]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/buffer.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 | |
9 | * | |
10 | * Removed a lot of unnecessary code and simplified things now that | |
11 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 | |
12 | * | |
13 | * Speed up hash, lru, and free list operations. Use gfp() for allocating | |
14 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM | |
15 | * | |
16 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK | |
17 | * | |
18 | * async buffer flushing, 1999 Andrea Arcangeli <[email protected]> | |
19 | */ | |
20 | ||
1da177e4 LT |
21 | #include <linux/kernel.h> |
22 | #include <linux/syscalls.h> | |
23 | #include <linux/fs.h> | |
24 | #include <linux/mm.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/slab.h> | |
16f7e0fe | 27 | #include <linux/capability.h> |
1da177e4 LT |
28 | #include <linux/blkdev.h> |
29 | #include <linux/file.h> | |
30 | #include <linux/quotaops.h> | |
31 | #include <linux/highmem.h> | |
630d9c47 | 32 | #include <linux/export.h> |
bafc0dba | 33 | #include <linux/backing-dev.h> |
1da177e4 LT |
34 | #include <linux/writeback.h> |
35 | #include <linux/hash.h> | |
36 | #include <linux/suspend.h> | |
37 | #include <linux/buffer_head.h> | |
55e829af | 38 | #include <linux/task_io_accounting_ops.h> |
1da177e4 LT |
39 | #include <linux/bio.h> |
40 | #include <linux/notifier.h> | |
41 | #include <linux/cpu.h> | |
42 | #include <linux/bitops.h> | |
43 | #include <linux/mpage.h> | |
fb1c8f93 | 44 | #include <linux/bit_spinlock.h> |
5305cb83 | 45 | #include <trace/events/block.h> |
1da177e4 LT |
46 | |
47 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); | |
b16b1deb TH |
48 | static int submit_bh_wbc(int rw, struct buffer_head *bh, |
49 | unsigned long bio_flags, | |
50 | struct writeback_control *wbc); | |
1da177e4 LT |
51 | |
52 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) | |
53 | ||
a3f3c29c | 54 | void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) |
1da177e4 LT |
55 | { |
56 | bh->b_end_io = handler; | |
57 | bh->b_private = private; | |
58 | } | |
1fe72eaa | 59 | EXPORT_SYMBOL(init_buffer); |
1da177e4 | 60 | |
f0059afd TH |
61 | inline void touch_buffer(struct buffer_head *bh) |
62 | { | |
5305cb83 | 63 | trace_block_touch_buffer(bh); |
f0059afd TH |
64 | mark_page_accessed(bh->b_page); |
65 | } | |
66 | EXPORT_SYMBOL(touch_buffer); | |
67 | ||
fc9b52cd | 68 | void __lock_buffer(struct buffer_head *bh) |
1da177e4 | 69 | { |
74316201 | 70 | wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); |
1da177e4 LT |
71 | } |
72 | EXPORT_SYMBOL(__lock_buffer); | |
73 | ||
fc9b52cd | 74 | void unlock_buffer(struct buffer_head *bh) |
1da177e4 | 75 | { |
51b07fc3 | 76 | clear_bit_unlock(BH_Lock, &bh->b_state); |
4e857c58 | 77 | smp_mb__after_atomic(); |
1da177e4 LT |
78 | wake_up_bit(&bh->b_state, BH_Lock); |
79 | } | |
1fe72eaa | 80 | EXPORT_SYMBOL(unlock_buffer); |
1da177e4 | 81 | |
b4597226 MG |
82 | /* |
83 | * Returns if the page has dirty or writeback buffers. If all the buffers | |
84 | * are unlocked and clean then the PageDirty information is stale. If | |
85 | * any of the pages are locked, it is assumed they are locked for IO. | |
86 | */ | |
87 | void buffer_check_dirty_writeback(struct page *page, | |
88 | bool *dirty, bool *writeback) | |
89 | { | |
90 | struct buffer_head *head, *bh; | |
91 | *dirty = false; | |
92 | *writeback = false; | |
93 | ||
94 | BUG_ON(!PageLocked(page)); | |
95 | ||
96 | if (!page_has_buffers(page)) | |
97 | return; | |
98 | ||
99 | if (PageWriteback(page)) | |
100 | *writeback = true; | |
101 | ||
102 | head = page_buffers(page); | |
103 | bh = head; | |
104 | do { | |
105 | if (buffer_locked(bh)) | |
106 | *writeback = true; | |
107 | ||
108 | if (buffer_dirty(bh)) | |
109 | *dirty = true; | |
110 | ||
111 | bh = bh->b_this_page; | |
112 | } while (bh != head); | |
113 | } | |
114 | EXPORT_SYMBOL(buffer_check_dirty_writeback); | |
115 | ||
1da177e4 LT |
116 | /* |
117 | * Block until a buffer comes unlocked. This doesn't stop it | |
118 | * from becoming locked again - you have to lock it yourself | |
119 | * if you want to preserve its state. | |
120 | */ | |
121 | void __wait_on_buffer(struct buffer_head * bh) | |
122 | { | |
74316201 | 123 | wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); |
1da177e4 | 124 | } |
1fe72eaa | 125 | EXPORT_SYMBOL(__wait_on_buffer); |
1da177e4 LT |
126 | |
127 | static void | |
128 | __clear_page_buffers(struct page *page) | |
129 | { | |
130 | ClearPagePrivate(page); | |
4c21e2f2 | 131 | set_page_private(page, 0); |
1da177e4 LT |
132 | page_cache_release(page); |
133 | } | |
134 | ||
b744c2ac | 135 | static void buffer_io_error(struct buffer_head *bh, char *msg) |
1da177e4 LT |
136 | { |
137 | char b[BDEVNAME_SIZE]; | |
432f16e6 RE |
138 | |
139 | if (!test_bit(BH_Quiet, &bh->b_state)) | |
140 | printk_ratelimited(KERN_ERR | |
141 | "Buffer I/O error on dev %s, logical block %llu%s\n", | |
1da177e4 | 142 | bdevname(bh->b_bdev, b), |
b744c2ac | 143 | (unsigned long long)bh->b_blocknr, msg); |
1da177e4 LT |
144 | } |
145 | ||
146 | /* | |
68671f35 DM |
147 | * End-of-IO handler helper function which does not touch the bh after |
148 | * unlocking it. | |
149 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but | |
150 | * a race there is benign: unlock_buffer() only use the bh's address for | |
151 | * hashing after unlocking the buffer, so it doesn't actually touch the bh | |
152 | * itself. | |
1da177e4 | 153 | */ |
68671f35 | 154 | static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) |
1da177e4 LT |
155 | { |
156 | if (uptodate) { | |
157 | set_buffer_uptodate(bh); | |
158 | } else { | |
159 | /* This happens, due to failed READA attempts. */ | |
160 | clear_buffer_uptodate(bh); | |
161 | } | |
162 | unlock_buffer(bh); | |
68671f35 DM |
163 | } |
164 | ||
165 | /* | |
166 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and | |
167 | * unlock the buffer. This is what ll_rw_block uses too. | |
168 | */ | |
169 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) | |
170 | { | |
171 | __end_buffer_read_notouch(bh, uptodate); | |
1da177e4 LT |
172 | put_bh(bh); |
173 | } | |
1fe72eaa | 174 | EXPORT_SYMBOL(end_buffer_read_sync); |
1da177e4 LT |
175 | |
176 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) | |
177 | { | |
1da177e4 LT |
178 | if (uptodate) { |
179 | set_buffer_uptodate(bh); | |
180 | } else { | |
432f16e6 | 181 | buffer_io_error(bh, ", lost sync page write"); |
1da177e4 LT |
182 | set_buffer_write_io_error(bh); |
183 | clear_buffer_uptodate(bh); | |
184 | } | |
185 | unlock_buffer(bh); | |
186 | put_bh(bh); | |
187 | } | |
1fe72eaa | 188 | EXPORT_SYMBOL(end_buffer_write_sync); |
1da177e4 | 189 | |
1da177e4 LT |
190 | /* |
191 | * Various filesystems appear to want __find_get_block to be non-blocking. | |
192 | * But it's the page lock which protects the buffers. To get around this, | |
193 | * we get exclusion from try_to_free_buffers with the blockdev mapping's | |
194 | * private_lock. | |
195 | * | |
196 | * Hack idea: for the blockdev mapping, i_bufferlist_lock contention | |
197 | * may be quite high. This code could TryLock the page, and if that | |
198 | * succeeds, there is no need to take private_lock. (But if | |
199 | * private_lock is contended then so is mapping->tree_lock). | |
200 | */ | |
201 | static struct buffer_head * | |
385fd4c5 | 202 | __find_get_block_slow(struct block_device *bdev, sector_t block) |
1da177e4 LT |
203 | { |
204 | struct inode *bd_inode = bdev->bd_inode; | |
205 | struct address_space *bd_mapping = bd_inode->i_mapping; | |
206 | struct buffer_head *ret = NULL; | |
