]>
Commit | Line | Data |
---|---|---|
3c4b2390 | 1 | /* |
0d7a7864 VC |
2 | * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved. |
3 | * Copyright (c) 2019 Vitaly Chikunov <[email protected]> | |
3c4b2390 SB |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without | |
6 | * modification, are permitted provided that the following conditions are | |
7 | * met: | |
8 | * * Redistributions of source code must retain the above copyright | |
9 | * notice, this list of conditions and the following disclaimer. | |
10 | * * Redistributions in binary form must reproduce the above copyright | |
11 | * notice, this list of conditions and the following disclaimer in the | |
12 | * documentation and/or other materials provided with the distribution. | |
13 | * | |
14 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
15 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
16 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
17 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
18 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
20 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
21 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
22 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
25 | */ | |
26 | ||
4a2289da | 27 | #include <linux/module.h> |
3c4b2390 SB |
28 | #include <linux/random.h> |
29 | #include <linux/slab.h> | |
30 | #include <linux/swab.h> | |
31 | #include <linux/fips.h> | |
32 | #include <crypto/ecdh.h> | |
6755fd26 | 33 | #include <crypto/rng.h> |
0d7a7864 VC |
34 | #include <asm/unaligned.h> |
35 | #include <linux/ratelimit.h> | |
3c4b2390 SB |
36 | |
37 | #include "ecc.h" | |
38 | #include "ecc_curve_defs.h" | |
39 | ||
40 | typedef struct { | |
41 | u64 m_low; | |
42 | u64 m_high; | |
43 | } uint128_t; | |
44 | ||
45 | static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id) | |
46 | { | |
47 | switch (curve_id) { | |
48 | /* In FIPS mode only allow P256 and higher */ | |
49 | case ECC_CURVE_NIST_P192: | |
50 | return fips_enabled ? NULL : &nist_p192; | |
51 | case ECC_CURVE_NIST_P256: | |
52 | return &nist_p256; | |
53 | default: | |
54 | return NULL; | |
55 | } | |
56 | } | |
57 | ||
58 | static u64 *ecc_alloc_digits_space(unsigned int ndigits) | |
59 | { | |
60 | size_t len = ndigits * sizeof(u64); | |
61 | ||
62 | if (!len) | |
63 | return NULL; | |
64 | ||
65 | return kmalloc(len, GFP_KERNEL); | |
66 | } | |
67 | ||
68 | static void ecc_free_digits_space(u64 *space) | |
69 | { | |
453431a5 | 70 | kfree_sensitive(space); |
3c4b2390 SB |
71 | } |
72 | ||
73 | static struct ecc_point *ecc_alloc_point(unsigned int ndigits) | |
74 | { | |
75 | struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL); | |
76 | ||
77 | if (!p) | |
78 | return NULL; | |
79 | ||
80 | p->x = ecc_alloc_digits_space(ndigits); | |
81 | if (!p->x) | |
82 | goto err_alloc_x; | |
83 | ||
84 | p->y = ecc_alloc_digits_space(ndigits); | |
85 | if (!p->y) | |
86 | goto err_alloc_y; | |
87 | ||
88 | p->ndigits = ndigits; | |
89 | ||
90 | return p; | |
91 | ||
92 | err_alloc_y: | |
93 | ecc_free_digits_space(p->x); | |
94 | err_alloc_x: | |
95 | kfree(p); | |
96 | return NULL; | |
97 | } | |
98 | ||
99 | static void ecc_free_point(struct ecc_point *p) | |
100 | { | |
101 | if (!p) | |
102 | return; | |
103 | ||
453431a5 WL |
104 | kfree_sensitive(p->x); |
105 | kfree_sensitive(p->y); | |
106 | kfree_sensitive(p); | |
3c4b2390 SB |
107 | } |
108 | ||
109 | static void vli_clear(u64 *vli, unsigned int ndigits) | |
110 | { | |
111 | int i; | |
112 | ||
113 | for (i = 0; i < ndigits; i++) | |
114 | vli[i] = 0; | |
115 | } | |
116 | ||
117 | /* Returns true if vli == 0, false otherwise. */ | |
4a2289da | 118 | bool vli_is_zero(const u64 *vli, unsigned int ndigits) |
3c4b2390 SB |
119 | { |
120 | int i; | |
121 | ||
122 | for (i = 0; i < ndigits; i++) { | |
123 | if (vli[i]) | |
124 | return false; | |
125 | } | |
126 | ||
127 | return true; | |
128 | } | |
4a2289da | 129 | EXPORT_SYMBOL(vli_is_zero); |
3c4b2390 SB |
130 | |
131 | /* Returns nonzero if bit bit of vli is set. */ | |
132 | static u64 vli_test_bit(const u64 *vli, unsigned int bit) | |
133 | { | |
134 | return (vli[bit / 64] & ((u64)1 << (bit % 64))); | |
135 | } | |
136 | ||
0d7a7864 VC |
137 | static bool vli_is_negative(const u64 *vli, unsigned int ndigits) |
138 | { | |
139 | return vli_test_bit(vli, ndigits * 64 - 1); | |
140 | } | |
141 | ||
3c4b2390 SB |
142 | /* Counts the number of 64-bit "digits" in vli. */ |
143 | static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) | |
144 | { | |
145 | int i; | |
146 | ||
147 | /* Search from the end until we find a non-zero digit. | |
148 | * We do it in reverse because we expect that most digits will | |
149 | * be nonzero. | |
150 | */ | |
151 | for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--); | |
152 | ||
153 | return (i + 1); | |
154 | } | |
155 | ||
156 | /* Counts the number of bits required for vli. */ | |
157 | static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) | |
158 | { | |
159 | unsigned int i, num_digits; | |
160 | u64 digit; | |
161 | ||
162 | num_digits = vli_num_digits(vli, ndigits); | |
163 | if (num_digits == 0) | |
164 | return 0; | |
165 | ||
166 | digit = vli[num_digits - 1]; | |
167 | for (i = 0; digit; i++) | |
168 | digit >>= 1; | |
169 | ||
170 | return ((num_digits - 1) * 64 + i); | |
171 | } | |
172 | ||
0d7a7864 VC |
173 | /* Set dest from unaligned bit string src. */ |
174 | void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits) | |
175 | { | |
176 | int i; | |
177 | const u64 *from = src; | |
178 | ||
179 | for (i = 0; i < ndigits; i++) | |
180 | dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]); | |
181 | } | |
182 | EXPORT_SYMBOL(vli_from_be64); | |
183 | ||
184 | void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits) | |
185 | { | |
186 | int i; | |
187 | const u64 *from = src; | |
188 | ||
189 | for (i = 0; i < ndigits; i++) | |
190 | dest[i] = get_unaligned_le64(&from[i]); | |
191 | } | |
192 | EXPORT_SYMBOL(vli_from_le64); | |
193 | ||
3c4b2390 SB |
194 | /* Sets dest = src. */ |
195 | static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) | |
196 | { | |
197 | int i; | |
198 | ||
199 | for (i = 0; i < ndigits; i++) | |
200 | dest[i] = src[i]; | |
201 | } | |
202 | ||
203 | /* Returns sign of left - right. */ | |
4a2289da | 204 | int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) |
3c4b2390 SB |
205 | { |
206 | int i; | |
207 | ||
208 | for (i = ndigits - 1; i >= 0; i--) { | |
209 | if (left[i] > right[i]) | |
210 | return 1; | |
211 | else if (left[i] < right[i]) | |
212 | return -1; | |
213 | } | |
214 | ||
215 | return 0; | |
216 | } | |
4a2289da | 217 | EXPORT_SYMBOL(vli_cmp); |
3c4b2390 SB |
218 | |
219 | /* Computes result = in << c, returning carry. Can modify in place | |
