]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * inode->i_alloc_sem (vmtruncate_range) |
25 | * mm->mmap_sem | |
26 | * page->flags PG_locked (lock_page) | |
27 | * mapping->i_mmap_lock | |
28 | * anon_vma->lock | |
29 | * mm->page_table_lock or pte_lock | |
30 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
31 | * swap_lock (in swap_duplicate, swap_info_get) | |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * inode_lock (in set_page_dirty's __mark_inode_dirty) | |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
36 | * mapping->tree_lock (widely used, in set_page_dirty, | |
37 | * in arch-dependent flush_dcache_mmap_lock, | |
38 | * within inode_lock in __sync_single_inode) | |
6a46079c AK |
39 | * |
40 | * (code doesn't rely on that order so it could be switched around) | |
41 | * ->tasklist_lock | |
42 | * anon_vma->lock (memory_failure, collect_procs_anon) | |
43 | * pte map lock | |
1da177e4 LT |
44 | */ |
45 | ||
46 | #include <linux/mm.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/swap.h> | |
49 | #include <linux/swapops.h> | |
50 | #include <linux/slab.h> | |
51 | #include <linux/init.h> | |
5ad64688 | 52 | #include <linux/ksm.h> |
1da177e4 LT |
53 | #include <linux/rmap.h> |
54 | #include <linux/rcupdate.h> | |
a48d07af | 55 | #include <linux/module.h> |
8a9f3ccd | 56 | #include <linux/memcontrol.h> |
cddb8a5c | 57 | #include <linux/mmu_notifier.h> |
64cdd548 | 58 | #include <linux/migrate.h> |
1da177e4 LT |
59 | |
60 | #include <asm/tlbflush.h> | |
61 | ||
b291f000 NP |
62 | #include "internal.h" |
63 | ||
fdd2e5f8 AB |
64 | static struct kmem_cache *anon_vma_cachep; |
65 | ||
66 | static inline struct anon_vma *anon_vma_alloc(void) | |
67 | { | |
68 | return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
69 | } | |
70 | ||
db114b83 | 71 | void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 AB |
72 | { |
73 | kmem_cache_free(anon_vma_cachep, anon_vma); | |
74 | } | |
1da177e4 | 75 | |
d9d332e0 LT |
76 | /** |
77 | * anon_vma_prepare - attach an anon_vma to a memory region | |
78 | * @vma: the memory region in question | |
79 | * | |
80 | * This makes sure the memory mapping described by 'vma' has | |
81 | * an 'anon_vma' attached to it, so that we can associate the | |
82 | * anonymous pages mapped into it with that anon_vma. | |
83 | * | |
84 | * The common case will be that we already have one, but if | |
85 | * if not we either need to find an adjacent mapping that we | |
86 | * can re-use the anon_vma from (very common when the only | |
87 | * reason for splitting a vma has been mprotect()), or we | |
88 | * allocate a new one. | |
89 | * | |
90 | * Anon-vma allocations are very subtle, because we may have | |
91 | * optimistically looked up an anon_vma in page_lock_anon_vma() | |
92 | * and that may actually touch the spinlock even in the newly | |
93 | * allocated vma (it depends on RCU to make sure that the | |
94 | * anon_vma isn't actually destroyed). | |
95 | * | |
96 | * As a result, we need to do proper anon_vma locking even | |
97 | * for the new allocation. At the same time, we do not want | |
98 | * to do any locking for the common case of already having | |
99 | * an anon_vma. | |
100 | * | |
101 | * This must be called with the mmap_sem held for reading. | |
102 | */ | |
1da177e4 LT |
103 | int anon_vma_prepare(struct vm_area_struct *vma) |
104 | { | |
105 | struct anon_vma *anon_vma = vma->anon_vma; | |
106 | ||
107 | might_sleep(); | |
108 | if (unlikely(!anon_vma)) { | |
109 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 110 | struct anon_vma *allocated; |
1da177e4 LT |
111 | |
112 | anon_vma = find_mergeable_anon_vma(vma); | |
d9d332e0 LT |
113 | allocated = NULL; |
114 | if (!anon_vma) { | |
1da177e4 LT |
115 | anon_vma = anon_vma_alloc(); |
116 | if (unlikely(!anon_vma)) | |
117 | return -ENOMEM; | |
118 | allocated = anon_vma; | |
1da177e4 | 119 | } |
d9d332e0 | 120 | spin_lock(&anon_vma->lock); |
1da177e4 LT |
121 | |
122 | /* page_table_lock to protect against threads */ | |
123 | spin_lock(&mm->page_table_lock); | |
124 | if (likely(!vma->anon_vma)) { | |
125 | vma->anon_vma = anon_vma; | |
0697212a | 126 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
127 | allocated = NULL; |
128 | } | |
129 | spin_unlock(&mm->page_table_lock); | |
130 | ||
d9d332e0 | 131 | spin_unlock(&anon_vma->lock); |
1da177e4 LT |
132 | if (unlikely(allocated)) |
133 | anon_vma_free(allocated); | |
134 | } | |
135 | return 0; | |
136 | } | |
137 | ||
138 | void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) | |
139 | { | |
140 | BUG_ON(vma->anon_vma != next->anon_vma); | |
141 | list_del(&next->anon_vma_node); | |
142 | } | |
143 | ||
144 | void __anon_vma_link(struct vm_area_struct *vma) | |
145 | { | |
146 | struct anon_vma *anon_vma = vma->anon_vma; | |
147 | ||
30acbaba | 148 | if (anon_vma) |
0697212a | 149 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
150 | } |
151 | ||
152 | void anon_vma_link(struct vm_area_struct *vma) | |
153 | { | |
154 | struct anon_vma *anon_vma = vma->anon_vma; | |
155 | ||
156 | if (anon_vma) { | |
157 | spin_lock(&anon_vma->lock); | |
0697212a | 158 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
159 | spin_unlock(&anon_vma->lock); |
160 | } | |
161 | } | |
162 | ||
163 | void anon_vma_unlink(struct vm_area_struct *vma) | |
164 | { | |
165 | struct anon_vma *anon_vma = vma->anon_vma; | |
166 | int empty; | |
167 | ||
168 | if (!anon_vma) | |
169 | return; | |
170 | ||
171 | spin_lock(&anon_vma->lock); | |
1da177e4 LT |
172 | list_del(&vma->anon_vma_node); |
173 | ||
174 | /* We must garbage collect the anon_vma if it's empty */ | |
db114b83 | 175 | empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma); |
1da177e4 LT |
176 | spin_unlock(&anon_vma->lock); |
177 | ||
178 | if (empty) | |
179 | anon_vma_free(anon_vma); | |
180 | } | |
181 | ||
51cc5068 | 182 | static void anon_vma_ctor(void *data) |
1da177e4 | 183 | { |
a35afb83 | 184 | struct anon_vma *anon_vma = data; |
1da177e4 | 185 | |
a35afb83 | 186 | spin_lock_init(&anon_vma->lock); |
db114b83 | 187 | ksm_refcount_init(anon_vma); |
a35afb83 | 188 | INIT_LIST_HEAD(&anon_vma->head); |
1da177e4 LT |
189 | } |
