]>
Commit | Line | Data |
---|---|---|
4ec656bd TL |
1 | /* |
2 | * EDAC driver for Intel(R) Xeon(R) Skylake processors | |
3 | * Copyright (c) 2016, Intel Corporation. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify it | |
6 | * under the terms and conditions of the GNU General Public License, | |
7 | * version 2, as published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope it will be useful, but WITHOUT | |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
12 | * more details. | |
13 | */ | |
14 | ||
15 | #include <linux/module.h> | |
16 | #include <linux/init.h> | |
17 | #include <linux/pci.h> | |
18 | #include <linux/pci_ids.h> | |
19 | #include <linux/slab.h> | |
20 | #include <linux/delay.h> | |
21 | #include <linux/edac.h> | |
22 | #include <linux/mmzone.h> | |
23 | #include <linux/smp.h> | |
24 | #include <linux/bitmap.h> | |
25 | #include <linux/math64.h> | |
26 | #include <linux/mod_devicetable.h> | |
27 | #include <asm/cpu_device_id.h> | |
20f4d692 | 28 | #include <asm/intel-family.h> |
4ec656bd TL |
29 | #include <asm/processor.h> |
30 | #include <asm/mce.h> | |
31 | ||
78d88e8a | 32 | #include "edac_module.h" |
4ec656bd | 33 | |
301375e7 TK |
34 | #define EDAC_MOD_STR "skx_edac" |
35 | ||
4ec656bd TL |
36 | /* |
37 | * Debug macros | |
38 | */ | |
39 | #define skx_printk(level, fmt, arg...) \ | |
40 | edac_printk(level, "skx", fmt, ##arg) | |
41 | ||
42 | #define skx_mc_printk(mci, level, fmt, arg...) \ | |
43 | edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) | |
44 | ||
45 | /* | |
46 | * Get a bit field at register value <v>, from bit <lo> to bit <hi> | |
47 | */ | |
48 | #define GET_BITFIELD(v, lo, hi) \ | |
49 | (((v) & GENMASK_ULL((hi), (lo))) >> (lo)) | |
50 | ||
51 | static LIST_HEAD(skx_edac_list); | |
52 | ||
53 | static u64 skx_tolm, skx_tohm; | |
54 | ||
55 | #define NUM_IMC 2 /* memory controllers per socket */ | |
56 | #define NUM_CHANNELS 3 /* channels per memory controller */ | |
57 | #define NUM_DIMMS 2 /* Max DIMMS per channel */ | |
58 | ||
59 | #define MASK26 0x3FFFFFF /* Mask for 2^26 */ | |
60 | #define MASK29 0x1FFFFFFF /* Mask for 2^29 */ | |
61 | ||
62 | /* | |
63 | * Each cpu socket contains some pci devices that provide global | |
64 | * information, and also some that are local to each of the two | |
65 | * memory controllers on the die. | |
66 | */ | |
67 | struct skx_dev { | |
68 | struct list_head list; | |
69 | u8 bus[4]; | |
88ae80aa | 70 | int seg; |
4ec656bd TL |
71 | struct pci_dev *sad_all; |
72 | struct pci_dev *util_all; | |
73 | u32 mcroute; | |
74 | struct skx_imc { | |
75 | struct mem_ctl_info *mci; | |
76 | u8 mc; /* system wide mc# */ | |
77 | u8 lmc; /* socket relative mc# */ | |
78 | u8 src_id, node_id; | |
79 | struct skx_channel { | |
80 | struct pci_dev *cdev; | |
81 | struct skx_dimm { | |
82 | u8 close_pg; | |
83 | u8 bank_xor_enable; | |
84 | u8 fine_grain_bank; | |
85 | u8 rowbits; | |
86 | u8 colbits; | |
87 | } dimms[NUM_DIMMS]; | |
88 | } chan[NUM_CHANNELS]; | |
89 | } imc[NUM_IMC]; | |
90 | }; | |
91 | static int skx_num_sockets; | |
92 | ||
93 | struct skx_pvt { | |
94 | struct skx_imc *imc; | |
95 | }; | |
96 | ||
97 | struct decoded_addr { | |
98 | struct skx_dev *dev; | |
99 | u64 addr; | |
100 | int socket; | |
101 | int imc; | |
102 | int channel; | |
103 | u64 chan_addr; | |
104 | int sktways; | |
105 | int chanways; | |
106 | int dimm; | |
107 | int rank; | |
108 | int channel_rank; | |
109 | u64 rank_address; | |
110 | int row; | |
111 | int column; | |
112 | int bank_address; | |
113 | int bank_group; | |
114 | }; | |
115 | ||
88ae80aa | 116 | static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx) |
4ec656bd TL |
117 | { |
118 | struct skx_dev *d; | |
119 | ||
120 | list_for_each_entry(d, &skx_edac_list, list) { | |
88ae80aa | 121 | if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number) |
4ec656bd TL |
122 | return d; |
123 | } | |
124 | ||
125 | return NULL; | |
126 | } | |
127 | ||
128 | enum munittype { | |
129 | CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD | |
130 | }; | |
131 | ||
132 | struct munit { | |
133 | u16 did; | |
134 | u16 devfn[NUM_IMC]; | |
135 | u8 busidx; | |
136 | u8 per_socket; | |
137 | enum munittype mtype; | |
138 | }; | |
139 | ||
140 | /* | |
141 | * List of PCI device ids that we need together with some device | |
142 | * number and function numbers to tell which memory controller the | |
143 | * device belongs to. | |
144 | */ | |
145 | static const struct munit skx_all_munits[] = { | |
146 | { 0x2054, { }, 1, 1, SAD_ALL }, | |
147 | { 0x2055, { }, 1, 1, UTIL_ALL }, | |
148 | { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, | |
149 | { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, | |
