
3dafccf2 | 321 | * cachep->obj_offset: The real object. |
3b0efdfa CL |
322 | * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
323 | * cachep->size - 1* BYTES_PER_WORD: last caller address | |
a737b3e2 | 324 | * [BYTES_PER_WORD long] |
1da177e4 | 325 | */ |
343e0d7a | 326 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 327 | { |
3dafccf2 | 328 | return cachep->obj_offset; |
1da177e4 LT |
329 | } |
330 | ||
b46b8f19 | 331 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
332 | { |
333 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
b46b8f19 DW |
334 | return (unsigned long long*) (objp + obj_offset(cachep) - |
335 | sizeof(unsigned long long)); | |
1da177e4 LT |
336 | } |
337 | ||
b46b8f19 | 338 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
339 | { |
340 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
341 | if (cachep->flags & SLAB_STORE_USER) | |
3b0efdfa | 342 | return (unsigned long long *)(objp + cachep->size - |
b46b8f19 | 343 | sizeof(unsigned long long) - |
87a927c7 | 344 | REDZONE_ALIGN); |
3b0efdfa | 345 | return (unsigned long long *) (objp + cachep->size - |
b46b8f19 | 346 | sizeof(unsigned long long)); |
1da177e4 LT |
347 | } |
348 | ||
343e0d7a | 349 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
350 | { |
351 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3b0efdfa | 352 | return (void **)(objp + cachep->size - BYTES_PER_WORD); |
1da177e4 LT |
353 | } |
354 | ||
355 | #else | |
356 | ||
3dafccf2 | 357 | #define obj_offset(x) 0 |
b46b8f19 DW |
358 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
359 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
360 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
361 | ||
362 | #endif | |
363 | ||
03787301 JK |
364 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
365 | ||
d31676df | 366 | static inline bool is_store_user_clean(struct kmem_cache *cachep) |
03787301 | 367 | { |
d31676df JK |
368 | return atomic_read(&cachep->store_user_clean) == 1; |
369 | } | |
03787301 | 370 | |
d31676df JK |
371 | static inline void set_store_user_clean(struct kmem_cache *cachep) |
372 | { | |
373 | atomic_set(&cachep->store_user_clean, 1); | |
374 | } | |
03787301 | 375 | |
d31676df JK |
376 | static inline void set_store_user_dirty(struct kmem_cache *cachep) |
377 | { | |
378 | if (is_store_user_clean(cachep)) | |
379 | atomic_set(&cachep->store_user_clean, 0); | |
03787301 JK |
380 | } |
381 | ||
382 | #else | |
d31676df | 383 | static inline void set_store_user_dirty(struct kmem_cache *cachep) {} |
03787301 JK |
384 | |
385 | #endif | |
386 | ||
1da177e4 | 387 | /* |
3df1cccd DR |
388 | * Do not go above this order unless 0 objects fit into the slab or |
389 | * overridden on the command line. | |
1da177e4 | 390 | */ |
543585cc DR |
391 | #define SLAB_MAX_ORDER_HI 1 |
392 | #define SLAB_MAX_ORDER_LO 0 | |
393 | static int slab_max_order = SLAB_MAX_ORDER_LO; | |
3df1cccd | 394 | static bool slab_max_order_set __initdata; |
1da177e4 | 395 | |
6ed5eb22 PE |
396 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
397 | { | |
b49af68f | 398 | struct page *page = virt_to_head_page(obj); |
35026088 | 399 | return page->slab_cache; |
6ed5eb22 PE |
400 | } |
401 | ||
8456a648 | 402 | static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, |
8fea4e96 PE |
403 | unsigned int idx) |
404 | { | |
8456a648 | 405 | return page->s_mem + cache->size * idx; |
8fea4e96 PE |
406 | } |
407 | ||
6a2d7a95 | 408 | /* |
3b0efdfa CL |
409 | * We want to avoid an expensive divide : (offset / cache->size) |
410 | * Using the fact that size is a constant for a particular cache, | |
411 | * we can replace (offset / cache->size) by | |
6a2d7a95 ED |
412 | * reciprocal_divide(offset, cache->reciprocal_buffer_size) |
413 | */ | |
414 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |
8456a648 | 415 | const struct page *page, void *obj) |
8fea4e96 | 416 | { |
8456a648 | 417 | u32 offset = (obj - page->s_mem); |
6a2d7a95 | 418 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); |
8fea4e96 PE |
419 | } |
420 | ||
6fb92430 | 421 | #define BOOT_CPUCACHE_ENTRIES 1 |
1da177e4 | 422 | /* internal cache of cache description objs */ |
9b030cb8 | 423 | static struct kmem_cache kmem_cache_boot = { |
b28a02de PE |
424 | .batchcount = 1, |
425 | .limit = BOOT_CPUCACHE_ENTRIES, | |
426 | .shared = 1, | |
3b0efdfa | 427 | .size = sizeof(struct kmem_cache), |
b28a02de | 428 | .name = "kmem_cache", |
1da177e4 LT |
429 | }; |
430 | ||
1871e52c | 431 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 432 | |
343e0d7a | 433 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 | 434 | { |
bf0dea23 | 435 | return this_cpu_ptr(cachep->cpu_cache); |
1da177e4 LT |
436 | } |
437 | ||
a737b3e2 AM |
438 | /* |
439 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
440 | */ | |
70f75067 JK |
441 | static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, |
442 | unsigned long flags, size_t *left_over) | |
fbaccacf | 443 | { |
70f75067 | 444 | unsigned int num; |
fbaccacf | 445 | size_t slab_size = PAGE_SIZE << gfporder; |
1da177e4 | 446 | |
fbaccacf SR |
447 | /* |
448 | * The slab management structure can be either off the slab or | |
449 | * on it. For the latter case, the memory allocated for a | |
450 | * slab is used for: | |
451 | * | |
fbaccacf | 452 | * - @buffer_size bytes for each object |
2e6b3602 JK |
453 | * - One freelist_idx_t for each object |
454 | * | |
455 | * We don't need to consider alignment of freelist because | |
456 | * freelist will be at the end of slab page. The objects will be | |
457 | * at the correct alignment. | |
fbaccacf SR |
458 | * |
459 | * If the slab management structure is off the slab, then the | |
460 | * alignment will already be calculated into the size. Because | |
461 | * the slabs are all pages aligned, the objects will be at the | |
462 | * correct alignment when allocated. | |
463 | */ | |
b03a017b | 464 | if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { |
70f75067 | 465 | num = slab_size / buffer_size; |
2e6b3602 | 466 | *left_over = slab_size % buffer_size; |
fbaccacf | 467 | } else { |
70f75067 | 468 | num = slab_size / (buffer_size + sizeof(freelist_idx_t)); |
2e6b3602 JK |
469 | *left_over = slab_size % |
470 | (buffer_size + sizeof(freelist_idx_t)); | |
fbaccacf | 471 | } |
70f75067 JK |
472 | |
473 | return num; | |
1da177e4 LT |
474 | } |
475 | ||
f28510d3 | 476 | #if DEBUG |
d40cee24 | 477 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 478 | |
a737b3e2 AM |
479 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
480 | char *msg) | |
1da177e4 | 481 | { |
1170532b | 482 | pr_err("slab error in %s(): cache `%s': %s\n", |
b28a02de | 483 | function, cachep->name, msg); |
1da177e4 | 484 | dump_stack(); |
373d4d09 | 485 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 | 486 | } |
f28510d3 | 487 | #endif |
1da177e4 | 488 | |
3395ee05 PM |
489 | /* |
490 | * By default on NUMA we use alien caches to stage the freeing of | |
491 | * objects allocated from other nodes. This causes massive memory | |
492 | * inefficiencies when using fake NUMA setup to split memory into a | |
493 | * large number of small nodes, so it can be disabled on the command | |
494 | * line | |
495 | */ | |
496 | ||
497 | static int use_alien_caches __read_mostly = 1; | |
498 | static int __init noaliencache_setup(char *s) | |
499 | { | |
500 | use_alien_caches = 0; | |
501 | return 1; | |
502 | } | |
503 | __setup("noaliencache", noaliencache_setup); | |
504 | ||
3df1cccd DR |
505 | static int __init slab_max_order_setup(char *str) |
506 | { | |
507 | get_option(&str, &slab_max_order); | |
508 | slab_max_order = slab_max_order < 0 ? 0 : | |
509 | min(slab_max_order, MAX_ORDER - 1); | |
510 | slab_max_order_set = true; | |
511 | ||
512 | return 1; | |
513 | } | |
514 | __setup("slab_max_order=", slab_max_order_setup); | |
515 | ||
8fce4d8e CL |
516 | #ifdef CONFIG_NUMA |
517 | /* | |
518 | * Special reaping functions for NUMA systems called from cache_reap(). | |
519 | * These take care of doing round robin flushing of alien caches (containing | |
520 | * objects freed on different nodes from which they were allocated) and the | |
521 | * flushing of remote pcps by calling drain_node_pages. | |
522 | */ | |
1871e52c | 523 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
524 | |
525 | static void init_reap_node(int cpu) | |
526 | { | |
0edaf86c AM |
527 | per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), |
528 | node_online_map); | |
8fce4d8e CL |
529 | } |
530 | ||
531 | static void next_reap_node(void) | |
532 | { | |
909ea964 | 533 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 534 | |
0edaf86c | 535 | node = next_node_in(node, node_online_map); |
909ea964 | 536 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
537 | } |
538 | ||
539 | #else | |
540 | #define init_reap_node(cpu) do { } while (0) | |
541 | #define next_reap_node(void) do { } while (0) | |
542 | #endif | |
543 | ||
1da177e4 LT |
544 | /* |
545 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
546 | * via the workqueue/eventd. | |
547 | * Add the CPU number into the expiration time to minimize the possibility of | |
548 | * the CPUs getting into lockstep and contending for the global cache chain | |
549 | * lock. | |
550 | */ | |
0db0628d | 551 | static void start_cpu_timer(int cpu) |
1da177e4 | 552 | { |
1871e52c | 553 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 | 554 | |
eac0337a | 555 | if (reap_work->work.func == NULL) { |
8fce4d8e | 556 | init_reap_node(cpu); |
203b42f7 | 557 | INIT_DEFERRABLE_WORK(reap_work, cache_reap); |
2b284214 AV |
558 | schedule_delayed_work_on(cpu, reap_work, |
559 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
560 | } |
561 | } | |
562 | ||
1fe00d50 | 563 | static void init_arraycache(struct array_cache *ac, int limit, int batch) |
1da177e4 | 564 | { |
d5cff635 CM |
565 | /* |
566 | * The array_cache structures contain pointers to free object. | |
25985edc | 567 | * However, when such objects are allocated or transferred to another |
d5cff635 CM |
568 | * cache the pointers are not cleared and they could be counted as |
569 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
570 | * not scan such objects. | |
571 | */ | |
1fe00d50 JK |
572 | kmemleak_no_scan(ac); |
573 | if (ac) { | |
574 | ac->avail = 0; | |
575 | ac->limit = limit; | |
576 | ac->batchcount = batch; | |
577 | ac->touched = 0; | |
1da177e4 | 578 | } |
1fe00d50 JK |
579 | } |
580 | ||
581 | static struct array_cache *alloc_arraycache(int node, int entries, | |
582 | int batchcount, gfp_t gfp) | |
583 | { | |
5e804789 | 584 | size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1fe00d50 JK |
585 | struct array_cache *ac = NULL; |
586 | ||
587 | ac = kmalloc_node(memsize, gfp, node); | |
588 | init_arraycache(ac, entries, batchcount); | |
589 | return ac; | |
1da177e4 LT |
590 | } |
591 | ||
f68f8ddd JK |
592 | static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, |
593 | struct page *page, void *objp) | |
072bb0aa | 594 | { |
f68f8ddd JK |
595 | struct kmem_cache_node *n; |
596 | int page_node; | |
597 | LIST_HEAD(list); | |
072bb0aa | 598 | |
f68f8ddd JK |
599 | page_node = page_to_nid(page); |
600 | n = get_node(cachep, page_node); | |
381760ea | 601 | |
f68f8ddd JK |
602 | spin_lock(&n->list_lock); |
603 | free_block(cachep, &objp, 1, page_node, &list); | |
604 | spin_unlock(&n->list_lock); | |
381760ea | 605 | |
f68f8ddd | 606 | slabs_destroy(cachep, &list); |
072bb0aa MG |
607 | } |
608 | ||
3ded175a CL |
609 | /* |
610 | * Transfer objects in one arraycache to another. | |
611 | * Locking must be handled by the caller. | |
612 | * | |
613 | * Return the number of entries transferred. | |
614 | */ | |
615 | static int transfer_objects(struct array_cache *to, | |
616 | struct array_cache *from, unsigned int max) | |
617 | { | |
618 | /* Figure out how many entries to transfer */ | |
732eacc0 | 619 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
620 | |
621 | if (!nr) | |
622 | return 0; | |
623 | ||
624 | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | |
625 | sizeof(void *) *nr); | |
626 | ||
627 | from->avail -= nr; | |
628 | to->avail += nr; | |
3ded175a CL |
629 | return nr; |
630 | } | |
631 | ||
765c4507 CL |
632 | #ifndef CONFIG_NUMA |
633 | ||
634 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
ce8eb6c4 | 635 | #define reap_alien(cachep, n) do { } while (0) |
765c4507 | 636 | |
c8522a3a JK |
637 | static inline struct alien_cache **alloc_alien_cache(int node, |
638 | int limit, gfp_t gfp) | |
765c4507 | 639 | { |
8888177e | 640 | return NULL; |
765c4507 CL |
641 | } |
642 | ||
c8522a3a | 643 | static inline void free_alien_cache(struct alien_cache **ac_ptr) |
765c4507 CL |
644 | { |
645 | } | |
646 | ||
647 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
648 | { | |
649 | return 0; | |
650 | } | |
651 | ||
652 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
653 | gfp_t flags) | |
654 | { | |
655 | return NULL; | |
656 | } | |
657 | ||
8b98c169 | 658 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
659 | gfp_t flags, int nodeid) |
660 | { | |
661 | return NULL; | |
662 | } | |
663 | ||
4167e9b2 DR |
664 | static inline gfp_t gfp_exact_node(gfp_t flags) |
665 | { | |
444eb2a4 | 666 | return flags & ~__GFP_NOFAIL; |
4167e9b2 DR |
667 | } |
668 | ||
765c4507 CL |
669 | #else /* CONFIG_NUMA */ |
670 | ||
8b98c169 | 671 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 672 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 673 | |
c8522a3a JK |
674 | static struct alien_cache *__alloc_alien_cache(int node, int entries, |
675 | int batch, gfp_t gfp) | |
676 | { | |
5e804789 | 677 | size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); |
c8522a3a JK |
678 | struct alien_cache *alc = NULL; |
679 | ||
680 | alc = kmalloc_node(memsize, gfp, node); | |
681 | init_arraycache(&alc->ac, entries, batch); | |
49dfc304 | 682 | spin_lock_init(&alc->lock); |
c8522a3a JK |
683 | return alc; |
684 | } | |
685 | ||
686 | static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | |
e498be7d | 687 | { |
c8522a3a | 688 | struct alien_cache **alc_ptr; |
5e804789 | 689 | size_t memsize = sizeof(void *) * nr_node_ids; |
e498be7d CL |
690 | int i; |
691 | ||
692 | if (limit > 1) | |
693 | limit = 12; | |
c8522a3a JK |
694 | alc_ptr = kzalloc_node(memsize, gfp, node); |
695 | if (!alc_ptr) | |
696 | return NULL; | |
697 | ||
698 | for_each_node(i) { | |
699 | if (i == node || !node_online(i)) | |
700 | continue; | |
701 | alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); | |
702 | if (!alc_ptr[i]) { | |
703 | for (i--; i >= 0; i--) | |
704 | kfree(alc_ptr[i]); | |
705 | kfree(alc_ptr); | |
706 | return NULL; | |
e498be7d CL |
707 | } |
708 | } | |
c8522a3a | 709 | return alc_ptr; |
e498be7d CL |
710 | } |
711 | ||
c8522a3a | 712 | static void free_alien_cache(struct alien_cache **alc_ptr) |
e498be7d CL |
713 | { |
714 | int i; | |
715 | ||
c8522a3a | 716 | if (!alc_ptr) |
e498be7d | 717 | return; |
e498be7d | 718 | for_each_node(i) |
c8522a3a JK |
719 | kfree(alc_ptr[i]); |
720 | kfree(alc_ptr); | |
e498be7d CL |
721 | } |
722 | ||
343e0d7a | 723 | static void __drain_alien_cache(struct kmem_cache *cachep, |
833b706c JK |
724 | struct array_cache *ac, int node, |
725 | struct list_head *list) | |
e498be7d | 726 | { |
18bf8541 | 727 | struct kmem_cache_node *n = get_node(cachep, node); |
e498be7d CL |
728 | |
729 | if (ac->avail) { | |
ce8eb6c4 | 730 | spin_lock(&n->list_lock); |
e00946fe CL |
731 | /* |
732 | * Stuff objects into the remote nodes shared array first. | |
733 | * That way we could avoid the overhead of putting the objects | |
734 | * into the free lists and getting them back later. | |
735 | */ | |
ce8eb6c4 CL |
736 | if (n->shared) |
737 | transfer_objects(n->shared, ac, ac->limit); | |
e00946fe | 738 | |
833b706c | 739 | free_block(cachep, ac->entry, ac->avail, node, list); |
e498be7d | 740 | ac->avail = 0; |
ce8eb6c4 | 741 | spin_unlock(&n->list_lock); |
e498be7d CL |
742 | } |
743 | } | |
744 | ||
8fce4d8e CL |
745 | /* |
746 | * Called from cache_reap() to regularly drain alien caches round robin. | |
747 | */ | |
ce8eb6c4 | 748 | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) |
8fce4d8e | 749 | { |
909ea964 | 750 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 751 | |
ce8eb6c4 | 752 | if (n->alien) { |
c8522a3a JK |
753 | struct alien_cache *alc = n->alien[node]; |
754 | struct array_cache *ac; | |
755 | ||
756 | if (alc) { | |
757 | ac = &alc->ac; | |
49dfc304 | 758 | if (ac->avail && spin_trylock_irq(&alc->lock)) { |
833b706c JK |
759 | LIST_HEAD(list); |
760 | ||
761 | __drain_alien_cache(cachep, ac, node, &list); | |
49dfc304 | 762 | spin_unlock_irq(&alc->lock); |
833b706c | 763 | slabs_destroy(cachep, &list); |
c8522a3a | 764 | } |
8fce4d8e CL |
765 | } |
766 | } | |
767 | } | |
768 | ||
a737b3e2 | 769 | static void drain_alien_cache(struct kmem_cache *cachep, |
c8522a3a | 770 | struct alien_cache **alien) |
e498be7d | 771 | { |
b28a02de | 772 | int i = 0; |
c8522a3a | 773 | struct alien_cache *alc; |
e498be7d CL |
774 | struct array_cache *ac; |
775 | unsigned long flags; | |
776 | ||
777 | for_each_online_node(i) { | |
c8522a3a JK |
778 | alc = alien[i]; |
779 | if (alc) { | |
833b706c JK |
780 | LIST_HEAD(list); |
781 | ||
c8522a3a | 782 | ac = &alc->ac; |
49dfc304 | 783 | spin_lock_irqsave(&alc->lock, flags); |
833b706c | 784 | __drain_alien_cache(cachep, ac, i, &list); |
49dfc304 | 785 | spin_unlock_irqrestore(&alc->lock, flags); |
833b706c | 786 | slabs_destroy(cachep, &list); |
e498be7d CL |
787 | } |
788 | } | |
789 | } | |
729bd0b7 | 790 | |
25c4f304 JK |
791 | static int __cache_free_alien(struct kmem_cache *cachep, void *objp, |
792 | int node, int page_node) | |
729bd0b7 | 793 | { |
ce8eb6c4 | 794 | struct kmem_cache_node *n; |
c8522a3a JK |
795 | struct alien_cache *alien = NULL; |
796 | struct array_cache *ac; | |
97654dfa | 797 | LIST_HEAD(list); |
1ca4cb24 | 798 | |
18bf8541 | 799 | n = get_node(cachep, node); |
729bd0b7 | 800 | STATS_INC_NODEFREES(cachep); |
25c4f304 JK |
801 | if (n->alien && n->alien[page_node]) { |
802 | alien = n->alien[page_node]; | |
c8522a3a | 803 | ac = &alien->ac; |
49dfc304 | 804 | spin_lock(&alien->lock); |
c8522a3a | 805 | if (unlikely(ac->avail == ac->limit)) { |
729bd0b7 | 806 | STATS_INC_ACOVERFLOW(cachep); |
25c4f304 | 807 | __drain_alien_cache(cachep, ac, page_node, &list); |
729bd0b7 | 808 | } |
f68f8ddd | 809 | ac->entry[ac->avail++] = objp; |
49dfc304 | 810 | spin_unlock(&alien->lock); |
833b706c | 811 | slabs_destroy(cachep, &list); |
729bd0b7 | 812 | } else { |
25c4f304 | 813 | n = get_node(cachep, page_node); |
18bf8541 | 814 | spin_lock(&n->list_lock); |
25c4f304 | 815 | free_block(cachep, &objp, 1, page_node, &list); |
18bf8541 | 816 | spin_unlock(&n->list_lock); |
97654dfa | 817 | slabs_destroy(cachep, &list); |
729bd0b7 PE |
818 | } |
819 | return 1; | |
820 | } | |
25c4f304 JK |
821 | |
822 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
823 | { | |
824 | int page_node = page_to_nid(virt_to_page(objp)); | |
825 | int node = numa_mem_id(); | |
826 | /* | |
827 | * Make sure we are not freeing a object from another node to the array | |
828 | * cache on this cpu. | |
829 | */ | |
830 | if (likely(node == page_node)) | |
831 | return 0; | |
832 | ||
833 | return __cache_free_alien(cachep, objp, node, page_node); | |
834 | } | |
4167e9b2 DR |
835 | |
836 | /* | |
444eb2a4 MG |