220 | * (if result == in). 0 < shift < 64. | |
221 | */ | |
222 | static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift, | |
223 | unsigned int ndigits) | |
224 | { | |
225 | u64 carry = 0; | |
226 | int i; | |
227 | ||
228 | for (i = 0; i < ndigits; i++) { | |
229 | u64 temp = in[i]; | |
230 | ||
231 | result[i] = (temp << shift) | carry; | |
232 | carry = temp >> (64 - shift); | |
233 | } | |
234 | ||
235 | return carry; | |
236 | } | |
237 | ||
238 | /* Computes vli = vli >> 1. */ | |
239 | static void vli_rshift1(u64 *vli, unsigned int ndigits) | |
240 | { | |
241 | u64 *end = vli; | |
242 | u64 carry = 0; | |
243 | ||
244 | vli += ndigits; | |
245 | ||
246 | while (vli-- > end) { | |
247 | u64 temp = *vli; | |
248 | *vli = (temp >> 1) | carry; | |
249 | carry = temp << 63; | |
250 | } | |
251 | } | |
252 | ||
253 | /* Computes result = left + right, returning carry. Can modify in place. */ | |
254 | static u64 vli_add(u64 *result, const u64 *left, const u64 *right, | |
255 | unsigned int ndigits) | |
256 | { | |
257 | u64 carry = 0; | |
258 | int i; | |
259 | ||
260 | for (i = 0; i < ndigits; i++) { | |
261 | u64 sum; | |
262 | ||
263 | sum = left[i] + right[i] + carry; | |
264 | if (sum != left[i]) | |
265 | carry = (sum < left[i]); | |
266 | ||
267 | result[i] = sum; | |
268 | } | |
269 | ||
270 | return carry; | |
271 | } | |
272 | ||
0d7a7864 VC |
273 | /* Computes result = left + right, returning carry. Can modify in place. */ |
274 | static u64 vli_uadd(u64 *result, const u64 *left, u64 right, | |
275 | unsigned int ndigits) | |
276 | { | |
277 | u64 carry = right; | |
278 | int i; | |
279 | ||
280 | for (i = 0; i < ndigits; i++) { | |
281 | u64 sum; | |
282 | ||
283 | sum = left[i] + carry; | |
284 | if (sum != left[i]) | |
285 | carry = (sum < left[i]); | |
286 | else | |
287 | carry = !!carry; | |
288 | ||
289 | result[i] = sum; | |
290 | } | |
291 | ||
292 | return carry; | |
293 | } | |
294 | ||
3c4b2390 | 295 | /* Computes result = left - right, returning borrow. Can modify in place. */ |
4a2289da | 296 | u64 vli_sub(u64 *result, const u64 *left, const u64 *right, |
3c4b2390 SB |
297 | unsigned int ndigits) |
298 | { | |
299 | u64 borrow = 0; | |
300 | int i; | |
301 | ||
302 | for (i = 0; i < ndigits; i++) { | |
303 | u64 diff; | |
304 | ||
305 | diff = left[i] - right[i] - borrow; | |
306 | if (diff != left[i]) | |
307 | borrow = (diff > left[i]); | |
308 | ||
309 | result[i] = diff; | |
310 | } | |
311 | ||
312 | return borrow; | |
313 | } | |
4a2289da | 314 | EXPORT_SYMBOL(vli_sub); |
3c4b2390 | 315 | |
0d7a7864 VC |
316 | /* Computes result = left - right, returning borrow. Can modify in place. */ |
317 | static u64 vli_usub(u64 *result, const u64 *left, u64 right, | |
318 | unsigned int ndigits) | |
319 | { | |
320 | u64 borrow = right; | |
321 | int i; | |
322 | ||
323 | for (i = 0; i < ndigits; i++) { | |
324 | u64 diff; | |
325 | ||
326 | diff = left[i] - borrow; | |
327 | if (diff != left[i]) | |
328 | borrow = (diff > left[i]); | |
329 | ||
330 | result[i] = diff; | |
331 | } | |
332 | ||
333 | return borrow; | |
334 | } | |
335 | ||
3c4b2390 SB |
336 | static uint128_t mul_64_64(u64 left, u64 right) |
337 | { | |
0d7a7864 | 338 | uint128_t result; |
c12d3362 | 339 | #if defined(CONFIG_ARCH_SUPPORTS_INT128) |
0d7a7864 VC |
340 | unsigned __int128 m = (unsigned __int128)left * right; |
341 | ||
342 | result.m_low = m; | |
343 | result.m_high = m >> 64; | |
344 | #else | |
3c4b2390 SB |
345 | u64 a0 = left & 0xffffffffull; |
346 | u64 a1 = left >> 32; | |
347 | u64 b0 = right & 0xffffffffull; | |
348 | u64 b1 = right >> 32; | |
349 | u64 m0 = a0 * b0; | |
350 | u64 m1 = a0 * b1; | |
351 | u64 m2 = a1 * b0; | |
352 | u64 m3 = a1 * b1; | |
3c4b2390 SB |
353 | |
354 | m2 += (m0 >> 32); | |
355 | m2 += m1; | |
356 | ||
357 | /* Overflow */ | |
358 | if (m2 < m1) | |
359 | m3 += 0x100000000ull; | |
360 | ||
361 | result.m_low = (m0 & 0xffffffffull) | (m2 << 32); | |
362 | result.m_high = m3 + (m2 >> 32); | |
0d7a7864 | 363 | #endif |
3c4b2390 SB |
364 | return result; |
365 | } | |
366 | ||
367 | static uint128_t add_128_128(uint128_t a, uint128_t b) | |
368 | { | |
369 | uint128_t result; | |
370 | ||
371 | result.m_low = a.m_low + b.m_low; | |
372 | result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); | |
373 | ||
374 | return result; | |
375 | } | |
376 | ||
377 | static void vli_mult(u64 *result, const u64 *left, const u64 *right, | |
378 | unsigned int ndigits) | |
379 | { | |
380 | uint128_t r01 = { 0, 0 }; | |
381 | u64 r2 = 0; | |
382 | unsigned int i, k; | |
383 | ||
384 | /* Compute each digit of result in sequence, maintaining the | |
385 | * carries. | |
386 | */ | |
387 | for (k = 0; k < ndigits * 2 - 1; k++) { | |
388 | unsigned int min; | |
389 | ||
390 | if (k < ndigits) | |
391 | min = 0; | |
392 | else | |
393 | min = (k + 1) - ndigits; | |
394 | ||
395 | for (i = min; i <= k && i < ndigits; i++) { | |
396 | uint128_t product; | |
397 | ||
398 | product = mul_64_64(left[i], right[k - i]); | |
399 | ||
400 | r01 = add_128_128(r01, product); | |
401 | r2 += (r01.m_high < product.m_high); | |
402 | } | |
403 | ||
404 | result[k] = r01.m_low; | |
405 | r01.m_low = r01.m_high; | |
406 | r01.m_high = r2; | |
407 | r2 = 0; | |
408 | } | |
409 | ||
410 | result[ndigits * 2 - 1] = r01.m_low; | |
411 | } | |
412 | ||
0d7a7864 VC |
413 | /* Compute product = left * right, for a small right value. */ |
414 | static void vli_umult(u64 *result, const u64 *left, u32 right, | |
415 | unsigned int ndigits) | |
416 | { | |
417 | uint128_t r01 = { 0 }; | |
418 | unsigned int k; | |
419 | ||
420 | for (k = 0; k < ndigits; k++) { | |
421 | uint128_t product; | |
422 | ||
423 | product = mul_64_64(left[k], right); | |
424 | r01 = add_128_128(r01, product); | |
425 | /* no carry */ | |
426 | result[k] = r01.m_low; | |
427 | r01.m_low = r01.m_high; | |
428 | r01.m_high = 0; | |
429 | } | |
430 | result[k] = r01.m_low; | |
431 | for (++k; k < ndigits * 2; k++) | |
432 | result[k] = 0; | |
433 | } | |
434 | ||
3c4b2390 SB |
435 | static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) |
436 | { | |
437 | uint128_t r01 = { 0, 0 }; | |
438 | u64 r2 = 0; | |
439 | int i, k; | |
440 | ||
441 | for (k = 0; k < ndigits * 2 - 1; k++) { | |
442 | unsigned int min; | |
443 | ||
444 | if (k < ndigits) | |
445 | min = 0; | |
446 | else | |
447 | min = (k + 1) - ndigits; | |
448 | ||
449 | for (i = min; i <= k && i <= k - i; i++) { | |
450 | uint128_t product; | |
451 | ||
452 | product = mul_64_64(left[i], left[k - i]); | |
453 | ||
454 | if (i < k - i) { | |
455 | r2 += product.m_high >> 63; | |
456 | product.m_high = (product.m_high << 1) | | |
457 | (product.m_low >> 63); | |
458 | product.m_low <<= 1; | |
459 | } | |
460 | ||
461 | r01 = add_128_128(r01, product); | |