150 | { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, | |
151 | { 0x208e, { }, 1, 0, SAD }, | |
152 | { } | |
153 | }; | |
154 | ||
155 | /* | |
156 | * We use the per-socket device 0x2016 to count how many sockets are present, | |
157 | * and to detemine which PCI buses are associated with each socket. Allocate | |
158 | * and build the full list of all the skx_dev structures that we need here. | |
159 | */ | |
160 | static int get_all_bus_mappings(void) | |
161 | { | |
162 | struct pci_dev *pdev, *prev; | |
163 | struct skx_dev *d; | |
164 | u32 reg; | |
165 | int ndev = 0; | |
166 | ||
167 | prev = NULL; | |
168 | for (;;) { | |
169 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev); | |
170 | if (!pdev) | |
171 | break; | |
172 | ndev++; | |
173 | d = kzalloc(sizeof(*d), GFP_KERNEL); | |
174 | if (!d) { | |
175 | pci_dev_put(pdev); | |
176 | return -ENOMEM; | |
177 | } | |
88ae80aa | 178 | d->seg = pci_domain_nr(pdev->bus); |
4ec656bd TL |
179 | pci_read_config_dword(pdev, 0xCC, ®); |
180 | d->bus[0] = GET_BITFIELD(reg, 0, 7); | |
181 | d->bus[1] = GET_BITFIELD(reg, 8, 15); | |
182 | d->bus[2] = GET_BITFIELD(reg, 16, 23); | |
183 | d->bus[3] = GET_BITFIELD(reg, 24, 31); | |
184 | edac_dbg(2, "busses: %x, %x, %x, %x\n", | |
185 | d->bus[0], d->bus[1], d->bus[2], d->bus[3]); | |
186 | list_add_tail(&d->list, &skx_edac_list); | |
187 | skx_num_sockets++; | |
188 | prev = pdev; | |
189 | } | |
190 | ||
191 | return ndev; | |
192 | } | |
193 | ||
194 | static int get_all_munits(const struct munit *m) | |
195 | { | |
196 | struct pci_dev *pdev, *prev; | |
197 | struct skx_dev *d; | |
198 | u32 reg; | |
199 | int i = 0, ndev = 0; | |
200 | ||
201 | prev = NULL; | |
202 | for (;;) { | |
203 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); | |
204 | if (!pdev) | |
205 | break; | |
206 | ndev++; | |
207 | if (m->per_socket == NUM_IMC) { | |
208 | for (i = 0; i < NUM_IMC; i++) | |
209 | if (m->devfn[i] == pdev->devfn) | |
210 | break; | |
211 | if (i == NUM_IMC) | |
212 | goto fail; | |
213 | } | |
88ae80aa | 214 | d = get_skx_dev(pdev->bus, m->busidx); |
4ec656bd TL |
215 | if (!d) |
216 | goto fail; | |
217 | ||
218 | /* Be sure that the device is enabled */ | |
219 | if (unlikely(pci_enable_device(pdev) < 0)) { | |
220 | skx_printk(KERN_ERR, | |
221 | "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did); | |
222 | goto fail; | |
223 | } | |
224 | ||
225 | switch (m->mtype) { | |
226 | case CHAN0: case CHAN1: case CHAN2: | |
227 | pci_dev_get(pdev); | |
228 | d->imc[i].chan[m->mtype].cdev = pdev; | |
229 | break; | |
230 | case SAD_ALL: | |
231 | pci_dev_get(pdev); | |
232 | d->sad_all = pdev; | |
233 | break; | |
234 | case UTIL_ALL: | |
235 | pci_dev_get(pdev); | |
236 | d->util_all = pdev; | |
237 | break; | |
238 | case SAD: | |
239 | /* | |
240 | * one of these devices per core, including cores | |
241 | * that don't exist on this SKU. Ignore any that | |
242 | * read a route table of zero, make sure all the | |
243 | * non-zero values match. | |
244 | */ | |
245 | pci_read_config_dword(pdev, 0xB4, ®); | |
246 | if (reg != 0) { | |
247 | if (d->mcroute == 0) | |
248 | d->mcroute = reg; | |
249 | else if (d->mcroute != reg) { | |
250 | skx_printk(KERN_ERR, | |
251 | "mcroute mismatch\n"); | |
252 | goto fail; | |
253 | } | |
254 | } | |
255 | ndev--; | |
256 | break; | |
257 | } | |
258 | ||
259 | prev = pdev; | |
260 | } | |
261 | ||
262 | return ndev; | |
263 | fail: | |
264 | pci_dev_put(pdev); | |
265 | return -ENODEV; | |
266 | } | |
267 | ||
240ea921 | 268 | static const struct x86_cpu_id skx_cpuids[] = { |
20f4d692 | 269 | { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 }, |
4ec656bd TL |
270 | { } |
271 | }; | |
272 | MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); | |
273 | ||
274 | static u8 get_src_id(struct skx_dev *d) | |
275 | { | |
276 | u32 reg; | |
277 | ||
278 | pci_read_config_dword(d->util_all, 0xF0, ®); | |
279 | ||
280 | return GET_BITFIELD(reg, 12, 14); | |
281 | } | |
282 | ||
283 | static u8 skx_get_node_id(struct skx_dev *d) | |
284 | { | |
285 | u32 reg; | |
286 | ||
287 | pci_read_config_dword(d->util_all, 0xF4, ®); | |
288 | ||
289 | return GET_BITFIELD(reg, 0, 2); | |
290 | } | |
291 | ||
292 | static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval, | |
293 | int maxval, char *name) | |
294 | { | |
295 | u32 val = GET_BITFIELD(reg, lobit, hibit); | |
296 | ||
297 | if (val < minval || val > maxval) { | |
298 | edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg); | |
299 | return -EINVAL; | |
300 | } | |
301 | return val + add; | |
302 | } | |
303 | ||
304 | #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15) | |
305 | ||