837 | * Construct gfp mask to allocate from a specific node but do not reclaim or |
838 | * warn about failures. | |
4167e9b2 DR |
839 | */ |
840 | static inline gfp_t gfp_exact_node(gfp_t flags) | |
841 | { | |
444eb2a4 | 842 | return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
4167e9b2 | 843 | } |
e498be7d CL |
844 | #endif |
845 | ||
ded0ecf6 JK |
846 | static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) |
847 | { | |
848 | struct kmem_cache_node *n; | |
849 | ||
850 | /* | |
851 | * Set up the kmem_cache_node for cpu before we can | |
852 | * begin anything. Make sure some other cpu on this | |
853 | * node has not already allocated this | |
854 | */ | |
855 | n = get_node(cachep, node); | |
856 | if (n) { | |
857 | spin_lock_irq(&n->list_lock); | |
858 | n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + | |
859 | cachep->num; | |
860 | spin_unlock_irq(&n->list_lock); | |
861 | ||
862 | return 0; | |
863 | } | |
864 | ||
865 | n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); | |
866 | if (!n) | |
867 | return -ENOMEM; | |
868 | ||
869 | kmem_cache_node_init(n); | |
870 | n->next_reap = jiffies + REAPTIMEOUT_NODE + | |
871 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
872 | ||
873 | n->free_limit = | |
874 | (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; | |
875 | ||
876 | /* | |
877 | * The kmem_cache_nodes don't come and go as CPUs | |
878 | * come and go. slab_mutex is sufficient | |
879 | * protection here. | |
880 | */ | |
881 | cachep->node[node] = n; | |
882 | ||
883 | return 0; | |
884 | } | |
885 | ||
6731d4f1 | 886 | #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) |
8f9f8d9e | 887 | /* |
6a67368c | 888 | * Allocates and initializes node for a node on each slab cache, used for |
ce8eb6c4 | 889 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node |
8f9f8d9e | 890 | * will be allocated off-node since memory is not yet online for the new node. |
6a67368c | 891 | * When hotplugging memory or a cpu, existing node are not replaced if |
8f9f8d9e DR |
892 | * already in use. |
893 | * | |
18004c5d | 894 | * Must hold slab_mutex. |
8f9f8d9e | 895 | */ |
6a67368c | 896 | static int init_cache_node_node(int node) |
8f9f8d9e | 897 | { |
ded0ecf6 | 898 | int ret; |
8f9f8d9e | 899 | struct kmem_cache *cachep; |
8f9f8d9e | 900 | |
18004c5d | 901 | list_for_each_entry(cachep, &slab_caches, list) { |
ded0ecf6 JK |
902 | ret = init_cache_node(cachep, node, GFP_KERNEL); |
903 | if (ret) | |
904 | return ret; | |
8f9f8d9e | 905 | } |
ded0ecf6 | 906 | |
8f9f8d9e DR |
907 | return 0; |
908 | } | |
6731d4f1 | 909 | #endif |
8f9f8d9e | 910 | |
c3d332b6 JK |
911 | static int setup_kmem_cache_node(struct kmem_cache *cachep, |
912 | int node, gfp_t gfp, bool force_change) | |
913 | { | |
914 | int ret = -ENOMEM; | |
915 | struct kmem_cache_node *n; | |
916 | struct array_cache *old_shared = NULL; | |
917 | struct array_cache *new_shared = NULL; | |
918 | struct alien_cache **new_alien = NULL; | |
919 | LIST_HEAD(list); | |
920 | ||
921 | if (use_alien_caches) { | |
922 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); | |
923 | if (!new_alien) | |
924 | goto fail; | |
925 | } | |
926 | ||
927 | if (cachep->shared) { | |
928 | new_shared = alloc_arraycache(node, | |
929 | cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); | |
930 | if (!new_shared) | |
931 | goto fail; | |
932 | } | |
933 | ||
934 | ret = init_cache_node(cachep, node, gfp); | |
935 | if (ret) | |
936 | goto fail; | |
937 | ||
938 | n = get_node(cachep, node); | |
939 | spin_lock_irq(&n->list_lock); | |
940 | if (n->shared && force_change) { | |
941 | free_block(cachep, n->shared->entry, | |
942 | n->shared->avail, node, &list); | |
943 | n->shared->avail = 0; | |
944 | } | |
945 | ||
946 | if (!n->shared || force_change) { | |
947 | old_shared = n->shared; | |
948 | n->shared = new_shared; | |
949 | new_shared = NULL; | |
950 | } | |
951 | ||
952 | if (!n->alien) { | |
953 | n->alien = new_alien; | |
954 | new_alien = NULL; | |
955 | } | |
956 | ||
957 | spin_unlock_irq(&n->list_lock); | |
958 | slabs_destroy(cachep, &list); | |
959 | ||
801faf0d JK |
960 | /* |
961 | * To protect lockless access to n->shared during irq disabled context. | |
962 | * If n->shared isn't NULL in irq disabled context, accessing to it is | |
963 | * guaranteed to be valid until irq is re-enabled, because it will be | |
964 | * freed after synchronize_sched(). | |
965 | */ | |
86d9f485 | 966 | if (old_shared && force_change) |
801faf0d JK |
967 | synchronize_sched(); |
968 | ||
c3d332b6 JK |
969 | fail: |
970 | kfree(old_shared); | |
971 | kfree(new_shared); | |
972 | free_alien_cache(new_alien); | |
973 | ||
974 | return ret; | |
975 | } | |
976 | ||
6731d4f1 SAS |
977 | #ifdef CONFIG_SMP |
978 | ||
0db0628d | 979 | static void cpuup_canceled(long cpu) |
fbf1e473 AM |
980 | { |
981 | struct kmem_cache *cachep; | |
ce8eb6c4 | 982 | struct kmem_cache_node *n = NULL; |
7d6e6d09 | 983 | int node = cpu_to_mem(cpu); |
a70f7302 | 984 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 | 985 | |
18004c5d | 986 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
987 | struct array_cache *nc; |
988 | struct array_cache *shared; | |
c8522a3a | 989 | struct alien_cache **alien; |
97654dfa | 990 | LIST_HEAD(list); |
fbf1e473 | 991 | |
18bf8541 | 992 | n = get_node(cachep, node); |
ce8eb6c4 | 993 | if (!n) |
bf0dea23 | 994 | continue; |
fbf1e473 | 995 | |
ce8eb6c4 | 996 | spin_lock_irq(&n->list_lock); |
fbf1e473 | 997 | |
ce8eb6c4 CL |
998 | /* Free limit for this kmem_cache_node */ |
999 | n->free_limit -= cachep->batchcount; | |
bf0dea23 JK |
1000 | |
1001 | /* cpu is dead; no one can alloc from it. */ | |
1002 | nc = per_cpu_ptr(cachep->cpu_cache, cpu); | |
1003 | if (nc) { | |
97654dfa | 1004 | free_block(cachep, nc->entry, nc->avail, node, &list); |
bf0dea23 JK |
1005 | nc->avail = 0; |
1006 | } | |
fbf1e473 | 1007 | |
58463c1f | 1008 | if (!cpumask_empty(mask)) { |
ce8eb6c4 | 1009 | spin_unlock_irq(&n->list_lock); |
bf0dea23 | 1010 | goto free_slab; |
fbf1e473 AM |
1011 | } |
1012 | ||
ce8eb6c4 | 1013 | shared = n->shared; |
fbf1e473 AM |
1014 | if (shared) { |
1015 | free_block(cachep, shared->entry, | |
97654dfa | 1016 | shared->avail, node, &list); |
ce8eb6c4 | 1017 | n->shared = NULL; |
fbf1e473 AM |
1018 | } |
1019 | ||
ce8eb6c4 CL |
1020 | alien = n->alien; |
1021 | n->alien = NULL; | |
fbf1e473 | 1022 | |
ce8eb6c4 | 1023 | spin_unlock_irq(&n->list_lock); |
fbf1e473 AM |
1024 | |
1025 | kfree(shared); | |
1026 | if (alien) { | |
1027 | drain_alien_cache(cachep, alien); | |
1028 | free_alien_cache(alien); | |
1029 | } | |
bf0dea23 JK |
1030 | |
1031 | free_slab: | |
97654dfa | 1032 | slabs_destroy(cachep, &list); |
fbf1e473 AM |
1033 | } |
1034 | /* | |
1035 | * In the previous loop, all the objects were freed to | |
1036 | * the respective cache's slabs, now we can go ahead and | |
1037 | * shrink each nodelist to its limit. | |
1038 | */ | |
18004c5d | 1039 | list_for_each_entry(cachep, &slab_caches, list) { |
18bf8541 | 1040 | n = get_node(cachep, node); |
ce8eb6c4 | 1041 | if (!n) |
fbf1e473 | 1042 | continue; |
a5aa63a5 | 1043 | drain_freelist(cachep, n, INT_MAX); |
fbf1e473 AM |
1044 | } |
1045 | } | |
1046 | ||
0db0628d | 1047 | static int cpuup_prepare(long cpu) |
1da177e4 | 1048 | { |
343e0d7a | 1049 | struct kmem_cache *cachep; |
7d6e6d09 | 1050 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1051 | int err; |
1da177e4 | 1052 | |
fbf1e473 AM |
1053 | /* |
1054 | * We need to do this right in the beginning since | |
1055 | * alloc_arraycache's are going to use this list. | |
1056 | * kmalloc_node allows us to add the slab to the right | |
ce8eb6c4 | 1057 | * kmem_cache_node and not this cpu's kmem_cache_node |
fbf1e473 | 1058 | */ |
6a67368c | 1059 | err = init_cache_node_node(node); |
8f9f8d9e DR |
1060 | if (err < 0) |
1061 | goto bad; | |
fbf1e473 AM |
1062 | |
1063 | /* | |
1064 | * Now we can go ahead with allocating the shared arrays and | |
1065 | * array caches | |
1066 | */ | |
18004c5d | 1067 | list_for_each_entry(cachep, &slab_caches, list) { |
c3d332b6 JK |
1068 | err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); |
1069 | if (err) | |
1070 | goto bad; | |
fbf1e473 | 1071 | } |
ce79ddc8 | 1072 | |
fbf1e473 AM |
1073 | return 0; |
1074 | bad: | |
12d00f6a | 1075 | cpuup_canceled(cpu); |
fbf1e473 AM |
1076 | return -ENOMEM; |
1077 | } | |
1078 | ||
6731d4f1 | 1079 | int slab_prepare_cpu(unsigned int cpu) |
fbf1e473 | 1080 | { |
6731d4f1 | 1081 | int err; |
fbf1e473 | 1082 | |
6731d4f1 SAS |
1083 | mutex_lock(&slab_mutex); |
1084 | err = cpuup_prepare(cpu); | |
1085 | mutex_unlock(&slab_mutex); | |
1086 | return err; | |
1087 | } | |
1088 | ||
1089 | /* | |
1090 | * This is called for a failed online attempt and for a successful | |
1091 | * offline. | |
1092 | * | |
1093 | * Even if all the cpus of a node are down, we don't free the | |
1094 | * kmem_list3 of any cache. This to avoid a race between cpu_down, and | |
1095 | * a kmalloc allocation from another cpu for memory from the node of | |
1096 | * the cpu going down. The list3 structure is usually allocated from | |
1097 | * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). | |
1098 | */ | |
1099 | int slab_dead_cpu(unsigned int cpu) | |
1100 | { | |
1101 | mutex_lock(&slab_mutex); | |
1102 | cpuup_canceled(cpu); | |
1103 | mutex_unlock(&slab_mutex); | |
1104 | return 0; | |
1105 | } | |
8f5be20b | 1106 | #endif |
6731d4f1 SAS |
1107 | |
1108 | static int slab_online_cpu(unsigned int cpu) | |
1109 | { | |
1110 | start_cpu_timer(cpu); | |
1111 | return 0; | |
1da177e4 LT |
1112 | } |
1113 | ||
6731d4f1 SAS |
1114 | static int slab_offline_cpu(unsigned int cpu) |
1115 | { | |
1116 | /* | |
1117 | * Shutdown cache reaper. Note that the slab_mutex is held so | |
1118 | * that if cache_reap() is invoked it cannot do anything | |
1119 | * expensive but will only modify reap_work and reschedule the | |
1120 | * timer. | |
1121 | */ | |
1122 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); | |
1123 | /* Now the cache_reaper is guaranteed to be not running. */ | |
1124 | per_cpu(slab_reap_work, cpu).work.func = NULL; | |
1125 | return 0; | |
1126 | } | |
1da177e4 | 1127 | |
8f9f8d9e DR |
1128 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
1129 | /* | |
1130 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1131 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1132 | * removed. | |
1133 | * | |
18004c5d | 1134 | * Must hold slab_mutex. |
8f9f8d9e | 1135 | */ |
6a67368c | 1136 | static int __meminit drain_cache_node_node(int node) |
8f9f8d9e DR |
1137 | { |
1138 | struct kmem_cache *cachep; | |
1139 | int ret = 0; | |
1140 | ||
18004c5d | 1141 | list_for_each_entry(cachep, &slab_caches, list) { |
ce8eb6c4 | 1142 | struct kmem_cache_node *n; |
8f9f8d9e | 1143 | |
18bf8541 | 1144 | n = get_node(cachep, node); |
ce8eb6c4 | 1145 | if (!n) |
8f9f8d9e DR |
1146 | continue; |
1147 | ||
a5aa63a5 | 1148 | drain_freelist(cachep, n, INT_MAX); |
8f9f8d9e | 1149 | |
ce8eb6c4 CL |
1150 | if (!list_empty(&n->slabs_full) || |
1151 | !list_empty(&n->slabs_partial)) { | |
8f9f8d9e DR |
1152 | ret = -EBUSY; |
1153 | break; | |
1154 | } | |
1155 | } | |
1156 | return ret; | |
1157 | } | |
1158 | ||
1159 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1160 | unsigned long action, void *arg) | |
1161 | { | |
1162 | struct memory_notify *mnb = arg; | |
1163 | int ret = 0; | |
1164 | int nid; | |
1165 | ||
1166 | nid = mnb->status_change_nid; | |
1167 | if (nid < 0) | |
1168 | goto out; | |
1169 | ||
1170 | switch (action) { | |
1171 | case MEM_GOING_ONLINE: | |
18004c5d | 1172 | mutex_lock(&slab_mutex); |
6a67368c | 1173 | ret = init_cache_node_node(nid); |
18004c5d | 1174 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1175 | break; |
1176 | case MEM_GOING_OFFLINE: | |
18004c5d | 1177 | mutex_lock(&slab_mutex); |
6a67368c | 1178 | ret = drain_cache_node_node(nid); |
18004c5d | 1179 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1180 | break; |
1181 | case MEM_ONLINE: | |
1182 | case MEM_OFFLINE: | |
1183 | case MEM_CANCEL_ONLINE: | |
1184 | case MEM_CANCEL_OFFLINE: | |
1185 | break; | |
1186 | } | |
1187 | out: | |
5fda1bd5 | 1188 | return notifier_from_errno(ret); |
8f9f8d9e DR |
1189 | } |
1190 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | |
1191 | ||
e498be7d | 1192 | /* |
ce8eb6c4 | 1193 | * swap the static kmem_cache_node with kmalloced memory |
e498be7d | 1194 | */ |
6744f087 | 1195 | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, |
8f9f8d9e | 1196 | int nodeid) |
e498be7d | 1197 | { |
6744f087 | 1198 | struct kmem_cache_node *ptr; |
e498be7d | 1199 | |
6744f087 | 1200 | ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); |
e498be7d CL |
1201 | BUG_ON(!ptr); |
1202 | ||
6744f087 | 1203 | memcpy(ptr, list, sizeof(struct kmem_cache_node)); |
2b2d5493 IM |
1204 | /* |
1205 | * Do not assume that spinlocks can be initialized via memcpy: | |
1206 | */ | |
1207 | spin_lock_init(&ptr->list_lock); | |
1208 | ||
e498be7d | 1209 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
6a67368c | 1210 | cachep->node[nodeid] = ptr; |
e498be7d CL |
1211 | } |
1212 | ||
556a169d | 1213 | /* |
ce8eb6c4 CL |
1214 | * For setting up all the kmem_cache_node for cache whose buffer_size is same as |
1215 | * size of kmem_cache_node. | |
556a169d | 1216 | */ |
ce8eb6c4 | 1217 | static void __init set_up_node(struct kmem_cache *cachep, int index) |
556a169d PE |
1218 | { |
1219 | int node; | |
1220 | ||
1221 | for_each_online_node(node) { | |
ce8eb6c4 | 1222 | cachep->node[node] = &init_kmem_cache_node[index + node]; |
6a67368c | 1223 | cachep->node[node]->next_reap = jiffies + |
5f0985bb JZ |
1224 | REAPTIMEOUT_NODE + |
1225 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
556a169d PE |
1226 | } |
1227 | } | |
1228 | ||
a737b3e2 AM |
1229 | /* |
1230 | * Initialisation. Called after the page allocator have been initialised and | |
1231 | * before smp_init(). | |
1da177e4 LT |
1232 | */ |
1233 | void __init kmem_cache_init(void) | |
1234 | { | |
e498be7d CL |
1235 | int i; |
1236 | ||
68126702 JK |
1237 | BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < |
1238 | sizeof(struct rcu_head)); | |
9b030cb8 CL |
1239 | kmem_cache = &kmem_cache_boot; |
1240 | ||
8888177e | 1241 | if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) |
62918a03 SS |
1242 | use_alien_caches = 0; |
1243 | ||
3c583465 | 1244 | for (i = 0; i < NUM_INIT_LISTS; i++) |
ce8eb6c4 | 1245 | kmem_cache_node_init(&init_kmem_cache_node[i]); |
3c583465 | 1246 | |
1da177e4 LT |
1247 | /* |
1248 | * Fragmentation resistance on low memory - only use bigger | |
3df1cccd DR |
1249 | * page orders on machines with more than 32MB of memory if |
1250 | * not overridden on the command line. | |
1da177e4 | 1251 | */ |
3df1cccd | 1252 | if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) |
543585cc | 1253 | slab_max_order = SLAB_MAX_ORDER_HI; |
1da177e4 | 1254 | |
1da177e4 LT |
1255 | /* Bootstrap is tricky, because several objects are allocated |
1256 | * from caches that do not exist yet: | |
9b030cb8 CL |
1257 | * 1) initialize the kmem_cache cache: it contains the struct |
1258 | * kmem_cache structures of all caches, except kmem_cache itself: | |
1259 | * kmem_cache is statically allocated. | |
e498be7d | 1260 | * Initially an __init data area is used for the head array and the |
ce8eb6c4 | 1261 | * kmem_cache_node structures, it's replaced with a kmalloc allocated |
e498be7d | 1262 | * array at the end of the bootstrap. |
1da177e4 | 1263 | * 2) Create the first kmalloc cache. |
343e0d7a | 1264 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1265 | * An __init data area is used for the head array. |
1266 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1267 | * head arrays. | |
9b030cb8 | 1268 | * 4) Replace the __init data head arrays for kmem_cache and the first |
1da177e4 | 1269 | * kmalloc cache with kmalloc allocated arrays. |
ce8eb6c4 | 1270 | * 5) Replace the __init data for kmem_cache_node for kmem_cache and |
e498be7d CL |
1271 | * the other cache's with kmalloc allocated memory. |
1272 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1273 | */ |
1274 | ||
9b030cb8 | 1275 | /* 1) create the kmem_cache */ |
1da177e4 | 1276 | |
8da3430d | 1277 | /* |
b56efcf0 | 1278 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1279 | */ |
2f9baa9f | 1280 | create_boot_cache(kmem_cache, "kmem_cache", |
bf0dea23 | 1281 | offsetof(struct kmem_cache, node) + |
6744f087 | 1282 | nr_node_ids * sizeof(struct kmem_cache_node *), |
2f9baa9f CL |
1283 | SLAB_HWCACHE_ALIGN); |
1284 | list_add(&kmem_cache->list, &slab_caches); | |
bf0dea23 | 1285 | slab_state = PARTIAL; |
1da177e4 | 1286 | |
a737b3e2 | 1287 | /* |
bf0dea23 JK |
1288 | * Initialize the caches that provide memory for the kmem_cache_node |
1289 | * structures first. Without this, further allocations will bug. | |
e498be7d | 1290 | */ |
bf0dea23 | 1291 | kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node", |
ce8eb6c4 | 1292 | kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); |
bf0dea23 | 1293 | slab_state = PARTIAL_NODE; |
34cc6990 | 1294 | setup_kmalloc_cache_index_table(); |
e498be7d | 1295 | |
e0a42726 IM |
1296 | slab_early_init = 0; |
1297 | ||
ce8eb6c4 | 1298 | /* 5) Replace the bootstrap kmem_cache_node */ |
e498be7d | 1299 | { |
1ca4cb24 PE |
1300 | int nid; |
1301 | ||
9c09a95c | 1302 | for_each_online_node(nid) { |
ce8eb6c4 | 1303 | init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); |
556a169d | 1304 | |
bf0dea23 | 1305 | init_list(kmalloc_caches[INDEX_NODE], |
ce8eb6c4 | 1306 | &init_kmem_cache_node[SIZE_NODE + nid], nid); |
e498be7d CL |
1307 | } |
1308 | } | |
1da177e4 | 1309 | |
f97d5f63 | 1310 | create_kmalloc_caches(ARCH_KMALLOC_FLAGS); |
8429db5c PE |
1311 | } |
1312 | ||
1313 | void __init kmem_cache_init_late(void) | |
1314 | { | |
1315 | struct kmem_cache *cachep; | |
1316 | ||
97d06609 | 1317 | slab_state = UP; |
52cef189 | 1318 | |
8429db5c | 1319 | /* 6) resize the head arrays to their final sizes */ |
18004c5d CL |
1320 | mutex_lock(&slab_mutex); |
1321 | list_for_each_entry(cachep, &slab_caches, list) | |
8429db5c PE |
1322 | if (enable_cpucache(cachep, GFP_NOWAIT)) |
1323 | BUG(); | |
18004c5d | 1324 | mutex_unlock(&slab_mutex); |
056c6241 | 1325 | |
97d06609 CL |
1326 | /* Done! */ |
1327 | slab_state = FULL; | |
1328 | ||
8f9f8d9e DR |
1329 | #ifdef CONFIG_NUMA |
1330 | /* | |
1331 | * Register a memory hotplug callback that initializes and frees | |
6a67368c | 1332 | * node. |
8f9f8d9e DR |
1333 | */ |
1334 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1335 | #endif | |
1336 | ||
a737b3e2 AM |
1337 | /* |
1338 | * The reap timers are started later, with a module init call: That part | |
1339 | * of the kernel is not yet operational. | |
1da177e4 LT |
1340 | */ |
1341 | } | |
1342 | ||
1343 | static int __init cpucache_init(void) | |
1344 | { | |
6731d4f1 | 1345 | int ret; |
1da177e4 | 1346 | |
a737b3e2 AM |
1347 | /* |
1348 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1349 | */ |
6731d4f1 SAS |
1350 | ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", |
1351 | slab_online_cpu, slab_offline_cpu); | |
1352 | WARN_ON(ret < 0); | |
a164f896 GC |
1353 | |
1354 | /* Done! */ | |
97d06609 | 1355 | slab_state = FULL; |
1da177e4 LT |
1356 | return 0; |
1357 | } | |
1da177e4 LT |
1358 | __initcall(cpucache_init); |
1359 | ||
8bdec192 RA |
1360 | static noinline void |
1361 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |
1362 | { | |
9a02d699 | 1363 | #if DEBUG |
ce8eb6c4 | 1364 | struct kmem_cache_node *n; |
8bdec192 RA |
1365 | unsigned long flags; |
1366 | int node; | |
9a02d699 DR |
1367 | static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
1368 | DEFAULT_RATELIMIT_BURST); | |
1369 | ||
1370 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) | |
1371 | return; | |
8bdec192 | 1372 | |
5b3810e5 VB |
1373 | pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
1374 | nodeid, gfpflags, &gfpflags); | |
1375 | pr_warn(" cache: %s, object size: %d, order: %d\n", | |
3b0efdfa | 1376 | cachep->name, cachep->size, cachep->gfporder); |
8bdec192 | 1377 | |
18bf8541 | 1378 | for_each_kmem_cache_node(cachep, node, n) { |
bf00bd34 | 1379 | unsigned long total_slabs, free_slabs, free_objs; |
8bdec192 | 1380 | |
ce8eb6c4 | 1381 | spin_lock_irqsave(&n->list_lock, flags); |
bf00bd34 DR |
1382 | total_slabs = n->total_slabs; |
1383 | free_slabs = n->free_slabs; | |
1384 | free_objs = n->free_objects; | |
ce8eb6c4 | 1385 | spin_unlock_irqrestore(&n->list_lock, flags); |
8bdec192 | 1386 | |
bf00bd34 DR |
1387 | pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", |
1388 | node, total_slabs - free_slabs, total_slabs, | |
1389 | (total_slabs * cachep->num) - free_objs, | |
1390 | total_slabs * cachep->num); | |
8bdec192 | 1391 | } |
9a02d699 | 1392 | #endif |
8bdec192 RA |
1393 | } |
1394 | ||
1da177e4 | 1395 | /* |
8a7d9b43 WSH |
1396 | * Interface to system's page allocator. No need to hold the |
1397 | * kmem_cache_node ->list_lock. | |
1da177e4 LT |
1398 | * |
1399 | * If we requested dmaable memory, we will get it. Even if we | |
1400 | * did not request dmaable memory, we might get it, but that | |
1401 | * would be relatively rare and ignorable. | |
1402 | */ | |
0c3aa83e JK |
1403 | static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, |
1404 | int nodeid) | |
1da177e4 LT |
1405 | { |
1406 | struct page *page; | |
e1b6aa6f | 1407 | int nr_pages; |
765c4507 | 1408 | |
a618e89f | 1409 | flags |= cachep->allocflags; |
e12ba74d MG |
1410 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1411 | flags |= __GFP_RECLAIMABLE; | |
e1b6aa6f | 1412 | |
96db800f | 1413 | page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); |
8bdec192 | 1414 | if (!page) { |
9a02d699 | 1415 | slab_out_of_memory(cachep, flags, nodeid); |
1da177e4 | 1416 | return NULL; |
8bdec192 | 1417 | } |
1da177e4 | 1418 | |
f3ccb2c4 VD |
1419 | if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) { |
1420 | __free_pages(page, cachep->gfporder); | |
1421 | return NULL; | |
1422 | } | |
1423 | ||
e1b6aa6f | 1424 | nr_pages = (1 << cachep->gfporder); |
1da177e4 | 1425 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
972d1a7b CL |
1426 | add_zone_page_state(page_zone(page), |
1427 | NR_SLAB_RECLAIMABLE, nr_pages); | |
1428 | else | |
1429 | add_zone_page_state(page_zone(page), | |
1430 | NR_SLAB_UNRECLAIMABLE, nr_pages); | |
f68f8ddd | 1431 | |
a57a4988 | 1432 | __SetPageSlab(page); |
f68f8ddd JK |
1433 | /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ |
1434 | if (sk_memalloc_socks() && page_is_pfmemalloc(page)) | |
a57a4988 | 1435 | SetPageSlabPfmemalloc(page); |
072bb0aa | 1436 | |
b1eeab67 VN |
1437 | if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { |
1438 | kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | |
1439 | ||
1440 | if (cachep->ctor) | |
1441 | kmemcheck_mark_uninitialized_pages(page, nr_pages); | |
1442 | else | |
1443 | kmemcheck_mark_unallocated_pages(page, nr_pages); | |
1444 | } | |
c175eea4 | 1445 | |
0c3aa83e | 1446 | return page; |
1da177e4 LT |
1447 | } |
1448 | ||
1449 | /* | |
1450 | * Interface to system's page release. | |
1451 | */ | |
0c3aa83e | 1452 | static void kmem_freepages(struct kmem_cache *cachep, struct page *page) |
1da177e4 | 1453 | { |
27ee57c9 VD |
1454 | int order = cachep->gfporder; |
1455 | unsigned long nr_freed = (1 << order); | |
1da177e4 | 1456 | |
27ee57c9 | 1457 | kmemcheck_free_shadow(page, order); |
c175eea4 | 1458 | |
972d1a7b CL |
1459 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1460 | sub_zone_page_state(page_zone(page), | |
1461 | NR_SLAB_RECLAIMABLE, nr_freed); | |
1462 | else | |
1463 | sub_zone_page_state(page_zone(page), | |
1464 | NR_SLAB_UNRECLAIMABLE, nr_freed); | |
73293c2f | 1465 | |
a57a4988 | 1466 | BUG_ON(!PageSlab(page)); |
73293c2f | 1467 | __ClearPageSlabPfmemalloc(page); |
a57a4988 | 1468 | __ClearPageSlab(page); |
8456a648 JK |
1469 | page_mapcount_reset(page); |
1470 | page->mapping = NULL; | |
1f458cbf | 1471 | |
1da177e4 LT |
1472 | if (current->reclaim_state) |
1473 | current->reclaim_state->reclaimed_slab += nr_freed; | |
27ee57c9 VD |
1474 | memcg_uncharge_slab(page, order, cachep); |
1475 | __free_pages(page, order); | |
1da177e4 LT |
1476 | } |
1477 | ||
1478 | static void kmem_rcu_free(struct rcu_head *head) | |
1479 | { | |
68126702 JK |
1480 | struct kmem_cache *cachep; |
1481 | struct page *page; | |
1da177e4 | 1482 | |
68126702 JK |
1483 | page = container_of(head, struct page, rcu_head); |
1484 | cachep = page->slab_cache; | |
1485 | ||
1486 | kmem_freepages(cachep, page); | |
1da177e4 LT |
1487 | } |
1488 | ||
1489 | #if DEBUG | |
40b44137 JK |
1490 | static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) |
1491 | { | |
1492 | if (debug_pagealloc_enabled() && OFF_SLAB(cachep) && | |
1493 | (cachep->size % PAGE_SIZE) == 0) | |
1494 | return true; | |
1495 | ||
1496 | return false; | |
1497 | } | |
1da177e4 LT |
1498 | |
1499 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
343e0d7a | 1500 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
b28a02de | 1501 | unsigned long caller) |
1da177e4 | 1502 | { |
8c138bc0 | 1503 | int size = cachep->object_size; |
1da177e4 | 1504 | |
3dafccf2 | 1505 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1da177e4 | 1506 | |
b28a02de | 1507 | if (size < 5 * sizeof(unsigned long)) |
1da177e4 LT |
1508 | return; |
1509 | ||
b28a02de PE |
1510 | *addr++ = 0x12345678; |
1511 | *addr++ = caller; | |
1512 | *addr++ = smp_processor_id(); | |
1513 | size -= 3 * sizeof(unsigned long); | |
1da177e4 LT |
1514 | { |
1515 | unsigned long *sptr = &caller; | |
1516 | unsigned long svalue; | |
1517 | ||
1518 | while (!kstack_end(sptr)) { | |
1519 | svalue = *sptr++; | |
1520 | if (kernel_text_address(svalue)) { | |
b28a02de | 1521 | *addr++ = svalue; |
1da177e4 LT |
1522 | size -= sizeof(unsigned long); |
1523 | if (size <= sizeof(unsigned long)) | |
1524 | break; | |
1525 | } | |
1526 | } | |
1527 | ||
1528 | } | |
b28a02de | 1529 | *addr++ = 0x87654321; |
1da177e4 | 1530 | } |
40b44137 JK |
1531 | |
1532 | static void slab_kernel_map(struct kmem_cache *cachep, void *objp, | |
1533 | int map, unsigned long caller) | |
1534 | { | |
1535 | if (!is_debug_pagealloc_cache(cachep)) | |
1536 | return; | |
1537 | ||
1538 | if (caller) | |
1539 | store_stackinfo(cachep, objp, caller); | |
1540 | ||
1541 | kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); | |
1542 | } | |
1543 | ||
1544 | #else | |
1545 | static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, | |
1546 | int map, unsigned long caller) {} | |
1547 | ||
1da177e4 LT |
1548 | #endif |
1549 | ||
343e0d7a | 1550 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1551 | { |
8c138bc0 | 1552 | int size = cachep->object_size; |
3dafccf2 | 1553 | addr = &((char *)addr)[obj_offset(cachep)]; |
1da177e4 LT |
1554 | |
1555 | memset(addr, val, size); | |
b28a02de | 1556 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1557 | } |
1558 | ||
1559 | static void dump_line(char *data, int offset, int limit) | |
1560 | { | |
1561 | int i; | |
aa83aa40 DJ |
1562 | unsigned char error = 0; |
1563 | int bad_count = 0; | |
1564 | ||
1170532b | 1565 | pr_err("%03x: ", offset); |
aa83aa40 DJ |
1566 | for (i = 0; i < limit; i++) { |
1567 | if (data[offset + i] != POISON_FREE) { | |
1568 | error = data[offset + i]; | |
1569 | bad_count++; | |
1570 | } | |
aa83aa40 | 1571 | } |
fdde6abb SAS |
1572 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
1573 | &data[offset], limit, 1); | |
aa83aa40 DJ |
1574 | |
1575 | if (bad_count == 1) { | |
1576 | error ^= POISON_FREE; | |
1577 | if (!(error & (error - 1))) { | |
1170532b | 1578 | pr_err("Single bit error detected. Probably bad RAM.\n"); |
aa83aa40 | 1579 | #ifdef CONFIG_X86 |
1170532b | 1580 | pr_err("Run memtest86+ or a similar memory test tool.\n"); |
aa83aa40 | 1581 | #else |
1170532b | 1582 | pr_err("Run a memory test tool.\n"); |
aa83aa40 DJ |
1583 | #endif |
1584 | } | |
1585 | } | |
1da177e4 LT |
1586 | } |
1587 | #endif | |
1588 | ||
1589 | #if DEBUG | |
1590 | ||
343e0d7a | 1591 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1592 | { |
1593 | int i, size; | |
1594 | char *realobj; | |
1595 | ||
1596 | if (cachep->flags & SLAB_RED_ZONE) { | |
1170532b JP |
1597 | pr_err("Redzone: 0x%llx/0x%llx\n", |
1598 | *dbg_redzone1(cachep, objp), | |
1599 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1600 | } |
1601 | ||
1602 | if (cachep->flags & SLAB_STORE_USER) { | |
1170532b | 1603 | pr_err("Last user: [<%p>](%pSR)\n", |
071361d3 JP |
1604 | *dbg_userword(cachep, objp), |
1605 | *dbg_userword(cachep, objp)); | |
1da177e4 | 1606 | } |
3dafccf2 | 1607 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1608 | size = cachep->object_size; |
b28a02de | 1609 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1610 | int limit; |
1611 | limit = 16; | |
b28a02de PE |
1612 | if (i + limit > size) |
1613 | limit = size - i; | |
1da177e4 LT |
1614 | dump_line(realobj, i, limit); |
1615 | } | |
1616 | } | |
1617 | ||
343e0d7a | 1618 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1619 | { |
1620 | char *realobj; | |
1621 | int size, i; | |
1622 | int lines = 0; | |
1623 | ||
40b44137 JK |
1624 | if (is_debug_pagealloc_cache(cachep)) |
1625 | return; | |
1626 | ||
3dafccf2 | 1627 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1628 | size = cachep->object_size; |
1da177e4 | 1629 | |
b28a02de | 1630 | for (i = 0; i < size; i++) { |
1da177e4 | 1631 | char exp = POISON_FREE; |
b28a02de | 1632 | if (i == size - 1) |
1da177e4 LT |
1633 | exp = POISON_END; |
1634 | if (realobj[i] != exp) { | |
1635 | int limit; | |
1636 | /* Mismatch ! */ | |
1637 | /* Print header */ | |
1638 | if (lines == 0) { | |
1170532b JP |
1639 | pr_err("Slab corruption (%s): %s start=%p, len=%d\n", |
1640 | print_tainted(), cachep->name, | |
1641 | realobj, size); | |
1da177e4 LT |
1642 | print_objinfo(cachep, objp, 0); |
1643 | } | |
1644 | /* Hexdump the affected line */ | |
b28a02de | 1645 | i = (i / 16) * 16; |
1da177e4 | 1646 | limit = 16; |
b28a02de PE |
1647 | if (i + limit > size) |
1648 | limit = size - i; | |
1da177e4 LT |
1649 | dump_line(realobj, i, limit); |
1650 | i += 16; | |
1651 | lines++; | |
1652 | /* Limit to 5 lines */ | |
1653 | if (lines > 5) | |
1654 | break; | |
1655 | } | |
1656 | } | |
1657 | if (lines != 0) { | |
1658 | /* Print some data about the neighboring objects, if they | |
1659 | * exist: | |
1660 | */ | |
8456a648 | 1661 | struct page *page = virt_to_head_page(objp); |
8fea4e96 | 1662 | unsigned int objnr; |
1da177e4 | 1663 | |
8456a648 | 1664 | objnr = obj_to_index(cachep, page, objp); |
1da177e4 | 1665 | if (objnr) { |
8456a648 | 1666 | objp = index_to_obj(cachep, page, objnr - 1); |
3dafccf2 | 1667 | realobj = (char *)objp + obj_offset(cachep); |
1170532b | 1668 | pr_err("Prev obj: start=%p, len=%d\n", realobj, size); |
1da177e4 LT |
1669 | print_objinfo(cachep, objp, 2); |
1670 | } | |
b28a02de | 1671 | if (objnr + 1 < cachep->num) { |
8456a648 | 1672 | objp = index_to_obj(cachep, page, objnr + 1); |
3dafccf2 | 1673 | realobj = (char *)objp + obj_offset(cachep); |
1170532b | 1674 | pr_err("Next obj: start=%p, len=%d\n", realobj, size); |
1da177e4 LT |
1675 | print_objinfo(cachep, objp, 2); |
1676 | } | |
1677 | } | |
1678 | } | |
1679 | #endif | |
1680 | ||
12dd36fa | 1681 | #if DEBUG |
8456a648 JK |
1682 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
1683 | struct page *page) | |
1da177e4 | 1684 | { |
1da177e4 | 1685 | int i; |
b03a017b JK |
1686 | |
1687 | if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { | |
1688 | poison_obj(cachep, page->freelist - obj_offset(cachep), | |
1689 | POISON_FREE); | |
1690 | } | |
1691 | ||
1da177e4 | 1692 | for (i = 0; i < cachep->num; i++) { |
8456a648 | 1693 | void *objp = index_to_obj(cachep, page, i); |
1da177e4 LT |
1694 | |
1695 | if (cachep->flags & SLAB_POISON) { | |
1da177e4 | 1696 | check_poison_obj(cachep, objp); |
40b44137 | 1697 | slab_kernel_map(cachep, objp, 1, 0); |
1da177e4 LT |
1698 | } |
1699 | if (cachep->flags & SLAB_RED_ZONE) { | |
1700 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
756a025f | 1701 | slab_error(cachep, "start of a freed object was overwritten"); |
1da177e4 | 1702 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
756a025f | 1703 | slab_error(cachep, "end of a freed object was overwritten"); |
1da177e4 | 1704 | } |
1da177e4 | 1705 | } |
12dd36fa | 1706 | } |
1da177e4 | 1707 | #else |
8456a648 JK |
1708 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
1709 | struct page *page) | |
12dd36fa | 1710 | { |
12dd36fa | 1711 | } |
1da177e4 LT |
1712 | #endif |
1713 | ||
911851e6 RD |
1714 | /** |
1715 | * slab_destroy - destroy and release all objects in a slab | |
1716 | * @cachep: cache pointer being destroyed | |
cb8ee1a3 | 1717 | * @page: page pointer being destroyed |
911851e6 | 1718 | * |
8a7d9b43 WSH |
1719 | * Destroy all the objs in a slab page, and release the mem back to the system. |
1720 | * Before calling the slab page must have been unlinked from the cache. The | |
1721 | * kmem_cache_node ->list_lock is not held/needed. | |
12dd36fa | 1722 | */ |
8456a648 | 1723 | static void slab_destroy(struct kmem_cache *cachep, struct page *page) |
12dd36fa | 1724 | { |
7e007355 | 1725 | void *freelist; |
12dd36fa | 1726 | |
8456a648 JK |
1727 | freelist = page->freelist; |
1728 | slab_destroy_debugcheck(cachep, page); | |
bc4f610d KS |
1729 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) |
1730 | call_rcu(&page->rcu_head, kmem_rcu_free); | |
1731 | else | |
0c3aa83e | 1732 | kmem_freepages(cachep, page); |
68126702 JK |
1733 | |
1734 | /* | |
8456a648 | 1735 | * From now on, we don't use freelist |
68126702 JK |
1736 | * although actual page can be freed in rcu context |
1737 | */ | |
1738 | if (OFF_SLAB(cachep)) | |
8456a648 | 1739 | kmem_cache_free(cachep->freelist_cache, freelist); |
1da177e4 LT |
1740 | } |
1741 | ||
97654dfa JK |
1742 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) |
1743 | { | |
1744 | struct page *page, *n; | |
1745 | ||
1746 | list_for_each_entry_safe(page, n, list, lru) { | |
1747 | list_del(&page->lru); | |
1748 | slab_destroy(cachep, page); | |
1749 | } | |
1750 | } | |
1751 | ||
4d268eba | 1752 | /** |
a70773dd RD |
1753 | * calculate_slab_order - calculate size (page order) of slabs |
1754 | * @cachep: pointer to the cache that is being created | |
1755 | * @size: size of objects to be created in this cache. | |
a70773dd RD |
1756 | * @flags: slab allocation flags |
1757 | * | |
1758 | * Also calculates the number of objects per slab. | |
4d268eba PE |
1759 | * |
1760 | * This could be made much more intelligent. For now, try to avoid using | |
1761 | * high order pages for slabs. When the gfp() functions are more friendly | |
1762 | * towards high-order requests, this should be changed. | |
1763 | */ | |
a737b3e2 | 1764 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
2e6b3602 | 1765 | size_t size, unsigned long flags) |
4d268eba PE |
1766 | { |
1767 | size_t left_over = 0; | |
9888e6fa | 1768 | int gfporder; |
4d268eba | 1769 | |
0aa817f0 | 1770 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
1771 | unsigned int num; |
1772 | size_t remainder; | |
1773 | ||
70f75067 | 1774 | num = cache_estimate(gfporder, size, flags, &remainder); |
4d268eba PE |
1775 | if (!num) |
1776 | continue; | |
9888e6fa | 1777 | |
f315e3fa JK |
1778 | /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ |
1779 | if (num > SLAB_OBJ_MAX_NUM) | |
1780 | break; | |
1781 | ||
b1ab41c4 | 1782 | if (flags & CFLGS_OFF_SLAB) { |
3217fd9b JK |
1783 | struct kmem_cache *freelist_cache; |
1784 | size_t freelist_size; | |
1785 | ||
1786 | freelist_size = num * sizeof(freelist_idx_t); | |
1787 | freelist_cache = kmalloc_slab(freelist_size, 0u); | |
1788 | if (!freelist_cache) | |
1789 | continue; | |
1790 | ||
b1ab41c4 | 1791 | /* |
3217fd9b | 1792 | * Needed to avoid possible looping condition |
76b342bd | 1793 | * in cache_grow_begin() |
b1ab41c4 | 1794 | */ |
3217fd9b JK |
1795 | if (OFF_SLAB(freelist_cache)) |
1796 | continue; | |
b1ab41c4 | 1797 | |
3217fd9b JK |
1798 | /* check if off slab has enough benefit */ |
1799 | if (freelist_cache->size > cachep->size / 2) | |
1800 | continue; | |
b1ab41c4 | 1801 | } |
4d268eba | 1802 | |
9888e6fa | 1803 | /* Found something acceptable - save it away */ |
4d268eba | 1804 | cachep->num = num; |
9888e6fa | 1805 | cachep->gfporder = gfporder; |
4d268eba PE |
1806 | left_over = remainder; |
1807 | ||
f78bb8ad LT |
1808 | /* |
1809 | * A VFS-reclaimable slab tends to have most allocations | |
1810 | * as GFP_NOFS and we really don't want to have to be allocating | |
1811 | * higher-order pages when we are unable to shrink dcache. | |
1812 | */ | |
1813 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
1814 | break; | |
1815 | ||
4d268eba PE |
1816 | /* |
1817 | * Large number of objects is good, but very large slabs are | |
1818 | * currently bad for the gfp()s. | |
1819 | */ | |
543585cc | 1820 | if (gfporder >= slab_max_order) |
4d268eba PE |
1821 | break; |
1822 | ||
9888e6fa LT |
1823 | /* |
1824 | * Acceptable internal fragmentation? | |
1825 | */ | |
a737b3e2 | 1826 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
1827 | break; |
1828 | } | |
1829 | return left_over; | |
1830 | } | |
1831 | ||
bf0dea23 JK |
1832 | static struct array_cache __percpu *alloc_kmem_cache_cpus( |
1833 | struct kmem_cache *cachep, int entries, int batchcount) | |
1834 | { | |
1835 | int cpu; | |
1836 | size_t size; | |
1837 | struct array_cache __percpu *cpu_cache; | |
1838 | ||
1839 | size = sizeof(void *) * entries + sizeof(struct array_cache); | |
85c9f4b0 | 1840 | cpu_cache = __alloc_percpu(size, sizeof(void *)); |
bf0dea23 JK |
1841 | |
1842 | if (!cpu_cache) | |
1843 | return NULL; | |
1844 | ||
1845 | for_each_possible_cpu(cpu) { | |
1846 | init_arraycache(per_cpu_ptr(cpu_cache, cpu), | |
1847 | entries, batchcount); | |
1848 | } | |
1849 | ||
1850 | return cpu_cache; | |
1851 | } | |
1852 | ||
bd721ea7 | 1853 | static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 1854 | { |
97d06609 | 1855 | if (slab_state >= FULL) |
83b519e8 | 1856 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 1857 | |
bf0dea23 JK |
1858 | cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); |
1859 | if (!cachep->cpu_cache) | |
1860 | return 1; | |
1861 | ||
97d06609 | 1862 | if (slab_state == DOWN) { |
bf0dea23 JK |
1863 | /* Creation of first cache (kmem_cache). */ |
1864 | set_up_node(kmem_cache, CACHE_CACHE); | |
2f9baa9f | 1865 | } else if (slab_state == PARTIAL) { |
bf0dea23 JK |
1866 | /* For kmem_cache_node */ |
1867 | set_up_node(cachep, SIZE_NODE); | |
f30cf7d1 | 1868 | } else { |
bf0dea23 | 1869 | int node; |
f30cf7d1 | 1870 | |
bf0dea23 JK |
1871 | for_each_online_node(node) { |
1872 | cachep->node[node] = kmalloc_node( | |
1873 | sizeof(struct kmem_cache_node), gfp, node); | |