462 | r2 += (r01.m_high < product.m_high); | |
463 | } | |
464 | ||
465 | result[k] = r01.m_low; | |
466 | r01.m_low = r01.m_high; | |
467 | r01.m_high = r2; | |
468 | r2 = 0; | |
469 | } | |
470 | ||
471 | result[ndigits * 2 - 1] = r01.m_low; | |
472 | } | |
473 | ||
474 | /* Computes result = (left + right) % mod. | |
475 | * Assumes that left < mod and right < mod, result != mod. | |
476 | */ | |
477 | static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, | |
478 | const u64 *mod, unsigned int ndigits) | |
479 | { | |
480 | u64 carry; | |
481 | ||
482 | carry = vli_add(result, left, right, ndigits); | |
483 | ||
484 | /* result > mod (result = mod + remainder), so subtract mod to | |
485 | * get remainder. | |
486 | */ | |
487 | if (carry || vli_cmp(result, mod, ndigits) >= 0) | |
488 | vli_sub(result, result, mod, ndigits); | |
489 | } | |
490 | ||
491 | /* Computes result = (left - right) % mod. | |
492 | * Assumes that left < mod and right < mod, result != mod. | |
493 | */ | |
494 | static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, | |
495 | const u64 *mod, unsigned int ndigits) | |
496 | { | |
497 | u64 borrow = vli_sub(result, left, right, ndigits); | |
498 | ||
499 | /* In this case, p_result == -diff == (max int) - diff. | |
500 | * Since -x % d == d - x, we can get the correct result from | |
501 | * result + mod (with overflow). | |
502 | */ | |
503 | if (borrow) | |
504 | vli_add(result, result, mod, ndigits); | |
505 | } | |
506 | ||
0d7a7864 VC |
507 | /* |
508 | * Computes result = product % mod | |
509 | * for special form moduli: p = 2^k-c, for small c (note the minus sign) | |
510 | * | |
511 | * References: | |
512 | * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. | |
513 | * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form | |
514 | * Algorithm 9.2.13 (Fast mod operation for special-form moduli). | |
515 | */ | |
516 | static void vli_mmod_special(u64 *result, const u64 *product, | |
517 | const u64 *mod, unsigned int ndigits) | |
518 | { | |
519 | u64 c = -mod[0]; | |
520 | u64 t[ECC_MAX_DIGITS * 2]; | |
521 | u64 r[ECC_MAX_DIGITS * 2]; | |
522 | ||
523 | vli_set(r, product, ndigits * 2); | |
524 | while (!vli_is_zero(r + ndigits, ndigits)) { | |
525 | vli_umult(t, r + ndigits, c, ndigits); | |
526 | vli_clear(r + ndigits, ndigits); | |
527 | vli_add(r, r, t, ndigits * 2); | |
528 | } | |
529 | vli_set(t, mod, ndigits); | |
530 | vli_clear(t + ndigits, ndigits); | |
531 | while (vli_cmp(r, t, ndigits * 2) >= 0) | |
532 | vli_sub(r, r, t, ndigits * 2); | |
533 | vli_set(result, r, ndigits); | |
534 | } | |
535 | ||
536 | /* | |
537 | * Computes result = product % mod | |
538 | * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign) | |
539 | * where k-1 does not fit into qword boundary by -1 bit (such as 255). | |
540 | ||
541 | * References (loosely based on): | |
542 | * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. | |
543 | * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47. | |
544 | * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf | |
545 | * | |
546 | * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren. | |
547 | * Handbook of Elliptic and Hyperelliptic Curve Cryptography. | |
548 | * Algorithm 10.25 Fast reduction for special form moduli | |
549 | */ | |
550 | static void vli_mmod_special2(u64 *result, const u64 *product, | |
551 | const u64 *mod, unsigned int ndigits) | |
552 | { | |
553 | u64 c2 = mod[0] * 2; | |
554 | u64 q[ECC_MAX_DIGITS]; | |
555 | u64 r[ECC_MAX_DIGITS * 2]; | |
556 | u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */ | |
557 | int carry; /* last bit that doesn't fit into q */ | |
558 | int i; | |
559 | ||
560 | vli_set(m, mod, ndigits); | |
561 | vli_clear(m + ndigits, ndigits); | |
562 | ||
563 | vli_set(r, product, ndigits); | |
564 | /* q and carry are top bits */ | |
565 | vli_set(q, product + ndigits, ndigits); | |
566 | vli_clear(r + ndigits, ndigits); | |
567 | carry = vli_is_negative(r, ndigits); | |
568 | if (carry) | |
569 | r[ndigits - 1] &= (1ull << 63) - 1; | |
570 | for (i = 1; carry || !vli_is_zero(q, ndigits); i++) { | |
571 | u64 qc[ECC_MAX_DIGITS * 2]; | |
572 | ||
573 | vli_umult(qc, q, c2, ndigits); | |
574 | if (carry) | |
575 | vli_uadd(qc, qc, mod[0], ndigits * 2); | |
576 | vli_set(q, qc + ndigits, ndigits); | |
577 | vli_clear(qc + ndigits, ndigits); | |
578 | carry = vli_is_negative(qc, ndigits); | |
579 | if (carry) | |
580 | qc[ndigits - 1] &= (1ull << 63) - 1; | |
581 | if (i & 1) | |
582 | vli_sub(r, r, qc, ndigits * 2); | |
583 | else | |
584 | vli_add(r, r, qc, ndigits * 2); | |
585 | } | |
586 | while (vli_is_negative(r, ndigits * 2)) | |
587 | vli_add(r, r, m, ndigits * 2); | |
588 | while (vli_cmp(r, m, ndigits * 2) >= 0) | |
589 | vli_sub(r, r, m, ndigits * 2); | |
590 | ||
591 | vli_set(result, r, ndigits); | |
592 | } | |
593 | ||
594 | /* | |
595 | * Computes result = product % mod, where product is 2N words long. | |
596 | * Reference: Ken MacKay's micro-ecc. | |
597 | * Currently only designed to work for curve_p or curve_n. | |
598 | */ | |
599 | static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod, | |
600 | unsigned int ndigits) | |
601 | { | |
602 | u64 mod_m[2 * ECC_MAX_DIGITS]; | |
603 | u64 tmp[2 * ECC_MAX_DIGITS]; | |
604 | u64 *v[2] = { tmp, product }; | |
605 | u64 carry = 0; | |
606 | unsigned int i; | |
607 | /* Shift mod so its highest set bit is at the maximum position. */ | |
608 | int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits); | |
609 | int word_shift = shift / 64; | |
610 | int bit_shift = shift % 64; | |
611 | ||
612 | vli_clear(mod_m, word_shift); | |
613 | if (bit_shift > 0) { | |
614 | for (i = 0; i < ndigits; ++i) { | |
615 | mod_m[word_shift + i] = (mod[i] << bit_shift) | carry; | |
616 | carry = mod[i] >> (64 - bit_shift); | |
617 | } | |
618 | } else | |
619 | vli_set(mod_m + word_shift, mod, ndigits); | |
620 | ||
621 | for (i = 1; shift >= 0; --shift) { | |
622 | u64 borrow = 0; | |
623 | unsigned int j; | |
624 | ||
625 | for (j = 0; j < ndigits * 2; ++j) { | |
626 | u64 diff = v[i][j] - mod_m[j] - borrow; | |
627 | ||
628 | if (diff != v[i][j]) | |
629 | borrow = (diff > v[i][j]); | |
630 | v[1 - i][j] = diff; | |
631 | } | |
632 | i = !(i ^ borrow); /* Swap the index if there was no borrow */ | |
633 | vli_rshift1(mod_m, ndigits); | |
634 | mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1); | |
635 | vli_rshift1(mod_m + ndigits, ndigits); | |
636 | } | |
637 | vli_set(result, v[i], ndigits); | |
638 | } | |
639 | ||
640 | /* Computes result = product % mod using Barrett's reduction with precomputed | |
641 | * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have | |
642 | * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits | |
643 | * boundary. | |
