]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. | |
3 | * Copyright (c) 1997 Dan Malek ([email protected]) | |
4 | * | |
5 | * This version of the driver is specific to the FADS implementation, | |
6 | * since the board contains control registers external to the processor | |
7 | * for the control of the LevelOne LXT970 transceiver. The MPC860T manual | |
8 | * describes connections using the internal parallel port I/O, which | |
9 | * is basically all of Port D. | |
10 | * | |
7dd6a2aa | 11 | * Right now, I am very wasteful with the buffers. I allocate memory |
1da177e4 LT |
12 | * pages and then divide them into 2K frame buffers. This way I know I |
13 | * have buffers large enough to hold one frame within one buffer descriptor. | |
14 | * Once I get this working, I will use 64 or 128 byte CPM buffers, which | |
15 | * will be much more memory efficient and will easily handle lots of | |
16 | * small packets. | |
17 | * | |
18 | * Much better multiple PHY support by Magnus Damm. | |
19 | * Copyright (c) 2000 Ericsson Radio Systems AB. | |
20 | * | |
21 | * Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282. | |
7dd6a2aa GU |
22 | * Copyright (c) 2001-2004 Greg Ungerer ([email protected]) |
23 | * | |
24 | * Bug fixes and cleanup by Philippe De Muyter ([email protected]) | |
25 | * Copyright (c) 2004-2005 Macq Electronique SA. | |
1da177e4 LT |
26 | */ |
27 | ||
28 | #include <linux/config.h> | |
29 | #include <linux/module.h> | |
30 | #include <linux/kernel.h> | |
31 | #include <linux/string.h> | |
32 | #include <linux/ptrace.h> | |
33 | #include <linux/errno.h> | |
34 | #include <linux/ioport.h> | |
35 | #include <linux/slab.h> | |
36 | #include <linux/interrupt.h> | |
37 | #include <linux/pci.h> | |
38 | #include <linux/init.h> | |
39 | #include <linux/delay.h> | |
40 | #include <linux/netdevice.h> | |
41 | #include <linux/etherdevice.h> | |
42 | #include <linux/skbuff.h> | |
43 | #include <linux/spinlock.h> | |
44 | #include <linux/workqueue.h> | |
45 | #include <linux/bitops.h> | |
46 | ||
47 | #include <asm/irq.h> | |
48 | #include <asm/uaccess.h> | |
49 | #include <asm/io.h> | |
50 | #include <asm/pgtable.h> | |
51 | ||
7dd6a2aa GU |
52 | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \ |
53 | defined(CONFIG_M5272) || defined(CONFIG_M528x) | |
1da177e4 LT |
54 | #include <asm/coldfire.h> |
55 | #include <asm/mcfsim.h> | |
56 | #include "fec.h" | |
57 | #else | |
58 | #include <asm/8xx_immap.h> | |
59 | #include <asm/mpc8xx.h> | |
60 | #include "commproc.h" | |
61 | #endif | |
62 | ||
63 | #if defined(CONFIG_FEC2) | |
64 | #define FEC_MAX_PORTS 2 | |
65 | #else | |
66 | #define FEC_MAX_PORTS 1 | |
67 | #endif | |
68 | ||
69 | /* | |
70 | * Define the fixed address of the FEC hardware. | |
71 | */ | |
72 | static unsigned int fec_hw[] = { | |
73 | #if defined(CONFIG_M5272) | |
74 | (MCF_MBAR + 0x840), | |
75 | #elif defined(CONFIG_M527x) | |
76 | (MCF_MBAR + 0x1000), | |
77 | (MCF_MBAR + 0x1800), | |
7dd6a2aa | 78 | #elif defined(CONFIG_M523x) || defined(CONFIG_M528x) |
1da177e4 LT |
79 | (MCF_MBAR + 0x1000), |
80 | #else | |
81 | &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec), | |
82 | #endif | |
83 | }; | |
84 | ||
85 | static unsigned char fec_mac_default[] = { | |
86 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
87 | }; | |
88 | ||
89 | /* | |
90 | * Some hardware gets it MAC address out of local flash memory. | |
91 | * if this is non-zero then assume it is the address to get MAC from. | |
92 | */ | |
93 | #if defined(CONFIG_NETtel) | |
94 | #define FEC_FLASHMAC 0xf0006006 | |
95 | #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) | |
96 | #define FEC_FLASHMAC 0xf0006000 | |
97 | #elif defined (CONFIG_MTD_KeyTechnology) | |
98 | #define FEC_FLASHMAC 0xffe04000 | |
99 | #elif defined(CONFIG_CANCam) | |
100 | #define FEC_FLASHMAC 0xf0020000 | |
7dd6a2aa GU |
101 | #elif defined (CONFIG_M5272C3) |
102 | #define FEC_FLASHMAC (0xffe04000 + 4) | |
103 | #elif defined(CONFIG_MOD5272) | |
104 | #define FEC_FLASHMAC 0xffc0406b | |
1da177e4 LT |
105 | #else |
106 | #define FEC_FLASHMAC 0 | |
107 | #endif | |
108 | ||
1da177e4 LT |
109 | /* Forward declarations of some structures to support different PHYs |
110 | */ | |
111 | ||
112 | typedef struct { | |
113 | uint mii_data; | |
114 | void (*funct)(uint mii_reg, struct net_device *dev); | |
115 | } phy_cmd_t; | |
116 | ||
117 | typedef struct { | |
118 | uint id; | |
119 | char *name; | |
120 | ||
121 | const phy_cmd_t *config; | |
122 | const phy_cmd_t *startup; | |
123 | const phy_cmd_t *ack_int; | |
124 | const phy_cmd_t *shutdown; | |
125 | } phy_info_t; | |
126 | ||
127 | /* The number of Tx and Rx buffers. These are allocated from the page | |
128 | * pool. The code may assume these are power of two, so it it best | |
129 | * to keep them that size. | |
130 | * We don't need to allocate pages for the transmitter. We just use | |
131 | * the skbuffer directly. | |
132 | */ | |
133 | #define FEC_ENET_RX_PAGES 8 | |
134 | #define FEC_ENET_RX_FRSIZE 2048 | |
135 | #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) | |
136 | #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) | |
137 | #define FEC_ENET_TX_FRSIZE 2048 | |
138 | #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) | |
139 | #define TX_RING_SIZE 16 /* Must be power of two */ | |
140 | #define TX_RING_MOD_MASK 15 /* for this to work */ | |
141 | ||
142 | /* Interrupt events/masks. | |
143 | */ | |
144 | #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ | |
145 | #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ | |
146 | #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ | |
147 | #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ | |
148 | #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ | |
149 | #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ | |
150 | #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ | |
151 | #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ | |
152 | #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ | |
153 | #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ | |
154 | ||
155 | /* The FEC stores dest/src/type, data, and checksum for receive packets. | |
156 | */ | |
157 | #define PKT_MAXBUF_SIZE 1518 | |
158 | #define PKT_MINBUF_SIZE 64 | |
159 | #define PKT_MAXBLR_SIZE 1520 | |
160 | ||
161 | ||
162 | /* | |
163 | * The 5270/5271/5280/5282 RX control register also contains maximum frame | |
164 | * size bits. Other FEC hardware does not, so we need to take that into | |
165 | * account when setting it. | |
166 | */ | |
7dd6a2aa | 167 | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) |
1da177e4 LT |
168 | #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) |
169 | #else | |
170 | #define OPT_FRAME_SIZE 0 | |
171 | #endif | |
172 | ||
173 | /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and | |
174 | * tx_bd_base always point to the base of the buffer descriptors. The | |
175 | * cur_rx and cur_tx point to the currently available buffer. | |
176 | * The dirty_tx tracks the current buffer that is being sent by the | |
177 | * controller. The cur_tx and dirty_tx are equal under both completely | |
178 | * empty and completely full conditions. The empty/ready indicator in | |
179 | * the buffer descriptor determines the actual condition. | |
180 | */ | |
181 | struct fec_enet_private { | |
182 | /* Hardware registers of the FEC device */ | |
183 | volatile fec_t *hwp; | |
184 | ||
185 | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ | |
186 | unsigned char *tx_bounce[TX_RING_SIZE]; | |
187 | struct sk_buff* tx_skbuff[TX_RING_SIZE]; | |
188 | ushort skb_cur; | |
189 | ushort skb_dirty; | |
190 | ||
191 | /* CPM dual port RAM relative addresses. | |
192 | */ | |
193 | cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ | |
194 | cbd_t *tx_bd_base; | |
195 | cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ | |
196 | cbd_t *dirty_tx; /* The ring entries to be free()ed. */ | |
197 | struct net_device_stats stats; | |
198 | uint tx_full; | |
199 | spinlock_t lock; | |
200 | ||
201 | uint phy_id; | |
202 | uint phy_id_done; | |
203 | uint phy_status; | |
204 | uint phy_speed; | |
7dd6a2aa | 205 | phy_info_t const *phy; |
1da177e4 LT |
206 | struct work_struct phy_task; |
207 | ||
208 | uint sequence_done; | |
209 | uint mii_phy_task_queued; | |
210 | ||
211 | uint phy_addr; | |
212 | ||
213 | int index; | |
214 | int opened; | |
215 | int link; | |
216 | int old_link; | |
217 | int full_duplex; | |
1da177e4 LT |
218 | }; |
219 | ||
220 | static int fec_enet_open(struct net_device *dev); | |
221 | static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); | |
222 | static void fec_enet_mii(struct net_device *dev); | |
223 | static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs); | |
224 | static void fec_enet_tx(struct net_device *dev); | |
225 | static void fec_enet_rx(struct net_device *dev); | |
226 | static int fec_enet_close(struct net_device *dev); | |
227 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev); | |
228 | static void set_multicast_list(struct net_device *dev); | |
229 | static void fec_restart(struct net_device *dev, int duplex); | |
230 | static void fec_stop(struct net_device *dev); | |
231 | static void fec_set_mac_address(struct net_device *dev); | |
232 | ||
233 | ||
234 | /* MII processing. We keep this as simple as possible. Requests are | |
235 | * placed on the list (if there is room). When the request is finished | |
236 | * by the MII, an optional function may be called. | |
237 | */ | |
238 | typedef struct mii_list { | |
239 | uint mii_regval; | |
240 | void (*mii_func)(uint val, struct net_device *dev); | |
241 | struct mii_list *mii_next; | |
242 | } mii_list_t; | |
243 | ||
244 | #define NMII 20 | |
7dd6a2aa GU |
245 | static mii_list_t mii_cmds[NMII]; |
246 | static mii_list_t *mii_free; | |
247 | static mii_list_t *mii_head; | |
248 | static mii_list_t *mii_tail; | |
1da177e4 LT |
249 | |
250 | static int mii_queue(struct net_device *dev, int request, | |
251 | void (*func)(uint, struct net_device *)); | |
252 | ||
253 | /* Make MII read/write commands for the FEC. | |
254 | */ | |
255 | #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) | |