1874 | BUG_ON(!cachep->node[node]); | |
1875 | kmem_cache_node_init(cachep->node[node]); | |
f30cf7d1 PE |
1876 | } |
1877 | } | |
bf0dea23 | 1878 | |
6a67368c | 1879 | cachep->node[numa_mem_id()]->next_reap = |
5f0985bb JZ |
1880 | jiffies + REAPTIMEOUT_NODE + |
1881 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
f30cf7d1 PE |
1882 | |
1883 | cpu_cache_get(cachep)->avail = 0; | |
1884 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
1885 | cpu_cache_get(cachep)->batchcount = 1; | |
1886 | cpu_cache_get(cachep)->touched = 0; | |
1887 | cachep->batchcount = 1; | |
1888 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 1889 | return 0; |
f30cf7d1 PE |
1890 | } |
1891 | ||
12220dea JK |
1892 | unsigned long kmem_cache_flags(unsigned long object_size, |
1893 | unsigned long flags, const char *name, | |
1894 | void (*ctor)(void *)) | |
1895 | { | |
1896 | return flags; | |
1897 | } | |
1898 | ||
1899 | struct kmem_cache * | |
1900 | __kmem_cache_alias(const char *name, size_t size, size_t align, | |
1901 | unsigned long flags, void (*ctor)(void *)) | |
1902 | { | |
1903 | struct kmem_cache *cachep; | |
1904 | ||
1905 | cachep = find_mergeable(size, align, flags, name, ctor); | |
1906 | if (cachep) { | |
1907 | cachep->refcount++; | |
1908 | ||
1909 | /* | |
1910 | * Adjust the object sizes so that we clear | |
1911 | * the complete object on kzalloc. | |
1912 | */ | |
1913 | cachep->object_size = max_t(int, cachep->object_size, size); | |
1914 | } | |
1915 | return cachep; | |
1916 | } | |
1917 | ||
b03a017b JK |
1918 | static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, |
1919 | size_t size, unsigned long flags) | |
1920 | { | |
1921 | size_t left; | |
1922 | ||
1923 | cachep->num = 0; | |
1924 | ||
1925 | if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU) | |
1926 | return false; | |
1927 | ||
1928 | left = calculate_slab_order(cachep, size, | |
1929 | flags | CFLGS_OBJFREELIST_SLAB); | |
1930 | if (!cachep->num) | |
1931 | return false; | |
1932 | ||
1933 | if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) | |
1934 | return false; | |
1935 | ||
1936 | cachep->colour = left / cachep->colour_off; | |
1937 | ||
1938 | return true; | |
1939 | } | |
1940 | ||
158e319b JK |
1941 | static bool set_off_slab_cache(struct kmem_cache *cachep, |
1942 | size_t size, unsigned long flags) | |
1943 | { | |
1944 | size_t left; | |
1945 | ||
1946 | cachep->num = 0; | |
1947 | ||
1948 | /* | |
3217fd9b JK |
1949 | * Always use on-slab management when SLAB_NOLEAKTRACE |
1950 | * to avoid recursive calls into kmemleak. | |
158e319b | 1951 | */ |
158e319b JK |
1952 | if (flags & SLAB_NOLEAKTRACE) |
1953 | return false; | |
1954 | ||
1955 | /* | |
1956 | * Size is large, assume best to place the slab management obj | |
1957 | * off-slab (should allow better packing of objs). | |
1958 | */ | |
1959 | left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); | |
1960 | if (!cachep->num) | |
1961 | return false; | |
1962 | ||
1963 | /* | |
1964 | * If the slab has been placed off-slab, and we have enough space then | |
1965 | * move it on-slab. This is at the expense of any extra colouring. | |
1966 | */ | |
1967 | if (left >= cachep->num * sizeof(freelist_idx_t)) | |
1968 | return false; | |
1969 | ||
1970 | cachep->colour = left / cachep->colour_off; | |
1971 | ||
1972 | return true; | |
1973 | } | |
1974 | ||
1975 | static bool set_on_slab_cache(struct kmem_cache *cachep, | |
1976 | size_t size, unsigned long flags) | |
1977 | { | |
1978 | size_t left; | |
1979 | ||
1980 | cachep->num = 0; | |
1981 | ||
1982 | left = calculate_slab_order(cachep, size, flags); | |
1983 | if (!cachep->num) | |
1984 | return false; | |
1985 | ||
1986 | cachep->colour = left / cachep->colour_off; | |
1987 | ||
1988 | return true; | |
1989 | } | |
1990 | ||
1da177e4 | 1991 | /** |
039363f3 | 1992 | * __kmem_cache_create - Create a cache. |
a755b76a | 1993 | * @cachep: cache management descriptor |
1da177e4 | 1994 | * @flags: SLAB flags |
1da177e4 LT |
1995 | * |
1996 | * Returns a ptr to the cache on success, NULL on failure. | |
1997 | * Cannot be called within a int, but can be interrupted. | |
20c2df83 | 1998 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 | 1999 | * |
1da177e4 LT |
2000 | * The flags are |
2001 | * | |
2002 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
2003 | * to catch references to uninitialised memory. | |
2004 | * | |
2005 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
2006 | * for buffer overruns. | |
2007 | * | |
1da177e4 LT |
2008 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
2009 | * cacheline. This can be beneficial if you're counting cycles as closely | |
2010 | * as davem. | |
2011 | */ | |
278b1bb1 | 2012 | int |
8a13a4cc | 2013 | __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) |
1da177e4 | 2014 | { |
d4a5fca5 | 2015 | size_t ralign = BYTES_PER_WORD; |
83b519e8 | 2016 | gfp_t gfp; |
278b1bb1 | 2017 | int err; |
8a13a4cc | 2018 | size_t size = cachep->size; |
1da177e4 | 2019 | |
1da177e4 | 2020 | #if DEBUG |
1da177e4 LT |
2021 | #if FORCED_DEBUG |
2022 | /* | |
2023 | * Enable redzoning and last user accounting, except for caches with | |
2024 | * large objects, if the increased size would increase the object size | |
2025 | * above the next power of two: caches with object sizes just above a | |
2026 | * power of two have a significant amount of internal fragmentation. | |
2027 | */ | |
87a927c7 DW |
2028 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
2029 | 2 * sizeof(unsigned long long))) | |
b28a02de | 2030 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
1da177e4 LT |
2031 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
2032 | flags |= SLAB_POISON; | |
2033 | #endif | |
1da177e4 | 2034 | #endif |
1da177e4 | 2035 | |
a737b3e2 AM |
2036 | /* |
2037 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
2038 | * unaligned accesses for some archs when redzoning is used, and makes |
2039 | * sure any on-slab bufctl's are also correctly aligned. | |
2040 | */ | |
b28a02de PE |
2041 | if (size & (BYTES_PER_WORD - 1)) { |
2042 | size += (BYTES_PER_WORD - 1); | |
2043 | size &= ~(BYTES_PER_WORD - 1); | |
1da177e4 LT |
2044 | } |
2045 | ||
87a927c7 DW |
2046 | if (flags & SLAB_RED_ZONE) { |
2047 | ralign = REDZONE_ALIGN; | |
2048 | /* If redzoning, ensure that the second redzone is suitably | |
2049 | * aligned, by adjusting the object size accordingly. */ | |
2050 | size += REDZONE_ALIGN - 1; | |
2051 | size &= ~(REDZONE_ALIGN - 1); | |
2052 | } | |
ca5f9703 | 2053 | |
a44b56d3 | 2054 | /* 3) caller mandated alignment */ |
8a13a4cc CL |
2055 | if (ralign < cachep->align) { |
2056 | ralign = cachep->align; | |
1da177e4 | 2057 | } |
3ff84a7f PE |
2058 | /* disable debug if necessary */ |
2059 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 2060 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 2061 | /* |
ca5f9703 | 2062 | * 4) Store it. |
1da177e4 | 2063 | */ |
8a13a4cc | 2064 | cachep->align = ralign; |
158e319b JK |
2065 | cachep->colour_off = cache_line_size(); |
2066 | /* Offset must be a multiple of the alignment. */ | |
2067 | if (cachep->colour_off < cachep->align) | |
2068 | cachep->colour_off = cachep->align; | |
1da177e4 | 2069 | |
83b519e8 PE |
2070 | if (slab_is_available()) |
2071 | gfp = GFP_KERNEL; | |
2072 | else | |
2073 | gfp = GFP_NOWAIT; | |
2074 | ||
1da177e4 | 2075 | #if DEBUG |
1da177e4 | 2076 | |
ca5f9703 PE |
2077 | /* |
2078 | * Both debugging options require word-alignment which is calculated | |
2079 | * into align above. | |
2080 | */ | |
1da177e4 | 2081 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 2082 | /* add space for red zone words */ |
3ff84a7f PE |
2083 | cachep->obj_offset += sizeof(unsigned long long); |
2084 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
2085 | } |
2086 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 2087 | /* user store requires one word storage behind the end of |
87a927c7 DW |
2088 | * the real object. But if the second red zone needs to be |
2089 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 2090 | */ |
87a927c7 DW |
2091 | if (flags & SLAB_RED_ZONE) |
2092 | size += REDZONE_ALIGN; | |
2093 | else | |
2094 | size += BYTES_PER_WORD; | |
1da177e4 | 2095 | } |
832a15d2 JK |
2096 | #endif |
2097 | ||
7ed2f9e6 AP |
2098 | kasan_cache_create(cachep, &size, &flags); |
2099 | ||
832a15d2 JK |
2100 | size = ALIGN(size, cachep->align); |
2101 | /* | |
2102 | * We should restrict the number of objects in a slab to implement | |
2103 | * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. | |
2104 | */ | |
2105 | if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) | |
2106 | size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); | |
2107 | ||
2108 | #if DEBUG | |
03a2d2a3 JK |
2109 | /* |
2110 | * To activate debug pagealloc, off-slab management is necessary | |
2111 | * requirement. In early phase of initialization, small sized slab | |
2112 | * doesn't get initialized so it would not be possible. So, we need | |
2113 | * to check size >= 256. It guarantees that all necessary small | |
2114 | * sized slab is initialized in current slab initialization sequence. | |
2115 | */ | |
40323278 | 2116 | if (debug_pagealloc_enabled() && (flags & SLAB_POISON) && |
f3a3c320 JK |
2117 | size >= 256 && cachep->object_size > cache_line_size()) { |
2118 | if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { | |
2119 | size_t tmp_size = ALIGN(size, PAGE_SIZE); | |
2120 | ||
2121 | if (set_off_slab_cache(cachep, tmp_size, flags)) { | |
2122 | flags |= CFLGS_OFF_SLAB; | |
2123 | cachep->obj_offset += tmp_size - size; | |
2124 | size = tmp_size; | |
2125 | goto done; | |
2126 | } | |
2127 | } | |
1da177e4 | 2128 | } |
1da177e4 LT |
2129 | #endif |
2130 | ||
b03a017b JK |
2131 | if (set_objfreelist_slab_cache(cachep, size, flags)) { |
2132 | flags |= CFLGS_OBJFREELIST_SLAB; | |
2133 | goto done; | |
2134 | } | |
2135 | ||
158e319b | 2136 | if (set_off_slab_cache(cachep, size, flags)) { |
1da177e4 | 2137 | flags |= CFLGS_OFF_SLAB; |
158e319b | 2138 | goto done; |
832a15d2 | 2139 | } |
1da177e4 | 2140 | |
158e319b JK |
2141 | if (set_on_slab_cache(cachep, size, flags)) |
2142 | goto done; | |
1da177e4 | 2143 | |
158e319b | 2144 | return -E2BIG; |
1da177e4 | 2145 | |
158e319b JK |
2146 | done: |
2147 | cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); | |
1da177e4 | 2148 | cachep->flags = flags; |
a57a4988 | 2149 | cachep->allocflags = __GFP_COMP; |
a3187e43 | 2150 | if (flags & SLAB_CACHE_DMA) |
a618e89f | 2151 | cachep->allocflags |= GFP_DMA; |
3b0efdfa | 2152 | cachep->size = size; |
6a2d7a95 | 2153 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2154 | |
40b44137 JK |
2155 | #if DEBUG |
2156 | /* | |
2157 | * If we're going to use the generic kernel_map_pages() | |
2158 | * poisoning, then it's going to smash the contents of | |
2159 | * the redzone and userword anyhow, so switch them off. | |
2160 | */ | |
2161 | if (IS_ENABLED(CONFIG_PAGE_POISONING) && | |
2162 | (cachep->flags & SLAB_POISON) && | |
2163 | is_debug_pagealloc_cache(cachep)) | |
2164 | cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2165 | #endif | |
2166 | ||
2167 | if (OFF_SLAB(cachep)) { | |
158e319b JK |
2168 | cachep->freelist_cache = |
2169 | kmalloc_slab(cachep->freelist_size, 0u); | |
e5ac9c5a | 2170 | } |
1da177e4 | 2171 | |
278b1bb1 CL |
2172 | err = setup_cpu_cache(cachep, gfp); |
2173 | if (err) { | |
52b4b950 | 2174 | __kmem_cache_release(cachep); |
278b1bb1 | 2175 | return err; |
2ed3a4ef | 2176 | } |
1da177e4 | 2177 | |
278b1bb1 | 2178 | return 0; |
1da177e4 | 2179 | } |
1da177e4 LT |
2180 | |
2181 | #if DEBUG | |
2182 | static void check_irq_off(void) | |
2183 | { | |
2184 | BUG_ON(!irqs_disabled()); | |
2185 | } | |
2186 | ||
2187 | static void check_irq_on(void) | |
2188 | { | |
2189 | BUG_ON(irqs_disabled()); | |
2190 | } | |
2191 | ||
18726ca8 JK |
2192 | static void check_mutex_acquired(void) |
2193 | { | |
2194 | BUG_ON(!mutex_is_locked(&slab_mutex)); | |
2195 | } | |
2196 | ||
343e0d7a | 2197 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2198 | { |
2199 | #ifdef CONFIG_SMP | |
2200 | check_irq_off(); | |
18bf8541 | 2201 | assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); |
1da177e4 LT |
2202 | #endif |
2203 | } | |
e498be7d | 2204 | |
343e0d7a | 2205 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2206 | { |
2207 | #ifdef CONFIG_SMP | |
2208 | check_irq_off(); | |
18bf8541 | 2209 | assert_spin_locked(&get_node(cachep, node)->list_lock); |
e498be7d CL |
2210 | #endif |
2211 | } | |
2212 | ||
1da177e4 LT |
2213 | #else |
2214 | #define check_irq_off() do { } while(0) | |
2215 | #define check_irq_on() do { } while(0) | |
18726ca8 | 2216 | #define check_mutex_acquired() do { } while(0) |
1da177e4 | 2217 | #define check_spinlock_acquired(x) do { } while(0) |
e498be7d | 2218 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2219 | #endif |
2220 | ||
18726ca8 JK |
2221 | static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, |
2222 | int node, bool free_all, struct list_head *list) | |
2223 | { | |
2224 | int tofree; | |
2225 | ||
2226 | if (!ac || !ac->avail) | |
2227 | return; | |
2228 | ||
2229 | tofree = free_all ? ac->avail : (ac->limit + 4) / 5; | |
2230 | if (tofree > ac->avail) | |
2231 | tofree = (ac->avail + 1) / 2; | |
2232 | ||
2233 | free_block(cachep, ac->entry, tofree, node, list); | |
2234 | ac->avail -= tofree; | |
2235 | memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); | |
2236 | } | |
aab2207c | 2237 | |
1da177e4 LT |
2238 | static void do_drain(void *arg) |
2239 | { | |
a737b3e2 | 2240 | struct kmem_cache *cachep = arg; |
1da177e4 | 2241 | struct array_cache *ac; |
7d6e6d09 | 2242 | int node = numa_mem_id(); |
18bf8541 | 2243 | struct kmem_cache_node *n; |
97654dfa | 2244 | LIST_HEAD(list); |
1da177e4 LT |
2245 | |
2246 | check_irq_off(); | |
9a2dba4b | 2247 | ac = cpu_cache_get(cachep); |
18bf8541 CL |
2248 | n = get_node(cachep, node); |
2249 | spin_lock(&n->list_lock); | |
97654dfa | 2250 | free_block(cachep, ac->entry, ac->avail, node, &list); |
18bf8541 | 2251 | spin_unlock(&n->list_lock); |
97654dfa | 2252 | slabs_destroy(cachep, &list); |
1da177e4 LT |
2253 | ac->avail = 0; |
2254 | } | |
2255 | ||
343e0d7a | 2256 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2257 | { |
ce8eb6c4 | 2258 | struct kmem_cache_node *n; |
e498be7d | 2259 | int node; |
18726ca8 | 2260 | LIST_HEAD(list); |
e498be7d | 2261 | |
15c8b6c1 | 2262 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2263 | check_irq_on(); |
18bf8541 CL |
2264 | for_each_kmem_cache_node(cachep, node, n) |
2265 | if (n->alien) | |
ce8eb6c4 | 2266 | drain_alien_cache(cachep, n->alien); |
a4523a8b | 2267 | |
18726ca8 JK |
2268 | for_each_kmem_cache_node(cachep, node, n) { |
2269 | spin_lock_irq(&n->list_lock); | |
2270 | drain_array_locked(cachep, n->shared, node, true, &list); | |
2271 | spin_unlock_irq(&n->list_lock); | |
2272 | ||
2273 | slabs_destroy(cachep, &list); | |
2274 | } | |
1da177e4 LT |
2275 | } |
2276 | ||
ed11d9eb CL |
2277 | /* |
2278 | * Remove slabs from the list of free slabs. | |
2279 | * Specify the number of slabs to drain in tofree. | |
2280 | * | |
2281 | * Returns the actual number of slabs released. | |
2282 | */ | |
2283 | static int drain_freelist(struct kmem_cache *cache, | |
ce8eb6c4 | 2284 | struct kmem_cache_node *n, int tofree) |
1da177e4 | 2285 | { |
ed11d9eb CL |
2286 | struct list_head *p; |
2287 | int nr_freed; | |
8456a648 | 2288 | struct page *page; |
1da177e4 | 2289 | |
ed11d9eb | 2290 | nr_freed = 0; |
ce8eb6c4 | 2291 | while (nr_freed < tofree && !list_empty(&n->slabs_free)) { |
1da177e4 | 2292 | |
ce8eb6c4 CL |
2293 | spin_lock_irq(&n->list_lock); |
2294 | p = n->slabs_free.prev; | |
2295 | if (p == &n->slabs_free) { | |
2296 | spin_unlock_irq(&n->list_lock); | |
ed11d9eb CL |
2297 | goto out; |
2298 | } | |
1da177e4 | 2299 | |
8456a648 | 2300 | page = list_entry(p, struct page, lru); |
8456a648 | 2301 | list_del(&page->lru); |
f728b0a5 | 2302 | n->free_slabs--; |
bf00bd34 | 2303 | n->total_slabs--; |
ed11d9eb CL |
2304 | /* |
2305 | * Safe to drop the lock. The slab is no longer linked | |
2306 | * to the cache. | |
2307 | */ | |
ce8eb6c4 CL |
2308 | n->free_objects -= cache->num; |
2309 | spin_unlock_irq(&n->list_lock); | |
8456a648 | 2310 | slab_destroy(cache, page); |
ed11d9eb | 2311 | nr_freed++; |
1da177e4 | 2312 | } |
ed11d9eb CL |
2313 | out: |
2314 | return nr_freed; | |
1da177e4 LT |
2315 | } |
2316 | ||
89e364db | 2317 | int __kmem_cache_shrink(struct kmem_cache *cachep) |
e498be7d | 2318 | { |
18bf8541 CL |
2319 | int ret = 0; |
2320 | int node; | |
ce8eb6c4 | 2321 | struct kmem_cache_node *n; |
e498be7d CL |
2322 | |
2323 | drain_cpu_caches(cachep); | |
2324 | ||
2325 | check_irq_on(); | |
18bf8541 | 2326 | for_each_kmem_cache_node(cachep, node, n) { |
a5aa63a5 | 2327 | drain_freelist(cachep, n, INT_MAX); |
ed11d9eb | 2328 | |
ce8eb6c4 CL |
2329 | ret += !list_empty(&n->slabs_full) || |
2330 | !list_empty(&n->slabs_partial); | |
e498be7d CL |
2331 | } |
2332 | return (ret ? 1 : 0); | |
2333 | } | |
2334 | ||
945cf2b6 | 2335 | int __kmem_cache_shutdown(struct kmem_cache *cachep) |
52b4b950 | 2336 | { |
89e364db | 2337 | return __kmem_cache_shrink(cachep); |
52b4b950 DS |
2338 | } |
2339 | ||
2340 | void __kmem_cache_release(struct kmem_cache *cachep) | |
1da177e4 | 2341 | { |
12c3667f | 2342 | int i; |
ce8eb6c4 | 2343 | struct kmem_cache_node *n; |
1da177e4 | 2344 | |
c7ce4f60 TG |
2345 | cache_random_seq_destroy(cachep); |
2346 | ||
bf0dea23 | 2347 | free_percpu(cachep->cpu_cache); |
1da177e4 | 2348 | |
ce8eb6c4 | 2349 | /* NUMA: free the node structures */ |
18bf8541 CL |
2350 | for_each_kmem_cache_node(cachep, i, n) { |
2351 | kfree(n->shared); | |
2352 | free_alien_cache(n->alien); | |
2353 | kfree(n); | |
2354 | cachep->node[i] = NULL; | |
12c3667f | 2355 | } |
1da177e4 | 2356 | } |
1da177e4 | 2357 | |
e5ac9c5a RT |
2358 | /* |
2359 | * Get the memory for a slab management obj. | |
5f0985bb JZ |
2360 | * |
2361 | * For a slab cache when the slab descriptor is off-slab, the | |
2362 | * slab descriptor can't come from the same cache which is being created, | |
2363 | * Because if it is the case, that means we defer the creation of | |
2364 | * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. | |
2365 | * And we eventually call down to __kmem_cache_create(), which | |
2366 | * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. | |
2367 | * This is a "chicken-and-egg" problem. | |
2368 | * | |
2369 | * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, | |
2370 | * which are all initialized during kmem_cache_init(). | |
e5ac9c5a | 2371 | */ |
7e007355 | 2372 | static void *alloc_slabmgmt(struct kmem_cache *cachep, |
0c3aa83e JK |
2373 | struct page *page, int colour_off, |
2374 | gfp_t local_flags, int nodeid) | |
1da177e4 | 2375 | { |
7e007355 | 2376 | void *freelist; |
0c3aa83e | 2377 | void *addr = page_address(page); |
b28a02de | 2378 | |
2e6b3602 JK |
2379 | page->s_mem = addr + colour_off; |
2380 | page->active = 0; | |
2381 | ||
b03a017b JK |
2382 | if (OBJFREELIST_SLAB(cachep)) |
2383 | freelist = NULL; | |
2384 | else if (OFF_SLAB(cachep)) { | |
1da177e4 | 2385 | /* Slab management obj is off-slab. */ |
8456a648 | 2386 | freelist = kmem_cache_alloc_node(cachep->freelist_cache, |
8759ec50 | 2387 | local_flags, nodeid); |
8456a648 | 2388 | if (!freelist) |
1da177e4 LT |
2389 | return NULL; |
2390 | } else { | |
2e6b3602 JK |