190 | ||
191 | void __init anon_vma_init(void) | |
192 | { | |
193 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
20c2df83 | 194 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
1da177e4 LT |
195 | } |
196 | ||
197 | /* | |
198 | * Getting a lock on a stable anon_vma from a page off the LRU is | |
199 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | |
200 | */ | |
10be22df | 201 | struct anon_vma *page_lock_anon_vma(struct page *page) |
1da177e4 | 202 | { |
34bbd704 | 203 | struct anon_vma *anon_vma; |
1da177e4 LT |
204 | unsigned long anon_mapping; |
205 | ||
206 | rcu_read_lock(); | |
80e14822 | 207 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); |
3ca7b3c5 | 208 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
209 | goto out; |
210 | if (!page_mapped(page)) | |
211 | goto out; | |
212 | ||
213 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
214 | spin_lock(&anon_vma->lock); | |
34bbd704 | 215 | return anon_vma; |
1da177e4 LT |
216 | out: |
217 | rcu_read_unlock(); | |
34bbd704 ON |
218 | return NULL; |
219 | } | |
220 | ||
10be22df | 221 | void page_unlock_anon_vma(struct anon_vma *anon_vma) |
34bbd704 ON |
222 | { |
223 | spin_unlock(&anon_vma->lock); | |
224 | rcu_read_unlock(); | |
1da177e4 LT |
225 | } |
226 | ||
227 | /* | |
3ad33b24 LS |
228 | * At what user virtual address is page expected in @vma? |
229 | * Returns virtual address or -EFAULT if page's index/offset is not | |
230 | * within the range mapped the @vma. | |
1da177e4 LT |
231 | */ |
232 | static inline unsigned long | |
233 | vma_address(struct page *page, struct vm_area_struct *vma) | |
234 | { | |
235 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
236 | unsigned long address; | |
237 | ||
238 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | |
239 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | |
3ad33b24 | 240 | /* page should be within @vma mapping range */ |
1da177e4 LT |
241 | return -EFAULT; |
242 | } | |
243 | return address; | |
244 | } | |
245 | ||
246 | /* | |
bf89c8c8 HS |
247 | * At what user virtual address is page expected in vma? |
248 | * checking that the page matches the vma. | |
1da177e4 LT |
249 | */ |
250 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
251 | { | |
252 | if (PageAnon(page)) { | |
3ca7b3c5 | 253 | if (vma->anon_vma != page_anon_vma(page)) |
1da177e4 LT |
254 | return -EFAULT; |
255 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | |
ee498ed7 HD |
256 | if (!vma->vm_file || |
257 | vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
258 | return -EFAULT; |
259 | } else | |
260 | return -EFAULT; | |
261 | return vma_address(page, vma); | |
262 | } | |
263 | ||
81b4082d ND |
264 | /* |
265 | * Check that @page is mapped at @address into @mm. | |
266 | * | |
479db0bf NP |
267 | * If @sync is false, page_check_address may perform a racy check to avoid |
268 | * the page table lock when the pte is not present (helpful when reclaiming | |
269 | * highly shared pages). | |
270 | * | |
b8072f09 | 271 | * On success returns with pte mapped and locked. |
81b4082d | 272 | */ |
ceffc078 | 273 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 274 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d ND |
275 | { |
276 | pgd_t *pgd; | |
277 | pud_t *pud; | |
278 | pmd_t *pmd; | |
279 | pte_t *pte; | |
c0718806 | 280 | spinlock_t *ptl; |
81b4082d | 281 | |
81b4082d | 282 | pgd = pgd_offset(mm, address); |
c0718806 HD |
283 | if (!pgd_present(*pgd)) |
284 | return NULL; | |
285 | ||
286 | pud = pud_offset(pgd, address); | |
287 | if (!pud_present(*pud)) | |
288 | return NULL; | |
289 | ||
290 | pmd = pmd_offset(pud, address); | |
291 | if (!pmd_present(*pmd)) | |
292 | return NULL; | |
293 | ||
294 | pte = pte_offset_map(pmd, address); | |
295 | /* Make a quick check before getting the lock */ | |
479db0bf | 296 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
297 | pte_unmap(pte); |
298 | return NULL; | |
299 | } | |
300 | ||
4c21e2f2 | 301 | ptl = pte_lockptr(mm, pmd); |
c0718806 HD |
302 | spin_lock(ptl); |
303 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
304 | *ptlp = ptl; | |
305 | return pte; | |
81b4082d | 306 | } |
c0718806 HD |
307 | pte_unmap_unlock(pte, ptl); |
308 | return NULL; | |
81b4082d ND |
309 | } |
310 | ||
b291f000 NP |
311 | /** |
312 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
313 | * @page: the page to test | |
314 | * @vma: the VMA to test | |
315 | * | |
316 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
317 | * if the page is not mapped into the page tables of this VMA. Only | |
318 | * valid for normal file or anonymous VMAs. | |
319 | */ | |
6a46079c | 320 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
b291f000 NP |
321 | { |
322 | unsigned long address; | |
323 | pte_t *pte; | |
324 | spinlock_t *ptl; | |
325 | ||
326 | address = vma_address(page, vma); | |
327 | if (address == -EFAULT) /* out of vma range */ | |
328 | return 0; | |
329 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
330 | if (!pte) /* the page is not in this mm */ | |
331 | return 0; | |
332 | pte_unmap_unlock(pte, ptl); | |
333 | ||
334 | return 1; | |
335 | } | |
336 | ||
1da177e4 LT |
337 | /* |
338 | * Subfunctions of page_referenced: page_referenced_one called | |
339 | * repeatedly from either page_referenced_anon or page_referenced_file. | |
340 | */ | |
5ad64688 HD |
341 | int page_referenced_one(struct page *page, struct vm_area_struct *vma, |
342 | unsigned long address, unsigned int *mapcount, | |
343 | unsigned long *vm_flags) | |
1da177e4 LT |
344 | { |
345 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 | 346 | pte_t *pte; |
c0718806 | 347 | spinlock_t *ptl; |
1da177e4 LT |
348 | int referenced = 0; |
349 | ||
479db0bf | 350 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 HD |
351 | if (!pte) |
352 | goto out; | |
1da177e4 | 353 | |
b291f000 NP |
354 | /* |
355 | * Don't want to elevate referenced for mlocked page that gets this far, | |
356 | * in order that it progresses to try_to_unmap and is moved to the | |
357 | * unevictable list. | |
358 | */ | |
5a9bbdcd | 359 | if (vma->vm_flags & VM_LOCKED) { |
5a9bbdcd | 360 | *mapcount = 1; /* break early from loop */ |