256 | #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ | |
257 | (VAL & 0xffff)) | |
258 | #define mk_mii_end 0 | |
259 | ||
260 | /* Transmitter timeout. | |
261 | */ | |
262 | #define TX_TIMEOUT (2*HZ) | |
263 | ||
264 | /* Register definitions for the PHY. | |
265 | */ | |
266 | ||
267 | #define MII_REG_CR 0 /* Control Register */ | |
268 | #define MII_REG_SR 1 /* Status Register */ | |
269 | #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */ | |
270 | #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */ | |
271 | #define MII_REG_ANAR 4 /* A-N Advertisement Register */ | |
272 | #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */ | |
273 | #define MII_REG_ANER 6 /* A-N Expansion Register */ | |
274 | #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */ | |
275 | #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */ | |
276 | ||
277 | /* values for phy_status */ | |
278 | ||
279 | #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ | |
280 | #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ | |
281 | #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ | |
282 | #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ | |
283 | #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ | |
284 | #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ | |
285 | #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ | |
286 | ||
287 | #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ | |
288 | #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ | |
289 | #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ | |
290 | #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ | |
291 | #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ | |
292 | #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ | |
293 | #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ | |
294 | #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ | |
295 | ||
296 | ||
297 | static int | |
298 | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) | |
299 | { | |
300 | struct fec_enet_private *fep; | |
301 | volatile fec_t *fecp; | |
302 | volatile cbd_t *bdp; | |
303 | ||
304 | fep = netdev_priv(dev); | |
305 | fecp = (volatile fec_t*)dev->base_addr; | |
306 | ||
307 | if (!fep->link) { | |
308 | /* Link is down or autonegotiation is in progress. */ | |
309 | return 1; | |
310 | } | |
311 | ||
312 | /* Fill in a Tx ring entry */ | |
313 | bdp = fep->cur_tx; | |
314 | ||
315 | #ifndef final_version | |
316 | if (bdp->cbd_sc & BD_ENET_TX_READY) { | |
317 | /* Ooops. All transmit buffers are full. Bail out. | |
318 | * This should not happen, since dev->tbusy should be set. | |
319 | */ | |
320 | printk("%s: tx queue full!.\n", dev->name); | |
321 | return 1; | |
322 | } | |
323 | #endif | |
324 | ||
325 | /* Clear all of the status flags. | |
326 | */ | |
327 | bdp->cbd_sc &= ~BD_ENET_TX_STATS; | |
328 | ||
329 | /* Set buffer length and buffer pointer. | |
330 | */ | |
331 | bdp->cbd_bufaddr = __pa(skb->data); | |
332 | bdp->cbd_datlen = skb->len; | |
333 | ||
334 | /* | |
335 | * On some FEC implementations data must be aligned on | |
336 | * 4-byte boundaries. Use bounce buffers to copy data | |
337 | * and get it aligned. Ugh. | |
338 | */ | |
339 | if (bdp->cbd_bufaddr & 0x3) { | |
340 | unsigned int index; | |
341 | index = bdp - fep->tx_bd_base; | |
342 | memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen); | |
343 | bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]); | |
344 | } | |
345 | ||
346 | /* Save skb pointer. | |
347 | */ | |
348 | fep->tx_skbuff[fep->skb_cur] = skb; | |
349 | ||
350 | fep->stats.tx_bytes += skb->len; | |
351 | fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; | |
352 | ||
353 | /* Push the data cache so the CPM does not get stale memory | |
354 | * data. | |
355 | */ | |
356 | flush_dcache_range((unsigned long)skb->data, | |
357 | (unsigned long)skb->data + skb->len); | |
358 | ||
359 | spin_lock_irq(&fep->lock); | |
360 | ||
361 | /* Send it on its way. Tell FEC its ready, interrupt when done, | |
362 | * its the last BD of the frame, and to put the CRC on the end. | |
363 | */ | |
364 | ||
365 | bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | |
366 | | BD_ENET_TX_LAST | BD_ENET_TX_TC); | |
367 | ||
368 | dev->trans_start = jiffies; | |
369 | ||
370 | /* Trigger transmission start */ | |
371 | fecp->fec_x_des_active = 0x01000000; | |
372 | ||
373 | /* If this was the last BD in the ring, start at the beginning again. | |
374 | */ | |
375 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) { | |
376 | bdp = fep->tx_bd_base; | |
377 | } else { | |
378 | bdp++; | |
379 | } | |
380 | ||
381 | if (bdp == fep->dirty_tx) { | |
382 | fep->tx_full = 1; | |
383 | netif_stop_queue(dev); | |
384 | } | |
385 | ||
386 | fep->cur_tx = (cbd_t *)bdp; | |
387 | ||
388 | spin_unlock_irq(&fep->lock); | |
389 | ||
390 | return 0; | |
391 | } | |
392 | ||
393 | static void | |
394 | fec_timeout(struct net_device *dev) | |
395 | { | |
396 | struct fec_enet_private *fep = netdev_priv(dev); | |
397 | ||
398 | printk("%s: transmit timed out.\n", dev->name); | |
399 | fep->stats.tx_errors++; | |
400 | #ifndef final_version | |
401 | { | |
402 | int i; | |
403 | cbd_t *bdp; | |
404 | ||
405 | printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n", | |
406 | (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "", | |
407 | (unsigned long)fep->dirty_tx, | |
408 | (unsigned long)fep->cur_rx); | |
409 | ||
410 | bdp = fep->tx_bd_base; | |
411 | printk(" tx: %u buffers\n", TX_RING_SIZE); | |
412 | for (i = 0 ; i < TX_RING_SIZE; i++) { | |
413 | printk(" %08x: %04x %04x %08x\n", | |
414 | (uint) bdp, | |
415 | bdp->cbd_sc, | |
416 | bdp->cbd_datlen, | |
417 | (int) bdp->cbd_bufaddr); | |
418 | bdp++; | |
419 | } | |
420 | ||
421 | bdp = fep->rx_bd_base; | |
422 | printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE); | |
423 | for (i = 0 ; i < RX_RING_SIZE; i++) { | |
424 | printk(" %08x: %04x %04x %08x\n", | |
425 | (uint) bdp, | |
426 | bdp->cbd_sc, | |
427 | bdp->cbd_datlen, | |
428 | (int) bdp->cbd_bufaddr); | |
429 | bdp++; | |
430 | } | |
431 | } | |
432 | #endif | |
7dd6a2aa | 433 | fec_restart(dev, fep->full_duplex); |
1da177e4 LT |
434 | netif_wake_queue(dev); |
435 | } | |
436 | ||
437 | /* The interrupt handler. | |
438 | * This is called from the MPC core interrupt. | |
439 | */ | |
440 | static irqreturn_t | |
441 | fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs) | |
442 | { | |
443 | struct net_device *dev = dev_id; | |
444 | volatile fec_t *fecp; | |
445 | uint int_events; | |
446 | int handled = 0; | |
447 | ||
448 | fecp = (volatile fec_t*)dev->base_addr; | |
449 | ||
450 | /* Get the interrupt events that caused us to be here. | |
451 | */ | |
452 | while ((int_events = fecp->fec_ievent) != 0) { | |
453 | fecp->fec_ievent = int_events; | |
454 | ||
455 | /* Handle receive event in its own function. | |
456 | */ | |
457 | if (int_events & FEC_ENET_RXF) { | |
458 | handled = 1; | |
459 | fec_enet_rx(dev); | |
460 | } | |
461 | ||
462 | /* Transmit OK, or non-fatal error. Update the buffer | |
463 | descriptors. FEC handles all errors, we just discover | |
464 | them as part of the transmit process. | |
465 | */ | |
466 | if (int_events & FEC_ENET_TXF) { | |
467 | handled = 1; | |
468 | fec_enet_tx(dev); | |
469 | } | |
470 | ||
471 | if (int_events & FEC_ENET_MII) { | |
472 | handled = 1; | |
473 | fec_enet_mii(dev); | |
474 | } | |
475 | ||
476 | } | |
477 | return IRQ_RETVAL(handled); | |
478 | } | |
479 | ||
480 | ||
481 | static void | |
482 | fec_enet_tx(struct net_device *dev) | |
483 | { | |
484 | struct fec_enet_private *fep; | |
485 | volatile cbd_t *bdp; | |
486 | struct sk_buff *skb; | |
487 | ||
488 | fep = netdev_priv(dev); | |
489 | spin_lock(&fep->lock); | |
490 | bdp = fep->dirty_tx; | |
491 | ||
492 | while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) { | |
493 | if (bdp == fep->cur_tx && fep->tx_full == 0) break; | |
494 | ||
495 | skb = fep->tx_skbuff[fep->skb_dirty]; | |
496 | /* Check for errors. */ | |
497 | if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | | |
498 | BD_ENET_TX_RL | BD_ENET_TX_UN | | |
499 | BD_ENET_TX_CSL)) { | |
500 | fep->stats.tx_errors++; | |
501 | if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ | |
502 | fep->stats.tx_heartbeat_errors++; | |
503 | if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ | |
504 | fep->stats.tx_window_errors++; | |
505 | if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ | |
506 | fep->stats.tx_aborted_errors++; | |
507 | if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ | |
508 | fep->stats.tx_fifo_errors++; | |
509 | if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ | |
510 | fep->stats.tx_carrier_errors++; | |
511 | } else { | |
512 | fep->stats.tx_packets++; | |
513 | } | |
514 | ||
515 | #ifndef final_version | |
516 | if (bdp->cbd_sc & BD_ENET_TX_READY) | |
517 | printk("HEY! Enet xmit interrupt and TX_READY.\n"); | |
518 | #endif | |
519 | /* Deferred means some collisions occurred during transmit, | |
520 | * but we eventually sent the packet OK. | |
521 | */ | |
522 | if (bdp->cbd_sc & BD_ENET_TX_DEF) | |
523 | fep->stats.collisions++; | |
524 | ||
525 | /* Free the sk buffer associated with this last transmit. | |
526 | */ | |
527 | dev_kfree_skb_any(skb); | |
528 | fep->tx_skbuff[fep->skb_dirty] = NULL; | |
529 | fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; | |
530 | ||
531 | /* Update pointer to next buffer descriptor to be transmitted. | |
532 | */ | |
533 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) | |
534 | bdp = fep->tx_bd_base; | |
535 | else | |
536 | bdp++; | |
537 | ||
538 | /* Since we have freed up a buffer, the ring is no longer | |
539 | * full. | |
540 | */ | |
541 | if (fep->tx_full) { | |
542 | fep->tx_full = 0; | |
543 | if (netif_queue_stopped(dev)) | |
544 | netif_wake_queue(dev); | |
545 | } | |
546 | } | |
547 | fep->dirty_tx = (cbd_t *)bdp; | |
548 | spin_unlock(&fep->lock); | |
549 | } | |
550 | ||
551 | ||
552 | /* During a receive, the cur_rx points to the current incoming buffer. | |
553 | * When we update through the ring, if the next incoming buffer has | |