2391 | /* We will use last bytes at the slab for freelist */ |
2392 | freelist = addr + (PAGE_SIZE << cachep->gfporder) - | |
2393 | cachep->freelist_size; | |
1da177e4 | 2394 | } |
2e6b3602 | 2395 | |
8456a648 | 2396 | return freelist; |
1da177e4 LT |
2397 | } |
2398 | ||
7cc68973 | 2399 | static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) |
1da177e4 | 2400 | { |
a41adfaa | 2401 | return ((freelist_idx_t *)page->freelist)[idx]; |
e5c58dfd JK |
2402 | } |
2403 | ||
2404 | static inline void set_free_obj(struct page *page, | |
7cc68973 | 2405 | unsigned int idx, freelist_idx_t val) |
e5c58dfd | 2406 | { |
a41adfaa | 2407 | ((freelist_idx_t *)(page->freelist))[idx] = val; |
1da177e4 LT |
2408 | } |
2409 | ||
10b2e9e8 | 2410 | static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) |
1da177e4 | 2411 | { |
10b2e9e8 | 2412 | #if DEBUG |
1da177e4 LT |
2413 | int i; |
2414 | ||
2415 | for (i = 0; i < cachep->num; i++) { | |
8456a648 | 2416 | void *objp = index_to_obj(cachep, page, i); |
10b2e9e8 | 2417 | |
1da177e4 LT |
2418 | if (cachep->flags & SLAB_STORE_USER) |
2419 | *dbg_userword(cachep, objp) = NULL; | |
2420 | ||
2421 | if (cachep->flags & SLAB_RED_ZONE) { | |
2422 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2423 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2424 | } | |
2425 | /* | |
a737b3e2 AM |
2426 | * Constructors are not allowed to allocate memory from the same |
2427 | * cache which they are a constructor for. Otherwise, deadlock. | |
2428 | * They must also be threaded. | |
1da177e4 | 2429 | */ |
7ed2f9e6 AP |
2430 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { |
2431 | kasan_unpoison_object_data(cachep, | |
2432 | objp + obj_offset(cachep)); | |
51cc5068 | 2433 | cachep->ctor(objp + obj_offset(cachep)); |
7ed2f9e6 AP |
2434 | kasan_poison_object_data( |
2435 | cachep, objp + obj_offset(cachep)); | |
2436 | } | |
1da177e4 LT |
2437 | |
2438 | if (cachep->flags & SLAB_RED_ZONE) { | |
2439 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
756a025f | 2440 | slab_error(cachep, "constructor overwrote the end of an object"); |
1da177e4 | 2441 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
756a025f | 2442 | slab_error(cachep, "constructor overwrote the start of an object"); |
1da177e4 | 2443 | } |
40b44137 JK |
2444 | /* need to poison the objs? */ |
2445 | if (cachep->flags & SLAB_POISON) { | |
2446 | poison_obj(cachep, objp, POISON_FREE); | |
2447 | slab_kernel_map(cachep, objp, 0, 0); | |
2448 | } | |
10b2e9e8 | 2449 | } |
1da177e4 | 2450 | #endif |
10b2e9e8 JK |
2451 | } |
2452 | ||
c7ce4f60 TG |
2453 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
2454 | /* Hold information during a freelist initialization */ | |
2455 | union freelist_init_state { | |
2456 | struct { | |
2457 | unsigned int pos; | |
7c00fce9 | 2458 | unsigned int *list; |
c7ce4f60 | 2459 | unsigned int count; |
c7ce4f60 TG |
2460 | }; |
2461 | struct rnd_state rnd_state; | |
2462 | }; | |
2463 | ||
2464 | /* | |
2465 | * Initialize the state based on the randomization methode available. | |
2466 | * return true if the pre-computed list is available, false otherwize. | |
2467 | */ | |
2468 | static bool freelist_state_initialize(union freelist_init_state *state, | |
2469 | struct kmem_cache *cachep, | |
2470 | unsigned int count) | |
2471 | { | |
2472 | bool ret; | |
2473 | unsigned int rand; | |
2474 | ||
2475 | /* Use best entropy available to define a random shift */ | |
7c00fce9 | 2476 | rand = get_random_int(); |
c7ce4f60 TG |
2477 | |
2478 | /* Use a random state if the pre-computed list is not available */ | |
2479 | if (!cachep->random_seq) { | |
2480 | prandom_seed_state(&state->rnd_state, rand); | |
2481 | ret = false; | |
2482 | } else { | |
2483 | state->list = cachep->random_seq; | |
2484 | state->count = count; | |
c4e490cf | 2485 | state->pos = rand % count; |
c7ce4f60 TG |
2486 | ret = true; |
2487 | } | |
2488 | return ret; | |
2489 | } | |
2490 | ||
2491 | /* Get the next entry on the list and randomize it using a random shift */ | |
2492 | static freelist_idx_t next_random_slot(union freelist_init_state *state) | |
2493 | { | |
c4e490cf JS |
2494 | if (state->pos >= state->count) |
2495 | state->pos = 0; | |
2496 | return state->list[state->pos++]; | |
c7ce4f60 TG |
2497 | } |
2498 | ||
7c00fce9 TG |
2499 | /* Swap two freelist entries */ |
2500 | static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) | |
2501 | { | |
2502 | swap(((freelist_idx_t *)page->freelist)[a], | |
2503 | ((freelist_idx_t *)page->freelist)[b]); | |
2504 | } | |
2505 | ||
c7ce4f60 TG |
2506 | /* |
2507 | * Shuffle the freelist initialization state based on pre-computed lists. | |
2508 | * return true if the list was successfully shuffled, false otherwise. | |
2509 | */ | |
2510 | static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) | |
2511 | { | |
7c00fce9 | 2512 | unsigned int objfreelist = 0, i, rand, count = cachep->num; |
c7ce4f60 TG |
2513 | union freelist_init_state state; |
2514 | bool precomputed; | |
2515 | ||
2516 | if (count < 2) | |
2517 | return false; | |
2518 | ||
2519 | precomputed = freelist_state_initialize(&state, cachep, count); | |
2520 | ||
2521 | /* Take a random entry as the objfreelist */ | |
2522 | if (OBJFREELIST_SLAB(cachep)) { | |
2523 | if (!precomputed) | |
2524 | objfreelist = count - 1; | |
2525 | else | |
2526 | objfreelist = next_random_slot(&state); | |
2527 | page->freelist = index_to_obj(cachep, page, objfreelist) + | |
2528 | obj_offset(cachep); | |
2529 | count--; | |
2530 | } | |
2531 | ||
2532 | /* | |
2533 | * On early boot, generate the list dynamically. | |
2534 | * Later use a pre-computed list for speed. | |
2535 | */ | |
2536 | if (!precomputed) { | |
7c00fce9 TG |
2537 | for (i = 0; i < count; i++) |
2538 | set_free_obj(page, i, i); | |
2539 | ||
2540 | /* Fisher-Yates shuffle */ | |
2541 | for (i = count - 1; i > 0; i--) { | |
2542 | rand = prandom_u32_state(&state.rnd_state); | |
2543 | rand %= (i + 1); | |
2544 | swap_free_obj(page, i, rand); | |
2545 | } | |
c7ce4f60 TG |
2546 | } else { |
2547 | for (i = 0; i < count; i++) | |
2548 | set_free_obj(page, i, next_random_slot(&state)); | |
2549 | } | |
2550 | ||
2551 | if (OBJFREELIST_SLAB(cachep)) | |
2552 | set_free_obj(page, cachep->num - 1, objfreelist); | |
2553 | ||
2554 | return true; | |
2555 | } | |
2556 | #else | |
2557 | static inline bool shuffle_freelist(struct kmem_cache *cachep, | |
2558 | struct page *page) | |
2559 | { | |
2560 | return false; | |
2561 | } | |
2562 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
2563 | ||
10b2e9e8 JK |
2564 | static void cache_init_objs(struct kmem_cache *cachep, |
2565 | struct page *page) | |
2566 | { | |
2567 | int i; | |
7ed2f9e6 | 2568 | void *objp; |
c7ce4f60 | 2569 | bool shuffled; |
10b2e9e8 JK |
2570 | |
2571 | cache_init_objs_debug(cachep, page); | |
2572 | ||
c7ce4f60 TG |
2573 | /* Try to randomize the freelist if enabled */ |
2574 | shuffled = shuffle_freelist(cachep, page); | |
2575 | ||
2576 | if (!shuffled && OBJFREELIST_SLAB(cachep)) { | |
b03a017b JK |
2577 | page->freelist = index_to_obj(cachep, page, cachep->num - 1) + |
2578 | obj_offset(cachep); | |
2579 | } | |
2580 | ||
10b2e9e8 | 2581 | for (i = 0; i < cachep->num; i++) { |
b3cbd9bf AR |
2582 | objp = index_to_obj(cachep, page, i); |
2583 | kasan_init_slab_obj(cachep, objp); | |
2584 | ||
10b2e9e8 | 2585 | /* constructor could break poison info */ |
7ed2f9e6 | 2586 | if (DEBUG == 0 && cachep->ctor) { |
7ed2f9e6 AP |
2587 | kasan_unpoison_object_data(cachep, objp); |
2588 | cachep->ctor(objp); | |
2589 | kasan_poison_object_data(cachep, objp); | |
2590 | } | |
10b2e9e8 | 2591 | |
c7ce4f60 TG |
2592 | if (!shuffled) |
2593 | set_free_obj(page, i, i); | |
1da177e4 | 2594 | } |
1da177e4 LT |
2595 | } |
2596 | ||
260b61dd | 2597 | static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) |
78d382d7 | 2598 | { |
b1cb0982 | 2599 | void *objp; |
78d382d7 | 2600 | |
e5c58dfd | 2601 | objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); |
8456a648 | 2602 | page->active++; |
78d382d7 | 2603 | |
d31676df JK |
2604 | #if DEBUG |
2605 | if (cachep->flags & SLAB_STORE_USER) | |
2606 | set_store_user_dirty(cachep); | |
2607 | #endif | |
2608 | ||
78d382d7 MD |
2609 | return objp; |
2610 | } | |
2611 | ||
260b61dd JK |
2612 | static void slab_put_obj(struct kmem_cache *cachep, |
2613 | struct page *page, void *objp) | |
78d382d7 | 2614 | { |
8456a648 | 2615 | unsigned int objnr = obj_to_index(cachep, page, objp); |
78d382d7 | 2616 | #if DEBUG |
16025177 | 2617 | unsigned int i; |
b1cb0982 | 2618 | |
b1cb0982 | 2619 | /* Verify double free bug */ |
8456a648 | 2620 | for (i = page->active; i < cachep->num; i++) { |
e5c58dfd | 2621 | if (get_free_obj(page, i) == objnr) { |
1170532b | 2622 | pr_err("slab: double free detected in cache '%s', objp %p\n", |
756a025f | 2623 | cachep->name, objp); |
b1cb0982 JK |
2624 | BUG(); |
2625 | } | |
78d382d7 MD |
2626 | } |
2627 | #endif | |
8456a648 | 2628 | page->active--; |
b03a017b JK |
2629 | if (!page->freelist) |
2630 | page->freelist = objp + obj_offset(cachep); | |
2631 | ||
e5c58dfd | 2632 | set_free_obj(page, page->active, objnr); |
78d382d7 MD |
2633 | } |
2634 | ||
4776874f PE |
2635 | /* |
2636 | * Map pages beginning at addr to the given cache and slab. This is required | |
2637 | * for the slab allocator to be able to lookup the cache and slab of a | |
ccd35fb9 | 2638 | * virtual address for kfree, ksize, and slab debugging. |
4776874f | 2639 | */ |
8456a648 | 2640 | static void slab_map_pages(struct kmem_cache *cache, struct page *page, |
7e007355 | 2641 | void *freelist) |
1da177e4 | 2642 | { |
a57a4988 | 2643 | page->slab_cache = cache; |
8456a648 | 2644 | page->freelist = freelist; |
1da177e4 LT |
2645 | } |
2646 | ||
2647 | /* | |
2648 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2649 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2650 | */ | |
76b342bd JK |
2651 | static struct page *cache_grow_begin(struct kmem_cache *cachep, |
2652 | gfp_t flags, int nodeid) | |
1da177e4 | 2653 | { |
7e007355 | 2654 | void *freelist; |
b28a02de PE |
2655 | size_t offset; |
2656 | gfp_t local_flags; | |
511e3a05 | 2657 | int page_node; |
ce8eb6c4 | 2658 | struct kmem_cache_node *n; |
511e3a05 | 2659 | struct page *page; |
1da177e4 | 2660 | |
a737b3e2 AM |
2661 | /* |
2662 | * Be lazy and only check for valid flags here, keeping it out of the | |
2663 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2664 | */ |
c871ac4e | 2665 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { |
bacdcb34 | 2666 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
72baeef0 MH |
2667 | flags &= ~GFP_SLAB_BUG_MASK; |
2668 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | |
2669 | invalid_mask, &invalid_mask, flags, &flags); | |
2670 | dump_stack(); | |
c871ac4e | 2671 | } |
6cb06229 | 2672 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
1da177e4 | 2673 | |
1da177e4 | 2674 | check_irq_off(); |
d0164adc | 2675 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 LT |
2676 | local_irq_enable(); |
2677 | ||
a737b3e2 AM |
2678 | /* |
2679 | * Get mem for the objs. Attempt to allocate a physical page from | |
2680 | * 'nodeid'. | |
e498be7d | 2681 | */ |
511e3a05 | 2682 | page = kmem_getpages(cachep, local_flags, nodeid); |
0c3aa83e | 2683 | if (!page) |
1da177e4 LT |
2684 | goto failed; |
2685 | ||
511e3a05 JK |
2686 | page_node = page_to_nid(page); |
2687 | n = get_node(cachep, page_node); | |
03d1d43a JK |
2688 | |
2689 | /* Get colour for the slab, and cal the next value. */ | |
2690 | n->colour_next++; | |
2691 | if (n->colour_next >= cachep->colour) | |
2692 | n->colour_next = 0; | |
2693 | ||
2694 | offset = n->colour_next; | |
2695 | if (offset >= cachep->colour) | |
2696 | offset = 0; | |
2697 | ||
2698 | offset *= cachep->colour_off; | |
2699 | ||
1da177e4 | 2700 | /* Get slab management. */ |
8456a648 | 2701 | freelist = alloc_slabmgmt(cachep, page, offset, |
511e3a05 | 2702 | local_flags & ~GFP_CONSTRAINT_MASK, page_node); |
b03a017b | 2703 | if (OFF_SLAB(cachep) && !freelist) |
1da177e4 LT |
2704 | goto opps1; |
2705 | ||
8456a648 | 2706 | slab_map_pages(cachep, page, freelist); |
1da177e4 | 2707 | |
7ed2f9e6 | 2708 | kasan_poison_slab(page); |
8456a648 | 2709 | cache_init_objs(cachep, page); |
1da177e4 | 2710 | |
d0164adc | 2711 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 | 2712 | local_irq_disable(); |
1da177e4 | 2713 | |
76b342bd JK |
2714 | return page; |
2715 | ||
a737b3e2 | 2716 | opps1: |
0c3aa83e | 2717 | kmem_freepages(cachep, page); |
a737b3e2 | 2718 | failed: |
d0164adc | 2719 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 | 2720 | local_irq_disable(); |
76b342bd JK |
2721 | return NULL; |
2722 | } | |
2723 | ||
2724 | static void cache_grow_end(struct kmem_cache *cachep, struct page *page) | |
2725 | { | |
2726 | struct kmem_cache_node *n; | |
2727 | void *list = NULL; | |
2728 | ||
2729 | check_irq_off(); | |
2730 | ||
2731 | if (!page) | |
2732 | return; | |
2733 | ||
2734 | INIT_LIST_HEAD(&page->lru); | |
2735 | n = get_node(cachep, page_to_nid(page)); | |
2736 | ||
2737 | spin_lock(&n->list_lock); | |
bf00bd34 | 2738 | n->total_slabs++; |
f728b0a5 | 2739 | if (!page->active) { |
76b342bd | 2740 | list_add_tail(&page->lru, &(n->slabs_free)); |
f728b0a5 | 2741 | n->free_slabs++; |
bf00bd34 | 2742 | } else |
76b342bd | 2743 | fixup_slab_list(cachep, n, page, &list); |
07a63c41 | 2744 | |
76b342bd JK |
2745 | STATS_INC_GROWN(cachep); |
2746 | n->free_objects += cachep->num - page->active; | |
2747 | spin_unlock(&n->list_lock); | |
2748 | ||
2749 | fixup_objfreelist_debug(cachep, &list); | |
1da177e4 LT |
2750 | } |
2751 | ||
2752 | #if DEBUG | |
2753 | ||
2754 | /* | |
2755 | * Perform extra freeing checks: | |
2756 | * - detect bad pointers. | |
2757 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2758 | */ |
2759 | static void kfree_debugcheck(const void *objp) | |
2760 | { | |
1da177e4 | 2761 | if (!virt_addr_valid(objp)) { |
1170532b | 2762 | pr_err("kfree_debugcheck: out of range ptr %lxh\n", |
b28a02de PE |
2763 | (unsigned long)objp); |
2764 | BUG(); | |
1da177e4 | 2765 | } |
1da177e4 LT |
2766 | } |
2767 | ||
58ce1fd5 PE |
2768 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2769 | { | |
b46b8f19 | 2770 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2771 | |
2772 | redzone1 = *dbg_redzone1(cache, obj); | |
2773 | redzone2 = *dbg_redzone2(cache, obj); | |
2774 | ||
2775 | /* | |
2776 | * Redzone is ok. | |
2777 | */ | |
2778 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2779 | return; | |
2780 | ||
2781 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2782 | slab_error(cache, "double free detected"); | |
2783 | else | |
2784 | slab_error(cache, "memory outside object was overwritten"); | |
2785 | ||
1170532b JP |
2786 | pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
2787 | obj, redzone1, redzone2); | |
58ce1fd5 PE |
2788 | } |
2789 | ||
343e0d7a | 2790 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 2791 | unsigned long caller) |
1da177e4 | 2792 | { |
1da177e4 | 2793 | unsigned int objnr; |
8456a648 | 2794 | struct page *page; |
1da177e4 | 2795 | |
80cbd911 MW |
2796 | BUG_ON(virt_to_cache(objp) != cachep); |
2797 | ||
3dafccf2 | 2798 | objp -= obj_offset(cachep); |
1da177e4 | 2799 | kfree_debugcheck(objp); |
b49af68f | 2800 | page = virt_to_head_page(objp); |
1da177e4 | 2801 | |
1da177e4 | 2802 | if (cachep->flags & SLAB_RED_ZONE) { |
58ce1fd5 | 2803 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2804 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
2805 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2806 | } | |
d31676df JK |
2807 | if (cachep->flags & SLAB_STORE_USER) { |
2808 | set_store_user_dirty(cachep); | |
7c0cb9c6 | 2809 | *dbg_userword(cachep, objp) = (void *)caller; |
d31676df | 2810 | } |
1da177e4 | 2811 | |
8456a648 | 2812 | objnr = obj_to_index(cachep, page, objp); |
1da177e4 LT |
2813 | |
2814 | BUG_ON(objnr >= cachep->num); | |
8456a648 | 2815 | BUG_ON(objp != index_to_obj(cachep, page, objnr)); |
1da177e4 | 2816 | |
1da177e4 | 2817 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 2818 | poison_obj(cachep, objp, POISON_FREE); |
40b44137 | 2819 | slab_kernel_map(cachep, objp, 0, caller); |
1da177e4 LT |
2820 | } |
2821 | return objp; | |
2822 | } | |
2823 | ||
1da177e4 LT |
2824 | #else |
2825 | #define kfree_debugcheck(x) do { } while(0) | |
2826 | #define cache_free_debugcheck(x,objp,z) (objp) | |
1da177e4 LT |
2827 | #endif |
2828 | ||
b03a017b JK |
2829 | static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
2830 | void **list) | |
2831 | { | |
2832 | #if DEBUG | |
2833 | void *next = *list; | |
2834 | void *objp; | |
2835 | ||
2836 | while (next) { | |
2837 | objp = next - obj_offset(cachep); | |
2838 | next = *(void **)next; | |
2839 | poison_obj(cachep, objp, POISON_FREE); | |
2840 | } | |
2841 | #endif | |
2842 | } | |
2843 | ||
d8410234 | 2844 | static inline void fixup_slab_list(struct kmem_cache *cachep, |
b03a017b JK |
2845 | struct kmem_cache_node *n, struct page *page, |
2846 | void **list) | |
d8410234 JK |
2847 | { |
2848 | /* move slabp to correct slabp list: */ | |
2849 | list_del(&page->lru); | |
b03a017b | 2850 | if (page->active == cachep->num) { |
d8410234 | 2851 | list_add(&page->lru, &n->slabs_full); |
b03a017b JK |
2852 | if (OBJFREELIST_SLAB(cachep)) { |
2853 | #if DEBUG | |
2854 | /* Poisoning will be done without holding the lock */ | |
2855 | if (cachep->flags & SLAB_POISON) { | |
2856 | void **objp = page->freelist; | |
2857 | ||
2858 | *objp = *list; | |
2859 | *list = objp; | |
2860 | } | |
2861 | #endif | |
2862 | page->freelist = NULL; | |
2863 | } | |
2864 | } else | |
d8410234 JK |
2865 | list_add(&page->lru, &n->slabs_partial); |
2866 | } | |
2867 | ||
f68f8ddd JK |
2868 | /* Try to find non-pfmemalloc slab if needed */ |
2869 | static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, | |
bf00bd34 | 2870 | struct page *page, bool pfmemalloc) |
f68f8ddd JK |
2871 | { |
2872 | if (!page) | |
2873 | return NULL; | |
2874 | ||
2875 | if (pfmemalloc) | |
2876 | return page; | |
2877 | ||
2878 | if (!PageSlabPfmemalloc(page)) | |
2879 | return page; | |
2880 | ||
2881 | /* No need to keep pfmemalloc slab if we have enough free objects */ | |
2882 | if (n->free_objects > n->free_limit) { | |
2883 | ClearPageSlabPfmemalloc(page); | |
2884 | return page; | |
2885 | } | |
2886 | ||
2887 | /* Move pfmemalloc slab to the end of list to speed up next search */ | |
2888 | list_del(&page->lru); | |
bf00bd34 | 2889 | if (!page->active) { |
f68f8ddd | 2890 | list_add_tail(&page->lru, &n->slabs_free); |
bf00bd34 | 2891 | n->free_slabs++; |
f728b0a5 | 2892 | } else |
f68f8ddd JK |
2893 | list_add_tail(&page->lru, &n->slabs_partial); |
2894 | ||
2895 | list_for_each_entry(page, &n->slabs_partial, lru) { | |
2896 | if (!PageSlabPfmemalloc(page)) | |
2897 | return page; | |
2898 | } | |
2899 | ||
f728b0a5 | 2900 | n->free_touched = 1; |
f68f8ddd | 2901 | list_for_each_entry(page, &n->slabs_free, lru) { |
f728b0a5 | 2902 | if (!PageSlabPfmemalloc(page)) { |
bf00bd34 | 2903 | n->free_slabs--; |
f68f8ddd | 2904 | return page; |
f728b0a5 | 2905 | } |
f68f8ddd JK |
2906 | } |
2907 | ||
2908 | return NULL; | |
2909 | } | |
2910 | ||
2911 | static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) | |
7aa0d227 GT |
2912 | { |
2913 | struct page *page; | |
2914 | ||
f728b0a5 | 2915 | assert_spin_locked(&n->list_lock); |