03ef83af | 361 | *vm_flags |= VM_LOCKED; |
b291f000 NP |
362 | goto out_unmap; |
363 | } | |
364 | ||
4917e5d0 JW |
365 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
366 | /* | |
367 | * Don't treat a reference through a sequentially read | |
368 | * mapping as such. If the page has been used in | |
369 | * another mapping, we will catch it; if this other | |
370 | * mapping is already gone, the unmap path will have | |
371 | * set PG_referenced or activated the page. | |
372 | */ | |
373 | if (likely(!VM_SequentialReadHint(vma))) | |
374 | referenced++; | |
375 | } | |
1da177e4 | 376 | |
c0718806 HD |
377 | /* Pretend the page is referenced if the task has the |
378 | swap token and is in the middle of a page fault. */ | |
f7b7fd8f | 379 | if (mm != current->mm && has_swap_token(mm) && |
c0718806 HD |
380 | rwsem_is_locked(&mm->mmap_sem)) |
381 | referenced++; | |
382 | ||
b291f000 | 383 | out_unmap: |
c0718806 HD |
384 | (*mapcount)--; |
385 | pte_unmap_unlock(pte, ptl); | |
273f047e | 386 | |
6fe6b7e3 WF |
387 | if (referenced) |
388 | *vm_flags |= vma->vm_flags; | |
273f047e | 389 | out: |
1da177e4 LT |
390 | return referenced; |
391 | } | |
392 | ||
bed7161a | 393 | static int page_referenced_anon(struct page *page, |
6fe6b7e3 WF |
394 | struct mem_cgroup *mem_cont, |
395 | unsigned long *vm_flags) | |
1da177e4 LT |
396 | { |
397 | unsigned int mapcount; | |
398 | struct anon_vma *anon_vma; | |
399 | struct vm_area_struct *vma; | |
400 | int referenced = 0; | |
401 | ||
402 | anon_vma = page_lock_anon_vma(page); | |
403 | if (!anon_vma) | |
404 | return referenced; | |
405 | ||
406 | mapcount = page_mapcount(page); | |
407 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
1cb1729b HD |
408 | unsigned long address = vma_address(page, vma); |
409 | if (address == -EFAULT) | |
410 | continue; | |
bed7161a BS |
411 | /* |
412 | * If we are reclaiming on behalf of a cgroup, skip | |
413 | * counting on behalf of references from different | |
414 | * cgroups | |
415 | */ | |
bd845e38 | 416 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 417 | continue; |
1cb1729b | 418 | referenced += page_referenced_one(page, vma, address, |
6fe6b7e3 | 419 | &mapcount, vm_flags); |
1da177e4 LT |
420 | if (!mapcount) |
421 | break; | |
422 | } | |
34bbd704 ON |
423 | |
424 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
425 | return referenced; |
426 | } | |
427 | ||
428 | /** | |
429 | * page_referenced_file - referenced check for object-based rmap | |
430 | * @page: the page we're checking references on. | |
43d8eac4 | 431 | * @mem_cont: target memory controller |
6fe6b7e3 | 432 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
433 | * |
434 | * For an object-based mapped page, find all the places it is mapped and | |
435 | * check/clear the referenced flag. This is done by following the page->mapping | |
436 | * pointer, then walking the chain of vmas it holds. It returns the number | |
437 | * of references it found. | |
438 | * | |
439 | * This function is only called from page_referenced for object-based pages. | |
440 | */ | |
bed7161a | 441 | static int page_referenced_file(struct page *page, |
6fe6b7e3 WF |
442 | struct mem_cgroup *mem_cont, |
443 | unsigned long *vm_flags) | |
1da177e4 LT |
444 | { |
445 | unsigned int mapcount; | |
446 | struct address_space *mapping = page->mapping; | |
447 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
448 | struct vm_area_struct *vma; | |
449 | struct prio_tree_iter iter; | |
450 | int referenced = 0; | |
451 | ||
452 | /* | |
453 | * The caller's checks on page->mapping and !PageAnon have made | |
454 | * sure that this is a file page: the check for page->mapping | |
455 | * excludes the case just before it gets set on an anon page. | |
456 | */ | |
457 | BUG_ON(PageAnon(page)); | |
458 | ||
459 | /* | |
460 | * The page lock not only makes sure that page->mapping cannot | |
461 | * suddenly be NULLified by truncation, it makes sure that the | |
462 | * structure at mapping cannot be freed and reused yet, | |
463 | * so we can safely take mapping->i_mmap_lock. | |
464 | */ | |
465 | BUG_ON(!PageLocked(page)); | |
466 | ||
467 | spin_lock(&mapping->i_mmap_lock); | |
468 | ||
469 | /* | |
470 | * i_mmap_lock does not stabilize mapcount at all, but mapcount | |
471 | * is more likely to be accurate if we note it after spinning. | |
472 | */ | |
473 | mapcount = page_mapcount(page); | |
474 | ||
475 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1cb1729b HD |
476 | unsigned long address = vma_address(page, vma); |
477 | if (address == -EFAULT) | |
478 | continue; | |
bed7161a BS |
479 | /* |
480 | * If we are reclaiming on behalf of a cgroup, skip | |
481 | * counting on behalf of references from different | |
482 | * cgroups | |
483 | */ | |
bd845e38 | 484 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 485 | continue; |
1cb1729b | 486 | referenced += page_referenced_one(page, vma, address, |
6fe6b7e3 | 487 | &mapcount, vm_flags); |
1da177e4 LT |
488 | if (!mapcount) |
489 | break; | |
490 | } | |
491 | ||
492 | spin_unlock(&mapping->i_mmap_lock); | |
493 | return referenced; | |
494 | } | |
495 | ||
496 | /** | |
497 | * page_referenced - test if the page was referenced | |
498 | * @page: the page to test | |
499 | * @is_locked: caller holds lock on the page | |
43d8eac4 | 500 | * @mem_cont: target memory controller |
6fe6b7e3 | 501 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
502 | * |
503 | * Quick test_and_clear_referenced for all mappings to a page, | |
504 | * returns the number of ptes which referenced the page. | |
505 | */ | |
6fe6b7e3 WF |
506 | int page_referenced(struct page *page, |
507 | int is_locked, | |
508 | struct mem_cgroup *mem_cont, | |
509 | unsigned long *vm_flags) | |
1da177e4 LT |
510 | { |
511 | int referenced = 0; | |
5ad64688 | 512 | int we_locked = 0; |
1da177e4 | 513 | |
1da177e4 LT |
514 | if (TestClearPageReferenced(page)) |
515 | referenced++; | |
516 | ||
6fe6b7e3 | 517 | *vm_flags = 0; |
3ca7b3c5 | 518 | if (page_mapped(page) && page_rmapping(page)) { |
5ad64688 HD |
519 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { |
520 | we_locked = trylock_page(page); | |
521 | if (!we_locked) { | |
522 | referenced++; | |
523 | goto out; | |
524 | } | |
525 | } | |
526 | if (unlikely(PageKsm(page))) | |
527 | referenced += page_referenced_ksm(page, mem_cont, | |
528 | vm_flags); | |
529 | else if (PageAnon(page)) | |
6fe6b7e3 WF |
530 | referenced += page_referenced_anon(page, mem_cont, |
531 | vm_flags); | |
5ad64688 | 532 | else if (page->mapping) |
6fe6b7e3 WF |
533 | referenced += page_referenced_file(page, mem_cont, |
534 | vm_flags); | |
5ad64688 | 535 | if (we_locked) |
1da177e4 | 536 | unlock_page(page); |
1da177e4 | 537 | } |
5ad64688 | 538 | out: |
5b7baf05 CB |
539 | if (page_test_and_clear_young(page)) |
540 | referenced++; | |
541 | ||
1da177e4 LT |
542 | return referenced; |
543 | } | |
544 | ||
1cb1729b HD |
545 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
546 | unsigned long address) | |
d08b3851 PZ |
547 | { |
548 | struct mm_struct *mm = vma->vm_mm; | |
c2fda5fe | 549 | pte_t *pte; |
d08b3851 PZ |
550 | spinlock_t *ptl; |
551 | int ret = 0; | |
552 | ||
479db0bf | 553 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
554 | if (!pte) |
555 | goto out; | |
556 | ||
c2fda5fe PZ |
557 | if (pte_dirty(*pte) || pte_write(*pte)) { |
558 | pte_t entry; | |
d08b3851 | 559 | |
c2fda5fe | 560 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 561 | entry = ptep_clear_flush_notify(vma, address, pte); |
c2fda5fe PZ |
562 | entry = pte_wrprotect(entry); |
563 | entry = pte_mkclean(entry); | |
d6e88e67 | 564 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
565 | ret = 1; |
566 | } | |
d08b3851 | 567 | |
d08b3851 PZ |
568 | pte_unmap_unlock(pte, ptl); |
569 | out: | |
570 | return ret; | |
571 | } | |
572 | ||
573 | static int page_mkclean_file(struct address_space *mapping, struct page *page) | |
574 | { | |
575 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
576 | struct vm_area_struct *vma; | |
577 | struct prio_tree_iter iter; | |
578 | int ret = 0; | |
579 | ||
580 | BUG_ON(PageAnon(page)); | |
581 | ||
582 | spin_lock(&mapping->i_mmap_lock); | |
583 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1cb1729b HD |
584 | if (vma->vm_flags & VM_SHARED) { |
585 | unsigned long address = vma_address(page, vma); | |
586 | if (address == -EFAULT) | |
587 | continue; | |
588 | ret += page_mkclean_one(page, vma, address); | |
589 | } | |
d08b3851 PZ |
590 | } |
591 | spin_unlock(&mapping->i_mmap_lock); | |
592 | return ret; | |
593 | } | |
594 | ||
595 | int page_mkclean(struct page *page) | |
596 | { | |
597 | int ret = 0; | |
598 | ||
599 | BUG_ON(!PageLocked(page)); | |
600 | ||
601 | if (page_mapped(page)) { | |
602 | struct address_space *mapping = page_mapping(page); | |
ce7e9fae | 603 | if (mapping) { |
d08b3851 | 604 | ret = page_mkclean_file(mapping, page); |
ce7e9fae CB |
605 | if (page_test_dirty(page)) { |
606 | page_clear_dirty(page); | |
607 | ret = 1; | |
608 | } | |
6c210482 | 609 | } |
d08b3851 PZ |
610 | } |
611 | ||
612 | return ret; | |
613 | } | |
60b59bea | 614 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 615 | |
9617d95e | 616 | /** |
43d8eac4 | 617 | * __page_set_anon_rmap - setup new anonymous rmap |
9617d95e NP |
618 | * @page: the page to add the mapping to |
619 | * @vma: the vm area in which the mapping is added | |
620 | * @address: the user virtual address mapped | |
621 | */ | |
622 | static void __page_set_anon_rmap(struct page *page, | |
623 | struct vm_area_struct *vma, unsigned long address) | |
624 | { | |
625 | struct anon_vma *anon_vma = vma->anon_vma; | |
626 | ||
627 | BUG_ON(!anon_vma); | |
628 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
629 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 630 | page->index = linear_page_index(vma, address); |
9617d95e NP |
631 | } |
632 | ||
c97a9e10 | 633 | /** |
43d8eac4 | 634 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
635 | * @page: the page to add the mapping to |
636 | * @vma: the vm area in which the mapping is added | |
637 | * @address: the user virtual address mapped | |
638 | */ | |
639 | static void __page_check_anon_rmap(struct page *page, | |
640 | struct vm_area_struct *vma, unsigned long address) | |
641 | { | |
642 | #ifdef CONFIG_DEBUG_VM | |
643 | /* | |
644 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
645 | * be set up correctly at this point. | |
646 | * | |
647 | * We have exclusion against page_add_anon_rmap because the caller | |
648 | * always holds the page locked, except if called from page_dup_rmap, | |
649 | * in which case the page is already known to be setup. | |
650 | * | |
651 | * We have exclusion against page_add_new_anon_rmap because those pages | |
652 | * are initially only visible via the pagetables, and the pte is locked | |
653 | * over the call to page_add_new_anon_rmap. | |
654 | */ | |
655 | struct anon_vma *anon_vma = vma->anon_vma; | |
656 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
657 | BUG_ON(page->mapping != (struct address_space *)anon_vma); | |
658 | BUG_ON(page->index != linear_page_index(vma, address)); | |
659 | #endif | |
660 | } | |
661 | ||
1da177e4 LT |
662 | /** |
663 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
664 | * @page: the page to add the mapping to | |
665 | * @vma: the vm area in which the mapping is added | |
666 | * @address: the user virtual address mapped | |
667 | * | |
5ad64688 | 668 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
669 | * the anon_vma case: to serialize mapping,index checking after setting, |
670 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
671 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
672 | */ |
673 | void page_add_anon_rmap(struct page *page, | |
674 | struct vm_area_struct *vma, unsigned long address) | |
675 | { | |
5ad64688 HD |
676 | int first = atomic_inc_and_test(&page->_mapcount); |
677 | if (first) | |
678 | __inc_zone_page_state(page, NR_ANON_PAGES); | |
679 | if (unlikely(PageKsm(page))) | |
680 | return; | |
681 | ||
c97a9e10 NP |
682 | VM_BUG_ON(!PageLocked(page)); |
683 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
5ad64688 | 684 | if (first) |
9617d95e | 685 | __page_set_anon_rmap(page, vma, address); |