554 | * not been given to the system, we just set the empty indicator, | |
555 | * effectively tossing the packet. | |
556 | */ | |
557 | static void | |
558 | fec_enet_rx(struct net_device *dev) | |
559 | { | |
560 | struct fec_enet_private *fep; | |
561 | volatile fec_t *fecp; | |
562 | volatile cbd_t *bdp; | |
563 | struct sk_buff *skb; | |
564 | ushort pkt_len; | |
565 | __u8 *data; | |
566 | ||
567 | fep = netdev_priv(dev); | |
568 | fecp = (volatile fec_t*)dev->base_addr; | |
569 | ||
570 | /* First, grab all of the stats for the incoming packet. | |
571 | * These get messed up if we get called due to a busy condition. | |
572 | */ | |
573 | bdp = fep->cur_rx; | |
574 | ||
575 | while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) { | |
576 | ||
577 | #ifndef final_version | |
578 | /* Since we have allocated space to hold a complete frame, | |
579 | * the last indicator should be set. | |
580 | */ | |
581 | if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0) | |
582 | printk("FEC ENET: rcv is not +last\n"); | |
583 | #endif | |
584 | ||
585 | if (!fep->opened) | |
586 | goto rx_processing_done; | |
587 | ||
588 | /* Check for errors. */ | |
589 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | | |
590 | BD_ENET_RX_CR | BD_ENET_RX_OV)) { | |
591 | fep->stats.rx_errors++; | |
592 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { | |
593 | /* Frame too long or too short. */ | |
594 | fep->stats.rx_length_errors++; | |
595 | } | |
596 | if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ | |
597 | fep->stats.rx_frame_errors++; | |
598 | if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ | |
599 | fep->stats.rx_crc_errors++; | |
600 | if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ | |
601 | fep->stats.rx_crc_errors++; | |
602 | } | |
603 | ||
604 | /* Report late collisions as a frame error. | |
605 | * On this error, the BD is closed, but we don't know what we | |
606 | * have in the buffer. So, just drop this frame on the floor. | |
607 | */ | |
608 | if (bdp->cbd_sc & BD_ENET_RX_CL) { | |
609 | fep->stats.rx_errors++; | |
610 | fep->stats.rx_frame_errors++; | |
611 | goto rx_processing_done; | |
612 | } | |
613 | ||
614 | /* Process the incoming frame. | |
615 | */ | |
616 | fep->stats.rx_packets++; | |
617 | pkt_len = bdp->cbd_datlen; | |
618 | fep->stats.rx_bytes += pkt_len; | |
619 | data = (__u8*)__va(bdp->cbd_bufaddr); | |
620 | ||
621 | /* This does 16 byte alignment, exactly what we need. | |
622 | * The packet length includes FCS, but we don't want to | |
623 | * include that when passing upstream as it messes up | |
624 | * bridging applications. | |
625 | */ | |
626 | skb = dev_alloc_skb(pkt_len-4); | |
627 | ||
628 | if (skb == NULL) { | |
629 | printk("%s: Memory squeeze, dropping packet.\n", dev->name); | |
630 | fep->stats.rx_dropped++; | |
631 | } else { | |
632 | skb->dev = dev; | |
633 | skb_put(skb,pkt_len-4); /* Make room */ | |
634 | eth_copy_and_sum(skb, | |
635 | (unsigned char *)__va(bdp->cbd_bufaddr), | |
636 | pkt_len-4, 0); | |
637 | skb->protocol=eth_type_trans(skb,dev); | |
638 | netif_rx(skb); | |
639 | } | |
640 | rx_processing_done: | |
641 | ||
642 | /* Clear the status flags for this buffer. | |
643 | */ | |
644 | bdp->cbd_sc &= ~BD_ENET_RX_STATS; | |
645 | ||
646 | /* Mark the buffer empty. | |
647 | */ | |
648 | bdp->cbd_sc |= BD_ENET_RX_EMPTY; | |
649 | ||
650 | /* Update BD pointer to next entry. | |
651 | */ | |
652 | if (bdp->cbd_sc & BD_ENET_RX_WRAP) | |
653 | bdp = fep->rx_bd_base; | |
654 | else | |
655 | bdp++; | |
656 | ||
657 | #if 1 | |
658 | /* Doing this here will keep the FEC running while we process | |
659 | * incoming frames. On a heavily loaded network, we should be | |
660 | * able to keep up at the expense of system resources. | |
661 | */ | |
662 | fecp->fec_r_des_active = 0x01000000; | |
663 | #endif | |
664 | } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */ | |
665 | fep->cur_rx = (cbd_t *)bdp; | |
666 | ||
667 | #if 0 | |
668 | /* Doing this here will allow us to process all frames in the | |
669 | * ring before the FEC is allowed to put more there. On a heavily | |
670 | * loaded network, some frames may be lost. Unfortunately, this | |
671 | * increases the interrupt overhead since we can potentially work | |
672 | * our way back to the interrupt return only to come right back | |
673 | * here. | |
674 | */ | |
675 | fecp->fec_r_des_active = 0x01000000; | |
676 | #endif | |
677 | } | |
678 | ||
679 | ||
680 | static void | |
681 | fec_enet_mii(struct net_device *dev) | |
682 | { | |
683 | struct fec_enet_private *fep; | |
684 | volatile fec_t *ep; | |
685 | mii_list_t *mip; | |
686 | uint mii_reg; | |
687 | ||
688 | fep = netdev_priv(dev); | |
689 | ep = fep->hwp; | |
690 | mii_reg = ep->fec_mii_data; | |
691 | ||
692 | if ((mip = mii_head) == NULL) { | |
693 | printk("MII and no head!\n"); | |
694 | return; | |
695 | } | |
696 | ||
697 | if (mip->mii_func != NULL) | |
698 | (*(mip->mii_func))(mii_reg, dev); | |
699 | ||
700 | mii_head = mip->mii_next; | |
701 | mip->mii_next = mii_free; | |
702 | mii_free = mip; | |
703 | ||
704 | if ((mip = mii_head) != NULL) | |
705 | ep->fec_mii_data = mip->mii_regval; | |
706 | } | |
707 | ||
708 | static int | |
709 | mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) | |
710 | { | |
711 | struct fec_enet_private *fep; | |
712 | unsigned long flags; | |
713 | mii_list_t *mip; | |
714 | int retval; | |
715 | ||
716 | /* Add PHY address to register command. | |
717 | */ | |
718 | fep = netdev_priv(dev); | |
719 | regval |= fep->phy_addr << 23; | |
720 | ||
721 | retval = 0; | |
722 | ||
723 | save_flags(flags); | |
724 | cli(); | |
725 | ||
726 | if ((mip = mii_free) != NULL) { | |
727 | mii_free = mip->mii_next; | |
728 | mip->mii_regval = regval; | |
729 | mip->mii_func = func; | |
730 | mip->mii_next = NULL; | |
731 | if (mii_head) { | |
732 | mii_tail->mii_next = mip; | |
733 | mii_tail = mip; | |
734 | } | |
735 | else { | |
736 | mii_head = mii_tail = mip; | |
737 | fep->hwp->fec_mii_data = regval; | |
738 | } | |
739 | } | |
740 | else { | |
741 | retval = 1; | |
742 | } | |
743 | ||
744 | restore_flags(flags); | |
745 | ||
746 | return(retval); | |
747 | } | |
748 | ||
749 | static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) | |
750 | { | |
751 | int k; | |
752 | ||
753 | if(!c) | |
754 | return; | |
755 | ||
756 | for(k = 0; (c+k)->mii_data != mk_mii_end; k++) { | |
757 | mii_queue(dev, (c+k)->mii_data, (c+k)->funct); | |
758 | } | |
759 | } | |
760 | ||
761 | static void mii_parse_sr(uint mii_reg, struct net_device *dev) | |
762 | { | |
763 | struct fec_enet_private *fep = netdev_priv(dev); | |
764 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 765 | uint status; |
1da177e4 | 766 | |
7dd6a2aa | 767 | status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); |
1da177e4 LT |
768 | |
769 | if (mii_reg & 0x0004) | |
7dd6a2aa | 770 | status |= PHY_STAT_LINK; |
1da177e4 | 771 | if (mii_reg & 0x0010) |
7dd6a2aa | 772 | status |= PHY_STAT_FAULT; |
1da177e4 | 773 | if (mii_reg & 0x0020) |
7dd6a2aa GU |
774 | status |= PHY_STAT_ANC; |
775 | ||
776 | *s = status; | |
1da177e4 LT |
777 | } |
778 | ||
779 | static void mii_parse_cr(uint mii_reg, struct net_device *dev) | |
780 | { | |
781 | struct fec_enet_private *fep = netdev_priv(dev); | |
782 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 783 | uint status; |
1da177e4 | 784 | |
7dd6a2aa | 785 | status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP); |
1da177e4 LT |
786 | |
787 | if (mii_reg & 0x1000) | |
7dd6a2aa | 788 | status |= PHY_CONF_ANE; |
1da177e4 | 789 | if (mii_reg & 0x4000) |
7dd6a2aa GU |
790 | status |= PHY_CONF_LOOP; |
791 | *s = status; | |
1da177e4 LT |
792 | } |
793 | ||
794 | static void mii_parse_anar(uint mii_reg, struct net_device *dev) | |
795 | { | |
796 | struct fec_enet_private *fep = netdev_priv(dev); | |
797 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 798 | uint status; |
1da177e4 | 799 | |
7dd6a2aa | 800 | status = *s & ~(PHY_CONF_SPMASK); |
1da177e4 LT |
801 | |
802 | if (mii_reg & 0x0020) | |
7dd6a2aa | 803 | status |= PHY_CONF_10HDX; |
1da177e4 | 804 | if (mii_reg & 0x0040) |
7dd6a2aa | 805 | status |= PHY_CONF_10FDX; |
1da177e4 | 806 | if (mii_reg & 0x0080) |
7dd6a2aa | 807 | status |= PHY_CONF_100HDX; |
1da177e4 | 808 | if (mii_reg & 0x00100) |
7dd6a2aa GU |
809 | status |= PHY_CONF_100FDX; |
810 | *s = status; | |
1da177e4 LT |
811 | } |
812 | ||
813 | /* ------------------------------------------------------------------------- */ | |
814 | /* The Level one LXT970 is used by many boards */ | |
815 | ||
816 | #define MII_LXT970_MIRROR 16 /* Mirror register */ | |
817 | #define MII_LXT970_IER 17 /* Interrupt Enable Register */ | |
818 | #define MII_LXT970_ISR 18 /* Interrupt Status Register */ | |
819 | #define MII_LXT970_CONFIG 19 /* Configuration Register */ | |
820 | #define MII_LXT970_CSR 20 /* Chip Status Register */ | |
821 | ||
822 | static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) | |
823 | { | |
824 | struct fec_enet_private *fep = netdev_priv(dev); | |
825 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 826 | uint status; |
1da177e4 | 827 | |
7dd6a2aa | 828 | status = *s & ~(PHY_STAT_SPMASK); |
1da177e4 LT |
829 | if (mii_reg & 0x0800) { |
830 | if (mii_reg & 0x1000) | |
7dd6a2aa | 831 | status |= PHY_STAT_100FDX; |
1da177e4 | 832 | else |
7dd6a2aa | 833 | status |= PHY_STAT_100HDX; |
1da177e4 LT |
834 | } else { |
835 | if (mii_reg & 0x1000) | |
7dd6a2aa | 836 | status |= PHY_STAT_10FDX; |
1da177e4 | 837 | else |
7dd6a2aa | 838 | status |= PHY_STAT_10HDX; |
1da177e4 | 839 | } |
7dd6a2aa | 840 | *s = status; |
1da177e4 LT |
841 | } |
842 | ||
7dd6a2aa | 843 | static phy_cmd_t const phy_cmd_lxt970_config[] = { |
1da177e4 LT |
844 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
845 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
846 | { mk_mii_end, } | |
7dd6a2aa GU |
847 | }; |
848 | static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */ | |
1da177e4 LT |
849 | { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, |
850 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
851 | { mk_mii_end, } | |