644 | * | |
645 | * Reference: | |
646 | * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010. | |
647 | * 2.4.1 Barrett's algorithm. Algorithm 2.5. | |
648 | */ | |
649 | static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod, | |
650 | unsigned int ndigits) | |
651 | { | |
652 | u64 q[ECC_MAX_DIGITS * 2]; | |
653 | u64 r[ECC_MAX_DIGITS * 2]; | |
654 | const u64 *mu = mod + ndigits; | |
655 | ||
656 | vli_mult(q, product + ndigits, mu, ndigits); | |
657 | if (mu[ndigits]) | |
658 | vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits); | |
659 | vli_mult(r, mod, q + ndigits, ndigits); | |
660 | vli_sub(r, product, r, ndigits * 2); | |
661 | while (!vli_is_zero(r + ndigits, ndigits) || | |
662 | vli_cmp(r, mod, ndigits) != -1) { | |
663 | u64 carry; | |
664 | ||
665 | carry = vli_sub(r, r, mod, ndigits); | |
666 | vli_usub(r + ndigits, r + ndigits, carry, ndigits); | |
667 | } | |
668 | vli_set(result, r, ndigits); | |
669 | } | |
670 | ||
3c4b2390 SB |
671 | /* Computes p_result = p_product % curve_p. |
672 | * See algorithm 5 and 6 from | |
673 | * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf | |
674 | */ | |
675 | static void vli_mmod_fast_192(u64 *result, const u64 *product, | |
676 | const u64 *curve_prime, u64 *tmp) | |
677 | { | |
678 | const unsigned int ndigits = 3; | |
679 | int carry; | |
680 | ||
681 | vli_set(result, product, ndigits); | |
682 | ||
683 | vli_set(tmp, &product[3], ndigits); | |
684 | carry = vli_add(result, result, tmp, ndigits); | |
685 | ||
686 | tmp[0] = 0; | |
687 | tmp[1] = product[3]; | |
688 | tmp[2] = product[4]; | |
689 | carry += vli_add(result, result, tmp, ndigits); | |
690 | ||
691 | tmp[0] = tmp[1] = product[5]; | |
692 | tmp[2] = 0; | |
693 | carry += vli_add(result, result, tmp, ndigits); | |
694 | ||
695 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) | |
696 | carry -= vli_sub(result, result, curve_prime, ndigits); | |
697 | } | |
698 | ||
699 | /* Computes result = product % curve_prime | |
700 | * from http://www.nsa.gov/ia/_files/nist-routines.pdf | |
701 | */ | |
702 | static void vli_mmod_fast_256(u64 *result, const u64 *product, | |
703 | const u64 *curve_prime, u64 *tmp) | |
704 | { | |
705 | int carry; | |
706 | const unsigned int ndigits = 4; | |
707 | ||
708 | /* t */ | |
709 | vli_set(result, product, ndigits); | |
710 | ||
711 | /* s1 */ | |
712 | tmp[0] = 0; | |
713 | tmp[1] = product[5] & 0xffffffff00000000ull; | |
714 | tmp[2] = product[6]; | |
715 | tmp[3] = product[7]; | |
716 | carry = vli_lshift(tmp, tmp, 1, ndigits); | |
717 | carry += vli_add(result, result, tmp, ndigits); | |
718 | ||
719 | /* s2 */ | |
720 | tmp[1] = product[6] << 32; | |
721 | tmp[2] = (product[6] >> 32) | (product[7] << 32); | |
722 | tmp[3] = product[7] >> 32; | |
723 | carry += vli_lshift(tmp, tmp, 1, ndigits); | |
724 | carry += vli_add(result, result, tmp, ndigits); | |
725 | ||
726 | /* s3 */ | |
727 | tmp[0] = product[4]; | |
728 | tmp[1] = product[5] & 0xffffffff; | |
729 | tmp[2] = 0; | |
730 | tmp[3] = product[7]; | |
731 | carry += vli_add(result, result, tmp, ndigits); | |
732 | ||
733 | /* s4 */ | |
734 | tmp[0] = (product[4] >> 32) | (product[5] << 32); | |
735 | tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); | |
736 | tmp[2] = product[7]; | |
737 | tmp[3] = (product[6] >> 32) | (product[4] << 32); | |
738 | carry += vli_add(result, result, tmp, ndigits); | |
739 | ||
740 | /* d1 */ | |
741 | tmp[0] = (product[5] >> 32) | (product[6] << 32); | |
742 | tmp[1] = (product[6] >> 32); | |
743 | tmp[2] = 0; | |
744 | tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); | |
745 | carry -= vli_sub(result, result, tmp, ndigits); | |
746 | ||
747 | /* d2 */ | |
748 | tmp[0] = product[6]; | |
749 | tmp[1] = product[7]; | |
750 | tmp[2] = 0; | |
751 | tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); | |
752 | carry -= vli_sub(result, result, tmp, ndigits); | |
753 | ||
754 | /* d3 */ | |
755 | tmp[0] = (product[6] >> 32) | (product[7] << 32); | |
756 | tmp[1] = (product[7] >> 32) | (product[4] << 32); | |
757 | tmp[2] = (product[4] >> 32) | (product[5] << 32); | |
758 | tmp[3] = (product[6] << 32); | |
759 | carry -= vli_sub(result, result, tmp, ndigits); | |
760 | ||
761 | /* d4 */ | |
762 | tmp[0] = product[7]; | |
763 | tmp[1] = product[4] & 0xffffffff00000000ull; | |
764 | tmp[2] = product[5]; | |
765 | tmp[3] = product[6] & 0xffffffff00000000ull; | |
766 | carry -= vli_sub(result, result, tmp, ndigits); | |
767 | ||
768 | if (carry < 0) { | |
769 | do { | |
770 | carry += vli_add(result, result, curve_prime, ndigits); | |
771 | } while (carry < 0); | |
772 | } else { | |
773 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) | |
774 | carry -= vli_sub(result, result, curve_prime, ndigits); | |
775 | } | |
776 | } | |
777 | ||
0d7a7864 VC |
778 | /* Computes result = product % curve_prime for different curve_primes. |
779 | * | |
780 | * Note that curve_primes are distinguished just by heuristic check and | |
781 | * not by complete conformance check. | |
782 | */ | |
3c4b2390 SB |
783 | static bool vli_mmod_fast(u64 *result, u64 *product, |
784 | const u64 *curve_prime, unsigned int ndigits) | |
785 | { | |
d5c3b178 | 786 | u64 tmp[2 * ECC_MAX_DIGITS]; |
3c4b2390 | 787 | |
0d7a7864 VC |
788 | /* Currently, both NIST primes have -1 in lowest qword. */ |
789 | if (curve_prime[0] != -1ull) { | |
790 | /* Try to handle Pseudo-Marsenne primes. */ | |
791 | if (curve_prime[ndigits - 1] == -1ull) { | |
792 | vli_mmod_special(result, product, curve_prime, | |
793 | ndigits); | |
794 | return true; | |
795 | } else if (curve_prime[ndigits - 1] == 1ull << 63 && | |
796 | curve_prime[ndigits - 2] == 0) { | |
797 | vli_mmod_special2(result, product, curve_prime, | |
798 | ndigits); | |
799 | return true; | |
800 | } | |
801 | vli_mmod_barrett(result, product, curve_prime, ndigits); | |
802 | return true; | |
803 | } | |
804 | ||
3c4b2390 SB |
805 | switch (ndigits) { |
806 | case 3: | |
807 | vli_mmod_fast_192(result, product, curve_prime, tmp); | |
808 | break; | |
809 | case 4: | |
810 | vli_mmod_fast_256(result, product, curve_prime, tmp); | |
811 | break; | |
812 | default: | |
0d7a7864 | 813 | pr_err_ratelimited("ecc: unsupported digits size!\n"); |
3c4b2390 SB |
814 | return false; |
815 | } | |
816 | ||
817 | return true; | |
818 | } | |
819 | ||
0d7a7864 VC |
820 | /* Computes result = (left * right) % mod. |
821 | * Assumes that mod is big enough curve order. | |
822 | */ | |
823 | void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, | |
824 | const u64 *mod, unsigned int ndigits) | |
825 | { | |
826 | u64 product[ECC_MAX_DIGITS * 2]; | |
827 | ||
828 | vli_mult(product, left, right, ndigits); | |
829 | vli_mmod_slow(result, product, mod, ndigits); | |
830 | } | |