207 | pgoff_t index; | |
208 | struct buffer_head *bh; | |
209 | struct buffer_head *head; | |
210 | struct page *page; | |
211 | int all_mapped = 1; | |
212 | ||
213 | index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); | |
2457aec6 | 214 | page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); |
1da177e4 LT |
215 | if (!page) |
216 | goto out; | |
217 | ||
218 | spin_lock(&bd_mapping->private_lock); | |
219 | if (!page_has_buffers(page)) | |
220 | goto out_unlock; | |
221 | head = page_buffers(page); | |
222 | bh = head; | |
223 | do { | |
97f76d3d NK |
224 | if (!buffer_mapped(bh)) |
225 | all_mapped = 0; | |
226 | else if (bh->b_blocknr == block) { | |
1da177e4 LT |
227 | ret = bh; |
228 | get_bh(bh); | |
229 | goto out_unlock; | |
230 | } | |
1da177e4 LT |
231 | bh = bh->b_this_page; |
232 | } while (bh != head); | |
233 | ||
234 | /* we might be here because some of the buffers on this page are | |
235 | * not mapped. This is due to various races between | |
236 | * file io on the block device and getblk. It gets dealt with | |
237 | * elsewhere, don't buffer_error if we had some unmapped buffers | |
238 | */ | |
239 | if (all_mapped) { | |
72a2ebd8 TM |
240 | char b[BDEVNAME_SIZE]; |
241 | ||
1da177e4 LT |
242 | printk("__find_get_block_slow() failed. " |
243 | "block=%llu, b_blocknr=%llu\n", | |
205f87f6 BP |
244 | (unsigned long long)block, |
245 | (unsigned long long)bh->b_blocknr); | |
246 | printk("b_state=0x%08lx, b_size=%zu\n", | |
247 | bh->b_state, bh->b_size); | |
72a2ebd8 TM |
248 | printk("device %s blocksize: %d\n", bdevname(bdev, b), |
249 | 1 << bd_inode->i_blkbits); | |
1da177e4 LT |
250 | } |
251 | out_unlock: | |
252 | spin_unlock(&bd_mapping->private_lock); | |
253 | page_cache_release(page); | |
254 | out: | |
255 | return ret; | |
256 | } | |
257 | ||
1da177e4 | 258 | /* |
5b0830cb | 259 | * Kick the writeback threads then try to free up some ZONE_NORMAL memory. |
1da177e4 LT |
260 | */ |
261 | static void free_more_memory(void) | |
262 | { | |
19770b32 | 263 | struct zone *zone; |
0e88460d | 264 | int nid; |
1da177e4 | 265 | |
0e175a18 | 266 | wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); |
1da177e4 LT |
267 | yield(); |
268 | ||
0e88460d | 269 | for_each_online_node(nid) { |
19770b32 MG |
270 | (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), |
271 | gfp_zone(GFP_NOFS), NULL, | |
272 | &zone); | |
273 | if (zone) | |
54a6eb5c | 274 | try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, |
327c0e96 | 275 | GFP_NOFS, NULL); |
1da177e4 LT |
276 | } |
277 | } | |
278 | ||
279 | /* | |
280 | * I/O completion handler for block_read_full_page() - pages | |
281 | * which come unlocked at the end of I/O. | |
282 | */ | |
283 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) | |
284 | { | |
1da177e4 | 285 | unsigned long flags; |
a3972203 | 286 | struct buffer_head *first; |
1da177e4 LT |
287 | struct buffer_head *tmp; |
288 | struct page *page; | |
289 | int page_uptodate = 1; | |
290 | ||
291 | BUG_ON(!buffer_async_read(bh)); | |
292 | ||
293 | page = bh->b_page; | |
294 | if (uptodate) { | |
295 | set_buffer_uptodate(bh); | |
296 | } else { | |
297 | clear_buffer_uptodate(bh); | |
432f16e6 | 298 | buffer_io_error(bh, ", async page read"); |
1da177e4 LT |
299 | SetPageError(page); |
300 | } | |
301 | ||
302 | /* | |
303 | * Be _very_ careful from here on. Bad things can happen if | |
304 | * two buffer heads end IO at almost the same time and both | |
305 | * decide that the page is now completely done. | |
306 | */ | |
a3972203 NP |
307 | first = page_buffers(page); |
308 | local_irq_save(flags); | |
309 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
1da177e4 LT |
310 | clear_buffer_async_read(bh); |
311 | unlock_buffer(bh); | |
312 | tmp = bh; | |
313 | do { | |
314 | if (!buffer_uptodate(tmp)) | |
315 | page_uptodate = 0; | |
316 | if (buffer_async_read(tmp)) { | |
317 | BUG_ON(!buffer_locked(tmp)); | |
318 | goto still_busy; | |
319 | } | |
320 | tmp = tmp->b_this_page; | |
321 | } while (tmp != bh); | |
a3972203 NP |
322 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
323 | local_irq_restore(flags); | |
1da177e4 LT |
324 | |
325 | /* | |
326 | * If none of the buffers had errors and they are all | |
327 | * uptodate then we can set the page uptodate. | |
328 | */ | |
329 | if (page_uptodate && !PageError(page)) | |
330 | SetPageUptodate(page); | |
331 | unlock_page(page); | |
332 | return; | |
333 | ||
334 | still_busy: | |
a3972203 NP |
335 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
336 | local_irq_restore(flags); | |
1da177e4 LT |
337 | return; |
338 | } | |
339 | ||
340 | /* | |
341 | * Completion handler for block_write_full_page() - pages which are unlocked | |
342 | * during I/O, and which have PageWriteback cleared upon I/O completion. | |
343 | */ | |
35c80d5f | 344 | void end_buffer_async_write(struct buffer_head *bh, int uptodate) |
1da177e4 | 345 | { |
1da177e4 | 346 | unsigned long flags; |
a3972203 | 347 | struct buffer_head *first; |
1da177e4 LT |
348 | struct buffer_head *tmp; |
349 | struct page *page; | |
350 | ||
351 | BUG_ON(!buffer_async_write(bh)); | |
352 | ||
353 | page = bh->b_page; | |
354 | if (uptodate) { | |
355 | set_buffer_uptodate(bh); | |
356 | } else { | |
432f16e6 | 357 | buffer_io_error(bh, ", lost async page write"); |
1da177e4 | 358 | set_bit(AS_EIO, &page->mapping->flags); |
58ff407b | 359 | set_buffer_write_io_error(bh); |
1da177e4 LT |
360 | clear_buffer_uptodate(bh); |
361 | SetPageError(page); | |
362 | } | |
363 | ||
a3972203 NP |
364 | first = page_buffers(page); |
365 | local_irq_save(flags); | |
366 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
367 | ||
1da177e4 LT |
368 | clear_buffer_async_write(bh); |
369 | unlock_buffer(bh); | |
370 | tmp = bh->b_this_page; | |
371 | while (tmp != bh) { | |
372 | if (buffer_async_write(tmp)) { | |
373 | BUG_ON(!buffer_locked(tmp)); | |
374 | goto still_busy; | |
375 | } | |
376 | tmp = tmp->b_this_page; | |
377 | } | |
a3972203 NP |
378 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
379 | local_irq_restore(flags); | |
1da177e4 LT |
380 | end_page_writeback(page); |
381 | return; | |
382 | ||
383 | still_busy: | |
a3972203 NP |
384 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
385 | local_irq_restore(flags); | |
1da177e4 LT |
386 | return; |
387 | } | |
1fe72eaa | 388 | EXPORT_SYMBOL(end_buffer_async_write); |
1da177e4 LT |
389 | |
390 | /* | |
391 | * If a page's buffers are under async readin (end_buffer_async_read | |
392 | * completion) then there is a possibility that another thread of | |
393 | * control could lock one of the buffers after it has completed | |
394 | * but while some of the other buffers have not completed. This | |
395 | * locked buffer would confuse end_buffer_async_read() into not unlocking | |
396 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() | |
397 | * that this buffer is not under async I/O. | |
398 | * | |
399 | * The page comes unlocked when it has no locked buffer_async buffers | |
400 | * left. | |
401 | * | |
402 | * PageLocked prevents anyone starting new async I/O reads any of | |
403 | * the buffers. | |
404 | * | |
405 | * PageWriteback is used to prevent simultaneous writeout of the same | |
406 | * page. | |
407 | * | |
408 | * PageLocked prevents anyone from starting writeback of a page which is | |
409 | * under read I/O (PageWriteback is only ever set against a locked page). | |
410 | */ | |
411 | static void mark_buffer_async_read(struct buffer_head *bh) | |
412 | { | |
413 | bh->b_end_io = end_buffer_async_read; | |
414 | set_buffer_async_read(bh); | |
415 | } | |
416 | ||
1fe72eaa HS |