a9c0a108 | 306 | #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks") |
4ec656bd TL |
307 | #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows") |
308 | #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols") | |
309 | ||
310 | static int get_width(u32 mtr) | |
311 | { | |
312 | switch (GET_BITFIELD(mtr, 8, 9)) { | |
313 | case 0: | |
314 | return DEV_X4; | |
315 | case 1: | |
316 | return DEV_X8; | |
317 | case 2: | |
318 | return DEV_X16; | |
319 | } | |
320 | return DEV_UNKNOWN; | |
321 | } | |
322 | ||
323 | static int skx_get_hi_lo(void) | |
324 | { | |
325 | struct pci_dev *pdev; | |
326 | u32 reg; | |
327 | ||
328 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL); | |
329 | if (!pdev) { | |
330 | edac_dbg(0, "Can't get tolm/tohm\n"); | |
331 | return -ENODEV; | |
332 | } | |
333 | ||
334 | pci_read_config_dword(pdev, 0xD0, ®); | |
335 | skx_tolm = reg; | |
336 | pci_read_config_dword(pdev, 0xD4, ®); | |
337 | skx_tohm = reg; | |
338 | pci_read_config_dword(pdev, 0xD8, ®); | |
339 | skx_tohm |= (u64)reg << 32; | |
340 | ||
341 | pci_dev_put(pdev); | |
342 | edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm); | |
343 | ||
344 | return 0; | |
345 | } | |
346 | ||
347 | static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm, | |
348 | struct skx_imc *imc, int chan, int dimmno) | |
349 | { | |
350 | int banks = 16, ranks, rows, cols, npages; | |
351 | u64 size; | |
352 | ||
353 | if (!IS_DIMM_PRESENT(mtr)) | |
354 | return 0; | |
355 | ranks = numrank(mtr); | |
356 | rows = numrow(mtr); | |
357 | cols = numcol(mtr); | |
358 | ||
359 | /* | |
360 | * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) | |
361 | */ | |
362 | size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); | |
363 | npages = MiB_TO_PAGES(size); | |
364 | ||
365 | edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", | |
366 | imc->mc, chan, dimmno, size, npages, | |
a9c0a108 | 367 | banks, 1 << ranks, rows, cols); |
4ec656bd TL |
368 | |
369 | imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0); | |
370 | imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9); | |
371 | imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); | |
372 | imc->chan[chan].dimms[dimmno].rowbits = rows; | |
373 | imc->chan[chan].dimms[dimmno].colbits = cols; | |
374 | ||
375 | dimm->nr_pages = npages; | |
376 | dimm->grain = 32; | |
377 | dimm->dtype = get_width(mtr); | |
378 | dimm->mtype = MEM_DDR4; | |
379 | dimm->edac_mode = EDAC_SECDED; /* likely better than this */ | |
380 | snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", | |
381 | imc->src_id, imc->lmc, chan, dimmno); | |
382 | ||
383 | return 1; | |
384 | } | |
385 | ||
386 | #define SKX_GET_MTMTR(dev, reg) \ | |
387 | pci_read_config_dword((dev), 0x87c, ®) | |
388 | ||
389 | static bool skx_check_ecc(struct pci_dev *pdev) | |
390 | { | |
391 | u32 mtmtr; | |
392 | ||
393 | SKX_GET_MTMTR(pdev, mtmtr); | |
394 | ||
395 | return !!GET_BITFIELD(mtmtr, 2, 2); | |
396 | } | |
397 | ||
398 | static int skx_get_dimm_config(struct mem_ctl_info *mci) | |
399 | { | |
400 | struct skx_pvt *pvt = mci->pvt_info; | |
401 | struct skx_imc *imc = pvt->imc; | |
402 | struct dimm_info *dimm; | |
403 | int i, j; | |
404 | u32 mtr, amap; | |
405 | int ndimms; | |
406 | ||
407 | for (i = 0; i < NUM_CHANNELS; i++) { | |
408 | ndimms = 0; | |
409 | pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); | |
410 | for (j = 0; j < NUM_DIMMS; j++) { | |
411 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, | |
412 | mci->n_layers, i, j, 0); | |
413 | pci_read_config_dword(imc->chan[i].cdev, | |
414 | 0x80 + 4*j, &mtr); | |
415 | ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j); | |
416 | } | |
417 | if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { | |
418 | skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); | |
419 | return -ENODEV; | |
420 | } | |
421 | } | |
422 | ||
423 | return 0; | |
424 | } | |
425 | ||
426 | static void skx_unregister_mci(struct skx_imc *imc) | |
427 | { | |
428 | struct mem_ctl_info *mci = imc->mci; | |
429 | ||
430 | if (!mci) | |
431 | return; | |
432 | ||
433 | edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); | |
434 | ||
435 | /* Remove MC sysfs nodes */ | |
436 | edac_mc_del_mc(mci->pdev); | |
437 | ||
438 | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); | |
439 | kfree(mci->ctl_name); | |
440 | edac_mc_free(mci); | |
441 | } | |
442 | ||
443 | static int skx_register_mci(struct skx_imc *imc) | |
444 | { | |
445 | struct mem_ctl_info *mci; | |
446 | struct edac_mc_layer layers[2]; | |
447 | struct pci_dev *pdev = imc->chan[0].cdev; | |
448 | struct skx_pvt *pvt; | |
449 | int rc; | |
450 | ||
451 | /* allocate a new MC control structure */ | |