7dd6a2aa GU |
852 | }; |
853 | static phy_cmd_t const phy_cmd_lxt970_ack_int[] = { | |
1da177e4 LT |
854 | /* read SR and ISR to acknowledge */ |
855 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
856 | { mk_mii_read(MII_LXT970_ISR), NULL }, | |
857 | ||
858 | /* find out the current status */ | |
859 | { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, | |
860 | { mk_mii_end, } | |
7dd6a2aa GU |
861 | }; |
862 | static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */ | |
1da177e4 LT |
863 | { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, |
864 | { mk_mii_end, } | |
7dd6a2aa GU |
865 | }; |
866 | static phy_info_t const phy_info_lxt970 = { | |
867 | .id = 0x07810000, | |
868 | .name = "LXT970", | |
869 | .config = phy_cmd_lxt970_config, | |
870 | .startup = phy_cmd_lxt970_startup, | |
871 | .ack_int = phy_cmd_lxt970_ack_int, | |
872 | .shutdown = phy_cmd_lxt970_shutdown | |
1da177e4 LT |
873 | }; |
874 | ||
875 | /* ------------------------------------------------------------------------- */ | |
876 | /* The Level one LXT971 is used on some of my custom boards */ | |
877 | ||
878 | /* register definitions for the 971 */ | |
879 | ||
880 | #define MII_LXT971_PCR 16 /* Port Control Register */ | |
881 | #define MII_LXT971_SR2 17 /* Status Register 2 */ | |
882 | #define MII_LXT971_IER 18 /* Interrupt Enable Register */ | |
883 | #define MII_LXT971_ISR 19 /* Interrupt Status Register */ | |
884 | #define MII_LXT971_LCR 20 /* LED Control Register */ | |
885 | #define MII_LXT971_TCR 30 /* Transmit Control Register */ | |
886 | ||
887 | /* | |
888 | * I had some nice ideas of running the MDIO faster... | |
889 | * The 971 should support 8MHz and I tried it, but things acted really | |
890 | * weird, so 2.5 MHz ought to be enough for anyone... | |
891 | */ | |
892 | ||
893 | static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) | |
894 | { | |
895 | struct fec_enet_private *fep = netdev_priv(dev); | |
896 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 897 | uint status; |
1da177e4 | 898 | |
7dd6a2aa | 899 | status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); |
1da177e4 LT |
900 | |
901 | if (mii_reg & 0x0400) { | |
902 | fep->link = 1; | |
7dd6a2aa | 903 | status |= PHY_STAT_LINK; |
1da177e4 LT |
904 | } else { |
905 | fep->link = 0; | |
906 | } | |
907 | if (mii_reg & 0x0080) | |
7dd6a2aa | 908 | status |= PHY_STAT_ANC; |
1da177e4 LT |
909 | if (mii_reg & 0x4000) { |
910 | if (mii_reg & 0x0200) | |
7dd6a2aa | 911 | status |= PHY_STAT_100FDX; |
1da177e4 | 912 | else |
7dd6a2aa | 913 | status |= PHY_STAT_100HDX; |
1da177e4 LT |
914 | } else { |
915 | if (mii_reg & 0x0200) | |
7dd6a2aa | 916 | status |= PHY_STAT_10FDX; |
1da177e4 | 917 | else |
7dd6a2aa | 918 | status |= PHY_STAT_10HDX; |
1da177e4 LT |
919 | } |
920 | if (mii_reg & 0x0008) | |
7dd6a2aa | 921 | status |= PHY_STAT_FAULT; |
1da177e4 | 922 | |
7dd6a2aa GU |
923 | *s = status; |
924 | } | |
1da177e4 | 925 | |
7dd6a2aa GU |
926 | static phy_cmd_t const phy_cmd_lxt971_config[] = { |
927 | /* limit to 10MBit because my prototype board | |
1da177e4 LT |
928 | * doesn't work with 100. */ |
929 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | |
930 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
931 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | |
932 | { mk_mii_end, } | |
7dd6a2aa GU |
933 | }; |
934 | static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */ | |
1da177e4 LT |
935 | { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, |
936 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
937 | { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */ | |
938 | /* Somehow does the 971 tell me that the link is down | |
939 | * the first read after power-up. | |
940 | * read here to get a valid value in ack_int */ | |
941 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
942 | { mk_mii_end, } | |
7dd6a2aa GU |
943 | }; |
944 | static phy_cmd_t const phy_cmd_lxt971_ack_int[] = { | |
945 | /* acknowledge the int before reading status ! */ | |
946 | { mk_mii_read(MII_LXT971_ISR), NULL }, | |
1da177e4 LT |
947 | /* find out the current status */ |
948 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
949 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | |
1da177e4 | 950 | { mk_mii_end, } |
7dd6a2aa GU |
951 | }; |
952 | static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */ | |
1da177e4 LT |
953 | { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, |
954 | { mk_mii_end, } | |
7dd6a2aa GU |
955 | }; |
956 | static phy_info_t const phy_info_lxt971 = { | |
957 | .id = 0x0001378e, | |
958 | .name = "LXT971", | |
959 | .config = phy_cmd_lxt971_config, | |
960 | .startup = phy_cmd_lxt971_startup, | |
961 | .ack_int = phy_cmd_lxt971_ack_int, | |
962 | .shutdown = phy_cmd_lxt971_shutdown | |
1da177e4 LT |
963 | }; |
964 | ||
965 | /* ------------------------------------------------------------------------- */ | |
966 | /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ | |
967 | ||
968 | /* register definitions */ | |
969 | ||
970 | #define MII_QS6612_MCR 17 /* Mode Control Register */ | |
971 | #define MII_QS6612_FTR 27 /* Factory Test Register */ | |
972 | #define MII_QS6612_MCO 28 /* Misc. Control Register */ | |
973 | #define MII_QS6612_ISR 29 /* Interrupt Source Register */ | |
974 | #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ | |
975 | #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ | |
976 | ||
977 | static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) | |
978 | { | |
979 | struct fec_enet_private *fep = netdev_priv(dev); | |
980 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 981 | uint status; |
1da177e4 | 982 | |
7dd6a2aa | 983 | status = *s & ~(PHY_STAT_SPMASK); |
1da177e4 LT |
984 | |
985 | switch((mii_reg >> 2) & 7) { | |
7dd6a2aa GU |
986 | case 1: status |= PHY_STAT_10HDX; break; |
987 | case 2: status |= PHY_STAT_100HDX; break; | |
988 | case 5: status |= PHY_STAT_10FDX; break; | |
989 | case 6: status |= PHY_STAT_100FDX; break; | |
1da177e4 LT |
990 | } |
991 | ||
7dd6a2aa GU |
992 | *s = status; |
993 | } | |
994 | ||
995 | static phy_cmd_t const phy_cmd_qs6612_config[] = { | |
1da177e4 LT |
996 | /* The PHY powers up isolated on the RPX, |
997 | * so send a command to allow operation. | |
998 | */ | |
999 | { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, | |
1000 | ||
1001 | /* parse cr and anar to get some info */ | |
1002 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | |
1003 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
1004 | { mk_mii_end, } | |
7dd6a2aa GU |
1005 | }; |
1006 | static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */ | |
1da177e4 LT |
1007 | { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, |
1008 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
1009 | { mk_mii_end, } | |
7dd6a2aa GU |
1010 | }; |
1011 | static phy_cmd_t const phy_cmd_qs6612_ack_int[] = { | |
1da177e4 LT |
1012 | /* we need to read ISR, SR and ANER to acknowledge */ |
1013 | { mk_mii_read(MII_QS6612_ISR), NULL }, | |
1014 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1015 | { mk_mii_read(MII_REG_ANER), NULL }, | |
1016 | ||
1017 | /* read pcr to get info */ | |
1018 | { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, | |
1019 | { mk_mii_end, } | |
7dd6a2aa GU |
1020 | }; |
1021 | static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */ | |
1da177e4 LT |
1022 | { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, |
1023 | { mk_mii_end, } | |
7dd6a2aa GU |
1024 | }; |
1025 | static phy_info_t const phy_info_qs6612 = { | |
1026 | .id = 0x00181440, | |
1027 | .name = "QS6612", | |
1028 | .config = phy_cmd_qs6612_config, | |
1029 | .startup = phy_cmd_qs6612_startup, | |
1030 | .ack_int = phy_cmd_qs6612_ack_int, | |
1031 | .shutdown = phy_cmd_qs6612_shutdown | |
1da177e4 LT |
1032 | }; |
1033 | ||
1034 | /* ------------------------------------------------------------------------- */ | |
1035 | /* AMD AM79C874 phy */ | |
1036 | ||
1037 | /* register definitions for the 874 */ | |
1038 | ||
1039 | #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */ | |
1040 | #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */ | |
1041 | #define MII_AM79C874_DR 18 /* Diagnostic Register */ | |
1042 | #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */ | |
1043 | #define MII_AM79C874_MCR 21 /* ModeControl Register */ | |
1044 | #define MII_AM79C874_DC 23 /* Disconnect Counter */ | |
1045 | #define MII_AM79C874_REC 24 /* Recieve Error Counter */ | |
1046 | ||
1047 | static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev) | |
1048 | { | |
1049 | struct fec_enet_private *fep = netdev_priv(dev); | |
1050 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 1051 | uint status; |
1da177e4 | 1052 | |
7dd6a2aa | 1053 | status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC); |
1da177e4 LT |
1054 | |
1055 | if (mii_reg & 0x0080) | |
7dd6a2aa | 1056 | status |= PHY_STAT_ANC; |
1da177e4 | 1057 | if (mii_reg & 0x0400) |
7dd6a2aa | 1058 | status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX); |
1da177e4 | 1059 | else |
7dd6a2aa GU |
1060 | status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX); |
1061 | ||
1062 | *s = status; | |
1da177e4 LT |
1063 | } |
1064 | ||
7dd6a2aa | 1065 | static phy_cmd_t const phy_cmd_am79c874_config[] = { |
1da177e4 LT |
1066 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
1067 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
1068 | { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, | |
1069 | { mk_mii_end, } | |
7dd6a2aa GU |
1070 | }; |
1071 | static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */ | |
1da177e4 LT |
1072 | { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, |
1073 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
1074 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1075 | { mk_mii_end, } | |
7dd6a2aa GU |
1076 | }; |
1077 | static phy_cmd_t const phy_cmd_am79c874_ack_int[] = { | |
1da177e4 LT |
1078 | /* find out the current status */ |
1079 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1080 | { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, | |
1081 | /* we only need to read ISR to acknowledge */ | |
