]>
Commit | Line | Data |
---|---|---|
3c4b2390 SB |
1 | /* |
2 | * Copyright (c) 2013, Kenneth MacKay | |
3 | * All rights reserved. | |
4 | * | |
5 | * Redistribution and use in source and binary forms, with or without | |
6 | * modification, are permitted provided that the following conditions are | |
7 | * met: | |
8 | * * Redistributions of source code must retain the above copyright | |
9 | * notice, this list of conditions and the following disclaimer. | |
10 | * * Redistributions in binary form must reproduce the above copyright | |
11 | * notice, this list of conditions and the following disclaimer in the | |
12 | * documentation and/or other materials provided with the distribution. | |
13 | * | |
14 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
15 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
16 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
17 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
18 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
20 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
21 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
22 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
25 | */ | |
26 | #ifndef _CRYPTO_ECC_H | |
27 | #define _CRYPTO_ECC_H | |
28 | ||
0d7a7864 | 29 | /* One digit is u64 qword. */ |
d5c3b178 KC |
30 | #define ECC_CURVE_NIST_P192_DIGITS 3 |
31 | #define ECC_CURVE_NIST_P256_DIGITS 4 | |
0d7a7864 | 32 | #define ECC_MAX_DIGITS (512 / 64) |
3c4b2390 SB |
33 | |
34 | #define ECC_DIGITS_TO_BYTES_SHIFT 3 | |
35 | ||
4a2289da VC |
36 | /** |
37 | * struct ecc_point - elliptic curve point in affine coordinates | |
38 | * | |
39 | * @x: X coordinate in vli form. | |
40 | * @y: Y coordinate in vli form. | |
41 | * @ndigits: Length of vlis in u64 qwords. | |
42 | */ | |
43 | struct ecc_point { | |
44 | u64 *x; | |
45 | u64 *y; | |
46 | u8 ndigits; | |
47 | }; | |
48 | ||
0d7a7864 VC |
49 | #define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits } |
50 | ||
4a2289da VC |
51 | /** |
52 | * struct ecc_curve - definition of elliptic curve | |
53 | * | |
54 | * @name: Short name of the curve. | |
55 | * @g: Generator point of the curve. | |
56 | * @p: Prime number, if Barrett's reduction is used for this curve | |
57 | * pre-calculated value 'mu' is appended to the @p after ndigits. | |
58 | * Use of Barrett's reduction is heuristically determined in | |
59 | * vli_mmod_fast(). | |
60 | * @n: Order of the curve group. | |
61 | * @a: Curve parameter a. | |
62 | * @b: Curve parameter b. | |
63 | */ | |
64 | struct ecc_curve { | |
65 | char *name; | |
66 | struct ecc_point g; | |
67 | u64 *p; | |
68 | u64 *n; | |
69 | u64 *a; | |
70 | u64 *b; | |
71 | }; | |
72 | ||
3c4b2390 SB |
73 | /** |
74 | * ecc_is_key_valid() - Validate a given ECDH private key | |
75 | * | |
76 | * @curve_id: id representing the curve to use | |
c0ca1215 | 77 | * @ndigits: curve's number of digits |
3c4b2390 | 78 | * @private_key: private key to be used for the given curve |
c0ca1215 | 79 | * @private_key_len: private key length |
3c4b2390 SB |
80 | * |
81 | * Returns 0 if the key is acceptable, a negative value otherwise | |
82 | */ | |
83 | int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, | |
ad269597 | 84 | const u64 *private_key, unsigned int private_key_len); |
3c4b2390 | 85 | |
6755fd26 TA |
86 | /** |
87 | * ecc_gen_privkey() - Generates an ECC private key. | |
88 | * The private key is a random integer in the range 0 < random < n, where n is a | |
89 | * prime that is the order of the cyclic subgroup generated by the distinguished | |
90 | * point G. | |
91 | * @curve_id: id representing the curve to use | |
92 | * @ndigits: curve number of digits | |
93 | * @private_key: buffer for storing the generated private key | |
94 | * | |
95 | * Returns 0 if the private key was generated successfully, a negative value | |
96 | * if an error occurred. | |
97 | */ | |
98 | int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey); | |
99 | ||
3c4b2390 | 100 | /** |
7380c56d | 101 | * ecc_make_pub_key() - Compute an ECC public key |
3c4b2390 SB |
102 | * |
103 | * @curve_id: id representing the curve to use | |
c0ca1215 | 104 | * @ndigits: curve's number of digits |
3c4b2390 | 105 | * @private_key: pregenerated private key for the given curve |
c0ca1215 | 106 | * @public_key: buffer for storing the generated public key |
3c4b2390 SB |
107 | * |
108 | * Returns 0 if the public key was generated successfully, a negative value | |
109 | * if an error occurred. | |
110 | */ | |
7380c56d TA |
111 | int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits, |
112 | const u64 *private_key, u64 *public_key); | |
3c4b2390 SB |
113 | |
114 | /** | |
8f44df15 | 115 | * crypto_ecdh_shared_secret() - Compute a shared secret |
3c4b2390 SB |
116 | * |
117 | * @curve_id: id representing the curve to use | |
c0ca1215 | 118 | * @ndigits: curve's number of digits |
3c4b2390 | 119 | * @private_key: private key of part A |
3c4b2390 | 120 | * @public_key: public key of counterpart B |
3c4b2390 | 121 | * @secret: buffer for storing the calculated shared secret |