831 | EXPORT_SYMBOL(vli_mod_mult_slow); | |
832 | ||
3c4b2390 SB |
833 | /* Computes result = (left * right) % curve_prime. */ |
834 | static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, | |
835 | const u64 *curve_prime, unsigned int ndigits) | |
836 | { | |
d5c3b178 | 837 | u64 product[2 * ECC_MAX_DIGITS]; |
3c4b2390 SB |
838 | |
839 | vli_mult(product, left, right, ndigits); | |
840 | vli_mmod_fast(result, product, curve_prime, ndigits); | |
841 | } | |
842 | ||
843 | /* Computes result = left^2 % curve_prime. */ | |
844 | static void vli_mod_square_fast(u64 *result, const u64 *left, | |
845 | const u64 *curve_prime, unsigned int ndigits) | |
846 | { | |
d5c3b178 | 847 | u64 product[2 * ECC_MAX_DIGITS]; |
3c4b2390 SB |
848 | |
849 | vli_square(product, left, ndigits); | |
850 | vli_mmod_fast(result, product, curve_prime, ndigits); | |
851 | } | |
852 | ||
853 | #define EVEN(vli) (!(vli[0] & 1)) | |
854 | /* Computes result = (1 / p_input) % mod. All VLIs are the same size. | |
855 | * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" | |
856 | * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf | |
857 | */ | |
4a2289da | 858 | void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, |
3c4b2390 SB |
859 | unsigned int ndigits) |
860 | { | |
d5c3b178 KC |
861 | u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; |
862 | u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS]; | |
3c4b2390 SB |
863 | u64 carry; |
864 | int cmp_result; | |
865 | ||
866 | if (vli_is_zero(input, ndigits)) { | |
867 | vli_clear(result, ndigits); | |
868 | return; | |
869 | } | |
870 | ||
871 | vli_set(a, input, ndigits); | |
872 | vli_set(b, mod, ndigits); | |
873 | vli_clear(u, ndigits); | |
874 | u[0] = 1; | |
875 | vli_clear(v, ndigits); | |
876 | ||
877 | while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) { | |
878 | carry = 0; | |
879 | ||
880 | if (EVEN(a)) { | |
881 | vli_rshift1(a, ndigits); | |
882 | ||
883 | if (!EVEN(u)) | |
884 | carry = vli_add(u, u, mod, ndigits); | |
885 | ||
886 | vli_rshift1(u, ndigits); | |
887 | if (carry) | |
888 | u[ndigits - 1] |= 0x8000000000000000ull; | |
889 | } else if (EVEN(b)) { | |
890 | vli_rshift1(b, ndigits); | |
891 | ||
892 | if (!EVEN(v)) | |
893 | carry = vli_add(v, v, mod, ndigits); | |
894 | ||
895 | vli_rshift1(v, ndigits); | |
896 | if (carry) | |
897 | v[ndigits - 1] |= 0x8000000000000000ull; | |
898 | } else if (cmp_result > 0) { | |
899 | vli_sub(a, a, b, ndigits); | |
900 | vli_rshift1(a, ndigits); | |
901 | ||
902 | if (vli_cmp(u, v, ndigits) < 0) | |
903 | vli_add(u, u, mod, ndigits); | |
904 | ||
905 | vli_sub(u, u, v, ndigits); | |
906 | if (!EVEN(u)) | |
907 | carry = vli_add(u, u, mod, ndigits); | |
908 | ||
909 | vli_rshift1(u, ndigits); | |
910 | if (carry) | |
911 | u[ndigits - 1] |= 0x8000000000000000ull; | |
912 | } else { | |
913 | vli_sub(b, b, a, ndigits); | |
914 | vli_rshift1(b, ndigits); | |
915 | ||
916 | if (vli_cmp(v, u, ndigits) < 0) | |
917 | vli_add(v, v, mod, ndigits); | |
918 | ||
919 | vli_sub(v, v, u, ndigits); | |
920 | if (!EVEN(v)) | |
921 | carry = vli_add(v, v, mod, ndigits); | |
922 | ||
923 | vli_rshift1(v, ndigits); | |
924 | if (carry) | |
925 | v[ndigits - 1] |= 0x8000000000000000ull; | |
926 | } | |
927 | } | |
928 | ||
929 | vli_set(result, u, ndigits); | |
930 | } | |
4a2289da | 931 | EXPORT_SYMBOL(vli_mod_inv); |
3c4b2390 SB |
932 | |
933 | /* ------ Point operations ------ */ | |
934 | ||
935 | /* Returns true if p_point is the point at infinity, false otherwise. */ | |
936 | static bool ecc_point_is_zero(const struct ecc_point *point) | |
937 | { | |
938 | return (vli_is_zero(point->x, point->ndigits) && | |
939 | vli_is_zero(point->y, point->ndigits)); | |
940 | } | |
941 | ||
942 | /* Point multiplication algorithm using Montgomery's ladder with co-Z | |
9332a9e7 | 943 | * coordinates. From https://eprint.iacr.org/2011/338.pdf |
3c4b2390 SB |
944 | */ |
945 | ||
946 | /* Double in place */ | |
947 | static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1, | |
948 | u64 *curve_prime, unsigned int ndigits) | |
949 | { | |
950 | /* t1 = x, t2 = y, t3 = z */ | |
d5c3b178 KC |
951 | u64 t4[ECC_MAX_DIGITS]; |
952 | u64 t5[ECC_MAX_DIGITS]; | |
3c4b2390 SB |
953 | |
954 | if (vli_is_zero(z1, ndigits)) | |
955 | return; | |
956 | ||
957 | /* t4 = y1^2 */ | |
958 | vli_mod_square_fast(t4, y1, curve_prime, ndigits); | |
959 | /* t5 = x1*y1^2 = A */ | |
960 | vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits); | |
961 | /* t4 = y1^4 */ | |
962 | vli_mod_square_fast(t4, t4, curve_prime, ndigits); | |
963 | /* t2 = y1*z1 = z3 */ | |
964 | vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits); | |
965 | /* t3 = z1^2 */ | |
966 | vli_mod_square_fast(z1, z1, curve_prime, ndigits); | |
967 | ||
968 | /* t1 = x1 + z1^2 */ | |
969 | vli_mod_add(x1, x1, z1, curve_prime, ndigits); | |
970 | /* t3 = 2*z1^2 */ | |
971 | vli_mod_add(z1, z1, z1, curve_prime, ndigits); | |
972 | /* t3 = x1 - z1^2 */ | |
973 | vli_mod_sub(z1, x1, z1, curve_prime, ndigits); | |
974 | /* t1 = x1^2 - z1^4 */ | |
975 | vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits); | |
976 | ||
977 | /* t3 = 2*(x1^2 - z1^4) */ | |
978 | vli_mod_add(z1, x1, x1, curve_prime, ndigits); | |
979 | /* t1 = 3*(x1^2 - z1^4) */ | |
980 | vli_mod_add(x1, x1, z1, curve_prime, ndigits); | |
981 | if (vli_test_bit(x1, 0)) { | |
982 | u64 carry = vli_add(x1, x1, curve_prime, ndigits); | |
983 | ||
984 | vli_rshift1(x1, ndigits); | |
985 | x1[ndigits - 1] |= carry << 63; | |
986 | } else { | |
987 | vli_rshift1(x1, ndigits); | |
988 | } | |
989 | /* t1 = 3/2*(x1^2 - z1^4) = B */ | |
990 | ||
991 | /* t3 = B^2 */ | |
992 | vli_mod_square_fast(z1, x1, curve_prime, ndigits); | |
993 | /* t3 = B^2 - A */ | |
994 | vli_mod_sub(z1, z1, t5, curve_prime, ndigits); | |
995 | /* t3 = B^2 - 2A = x3 */ | |
996 | vli_mod_sub(z1, z1, t5, curve_prime, ndigits); | |
997 | /* t5 = A - x3 */ | |
998 | vli_mod_sub(t5, t5, z1, curve_prime, ndigits); | |
999 | /* t1 = B * (A - x3) */ | |
1000 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); | |
1001 | /* t4 = B * (A - x3) - y1^4 = y3 */ | |
1002 | vli_mod_sub(t4, x1, t4, curve_prime, ndigits); | |
1003 | ||
1004 | vli_set(x1, z1, ndigits); | |
1005 | vli_set(z1, y1, ndigits); | |
1006 | vli_set(y1, t4, ndigits); | |
1007 | } | |
1008 | ||
1009 | /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ | |
1010 | static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime, | |
1011 | unsigned int ndigits) | |
1012 | { | |
d5c3b178 | 1013 | u64 t1[ECC_MAX_DIGITS]; |
3c4b2390 SB |
1014 | |
1015 | vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */ | |
1016 | vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */ | |
1017 | vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */ | |
1018 | vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */ | |
1019 | } | |
1020 | ||
1021 | /* P = (x1, y1) => 2P, (x2, y2) => P' */ | |
1022 | static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, | |
1023 | u64 *p_initial_z, u64 *curve_prime, | |
1024 | unsigned int ndigits) | |
1025 | { | |
d5c3b178 | 1026 | u64 z[ECC_MAX_DIGITS]; |
3c4b2390 SB |
1027 | |
1028 | vli_set(x2, x1, ndigits); | |
1029 | vli_set(y2, y1, ndigits); | |
1030 | ||
1031 | vli_clear(z, ndigits); | |
1032 | z[0] = 1; | |
1033 | ||
1034 | if (p_initial_z) | |
1035 | vli_set(z, p_initial_z, ndigits); | |
1036 | ||
1037 | apply_z(x1, y1, z, curve_prime, ndigits); | |
1038 | ||
1039 | ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits); | |
1040 | ||
1041 | apply_z(x2, y2, z, curve_prime, ndigits); | |
1042 | } | |
1043 | ||
1044 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) | |
1045 | * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) | |
1046 | * or P => P', Q => P + Q | |
1047 | */ | |
1048 | static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime, | |
1049 | unsigned int ndigits) | |
1050 | { | |
1051 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ | |
d5c3b178 | 1052 | u64 t5[ECC_MAX_DIGITS]; |
3c4b2390 SB |
1053 | |
1054 | /* t5 = x2 - x1 */ | |
1055 | vli_mod_sub(t5, x2, x1, curve_prime, ndigits); | |
1056 | /* t5 = (x2 - x1)^2 = A */ | |
1057 | vli_mod_square_fast(t5, t5, curve_prime, ndigits); | |
1058 | /* t1 = x1*A = B */ | |
1059 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); | |
1060 | /* t3 = x2*A = C */ | |
1061 | vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); | |
1062 | /* t4 = y2 - y1 */ | |
1063 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | |
1064 | /* t5 = (y2 - y1)^2 = D */ | |
1065 | vli_mod_square_fast(t5, y2, curve_prime, ndigits); | |
1066 | ||
1067 | /* t5 = D - B */ | |
1068 | vli_mod_sub(t5, t5, x1, curve_prime, ndigits); | |
1069 | /* t5 = D - B - C = x3 */ | |
1070 | vli_mod_sub(t5, t5, x2, curve_prime, ndigits); | |
1071 | /* t3 = C - B */ | |
1072 | vli_mod_sub(x2, x2, x1, curve_prime, ndigits); | |
1073 | /* t2 = y1*(C - B) */ | |
1074 | vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits); | |
1075 | /* t3 = B - x3 */ | |
1076 | vli_mod_sub(x2, x1, t5, curve_prime, ndigits); | |
1077 | /* t4 = (y2 - y1)*(B - x3) */ | |
1078 | vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits); | |
1079 | /* t4 = y3 */ | |
1080 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | |
1081 | ||
1082 | vli_set(x2, t5, ndigits); | |
1083 | } | |
1084 | ||
1085 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) | |
1086 | * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) | |
1087 | * or P => P - Q, Q => P + Q | |
1088 | */ | |
1089 | static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime, | |
1090 | unsigned int ndigits) | |
1091 | { | |
1092 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ | |
d5c3b178 KC |
1093 | u64 t5[ECC_MAX_DIGITS]; |
1094 | u64 t6[ECC_MAX_DIGITS]; | |
1095 | u64 t7[ECC_MAX_DIGITS]; | |
3c4b2390 SB |
1096 | |
1097 | /* t5 = x2 - x1 */ | |
1098 | vli_mod_sub(t5, x2, x1, curve_prime, ndigits); | |
1099 | /* t5 = (x2 - x1)^2 = A */ | |
1100 | vli_mod_square_fast(t5, t5, curve_prime, ndigits); | |
1101 | /* t1 = x1*A = B */ | |
1102 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); | |
1103 | /* t3 = x2*A = C */ | |
1104 | vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); | |
1105 | /* t4 = y2 + y1 */ | |
1106 | vli_mod_add(t5, y2, y1, curve_prime, ndigits); | |
1107 | /* t4 = y2 - y1 */ | |
1108 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | |
1109 | ||
1110 | /* t6 = C - B */ | |
1111 | vli_mod_sub(t6, x2, x1, curve_prime, ndigits); | |
1112 | /* t2 = y1 * (C - B) */ | |
1113 | vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits); | |
1114 | /* t6 = B + C */ | |
1115 | vli_mod_add(t6, x1, x2, curve_prime, ndigits); | |
1116 | /* t3 = (y2 - y1)^2 */ | |
1117 | vli_mod_square_fast(x2, y2, curve_prime, ndigits); | |
1118 | /* t3 = x3 */ | |
1119 | vli_mod_sub(x2, x2, t6, curve_prime, ndigits); | |
1120 | ||
1121 | /* t7 = B - x3 */ | |
1122 | vli_mod_sub(t7, x1, x2, curve_prime, ndigits); | |
1123 | /* t4 = (y2 - y1)*(B - x3) */ | |
1124 | vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits); | |
1125 | /* t4 = y3 */ | |
1126 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | |
1127 | ||
1128 | /* t7 = (y2 + y1)^2 = F */ | |
1129 | vli_mod_square_fast(t7, t5, curve_prime, ndigits); | |
1130 | /* t7 = x3' */ | |
1131 | vli_mod_sub(t7, t7, t6, curve_prime, ndigits); | |
1132 | /* t6 = x3' - B */ | |
1133 | vli_mod_sub(t6, t7, x1, curve_prime, ndigits); | |
1134 | /* t6 = (y2 + y1)*(x3' - B) */ | |
1135 | vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits); | |
1136 | /* t2 = y3' */ | |
1137 | vli_mod_sub(y1, t6, y1, curve_prime, ndigits); | |
1138 | ||
1139 | vli_set(x1, t7, ndigits); | |
1140 | } | |
1141 | ||
1142 | static void ecc_point_mult(struct ecc_point *result, | |
1143 | const struct ecc_point *point, const u64 *scalar, | |
3da2c1df | 1144 | u64 *initial_z, const struct ecc_curve *curve, |
3c4b2390 SB |
1145 | unsigned int ndigits) |
1146 | { | |
1147 | /* R0 and R1 */ | |
d5c3b178 KC |
1148 | u64 rx[2][ECC_MAX_DIGITS]; |
1149 | u64 ry[2][ECC_MAX_DIGITS]; | |
1150 | u64 z[ECC_MAX_DIGITS]; | |
3da2c1df VC |
1151 | u64 sk[2][ECC_MAX_DIGITS]; |
1152 | u64 *curve_prime = curve->p; | |
3c4b2390 | 1153 | int i, nb; |
3da2c1df VC |
1154 | int num_bits; |
1155 | int carry; | |
1156 | ||
1157 | carry = vli_add(sk[0], scalar, curve->n, ndigits); | |
1158 | vli_add(sk[1], sk[0], curve->n, ndigits); | |
1159 | scalar = sk[!carry]; | |
1160 | num_bits = sizeof(u64) * ndigits * 8 + 1; | |
3c4b2390 SB |
1161 | |
1162 | vli_set(rx[1], point->x, ndigits); | |
1163 | vli_set(ry[1], point->y, ndigits); | |
1164 | ||
1165 | xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime, | |
1166 | ndigits); | |
1167 | ||
1168 | for (i = num_bits - 2; i > 0; i--) { | |
1169 | nb = !vli_test_bit(scalar, i); | |
1170 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, | |
1171 | ndigits); | |
1172 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, | |
1173 | ndigits); | |
1174 | } | |
1175 | ||
1176 | nb = !vli_test_bit(scalar, 0); | |
1177 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, | |
1178 | ndigits); | |
1179 | ||
1180 | /* Find final 1/Z value. */ | |
1181 | /* X1 - X0 */ | |
1182 | vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits); | |
1183 | /* Yb * (X1 - X0) */ | |
1184 | vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits); | |
1185 | /* xP * Yb * (X1 - X0) */ | |
1186 | vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits); | |
1187 | ||
1188 | /* 1 / (xP * Yb * (X1 - X0)) */ | |
1189 | vli_mod_inv(z, z, curve_prime, point->ndigits); | |