1082 | { mk_mii_read(MII_AM79C874_ICSR), NULL }, | |
1083 | { mk_mii_end, } | |
7dd6a2aa GU |
1084 | }; |
1085 | static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */ | |
1da177e4 LT |
1086 | { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, |
1087 | { mk_mii_end, } | |
7dd6a2aa GU |
1088 | }; |
1089 | static phy_info_t const phy_info_am79c874 = { | |
1090 | .id = 0x00022561, | |
1091 | .name = "AM79C874", | |
1092 | .config = phy_cmd_am79c874_config, | |
1093 | .startup = phy_cmd_am79c874_startup, | |
1094 | .ack_int = phy_cmd_am79c874_ack_int, | |
1095 | .shutdown = phy_cmd_am79c874_shutdown | |
1da177e4 LT |
1096 | }; |
1097 | ||
7dd6a2aa | 1098 | |
1da177e4 LT |
1099 | /* ------------------------------------------------------------------------- */ |
1100 | /* Kendin KS8721BL phy */ | |
1101 | ||
1102 | /* register definitions for the 8721 */ | |
1103 | ||
1104 | #define MII_KS8721BL_RXERCR 21 | |
1105 | #define MII_KS8721BL_ICSR 22 | |
1106 | #define MII_KS8721BL_PHYCR 31 | |
1107 | ||
7dd6a2aa | 1108 | static phy_cmd_t const phy_cmd_ks8721bl_config[] = { |
1da177e4 LT |
1109 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
1110 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
1111 | { mk_mii_end, } | |
7dd6a2aa GU |
1112 | }; |
1113 | static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */ | |
1da177e4 LT |
1114 | { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL }, |
1115 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
1116 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1117 | { mk_mii_end, } | |
7dd6a2aa GU |
1118 | }; |
1119 | static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = { | |
1da177e4 LT |
1120 | /* find out the current status */ |
1121 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1122 | /* we only need to read ISR to acknowledge */ | |
1123 | { mk_mii_read(MII_KS8721BL_ICSR), NULL }, | |
1124 | { mk_mii_end, } | |
7dd6a2aa GU |
1125 | }; |
1126 | static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */ | |
1da177e4 LT |
1127 | { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL }, |
1128 | { mk_mii_end, } | |
7dd6a2aa GU |
1129 | }; |
1130 | static phy_info_t const phy_info_ks8721bl = { | |
1131 | .id = 0x00022161, | |
1132 | .name = "KS8721BL", | |
1133 | .config = phy_cmd_ks8721bl_config, | |
1134 | .startup = phy_cmd_ks8721bl_startup, | |
1135 | .ack_int = phy_cmd_ks8721bl_ack_int, | |
1136 | .shutdown = phy_cmd_ks8721bl_shutdown | |
1da177e4 LT |
1137 | }; |
1138 | ||
1139 | /* ------------------------------------------------------------------------- */ | |
1140 | ||
7dd6a2aa | 1141 | static phy_info_t const * const phy_info[] = { |
1da177e4 LT |
1142 | &phy_info_lxt970, |
1143 | &phy_info_lxt971, | |
1144 | &phy_info_qs6612, | |
1145 | &phy_info_am79c874, | |
1146 | &phy_info_ks8721bl, | |
1147 | NULL | |
1148 | }; | |
1149 | ||
1150 | /* ------------------------------------------------------------------------- */ | |
1151 | ||
1152 | #ifdef CONFIG_RPXCLASSIC | |
1153 | static void | |
1154 | mii_link_interrupt(void *dev_id); | |
1155 | #else | |
1156 | static irqreturn_t | |
1157 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs); | |
1158 | #endif | |
1159 | ||
1160 | #if defined(CONFIG_M5272) | |
1161 | ||
1162 | /* | |
1163 | * Code specific to Coldfire 5272 setup. | |
1164 | */ | |
1165 | static void __inline__ fec_request_intrs(struct net_device *dev) | |
1166 | { | |
1167 | volatile unsigned long *icrp; | |
7dd6a2aa GU |
1168 | static const struct idesc { |
1169 | char *name; | |
1170 | unsigned short irq; | |
1171 | irqreturn_t (*handler)(int, void *, struct pt_regs *); | |
1172 | } *idp, id[] = { | |
1173 | { "fec(RX)", 86, fec_enet_interrupt }, | |
1174 | { "fec(TX)", 87, fec_enet_interrupt }, | |
1175 | { "fec(OTHER)", 88, fec_enet_interrupt }, | |
1176 | { "fec(MII)", 66, mii_link_interrupt }, | |
1177 | { NULL }, | |
1178 | }; | |
1da177e4 LT |
1179 | |
1180 | /* Setup interrupt handlers. */ | |
7dd6a2aa GU |
1181 | for (idp = id; idp->name; idp++) { |
1182 | if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0) | |
1183 | printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq); | |
1184 | } | |
1da177e4 LT |
1185 | |
1186 | /* Unmask interrupt at ColdFire 5272 SIM */ | |
1187 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3); | |
1188 | *icrp = 0x00000ddd; | |
1189 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | |
1190 | *icrp = (*icrp & 0x70777777) | 0x0d000000; | |
1191 | } | |
1192 | ||
1193 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | |
1194 | { | |
1195 | volatile fec_t *fecp; | |
1196 | ||
1197 | fecp = fep->hwp; | |
1198 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; | |
1199 | fecp->fec_x_cntrl = 0x00; | |
1200 | ||
1201 | /* | |
1202 | * Set MII speed to 2.5 MHz | |
1203 | * See 5272 manual section 11.5.8: MSCR | |
1204 | */ | |
1205 | fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2; | |
1206 | fecp->fec_mii_speed = fep->phy_speed; | |
1207 | ||
1208 | fec_restart(dev, 0); | |
1209 | } | |
1210 | ||
1211 | static void __inline__ fec_get_mac(struct net_device *dev) | |
1212 | { | |
1213 | struct fec_enet_private *fep = netdev_priv(dev); | |
1214 | volatile fec_t *fecp; | |
7dd6a2aa | 1215 | unsigned char *iap, tmpaddr[ETH_ALEN]; |
1da177e4 LT |
1216 | |
1217 | fecp = fep->hwp; | |
1218 | ||
7dd6a2aa | 1219 | if (FEC_FLASHMAC) { |
1da177e4 LT |
1220 | /* |
1221 | * Get MAC address from FLASH. | |
1222 | * If it is all 1's or 0's, use the default. | |
1223 | */ | |
7dd6a2aa | 1224 | iap = (unsigned char *)FEC_FLASHMAC; |
1da177e4 LT |
1225 | if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
1226 | (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | |
1227 | iap = fec_mac_default; | |
1228 | if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | |
1229 | (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | |
1230 | iap = fec_mac_default; | |
1231 | } else { | |
1232 | *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; | |
1233 | *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); | |
1234 | iap = &tmpaddr[0]; | |
1235 | } | |
1236 | ||
7dd6a2aa | 1237 | memcpy(dev->dev_addr, iap, ETH_ALEN); |
1da177e4 LT |
1238 | |
1239 | /* Adjust MAC if using default MAC address */ | |
7dd6a2aa GU |
1240 | if (iap == fec_mac_default) |
1241 | dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; | |
1da177e4 LT |
1242 | } |
1243 | ||
1244 | static void __inline__ fec_enable_phy_intr(void) | |
1245 | { | |
1246 | } | |
1247 | ||
1248 | static void __inline__ fec_disable_phy_intr(void) | |
1249 | { | |
1250 | volatile unsigned long *icrp; | |
1251 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | |
1252 | *icrp = (*icrp & 0x70777777) | 0x08000000; | |
1253 | } | |
1254 | ||
1255 | static void __inline__ fec_phy_ack_intr(void) | |
1256 | { | |
1257 | volatile unsigned long *icrp; | |
1258 | /* Acknowledge the interrupt */ | |
1259 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | |
1260 | *icrp = (*icrp & 0x77777777) | 0x08000000; | |
1261 | } | |
1262 | ||
1263 | static void __inline__ fec_localhw_setup(void) | |
1264 | { | |
1265 | } | |
1266 | ||
1267 | /* | |
1268 | * Do not need to make region uncached on 5272. | |
1269 | */ | |
1270 | static void __inline__ fec_uncache(unsigned long addr) | |
1271 | { | |
1272 | } | |
1273 | ||
1274 | /* ------------------------------------------------------------------------- */ | |
1275 | ||
7dd6a2aa | 1276 | #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) |
1da177e4 LT |
1277 | |
1278 | /* | |
7dd6a2aa GU |
1279 | * Code specific to Coldfire 5230/5231/5232/5234/5235, |
1280 | * the 5270/5271/5274/5275 and 5280/5282 setups. | |
1da177e4 LT |
1281 | */ |
1282 | static void __inline__ fec_request_intrs(struct net_device *dev) | |
1283 | { | |
1284 | struct fec_enet_private *fep; | |
1285 | int b; | |
7dd6a2aa GU |
1286 | static const struct idesc { |
1287 | char *name; | |
1288 | unsigned short irq; | |
1289 | } *idp, id[] = { | |
1290 | { "fec(TXF)", 23 }, | |
1291 | { "fec(TXB)", 24 }, | |
1292 | { "fec(TXFIFO)", 25 }, | |
1293 | { "fec(TXCR)", 26 }, | |
1294 | { "fec(RXF)", 27 }, | |
1295 | { "fec(RXB)", 28 }, | |
1296 | { "fec(MII)", 29 }, | |
1297 | { "fec(LC)", 30 }, | |
1298 | { "fec(HBERR)", 31 }, | |
1299 | { "fec(GRA)", 32 }, | |
1300 | { "fec(EBERR)", 33 }, | |
1301 | { "fec(BABT)", 34 }, | |
1302 | { "fec(BABR)", 35 }, | |
1303 | { NULL }, | |
1304 | }; | |
1da177e4 LT |
1305 | |
1306 | fep = netdev_priv(dev); | |
1307 | b = (fep->index) ? 128 : 64; | |
1308 | ||
1309 | /* Setup interrupt handlers. */ | |
7dd6a2aa GU |
1310 | for (idp = id; idp->name; idp++) { |
1311 | if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0) | |
1312 | printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq); | |
1313 | } | |
1da177e4 LT |
1314 | |
1315 | /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */ | |
1316 | { | |
1317 | volatile unsigned char *icrp; | |
1318 | volatile unsigned long *imrp; | |
1319 | int i; | |
1320 | ||
1321 | b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0; | |
1322 | icrp = (volatile unsigned char *) (MCF_IPSBAR + b + | |
1323 | MCFINTC_ICR0); | |
1324 | for (i = 23; (i < 36); i++) | |
1325 | icrp[i] = 0x23; | |
1326 | ||
1327 | imrp = (volatile unsigned long *) (MCF_IPSBAR + b + | |
1328 | MCFINTC_IMRH); | |
1329 | *imrp &= ~0x0000000f; | |
1330 | imrp = (volatile unsigned long *) (MCF_IPSBAR + b + | |
1331 | MCFINTC_IMRL); | |
1332 | *imrp &= ~0xff800001; | |
1333 | } | |
1334 | ||
1335 | #if defined(CONFIG_M528x) | |
1336 | /* Set up gpio outputs for MII lines */ | |
1337 | { | |
7dd6a2aa GU |
1338 | volatile u16 *gpio_paspar; |
1339 | volatile u8 *gpio_pehlpar; | |
1da177e4 | 1340 | |
7dd6a2aa GU |
1341 | gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056); |
1342 | gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058); | |
1343 | *gpio_paspar |= 0x0f00; | |
1344 | *gpio_pehlpar = 0xc0; | |
1da177e4 LT |
1345 | } |
1346 | #endif | |
1347 | } | |
1348 | ||
1349 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | |
1350 | { | |
1351 | volatile fec_t *fecp; | |
1352 | ||
1353 | fecp = fep->hwp; | |