69029cd5 | 686 | else |
c97a9e10 | 687 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
688 | } |
689 | ||
43d8eac4 | 690 | /** |
9617d95e NP |
691 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
692 | * @page: the page to add the mapping to | |
693 | * @vma: the vm area in which the mapping is added | |
694 | * @address: the user virtual address mapped | |
695 | * | |
696 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
697 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 698 | * Page does not have to be locked. |
9617d95e NP |
699 | */ |
700 | void page_add_new_anon_rmap(struct page *page, | |
701 | struct vm_area_struct *vma, unsigned long address) | |
702 | { | |
b5934c53 | 703 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
cbf84b7a HD |
704 | SetPageSwapBacked(page); |
705 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | |
5ad64688 | 706 | __inc_zone_page_state(page, NR_ANON_PAGES); |
9617d95e | 707 | __page_set_anon_rmap(page, vma, address); |
b5934c53 | 708 | if (page_evictable(page, vma)) |
cbf84b7a | 709 | lru_cache_add_lru(page, LRU_ACTIVE_ANON); |
b5934c53 HD |
710 | else |
711 | add_page_to_unevictable_list(page); | |
9617d95e NP |
712 | } |
713 | ||
1da177e4 LT |
714 | /** |
715 | * page_add_file_rmap - add pte mapping to a file page | |
716 | * @page: the page to add the mapping to | |
717 | * | |
b8072f09 | 718 | * The caller needs to hold the pte lock. |
1da177e4 LT |
719 | */ |
720 | void page_add_file_rmap(struct page *page) | |
721 | { | |
d69b042f | 722 | if (atomic_inc_and_test(&page->_mapcount)) { |
65ba55f5 | 723 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
d8046582 | 724 | mem_cgroup_update_file_mapped(page, 1); |
d69b042f | 725 | } |
1da177e4 LT |
726 | } |
727 | ||
728 | /** | |
729 | * page_remove_rmap - take down pte mapping from a page | |
730 | * @page: page to remove mapping from | |
731 | * | |
b8072f09 | 732 | * The caller needs to hold the pte lock. |
1da177e4 | 733 | */ |
edc315fd | 734 | void page_remove_rmap(struct page *page) |
1da177e4 | 735 | { |
b904dcfe KM |
736 | /* page still mapped by someone else? */ |
737 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
738 | return; | |
739 | ||
740 | /* | |
741 | * Now that the last pte has gone, s390 must transfer dirty | |
742 | * flag from storage key to struct page. We can usually skip | |
743 | * this if the page is anon, so about to be freed; but perhaps | |
744 | * not if it's in swapcache - there might be another pte slot | |
745 | * containing the swap entry, but page not yet written to swap. | |
746 | */ | |
747 | if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { | |
748 | page_clear_dirty(page); | |
749 | set_page_dirty(page); | |
1da177e4 | 750 | } |
b904dcfe KM |
751 | if (PageAnon(page)) { |
752 | mem_cgroup_uncharge_page(page); | |
753 | __dec_zone_page_state(page, NR_ANON_PAGES); | |
754 | } else { | |
755 | __dec_zone_page_state(page, NR_FILE_MAPPED); | |
d8046582 | 756 | mem_cgroup_update_file_mapped(page, -1); |
b904dcfe | 757 | } |
b904dcfe KM |
758 | /* |
759 | * It would be tidy to reset the PageAnon mapping here, | |
760 | * but that might overwrite a racing page_add_anon_rmap | |
761 | * which increments mapcount after us but sets mapping | |
762 | * before us: so leave the reset to free_hot_cold_page, | |
763 | * and remember that it's only reliable while mapped. | |
764 | * Leaving it set also helps swapoff to reinstate ptes | |
765 | * faster for those pages still in swapcache. | |
766 | */ | |
1da177e4 LT |
767 | } |
768 | ||
769 | /* | |
770 | * Subfunctions of try_to_unmap: try_to_unmap_one called | |
771 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | |
772 | */ | |
5ad64688 HD |
773 | int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
774 | unsigned long address, enum ttu_flags flags) | |
1da177e4 LT |
775 | { |
776 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
777 | pte_t *pte; |
778 | pte_t pteval; | |
c0718806 | 779 | spinlock_t *ptl; |
1da177e4 LT |
780 | int ret = SWAP_AGAIN; |
781 | ||
479db0bf | 782 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 783 | if (!pte) |
81b4082d | 784 | goto out; |
1da177e4 LT |
785 | |
786 | /* | |
787 | * If the page is mlock()d, we cannot swap it out. | |
788 | * If it's recently referenced (perhaps page_referenced | |
789 | * skipped over this mm) then we should reactivate it. | |
790 | */ | |
14fa31b8 | 791 | if (!(flags & TTU_IGNORE_MLOCK)) { |
caed0f48 KM |
792 | if (vma->vm_flags & VM_LOCKED) |
793 | goto out_mlock; | |
794 | ||
af8e3354 | 795 | if (TTU_ACTION(flags) == TTU_MUNLOCK) |
53f79acb | 796 | goto out_unmap; |
14fa31b8 AK |
797 | } |
798 | if (!(flags & TTU_IGNORE_ACCESS)) { | |
b291f000 NP |
799 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
800 | ret = SWAP_FAIL; | |
801 | goto out_unmap; | |
802 | } | |
803 | } | |
1da177e4 | 804 | |
1da177e4 LT |
805 | /* Nuke the page table entry. */ |
806 | flush_cache_page(vma, address, page_to_pfn(page)); | |
cddb8a5c | 807 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
808 | |
809 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
810 | if (pte_dirty(pteval)) | |
811 | set_page_dirty(page); | |
812 | ||
365e9c87 HD |
813 | /* Update high watermark before we lower rss */ |
814 | update_hiwater_rss(mm); | |
815 | ||
888b9f7c AK |
816 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
817 | if (PageAnon(page)) | |
818 | dec_mm_counter(mm, anon_rss); | |
819 | else | |
820 | dec_mm_counter(mm, file_rss); | |
821 | set_pte_at(mm, address, pte, | |
822 | swp_entry_to_pte(make_hwpoison_entry(page))); | |
823 | } else if (PageAnon(page)) { | |
4c21e2f2 | 824 | swp_entry_t entry = { .val = page_private(page) }; |
0697212a CL |
825 | |
826 | if (PageSwapCache(page)) { | |
827 | /* | |
828 | * Store the swap location in the pte. | |
829 | * See handle_pte_fault() ... | |
830 | */ | |
570a335b HD |
831 | if (swap_duplicate(entry) < 0) { |
832 | set_pte_at(mm, address, pte, pteval); | |
833 | ret = SWAP_FAIL; | |
834 | goto out_unmap; | |
835 | } | |
0697212a CL |
836 | if (list_empty(&mm->mmlist)) { |
837 | spin_lock(&mmlist_lock); | |
838 | if (list_empty(&mm->mmlist)) | |