1190 | ||
1191 | /* yP / (xP * Yb * (X1 - X0)) */ | |
1192 | vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits); | |
1193 | /* Xb * yP / (xP * Yb * (X1 - X0)) */ | |
1194 | vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits); | |
1195 | /* End 1/Z calculation */ | |
1196 | ||
1197 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits); | |
1198 | ||
1199 | apply_z(rx[0], ry[0], z, curve_prime, ndigits); | |
1200 | ||
1201 | vli_set(result->x, rx[0], ndigits); | |
1202 | vli_set(result->y, ry[0], ndigits); | |
1203 | } | |
1204 | ||
0d7a7864 VC |
1205 | /* Computes R = P + Q mod p */ |
1206 | static void ecc_point_add(const struct ecc_point *result, | |
1207 | const struct ecc_point *p, const struct ecc_point *q, | |
1208 | const struct ecc_curve *curve) | |
1209 | { | |
1210 | u64 z[ECC_MAX_DIGITS]; | |
1211 | u64 px[ECC_MAX_DIGITS]; | |
1212 | u64 py[ECC_MAX_DIGITS]; | |
1213 | unsigned int ndigits = curve->g.ndigits; | |
1214 | ||
1215 | vli_set(result->x, q->x, ndigits); | |
1216 | vli_set(result->y, q->y, ndigits); | |
1217 | vli_mod_sub(z, result->x, p->x, curve->p, ndigits); | |
1218 | vli_set(px, p->x, ndigits); | |
1219 | vli_set(py, p->y, ndigits); | |
1220 | xycz_add(px, py, result->x, result->y, curve->p, ndigits); | |
1221 | vli_mod_inv(z, z, curve->p, ndigits); | |
1222 | apply_z(result->x, result->y, z, curve->p, ndigits); | |
1223 | } | |
1224 | ||
1225 | /* Computes R = u1P + u2Q mod p using Shamir's trick. | |
1226 | * Based on: Kenneth MacKay's micro-ecc (2014). | |
1227 | */ | |
1228 | void ecc_point_mult_shamir(const struct ecc_point *result, | |
1229 | const u64 *u1, const struct ecc_point *p, | |
1230 | const u64 *u2, const struct ecc_point *q, | |
1231 | const struct ecc_curve *curve) | |
1232 | { | |
1233 | u64 z[ECC_MAX_DIGITS]; | |
1234 | u64 sump[2][ECC_MAX_DIGITS]; | |
1235 | u64 *rx = result->x; | |
1236 | u64 *ry = result->y; | |
1237 | unsigned int ndigits = curve->g.ndigits; | |
1238 | unsigned int num_bits; | |
1239 | struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits); | |
1240 | const struct ecc_point *points[4]; | |
1241 | const struct ecc_point *point; | |
1242 | unsigned int idx; | |
1243 | int i; | |
1244 | ||
1245 | ecc_point_add(&sum, p, q, curve); | |
1246 | points[0] = NULL; | |
1247 | points[1] = p; | |
1248 | points[2] = q; | |
1249 | points[3] = ∑ | |
1250 | ||
1251 | num_bits = max(vli_num_bits(u1, ndigits), | |
1252 | vli_num_bits(u2, ndigits)); | |
1253 | i = num_bits - 1; | |
1254 | idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); | |
1255 | point = points[idx]; | |
1256 | ||
1257 | vli_set(rx, point->x, ndigits); | |
1258 | vli_set(ry, point->y, ndigits); | |
1259 | vli_clear(z + 1, ndigits - 1); | |
1260 | z[0] = 1; | |
1261 | ||
1262 | for (--i; i >= 0; i--) { | |
1263 | ecc_point_double_jacobian(rx, ry, z, curve->p, ndigits); | |
1264 | idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); | |
1265 | point = points[idx]; | |
1266 | if (point) { | |
1267 | u64 tx[ECC_MAX_DIGITS]; | |
1268 | u64 ty[ECC_MAX_DIGITS]; | |
1269 | u64 tz[ECC_MAX_DIGITS]; | |
1270 | ||
1271 | vli_set(tx, point->x, ndigits); | |
1272 | vli_set(ty, point->y, ndigits); | |
1273 | apply_z(tx, ty, z, curve->p, ndigits); | |
1274 | vli_mod_sub(tz, rx, tx, curve->p, ndigits); | |
1275 | xycz_add(tx, ty, rx, ry, curve->p, ndigits); | |
1276 | vli_mod_mult_fast(z, z, tz, curve->p, ndigits); | |
1277 | } | |
1278 | } | |
1279 | vli_mod_inv(z, z, curve->p, ndigits); | |
1280 | apply_z(rx, ry, z, curve->p, ndigits); | |
1281 | } | |
1282 | EXPORT_SYMBOL(ecc_point_mult_shamir); | |
1283 | ||
3c4b2390 SB |
1284 | static inline void ecc_swap_digits(const u64 *in, u64 *out, |
1285 | unsigned int ndigits) | |
1286 | { | |
f398243e | 1287 | const __be64 *src = (__force __be64 *)in; |
3c4b2390 SB |
1288 | int i; |
1289 | ||
1290 | for (i = 0; i < ndigits; i++) | |
f398243e | 1291 | out[i] = be64_to_cpu(src[ndigits - 1 - i]); |
3c4b2390 SB |
1292 | } |
1293 | ||
2eb4942b VC |
1294 | static int __ecc_is_key_valid(const struct ecc_curve *curve, |
1295 | const u64 *private_key, unsigned int ndigits) | |
3c4b2390 | 1296 | { |
2eb4942b VC |
1297 | u64 one[ECC_MAX_DIGITS] = { 1, }; |
1298 | u64 res[ECC_MAX_DIGITS]; | |
3c4b2390 SB |
1299 | |
1300 | if (!private_key) | |
1301 | return -EINVAL; | |
1302 | ||
2eb4942b | 1303 | if (curve->g.ndigits != ndigits) |
3c4b2390 SB |
1304 | return -EINVAL; |
1305 | ||
2eb4942b VC |
1306 | /* Make sure the private key is in the range [2, n-3]. */ |
1307 | if (vli_cmp(one, private_key, ndigits) != -1) | |
3c4b2390 | 1308 | return -EINVAL; |
2eb4942b VC |
1309 | vli_sub(res, curve->n, one, ndigits); |
1310 | vli_sub(res, res, one, ndigits); | |
1311 | if (vli_cmp(res, private_key, ndigits) != 1) | |
3c4b2390 SB |
1312 | return -EINVAL; |
1313 | ||
1314 | return 0; | |
1315 | } | |
1316 | ||
2eb4942b VC |
1317 | int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, |
1318 | const u64 *private_key, unsigned int private_key_len) | |
1319 | { | |
1320 | int nbytes; | |
1321 | const struct ecc_curve *curve = ecc_get_curve(curve_id); | |
1322 | ||
1323 | nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; | |
1324 | ||
1325 | if (private_key_len != nbytes) | |
1326 | return -EINVAL; | |
1327 | ||
1328 | return __ecc_is_key_valid(curve, private_key, ndigits); | |
1329 | } | |
4a2289da | 1330 | EXPORT_SYMBOL(ecc_is_key_valid); |
2eb4942b | 1331 | |
6755fd26 TA |
1332 | /* |
1333 | * ECC private keys are generated using the method of extra random bits, | |
1334 | * equivalent to that described in FIPS 186-4, Appendix B.4.1. | |
1335 | * | |
1336 | * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer | |
1337 | * than requested | |
1338 | * 0 <= c mod(n-1) <= n-2 and implies that | |
1339 | * 1 <= d <= n-1 | |
1340 | * | |
1341 | * This method generates a private key uniformly distributed in the range | |
1342 | * [1, n-1]. | |
1343 | */ | |
1344 | int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey) | |
1345 | { | |
1346 | const struct ecc_curve *curve = ecc_get_curve(curve_id); | |
d5c3b178 | 1347 | u64 priv[ECC_MAX_DIGITS]; |
6755fd26 TA |
1348 | unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
1349 | unsigned int nbits = vli_num_bits(curve->n, ndigits); | |
1350 | int err; | |
1351 | ||
1352 | /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */ | |
d5c3b178 | 1353 | if (nbits < 160 || ndigits > ARRAY_SIZE(priv)) |
6755fd26 TA |
1354 | return -EINVAL; |
1355 | ||
1356 | /* | |
1357 | * FIPS 186-4 recommends that the private key should be obtained from a | |
1358 | * RBG with a security strength equal to or greater than the security | |
1359 | * strength associated with N. | |
1360 | * | |
1361 | * The maximum security strength identified by NIST SP800-57pt1r4 for | |