1354 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; | |
1355 | fecp->fec_x_cntrl = 0x00; | |
1356 | ||
1357 | /* | |
1358 | * Set MII speed to 2.5 MHz | |
1359 | * See 5282 manual section 17.5.4.7: MSCR | |
1360 | */ | |
1361 | fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; | |
1362 | fecp->fec_mii_speed = fep->phy_speed; | |
1363 | ||
1364 | fec_restart(dev, 0); | |
1365 | } | |
1366 | ||
1367 | static void __inline__ fec_get_mac(struct net_device *dev) | |
1368 | { | |
1369 | struct fec_enet_private *fep = netdev_priv(dev); | |
1370 | volatile fec_t *fecp; | |
7dd6a2aa | 1371 | unsigned char *iap, tmpaddr[ETH_ALEN]; |
1da177e4 LT |
1372 | |
1373 | fecp = fep->hwp; | |
1374 | ||
7dd6a2aa | 1375 | if (FEC_FLASHMAC) { |
1da177e4 LT |
1376 | /* |
1377 | * Get MAC address from FLASH. | |
1378 | * If it is all 1's or 0's, use the default. | |
1379 | */ | |
7dd6a2aa | 1380 | iap = FEC_FLASHMAC; |
1da177e4 LT |
1381 | if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
1382 | (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | |
1383 | iap = fec_mac_default; | |
1384 | if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | |
1385 | (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | |
1386 | iap = fec_mac_default; | |
1387 | } else { | |
1388 | *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; | |
1389 | *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); | |
1390 | iap = &tmpaddr[0]; | |
1391 | } | |
1392 | ||
7dd6a2aa | 1393 | memcpy(dev->dev_addr, iap, ETH_ALEN); |
1da177e4 LT |
1394 | |
1395 | /* Adjust MAC if using default MAC address */ | |
7dd6a2aa GU |
1396 | if (iap == fec_mac_default) |
1397 | dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; | |
1da177e4 LT |
1398 | } |
1399 | ||
1400 | static void __inline__ fec_enable_phy_intr(void) | |
1401 | { | |
1402 | } | |
1403 | ||
1404 | static void __inline__ fec_disable_phy_intr(void) | |
1405 | { | |
1406 | } | |
1407 | ||
1408 | static void __inline__ fec_phy_ack_intr(void) | |
1409 | { | |
1410 | } | |
1411 | ||
1412 | static void __inline__ fec_localhw_setup(void) | |
1413 | { | |
1414 | } | |
1415 | ||
1416 | /* | |
1417 | * Do not need to make region uncached on 5272. | |
1418 | */ | |
1419 | static void __inline__ fec_uncache(unsigned long addr) | |
1420 | { | |
1421 | } | |
1422 | ||
1423 | /* ------------------------------------------------------------------------- */ | |
1424 | ||
1425 | #else | |
1426 | ||
1427 | /* | |
7dd6a2aa | 1428 | * Code specific to the MPC860T setup. |
1da177e4 LT |
1429 | */ |
1430 | static void __inline__ fec_request_intrs(struct net_device *dev) | |
1431 | { | |
1432 | volatile immap_t *immap; | |
1433 | ||
1434 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ | |
1435 | ||
1436 | if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0) | |
1437 | panic("Could not allocate FEC IRQ!"); | |
1438 | ||
1439 | #ifdef CONFIG_RPXCLASSIC | |
1440 | /* Make Port C, bit 15 an input that causes interrupts. | |
1441 | */ | |
1442 | immap->im_ioport.iop_pcpar &= ~0x0001; | |
1443 | immap->im_ioport.iop_pcdir &= ~0x0001; | |
1444 | immap->im_ioport.iop_pcso &= ~0x0001; | |
1445 | immap->im_ioport.iop_pcint |= 0x0001; | |
1446 | cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev); | |
1447 | ||
1448 | /* Make LEDS reflect Link status. | |
1449 | */ | |
1450 | *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE; | |
1451 | #endif | |
1452 | #ifdef CONFIG_FADS | |
1453 | if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0) | |
1454 | panic("Could not allocate MII IRQ!"); | |
1455 | #endif | |
1456 | } | |
1457 | ||
1458 | static void __inline__ fec_get_mac(struct net_device *dev) | |
1459 | { | |
1da177e4 | 1460 | bd_t *bd; |
1da177e4 | 1461 | |
1da177e4 | 1462 | bd = (bd_t *)__res; |
7dd6a2aa | 1463 | memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN); |
1da177e4 LT |
1464 | |
1465 | #ifdef CONFIG_RPXCLASSIC | |
1466 | /* The Embedded Planet boards have only one MAC address in | |
1467 | * the EEPROM, but can have two Ethernet ports. For the | |
1468 | * FEC port, we create another address by setting one of | |
1469 | * the address bits above something that would have (up to | |
1470 | * now) been allocated. | |
1471 | */ | |
7dd6a2aa | 1472 | dev->dev_adrd[3] |= 0x80; |
1da177e4 | 1473 | #endif |
1da177e4 LT |
1474 | } |
1475 | ||
1476 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | |
1477 | { | |
1478 | extern uint _get_IMMR(void); | |
1479 | volatile immap_t *immap; | |
1480 | volatile fec_t *fecp; | |
1481 | ||
1482 | fecp = fep->hwp; | |
1483 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ | |
1484 | ||
1485 | /* Configure all of port D for MII. | |
1486 | */ | |
1487 | immap->im_ioport.iop_pdpar = 0x1fff; | |
1488 | ||
1489 | /* Bits moved from Rev. D onward. | |
1490 | */ | |
1491 | if ((_get_IMMR() & 0xffff) < 0x0501) | |
1492 | immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */ | |
1493 | else | |
1494 | immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */ | |
1495 | ||
1496 | /* Set MII speed to 2.5 MHz | |
1497 | */ | |
1498 | fecp->fec_mii_speed = fep->phy_speed = | |
1499 | ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e; | |
1500 | } | |
1501 | ||
1502 | static void __inline__ fec_enable_phy_intr(void) | |
1503 | { | |
1504 | volatile fec_t *fecp; | |
1505 | ||
1506 | fecp = fep->hwp; | |
1507 | ||
1508 | /* Enable MII command finished interrupt | |
1509 | */ | |
1510 | fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; | |
1511 | } | |
1512 | ||
1513 | static void __inline__ fec_disable_phy_intr(void) | |
1514 | { | |
1515 | } | |
1516 | ||
1517 | static void __inline__ fec_phy_ack_intr(void) | |
1518 | { | |
1519 | } | |
1520 | ||
1521 | static void __inline__ fec_localhw_setup(void) | |
1522 | { | |
1523 | volatile fec_t *fecp; | |
1524 | ||
1525 | fecp = fep->hwp; | |
1526 | fecp->fec_r_hash = PKT_MAXBUF_SIZE; | |
1527 | /* Enable big endian and don't care about SDMA FC. | |
1528 | */ | |
1529 | fecp->fec_fun_code = 0x78000000; | |
1530 | } | |
1531 | ||
1532 | static void __inline__ fec_uncache(unsigned long addr) | |
1533 | { | |
1534 | pte_t *pte; | |
1535 | pte = va_to_pte(mem_addr); | |
1536 | pte_val(*pte) |= _PAGE_NO_CACHE; | |
1537 | flush_tlb_page(init_mm.mmap, mem_addr); | |
1538 | } | |
1539 | ||
1540 | #endif | |
1541 | ||
1542 | /* ------------------------------------------------------------------------- */ | |
1543 | ||
1544 | static void mii_display_status(struct net_device *dev) | |
1545 | { | |
1546 | struct fec_enet_private *fep = netdev_priv(dev); | |
1547 | volatile uint *s = &(fep->phy_status); | |
1548 | ||
1549 | if (!fep->link && !fep->old_link) { | |
1550 | /* Link is still down - don't print anything */ | |
1551 | return; | |
1552 | } | |
1553 | ||
1554 | printk("%s: status: ", dev->name); | |
1555 | ||
1556 | if (!fep->link) { | |
1557 | printk("link down"); | |
1558 | } else { | |
1559 | printk("link up"); | |
1560 | ||
1561 | switch(*s & PHY_STAT_SPMASK) { | |
1562 | case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break; | |
1563 | case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break; | |
1564 | case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break; | |
1565 | case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break; | |
1566 | default: | |
1567 | printk(", Unknown speed/duplex"); | |
1568 | } | |
1569 | ||
1570 | if (*s & PHY_STAT_ANC) | |
1571 | printk(", auto-negotiation complete"); | |
1572 | } | |
1573 | ||
1574 | if (*s & PHY_STAT_FAULT) | |
1575 | printk(", remote fault"); | |
1576 | ||
1577 | printk(".\n"); | |
1578 | } | |
1579 | ||
1580 | static void mii_display_config(struct net_device *dev) | |
1581 | { | |
1582 | struct fec_enet_private *fep = netdev_priv(dev); | |
7dd6a2aa | 1583 | uint status = fep->phy_status; |
1da177e4 LT |
1584 | |
1585 | /* | |
1586 | ** When we get here, phy_task is already removed from | |
1587 | ** the workqueue. It is thus safe to allow to reuse it. | |
1588 | */ | |
1589 | fep->mii_phy_task_queued = 0; | |
1590 | printk("%s: config: auto-negotiation ", dev->name); | |
1591 | ||
7dd6a2aa | 1592 | if (status & PHY_CONF_ANE) |
1da177e4 LT |
1593 | printk("on"); |
1594 | else | |
1595 | printk("off"); | |
1596 | ||
7dd6a2aa | 1597 | if (status & PHY_CONF_100FDX) |
1da177e4 | 1598 | printk(", 100FDX"); |
7dd6a2aa | 1599 | if (status & PHY_CONF_100HDX) |
1da177e4 | 1600 | printk(", 100HDX"); |
7dd6a2aa | 1601 | if (status & PHY_CONF_10FDX) |
1da177e4 | 1602 | printk(", 10FDX"); |
7dd6a2aa | 1603 | if (status & PHY_CONF_10HDX) |
1da177e4 | 1604 | printk(", 10HDX"); |
7dd6a2aa | 1605 | if (!(status & PHY_CONF_SPMASK)) |
1da177e4 LT |
1606 | printk(", No speed/duplex selected?"); |
1607 | ||
7dd6a2aa | 1608 | if (status & PHY_CONF_LOOP) |
1da177e4 LT |
1609 | printk(", loopback enabled"); |
1610 | ||
1611 | printk(".\n"); | |
1612 | ||
1613 | fep->sequence_done = 1; | |
1614 | } | |
1615 | ||
1616 | static void mii_relink(struct net_device *dev) | |
1617 | { | |
1618 | struct fec_enet_private *fep = netdev_priv(dev); | |
1619 | int duplex; | |
1620 | ||
1621 | /* | |
1622 | ** When we get here, phy_task is already removed from | |
1623 | ** the workqueue. It is thus safe to allow to reuse it. | |
1624 | */ | |
1625 | fep->mii_phy_task_queued = 0; | |
1626 | fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; | |
1627 | mii_display_status(dev); | |
1628 | fep->old_link = fep->link; | |
1629 | ||
1630 | if (fep->link) { | |
1631 | duplex = 0; | |
1632 | if (fep->phy_status | |
1633 | & (PHY_STAT_100FDX | PHY_STAT_10FDX)) | |
1634 | duplex = 1; | |
1635 | fec_restart(dev, duplex); | |
1636 | } | |
1637 | else | |
1638 | fec_stop(dev); | |
1639 | ||
1640 | #if 0 | |
1641 | enable_irq(fep->mii_irq); | |
1642 | #endif | |
1643 | ||
1644 | } | |
1645 | ||
1646 | /* mii_queue_relink is called in interrupt context from mii_link_interrupt */ | |
1647 | static void mii_queue_relink(uint mii_reg, struct net_device *dev) | |
1648 | { | |
1649 | struct fec_enet_private *fep = netdev_priv(dev); | |
1650 | ||
1651 | /* | |
1652 | ** We cannot queue phy_task twice in the workqueue. It | |
1653 | ** would cause an endless loop in the workqueue. | |