bf00bd34 | 2916 | page = list_first_entry_or_null(&n->slabs_partial, struct page, lru); |
7aa0d227 GT |
2917 | if (!page) { |
2918 | n->free_touched = 1; | |
bf00bd34 DR |
2919 | page = list_first_entry_or_null(&n->slabs_free, struct page, |
2920 | lru); | |
f728b0a5 | 2921 | if (page) |
bf00bd34 | 2922 | n->free_slabs--; |
7aa0d227 GT |
2923 | } |
2924 | ||
f68f8ddd | 2925 | if (sk_memalloc_socks()) |
bf00bd34 | 2926 | page = get_valid_first_slab(n, page, pfmemalloc); |
f68f8ddd | 2927 | |
7aa0d227 GT |
2928 | return page; |
2929 | } | |
2930 | ||
f68f8ddd JK |
2931 | static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, |
2932 | struct kmem_cache_node *n, gfp_t flags) | |
2933 | { | |
2934 | struct page *page; | |
2935 | void *obj; | |
2936 | void *list = NULL; | |
2937 | ||
2938 | if (!gfp_pfmemalloc_allowed(flags)) | |
2939 | return NULL; | |
2940 | ||
2941 | spin_lock(&n->list_lock); | |
2942 | page = get_first_slab(n, true); | |
2943 | if (!page) { | |
2944 | spin_unlock(&n->list_lock); | |
2945 | return NULL; | |
2946 | } | |
2947 | ||
2948 | obj = slab_get_obj(cachep, page); | |
2949 | n->free_objects--; | |
2950 | ||
2951 | fixup_slab_list(cachep, n, page, &list); | |
2952 | ||
2953 | spin_unlock(&n->list_lock); | |
2954 | fixup_objfreelist_debug(cachep, &list); | |
2955 | ||
2956 | return obj; | |
2957 | } | |
2958 | ||
213b4695 JK |
2959 | /* |
2960 | * Slab list should be fixed up by fixup_slab_list() for existing slab | |
2961 | * or cache_grow_end() for new slab | |
2962 | */ | |
2963 | static __always_inline int alloc_block(struct kmem_cache *cachep, | |
2964 | struct array_cache *ac, struct page *page, int batchcount) | |
2965 | { | |
2966 | /* | |
2967 | * There must be at least one object available for | |
2968 | * allocation. | |
2969 | */ | |
2970 | BUG_ON(page->active >= cachep->num); | |
2971 | ||
2972 | while (page->active < cachep->num && batchcount--) { | |
2973 | STATS_INC_ALLOCED(cachep); | |
2974 | STATS_INC_ACTIVE(cachep); | |
2975 | STATS_SET_HIGH(cachep); | |
2976 | ||
2977 | ac->entry[ac->avail++] = slab_get_obj(cachep, page); | |
2978 | } | |
2979 | ||
2980 | return batchcount; | |
2981 | } | |
2982 | ||
f68f8ddd | 2983 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 LT |
2984 | { |
2985 | int batchcount; | |
ce8eb6c4 | 2986 | struct kmem_cache_node *n; |
801faf0d | 2987 | struct array_cache *ac, *shared; |
1ca4cb24 | 2988 | int node; |
b03a017b | 2989 | void *list = NULL; |
76b342bd | 2990 | struct page *page; |
1ca4cb24 | 2991 | |
1da177e4 | 2992 | check_irq_off(); |
7d6e6d09 | 2993 | node = numa_mem_id(); |
f68f8ddd | 2994 | |
9a2dba4b | 2995 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
2996 | batchcount = ac->batchcount; |
2997 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
2998 | /* |
2999 | * If there was little recent activity on this cache, then | |
3000 | * perform only a partial refill. Otherwise we could generate | |
3001 | * refill bouncing. | |
1da177e4 LT |
3002 | */ |
3003 | batchcount = BATCHREFILL_LIMIT; | |
3004 | } | |
18bf8541 | 3005 | n = get_node(cachep, node); |
e498be7d | 3006 | |
ce8eb6c4 | 3007 | BUG_ON(ac->avail > 0 || !n); |
801faf0d JK |
3008 | shared = READ_ONCE(n->shared); |
3009 | if (!n->free_objects && (!shared || !shared->avail)) | |
3010 | goto direct_grow; | |
3011 | ||
ce8eb6c4 | 3012 | spin_lock(&n->list_lock); |
801faf0d | 3013 | shared = READ_ONCE(n->shared); |
1da177e4 | 3014 | |
3ded175a | 3015 | /* See if we can refill from the shared array */ |
801faf0d JK |
3016 | if (shared && transfer_objects(ac, shared, batchcount)) { |
3017 | shared->touched = 1; | |
3ded175a | 3018 | goto alloc_done; |
44b57f1c | 3019 | } |
3ded175a | 3020 | |
1da177e4 | 3021 | while (batchcount > 0) { |
1da177e4 | 3022 | /* Get slab alloc is to come from. */ |
f68f8ddd | 3023 | page = get_first_slab(n, false); |
7aa0d227 GT |
3024 | if (!page) |
3025 | goto must_grow; | |
1da177e4 | 3026 | |
1da177e4 | 3027 | check_spinlock_acquired(cachep); |
714b8171 | 3028 | |
213b4695 | 3029 | batchcount = alloc_block(cachep, ac, page, batchcount); |
b03a017b | 3030 | fixup_slab_list(cachep, n, page, &list); |
1da177e4 LT |
3031 | } |
3032 | ||
a737b3e2 | 3033 | must_grow: |
ce8eb6c4 | 3034 | n->free_objects -= ac->avail; |
a737b3e2 | 3035 | alloc_done: |
ce8eb6c4 | 3036 | spin_unlock(&n->list_lock); |
b03a017b | 3037 | fixup_objfreelist_debug(cachep, &list); |
1da177e4 | 3038 | |
801faf0d | 3039 | direct_grow: |
1da177e4 | 3040 | if (unlikely(!ac->avail)) { |
f68f8ddd JK |
3041 | /* Check if we can use obj in pfmemalloc slab */ |
3042 | if (sk_memalloc_socks()) { | |
3043 | void *obj = cache_alloc_pfmemalloc(cachep, n, flags); | |
3044 | ||
3045 | if (obj) | |
3046 | return obj; | |
3047 | } | |
3048 | ||
76b342bd | 3049 | page = cache_grow_begin(cachep, gfp_exact_node(flags), node); |
e498be7d | 3050 | |
76b342bd JK |
3051 | /* |
3052 | * cache_grow_begin() can reenable interrupts, | |
3053 | * then ac could change. | |
3054 | */ | |
9a2dba4b | 3055 | ac = cpu_cache_get(cachep); |
213b4695 JK |
3056 | if (!ac->avail && page) |
3057 | alloc_block(cachep, ac, page, batchcount); | |
3058 | cache_grow_end(cachep, page); | |
072bb0aa | 3059 | |
213b4695 | 3060 | if (!ac->avail) |
1da177e4 | 3061 | return NULL; |
1da177e4 LT |
3062 | } |
3063 | ac->touched = 1; | |
072bb0aa | 3064 | |
f68f8ddd | 3065 | return ac->entry[--ac->avail]; |
1da177e4 LT |
3066 | } |
3067 | ||
a737b3e2 AM |
3068 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
3069 | gfp_t flags) | |
1da177e4 | 3070 | { |
d0164adc | 3071 | might_sleep_if(gfpflags_allow_blocking(flags)); |
1da177e4 LT |
3072 | } |
3073 | ||
3074 | #if DEBUG | |
a737b3e2 | 3075 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
7c0cb9c6 | 3076 | gfp_t flags, void *objp, unsigned long caller) |
1da177e4 | 3077 | { |
b28a02de | 3078 | if (!objp) |
1da177e4 | 3079 | return objp; |
b28a02de | 3080 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 3081 | check_poison_obj(cachep, objp); |
40b44137 | 3082 | slab_kernel_map(cachep, objp, 1, 0); |
1da177e4 LT |
3083 | poison_obj(cachep, objp, POISON_INUSE); |
3084 | } | |
3085 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 3086 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 LT |
3087 | |
3088 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
3089 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
3090 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
756a025f | 3091 | slab_error(cachep, "double free, or memory outside object was overwritten"); |
1170532b JP |
3092 | pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
3093 | objp, *dbg_redzone1(cachep, objp), | |
3094 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
3095 | } |
3096 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
3097 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
3098 | } | |
03787301 | 3099 | |
3dafccf2 | 3100 | objp += obj_offset(cachep); |
4f104934 | 3101 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 3102 | cachep->ctor(objp); |
7ea466f2 TH |
3103 | if (ARCH_SLAB_MINALIGN && |
3104 | ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | |
1170532b | 3105 | pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
c225150b | 3106 | objp, (int)ARCH_SLAB_MINALIGN); |
a44b56d3 | 3107 | } |
1da177e4 LT |
3108 | return objp; |
3109 | } | |
3110 | #else | |
3111 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
3112 | #endif | |
3113 | ||
343e0d7a | 3114 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3115 | { |
b28a02de | 3116 | void *objp; |
1da177e4 LT |
3117 | struct array_cache *ac; |
3118 | ||
5c382300 | 3119 | check_irq_off(); |
8a8b6502 | 3120 | |
9a2dba4b | 3121 | ac = cpu_cache_get(cachep); |
1da177e4 | 3122 | if (likely(ac->avail)) { |
1da177e4 | 3123 | ac->touched = 1; |
f68f8ddd | 3124 | objp = ac->entry[--ac->avail]; |
072bb0aa | 3125 | |
f68f8ddd JK |
3126 | STATS_INC_ALLOCHIT(cachep); |
3127 | goto out; | |
1da177e4 | 3128 | } |
072bb0aa MG |
3129 | |
3130 | STATS_INC_ALLOCMISS(cachep); | |
f68f8ddd | 3131 | objp = cache_alloc_refill(cachep, flags); |
072bb0aa MG |
3132 | /* |
3133 | * the 'ac' may be updated by cache_alloc_refill(), | |
3134 | * and kmemleak_erase() requires its correct value. | |
3135 | */ | |
3136 | ac = cpu_cache_get(cachep); | |
3137 | ||
3138 | out: | |
d5cff635 CM |
3139 | /* |
3140 | * To avoid a false negative, if an object that is in one of the | |
3141 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3142 | * treat the array pointers as a reference to the object. | |
3143 | */ | |
f3d8b53a O |
3144 | if (objp) |
3145 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3146 | return objp; |
3147 | } | |
3148 | ||
e498be7d | 3149 | #ifdef CONFIG_NUMA |
c61afb18 | 3150 | /* |
2ad654bc | 3151 | * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. |
c61afb18 PJ |
3152 | * |
3153 | * If we are in_interrupt, then process context, including cpusets and | |
3154 | * mempolicy, may not apply and should not be used for allocation policy. | |
3155 | */ | |
3156 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3157 | { | |
3158 | int nid_alloc, nid_here; | |
3159 | ||
765c4507 | 3160 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 3161 | return NULL; |
7d6e6d09 | 3162 | nid_alloc = nid_here = numa_mem_id(); |
c61afb18 | 3163 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 3164 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 | 3165 | else if (current->mempolicy) |
2a389610 | 3166 | nid_alloc = mempolicy_slab_node(); |
c61afb18 | 3167 | if (nid_alloc != nid_here) |
8b98c169 | 3168 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3169 | return NULL; |
3170 | } | |
3171 | ||
765c4507 CL |
3172 | /* |
3173 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 | 3174 | * certain node and fall back is permitted. First we scan all the |
6a67368c | 3175 | * available node for available objects. If that fails then we |
3c517a61 CL |
3176 | * perform an allocation without specifying a node. This allows the page |
3177 | * allocator to do its reclaim / fallback magic. We then insert the | |
3178 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3179 | */ |
8c8cc2c1 | 3180 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3181 | { |
8c8cc2c1 | 3182 | struct zonelist *zonelist; |
dd1a239f | 3183 | struct zoneref *z; |
54a6eb5c MG |
3184 | struct zone *zone; |
3185 | enum zone_type high_zoneidx = gfp_zone(flags); | |
765c4507 | 3186 | void *obj = NULL; |
76b342bd | 3187 | struct page *page; |
3c517a61 | 3188 | int nid; |
cc9a6c87 | 3189 | unsigned int cpuset_mems_cookie; |
8c8cc2c1 PE |
3190 | |
3191 | if (flags & __GFP_THISNODE) | |
3192 | return NULL; | |
3193 | ||
cc9a6c87 | 3194 | retry_cpuset: |
d26914d1 | 3195 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 3196 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 | 3197 | |
3c517a61 CL |
3198 | retry: |
3199 | /* | |
3200 | * Look through allowed nodes for objects available | |
3201 | * from existing per node queues. | |
3202 | */ | |
54a6eb5c MG |
3203 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
3204 | nid = zone_to_nid(zone); | |
aedb0eb1 | 3205 | |
061d7074 | 3206 | if (cpuset_zone_allowed(zone, flags) && |
18bf8541 CL |
3207 | get_node(cache, nid) && |
3208 | get_node(cache, nid)->free_objects) { | |
3c517a61 | 3209 | obj = ____cache_alloc_node(cache, |
4167e9b2 | 3210 | gfp_exact_node(flags), nid); |
481c5346 CL |
3211 | if (obj) |
3212 | break; | |
3213 | } | |
3c517a61 CL |
3214 | } |
3215 | ||
cfce6604 | 3216 | if (!obj) { |
3c517a61 CL |
3217 | /* |
3218 | * This allocation will be performed within the constraints | |
3219 | * of the current cpuset / memory policy requirements. | |
3220 | * We may trigger various forms of reclaim on the allowed | |
3221 | * set and go into memory reserves if necessary. | |
3222 | */ | |
76b342bd JK |
3223 | page = cache_grow_begin(cache, flags, numa_mem_id()); |
3224 | cache_grow_end(cache, page); | |
3225 | if (page) { | |
3226 | nid = page_to_nid(page); | |
511e3a05 JK |
3227 | obj = ____cache_alloc_node(cache, |
3228 | gfp_exact_node(flags), nid); | |
0c3aa83e | 3229 | |
3c517a61 | 3230 | /* |
511e3a05 JK |
3231 | * Another processor may allocate the objects in |
3232 | * the slab since we are not holding any locks. | |
3c517a61 | 3233 | */ |
511e3a05 JK |
3234 | if (!obj) |
3235 | goto retry; | |
3c517a61 | 3236 | } |
aedb0eb1 | 3237 | } |
cc9a6c87 | 3238 | |
d26914d1 | 3239 | if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 | 3240 | goto retry_cpuset; |
765c4507 CL |
3241 | return obj; |
3242 | } | |
3243 | ||
e498be7d CL |
3244 | /* |
3245 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3246 | */ |
8b98c169 | 3247 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3248 | int nodeid) |
e498be7d | 3249 | { |
8456a648 | 3250 | struct page *page; |
ce8eb6c4 | 3251 | struct kmem_cache_node *n; |
213b4695 | 3252 | void *obj = NULL; |
b03a017b | 3253 | void *list = NULL; |
b28a02de | 3254 | |
7c3fbbdd | 3255 | VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); |
18bf8541 | 3256 | n = get_node(cachep, nodeid); |
ce8eb6c4 | 3257 | BUG_ON(!n); |
b28a02de | 3258 | |
ca3b9b91 | 3259 | check_irq_off(); |
ce8eb6c4 | 3260 | spin_lock(&n->list_lock); |
f68f8ddd | 3261 | page = get_first_slab(n, false); |
7aa0d227 GT |
3262 | if (!page) |
3263 | goto must_grow; | |
b28a02de | 3264 | |
b28a02de | 3265 | check_spinlock_acquired_node(cachep, nodeid); |
b28a02de PE |
3266 | |
3267 | STATS_INC_NODEALLOCS(cachep); | |
3268 | STATS_INC_ACTIVE(cachep); | |
3269 | STATS_SET_HIGH(cachep); | |
3270 | ||
8456a648 | 3271 | BUG_ON(page->active == cachep->num); |
b28a02de | 3272 | |
260b61dd | 3273 | obj = slab_get_obj(cachep, page); |
ce8eb6c4 | 3274 | n->free_objects--; |
b28a02de | 3275 | |
b03a017b | 3276 | fixup_slab_list(cachep, n, page, &list); |
e498be7d | 3277 | |
ce8eb6c4 | 3278 | spin_unlock(&n->list_lock); |
b03a017b | 3279 | fixup_objfreelist_debug(cachep, &list); |
213b4695 | 3280 | return obj; |
e498be7d | 3281 | |
a737b3e2 | 3282 | must_grow: |
ce8eb6c4 | 3283 | spin_unlock(&n->list_lock); |
76b342bd | 3284 | page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); |
213b4695 JK |
3285 | if (page) { |
3286 | /* This slab isn't counted yet so don't update free_objects */ | |
3287 | obj = slab_get_obj(cachep, page); | |
3288 | } | |
76b342bd | 3289 | cache_grow_end(cachep, page); |
1da177e4 | 3290 | |
213b4695 | 3291 | return obj ? obj : fallback_alloc(cachep, flags); |
e498be7d | 3292 | } |
8c8cc2c1 | 3293 | |
8c8cc2c1 | 3294 | static __always_inline void * |
48356303 | 3295 | slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, |
7c0cb9c6 | 3296 | unsigned long caller) |
8c8cc2c1 PE |
3297 | { |
3298 | unsigned long save_flags; | |
3299 | void *ptr; | |
7d6e6d09 | 3300 | int slab_node = numa_mem_id(); |
8c8cc2c1 | 3301 | |
dcce284a | 3302 | flags &= gfp_allowed_mask; |
011eceaf JDB |
3303 | cachep = slab_pre_alloc_hook(cachep, flags); |
3304 | if (unlikely(!cachep)) | |
824ebef1 AM |
3305 | return NULL; |
3306 | ||
8c8cc2c1 PE |
3307 | cache_alloc_debugcheck_before(cachep, flags); |
3308 | local_irq_save(save_flags); | |
3309 | ||
eacbbae3 | 3310 | if (nodeid == NUMA_NO_NODE) |
7d6e6d09 | 3311 | nodeid = slab_node; |
8c8cc2c1 | 3312 | |
18bf8541 | 3313 | if (unlikely(!get_node(cachep, nodeid))) { |
8c8cc2c1 PE |
3314 | /* Node not bootstrapped yet */ |
3315 | ptr = fallback_alloc(cachep, flags); | |
3316 | goto out; | |
3317 | } | |
3318 | ||
7d6e6d09 | 3319 | if (nodeid == slab_node) { |
8c8cc2c1 PE |
3320 | /* |
3321 | * Use the locally cached objects if possible. | |
3322 | * However ____cache_alloc does not allow fallback | |
3323 | * to other nodes. It may fail while we still have | |
3324 | * objects on other nodes available. | |
3325 | */ | |
3326 | ptr = ____cache_alloc(cachep, flags); | |
3327 | if (ptr) | |
3328 | goto out; | |
3329 | } | |
3330 | /* ___cache_alloc_node can fall back to other nodes */ | |
3331 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3332 | out: | |
3333 | local_irq_restore(save_flags); | |
3334 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
3335 | ||
d5e3ed66 JDB |
3336 | if (unlikely(flags & __GFP_ZERO) && ptr) |
3337 | memset(ptr, 0, cachep->object_size); | |
d07dbea4 | 3338 | |
d5e3ed66 | 3339 | slab_post_alloc_hook(cachep, flags, 1, &ptr); |
8c8cc2c1 PE |
3340 | return ptr; |
3341 | } | |
3342 | ||
3343 | static __always_inline void * | |
3344 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3345 | { | |
3346 | void *objp; | |
3347 | ||
2ad654bc | 3348 | if (current->mempolicy || cpuset_do_slab_mem_spread()) { |
8c8cc2c1 PE |
3349 | objp = alternate_node_alloc(cache, flags); |
3350 | if (objp) | |
3351 | goto out; | |
3352 | } | |
3353 | objp = ____cache_alloc(cache, flags); | |
3354 | ||
3355 | /* | |
3356 | * We may just have run out of memory on the local node. | |
3357 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3358 | */ | |
7d6e6d09 LS |
3359 | if (!objp) |
3360 | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | |
8c8cc2c1 PE |
3361 | |
3362 | out: | |
3363 | return objp; | |
3364 | } | |
3365 | #else | |
3366 | ||
3367 | static __always_inline void * | |
3368 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3369 | { | |
3370 | return ____cache_alloc(cachep, flags); | |
3371 | } | |
3372 | ||
3373 | #endif /* CONFIG_NUMA */ | |
3374 | ||
3375 | static __always_inline void * | |
48356303 | 3376 | slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) |
8c8cc2c1 PE |
3377 | { |
3378 | unsigned long save_flags; | |
3379 | void *objp; | |
3380 | ||
dcce284a | 3381 | flags &= gfp_allowed_mask; |
011eceaf JDB |
3382 | cachep = slab_pre_alloc_hook(cachep, flags); |
3383 | if (unlikely(!cachep)) | |
824ebef1 AM |
3384 | return NULL; |
3385 | ||
8c8cc2c1 PE |
3386 | cache_alloc_debugcheck_before(cachep, flags); |
3387 | local_irq_save(save_flags); | |
3388 | objp = __do_cache_alloc(cachep, flags); | |
3389 | local_irq_restore(save_flags); | |
3390 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
3391 | prefetchw(objp); | |
3392 | ||
d5e3ed66 JDB |
3393 | if (unlikely(flags & __GFP_ZERO) && objp) |
3394 | memset(objp, 0, cachep->object_size); | |
d07dbea4 | 3395 | |
d5e3ed66 | 3396 | slab_post_alloc_hook(cachep, flags, 1, &objp); |
8c8cc2c1 PE |
3397 | return objp; |
3398 | } | |
e498be7d CL |
3399 | |
3400 | /* | |
5f0985bb | 3401 | * Caller needs to acquire correct kmem_cache_node's list_lock |
97654dfa | 3402 | * @list: List of detached free slabs should be freed by caller |
e498be7d | 3403 | */ |
97654dfa JK |
3404 | static void free_block(struct kmem_cache *cachep, void **objpp, |
3405 | int nr_objects, int node, struct list_head *list) | |
1da177e4 LT |
3406 | { |
3407 | int i; | |
25c063fb | 3408 | struct kmem_cache_node *n = get_node(cachep, node); |
6052b788 JK |
3409 | struct page *page; |
3410 | ||
3411 | n->free_objects += nr_objects; | |
1da177e4 LT |
3412 | |
3413 | for (i = 0; i < nr_objects; i++) { | |
072bb0aa | 3414 | void *objp; |
8456a648 | 3415 | struct page *page; |
1da177e4 | 3416 | |
072bb0aa MG |
3417 | objp = objpp[i]; |
3418 | ||
8456a648 | 3419 | page = virt_to_head_page(objp); |
8456a648 | 3420 | list_del(&page->lru); |
ff69416e | 3421 | check_spinlock_acquired_node(cachep, node); |
260b61dd | 3422 | slab_put_obj(cachep, page, objp); |
1da177e4 | 3423 | STATS_DEC_ACTIVE(cachep); |
1da177e4 LT |
3424 | |
3425 | /* fixup slab chains */ | |
f728b0a5 | 3426 | if (page->active == 0) { |
6052b788 | 3427 | list_add(&page->lru, &n->slabs_free); |