839 | list_add(&mm->mmlist, &init_mm.mmlist); | |
840 | spin_unlock(&mmlist_lock); | |
841 | } | |
442c9137 | 842 | dec_mm_counter(mm, anon_rss); |
64cdd548 | 843 | } else if (PAGE_MIGRATION) { |
0697212a CL |
844 | /* |
845 | * Store the pfn of the page in a special migration | |
846 | * pte. do_swap_page() will wait until the migration | |
847 | * pte is removed and then restart fault handling. | |
848 | */ | |
14fa31b8 | 849 | BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); |
0697212a | 850 | entry = make_migration_entry(page, pte_write(pteval)); |
1da177e4 LT |
851 | } |
852 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
853 | BUG_ON(pte_file(*pte)); | |
14fa31b8 | 854 | } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { |
04e62a29 CL |
855 | /* Establish migration entry for a file page */ |
856 | swp_entry_t entry; | |
857 | entry = make_migration_entry(page, pte_write(pteval)); | |
858 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
859 | } else | |
4294621f | 860 | dec_mm_counter(mm, file_rss); |
1da177e4 | 861 | |
edc315fd | 862 | page_remove_rmap(page); |
1da177e4 LT |
863 | page_cache_release(page); |
864 | ||
865 | out_unmap: | |
c0718806 | 866 | pte_unmap_unlock(pte, ptl); |
caed0f48 KM |
867 | out: |
868 | return ret; | |
53f79acb | 869 | |
caed0f48 KM |
870 | out_mlock: |
871 | pte_unmap_unlock(pte, ptl); | |
872 | ||
873 | ||
874 | /* | |
875 | * We need mmap_sem locking, Otherwise VM_LOCKED check makes | |
876 | * unstable result and race. Plus, We can't wait here because | |
877 | * we now hold anon_vma->lock or mapping->i_mmap_lock. | |
878 | * if trylock failed, the page remain in evictable lru and later | |
879 | * vmscan could retry to move the page to unevictable lru if the | |
880 | * page is actually mlocked. | |
881 | */ | |
882 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
883 | if (vma->vm_flags & VM_LOCKED) { | |
884 | mlock_vma_page(page); | |
885 | ret = SWAP_MLOCK; | |
53f79acb | 886 | } |
caed0f48 | 887 | up_read(&vma->vm_mm->mmap_sem); |
53f79acb | 888 | } |
1da177e4 LT |
889 | return ret; |
890 | } | |
891 | ||
892 | /* | |
893 | * objrmap doesn't work for nonlinear VMAs because the assumption that | |
894 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | |
895 | * Consequently, given a particular page and its ->index, we cannot locate the | |
896 | * ptes which are mapping that page without an exhaustive linear search. | |
897 | * | |
898 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | |
899 | * maps the file to which the target page belongs. The ->vm_private_data field | |
900 | * holds the current cursor into that scan. Successive searches will circulate | |
901 | * around the vma's virtual address space. | |
902 | * | |
903 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | |
904 | * more scanning pressure is placed against them as well. Eventually pages | |
905 | * will become fully unmapped and are eligible for eviction. | |
906 | * | |
907 | * For very sparsely populated VMAs this is a little inefficient - chances are | |
908 | * there there won't be many ptes located within the scan cluster. In this case | |
909 | * maybe we could scan further - to the end of the pte page, perhaps. | |
b291f000 NP |
910 | * |
911 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can | |
912 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, | |
913 | * rather than unmapping them. If we encounter the "check_page" that vmscan is | |
914 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | |
1da177e4 LT |
915 | */ |
916 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | |
917 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | |
918 | ||
b291f000 NP |
919 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
920 | struct vm_area_struct *vma, struct page *check_page) | |
1da177e4 LT |
921 | { |
922 | struct mm_struct *mm = vma->vm_mm; | |
923 | pgd_t *pgd; | |
924 | pud_t *pud; | |
925 | pmd_t *pmd; | |
c0718806 | 926 | pte_t *pte; |
1da177e4 | 927 | pte_t pteval; |
c0718806 | 928 | spinlock_t *ptl; |
1da177e4 LT |
929 | struct page *page; |
930 | unsigned long address; | |
931 | unsigned long end; | |
b291f000 NP |
932 | int ret = SWAP_AGAIN; |
933 | int locked_vma = 0; | |
1da177e4 | 934 | |
1da177e4 LT |
935 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
936 | end = address + CLUSTER_SIZE; | |
937 | if (address < vma->vm_start) | |
938 | address = vma->vm_start; | |
939 | if (end > vma->vm_end) | |
940 | end = vma->vm_end; | |
941 | ||
942 | pgd = pgd_offset(mm, address); | |
943 | if (!pgd_present(*pgd)) | |
b291f000 | 944 | return ret; |
1da177e4 LT |
945 | |
946 | pud = pud_offset(pgd, address); | |
947 | if (!pud_present(*pud)) | |
b291f000 | 948 | return ret; |
1da177e4 LT |
949 | |
950 | pmd = pmd_offset(pud, address); | |
951 | if (!pmd_present(*pmd)) | |
b291f000 NP |
952 | return ret; |
953 | ||
954 | /* | |
af8e3354 | 955 | * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, |
b291f000 NP |
956 | * keep the sem while scanning the cluster for mlocking pages. |
957 | */ | |
af8e3354 | 958 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { |
b291f000 NP |
959 | locked_vma = (vma->vm_flags & VM_LOCKED); |
960 | if (!locked_vma) | |
961 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | |
962 | } | |
c0718806 HD |
963 | |
964 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
1da177e4 | 965 | |
365e9c87 HD |
966 | /* Update high watermark before we lower rss */ |
967 | update_hiwater_rss(mm); | |
968 | ||
c0718806 | 969 | for (; address < end; pte++, address += PAGE_SIZE) { |
1da177e4 LT |
970 | if (!pte_present(*pte)) |
971 | continue; | |
6aab341e LT |
972 | page = vm_normal_page(vma, address, *pte); |
973 | BUG_ON(!page || PageAnon(page)); | |
1da177e4 | 974 | |
b291f000 NP |
975 | if (locked_vma) { |
976 | mlock_vma_page(page); /* no-op if already mlocked */ | |
977 | if (page == check_page) | |
978 | ret = SWAP_MLOCK; | |
979 | continue; /* don't unmap */ | |
980 | } | |
981 | ||
cddb8a5c | 982 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
1da177e4 LT |
983 | continue; |
984 | ||
985 | /* Nuke the page table entry. */ | |