1654 | ** Fortunately, if the last mii_relink entry has not yet been | |
1655 | ** executed now, it will do the job for the current interrupt, | |
1656 | ** which is just what we want. | |
1657 | */ | |
1658 | if (fep->mii_phy_task_queued) | |
1659 | return; | |
1660 | ||
1661 | fep->mii_phy_task_queued = 1; | |
1662 | INIT_WORK(&fep->phy_task, (void*)mii_relink, dev); | |
1663 | schedule_work(&fep->phy_task); | |
1664 | } | |
1665 | ||
7dd6a2aa | 1666 | /* mii_queue_config is called in interrupt context from fec_enet_mii */ |
1da177e4 LT |
1667 | static void mii_queue_config(uint mii_reg, struct net_device *dev) |
1668 | { | |
1669 | struct fec_enet_private *fep = netdev_priv(dev); | |
1670 | ||
1671 | if (fep->mii_phy_task_queued) | |
1672 | return; | |
1673 | ||
1674 | fep->mii_phy_task_queued = 1; | |
1675 | INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev); | |
1676 | schedule_work(&fep->phy_task); | |
1677 | } | |
1678 | ||
7dd6a2aa GU |
1679 | phy_cmd_t const phy_cmd_relink[] = { |
1680 | { mk_mii_read(MII_REG_CR), mii_queue_relink }, | |
1681 | { mk_mii_end, } | |
1682 | }; | |
1683 | phy_cmd_t const phy_cmd_config[] = { | |
1684 | { mk_mii_read(MII_REG_CR), mii_queue_config }, | |
1685 | { mk_mii_end, } | |
1686 | }; | |
1da177e4 LT |
1687 | |
1688 | /* Read remainder of PHY ID. | |
1689 | */ | |
1690 | static void | |
1691 | mii_discover_phy3(uint mii_reg, struct net_device *dev) | |
1692 | { | |
1693 | struct fec_enet_private *fep; | |
1694 | int i; | |
1695 | ||
1696 | fep = netdev_priv(dev); | |
1697 | fep->phy_id |= (mii_reg & 0xffff); | |
1698 | printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id); | |
1699 | ||
1700 | for(i = 0; phy_info[i]; i++) { | |
1701 | if(phy_info[i]->id == (fep->phy_id >> 4)) | |
1702 | break; | |
1703 | } | |
1704 | ||
1705 | if (phy_info[i]) | |
1706 | printk(" -- %s\n", phy_info[i]->name); | |
1707 | else | |
1708 | printk(" -- unknown PHY!\n"); | |
1709 | ||
1710 | fep->phy = phy_info[i]; | |
1711 | fep->phy_id_done = 1; | |
1712 | } | |
1713 | ||
1714 | /* Scan all of the MII PHY addresses looking for someone to respond | |
1715 | * with a valid ID. This usually happens quickly. | |
1716 | */ | |
1717 | static void | |
1718 | mii_discover_phy(uint mii_reg, struct net_device *dev) | |
1719 | { | |
1720 | struct fec_enet_private *fep; | |
1721 | volatile fec_t *fecp; | |
1722 | uint phytype; | |
1723 | ||
1724 | fep = netdev_priv(dev); | |
1725 | fecp = fep->hwp; | |
1726 | ||
1727 | if (fep->phy_addr < 32) { | |
1728 | if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) { | |
1729 | ||
1730 | /* Got first part of ID, now get remainder. | |
1731 | */ | |
1732 | fep->phy_id = phytype << 16; | |
1733 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), | |
1734 | mii_discover_phy3); | |
1735 | } | |
1736 | else { | |
1737 | fep->phy_addr++; | |
1738 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), | |
1739 | mii_discover_phy); | |
1740 | } | |
1741 | } else { | |
1742 | printk("FEC: No PHY device found.\n"); | |
1743 | /* Disable external MII interface */ | |
1744 | fecp->fec_mii_speed = fep->phy_speed = 0; | |
1745 | fec_disable_phy_intr(); | |
1746 | } | |
1747 | } | |
1748 | ||
1749 | /* This interrupt occurs when the PHY detects a link change. | |
1750 | */ | |
1751 | #ifdef CONFIG_RPXCLASSIC | |
1752 | static void | |
1753 | mii_link_interrupt(void *dev_id) | |
1754 | #else | |
1755 | static irqreturn_t | |
1756 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs) | |
1757 | #endif | |
1758 | { | |
1759 | struct net_device *dev = dev_id; | |
1760 | struct fec_enet_private *fep = netdev_priv(dev); | |
1761 | ||
1762 | fec_phy_ack_intr(); | |
1763 | ||
1764 | #if 0 | |
1765 | disable_irq(fep->mii_irq); /* disable now, enable later */ | |
1766 | #endif | |
1767 | ||
1768 | mii_do_cmd(dev, fep->phy->ack_int); | |
1769 | mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ | |
1770 | ||
1771 | return IRQ_HANDLED; | |
1772 | } | |
1773 | ||
1774 | static int | |
1775 | fec_enet_open(struct net_device *dev) | |
1776 | { | |
1777 | struct fec_enet_private *fep = netdev_priv(dev); | |
1778 | ||
1779 | /* I should reset the ring buffers here, but I don't yet know | |
1780 | * a simple way to do that. | |
1781 | */ | |
1782 | fec_set_mac_address(dev); | |
1783 | ||
1784 | fep->sequence_done = 0; | |
1785 | fep->link = 0; | |
1786 | ||
1787 | if (fep->phy) { | |
1788 | mii_do_cmd(dev, fep->phy->ack_int); | |
1789 | mii_do_cmd(dev, fep->phy->config); | |
1790 | mii_do_cmd(dev, phy_cmd_config); /* display configuration */ | |
1791 | ||
1792 | /* FIXME: use netif_carrier_{on,off} ; this polls | |
1793 | * until link is up which is wrong... could be | |
1794 | * 30 seconds or more we are trapped in here. -jgarzik | |
1795 | */ | |
1796 | while(!fep->sequence_done) | |
1797 | schedule(); | |
1798 | ||
1799 | mii_do_cmd(dev, fep->phy->startup); | |
1800 | ||
1801 | /* Set the initial link state to true. A lot of hardware | |
1802 | * based on this device does not implement a PHY interrupt, | |
1803 | * so we are never notified of link change. | |
1804 | */ | |
1805 | fep->link = 1; | |
1806 | } else { | |
1807 | fep->link = 1; /* lets just try it and see */ | |
1808 | /* no phy, go full duplex, it's most likely a hub chip */ | |
1809 | fec_restart(dev, 1); | |
1810 | } | |
1811 | ||
1812 | netif_start_queue(dev); | |
1813 | fep->opened = 1; | |
1814 | return 0; /* Success */ | |
1815 | } | |
1816 | ||
1817 | static int | |
1818 | fec_enet_close(struct net_device *dev) | |
1819 | { | |
1820 | struct fec_enet_private *fep = netdev_priv(dev); | |
1821 | ||
1822 | /* Don't know what to do yet. | |
1823 | */ | |
1824 | fep->opened = 0; | |
1825 | netif_stop_queue(dev); | |
1826 | fec_stop(dev); | |
1827 | ||
1828 | return 0; | |
1829 | } | |
1830 | ||
1831 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev) | |
1832 | { | |
1833 | struct fec_enet_private *fep = netdev_priv(dev); | |
1834 | ||
1835 | return &fep->stats; | |
1836 | } | |
1837 | ||
1838 | /* Set or clear the multicast filter for this adaptor. | |
1839 | * Skeleton taken from sunlance driver. | |
1840 | * The CPM Ethernet implementation allows Multicast as well as individual | |
1841 | * MAC address filtering. Some of the drivers check to make sure it is | |
1842 | * a group multicast address, and discard those that are not. I guess I | |
1843 | * will do the same for now, but just remove the test if you want | |
1844 | * individual filtering as well (do the upper net layers want or support | |
1845 | * this kind of feature?). | |
1846 | */ | |
1847 | ||
1848 | #define HASH_BITS 6 /* #bits in hash */ | |
1849 | #define CRC32_POLY 0xEDB88320 | |
1850 | ||
1851 | static void set_multicast_list(struct net_device *dev) | |
1852 | { | |
1853 | struct fec_enet_private *fep; | |
1854 | volatile fec_t *ep; | |
1855 | struct dev_mc_list *dmi; | |
1856 | unsigned int i, j, bit, data, crc; | |
1857 | unsigned char hash; | |
1858 | ||
1859 | fep = netdev_priv(dev); | |
1860 | ep = fep->hwp; | |
1861 | ||
1862 | if (dev->flags&IFF_PROMISC) { | |
1863 | /* Log any net taps. */ | |
1864 | printk("%s: Promiscuous mode enabled.\n", dev->name); | |
1865 | ep->fec_r_cntrl |= 0x0008; | |
1866 | } else { | |
1867 | ||
1868 | ep->fec_r_cntrl &= ~0x0008; | |
1869 | ||
1870 | if (dev->flags & IFF_ALLMULTI) { | |
1871 | /* Catch all multicast addresses, so set the | |
1872 | * filter to all 1's. | |
1873 | */ | |
1874 | ep->fec_hash_table_high = 0xffffffff; | |
1875 | ep->fec_hash_table_low = 0xffffffff; | |
1876 | } else { | |
1877 | /* Clear filter and add the addresses in hash register. | |
1878 | */ | |
1879 | ep->fec_hash_table_high = 0; | |
1880 | ep->fec_hash_table_low = 0; | |
1881 | ||
1882 | dmi = dev->mc_list; | |
1883 | ||
1884 | for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) | |
1885 | { | |
1886 | /* Only support group multicast for now. | |
1887 | */ | |
1888 | if (!(dmi->dmi_addr[0] & 1)) | |
1889 | continue; | |
1890 | ||
1891 | /* calculate crc32 value of mac address | |
1892 | */ | |
1893 | crc = 0xffffffff; | |
1894 | ||
1895 | for (i = 0; i < dmi->dmi_addrlen; i++) | |
1896 | { | |
1897 | data = dmi->dmi_addr[i]; | |
1898 | for (bit = 0; bit < 8; bit++, data >>= 1) | |
1899 | { | |
1900 | crc = (crc >> 1) ^ | |
1901 | (((crc ^ data) & 1) ? CRC32_POLY : 0); | |
1902 | } | |
1903 | } | |
1904 | ||
1905 | /* only upper 6 bits (HASH_BITS) are used | |
1906 | which point to specific bit in he hash registers | |
1907 | */ | |
1908 | hash = (crc >> (32 - HASH_BITS)) & 0x3f; | |
1909 | ||
1910 | if (hash > 31) | |
1911 | ep->fec_hash_table_high |= 1 << (hash - 32); | |
1912 | else | |
1913 | ep->fec_hash_table_low |= 1 << hash; | |
1914 | } | |
1915 | } | |
1916 | } | |
1917 | } | |
1918 | ||
1919 | /* Set a MAC change in hardware. | |
1920 | */ | |
1921 | static void | |
1922 | fec_set_mac_address(struct net_device *dev) | |
1923 | { | |
1da177e4 LT |
1924 | volatile fec_t *fecp; |
1925 | ||
7dd6a2aa | 1926 | fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp; |
1da177e4 LT |
1927 | |
1928 | /* Set station address. */ | |
7dd6a2aa GU |
1929 | fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) | |
1930 | (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24); | |
1931 | fecp->fec_addr_high = (dev->dev_addr[5] << 16) | | |
1932 | (dev->dev_addr[4] << 24); | |
1da177e4 LT |
1933 | |
1934 | } | |
1935 | ||
1936 | /* Initialize the FEC Ethernet on 860T (or ColdFire 5272). | |
1937 | */ | |
1938 | /* | |
1939 | * XXX: We need to clean up on failure exits here. | |
1940 | */ | |
1941 | int __init fec_enet_init(struct net_device *dev) | |
1942 | { | |
1943 | struct fec_enet_private *fep = netdev_priv(dev); | |
1944 | unsigned long mem_addr; | |
1945 | volatile cbd_t *bdp; | |
1946 | cbd_t *cbd_base; | |
1947 | volatile fec_t *fecp; | |
1948 | int i, j; | |
1949 | static int index = 0; | |
1950 | ||
1951 | /* Only allow us to be probed once. */ | |
1952 | if (index >= FEC_MAX_PORTS) | |
1953 | return -ENXIO; | |
1954 | ||
1955 | /* Create an Ethernet device instance. | |
1956 | */ | |
1957 | fecp = (volatile fec_t *) fec_hw[index]; | |
1958 | ||
1959 | fep->index = index; | |
1960 | fep->hwp = fecp; | |
1961 | ||