417 | static void mark_buffer_async_write_endio(struct buffer_head *bh, |
418 | bh_end_io_t *handler) | |
1da177e4 | 419 | { |
35c80d5f | 420 | bh->b_end_io = handler; |
1da177e4 LT |
421 | set_buffer_async_write(bh); |
422 | } | |
35c80d5f CM |
423 | |
424 | void mark_buffer_async_write(struct buffer_head *bh) | |
425 | { | |
426 | mark_buffer_async_write_endio(bh, end_buffer_async_write); | |
427 | } | |
1da177e4 LT |
428 | EXPORT_SYMBOL(mark_buffer_async_write); |
429 | ||
430 | ||
431 | /* | |
432 | * fs/buffer.c contains helper functions for buffer-backed address space's | |
433 | * fsync functions. A common requirement for buffer-based filesystems is | |
434 | * that certain data from the backing blockdev needs to be written out for | |
435 | * a successful fsync(). For example, ext2 indirect blocks need to be | |
436 | * written back and waited upon before fsync() returns. | |
437 | * | |
438 | * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), | |
439 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the | |
440 | * management of a list of dependent buffers at ->i_mapping->private_list. | |
441 | * | |
442 | * Locking is a little subtle: try_to_free_buffers() will remove buffers | |
443 | * from their controlling inode's queue when they are being freed. But | |
444 | * try_to_free_buffers() will be operating against the *blockdev* mapping | |
445 | * at the time, not against the S_ISREG file which depends on those buffers. | |
446 | * So the locking for private_list is via the private_lock in the address_space | |
447 | * which backs the buffers. Which is different from the address_space | |
448 | * against which the buffers are listed. So for a particular address_space, | |
449 | * mapping->private_lock does *not* protect mapping->private_list! In fact, | |
450 | * mapping->private_list will always be protected by the backing blockdev's | |
451 | * ->private_lock. | |
452 | * | |
453 | * Which introduces a requirement: all buffers on an address_space's | |
454 | * ->private_list must be from the same address_space: the blockdev's. | |
455 | * | |
456 | * address_spaces which do not place buffers at ->private_list via these | |
457 | * utility functions are free to use private_lock and private_list for | |
458 | * whatever they want. The only requirement is that list_empty(private_list) | |
459 | * be true at clear_inode() time. | |
460 | * | |
461 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The | |
462 | * filesystems should do that. invalidate_inode_buffers() should just go | |
463 | * BUG_ON(!list_empty). | |
464 | * | |
465 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should | |
466 | * take an address_space, not an inode. And it should be called | |
467 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being | |
468 | * queued up. | |
469 | * | |
470 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the | |
471 | * list if it is already on a list. Because if the buffer is on a list, | |
472 | * it *must* already be on the right one. If not, the filesystem is being | |
473 | * silly. This will save a ton of locking. But first we have to ensure | |
474 | * that buffers are taken *off* the old inode's list when they are freed | |
475 | * (presumably in truncate). That requires careful auditing of all | |
476 | * filesystems (do it inside bforget()). It could also be done by bringing | |
477 | * b_inode back. | |
478 | */ | |
479 | ||
480 | /* | |
481 | * The buffer's backing address_space's private_lock must be held | |
482 | */ | |
dbacefc9 | 483 | static void __remove_assoc_queue(struct buffer_head *bh) |
1da177e4 LT |
484 | { |
485 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b JK |
486 | WARN_ON(!bh->b_assoc_map); |
487 | if (buffer_write_io_error(bh)) | |
488 | set_bit(AS_EIO, &bh->b_assoc_map->flags); | |
489 | bh->b_assoc_map = NULL; | |
1da177e4 LT |
490 | } |
491 | ||
492 | int inode_has_buffers(struct inode *inode) | |
493 | { | |
494 | return !list_empty(&inode->i_data.private_list); | |
495 | } | |
496 | ||
497 | /* | |
498 | * osync is designed to support O_SYNC io. It waits synchronously for | |
499 | * all already-submitted IO to complete, but does not queue any new | |
500 | * writes to the disk. | |
501 | * | |
502 | * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as | |
503 | * you dirty the buffers, and then use osync_inode_buffers to wait for | |
504 | * completion. Any other dirty buffers which are not yet queued for | |
505 | * write will not be flushed to disk by the osync. | |
506 | */ | |
507 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) | |
508 | { | |
509 | struct buffer_head *bh; | |
510 | struct list_head *p; | |
511 | int err = 0; | |
512 | ||
513 | spin_lock(lock); | |
514 | repeat: | |
515 | list_for_each_prev(p, list) { | |
516 | bh = BH_ENTRY(p); | |
517 | if (buffer_locked(bh)) { | |
518 | get_bh(bh); | |
519 | spin_unlock(lock); | |
520 | wait_on_buffer(bh); | |
521 | if (!buffer_uptodate(bh)) | |
522 | err = -EIO; | |
523 | brelse(bh); | |
524 | spin_lock(lock); | |
525 | goto repeat; | |
526 | } | |
527 | } | |
528 | spin_unlock(lock); | |
529 | return err; | |
530 | } | |
531 | ||
01a05b33 | 532 | static void do_thaw_one(struct super_block *sb, void *unused) |
c2d75438 | 533 | { |
c2d75438 | 534 | char b[BDEVNAME_SIZE]; |
01a05b33 AV |
535 | while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) |
536 | printk(KERN_WARNING "Emergency Thaw on %s\n", | |
537 | bdevname(sb->s_bdev, b)); | |
538 | } | |
c2d75438 | 539 | |
01a05b33 AV |
540 | static void do_thaw_all(struct work_struct *work) |
541 | { | |
542 | iterate_supers(do_thaw_one, NULL); | |
053c525f | 543 | kfree(work); |
c2d75438 ES |
544 | printk(KERN_WARNING "Emergency Thaw complete\n"); |
545 | } | |
546 | ||
547 | /** | |
548 | * emergency_thaw_all -- forcibly thaw every frozen filesystem | |
549 | * | |
550 | * Used for emergency unfreeze of all filesystems via SysRq | |
551 | */ | |
552 | void emergency_thaw_all(void) | |
553 | { | |
053c525f JA |
554 | struct work_struct *work; |
555 | ||
556 | work = kmalloc(sizeof(*work), GFP_ATOMIC); | |
557 | if (work) { | |
558 | INIT_WORK(work, do_thaw_all); | |
559 | schedule_work(work); | |
560 | } | |
c2d75438 ES |
561 | } |
562 | ||
1da177e4 | 563 | /** |
78a4a50a | 564 | * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers |
67be2dd1 | 565 | * @mapping: the mapping which wants those buffers written |
1da177e4 LT |
566 | * |
567 | * Starts I/O against the buffers at mapping->private_list, and waits upon | |
568 | * that I/O. | |
569 | * | |
67be2dd1 MW |
570 | * Basically, this is a convenience function for fsync(). |
571 | * @mapping is a file or directory which needs those buffers to be written for | |
572 | * a successful fsync(). | |
1da177e4 LT |
573 | */ |
574 | int sync_mapping_buffers(struct address_space *mapping) | |
575 | { | |
252aa6f5 | 576 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
577 | |
578 | if (buffer_mapping == NULL || list_empty(&mapping->private_list)) | |
579 | return 0; | |
580 | ||
581 | return fsync_buffers_list(&buffer_mapping->private_lock, | |
582 | &mapping->private_list); | |
583 | } | |
584 | EXPORT_SYMBOL(sync_mapping_buffers); | |
585 | ||
586 | /* | |
587 | * Called when we've recently written block `bblock', and it is known that | |
588 | * `bblock' was for a buffer_boundary() buffer. This means that the block at | |
589 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's | |
590 | * dirty, schedule it for IO. So that indirects merge nicely with their data. | |
591 | */ | |
592 | void write_boundary_block(struct block_device *bdev, | |
593 | sector_t bblock, unsigned blocksize) | |