452 | layers[0].type = EDAC_MC_LAYER_CHANNEL; | |
453 | layers[0].size = NUM_CHANNELS; | |
454 | layers[0].is_virt_csrow = false; | |
455 | layers[1].type = EDAC_MC_LAYER_SLOT; | |
456 | layers[1].size = NUM_DIMMS; | |
457 | layers[1].is_virt_csrow = true; | |
458 | mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, | |
459 | sizeof(struct skx_pvt)); | |
460 | ||
461 | if (unlikely(!mci)) | |
462 | return -ENOMEM; | |
463 | ||
464 | edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); | |
465 | ||
466 | /* Associate skx_dev and mci for future usage */ | |
467 | imc->mci = mci; | |
468 | pvt = mci->pvt_info; | |
469 | pvt->imc = imc; | |
470 | ||
75f029c3 AY |
471 | mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d", imc->node_id, imc->lmc); |
472 | if (!mci->ctl_name) { | |
473 | rc = -ENOMEM; | |
474 | goto fail0; | |
475 | } | |
476 | ||
4ec656bd TL |
477 | mci->mtype_cap = MEM_FLAG_DDR4; |
478 | mci->edac_ctl_cap = EDAC_FLAG_NONE; | |
479 | mci->edac_cap = EDAC_FLAG_NONE; | |
301375e7 | 480 | mci->mod_name = EDAC_MOD_STR; |
4ec656bd | 481 | mci->dev_name = pci_name(imc->chan[0].cdev); |
4ec656bd TL |
482 | mci->ctl_page_to_phys = NULL; |
483 | ||
484 | rc = skx_get_dimm_config(mci); | |
485 | if (rc < 0) | |
486 | goto fail; | |
487 | ||
488 | /* record ptr to the generic device */ | |
489 | mci->pdev = &pdev->dev; | |
490 | ||
491 | /* add this new MC control structure to EDAC's list of MCs */ | |
492 | if (unlikely(edac_mc_add_mc(mci))) { | |
493 | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | |
494 | rc = -EINVAL; | |
495 | goto fail; | |
496 | } | |
497 | ||
498 | return 0; | |
499 | ||
500 | fail: | |
501 | kfree(mci->ctl_name); | |
75f029c3 | 502 | fail0: |
4ec656bd TL |
503 | edac_mc_free(mci); |
504 | imc->mci = NULL; | |
505 | return rc; | |
506 | } | |
507 | ||
508 | #define SKX_MAX_SAD 24 | |
509 | ||
510 | #define SKX_GET_SAD(d, i, reg) \ | |
511 | pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), ®) | |
512 | #define SKX_GET_ILV(d, i, reg) \ | |
513 | pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), ®) | |
514 | ||
515 | #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31) | |
516 | #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27) | |
517 | #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) | |
518 | #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6) | |
519 | #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4) | |
520 | #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2) | |
521 | #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0) | |
522 | ||
523 | #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0) | |
524 | #define SKX_ILV_TARGET(tgt) ((tgt) & 7) | |
525 | ||
526 | static bool skx_sad_decode(struct decoded_addr *res) | |
527 | { | |
528 | struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list); | |
529 | u64 addr = res->addr; | |
530 | int i, idx, tgt, lchan, shift; | |
531 | u32 sad, ilv; | |
532 | u64 limit, prev_limit; | |
533 | int remote = 0; | |
534 | ||
535 | /* Simple sanity check for I/O space or out of range */ | |
536 | if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { | |
537 | edac_dbg(0, "Address %llx out of range\n", addr); | |
538 | return false; | |
539 | } | |
540 | ||
541 | restart: | |
542 | prev_limit = 0; | |
543 | for (i = 0; i < SKX_MAX_SAD; i++) { | |
544 | SKX_GET_SAD(d, i, sad); | |
545 | limit = SKX_SAD_LIMIT(sad); | |
546 | if (SKX_SAD_ENABLE(sad)) { | |
547 | if (addr >= prev_limit && addr <= limit) | |
548 | goto sad_found; | |
549 | } | |
550 | prev_limit = limit + 1; | |
551 | } | |
552 | edac_dbg(0, "No SAD entry for %llx\n", addr); | |
553 | return false; | |
554 | ||
555 | sad_found: | |
556 | SKX_GET_ILV(d, i, ilv); | |
557 | ||
558 | switch (SKX_SAD_INTERLEAVE(sad)) { | |
559 | case 0: | |
560 | idx = GET_BITFIELD(addr, 6, 8); | |
561 | break; | |
562 | case 1: | |
563 | idx = GET_BITFIELD(addr, 8, 10); | |
564 | break; | |
565 | case 2: | |
566 | idx = GET_BITFIELD(addr, 12, 14); | |
567 | break; | |
568 | case 3: | |
569 | idx = GET_BITFIELD(addr, 30, 32); | |
570 | break; | |
571 | } | |
572 | ||
573 | tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); | |
574 | ||
575 | /* If point to another node, find it and start over */ | |
576 | if (SKX_ILV_REMOTE(tgt)) { | |
577 | if (remote) { | |
578 | edac_dbg(0, "Double remote!\n"); | |
579 | return false; | |
580 | } | |
581 | remote = 1; | |
582 | list_for_each_entry(d, &skx_edac_list, list) { | |
583 | if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) | |
584 | goto restart; | |
585 | } | |
586 | edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); | |
587 | return false; | |
588 | } | |
589 | ||