1962 | /* Whack a reset. We should wait for this. | |
1963 | */ | |
1964 | fecp->fec_ecntrl = 1; | |
1965 | udelay(10); | |
1966 | ||
1967 | /* Clear and enable interrupts */ | |
7dd6a2aa | 1968 | fecp->fec_ievent = 0xffc00000; |
1da177e4 LT |
1969 | fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | |
1970 | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); | |
1971 | fecp->fec_hash_table_high = 0; | |
1972 | fecp->fec_hash_table_low = 0; | |
1973 | fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; | |
1974 | fecp->fec_ecntrl = 2; | |
1975 | fecp->fec_r_des_active = 0x01000000; | |
1976 | ||
1977 | /* Set the Ethernet address. If using multiple Enets on the 8xx, | |
1978 | * this needs some work to get unique addresses. | |
1979 | * | |
1980 | * This is our default MAC address unless the user changes | |
1981 | * it via eth_mac_addr (our dev->set_mac_addr handler). | |
1982 | */ | |
1983 | fec_get_mac(dev); | |
1984 | ||
1985 | /* Allocate memory for buffer descriptors. | |
1986 | */ | |
1987 | if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) { | |
1988 | printk("FEC init error. Need more space.\n"); | |
1989 | printk("FEC initialization failed.\n"); | |
1990 | return 1; | |
1991 | } | |
1992 | mem_addr = __get_free_page(GFP_KERNEL); | |
1993 | cbd_base = (cbd_t *)mem_addr; | |
1994 | /* XXX: missing check for allocation failure */ | |
1995 | ||
1996 | fec_uncache(mem_addr); | |
1997 | ||
1998 | /* Set receive and transmit descriptor base. | |
1999 | */ | |
2000 | fep->rx_bd_base = cbd_base; | |
2001 | fep->tx_bd_base = cbd_base + RX_RING_SIZE; | |
2002 | ||
2003 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | |
2004 | fep->cur_rx = fep->rx_bd_base; | |
2005 | ||
2006 | fep->skb_cur = fep->skb_dirty = 0; | |
2007 | ||
2008 | /* Initialize the receive buffer descriptors. | |
2009 | */ | |
2010 | bdp = fep->rx_bd_base; | |
2011 | for (i=0; i<FEC_ENET_RX_PAGES; i++) { | |
2012 | ||
2013 | /* Allocate a page. | |
2014 | */ | |
2015 | mem_addr = __get_free_page(GFP_KERNEL); | |
2016 | /* XXX: missing check for allocation failure */ | |
2017 | ||
2018 | fec_uncache(mem_addr); | |
2019 | ||
2020 | /* Initialize the BD for every fragment in the page. | |
2021 | */ | |
2022 | for (j=0; j<FEC_ENET_RX_FRPPG; j++) { | |
2023 | bdp->cbd_sc = BD_ENET_RX_EMPTY; | |
2024 | bdp->cbd_bufaddr = __pa(mem_addr); | |
2025 | mem_addr += FEC_ENET_RX_FRSIZE; | |
2026 | bdp++; | |
2027 | } | |
2028 | } | |
2029 | ||
2030 | /* Set the last buffer to wrap. | |
2031 | */ | |
2032 | bdp--; | |
2033 | bdp->cbd_sc |= BD_SC_WRAP; | |
2034 | ||
2035 | /* ...and the same for transmmit. | |
2036 | */ | |
2037 | bdp = fep->tx_bd_base; | |
2038 | for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) { | |
2039 | if (j >= FEC_ENET_TX_FRPPG) { | |
2040 | mem_addr = __get_free_page(GFP_KERNEL); | |
2041 | j = 1; | |
2042 | } else { | |
2043 | mem_addr += FEC_ENET_TX_FRSIZE; | |
2044 | j++; | |
2045 | } | |
2046 | fep->tx_bounce[i] = (unsigned char *) mem_addr; | |
2047 | ||
2048 | /* Initialize the BD for every fragment in the page. | |
2049 | */ | |
2050 | bdp->cbd_sc = 0; | |
2051 | bdp->cbd_bufaddr = 0; | |
2052 | bdp++; | |
2053 | } | |
2054 | ||
2055 | /* Set the last buffer to wrap. | |
2056 | */ | |
2057 | bdp--; | |
2058 | bdp->cbd_sc |= BD_SC_WRAP; | |
2059 | ||
2060 | /* Set receive and transmit descriptor base. | |
2061 | */ | |
2062 | fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); | |
2063 | fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); | |
2064 | ||
2065 | /* Install our interrupt handlers. This varies depending on | |
2066 | * the architecture. | |
2067 | */ | |
2068 | fec_request_intrs(dev); | |
2069 | ||
2070 | dev->base_addr = (unsigned long)fecp; | |
2071 | ||
2072 | /* The FEC Ethernet specific entries in the device structure. */ | |
2073 | dev->open = fec_enet_open; | |
2074 | dev->hard_start_xmit = fec_enet_start_xmit; | |
2075 | dev->tx_timeout = fec_timeout; | |
2076 | dev->watchdog_timeo = TX_TIMEOUT; | |
2077 | dev->stop = fec_enet_close; | |
2078 | dev->get_stats = fec_enet_get_stats; | |
2079 | dev->set_multicast_list = set_multicast_list; | |
2080 | ||
2081 | for (i=0; i<NMII-1; i++) | |
2082 | mii_cmds[i].mii_next = &mii_cmds[i+1]; | |
2083 | mii_free = mii_cmds; | |
2084 | ||
2085 | /* setup MII interface */ | |
2086 | fec_set_mii(dev, fep); | |
2087 | ||
1da177e4 LT |
2088 | /* Queue up command to detect the PHY and initialize the |
2089 | * remainder of the interface. | |
2090 | */ | |
2091 | fep->phy_id_done = 0; | |
2092 | fep->phy_addr = 0; | |
2093 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); | |
2094 | ||
2095 | index++; | |
2096 | return 0; | |
2097 | } | |
2098 | ||
2099 | /* This function is called to start or restart the FEC during a link | |
2100 | * change. This only happens when switching between half and full | |
2101 | * duplex. | |
2102 | */ | |
2103 | static void | |
2104 | fec_restart(struct net_device *dev, int duplex) | |
2105 | { | |
2106 | struct fec_enet_private *fep; | |
2107 | volatile cbd_t *bdp; | |
2108 | volatile fec_t *fecp; | |
2109 | int i; | |
2110 | ||
2111 | fep = netdev_priv(dev); | |
2112 | fecp = fep->hwp; | |
2113 | ||
2114 | /* Whack a reset. We should wait for this. | |
2115 | */ | |
2116 | fecp->fec_ecntrl = 1; | |
2117 | udelay(10); | |
2118 | ||
2119 | /* Enable interrupts we wish to service. | |
2120 | */ | |
2121 | fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | | |
2122 | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); | |
2123 | ||
2124 | /* Clear any outstanding interrupt. | |
2125 | */ | |
7dd6a2aa | 2126 | fecp->fec_ievent = 0xffc00000; |
1da177e4 LT |
2127 | fec_enable_phy_intr(); |
2128 | ||
2129 | /* Set station address. | |
2130 | */ | |
7dd6a2aa | 2131 | fec_set_mac_address(dev); |
1da177e4 LT |
2132 | |
2133 | /* Reset all multicast. | |
2134 | */ | |
2135 | fecp->fec_hash_table_high = 0; | |
2136 | fecp->fec_hash_table_low = 0; | |
2137 | ||
2138 | /* Set maximum receive buffer size. | |
2139 | */ | |
2140 | fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; | |
2141 | ||
2142 | fec_localhw_setup(); | |
2143 | ||
2144 | /* Set receive and transmit descriptor base. | |
2145 | */ | |
2146 | fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); | |
2147 | fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); | |
2148 | ||
2149 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | |
2150 | fep->cur_rx = fep->rx_bd_base; | |
2151 | ||
2152 | /* Reset SKB transmit buffers. | |
2153 | */ | |
2154 | fep->skb_cur = fep->skb_dirty = 0; | |
2155 | for (i=0; i<=TX_RING_MOD_MASK; i++) { | |
2156 | if (fep->tx_skbuff[i] != NULL) { | |
2157 | dev_kfree_skb_any(fep->tx_skbuff[i]); | |
2158 | fep->tx_skbuff[i] = NULL; | |
2159 | } | |
2160 | } | |
2161 | ||
2162 | /* Initialize the receive buffer descriptors. | |
2163 | */ | |
2164 | bdp = fep->rx_bd_base; | |
2165 | for (i=0; i<RX_RING_SIZE; i++) { | |
2166 | ||
2167 | /* Initialize the BD for every fragment in the page. | |
2168 | */ | |
2169 | bdp->cbd_sc = BD_ENET_RX_EMPTY; | |
2170 | bdp++; | |
2171 | } | |
2172 | ||
2173 | /* Set the last buffer to wrap. | |
2174 | */ | |
2175 | bdp--; | |
2176 | bdp->cbd_sc |= BD_SC_WRAP; | |
2177 | ||
2178 | /* ...and the same for transmmit. | |
2179 | */ | |
2180 | bdp = fep->tx_bd_base; | |
2181 | for (i=0; i<TX_RING_SIZE; i++) { | |
2182 | ||
2183 | /* Initialize the BD for every fragment in the page. | |
2184 | */ | |
2185 | bdp->cbd_sc = 0; | |
2186 | bdp->cbd_bufaddr = 0; | |
2187 | bdp++; | |
2188 | } | |
2189 | ||
2190 | /* Set the last buffer to wrap. | |
2191 | */ | |
2192 | bdp--; | |
2193 | bdp->cbd_sc |= BD_SC_WRAP; | |
2194 | ||
2195 | /* Enable MII mode. | |
2196 | */ | |
2197 | if (duplex) { | |
2198 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */ | |
2199 | fecp->fec_x_cntrl = 0x04; /* FD enable */ | |
2200 | } | |
2201 | else { | |
2202 | /* MII enable|No Rcv on Xmit */ | |
2203 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06; | |
2204 | fecp->fec_x_cntrl = 0x00; | |
2205 | } | |
2206 | fep->full_duplex = duplex; | |
2207 | ||
2208 | /* Set MII speed. | |
2209 | */ | |
2210 | fecp->fec_mii_speed = fep->phy_speed; | |
2211 | ||
2212 | /* And last, enable the transmit and receive processing. | |
2213 | */ | |
2214 | fecp->fec_ecntrl = 2; | |
2215 | fecp->fec_r_des_active = 0x01000000; | |
2216 | } | |
2217 | ||
2218 | static void | |
2219 | fec_stop(struct net_device *dev) | |
2220 | { | |
2221 | volatile fec_t *fecp; | |
2222 | struct fec_enet_private *fep; | |
2223 | ||
2224 | fep = netdev_priv(dev); | |
2225 | fecp = fep->hwp; | |
2226 | ||
2227 | fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */ | |
2228 | ||
7dd6a2aa | 2229 | while(!(fecp->fec_ievent & FEC_ENET_GRA)); |
1da177e4 LT |
2230 | |
2231 | /* Whack a reset. We should wait for this. | |
2232 | */ | |
2233 | fecp->fec_ecntrl = 1; | |
2234 | udelay(10); | |
2235 | ||
2236 | /* Clear outstanding MII command interrupts. | |
2237 | */ | |
2238 | fecp->fec_ievent = FEC_ENET_MII; | |
2239 | fec_enable_phy_intr(); | |
2240 | ||
2241 | fecp->fec_imask = FEC_ENET_MII; | |
2242 | fecp->fec_mii_speed = fep->phy_speed; | |
2243 | } | |
2244 | ||
2245 | static int __init fec_enet_module_init(void) | |
2246 | { | |
2247 | struct net_device *dev; | |
7dd6a2aa GU |
2248 | int i, j, err; |
2249 | ||
2250 | printk("FEC ENET Version 0.2\n"); | |
1da177e4 LT |
2251 | |
2252 | for (i = 0; (i < FEC_MAX_PORTS); i++) { | |
2253 | dev = alloc_etherdev(sizeof(struct fec_enet_private)); | |
2254 | if (!dev) | |
2255 | return -ENOMEM; | |
2256 | err = fec_enet_init(dev); | |
2257 | if (err) { | |
2258 | free_netdev(dev); | |
2259 | continue; | |
2260 | } | |
2261 | if (register_netdev(dev) != 0) { | |
2262 | /* XXX: missing cleanup here */ | |
2263 | free_netdev(dev); | |
2264 | return -EIO; | |
2265 | } | |
7dd6a2aa GU |
2266 | |
2267 | printk("%s: ethernet ", dev->name); | |
2268 | for (j = 0; (j < 5); j++) | |
2269 | printk("%02x:", dev->dev_addr[j]); | |
2270 | printk("%02x\n", dev->dev_addr[5]); | |
1da177e4 LT |
2271 | } |
2272 | return 0; | |
2273 | } | |
2274 | ||
2275 | module_init(fec_enet_module_init); | |
2276 | ||
2277 | MODULE_LICENSE("GPL"); |