594 | { | |
595 | struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); | |
596 | if (bh) { | |
597 | if (buffer_dirty(bh)) | |
598 | ll_rw_block(WRITE, 1, &bh); | |
599 | put_bh(bh); | |
600 | } | |
601 | } | |
602 | ||
603 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) | |
604 | { | |
605 | struct address_space *mapping = inode->i_mapping; | |
606 | struct address_space *buffer_mapping = bh->b_page->mapping; | |
607 | ||
608 | mark_buffer_dirty(bh); | |
252aa6f5 RA |
609 | if (!mapping->private_data) { |
610 | mapping->private_data = buffer_mapping; | |
1da177e4 | 611 | } else { |
252aa6f5 | 612 | BUG_ON(mapping->private_data != buffer_mapping); |
1da177e4 | 613 | } |
535ee2fb | 614 | if (!bh->b_assoc_map) { |
1da177e4 LT |
615 | spin_lock(&buffer_mapping->private_lock); |
616 | list_move_tail(&bh->b_assoc_buffers, | |
617 | &mapping->private_list); | |
58ff407b | 618 | bh->b_assoc_map = mapping; |
1da177e4 LT |
619 | spin_unlock(&buffer_mapping->private_lock); |
620 | } | |
621 | } | |
622 | EXPORT_SYMBOL(mark_buffer_dirty_inode); | |
623 | ||
787d2214 NP |
624 | /* |
625 | * Mark the page dirty, and set it dirty in the radix tree, and mark the inode | |
626 | * dirty. | |
627 | * | |
628 | * If warn is true, then emit a warning if the page is not uptodate and has | |
629 | * not been truncated. | |
c4843a75 GT |
630 | * |
631 | * The caller must hold mem_cgroup_begin_page_stat() lock. | |
787d2214 | 632 | */ |
c4843a75 GT |
633 | static void __set_page_dirty(struct page *page, struct address_space *mapping, |
634 | struct mem_cgroup *memcg, int warn) | |
787d2214 | 635 | { |
227d53b3 KM |
636 | unsigned long flags; |
637 | ||
638 | spin_lock_irqsave(&mapping->tree_lock, flags); | |
787d2214 NP |
639 | if (page->mapping) { /* Race with truncate? */ |
640 | WARN_ON_ONCE(warn && !PageUptodate(page)); | |
c4843a75 | 641 | account_page_dirtied(page, mapping, memcg); |
787d2214 NP |
642 | radix_tree_tag_set(&mapping->page_tree, |
643 | page_index(page), PAGECACHE_TAG_DIRTY); | |
644 | } | |
227d53b3 | 645 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
787d2214 NP |
646 | } |
647 | ||
1da177e4 LT |
648 | /* |
649 | * Add a page to the dirty page list. | |
650 | * | |
651 | * It is a sad fact of life that this function is called from several places | |
652 | * deeply under spinlocking. It may not sleep. | |
653 | * | |
654 | * If the page has buffers, the uptodate buffers are set dirty, to preserve | |
655 | * dirty-state coherency between the page and the buffers. It the page does | |
656 | * not have buffers then when they are later attached they will all be set | |
657 | * dirty. | |
658 | * | |
659 | * The buffers are dirtied before the page is dirtied. There's a small race | |
660 | * window in which a writepage caller may see the page cleanness but not the | |
661 | * buffer dirtiness. That's fine. If this code were to set the page dirty | |
662 | * before the buffers, a concurrent writepage caller could clear the page dirty | |
663 | * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean | |
664 | * page on the dirty page list. | |
665 | * | |
666 | * We use private_lock to lock against try_to_free_buffers while using the | |
667 | * page's buffer list. Also use this to protect against clean buffers being | |
668 | * added to the page after it was set dirty. | |
669 | * | |
670 | * FIXME: may need to call ->reservepage here as well. That's rather up to the | |
671 | * address_space though. | |
672 | */ | |
673 | int __set_page_dirty_buffers(struct page *page) | |
674 | { | |
a8e7d49a | 675 | int newly_dirty; |
c4843a75 | 676 | struct mem_cgroup *memcg; |
787d2214 | 677 | struct address_space *mapping = page_mapping(page); |
ebf7a227 NP |
678 | |
679 | if (unlikely(!mapping)) | |
680 | return !TestSetPageDirty(page); | |
1da177e4 LT |
681 | |
682 | spin_lock(&mapping->private_lock); | |
683 | if (page_has_buffers(page)) { | |
684 | struct buffer_head *head = page_buffers(page); | |
685 | struct buffer_head *bh = head; | |
686 | ||
687 | do { | |
688 | set_buffer_dirty(bh); | |
689 | bh = bh->b_this_page; | |
690 | } while (bh != head); | |
691 | } | |
c4843a75 GT |
692 | /* |
693 | * Use mem_group_begin_page_stat() to keep PageDirty synchronized with | |
694 | * per-memcg dirty page counters. | |
695 | */ | |
696 | memcg = mem_cgroup_begin_page_stat(page); | |
a8e7d49a | 697 | newly_dirty = !TestSetPageDirty(page); |
1da177e4 LT |
698 | spin_unlock(&mapping->private_lock); |
699 | ||
a8e7d49a | 700 | if (newly_dirty) |
c4843a75 GT |
701 | __set_page_dirty(page, mapping, memcg, 1); |
702 | ||
703 | mem_cgroup_end_page_stat(memcg); | |
704 | ||
705 | if (newly_dirty) | |
706 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | |
707 | ||
a8e7d49a | 708 | return newly_dirty; |
1da177e4 LT |
709 | } |
710 | EXPORT_SYMBOL(__set_page_dirty_buffers); | |
711 | ||
712 | /* | |
713 | * Write out and wait upon a list of buffers. | |
714 | * | |
715 | * We have conflicting pressures: we want to make sure that all | |
716 | * initially dirty buffers get waited on, but that any subsequently | |
717 | * dirtied buffers don't. After all, we don't want fsync to last | |
718 | * forever if somebody is actively writing to the file. | |
719 | * | |
720 | * Do this in two main stages: first we copy dirty buffers to a | |
721 | * temporary inode list, queueing the writes as we go. Then we clean | |
722 | * up, waiting for those writes to complete. | |
723 | * | |
724 | * During this second stage, any subsequent updates to the file may end | |
725 | * up refiling the buffer on the original inode's dirty list again, so | |
726 | * there is a chance we will end up with a buffer queued for write but | |
727 | * not yet completed on that list. So, as a final cleanup we go through | |
728 | * the osync code to catch these locked, dirty buffers without requeuing | |
729 | * any newly dirty buffers for write. | |
730 | */ | |
731 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) | |
732 | { | |
733 | struct buffer_head *bh; | |
734 | struct list_head tmp; | |
7eaceacc | 735 | struct address_space *mapping; |
1da177e4 | 736 | int err = 0, err2; |
4ee2491e | 737 | struct blk_plug plug; |
1da177e4 LT |
738 | |
739 | INIT_LIST_HEAD(&tmp); | |
4ee2491e | 740 | blk_start_plug(&plug); |
1da177e4 LT |
741 | |
742 | spin_lock(lock); | |
743 | while (!list_empty(list)) { | |
744 | bh = BH_ENTRY(list->next); | |
535ee2fb | 745 | mapping = bh->b_assoc_map; |
58ff407b | 746 | __remove_assoc_queue(bh); |
535ee2fb JK |
747 | /* Avoid race with mark_buffer_dirty_inode() which does |
748 | * a lockless check and we rely on seeing the dirty bit */ | |
749 | smp_mb(); | |
1da177e4 LT |
750 | if (buffer_dirty(bh) || buffer_locked(bh)) { |
751 | list_add(&bh->b_assoc_buffers, &tmp); | |
535ee2fb | 752 | bh->b_assoc_map = mapping; |
1da177e4 LT |
753 | if (buffer_dirty(bh)) { |
754 | get_bh(bh); | |
755 | spin_unlock(lock); | |
756 | /* | |
757 | * Ensure any pending I/O completes so that | |
9cb569d6 CH |
758 | * write_dirty_buffer() actually writes the |
759 | * current contents - it is a noop if I/O is | |
760 | * still in flight on potentially older | |
761 | * contents. | |
1da177e4 | 762 | */ |
721a9602 | 763 | write_dirty_buffer(bh, WRITE_SYNC); |
9cf6b720 JA |
764 | |
765 | /* | |
766 | * Kick off IO for the previous mapping. Note | |
767 | * that we will not run the very last mapping, | |
768 | * wait_on_buffer() will do that for us | |
769 | * through sync_buffer(). | |
770 | */ | |
1da177e4 LT |
771 | brelse(bh); |
772 | spin_lock(lock); | |
773 | } | |
774 | } | |
775 | } | |
776 | ||
4ee2491e JA |
777 | spin_unlock(lock); |