590 | if (SKX_SAD_MOD3(sad) == 0) | |
591 | lchan = SKX_ILV_TARGET(tgt); | |
592 | else { | |
593 | switch (SKX_SAD_MOD3MODE(sad)) { | |
594 | case 0: | |
595 | shift = 6; | |
596 | break; | |
597 | case 1: | |
598 | shift = 8; | |
599 | break; | |
600 | case 2: | |
601 | shift = 12; | |
602 | break; | |
603 | default: | |
604 | edac_dbg(0, "illegal mod3mode\n"); | |
605 | return false; | |
606 | } | |
607 | switch (SKX_SAD_MOD3ASMOD2(sad)) { | |
608 | case 0: | |
609 | lchan = (addr >> shift) % 3; | |
610 | break; | |
611 | case 1: | |
612 | lchan = (addr >> shift) % 2; | |
613 | break; | |
614 | case 2: | |
615 | lchan = (addr >> shift) % 2; | |
616 | lchan = (lchan << 1) | ~lchan; | |
617 | break; | |
618 | case 3: | |
619 | lchan = ((addr >> shift) % 2) << 1; | |
620 | break; | |
621 | } | |
622 | lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); | |
623 | } | |
624 | ||
625 | res->dev = d; | |
626 | res->socket = d->imc[0].src_id; | |
627 | res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); | |
628 | res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); | |
629 | ||
630 | edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n", | |
631 | res->addr, res->socket, res->imc, res->channel); | |
632 | return true; | |
633 | } | |
634 | ||
635 | #define SKX_MAX_TAD 8 | |
636 | ||
637 | #define SKX_GET_TADBASE(d, mc, i, reg) \ | |
638 | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), ®) | |
639 | #define SKX_GET_TADWAYNESS(d, mc, i, reg) \ | |
640 | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), ®) | |
641 | #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \ | |
642 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), ®) | |
643 | ||
644 | #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26) | |
645 | #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5) | |
646 | #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7) | |
647 | #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) | |
648 | #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26) | |
649 | #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11)) | |
650 | #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1) | |
651 | ||
652 | /* which bit used for both socket and channel interleave */ | |
653 | static int skx_granularity[] = { 6, 8, 12, 30 }; | |
654 | ||
655 | static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) | |
656 | { | |
657 | addr >>= shift; | |
658 | addr /= ways; | |
659 | addr <<= shift; | |
660 | ||
661 | return addr | (lowbits & ((1ull << shift) - 1)); | |
662 | } | |
663 | ||
664 | static bool skx_tad_decode(struct decoded_addr *res) | |
665 | { | |
666 | int i; | |
667 | u32 base, wayness, chnilvoffset; | |
668 | int skt_interleave_bit, chn_interleave_bit; | |
669 | u64 channel_addr; | |
670 | ||
671 | for (i = 0; i < SKX_MAX_TAD; i++) { | |
672 | SKX_GET_TADBASE(res->dev, res->imc, i, base); | |
673 | SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); | |
674 | if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) | |
675 | goto tad_found; | |
676 | } | |
677 | edac_dbg(0, "No TAD entry for %llx\n", res->addr); | |
678 | return false; | |
679 | ||
680 | tad_found: | |
681 | res->sktways = SKX_TAD_SKTWAYS(wayness); | |
682 | res->chanways = SKX_TAD_CHNWAYS(wayness); | |
683 | skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; | |
684 | chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; | |
685 | ||
686 | SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); | |
687 | channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); | |
688 | ||
689 | if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { | |
690 | /* Must handle channel first, then socket */ | |
691 | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, | |
692 | res->chanways, channel_addr); | |
693 | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, | |
694 | res->sktways, channel_addr); | |
695 | } else { | |
696 | /* Handle socket then channel. Preserve low bits from original address */ | |
697 | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, | |
698 | res->sktways, res->addr); | |
699 | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, | |
700 | res->chanways, res->addr); | |
701 | } | |
702 | ||
703 | res->chan_addr = channel_addr; | |
704 | ||
705 | edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n", | |
706 | res->addr, res->chan_addr, res->sktways, res->chanways); | |
707 | return true; | |
708 | } | |
709 | ||
710 | #define SKX_MAX_RIR 4 | |
711 | ||
712 | #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \ | |
713 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ | |
714 | 0x108 + 4 * (i), ®) | |
715 | #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \ | |
716 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ | |
717 | 0x120 + 16 * idx + 4 * (i), ®) | |
718 | ||
719 | #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) | |
720 | #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) | |
721 | #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) | |
722 | #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) | |
723 | #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) | |
724 | ||
725 | static bool skx_rir_decode(struct decoded_addr *res) | |
726 | { | |
727 | int i, idx, chan_rank; | |
728 | int shift; | |
729 | u32 rirway, rirlv; | |
730 | u64 rank_addr, prev_limit = 0, limit; | |
731 | ||
732 | if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) | |
733 | shift = 6; | |
734 | else | |
735 | shift = 13; | |
736 | ||
737 | for (i = 0; i < SKX_MAX_RIR; i++) { | |
738 | SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); | |
739 | limit = SKX_RIR_LIMIT(rirway); | |
740 | if (SKX_RIR_VALID(rirway)) { | |
741 | if (prev_limit <= res->chan_addr && | |
742 | res->chan_addr <= limit) | |
743 | goto rir_found; | |
744 | } | |
745 | prev_limit = limit; | |
746 | } | |
747 | edac_dbg(0, "No RIR entry for %llx\n", res->addr); | |
748 | return false; | |
749 | ||
750 | rir_found: | |
751 | rank_addr = res->chan_addr >> shift; | |
752 | rank_addr /= SKX_RIR_WAYS(rirway); | |
753 | rank_addr <<= shift; | |
754 | rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); | |
755 | ||
756 | res->rank_address = rank_addr; | |
757 | idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); | |
758 | ||
759 | SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); | |
760 | res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); | |
761 | chan_rank = SKX_RIR_CHAN_RANK(rirlv); | |
762 | res->channel_rank = chan_rank; | |
763 | res->dimm = chan_rank / 4; | |
764 | res->rank = chan_rank % 4; | |
765 | ||
766 | edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n", | |
767 | res->addr, res->dimm, res->rank, | |
768 | res->channel_rank, res->rank_address); | |
769 | return true; | |
770 | } | |
771 | ||
772 | static u8 skx_close_row[] = { | |
773 | 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 | |
774 | }; | |
775 | static u8 skx_close_column[] = { | |
776 | 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 | |
777 | }; | |
778 | static u8 skx_open_row[] = { | |
779 | 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 | |
780 | }; | |
781 | static u8 skx_open_column[] = { | |
782 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | |
783 | }; | |
784 | static u8 skx_open_fine_column[] = { | |
785 | 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 | |
786 | }; | |
787 | ||
788 | static int skx_bits(u64 addr, int nbits, u8 *bits) | |
789 | { | |
790 | int i, res = 0; | |
791 | ||
792 | for (i = 0; i < nbits; i++) | |
793 | res |= ((addr >> bits[i]) & 1) << i; | |
794 | return res; | |
795 | } | |
796 | ||
797 | static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) | |
798 | { | |
799 | int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); | |
800 | ||
801 | if (do_xor) | |
802 | ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); | |
803 | ||
804 | return ret; | |
805 | } | |
806 | ||
807 | static bool skx_mad_decode(struct decoded_addr *r) | |
808 | { | |
809 | struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; | |
810 | int bg0 = dimm->fine_grain_bank ? 6 : 13; | |
811 | ||
812 | if (dimm->close_pg) { | |
813 | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); | |
814 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); | |
815 | r->column |= 0x400; /* C10 is autoprecharge, always set */ | |
816 | r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); | |
817 | r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); | |
818 | } else { | |
819 | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); | |
820 | if (dimm->fine_grain_bank) | |
821 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); | |
822 | else | |
823 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); | |
824 | r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); | |
825 | r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); | |
826 | } | |
827 | r->row &= (1u << dimm->rowbits) - 1; | |
828 | ||
829 | edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n", | |
830 | r->addr, r->row, r->column, r->bank_address, | |
831 | r->bank_group); | |
832 | return true; | |
833 | } | |
834 | ||
835 | static bool skx_decode(struct decoded_addr *res) | |
836 | { | |
837 | ||
838 | return skx_sad_decode(res) && skx_tad_decode(res) && | |
839 | skx_rir_decode(res) && skx_mad_decode(res); | |
840 | } | |
841 | ||
842 | #ifdef CONFIG_EDAC_DEBUG | |
843 | /* | |