eca35133 | 986 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 987 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
988 | |
989 | /* If nonlinear, store the file page offset in the pte. */ | |
990 | if (page->index != linear_page_index(vma, address)) | |
991 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | |
992 | ||
993 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
994 | if (pte_dirty(pteval)) | |
995 | set_page_dirty(page); | |
996 | ||
edc315fd | 997 | page_remove_rmap(page); |
1da177e4 | 998 | page_cache_release(page); |
4294621f | 999 | dec_mm_counter(mm, file_rss); |
1da177e4 LT |
1000 | (*mapcount)--; |
1001 | } | |
c0718806 | 1002 | pte_unmap_unlock(pte - 1, ptl); |
b291f000 NP |
1003 | if (locked_vma) |
1004 | up_read(&vma->vm_mm->mmap_sem); | |
1005 | return ret; | |
1da177e4 LT |
1006 | } |
1007 | ||
b291f000 NP |
1008 | /** |
1009 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based | |
1010 | * rmap method | |
1011 | * @page: the page to unmap/unlock | |
8051be5e | 1012 | * @flags: action and flags |
b291f000 NP |
1013 | * |
1014 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1015 | * contained in the anon_vma struct it points to. | |
1016 | * | |
1017 | * This function is only called from try_to_unmap/try_to_munlock for | |
1018 | * anonymous pages. | |
1019 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1020 | * where the page was found will be held for write. So, we won't recheck | |
1021 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1022 | * 'LOCKED. | |
1023 | */ | |
14fa31b8 | 1024 | static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1025 | { |
1026 | struct anon_vma *anon_vma; | |
1027 | struct vm_area_struct *vma; | |
1028 | int ret = SWAP_AGAIN; | |
b291f000 | 1029 | |
1da177e4 LT |
1030 | anon_vma = page_lock_anon_vma(page); |
1031 | if (!anon_vma) | |
1032 | return ret; | |
1033 | ||
1034 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
1cb1729b HD |
1035 | unsigned long address = vma_address(page, vma); |
1036 | if (address == -EFAULT) | |
1037 | continue; | |
1038 | ret = try_to_unmap_one(page, vma, address, flags); | |
53f79acb HD |
1039 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1040 | break; | |
1da177e4 | 1041 | } |
34bbd704 ON |
1042 | |
1043 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
1044 | return ret; |
1045 | } | |
1046 | ||
1047 | /** | |
b291f000 NP |
1048 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method |
1049 | * @page: the page to unmap/unlock | |
14fa31b8 | 1050 | * @flags: action and flags |
1da177e4 LT |
1051 | * |
1052 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1053 | * contained in the address_space struct it points to. | |
1054 | * | |
b291f000 NP |
1055 | * This function is only called from try_to_unmap/try_to_munlock for |
1056 | * object-based pages. | |
1057 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1058 | * where the page was found will be held for write. So, we won't recheck | |
1059 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1060 | * 'LOCKED. | |
1da177e4 | 1061 | */ |
14fa31b8 | 1062 | static int try_to_unmap_file(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1063 | { |
1064 | struct address_space *mapping = page->mapping; | |
1065 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1066 | struct vm_area_struct *vma; | |
1067 | struct prio_tree_iter iter; | |
1068 | int ret = SWAP_AGAIN; | |
1069 | unsigned long cursor; | |
1070 | unsigned long max_nl_cursor = 0; | |
1071 | unsigned long max_nl_size = 0; | |
1072 | unsigned int mapcount; | |
1073 | ||
1074 | spin_lock(&mapping->i_mmap_lock); | |
1075 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1cb1729b HD |
1076 | unsigned long address = vma_address(page, vma); |
1077 | if (address == -EFAULT) | |
1078 | continue; | |
1079 | ret = try_to_unmap_one(page, vma, address, flags); | |
53f79acb HD |
1080 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1081 | goto out; | |
1da177e4 LT |
1082 | } |
1083 | ||
1084 | if (list_empty(&mapping->i_mmap_nonlinear)) | |
1085 | goto out; | |
1086 | ||
53f79acb HD |
1087 | /* |
1088 | * We don't bother to try to find the munlocked page in nonlinears. | |
1089 | * It's costly. Instead, later, page reclaim logic may call | |
1090 | * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. | |
1091 | */ | |
1092 | if (TTU_ACTION(flags) == TTU_MUNLOCK) | |
1093 | goto out; | |
1094 | ||
1da177e4 LT |
1095 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
1096 | shared.vm_set.list) { | |
1da177e4 LT |
1097 | cursor = (unsigned long) vma->vm_private_data; |
1098 | if (cursor > max_nl_cursor) | |
1099 | max_nl_cursor = cursor; | |
1100 | cursor = vma->vm_end - vma->vm_start; | |
1101 | if (cursor > max_nl_size) | |
1102 | max_nl_size = cursor; | |
1103 | } | |
1104 | ||
b291f000 | 1105 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ |
1da177e4 LT |
1106 | ret = SWAP_FAIL; |
1107 | goto out; | |
1108 | } | |
1109 | ||
1110 | /* | |
1111 | * We don't try to search for this page in the nonlinear vmas, | |
1112 | * and page_referenced wouldn't have found it anyway. Instead | |
1113 | * just walk the nonlinear vmas trying to age and unmap some. | |
1114 | * The mapcount of the page we came in with is irrelevant, | |
1115 | * but even so use it as a guide to how hard we should try? | |
1116 | */ | |
1117 | mapcount = page_mapcount(page); | |
1118 | if (!mapcount) | |
1119 | goto out; | |
1120 | cond_resched_lock(&mapping->i_mmap_lock); | |
1121 | ||
1122 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | |
1123 | if (max_nl_cursor == 0) | |
1124 | max_nl_cursor = CLUSTER_SIZE; | |
1125 | ||
1126 | do { | |
1127 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
1128 | shared.vm_set.list) { | |
1da177e4 | 1129 | cursor = (unsigned long) vma->vm_private_data; |
839b9685 | 1130 | while ( cursor < max_nl_cursor && |
1da177e4 | 1131 | cursor < vma->vm_end - vma->vm_start) { |
53f79acb HD |
1132 | if (try_to_unmap_cluster(cursor, &mapcount, |
1133 | vma, page) == SWAP_MLOCK) | |
1134 | ret = SWAP_MLOCK; | |
1da177e4 LT |
1135 | cursor += CLUSTER_SIZE; |
1136 | vma->vm_private_data = (void *) cursor; | |
1137 | if ((int)mapcount <= 0) | |
1138 | goto out; | |