778 | blk_finish_plug(&plug); | |
779 | spin_lock(lock); | |
780 | ||
1da177e4 LT |
781 | while (!list_empty(&tmp)) { |
782 | bh = BH_ENTRY(tmp.prev); | |
1da177e4 | 783 | get_bh(bh); |
535ee2fb JK |
784 | mapping = bh->b_assoc_map; |
785 | __remove_assoc_queue(bh); | |
786 | /* Avoid race with mark_buffer_dirty_inode() which does | |
787 | * a lockless check and we rely on seeing the dirty bit */ | |
788 | smp_mb(); | |
789 | if (buffer_dirty(bh)) { | |
790 | list_add(&bh->b_assoc_buffers, | |
e3892296 | 791 | &mapping->private_list); |
535ee2fb JK |
792 | bh->b_assoc_map = mapping; |
793 | } | |
1da177e4 LT |
794 | spin_unlock(lock); |
795 | wait_on_buffer(bh); | |
796 | if (!buffer_uptodate(bh)) | |
797 | err = -EIO; | |
798 | brelse(bh); | |
799 | spin_lock(lock); | |
800 | } | |
801 | ||
802 | spin_unlock(lock); | |
803 | err2 = osync_buffers_list(lock, list); | |
804 | if (err) | |
805 | return err; | |
806 | else | |
807 | return err2; | |
808 | } | |
809 | ||
810 | /* | |
811 | * Invalidate any and all dirty buffers on a given inode. We are | |
812 | * probably unmounting the fs, but that doesn't mean we have already | |
813 | * done a sync(). Just drop the buffers from the inode list. | |
814 | * | |
815 | * NOTE: we take the inode's blockdev's mapping's private_lock. Which | |
816 | * assumes that all the buffers are against the blockdev. Not true | |
817 | * for reiserfs. | |
818 | */ | |
819 | void invalidate_inode_buffers(struct inode *inode) | |
820 | { | |
821 | if (inode_has_buffers(inode)) { | |
822 | struct address_space *mapping = &inode->i_data; | |
823 | struct list_head *list = &mapping->private_list; | |
252aa6f5 | 824 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
825 | |
826 | spin_lock(&buffer_mapping->private_lock); | |
827 | while (!list_empty(list)) | |
828 | __remove_assoc_queue(BH_ENTRY(list->next)); | |
829 | spin_unlock(&buffer_mapping->private_lock); | |
830 | } | |
831 | } | |
52b19ac9 | 832 | EXPORT_SYMBOL(invalidate_inode_buffers); |
1da177e4 LT |
833 | |
834 | /* | |
835 | * Remove any clean buffers from the inode's buffer list. This is called | |
836 | * when we're trying to free the inode itself. Those buffers can pin it. | |
837 | * | |
838 | * Returns true if all buffers were removed. | |
839 | */ | |
840 | int remove_inode_buffers(struct inode *inode) | |
841 | { | |
842 | int ret = 1; | |
843 | ||
844 | if (inode_has_buffers(inode)) { | |
845 | struct address_space *mapping = &inode->i_data; | |
846 | struct list_head *list = &mapping->private_list; | |
252aa6f5 | 847 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
848 | |
849 | spin_lock(&buffer_mapping->private_lock); | |
850 | while (!list_empty(list)) { | |
851 | struct buffer_head *bh = BH_ENTRY(list->next); | |
852 | if (buffer_dirty(bh)) { | |
853 | ret = 0; | |
854 | break; | |
855 | } | |
856 | __remove_assoc_queue(bh); | |
857 | } | |
858 | spin_unlock(&buffer_mapping->private_lock); | |
859 | } | |
860 | return ret; | |
861 | } | |
862 | ||
863 | /* | |
864 | * Create the appropriate buffers when given a page for data area and | |
865 | * the size of each buffer.. Use the bh->b_this_page linked list to | |
866 | * follow the buffers created. Return NULL if unable to create more | |
867 | * buffers. | |
868 | * | |
869 | * The retry flag is used to differentiate async IO (paging, swapping) | |
870 | * which may not fail from ordinary buffer allocations. | |
871 | */ | |
872 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, | |
873 | int retry) | |
874 | { | |
875 | struct buffer_head *bh, *head; | |
876 | long offset; | |
877 | ||
878 | try_again: | |
879 | head = NULL; | |
880 | offset = PAGE_SIZE; | |
881 | while ((offset -= size) >= 0) { | |
882 | bh = alloc_buffer_head(GFP_NOFS); | |
883 | if (!bh) | |
884 | goto no_grow; | |
885 | ||
1da177e4 LT |
886 | bh->b_this_page = head; |
887 | bh->b_blocknr = -1; | |
888 | head = bh; | |
889 | ||
1da177e4 LT |
890 | bh->b_size = size; |
891 | ||
892 | /* Link the buffer to its page */ | |
893 | set_bh_page(bh, page, offset); | |
1da177e4 LT |
894 | } |
895 | return head; | |
896 | /* | |
897 | * In case anything failed, we just free everything we got. | |
898 | */ | |
899 | no_grow: | |
900 | if (head) { | |
901 | do { | |
902 | bh = head; | |
903 | head = head->b_this_page; | |
904 | free_buffer_head(bh); | |
905 | } while (head); | |
906 | } | |
907 | ||
908 | /* | |
909 | * Return failure for non-async IO requests. Async IO requests | |
910 | * are not allowed to fail, so we have to wait until buffer heads | |
911 | * become available. But we don't want tasks sleeping with | |
912 | * partially complete buffers, so all were released above. | |
913 | */ | |
914 | if (!retry) | |
915 | return NULL; | |
916 | ||
917 | /* We're _really_ low on memory. Now we just | |
918 | * wait for old buffer heads to become free due to | |
919 | * finishing IO. Since this is an async request and | |
920 | * the reserve list is empty, we're sure there are | |
921 | * async buffer heads in use. | |
922 | */ | |
923 | free_more_memory(); | |
924 | goto try_again; | |
925 | } | |
926 | EXPORT_SYMBOL_GPL(alloc_page_buffers); | |
927 | ||
928 | static inline void | |
929 | link_dev_buffers(struct page *page, struct buffer_head *head) | |
930 | { | |
931 | struct buffer_head *bh, *tail; | |
932 | ||
933 | bh = head; | |
934 | do { | |
935 | tail = bh; | |
936 | bh = bh->b_this_page; | |
937 | } while (bh); | |
938 | tail->b_this_page = head; | |
939 | attach_page_buffers(page, head); | |
940 | } | |
941 | ||
bbec0270 LT |
942 | static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) |
943 | { | |
944 | sector_t retval = ~((sector_t)0); | |
945 | loff_t sz = i_size_read(bdev->bd_inode); | |
946 | ||
947 | if (sz) { | |
948 | unsigned int sizebits = blksize_bits(size); | |
949 | retval = (sz >> sizebits); | |
950 | } | |
951 | return retval; | |
952 | } | |
953 | ||
1da177e4 LT |
954 | /* |
955 | * Initialise the state of a blockdev page's buffers. | |
956 | */ | |
676ce6d5 | 957 | static sector_t |
1da177e4 LT |
958 | init_page_buffers(struct page *page, struct block_device *bdev, |
959 | sector_t block, int size) | |
960 | { | |
961 | struct buffer_head *head = page_buffers(page); | |
962 | struct buffer_head *bh = head; | |
963 | int uptodate = PageUptodate(page); | |
bbec0270 | 964 | sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); |
1da177e4 LT |
965 | |
966 | do { | |
967 | if (!buffer_mapped(bh)) { | |
968 | init_buffer(bh, NULL, NULL); | |
969 | bh->b_bdev = bdev; | |
970 | bh->b_blocknr = block; | |
971 | if (uptodate) | |
972 | set_buffer_uptodate(bh); | |
080399aa JM |
973 | if (block < end_block) |
974 | set_buffer_mapped(bh); | |
1da177e4 LT |
975 | } |
976 | block++; | |
977 | bh = bh->b_this_page; | |
978 | } while (bh != head); | |
676ce6d5 HD |
979 | |
980 | /* | |
981 | * Caller needs to validate requested block against end of device. | |
982 | */ | |
983 | return end_block; | |
1da177e4 LT |
984 | } |
985 | ||
986 | /* | |
987 | * Create the page-cache page that contains the requested block. | |
988 | * | |
676ce6d5 | 989 | * This is used purely for blockdev mappings. |
1da177e4 | 990 | */ |
676ce6d5 | 991 | static int |
1da177e4 | 992 | grow_dev_page(struct block_device *bdev, sector_t block, |
3b5e6454 | 993 | pgoff_t index, int size, int sizebits, gfp_t gfp) |
1da177e4 LT |
994 | { |
995 | struct inode *inode = bdev->bd_inode; | |
996 | struct page *page; | |
997 | struct buffer_head *bh; | |
676ce6d5 HD |
998 | sector_t end_block; |
999 | int ret = 0; /* Will call free_more_memory() */ | |
84235de3 | 1000 | gfp_t gfp_mask; |
1da177e4 | 1001 | |
3b5e6454 GK |