f728b0a5 | 3428 | n->free_slabs++; |
f728b0a5 | 3429 | } else { |
1da177e4 LT |
3430 | /* Unconditionally move a slab to the end of the |
3431 | * partial list on free - maximum time for the | |
3432 | * other objects to be freed, too. | |
3433 | */ | |
8456a648 | 3434 | list_add_tail(&page->lru, &n->slabs_partial); |
1da177e4 LT |
3435 | } |
3436 | } | |
6052b788 JK |
3437 | |
3438 | while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { | |
3439 | n->free_objects -= cachep->num; | |
3440 | ||
3441 | page = list_last_entry(&n->slabs_free, struct page, lru); | |
de24baec | 3442 | list_move(&page->lru, list); |
f728b0a5 | 3443 | n->free_slabs--; |
bf00bd34 | 3444 | n->total_slabs--; |
6052b788 | 3445 | } |
1da177e4 LT |
3446 | } |
3447 | ||
343e0d7a | 3448 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3449 | { |
3450 | int batchcount; | |
ce8eb6c4 | 3451 | struct kmem_cache_node *n; |
7d6e6d09 | 3452 | int node = numa_mem_id(); |
97654dfa | 3453 | LIST_HEAD(list); |
1da177e4 LT |
3454 | |
3455 | batchcount = ac->batchcount; | |
260b61dd | 3456 | |
1da177e4 | 3457 | check_irq_off(); |
18bf8541 | 3458 | n = get_node(cachep, node); |
ce8eb6c4 CL |
3459 | spin_lock(&n->list_lock); |
3460 | if (n->shared) { | |
3461 | struct array_cache *shared_array = n->shared; | |
b28a02de | 3462 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3463 | if (max) { |
3464 | if (batchcount > max) | |
3465 | batchcount = max; | |
e498be7d | 3466 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3467 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3468 | shared_array->avail += batchcount; |
3469 | goto free_done; | |
3470 | } | |
3471 | } | |
3472 | ||
97654dfa | 3473 | free_block(cachep, ac->entry, batchcount, node, &list); |
a737b3e2 | 3474 | free_done: |
1da177e4 LT |
3475 | #if STATS |
3476 | { | |
3477 | int i = 0; | |
73c0219d | 3478 | struct page *page; |
1da177e4 | 3479 | |
73c0219d | 3480 | list_for_each_entry(page, &n->slabs_free, lru) { |
8456a648 | 3481 | BUG_ON(page->active); |
1da177e4 LT |
3482 | |
3483 | i++; | |
1da177e4 LT |
3484 | } |
3485 | STATS_SET_FREEABLE(cachep, i); | |
3486 | } | |
3487 | #endif | |
ce8eb6c4 | 3488 | spin_unlock(&n->list_lock); |
97654dfa | 3489 | slabs_destroy(cachep, &list); |
1da177e4 | 3490 | ac->avail -= batchcount; |
a737b3e2 | 3491 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
1da177e4 LT |
3492 | } |
3493 | ||
3494 | /* | |
a737b3e2 AM |
3495 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3496 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3497 | */ |
a947eb95 | 3498 | static inline void __cache_free(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 3499 | unsigned long caller) |
1da177e4 | 3500 | { |
55834c59 AP |
3501 | /* Put the object into the quarantine, don't touch it for now. */ |
3502 | if (kasan_slab_free(cachep, objp)) | |
3503 | return; | |
3504 | ||
3505 | ___cache_free(cachep, objp, caller); | |
3506 | } | |
1da177e4 | 3507 | |
55834c59 AP |
3508 | void ___cache_free(struct kmem_cache *cachep, void *objp, |
3509 | unsigned long caller) | |
3510 | { | |
3511 | struct array_cache *ac = cpu_cache_get(cachep); | |
7ed2f9e6 | 3512 | |
1da177e4 | 3513 | check_irq_off(); |
d5cff635 | 3514 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3515 | objp = cache_free_debugcheck(cachep, objp, caller); |
1da177e4 | 3516 | |
8c138bc0 | 3517 | kmemcheck_slab_free(cachep, objp, cachep->object_size); |
c175eea4 | 3518 | |
1807a1aa SS |
3519 | /* |
3520 | * Skip calling cache_free_alien() when the platform is not numa. | |
3521 | * This will avoid cache misses that happen while accessing slabp (which | |
3522 | * is per page memory reference) to get nodeid. Instead use a global | |
3523 | * variable to skip the call, which is mostly likely to be present in | |
3524 | * the cache. | |
3525 | */ | |
b6e68bc1 | 3526 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3527 | return; |
3528 | ||
3d880194 | 3529 | if (ac->avail < ac->limit) { |
1da177e4 | 3530 | STATS_INC_FREEHIT(cachep); |
1da177e4 LT |
3531 | } else { |
3532 | STATS_INC_FREEMISS(cachep); | |
3533 | cache_flusharray(cachep, ac); | |
1da177e4 | 3534 | } |
42c8c99c | 3535 | |
f68f8ddd JK |
3536 | if (sk_memalloc_socks()) { |
3537 | struct page *page = virt_to_head_page(objp); | |
3538 | ||
3539 | if (unlikely(PageSlabPfmemalloc(page))) { | |
3540 | cache_free_pfmemalloc(cachep, page, objp); | |
3541 | return; | |
3542 | } | |
3543 | } | |
3544 | ||
3545 | ac->entry[ac->avail++] = objp; | |
1da177e4 LT |
3546 | } |
3547 | ||
3548 | /** | |
3549 | * kmem_cache_alloc - Allocate an object | |
3550 | * @cachep: The cache to allocate from. | |
3551 | * @flags: See kmalloc(). | |
3552 | * | |
3553 | * Allocate an object from this cache. The flags are only relevant | |
3554 | * if the cache has no available objects. | |
3555 | */ | |
343e0d7a | 3556 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3557 | { |
48356303 | 3558 | void *ret = slab_alloc(cachep, flags, _RET_IP_); |
36555751 | 3559 | |
505f5dcb | 3560 | kasan_slab_alloc(cachep, ret, flags); |
ca2b84cb | 3561 | trace_kmem_cache_alloc(_RET_IP_, ret, |
8c138bc0 | 3562 | cachep->object_size, cachep->size, flags); |
36555751 EGM |
3563 | |
3564 | return ret; | |
1da177e4 LT |
3565 | } |
3566 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3567 | ||
7b0501dd JDB |
3568 | static __always_inline void |
3569 | cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, | |
3570 | size_t size, void **p, unsigned long caller) | |
3571 | { | |
3572 | size_t i; | |
3573 | ||
3574 | for (i = 0; i < size; i++) | |
3575 | p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); | |
3576 | } | |
3577 | ||
865762a8 | 3578 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
2a777eac | 3579 | void **p) |
484748f0 | 3580 | { |
2a777eac JDB |
3581 | size_t i; |
3582 | ||
3583 | s = slab_pre_alloc_hook(s, flags); | |
3584 | if (!s) | |
3585 | return 0; | |
3586 | ||
3587 | cache_alloc_debugcheck_before(s, flags); | |
3588 | ||
3589 | local_irq_disable(); | |
3590 | for (i = 0; i < size; i++) { | |
3591 | void *objp = __do_cache_alloc(s, flags); | |
3592 | ||
2a777eac JDB |
3593 | if (unlikely(!objp)) |
3594 | goto error; | |
3595 | p[i] = objp; | |
3596 | } | |
3597 | local_irq_enable(); | |
3598 | ||
7b0501dd JDB |
3599 | cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); |
3600 | ||
2a777eac JDB |
3601 | /* Clear memory outside IRQ disabled section */ |
3602 | if (unlikely(flags & __GFP_ZERO)) | |
3603 | for (i = 0; i < size; i++) | |
3604 | memset(p[i], 0, s->object_size); | |
3605 | ||
3606 | slab_post_alloc_hook(s, flags, size, p); | |
3607 | /* FIXME: Trace call missing. Christoph would like a bulk variant */ | |
3608 | return size; | |
3609 | error: | |
3610 | local_irq_enable(); | |
7b0501dd | 3611 | cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); |
2a777eac JDB |
3612 | slab_post_alloc_hook(s, flags, i, p); |
3613 | __kmem_cache_free_bulk(s, i, p); | |
3614 | return 0; | |
484748f0 CL |
3615 | } |
3616 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3617 | ||
0f24f128 | 3618 | #ifdef CONFIG_TRACING |
85beb586 | 3619 | void * |
4052147c | 3620 | kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) |
36555751 | 3621 | { |
85beb586 SR |
3622 | void *ret; |
3623 | ||
48356303 | 3624 | ret = slab_alloc(cachep, flags, _RET_IP_); |
85beb586 | 3625 | |
505f5dcb | 3626 | kasan_kmalloc(cachep, ret, size, flags); |
85beb586 | 3627 | trace_kmalloc(_RET_IP_, ret, |
ff4fcd01 | 3628 | size, cachep->size, flags); |
85beb586 | 3629 | return ret; |
36555751 | 3630 | } |
85beb586 | 3631 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
36555751 EGM |
3632 | #endif |
3633 | ||
1da177e4 | 3634 | #ifdef CONFIG_NUMA |
d0d04b78 ZL |
3635 | /** |
3636 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3637 | * @cachep: The cache to allocate from. | |
3638 | * @flags: See kmalloc(). | |
3639 | * @nodeid: node number of the target node. | |
3640 | * | |
3641 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3642 | * node, which can improve the performance for cpu bound structures. | |
3643 | * | |
3644 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3645 | */ | |
8b98c169 CH |
3646 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3647 | { | |
48356303 | 3648 | void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); |
36555751 | 3649 | |
505f5dcb | 3650 | kasan_slab_alloc(cachep, ret, flags); |
ca2b84cb | 3651 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
8c138bc0 | 3652 | cachep->object_size, cachep->size, |
ca2b84cb | 3653 | flags, nodeid); |
36555751 EGM |
3654 | |
3655 | return ret; | |
8b98c169 | 3656 | } |
1da177e4 LT |
3657 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3658 | ||
0f24f128 | 3659 | #ifdef CONFIG_TRACING |
4052147c | 3660 | void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, |
85beb586 | 3661 | gfp_t flags, |
4052147c EG |
3662 | int nodeid, |
3663 | size_t size) | |
36555751 | 3664 | { |
85beb586 SR |
3665 | void *ret; |
3666 | ||
592f4145 | 3667 | ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); |
505f5dcb AP |
3668 | |
3669 | kasan_kmalloc(cachep, ret, size, flags); | |
85beb586 | 3670 | trace_kmalloc_node(_RET_IP_, ret, |
ff4fcd01 | 3671 | size, cachep->size, |
85beb586 SR |
3672 | flags, nodeid); |
3673 | return ret; | |
36555751 | 3674 | } |
85beb586 | 3675 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
36555751 EGM |
3676 | #endif |
3677 | ||
8b98c169 | 3678 | static __always_inline void * |
7c0cb9c6 | 3679 | __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) |
97e2bde4 | 3680 | { |
343e0d7a | 3681 | struct kmem_cache *cachep; |
7ed2f9e6 | 3682 | void *ret; |
97e2bde4 | 3683 | |
2c59dd65 | 3684 | cachep = kmalloc_slab(size, flags); |
6cb8f913 CL |
3685 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3686 | return cachep; | |
7ed2f9e6 | 3687 | ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); |
505f5dcb | 3688 | kasan_kmalloc(cachep, ret, size, flags); |
7ed2f9e6 AP |
3689 | |
3690 | return ret; | |
97e2bde4 | 3691 | } |
8b98c169 | 3692 | |
8b98c169 CH |
3693 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3694 | { | |
7c0cb9c6 | 3695 | return __do_kmalloc_node(size, flags, node, _RET_IP_); |
8b98c169 | 3696 | } |
dbe5e69d | 3697 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3698 | |
3699 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3700 | int node, unsigned long caller) |
8b98c169 | 3701 | { |
7c0cb9c6 | 3702 | return __do_kmalloc_node(size, flags, node, caller); |
8b98c169 CH |
3703 | } |
3704 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
8b98c169 | 3705 | #endif /* CONFIG_NUMA */ |
1da177e4 LT |
3706 | |
3707 | /** | |
800590f5 | 3708 | * __do_kmalloc - allocate memory |
1da177e4 | 3709 | * @size: how many bytes of memory are required. |
800590f5 | 3710 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3711 | * @caller: function caller for debug tracking of the caller |
1da177e4 | 3712 | */ |
7fd6b141 | 3713 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
7c0cb9c6 | 3714 | unsigned long caller) |
1da177e4 | 3715 | { |
343e0d7a | 3716 | struct kmem_cache *cachep; |
36555751 | 3717 | void *ret; |
1da177e4 | 3718 | |
2c59dd65 | 3719 | cachep = kmalloc_slab(size, flags); |
a5c96d8a LT |
3720 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3721 | return cachep; | |
48356303 | 3722 | ret = slab_alloc(cachep, flags, caller); |
36555751 | 3723 | |
505f5dcb | 3724 | kasan_kmalloc(cachep, ret, size, flags); |
7c0cb9c6 | 3725 | trace_kmalloc(caller, ret, |
3b0efdfa | 3726 | size, cachep->size, flags); |
36555751 EGM |
3727 | |
3728 | return ret; | |
7fd6b141 PE |
3729 | } |
3730 | ||
7fd6b141 PE |
3731 | void *__kmalloc(size_t size, gfp_t flags) |
3732 | { | |
7c0cb9c6 | 3733 | return __do_kmalloc(size, flags, _RET_IP_); |
1da177e4 LT |
3734 | } |
3735 | EXPORT_SYMBOL(__kmalloc); | |
3736 | ||
ce71e27c | 3737 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3738 | { |
7c0cb9c6 | 3739 | return __do_kmalloc(size, flags, caller); |
7fd6b141 PE |
3740 | } |
3741 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea | 3742 | |
1da177e4 LT |
3743 | /** |
3744 | * kmem_cache_free - Deallocate an object | |
3745 | * @cachep: The cache the allocation was from. | |
3746 | * @objp: The previously allocated object. | |
3747 | * | |
3748 | * Free an object which was previously allocated from this | |
3749 | * cache. | |
3750 | */ | |
343e0d7a | 3751 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3752 | { |
3753 | unsigned long flags; | |
b9ce5ef4 GC |
3754 | cachep = cache_from_obj(cachep, objp); |
3755 | if (!cachep) | |
3756 | return; | |
1da177e4 LT |
3757 | |
3758 | local_irq_save(flags); | |
d97d476b | 3759 | debug_check_no_locks_freed(objp, cachep->object_size); |
3ac7fe5a | 3760 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
8c138bc0 | 3761 | debug_check_no_obj_freed(objp, cachep->object_size); |
7c0cb9c6 | 3762 | __cache_free(cachep, objp, _RET_IP_); |
1da177e4 | 3763 | local_irq_restore(flags); |
36555751 | 3764 | |
ca2b84cb | 3765 | trace_kmem_cache_free(_RET_IP_, objp); |
1da177e4 LT |
3766 | } |
3767 | EXPORT_SYMBOL(kmem_cache_free); | |
3768 | ||
e6cdb58d JDB |
3769 | void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) |
3770 | { | |
3771 | struct kmem_cache *s; | |
3772 | size_t i; | |
3773 | ||
3774 | local_irq_disable(); | |
3775 | for (i = 0; i < size; i++) { | |
3776 | void *objp = p[i]; | |
3777 | ||
ca257195 JDB |
3778 | if (!orig_s) /* called via kfree_bulk */ |
3779 | s = virt_to_cache(objp); | |
3780 | else | |
3781 | s = cache_from_obj(orig_s, objp); | |
e6cdb58d JDB |
3782 | |
3783 | debug_check_no_locks_freed(objp, s->object_size); | |
3784 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
3785 | debug_check_no_obj_freed(objp, s->object_size); | |
3786 | ||
3787 | __cache_free(s, objp, _RET_IP_); | |
3788 | } | |
3789 | local_irq_enable(); | |
3790 | ||
3791 | /* FIXME: add tracing */ | |
3792 | } | |
3793 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3794 | ||
1da177e4 LT |
3795 | /** |
3796 | * kfree - free previously allocated memory | |
3797 | * @objp: pointer returned by kmalloc. | |
3798 | * | |
80e93eff PE |
3799 | * If @objp is NULL, no operation is performed. |
3800 | * | |
1da177e4 LT |
3801 | * Don't free memory not originally allocated by kmalloc() |
3802 | * or you will run into trouble. | |
3803 | */ | |
3804 | void kfree(const void *objp) | |
3805 | { | |
343e0d7a | 3806 | struct kmem_cache *c; |
1da177e4 LT |
3807 | unsigned long flags; |
3808 | ||
2121db74 PE |
3809 | trace_kfree(_RET_IP_, objp); |
3810 | ||
6cb8f913 | 3811 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3812 | return; |
3813 | local_irq_save(flags); | |
3814 | kfree_debugcheck(objp); | |
6ed5eb22 | 3815 | c = virt_to_cache(objp); |
8c138bc0 CL |
3816 | debug_check_no_locks_freed(objp, c->object_size); |
3817 | ||
3818 | debug_check_no_obj_freed(objp, c->object_size); | |
7c0cb9c6 | 3819 | __cache_free(c, (void *)objp, _RET_IP_); |
1da177e4 LT |
3820 | local_irq_restore(flags); |
3821 | } | |
3822 | EXPORT_SYMBOL(kfree); | |
3823 | ||
e498be7d | 3824 | /* |
ce8eb6c4 | 3825 | * This initializes kmem_cache_node or resizes various caches for all nodes. |
e498be7d | 3826 | */ |
c3d332b6 | 3827 | static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d | 3828 | { |
c3d332b6 | 3829 | int ret; |
e498be7d | 3830 | int node; |
ce8eb6c4 | 3831 | struct kmem_cache_node *n; |
e498be7d | 3832 | |
9c09a95c | 3833 | for_each_online_node(node) { |
c3d332b6 JK |
3834 | ret = setup_kmem_cache_node(cachep, node, gfp, true); |
3835 | if (ret) | |
e498be7d CL |
3836 | goto fail; |
3837 | ||
e498be7d | 3838 | } |
c3d332b6 | 3839 | |
cafeb02e | 3840 | return 0; |
0718dc2a | 3841 | |
a737b3e2 | 3842 | fail: |
3b0efdfa | 3843 | if (!cachep->list.next) { |
0718dc2a CL |
3844 | /* Cache is not active yet. Roll back what we did */ |
3845 | node--; | |
3846 | while (node >= 0) { | |
18bf8541 CL |
3847 | n = get_node(cachep, node); |
3848 | if (n) { | |
ce8eb6c4 CL |
3849 | kfree(n->shared); |
3850 | free_alien_cache(n->alien); | |
3851 | kfree(n); | |
6a67368c | 3852 | cachep->node[node] = NULL; |
0718dc2a CL |
3853 | } |
3854 | node--; | |
3855 | } | |
3856 | } | |
cafeb02e | 3857 | return -ENOMEM; |
e498be7d CL |
3858 | } |
3859 | ||
18004c5d | 3860 | /* Always called with the slab_mutex held */ |
943a451a | 3861 | static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, |
83b519e8 | 3862 | int batchcount, int shared, gfp_t gfp) |
1da177e4 | 3863 | { |
bf0dea23 JK |
3864 | struct array_cache __percpu *cpu_cache, *prev; |
3865 | int cpu; | |
1da177e4 | 3866 | |
bf0dea23 JK |
3867 | cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); |
3868 | if (!cpu_cache) | |
d2e7b7d0 SS |
3869 | return -ENOMEM; |
3870 | ||
bf0dea23 JK |
3871 | prev = cachep->cpu_cache; |
3872 | cachep->cpu_cache = cpu_cache; | |
3873 | kick_all_cpus_sync(); | |
e498be7d | 3874 | |
1da177e4 | 3875 | check_irq_on(); |
1da177e4 LT |
3876 | cachep->batchcount = batchcount; |
3877 | cachep->limit = limit; | |
e498be7d | 3878 | cachep->shared = shared; |
1da177e4 | 3879 | |
bf0dea23 | 3880 | if (!prev) |
c3d332b6 | 3881 | goto setup_node; |
bf0dea23 JK |
3882 | |
3883 | for_each_online_cpu(cpu) { | |
97654dfa | 3884 | LIST_HEAD(list); |
18bf8541 CL |
3885 | int node; |
3886 | struct kmem_cache_node *n; | |
bf0dea23 | 3887 | struct array_cache *ac = per_cpu_ptr(prev, cpu); |
18bf8541 | 3888 | |
bf0dea23 | 3889 | node = cpu_to_mem(cpu); |
18bf8541 CL |
3890 | n = get_node(cachep, node); |
3891 | spin_lock_irq(&n->list_lock); | |
bf0dea23 | 3892 | free_block(cachep, ac->entry, ac->avail, node, &list); |
18bf8541 | 3893 | spin_unlock_irq(&n->list_lock); |
97654dfa | 3894 | slabs_destroy(cachep, &list); |
1da177e4 | 3895 | } |
bf0dea23 JK |
3896 | free_percpu(prev); |
3897 | ||
c3d332b6 JK |
3898 | setup_node: |
3899 | return setup_kmem_cache_nodes(cachep, gfp); | |
1da177e4 LT |
3900 | } |
3901 | ||
943a451a GC |
3902 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
3903 | int batchcount, int shared, gfp_t gfp) | |
3904 | { | |
3905 | int ret; | |
426589f5 | 3906 | struct kmem_cache *c; |
943a451a GC |
3907 | |
3908 | ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
3909 | ||
3910 | if (slab_state < FULL) | |
3911 | return ret; | |
3912 | ||
3913 | if ((ret < 0) || !is_root_cache(cachep)) | |
3914 | return ret; | |
3915 | ||
426589f5 VD |
3916 | lockdep_assert_held(&slab_mutex); |
3917 | for_each_memcg_cache(c, cachep) { | |
3918 | /* return value determined by the root cache only */ | |
3919 | __do_tune_cpucache(c, limit, batchcount, shared, gfp); | |
943a451a GC |
3920 | } |
3921 | ||
3922 | return ret; | |
3923 | } | |
3924 | ||
18004c5d | 3925 | /* Called with slab_mutex held always */ |
83b519e8 | 3926 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
3927 | { |
3928 | int err; | |
943a451a GC |
3929 | int limit = 0; |
3930 | int shared = 0; | |
3931 | int batchcount = 0; | |
3932 | ||
7c00fce9 | 3933 | err = cache_random_seq_create(cachep, cachep->num, gfp); |
c7ce4f60 TG |
3934 | if (err) |
3935 | goto end; | |
3936 | ||
943a451a GC |
3937 | if (!is_root_cache(cachep)) { |
3938 | struct kmem_cache *root = memcg_root_cache(cachep); | |
3939 | limit = root->limit; | |
3940 | shared = root->shared; | |
3941 | batchcount = root->batchcount; | |
3942 | } | |
1da177e4 | 3943 | |
943a451a GC |
3944 | if (limit && shared && batchcount) |
3945 | goto skip_setup; | |