844 | * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr. | |
845 | * Write an address to this file to exercise the address decode | |
846 | * logic in this driver. | |
847 | */ | |
848 | static struct dentry *skx_test; | |
849 | static u64 skx_fake_addr; | |
850 | ||
851 | static int debugfs_u64_set(void *data, u64 val) | |
852 | { | |
853 | struct decoded_addr res; | |
854 | ||
855 | res.addr = val; | |
856 | skx_decode(&res); | |
857 | ||
858 | return 0; | |
859 | } | |
860 | ||
861 | DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); | |
862 | ||
863 | static struct dentry *mydebugfs_create(const char *name, umode_t mode, | |
864 | struct dentry *parent, u64 *value) | |
865 | { | |
866 | return debugfs_create_file(name, mode, parent, value, &fops_u64_wo); | |
867 | } | |
868 | ||
869 | static void setup_skx_debug(void) | |
870 | { | |
871 | skx_test = debugfs_create_dir("skx_edac_test", NULL); | |
872 | mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr); | |
873 | } | |
874 | ||
875 | static void teardown_skx_debug(void) | |
876 | { | |
877 | debugfs_remove_recursive(skx_test); | |
878 | } | |
879 | #else | |
880 | static void setup_skx_debug(void) | |
881 | { | |
882 | } | |
883 | ||
884 | static void teardown_skx_debug(void) | |
885 | { | |
886 | } | |
887 | #endif /*CONFIG_EDAC_DEBUG*/ | |
888 | ||
889 | static void skx_mce_output_error(struct mem_ctl_info *mci, | |
890 | const struct mce *m, | |
891 | struct decoded_addr *res) | |
892 | { | |
893 | enum hw_event_mc_err_type tp_event; | |
894 | char *type, *optype, msg[256]; | |
895 | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); | |
896 | bool overflow = GET_BITFIELD(m->status, 62, 62); | |
897 | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | |
898 | bool recoverable; | |
899 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | |
900 | u32 mscod = GET_BITFIELD(m->status, 16, 31); | |
901 | u32 errcode = GET_BITFIELD(m->status, 0, 15); | |
902 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); | |
903 | ||
904 | recoverable = GET_BITFIELD(m->status, 56, 56); | |
905 | ||
906 | if (uncorrected_error) { | |
907 | if (ripv) { | |
908 | type = "FATAL"; | |
909 | tp_event = HW_EVENT_ERR_FATAL; | |
910 | } else { | |
911 | type = "NON_FATAL"; | |
912 | tp_event = HW_EVENT_ERR_UNCORRECTED; | |
913 | } | |
914 | } else { | |
915 | type = "CORRECTED"; | |
916 | tp_event = HW_EVENT_ERR_CORRECTED; | |
917 | } | |
918 | ||
919 | /* | |
920 | * According with Table 15-9 of the Intel Architecture spec vol 3A, | |
921 | * memory errors should fit in this mask: | |
922 | * 000f 0000 1mmm cccc (binary) | |
923 | * where: | |
924 | * f = Correction Report Filtering Bit. If 1, subsequent errors | |
925 | * won't be shown | |
926 | * mmm = error type | |
927 | * cccc = channel | |
928 | * If the mask doesn't match, report an error to the parsing logic | |
929 | */ | |
930 | if (!((errcode & 0xef80) == 0x80)) { | |
931 | optype = "Can't parse: it is not a mem"; | |
932 | } else { | |
933 | switch (optypenum) { | |
934 | case 0: | |
935 | optype = "generic undef request error"; | |
936 | break; | |
937 | case 1: | |
938 | optype = "memory read error"; | |
939 | break; | |
940 | case 2: | |
941 | optype = "memory write error"; | |
942 | break; | |
943 | case 3: | |
944 | optype = "addr/cmd error"; | |
945 | break; | |
946 | case 4: | |
947 | optype = "memory scrubbing error"; | |
948 | break; | |
949 | default: | |
950 | optype = "reserved"; | |
951 | break; | |
952 | } | |
953 | } | |
954 | ||
955 | snprintf(msg, sizeof(msg), | |
956 | "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x", | |
957 | overflow ? " OVERFLOW" : "", | |
958 | (uncorrected_error && recoverable) ? " recoverable" : "", | |
959 | mscod, errcode, | |
960 | res->socket, res->imc, res->rank, | |
961 | res->bank_group, res->bank_address, res->row, res->column); | |
962 | ||
963 | edac_dbg(0, "%s\n", msg); | |
964 | ||
965 | /* Call the helper to output message */ | |
966 | edac_mc_handle_error(tp_event, mci, core_err_cnt, | |
967 | m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, | |
968 | res->channel, res->dimm, -1, | |
969 | optype, msg); | |
970 | } | |
971 | ||
972 | static int skx_mce_check_error(struct notifier_block *nb, unsigned long val, | |
973 | void *data) | |
974 | { | |
975 | struct mce *mce = (struct mce *)data; | |
976 | struct decoded_addr res; | |
977 | struct mem_ctl_info *mci; | |
978 | char *type; | |
979 | ||
bffc7dec | 980 | if (edac_get_report_status() == EDAC_REPORTING_DISABLED) |
4ec656bd TL |
981 | return NOTIFY_DONE; |
982 | ||
983 | /* ignore unless this is memory related with an address */ | |
984 | if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) | |
985 | return NOTIFY_DONE; | |