1002 | gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp; |
1003 | ||
84235de3 JW |
1004 | /* |
1005 | * XXX: __getblk_slow() can not really deal with failure and | |
1006 | * will endlessly loop on improvised global reclaim. Prefer | |
1007 | * looping in the allocator rather than here, at least that | |
1008 | * code knows what it's doing. | |
1009 | */ | |
1010 | gfp_mask |= __GFP_NOFAIL; | |
1011 | ||
1012 | page = find_or_create_page(inode->i_mapping, index, gfp_mask); | |
1da177e4 | 1013 | if (!page) |
676ce6d5 | 1014 | return ret; |
1da177e4 | 1015 | |
e827f923 | 1016 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
1017 | |
1018 | if (page_has_buffers(page)) { | |
1019 | bh = page_buffers(page); | |
1020 | if (bh->b_size == size) { | |
676ce6d5 | 1021 | end_block = init_page_buffers(page, bdev, |
f2d5a944 AA |
1022 | (sector_t)index << sizebits, |
1023 | size); | |
676ce6d5 | 1024 | goto done; |
1da177e4 LT |
1025 | } |
1026 | if (!try_to_free_buffers(page)) | |
1027 | goto failed; | |
1028 | } | |
1029 | ||
1030 | /* | |
1031 | * Allocate some buffers for this page | |
1032 | */ | |
1033 | bh = alloc_page_buffers(page, size, 0); | |
1034 | if (!bh) | |
1035 | goto failed; | |
1036 | ||
1037 | /* | |
1038 | * Link the page to the buffers and initialise them. Take the | |
1039 | * lock to be atomic wrt __find_get_block(), which does not | |
1040 | * run under the page lock. | |
1041 | */ | |
1042 | spin_lock(&inode->i_mapping->private_lock); | |
1043 | link_dev_buffers(page, bh); | |
f2d5a944 AA |
1044 | end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, |
1045 | size); | |
1da177e4 | 1046 | spin_unlock(&inode->i_mapping->private_lock); |
676ce6d5 HD |
1047 | done: |
1048 | ret = (block < end_block) ? 1 : -ENXIO; | |
1da177e4 | 1049 | failed: |
1da177e4 LT |
1050 | unlock_page(page); |
1051 | page_cache_release(page); | |
676ce6d5 | 1052 | return ret; |
1da177e4 LT |
1053 | } |
1054 | ||
1055 | /* | |
1056 | * Create buffers for the specified block device block's page. If | |
1057 | * that page was dirty, the buffers are set dirty also. | |
1da177e4 | 1058 | */ |
858119e1 | 1059 | static int |
3b5e6454 | 1060 | grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) |
1da177e4 | 1061 | { |
1da177e4 LT |
1062 | pgoff_t index; |
1063 | int sizebits; | |
1064 | ||
1065 | sizebits = -1; | |
1066 | do { | |
1067 | sizebits++; | |
1068 | } while ((size << sizebits) < PAGE_SIZE); | |
1069 | ||
1070 | index = block >> sizebits; | |
1da177e4 | 1071 | |
e5657933 AM |
1072 | /* |
1073 | * Check for a block which wants to lie outside our maximum possible | |
1074 | * pagecache index. (this comparison is done using sector_t types). | |
1075 | */ | |
1076 | if (unlikely(index != block >> sizebits)) { | |
1077 | char b[BDEVNAME_SIZE]; | |
1078 | ||
1079 | printk(KERN_ERR "%s: requested out-of-range block %llu for " | |
1080 | "device %s\n", | |
8e24eea7 | 1081 | __func__, (unsigned long long)block, |
e5657933 AM |
1082 | bdevname(bdev, b)); |
1083 | return -EIO; | |
1084 | } | |
676ce6d5 | 1085 | |
1da177e4 | 1086 | /* Create a page with the proper size buffers.. */ |
3b5e6454 | 1087 | return grow_dev_page(bdev, block, index, size, sizebits, gfp); |
1da177e4 LT |
1088 | } |
1089 | ||
3b5e6454 GK |
1090 | struct buffer_head * |
1091 | __getblk_slow(struct block_device *bdev, sector_t block, | |
1092 | unsigned size, gfp_t gfp) | |
1da177e4 LT |
1093 | { |
1094 | /* Size must be multiple of hard sectorsize */ | |
e1defc4f | 1095 | if (unlikely(size & (bdev_logical_block_size(bdev)-1) || |
1da177e4 LT |
1096 | (size < 512 || size > PAGE_SIZE))) { |
1097 | printk(KERN_ERR "getblk(): invalid block size %d requested\n", | |
1098 | size); | |
e1defc4f MP |
1099 | printk(KERN_ERR "logical block size: %d\n", |
1100 | bdev_logical_block_size(bdev)); | |
1da177e4 LT |
1101 | |
1102 | dump_stack(); | |
1103 | return NULL; | |
1104 | } | |
1105 | ||
676ce6d5 HD |
1106 | for (;;) { |
1107 | struct buffer_head *bh; | |
1108 | int ret; | |
1da177e4 LT |
1109 | |
1110 | bh = __find_get_block(bdev, block, size); | |
1111 | if (bh) | |
1112 | return bh; | |
676ce6d5 | 1113 | |
3b5e6454 | 1114 | ret = grow_buffers(bdev, block, size, gfp); |
676ce6d5 HD |
1115 | if (ret < 0) |
1116 | return NULL; | |
1117 | if (ret == 0) | |
1118 | free_more_memory(); | |
1da177e4 LT |
1119 | } |
1120 | } | |
3b5e6454 | 1121 | EXPORT_SYMBOL(__getblk_slow); |
1da177e4 LT |
1122 | |
1123 | /* | |
1124 | * The relationship between dirty buffers and dirty pages: | |
1125 | * | |
1126 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and | |
1127 | * the page is tagged dirty in its radix tree. | |
1128 | * | |
1129 | * At all times, the dirtiness of the buffers represents the dirtiness of | |
1130 | * subsections of the page. If the page has buffers, the page dirty bit is | |
1131 | * merely a hint about the true dirty state. | |
1132 | * | |
1133 | * When a page is set dirty in its entirety, all its buffers are marked dirty | |
1134 | * (if the page has buffers). | |
1135 | * | |
1136 | * When a buffer is marked dirty, its page is dirtied, but the page's other | |
1137 | * buffers are not. | |
1138 | * | |
1139 | * Also. When blockdev buffers are explicitly read with bread(), they | |
1140 | * individually become uptodate. But their backing page remains not | |
1141 | * uptodate - even if all of its buffers are uptodate. A subsequent | |
1142 | * block_read_full_page() against that page will discover all the uptodate | |
1143 | * buffers, will set the page uptodate and will perform no I/O. | |
1144 | */ | |
1145 | ||
1146 | /** | |
1147 | * mark_buffer_dirty - mark a buffer_head as needing writeout | |
67be2dd1 | 1148 | * @bh: the buffer_head to mark dirty |
1da177e4 LT |
1149 | * |
1150 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set its | |
1151 | * backing page dirty, then tag the page as dirty in its address_space's radix | |
1152 | * tree and then attach the address_space's inode to its superblock's dirty | |
1153 | * inode list. | |
1154 | * | |
1155 | * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, | |
250df6ed | 1156 | * mapping->tree_lock and mapping->host->i_lock. |
1da177e4 | 1157 | */ |
fc9b52cd | 1158 | void mark_buffer_dirty(struct buffer_head *bh) |
1da177e4 | 1159 | { |
787d2214 | 1160 | WARN_ON_ONCE(!buffer_uptodate(bh)); |
1be62dc1 | 1161 | |
5305cb83 TH |
1162 | trace_block_dirty_buffer(bh); |
1163 | ||
1be62dc1 LT |
1164 | /* |
1165 | * Very *carefully* optimize the it-is-already-dirty case. | |
1166 | * | |
1167 | * Don't let the final "is it dirty" escape to before we | |
1168 | * perhaps modified the buffer. | |
1169 | */ | |
1170 | if (buffer_dirty(bh)) { | |
1171 | smp_mb(); | |
1172 | if (buffer_dirty(bh)) | |
1173 | return; | |
1174 | } | |
1175 | ||
a8e7d49a LT |
1176 | if (!test_set_buffer_dirty(bh)) { |
1177 | struct page *page = bh->b_page; | |
c4843a75 GT |
1178 | struct address_space *mapping = NULL; |
1179 | struct mem_cgroup *memcg; | |
1180 | ||
1181 | memcg = mem_cgroup_begin_page_stat(page); | |
8e9d78ed | 1182 | if (!TestSetPageDirty(page)) { |
c4843a75 | 1183 | mapping = page_mapping(page); |
8e9d78ed | 1184 | if (mapping) |
c4843a75 | 1185 | __set_page_dirty(page, mapping, memcg, 0); |
8e9d78ed | 1186 | } |
c4843a75 GT |
1187 | mem_cgroup_end_page_stat(memcg); |
1188 | if (mapping) | |
1189 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | |
a8e7d49a | 1190 | } |
1da177e4 | 1191 | } |
1fe72eaa | 1192 | EXPORT_SYMBOL(mark_buffer_dirty); |
1da177e4 LT |
1193 | |
1194 | /* | |
1195 | * Decrement a buffer_head's reference count. If all buffers against a page | |
1196 | * have zero reference count, are clean and unlocked, and if the page is clean | |