a737b3e2 AM |
3946 | /* |
3947 | * The head array serves three purposes: | |
1da177e4 LT |
3948 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
3949 | * - reduce the number of spinlock operations. | |
a737b3e2 | 3950 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
3951 | * bufctl chains: array operations are cheaper. |
3952 | * The numbers are guessed, we should auto-tune as described by | |
3953 | * Bonwick. | |
3954 | */ | |
3b0efdfa | 3955 | if (cachep->size > 131072) |
1da177e4 | 3956 | limit = 1; |
3b0efdfa | 3957 | else if (cachep->size > PAGE_SIZE) |
1da177e4 | 3958 | limit = 8; |
3b0efdfa | 3959 | else if (cachep->size > 1024) |
1da177e4 | 3960 | limit = 24; |
3b0efdfa | 3961 | else if (cachep->size > 256) |
1da177e4 LT |
3962 | limit = 54; |
3963 | else | |
3964 | limit = 120; | |
3965 | ||
a737b3e2 AM |
3966 | /* |
3967 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
3968 | * allocation behaviour: Most allocs on one cpu, most free operations |
3969 | * on another cpu. For these cases, an efficient object passing between | |
3970 | * cpus is necessary. This is provided by a shared array. The array | |
3971 | * replaces Bonwick's magazine layer. | |
3972 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
3973 | * to a larger limit. Thus disabled by default. | |
3974 | */ | |
3975 | shared = 0; | |
3b0efdfa | 3976 | if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 3977 | shared = 8; |
1da177e4 LT |
3978 | |
3979 | #if DEBUG | |
a737b3e2 AM |
3980 | /* |
3981 | * With debugging enabled, large batchcount lead to excessively long | |
3982 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
3983 | */ |
3984 | if (limit > 32) | |
3985 | limit = 32; | |
3986 | #endif | |
943a451a GC |
3987 | batchcount = (limit + 1) / 2; |
3988 | skip_setup: | |
3989 | err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
c7ce4f60 | 3990 | end: |
1da177e4 | 3991 | if (err) |
1170532b | 3992 | pr_err("enable_cpucache failed for %s, error %d\n", |
b28a02de | 3993 | cachep->name, -err); |
2ed3a4ef | 3994 | return err; |
1da177e4 LT |
3995 | } |
3996 | ||
1b55253a | 3997 | /* |
ce8eb6c4 CL |
3998 | * Drain an array if it contains any elements taking the node lock only if |
3999 | * necessary. Note that the node listlock also protects the array_cache | |
b18e7e65 | 4000 | * if drain_array() is used on the shared array. |
1b55253a | 4001 | */ |
ce8eb6c4 | 4002 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
18726ca8 | 4003 | struct array_cache *ac, int node) |
1da177e4 | 4004 | { |
97654dfa | 4005 | LIST_HEAD(list); |
18726ca8 JK |
4006 | |
4007 | /* ac from n->shared can be freed if we don't hold the slab_mutex. */ | |
4008 | check_mutex_acquired(); | |
1da177e4 | 4009 | |
1b55253a CL |
4010 | if (!ac || !ac->avail) |
4011 | return; | |
18726ca8 JK |
4012 | |
4013 | if (ac->touched) { | |
1da177e4 | 4014 | ac->touched = 0; |
18726ca8 | 4015 | return; |
1da177e4 | 4016 | } |
18726ca8 JK |
4017 | |
4018 | spin_lock_irq(&n->list_lock); | |
4019 | drain_array_locked(cachep, ac, node, false, &list); | |
4020 | spin_unlock_irq(&n->list_lock); | |
4021 | ||
4022 | slabs_destroy(cachep, &list); | |
1da177e4 LT |
4023 | } |
4024 | ||
4025 | /** | |
4026 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 4027 | * @w: work descriptor |
1da177e4 LT |
4028 | * |
4029 | * Called from workqueue/eventd every few seconds. | |
4030 | * Purpose: | |
4031 | * - clear the per-cpu caches for this CPU. | |
4032 | * - return freeable pages to the main free memory pool. | |
4033 | * | |
a737b3e2 AM |
4034 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
4035 | * again on the next iteration. | |
1da177e4 | 4036 | */ |
7c5cae36 | 4037 | static void cache_reap(struct work_struct *w) |
1da177e4 | 4038 | { |
7a7c381d | 4039 | struct kmem_cache *searchp; |
ce8eb6c4 | 4040 | struct kmem_cache_node *n; |
7d6e6d09 | 4041 | int node = numa_mem_id(); |
bf6aede7 | 4042 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 4043 | |
18004c5d | 4044 | if (!mutex_trylock(&slab_mutex)) |
1da177e4 | 4045 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 4046 | goto out; |
1da177e4 | 4047 | |
18004c5d | 4048 | list_for_each_entry(searchp, &slab_caches, list) { |
1da177e4 LT |
4049 | check_irq_on(); |
4050 | ||
35386e3b | 4051 | /* |
ce8eb6c4 | 4052 | * We only take the node lock if absolutely necessary and we |
35386e3b CL |
4053 | * have established with reasonable certainty that |
4054 | * we can do some work if the lock was obtained. | |
4055 | */ | |
18bf8541 | 4056 | n = get_node(searchp, node); |
35386e3b | 4057 | |
ce8eb6c4 | 4058 | reap_alien(searchp, n); |
1da177e4 | 4059 | |
18726ca8 | 4060 | drain_array(searchp, n, cpu_cache_get(searchp), node); |
1da177e4 | 4061 | |
35386e3b CL |
4062 | /* |
4063 | * These are racy checks but it does not matter | |
4064 | * if we skip one check or scan twice. | |
4065 | */ | |
ce8eb6c4 | 4066 | if (time_after(n->next_reap, jiffies)) |
35386e3b | 4067 | goto next; |
1da177e4 | 4068 | |
5f0985bb | 4069 | n->next_reap = jiffies + REAPTIMEOUT_NODE; |
1da177e4 | 4070 | |
18726ca8 | 4071 | drain_array(searchp, n, n->shared, node); |
1da177e4 | 4072 | |
ce8eb6c4 CL |
4073 | if (n->free_touched) |
4074 | n->free_touched = 0; | |
ed11d9eb CL |
4075 | else { |
4076 | int freed; | |
1da177e4 | 4077 | |
ce8eb6c4 | 4078 | freed = drain_freelist(searchp, n, (n->free_limit + |
ed11d9eb CL |
4079 | 5 * searchp->num - 1) / (5 * searchp->num)); |
4080 | STATS_ADD_REAPED(searchp, freed); | |
4081 | } | |
35386e3b | 4082 | next: |
1da177e4 LT |
4083 | cond_resched(); |
4084 | } | |
4085 | check_irq_on(); | |
18004c5d | 4086 | mutex_unlock(&slab_mutex); |
8fce4d8e | 4087 | next_reap_node(); |
7c5cae36 | 4088 | out: |
a737b3e2 | 4089 | /* Set up the next iteration */ |
5f0985bb | 4090 | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); |
1da177e4 LT |
4091 | } |
4092 | ||
158a9624 | 4093 | #ifdef CONFIG_SLABINFO |
0d7561c6 | 4094 | void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) |
1da177e4 | 4095 | { |
f728b0a5 | 4096 | unsigned long active_objs, num_objs, active_slabs; |
bf00bd34 DR |
4097 | unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; |
4098 | unsigned long free_slabs = 0; | |
e498be7d | 4099 | int node; |
ce8eb6c4 | 4100 | struct kmem_cache_node *n; |
1da177e4 | 4101 | |
18bf8541 | 4102 | for_each_kmem_cache_node(cachep, node, n) { |
ca3b9b91 | 4103 | check_irq_on(); |
ce8eb6c4 | 4104 | spin_lock_irq(&n->list_lock); |
e498be7d | 4105 | |
bf00bd34 DR |
4106 | total_slabs += n->total_slabs; |
4107 | free_slabs += n->free_slabs; | |
f728b0a5 | 4108 | free_objs += n->free_objects; |
07a63c41 | 4109 | |
ce8eb6c4 CL |
4110 | if (n->shared) |
4111 | shared_avail += n->shared->avail; | |
e498be7d | 4112 | |
ce8eb6c4 | 4113 | spin_unlock_irq(&n->list_lock); |
1da177e4 | 4114 | } |
bf00bd34 DR |
4115 | num_objs = total_slabs * cachep->num; |
4116 | active_slabs = total_slabs - free_slabs; | |
f728b0a5 | 4117 | active_objs = num_objs - free_objs; |
1da177e4 | 4118 | |
0d7561c6 GC |
4119 | sinfo->active_objs = active_objs; |
4120 | sinfo->num_objs = num_objs; | |
4121 | sinfo->active_slabs = active_slabs; | |
bf00bd34 | 4122 | sinfo->num_slabs = total_slabs; |
0d7561c6 GC |
4123 | sinfo->shared_avail = shared_avail; |
4124 | sinfo->limit = cachep->limit; | |
4125 | sinfo->batchcount = cachep->batchcount; | |
4126 | sinfo->shared = cachep->shared; | |
4127 | sinfo->objects_per_slab = cachep->num; | |
4128 | sinfo->cache_order = cachep->gfporder; | |
4129 | } | |
4130 | ||
4131 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | |
4132 | { | |
1da177e4 | 4133 | #if STATS |
ce8eb6c4 | 4134 | { /* node stats */ |
1da177e4 LT |
4135 | unsigned long high = cachep->high_mark; |
4136 | unsigned long allocs = cachep->num_allocations; | |
4137 | unsigned long grown = cachep->grown; | |
4138 | unsigned long reaped = cachep->reaped; | |
4139 | unsigned long errors = cachep->errors; | |
4140 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4141 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4142 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4143 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4144 | |
756a025f | 4145 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", |
e92dd4fd JP |
4146 | allocs, high, grown, |
4147 | reaped, errors, max_freeable, node_allocs, | |
4148 | node_frees, overflows); | |
1da177e4 LT |
4149 | } |
4150 | /* cpu stats */ | |
4151 | { | |
4152 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4153 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4154 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4155 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4156 | ||
4157 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4158 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4159 | } |
4160 | #endif | |
1da177e4 LT |
4161 | } |
4162 | ||
1da177e4 LT |
4163 | #define MAX_SLABINFO_WRITE 128 |
4164 | /** | |
4165 | * slabinfo_write - Tuning for the slab allocator | |
4166 | * @file: unused | |
4167 | * @buffer: user buffer | |
4168 | * @count: data length | |
4169 | * @ppos: unused | |
4170 | */ | |
b7454ad3 | 4171 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 4172 | size_t count, loff_t *ppos) |
1da177e4 | 4173 | { |
b28a02de | 4174 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4175 | int limit, batchcount, shared, res; |
7a7c381d | 4176 | struct kmem_cache *cachep; |
b28a02de | 4177 | |
1da177e4 LT |
4178 | if (count > MAX_SLABINFO_WRITE) |
4179 | return -EINVAL; | |
4180 | if (copy_from_user(&kbuf, buffer, count)) | |
4181 | return -EFAULT; | |
b28a02de | 4182 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4183 | |
4184 | tmp = strchr(kbuf, ' '); | |
4185 | if (!tmp) | |
4186 | return -EINVAL; | |
4187 | *tmp = '\0'; | |
4188 | tmp++; | |
4189 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4190 | return -EINVAL; | |
4191 | ||
4192 | /* Find the cache in the chain of caches. */ | |
18004c5d | 4193 | mutex_lock(&slab_mutex); |
1da177e4 | 4194 | res = -EINVAL; |
18004c5d | 4195 | list_for_each_entry(cachep, &slab_caches, list) { |
1da177e4 | 4196 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4197 | if (limit < 1 || batchcount < 1 || |
4198 | batchcount > limit || shared < 0) { | |
e498be7d | 4199 | res = 0; |
1da177e4 | 4200 | } else { |
e498be7d | 4201 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4202 | batchcount, shared, |
4203 | GFP_KERNEL); | |
1da177e4 LT |
4204 | } |
4205 | break; | |
4206 | } | |
4207 | } | |
18004c5d | 4208 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
4209 | if (res >= 0) |
4210 | res = count; | |
4211 | return res; | |
4212 | } | |
871751e2 AV |
4213 | |
4214 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4215 | ||
871751e2 AV |
4216 | static inline int add_caller(unsigned long *n, unsigned long v) |
4217 | { | |
4218 | unsigned long *p; | |
4219 | int l; | |
4220 | if (!v) | |
4221 | return 1; | |
4222 | l = n[1]; | |
4223 | p = n + 2; | |
4224 | while (l) { | |
4225 | int i = l/2; | |
4226 | unsigned long *q = p + 2 * i; | |
4227 | if (*q == v) { | |
4228 | q[1]++; | |
4229 | return 1; | |
4230 | } | |
4231 | if (*q > v) { | |
4232 | l = i; | |
4233 | } else { | |
4234 | p = q + 2; | |
4235 | l -= i + 1; | |
4236 | } | |
4237 | } | |
4238 | if (++n[1] == n[0]) | |
4239 | return 0; | |
4240 | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | |
4241 | p[0] = v; | |
4242 | p[1] = 1; | |
4243 | return 1; | |
4244 | } | |
4245 | ||
8456a648 JK |
4246 | static void handle_slab(unsigned long *n, struct kmem_cache *c, |
4247 | struct page *page) | |
871751e2 AV |
4248 | { |
4249 | void *p; | |
d31676df JK |
4250 | int i, j; |
4251 | unsigned long v; | |
b1cb0982 | 4252 | |
871751e2 AV |
4253 | if (n[0] == n[1]) |
4254 | return; | |
8456a648 | 4255 | for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { |
d31676df JK |
4256 | bool active = true; |
4257 | ||
4258 | for (j = page->active; j < c->num; j++) { | |
4259 | if (get_free_obj(page, j) == i) { | |
4260 | active = false; | |
4261 | break; | |
4262 | } | |
4263 | } | |
4264 | ||
4265 | if (!active) | |
871751e2 | 4266 | continue; |
b1cb0982 | 4267 | |
d31676df JK |
4268 | /* |
4269 | * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table | |
4270 | * mapping is established when actual object allocation and | |
4271 | * we could mistakenly access the unmapped object in the cpu | |
4272 | * cache. | |
4273 | */ | |
4274 | if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v))) | |
4275 | continue; | |
4276 | ||
4277 | if (!add_caller(n, v)) | |
871751e2 AV |
4278 | return; |
4279 | } | |
4280 | } | |
4281 | ||
4282 | static void show_symbol(struct seq_file *m, unsigned long address) | |
4283 | { | |
4284 | #ifdef CONFIG_KALLSYMS | |
871751e2 | 4285 | unsigned long offset, size; |
9281acea | 4286 | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; |
871751e2 | 4287 | |
a5c43dae | 4288 | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { |
871751e2 | 4289 | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); |
a5c43dae | 4290 | if (modname[0]) |
871751e2 AV |
4291 | seq_printf(m, " [%s]", modname); |
4292 | return; | |
4293 | } | |
4294 | #endif | |
4295 | seq_printf(m, "%p", (void *)address); | |
4296 | } | |
4297 | ||
4298 | static int leaks_show(struct seq_file *m, void *p) | |
4299 | { | |
0672aa7c | 4300 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); |
8456a648 | 4301 | struct page *page; |
ce8eb6c4 | 4302 | struct kmem_cache_node *n; |
871751e2 | 4303 | const char *name; |
db845067 | 4304 | unsigned long *x = m->private; |
871751e2 AV |
4305 | int node; |
4306 | int i; | |
4307 | ||
4308 | if (!(cachep->flags & SLAB_STORE_USER)) | |
4309 | return 0; | |
4310 | if (!(cachep->flags & SLAB_RED_ZONE)) | |
4311 | return 0; | |
4312 | ||
d31676df JK |
4313 | /* |
4314 | * Set store_user_clean and start to grab stored user information | |
4315 | * for all objects on this cache. If some alloc/free requests comes | |
4316 | * during the processing, information would be wrong so restart | |
4317 | * whole processing. | |
4318 | */ | |
4319 | do { | |
4320 | set_store_user_clean(cachep); | |
4321 | drain_cpu_caches(cachep); | |
4322 | ||
4323 | x[1] = 0; | |
871751e2 | 4324 | |
d31676df | 4325 | for_each_kmem_cache_node(cachep, node, n) { |
871751e2 | 4326 | |
d31676df JK |
4327 | check_irq_on(); |
4328 | spin_lock_irq(&n->list_lock); | |
871751e2 | 4329 | |
d31676df JK |
4330 | list_for_each_entry(page, &n->slabs_full, lru) |
4331 | handle_slab(x, cachep, page); | |
4332 | list_for_each_entry(page, &n->slabs_partial, lru) | |
4333 | handle_slab(x, cachep, page); | |
4334 | spin_unlock_irq(&n->list_lock); | |
4335 | } | |
4336 | } while (!is_store_user_clean(cachep)); | |
871751e2 | 4337 | |
871751e2 | 4338 | name = cachep->name; |
db845067 | 4339 | if (x[0] == x[1]) { |
871751e2 | 4340 | /* Increase the buffer size */ |
18004c5d | 4341 | mutex_unlock(&slab_mutex); |
db845067 | 4342 | m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); |
871751e2 AV |
4343 | if (!m->private) { |
4344 | /* Too bad, we are really out */ | |
db845067 | 4345 | m->private = x; |
18004c5d | 4346 | mutex_lock(&slab_mutex); |
871751e2 AV |
4347 | return -ENOMEM; |
4348 | } | |
db845067 CL |
4349 | *(unsigned long *)m->private = x[0] * 2; |
4350 | kfree(x); | |
18004c5d | 4351 | mutex_lock(&slab_mutex); |
871751e2 AV |
4352 | /* Now make sure this entry will be retried */ |
4353 | m->count = m->size; | |
4354 | return 0; | |
4355 | } | |
db845067 CL |
4356 | for (i = 0; i < x[1]; i++) { |
4357 | seq_printf(m, "%s: %lu ", name, x[2*i+3]); | |
4358 | show_symbol(m, x[2*i+2]); | |
871751e2 AV |
4359 | seq_putc(m, '\n'); |
4360 | } | |
d2e7b7d0 | 4361 | |
871751e2 AV |
4362 | return 0; |
4363 | } | |
4364 | ||
a0ec95a8 | 4365 | static const struct seq_operations slabstats_op = { |
1df3b26f | 4366 | .start = slab_start, |
276a2439 WL |
4367 | .next = slab_next, |
4368 | .stop = slab_stop, | |
871751e2 AV |
4369 | .show = leaks_show, |
4370 | }; | |
a0ec95a8 AD |
4371 | |
4372 | static int slabstats_open(struct inode *inode, struct file *file) | |
4373 | { | |
b208ce32 RJ |
4374 | unsigned long *n; |
4375 | ||
4376 | n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); | |
4377 | if (!n) | |
4378 | return -ENOMEM; | |
4379 | ||
4380 | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | |
4381 | ||
4382 | return 0; | |
a0ec95a8 AD |
4383 | } |
4384 | ||
4385 | static const struct file_operations proc_slabstats_operations = { | |
4386 | .open = slabstats_open, | |
4387 | .read = seq_read, | |
4388 | .llseek = seq_lseek, | |
4389 | .release = seq_release_private, | |
4390 | }; | |
4391 | #endif | |
4392 | ||
4393 | static int __init slab_proc_init(void) | |
4394 | { | |
4395 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4396 | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | |
871751e2 | 4397 | #endif |
a0ec95a8 AD |
4398 | return 0; |
4399 | } | |
4400 | module_init(slab_proc_init); | |
1da177e4 LT |
4401 | #endif |
4402 | ||
04385fc5 KC |
4403 | #ifdef CONFIG_HARDENED_USERCOPY |
4404 | /* | |
4405 | * Rejects objects that are incorrectly sized. | |
4406 | * | |
4407 | * Returns NULL if check passes, otherwise const char * to name of cache | |
4408 | * to indicate an error. | |
4409 | */ | |
4410 | const char *__check_heap_object(const void *ptr, unsigned long n, | |
4411 | struct page *page) | |
4412 | { | |
4413 | struct kmem_cache *cachep; | |
4414 | unsigned int objnr; | |
4415 | unsigned long offset; | |
4416 | ||
4417 | /* Find and validate object. */ | |
4418 | cachep = page->slab_cache; | |
4419 | objnr = obj_to_index(cachep, page, (void *)ptr); | |
4420 | BUG_ON(objnr >= cachep->num); | |
4421 | ||
4422 | /* Find offset within object. */ | |
4423 | offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); | |
4424 | ||
4425 | /* Allow address range falling entirely within object size. */ | |
4426 | if (offset <= cachep->object_size && n <= cachep->object_size - offset) | |
4427 | return NULL; | |
4428 | ||
4429 | return cachep->name; | |
4430 | } | |
4431 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
4432 | ||
00e145b6 MS |
4433 | /** |
4434 | * ksize - get the actual amount of memory allocated for a given object | |
4435 | * @objp: Pointer to the object | |
4436 | * | |
4437 | * kmalloc may internally round up allocations and return more memory | |
4438 | * than requested. ksize() can be used to determine the actual amount of | |
4439 | * memory allocated. The caller may use this additional memory, even though | |
4440 | * a smaller amount of memory was initially specified with the kmalloc call. | |
4441 | * The caller must guarantee that objp points to a valid object previously | |
4442 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
4443 | * must not be freed during the duration of the call. | |
4444 | */ | |
fd76bab2 | 4445 | size_t ksize(const void *objp) |
1da177e4 | 4446 | { |
7ed2f9e6 AP |
4447 | size_t size; |
4448 | ||
ef8b4520 CL |
4449 | BUG_ON(!objp); |
4450 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4451 | return 0; |
1da177e4 | 4452 | |
7ed2f9e6 AP |
4453 | size = virt_to_cache(objp)->object_size; |
4454 | /* We assume that ksize callers could use the whole allocated area, | |
4455 | * so we need to unpoison this area. | |
4456 | */ | |
4ebb31a4 | 4457 | kasan_unpoison_shadow(objp, size); |
7ed2f9e6 AP |
4458 | |
4459 | return size; | |
1da177e4 | 4460 | } |
b1aabecd | 4461 | EXPORT_SYMBOL(ksize); |