3c4b2390 | 122 | * |
8f44df15 | 123 | * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret |
3c4b2390 SB |
124 | * before using it for symmetric encryption or HMAC. |
125 | * | |
126 | * Returns 0 if the shared secret was generated successfully, a negative value | |
127 | * if an error occurred. | |
128 | */ | |
8f44df15 | 129 | int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, |
ad269597 TA |
130 | const u64 *private_key, const u64 *public_key, |
131 | u64 *secret); | |
4a2289da VC |
132 | |
133 | /** | |
134 | * ecc_is_pubkey_valid_partial() - Partial public key validation | |
135 | * | |
136 | * @curve: elliptic curve domain parameters | |
137 | * @pk: public key as a point | |
138 | * | |
139 | * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial | |
140 | * Public-Key Validation Routine. | |
141 | * | |
142 | * Note: There is no check that the public key is in the correct elliptic curve | |
143 | * subgroup. | |
144 | * | |
145 | * Return: 0 if validation is successful, -EINVAL if validation is failed. | |
146 | */ | |
147 | int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, | |
148 | struct ecc_point *pk); | |
149 | ||
6914dd53 SM |
150 | /** |
151 | * ecc_is_pubkey_valid_full() - Full public key validation | |
152 | * | |
153 | * @curve: elliptic curve domain parameters | |
154 | * @pk: public key as a point | |
155 | * | |
156 | * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full | |
157 | * Public-Key Validation Routine. | |
158 | * | |
159 | * Return: 0 if validation is successful, -EINVAL if validation is failed. | |
160 | */ | |
161 | int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, | |
162 | struct ecc_point *pk); | |
163 | ||
4a2289da VC |
164 | /** |
165 | * vli_is_zero() - Determine is vli is zero | |
166 | * | |
167 | * @vli: vli to check. | |
168 | * @ndigits: length of the @vli | |
169 | */ | |
170 | bool vli_is_zero(const u64 *vli, unsigned int ndigits); | |
171 | ||
172 | /** | |
173 | * vli_cmp() - compare left and right vlis | |
174 | * | |
175 | * @left: vli | |
176 | * @right: vli | |
177 | * @ndigits: length of both vlis | |
178 | * | |
179 | * Returns sign of @left - @right, i.e. -1 if @left < @right, | |
180 | * 0 if @left == @right, 1 if @left > @right. | |
181 | */ | |
182 | int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits); | |
183 | ||
184 | /** | |
185 | * vli_sub() - Subtracts right from left | |
186 | * | |
187 | * @result: where to write result | |
188 | * @left: vli | |
189 | * @right vli | |
190 | * @ndigits: length of all vlis | |
191 | * | |
192 | * Note: can modify in-place. | |
193 | * | |
194 | * Return: carry bit. | |
195 | */ | |
196 | u64 vli_sub(u64 *result, const u64 *left, const u64 *right, | |
197 | unsigned int ndigits); | |
198 | ||
0d7a7864 VC |
199 | /** |
200 | * vli_from_be64() - Load vli from big-endian u64 array | |
201 | * | |
202 | * @dest: destination vli | |
203 | * @src: source array of u64 BE values | |
204 | * @ndigits: length of both vli and array | |
205 | */ | |
206 | void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits); | |
207 | ||
208 | /** | |
209 | * vli_from_le64() - Load vli from little-endian u64 array | |
210 | * | |
211 | * @dest: destination vli | |
212 | * @src: source array of u64 LE values | |
213 | * @ndigits: length of both vli and array | |
214 | */ | |
215 | void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits); | |
216 | ||
4a2289da VC |
217 | /** |
218 | * vli_mod_inv() - Modular inversion | |
219 | * | |
220 | * @result: where to write vli number | |
221 | * @input: vli value to operate on | |
222 | * @mod: modulus | |
223 | * @ndigits: length of all vlis | |
224 | */ | |
225 | void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, | |
226 | unsigned int ndigits); | |
227 | ||
0d7a7864 VC |
228 | /** |
229 | * vli_mod_mult_slow() - Modular multiplication | |
230 | * | |
231 | * @result: where to write result value | |
232 | * @left: vli number to multiply with @right | |
233 | * @right: vli number to multiply with @left | |
234 | * @mod: modulus | |
235 | * @ndigits: length of all vlis | |
236 | * | |
237 | * Note: Assumes that mod is big enough curve order. | |
238 | */ | |
239 | void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, | |
240 | const u64 *mod, unsigned int ndigits); | |
241 | ||
242 | /** | |
243 | * ecc_point_mult_shamir() - Add two points multiplied by scalars | |
244 | * | |
245 | * @result: resulting point | |
246 | * @x: scalar to multiply with @p | |
247 | * @p: point to multiply with @x | |
248 | * @y: scalar to multiply with @q | |
249 | * @q: point to multiply with @y | |
250 | * @curve: curve | |
251 | * | |
252 | * Returns result = x * p + x * q over the curve. | |
253 | * This works faster than two multiplications and addition. | |
254 | */ | |
255 | void ecc_point_mult_shamir(const struct ecc_point *result, | |
256 | const u64 *x, const struct ecc_point *p, | |
257 | const u64 *y, const struct ecc_point *q, | |
258 | const struct ecc_curve *curve); | |
3c4b2390 | 259 | #endif |