1197 | * and unlocked then try_to_free_buffers() may strip the buffers from the page | |
1198 | * in preparation for freeing it (sometimes, rarely, buffers are removed from | |
1199 | * a page but it ends up not being freed, and buffers may later be reattached). | |
1200 | */ | |
1201 | void __brelse(struct buffer_head * buf) | |
1202 | { | |
1203 | if (atomic_read(&buf->b_count)) { | |
1204 | put_bh(buf); | |
1205 | return; | |
1206 | } | |
5c752ad9 | 1207 | WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); |
1da177e4 | 1208 | } |
1fe72eaa | 1209 | EXPORT_SYMBOL(__brelse); |
1da177e4 LT |
1210 | |
1211 | /* | |
1212 | * bforget() is like brelse(), except it discards any | |
1213 | * potentially dirty data. | |
1214 | */ | |
1215 | void __bforget(struct buffer_head *bh) | |
1216 | { | |
1217 | clear_buffer_dirty(bh); | |
535ee2fb | 1218 | if (bh->b_assoc_map) { |
1da177e4 LT |
1219 | struct address_space *buffer_mapping = bh->b_page->mapping; |
1220 | ||
1221 | spin_lock(&buffer_mapping->private_lock); | |
1222 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b | 1223 | bh->b_assoc_map = NULL; |
1da177e4 LT |
1224 | spin_unlock(&buffer_mapping->private_lock); |
1225 | } | |
1226 | __brelse(bh); | |
1227 | } | |
1fe72eaa | 1228 | EXPORT_SYMBOL(__bforget); |
1da177e4 LT |
1229 | |
1230 | static struct buffer_head *__bread_slow(struct buffer_head *bh) | |
1231 | { | |
1232 | lock_buffer(bh); | |
1233 | if (buffer_uptodate(bh)) { | |
1234 | unlock_buffer(bh); | |
1235 | return bh; | |
1236 | } else { | |
1237 | get_bh(bh); | |
1238 | bh->b_end_io = end_buffer_read_sync; | |
1239 | submit_bh(READ, bh); | |
1240 | wait_on_buffer(bh); | |
1241 | if (buffer_uptodate(bh)) | |
1242 | return bh; | |
1243 | } | |
1244 | brelse(bh); | |
1245 | return NULL; | |
1246 | } | |
1247 | ||
1248 | /* | |
1249 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). | |
1250 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their | |
1251 | * refcount elevated by one when they're in an LRU. A buffer can only appear | |
1252 | * once in a particular CPU's LRU. A single buffer can be present in multiple | |
1253 | * CPU's LRUs at the same time. | |
1254 | * | |
1255 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and | |
1256 | * sb_find_get_block(). | |
1257 | * | |
1258 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use | |
1259 | * a local interrupt disable for that. | |
1260 | */ | |
1261 | ||
86cf78d7 | 1262 | #define BH_LRU_SIZE 16 |
1da177e4 LT |
1263 | |
1264 | struct bh_lru { | |
1265 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1266 | }; | |
1267 | ||
1268 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; | |
1269 | ||
1270 | #ifdef CONFIG_SMP | |
1271 | #define bh_lru_lock() local_irq_disable() | |
1272 | #define bh_lru_unlock() local_irq_enable() | |
1273 | #else | |
1274 | #define bh_lru_lock() preempt_disable() | |
1275 | #define bh_lru_unlock() preempt_enable() | |
1276 | #endif | |
1277 | ||
1278 | static inline void check_irqs_on(void) | |
1279 | { | |
1280 | #ifdef irqs_disabled | |
1281 | BUG_ON(irqs_disabled()); | |
1282 | #endif | |
1283 | } | |
1284 | ||
1285 | /* | |
1286 | * The LRU management algorithm is dopey-but-simple. Sorry. | |
1287 | */ | |
1288 | static void bh_lru_install(struct buffer_head *bh) | |
1289 | { | |
1290 | struct buffer_head *evictee = NULL; | |
1da177e4 LT |
1291 | |
1292 | check_irqs_on(); | |
1293 | bh_lru_lock(); | |
c7b92516 | 1294 | if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { |
1da177e4 LT |
1295 | struct buffer_head *bhs[BH_LRU_SIZE]; |
1296 | int in; | |
1297 | int out = 0; | |
1298 | ||
1299 | get_bh(bh); | |
1300 | bhs[out++] = bh; | |
1301 | for (in = 0; in < BH_LRU_SIZE; in++) { | |
c7b92516 CL |
1302 | struct buffer_head *bh2 = |
1303 | __this_cpu_read(bh_lrus.bhs[in]); | |
1da177e4 LT |
1304 | |
1305 | if (bh2 == bh) { | |
1306 | __brelse(bh2); | |
1307 | } else { | |
1308 | if (out >= BH_LRU_SIZE) { | |
1309 | BUG_ON(evictee != NULL); | |
1310 | evictee = bh2; | |
1311 | } else { | |
1312 | bhs[out++] = bh2; | |
1313 | } | |
1314 | } | |
1315 | } | |
1316 | while (out < BH_LRU_SIZE) | |
1317 | bhs[out++] = NULL; | |
ca6673b0 | 1318 | memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); |
1da177e4 LT |
1319 | } |
1320 | bh_lru_unlock(); | |
1321 | ||
1322 | if (evictee) | |
1323 | __brelse(evictee); | |
1324 | } | |
1325 | ||
1326 | /* | |
1327 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. | |
1328 | */ | |
858119e1 | 1329 | static struct buffer_head * |
3991d3bd | 1330 | lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1331 | { |
1332 | struct buffer_head *ret = NULL; | |
3991d3bd | 1333 | unsigned int i; |
1da177e4 LT |
1334 | |
1335 | check_irqs_on(); | |
1336 | bh_lru_lock(); | |
1da177e4 | 1337 | for (i = 0; i < BH_LRU_SIZE; i++) { |
c7b92516 | 1338 | struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); |
1da177e4 | 1339 | |
9470dd5d ZB |
1340 | if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && |
1341 | bh->b_size == size) { | |
1da177e4 LT |
1342 | if (i) { |
1343 | while (i) { | |
c7b92516 CL |
1344 | __this_cpu_write(bh_lrus.bhs[i], |
1345 | __this_cpu_read(bh_lrus.bhs[i - 1])); | |
1da177e4 LT |
1346 | i--; |
1347 | } | |
c7b92516 | 1348 | __this_cpu_write(bh_lrus.bhs[0], bh); |
1da177e4 LT |
1349 | } |
1350 | get_bh(bh); | |
1351 | ret = bh; | |
1352 | break; | |
1353 | } | |
1354 | } | |
1355 | bh_lru_unlock(); | |
1356 | return ret; | |
1357 | } | |
1358 | ||
1359 | /* | |
1360 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh | |
1361 | * it in the LRU and mark it as accessed. If it is not present then return | |
1362 | * NULL | |
1363 | */ | |
1364 | struct buffer_head * | |
3991d3bd | 1365 | __find_get_block(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1366 | { |
1367 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); | |
1368 | ||
1369 | if (bh == NULL) { | |
2457aec6 | 1370 | /* __find_get_block_slow will mark the page accessed */ |
385fd4c5 | 1371 | bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1372 | if (bh) |
1373 | bh_lru_install(bh); | |
2457aec6 | 1374 | } else |
1da177e4 | 1375 | touch_buffer(bh); |
2457aec6 | 1376 | |
1da177e4 LT |
1377 | return bh; |
1378 | } | |
1379 | EXPORT_SYMBOL(__find_get_block); | |
1380 | ||
1381 | /* | |
3b5e6454 | 1382 | * __getblk_gfp() will locate (and, if necessary, create) the buffer_head |
1da177e4 LT |
1383 | * which corresponds to the passed block_device, block and size. The |
1384 | * returned buffer has its reference count incremented. | |
1385 | * | |
3b5e6454 GK |
1386 | * __getblk_gfp() will lock up the machine if grow_dev_page's |
1387 | * try_to_free_buffers() attempt is failing. FIXME, perhaps? | |
1da177e4 LT |
1388 | */ |
1389 | struct buffer_head * | |
3b5e6454 GK |
1390 | __getblk_gfp(struct block_device *bdev, sector_t block, |
1391 | unsigned size, gfp_t gfp) | |
1da177e4 LT |
1392 | { |
1393 | struct buffer_head *bh = __find_get_block(bdev, block, size); | |
1394 | ||
1395 | might_sleep(); | |
1396 | if (bh == NULL) | |
3b5e6454 | 1397 | bh = __getblk_slow(bdev, block, size, gfp); |
1da177e4 LT |
1398 | return bh; |
1399 | } | |
3b5e6454 | 1400 | EXPORT_SYMBOL(__getblk_gfp); |
1da177e4 LT |
1401 | |
1402 | /* | |
1403 | * Do async read-ahead on a buffer.. | |
1404 | */ | |
3991d3bd | 1405 | void __breadahead(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1406 | { |
1407 | struct buffer_head *bh = __getblk(bdev, block, size); | |
a3e713b5 AM |
1408 | if (likely(bh)) { |
1409 | ll_rw_block(READA, 1, &bh); | |
1410 | brelse(bh); | |
1411 | } | |
1da177e4 LT |
1412 | } |