986 | ||
987 | res.addr = mce->addr; | |
988 | if (!skx_decode(&res)) | |
989 | return NOTIFY_DONE; | |
990 | mci = res.dev->imc[res.imc].mci; | |
991 | ||
992 | if (mce->mcgstatus & MCG_STATUS_MCIP) | |
993 | type = "Exception"; | |
994 | else | |
995 | type = "Event"; | |
996 | ||
997 | skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); | |
998 | ||
999 | skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " | |
1000 | "Bank %d: %016Lx\n", mce->extcpu, type, | |
1001 | mce->mcgstatus, mce->bank, mce->status); | |
1002 | skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); | |
1003 | skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); | |
1004 | skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); | |
1005 | ||
1006 | skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " | |
1007 | "%u APIC %x\n", mce->cpuvendor, mce->cpuid, | |
1008 | mce->time, mce->socketid, mce->apicid); | |
1009 | ||
1010 | skx_mce_output_error(mci, mce, &res); | |
1011 | ||
1012 | return NOTIFY_DONE; | |
1013 | } | |
1014 | ||
1015 | static struct notifier_block skx_mce_dec = { | |
9026cc82 BP |
1016 | .notifier_call = skx_mce_check_error, |
1017 | .priority = MCE_PRIO_EDAC, | |
4ec656bd TL |
1018 | }; |
1019 | ||
1020 | static void skx_remove(void) | |
1021 | { | |
1022 | int i, j; | |
1023 | struct skx_dev *d, *tmp; | |
1024 | ||
1025 | edac_dbg(0, "\n"); | |
1026 | ||
1027 | list_for_each_entry_safe(d, tmp, &skx_edac_list, list) { | |
1028 | list_del(&d->list); | |
1029 | for (i = 0; i < NUM_IMC; i++) { | |
1030 | skx_unregister_mci(&d->imc[i]); | |
1031 | for (j = 0; j < NUM_CHANNELS; j++) | |
1032 | pci_dev_put(d->imc[i].chan[j].cdev); | |
1033 | } | |
1034 | pci_dev_put(d->util_all); | |
1035 | pci_dev_put(d->sad_all); | |
1036 | ||
1037 | kfree(d); | |
1038 | } | |
1039 | } | |
1040 | ||
1041 | /* | |
1042 | * skx_init: | |
1043 | * make sure we are running on the correct cpu model | |
1044 | * search for all the devices we need | |
1045 | * check which DIMMs are present. | |
1046 | */ | |
240ea921 | 1047 | static int __init skx_init(void) |
4ec656bd TL |
1048 | { |
1049 | const struct x86_cpu_id *id; | |
1050 | const struct munit *m; | |
301375e7 | 1051 | const char *owner; |
4ec656bd TL |
1052 | int rc = 0, i; |
1053 | u8 mc = 0, src_id, node_id; | |
1054 | struct skx_dev *d; | |
1055 | ||
1056 | edac_dbg(2, "\n"); | |
1057 | ||
301375e7 TK |
1058 | owner = edac_get_owner(); |
1059 | if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) | |
1060 | return -EBUSY; | |
1061 | ||
4ec656bd TL |
1062 | id = x86_match_cpu(skx_cpuids); |
1063 | if (!id) | |
1064 | return -ENODEV; | |
1065 | ||
1066 | rc = skx_get_hi_lo(); | |
1067 | if (rc) | |
1068 | return rc; | |
1069 | ||
1070 | rc = get_all_bus_mappings(); | |
1071 | if (rc < 0) | |
1072 | goto fail; | |
1073 | if (rc == 0) { | |
1074 | edac_dbg(2, "No memory controllers found\n"); | |
1075 | return -ENODEV; | |
1076 | } | |
1077 | ||
1078 | for (m = skx_all_munits; m->did; m++) { | |
1079 | rc = get_all_munits(m); | |
1080 | if (rc < 0) | |
1081 | goto fail; | |
1082 | if (rc != m->per_socket * skx_num_sockets) { | |
1083 | edac_dbg(2, "Expected %d, got %d of %x\n", | |
1084 | m->per_socket * skx_num_sockets, rc, m->did); | |
1085 | rc = -ENODEV; | |
1086 | goto fail; | |
1087 | } | |
1088 | } | |
1089 | ||
1090 | list_for_each_entry(d, &skx_edac_list, list) { | |
1091 | src_id = get_src_id(d); | |
1092 | node_id = skx_get_node_id(d); | |
1093 | edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); | |
1094 | for (i = 0; i < NUM_IMC; i++) { | |
1095 | d->imc[i].mc = mc++; | |
1096 | d->imc[i].lmc = i; | |
1097 | d->imc[i].src_id = src_id; | |
1098 | d->imc[i].node_id = node_id; | |
1099 | rc = skx_register_mci(&d->imc[i]); | |
1100 | if (rc < 0) | |
1101 | goto fail; | |
1102 | } | |
1103 | } | |
1104 | ||
1105 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | |
1106 | opstate_init(); | |
1107 | ||
1108 | setup_skx_debug(); | |
1109 | ||
1110 | mce_register_decode_chain(&skx_mce_dec); | |
1111 | ||
1112 | return 0; | |
1113 | fail: | |
1114 | skx_remove(); | |
1115 | return rc; | |
1116 | } | |
1117 | ||
1118 | static void __exit skx_exit(void) | |
1119 | { | |
1120 | edac_dbg(2, "\n"); | |
1121 | mce_unregister_decode_chain(&skx_mce_dec); | |
1122 | skx_remove(); | |
1123 | teardown_skx_debug(); | |
1124 | } | |
1125 | ||
1126 | module_init(skx_init); | |
1127 | module_exit(skx_exit); | |
1128 | ||
1129 | module_param(edac_op_state, int, 0444); | |
1130 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | |
1131 | ||
1132 | MODULE_LICENSE("GPL v2"); | |
1133 | MODULE_AUTHOR("Tony Luck"); | |
1134 | MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors"); |