1139 | } | |
1140 | vma->vm_private_data = (void *) max_nl_cursor; | |
1141 | } | |
1142 | cond_resched_lock(&mapping->i_mmap_lock); | |
1143 | max_nl_cursor += CLUSTER_SIZE; | |
1144 | } while (max_nl_cursor <= max_nl_size); | |
1145 | ||
1146 | /* | |
1147 | * Don't loop forever (perhaps all the remaining pages are | |
1148 | * in locked vmas). Reset cursor on all unreserved nonlinear | |
1149 | * vmas, now forgetting on which ones it had fallen behind. | |
1150 | */ | |
101d2be7 HD |
1151 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
1152 | vma->vm_private_data = NULL; | |
1da177e4 LT |
1153 | out: |
1154 | spin_unlock(&mapping->i_mmap_lock); | |
1155 | return ret; | |
1156 | } | |
1157 | ||
1158 | /** | |
1159 | * try_to_unmap - try to remove all page table mappings to a page | |
1160 | * @page: the page to get unmapped | |
14fa31b8 | 1161 | * @flags: action and flags |
1da177e4 LT |
1162 | * |
1163 | * Tries to remove all the page table entries which are mapping this | |
1164 | * page, used in the pageout path. Caller must hold the page lock. | |
1165 | * Return values are: | |
1166 | * | |
1167 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1168 | * SWAP_AGAIN - we missed a mapping, try again later | |
1169 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1170 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1171 | */ |
14fa31b8 | 1172 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1173 | { |
1174 | int ret; | |
1175 | ||
1da177e4 LT |
1176 | BUG_ON(!PageLocked(page)); |
1177 | ||
5ad64688 HD |
1178 | if (unlikely(PageKsm(page))) |
1179 | ret = try_to_unmap_ksm(page, flags); | |
1180 | else if (PageAnon(page)) | |
14fa31b8 | 1181 | ret = try_to_unmap_anon(page, flags); |
1da177e4 | 1182 | else |
14fa31b8 | 1183 | ret = try_to_unmap_file(page, flags); |
b291f000 | 1184 | if (ret != SWAP_MLOCK && !page_mapped(page)) |
1da177e4 LT |
1185 | ret = SWAP_SUCCESS; |
1186 | return ret; | |
1187 | } | |
81b4082d | 1188 | |
b291f000 NP |
1189 | /** |
1190 | * try_to_munlock - try to munlock a page | |
1191 | * @page: the page to be munlocked | |
1192 | * | |
1193 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1194 | * to make sure nobody else has this page mlocked. The page will be | |
1195 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1196 | * | |
1197 | * Return values are: | |
1198 | * | |
53f79acb | 1199 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
b291f000 | 1200 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
5ad64688 | 1201 | * SWAP_FAIL - page cannot be located at present |
b291f000 NP |
1202 | * SWAP_MLOCK - page is now mlocked. |
1203 | */ | |
1204 | int try_to_munlock(struct page *page) | |
1205 | { | |
1206 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); | |
1207 | ||
5ad64688 HD |
1208 | if (unlikely(PageKsm(page))) |
1209 | return try_to_unmap_ksm(page, TTU_MUNLOCK); | |
1210 | else if (PageAnon(page)) | |
14fa31b8 | 1211 | return try_to_unmap_anon(page, TTU_MUNLOCK); |
b291f000 | 1212 | else |
14fa31b8 | 1213 | return try_to_unmap_file(page, TTU_MUNLOCK); |
b291f000 | 1214 | } |
e9995ef9 HD |
1215 | |
1216 | #ifdef CONFIG_MIGRATION | |
1217 | /* | |
1218 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): | |
1219 | * Called by migrate.c to remove migration ptes, but might be used more later. | |
1220 | */ | |
1221 | static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, | |
1222 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1223 | { | |
1224 | struct anon_vma *anon_vma; | |
1225 | struct vm_area_struct *vma; | |
1226 | int ret = SWAP_AGAIN; | |
1227 | ||
1228 | /* | |
1229 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma() | |
1230 | * because that depends on page_mapped(); but not all its usages | |
1231 | * are holding mmap_sem, which also gave the necessary guarantee | |
1232 | * (that this anon_vma's slab has not already been destroyed). | |
1233 | * This needs to be reviewed later: avoiding page_lock_anon_vma() | |
1234 | * is risky, and currently limits the usefulness of rmap_walk(). | |
1235 | */ | |
1236 | anon_vma = page_anon_vma(page); | |
1237 | if (!anon_vma) | |
1238 | return ret; | |
1239 | spin_lock(&anon_vma->lock); | |
1240 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
1241 | unsigned long address = vma_address(page, vma); | |
1242 | if (address == -EFAULT) | |
1243 | continue; | |
1244 | ret = rmap_one(page, vma, address, arg); | |
1245 | if (ret != SWAP_AGAIN) | |
1246 | break; | |
1247 | } | |
1248 | spin_unlock(&anon_vma->lock); | |
1249 | return ret; | |
1250 | } | |
1251 | ||
1252 | static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, | |
1253 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1254 | { | |
1255 | struct address_space *mapping = page->mapping; | |
1256 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1257 | struct vm_area_struct *vma; | |
1258 | struct prio_tree_iter iter; | |
1259 | int ret = SWAP_AGAIN; | |
1260 | ||
1261 | if (!mapping) | |
1262 | return ret; | |
1263 | spin_lock(&mapping->i_mmap_lock); | |
1264 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1265 | unsigned long address = vma_address(page, vma); | |
1266 | if (address == -EFAULT) | |
1267 | continue; | |
1268 | ret = rmap_one(page, vma, address, arg); | |
1269 | if (ret != SWAP_AGAIN) | |
1270 | break; | |
1271 | } | |
1272 | /* | |
1273 | * No nonlinear handling: being always shared, nonlinear vmas | |
1274 | * never contain migration ptes. Decide what to do about this | |
1275 | * limitation to linear when we need rmap_walk() on nonlinear. | |
1276 | */ | |
1277 | spin_unlock(&mapping->i_mmap_lock); | |
1278 | return ret; | |
1279 | } | |
1280 | ||
1281 | int rmap_walk(struct page *page, int (*rmap_one)(struct page *, | |
1282 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1283 | { | |
1284 | VM_BUG_ON(!PageLocked(page)); | |
1285 | ||
1286 | if (unlikely(PageKsm(page))) | |
1287 | return rmap_walk_ksm(page, rmap_one, arg); | |
1288 | else if (PageAnon(page)) | |
1289 | return rmap_walk_anon(page, rmap_one, arg); | |
1290 | else | |
1291 | return rmap_walk_file(page, rmap_one, arg); | |
1292 | } | |
1293 | #endif /* CONFIG_MIGRATION */ |