1362 | * ECC is 256 (N >= 512). | |
1363 | * | |
1364 | * This condition is met by the default RNG because it selects a favored | |
1365 | * DRBG with a security strength of 256. | |
1366 | */ | |
1367 | if (crypto_get_default_rng()) | |
4c0e22c9 | 1368 | return -EFAULT; |
6755fd26 TA |
1369 | |
1370 | err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes); | |
1371 | crypto_put_default_rng(); | |
1372 | if (err) | |
1373 | return err; | |
1374 | ||
2eb4942b VC |
1375 | /* Make sure the private key is in the valid range. */ |
1376 | if (__ecc_is_key_valid(curve, priv, ndigits)) | |
6755fd26 TA |
1377 | return -EINVAL; |
1378 | ||
1379 | ecc_swap_digits(priv, privkey, ndigits); | |
1380 | ||
1381 | return 0; | |
1382 | } | |
4a2289da | 1383 | EXPORT_SYMBOL(ecc_gen_privkey); |
6755fd26 | 1384 | |
7380c56d TA |
1385 | int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, |
1386 | const u64 *private_key, u64 *public_key) | |
3c4b2390 SB |
1387 | { |
1388 | int ret = 0; | |
1389 | struct ecc_point *pk; | |
d5c3b178 | 1390 | u64 priv[ECC_MAX_DIGITS]; |
3c4b2390 SB |
1391 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
1392 | ||
d5c3b178 | 1393 | if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) { |
3c4b2390 SB |
1394 | ret = -EINVAL; |
1395 | goto out; | |
1396 | } | |
1397 | ||
ad269597 | 1398 | ecc_swap_digits(private_key, priv, ndigits); |
3c4b2390 SB |
1399 | |
1400 | pk = ecc_alloc_point(ndigits); | |
1401 | if (!pk) { | |
1402 | ret = -ENOMEM; | |
1403 | goto out; | |
1404 | } | |
1405 | ||
3da2c1df | 1406 | ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits); |
6914dd53 SM |
1407 | |
1408 | /* SP800-56A rev 3 5.6.2.1.3 key check */ | |
1409 | if (ecc_is_pubkey_valid_full(curve, pk)) { | |
3c4b2390 SB |
1410 | ret = -EAGAIN; |
1411 | goto err_free_point; | |
1412 | } | |
1413 | ||
ad269597 TA |
1414 | ecc_swap_digits(pk->x, public_key, ndigits); |
1415 | ecc_swap_digits(pk->y, &public_key[ndigits], ndigits); | |
3c4b2390 SB |
1416 | |
1417 | err_free_point: | |
1418 | ecc_free_point(pk); | |
1419 | out: | |
1420 | return ret; | |
1421 | } | |
4a2289da | 1422 | EXPORT_SYMBOL(ecc_make_pub_key); |
3c4b2390 | 1423 | |
ea169a30 | 1424 | /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ |
4a2289da VC |
1425 | int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, |
1426 | struct ecc_point *pk) | |
ea169a30 SM |
1427 | { |
1428 | u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; | |
1429 | ||
0d7a7864 VC |
1430 | if (WARN_ON(pk->ndigits != curve->g.ndigits)) |
1431 | return -EINVAL; | |
1432 | ||
ea169a30 SM |
1433 | /* Check 1: Verify key is not the zero point. */ |
1434 | if (ecc_point_is_zero(pk)) | |
1435 | return -EINVAL; | |
1436 | ||
1437 | /* Check 2: Verify key is in the range [1, p-1]. */ | |
1438 | if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) | |
1439 | return -EINVAL; | |
1440 | if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) | |
1441 | return -EINVAL; | |
1442 | ||
1443 | /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ | |
1444 | vli_mod_square_fast(yy, pk->y, curve->p, pk->ndigits); /* y^2 */ | |
1445 | vli_mod_square_fast(xxx, pk->x, curve->p, pk->ndigits); /* x^2 */ | |
1446 | vli_mod_mult_fast(xxx, xxx, pk->x, curve->p, pk->ndigits); /* x^3 */ | |
1447 | vli_mod_mult_fast(w, curve->a, pk->x, curve->p, pk->ndigits); /* a·x */ | |
1448 | vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */ | |
1449 | vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */ | |
1450 | if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */ | |
1451 | return -EINVAL; | |
1452 | ||
1453 | return 0; | |
ea169a30 | 1454 | } |
4a2289da | 1455 | EXPORT_SYMBOL(ecc_is_pubkey_valid_partial); |
ea169a30 | 1456 | |
6914dd53 SM |
1457 | /* SP800-56A section 5.6.2.3.3 full verification */ |
1458 | int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, | |
1459 | struct ecc_point *pk) | |
1460 | { | |
1461 | struct ecc_point *nQ; | |
1462 | ||
1463 | /* Checks 1 through 3 */ | |
1464 | int ret = ecc_is_pubkey_valid_partial(curve, pk); | |
1465 | ||
1466 | if (ret) | |
1467 | return ret; | |
1468 | ||
1469 | /* Check 4: Verify that nQ is the zero point. */ | |
1470 | nQ = ecc_alloc_point(pk->ndigits); | |
1471 | if (!nQ) | |
1472 | return -ENOMEM; | |
1473 | ||
1474 | ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits); | |
1475 | if (!ecc_point_is_zero(nQ)) | |
1476 | ret = -EINVAL; | |
1477 | ||
1478 | ecc_free_point(nQ); | |
1479 | ||
1480 | return ret; | |
1481 | } | |
1482 | EXPORT_SYMBOL(ecc_is_pubkey_valid_full); | |
1483 | ||
8f44df15 | 1484 | int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, |
ad269597 TA |
1485 | const u64 *private_key, const u64 *public_key, |
1486 | u64 *secret) | |
3c4b2390 SB |
1487 | { |
1488 | int ret = 0; | |
1489 | struct ecc_point *product, *pk; | |
d5c3b178 KC |
1490 | u64 priv[ECC_MAX_DIGITS]; |
1491 | u64 rand_z[ECC_MAX_DIGITS]; | |
1492 | unsigned int nbytes; | |
3c4b2390 SB |
1493 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
1494 | ||
d5c3b178 KC |
1495 | if (!private_key || !public_key || !curve || |
1496 | ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) { | |
3c4b2390 SB |
1497 | ret = -EINVAL; |
1498 | goto out; | |
1499 | } | |
1500 | ||
d5c3b178 | 1501 | nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
3c4b2390 | 1502 | |
d5c3b178 | 1503 | get_random_bytes(rand_z, nbytes); |
3c4b2390 SB |
1504 | |
1505 | pk = ecc_alloc_point(ndigits); | |
1506 | if (!pk) { | |
1507 | ret = -ENOMEM; | |
d5c3b178 | 1508 | goto out; |
3c4b2390 SB |
1509 | } |
1510 | ||
ea169a30 SM |
1511 | ecc_swap_digits(public_key, pk->x, ndigits); |
1512 | ecc_swap_digits(&public_key[ndigits], pk->y, ndigits); | |
1513 | ret = ecc_is_pubkey_valid_partial(curve, pk); | |
1514 | if (ret) | |
1515 | goto err_alloc_product; | |
1516 | ||
1517 | ecc_swap_digits(private_key, priv, ndigits); | |
1518 | ||
3c4b2390 SB |
1519 | product = ecc_alloc_point(ndigits); |
1520 | if (!product) { | |
1521 | ret = -ENOMEM; | |
1522 | goto err_alloc_product; | |
1523 | } | |
1524 | ||
3da2c1df | 1525 | ecc_point_mult(product, pk, priv, rand_z, curve, ndigits); |
3c4b2390 | 1526 | |
e7d2b41e | 1527 | if (ecc_point_is_zero(product)) { |
3c4b2390 | 1528 | ret = -EFAULT; |
e7d2b41e SM |
1529 | goto err_validity; |
1530 | } | |
1531 | ||
1532 | ecc_swap_digits(product->x, secret, ndigits); | |
3c4b2390 | 1533 | |
e7d2b41e SM |
1534 | err_validity: |
1535 | memzero_explicit(priv, sizeof(priv)); | |
1536 | memzero_explicit(rand_z, sizeof(rand_z)); | |
3c4b2390 SB |
1537 | ecc_free_point(product); |
1538 | err_alloc_product: | |
1539 | ecc_free_point(pk); | |
1540 | out: | |
1541 | return ret; | |
1542 | } | |
4a2289da VC |
1543 | EXPORT_SYMBOL(crypto_ecdh_shared_secret); |
1544 | ||
1545 | MODULE_LICENSE("Dual BSD/GPL"); |