1413 | EXPORT_SYMBOL(__breadahead); | |
1414 | ||
1415 | /** | |
3b5e6454 | 1416 | * __bread_gfp() - reads a specified block and returns the bh |
67be2dd1 | 1417 | * @bdev: the block_device to read from |
1da177e4 LT |
1418 | * @block: number of block |
1419 | * @size: size (in bytes) to read | |
3b5e6454 GK |
1420 | * @gfp: page allocation flag |
1421 | * | |
1da177e4 | 1422 | * Reads a specified block, and returns buffer head that contains it. |
3b5e6454 GK |
1423 | * The page cache can be allocated from non-movable area |
1424 | * not to prevent page migration if you set gfp to zero. | |
1da177e4 LT |
1425 | * It returns NULL if the block was unreadable. |
1426 | */ | |
1427 | struct buffer_head * | |
3b5e6454 GK |
1428 | __bread_gfp(struct block_device *bdev, sector_t block, |
1429 | unsigned size, gfp_t gfp) | |
1da177e4 | 1430 | { |
3b5e6454 | 1431 | struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); |
1da177e4 | 1432 | |
a3e713b5 | 1433 | if (likely(bh) && !buffer_uptodate(bh)) |
1da177e4 LT |
1434 | bh = __bread_slow(bh); |
1435 | return bh; | |
1436 | } | |
3b5e6454 | 1437 | EXPORT_SYMBOL(__bread_gfp); |
1da177e4 LT |
1438 | |
1439 | /* | |
1440 | * invalidate_bh_lrus() is called rarely - but not only at unmount. | |
1441 | * This doesn't race because it runs in each cpu either in irq | |
1442 | * or with preempt disabled. | |
1443 | */ | |
1444 | static void invalidate_bh_lru(void *arg) | |
1445 | { | |
1446 | struct bh_lru *b = &get_cpu_var(bh_lrus); | |
1447 | int i; | |
1448 | ||
1449 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1450 | brelse(b->bhs[i]); | |
1451 | b->bhs[i] = NULL; | |
1452 | } | |
1453 | put_cpu_var(bh_lrus); | |
1454 | } | |
42be35d0 GBY |
1455 | |
1456 | static bool has_bh_in_lru(int cpu, void *dummy) | |
1457 | { | |
1458 | struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); | |
1459 | int i; | |
1da177e4 | 1460 | |
42be35d0 GBY |
1461 | for (i = 0; i < BH_LRU_SIZE; i++) { |
1462 | if (b->bhs[i]) | |
1463 | return 1; | |
1464 | } | |
1465 | ||
1466 | return 0; | |
1467 | } | |
1468 | ||
f9a14399 | 1469 | void invalidate_bh_lrus(void) |
1da177e4 | 1470 | { |
42be35d0 | 1471 | on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); |
1da177e4 | 1472 | } |
9db5579b | 1473 | EXPORT_SYMBOL_GPL(invalidate_bh_lrus); |
1da177e4 LT |
1474 | |
1475 | void set_bh_page(struct buffer_head *bh, | |
1476 | struct page *page, unsigned long offset) | |
1477 | { | |
1478 | bh->b_page = page; | |
e827f923 | 1479 | BUG_ON(offset >= PAGE_SIZE); |
1da177e4 LT |
1480 | if (PageHighMem(page)) |
1481 | /* | |
1482 | * This catches illegal uses and preserves the offset: | |
1483 | */ | |
1484 | bh->b_data = (char *)(0 + offset); | |
1485 | else | |
1486 | bh->b_data = page_address(page) + offset; | |
1487 | } | |
1488 | EXPORT_SYMBOL(set_bh_page); | |
1489 | ||
1490 | /* | |
1491 | * Called when truncating a buffer on a page completely. | |
1492 | */ | |
e7470ee8 MG |
1493 | |
1494 | /* Bits that are cleared during an invalidate */ | |
1495 | #define BUFFER_FLAGS_DISCARD \ | |
1496 | (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ | |
1497 | 1 << BH_Delay | 1 << BH_Unwritten) | |
1498 | ||
858119e1 | 1499 | static void discard_buffer(struct buffer_head * bh) |
1da177e4 | 1500 | { |
e7470ee8 MG |
1501 | unsigned long b_state, b_state_old; |
1502 | ||
1da177e4 LT |
1503 | lock_buffer(bh); |
1504 | clear_buffer_dirty(bh); | |
1505 | bh->b_bdev = NULL; | |
e7470ee8 MG |
1506 | b_state = bh->b_state; |
1507 | for (;;) { | |
1508 | b_state_old = cmpxchg(&bh->b_state, b_state, | |
1509 | (b_state & ~BUFFER_FLAGS_DISCARD)); | |
1510 | if (b_state_old == b_state) | |
1511 | break; | |
1512 | b_state = b_state_old; | |
1513 | } | |
1da177e4 LT |
1514 | unlock_buffer(bh); |
1515 | } | |
1516 | ||
1da177e4 | 1517 | /** |
814e1d25 | 1518 | * block_invalidatepage - invalidate part or all of a buffer-backed page |
1da177e4 LT |
1519 | * |
1520 | * @page: the page which is affected | |
d47992f8 LC |
1521 | * @offset: start of the range to invalidate |
1522 | * @length: length of the range to invalidate | |
1da177e4 LT |
1523 | * |
1524 | * block_invalidatepage() is called when all or part of the page has become | |
814e1d25 | 1525 | * invalidated by a truncate operation. |
1da177e4 LT |
1526 | * |
1527 | * block_invalidatepage() does not have to release all buffers, but it must | |
1528 | * ensure that no dirty buffer is left outside @offset and that no I/O | |
1529 | * is underway against any of the blocks which are outside the truncation | |
1530 | * point. Because the caller is about to free (and possibly reuse) those | |
1531 | * blocks on-disk. | |
1532 | */ | |
d47992f8 LC |
1533 | void block_invalidatepage(struct page *page, unsigned int offset, |
1534 | unsigned int length) | |
1da177e4 LT |
1535 | { |
1536 | struct buffer_head *head, *bh, *next; | |
1537 | unsigned int curr_off = 0; | |
d47992f8 | 1538 | unsigned int stop = length + offset; |
1da177e4 LT |
1539 | |
1540 | BUG_ON(!PageLocked(page)); | |
1541 | if (!page_has_buffers(page)) | |
1542 | goto out; | |
1543 | ||
d47992f8 LC |
1544 | /* |
1545 | * Check for overflow | |
1546 | */ | |
1547 | BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); | |
1548 | ||
1da177e4 LT |
1549 | head = page_buffers(page); |
1550 | bh = head; | |
1551 | do { | |
1552 | unsigned int next_off = curr_off + bh->b_size; | |
1553 | next = bh->b_this_page; | |
1554 | ||
d47992f8 LC |
1555 | /* |
1556 | * Are we still fully in range ? | |
1557 | */ | |
1558 | if (next_off > stop) | |
1559 | goto out; | |
1560 | ||
1da177e4 LT |
1561 | /* |
1562 | * is this block fully invalidated? | |
1563 | */ | |
1564 | if (offset <= curr_off) | |
1565 | discard_buffer(bh); | |
1566 | curr_off = next_off; | |
1567 | bh = next; | |
1568 | } while (bh != head); | |
1569 | ||
1570 | /* | |
1571 | * We release buffers only if the entire page is being invalidated. | |
1572 | * The get_block cached value has been unconditionally invalidated, | |
1573 | * so real IO is not possible anymore. | |
1574 | */ | |
1575 | if (offset == 0) | |
2ff28e22 | 1576 | try_to_release_page(page, 0); |
1da177e4 | 1577 | out: |
2ff28e22 | 1578 | return; |
1da177e4 LT |
1579 | } |
1580 | EXPORT_SYMBOL(block_invalidatepage); | |
1581 | ||
d47992f8 | 1582 | |
1da177e4 LT |
1583 | /* |
1584 | * We attach and possibly dirty the buffers atomically wrt | |
1585 | * __set_page_dirty_buffers() via private_lock. try_to_free_buffers | |
1586 | * is already excluded via the page lock. | |
1587 | */ | |
1588 | void create_empty_buffers(struct page *page, | |
1589 | unsigned long blocksize, unsigned long b_state) | |
1590 | { | |
1591 | struct buffer_head *bh, *head, *tail; | |
1592 | ||
1593 | head = alloc_page_buffers(page, blocksize, 1); | |
1594 | bh = head; | |
1595 | do { | |
1596 | bh->b_state |= b_state; | |
1597 | tail = bh; | |
1598 | bh = bh->b_this_page; | |
1599 | } while (bh); | |
1600 | tail->b_this_page = head; | |
1601 | ||
1602 | spin_lock(&page->mapping->private_lock); | |
1603 | if (PageUptodate(page) || PageDirty(page)) { | |
1604 | bh = head; | |
1605 | do { | |
1606 | if (PageDirty(page)) | |
1607 | set_buffer_dirty(bh); | |
1608 | if (PageUptodate(page)) | |
1609 | set_buffer_uptodate(bh); | |
1610 | bh = bh->b_this_page; | |
1611 | } while (bh != head); | |
1612 | } | |
1613 | attach_page_buffers(page, head); | |
1614 | spin_unlock(&page->mapping->private_lock); | |
1615 | } | |
1616 | EXPORT_SYMBOL(create_empty_buffers); | |
1617 | ||
1618 | /* | |
1619 | * We are taking a block for data and we don't want any output from any | |
1620 | * buffer-cache aliases starting from return from that function and | |
1621 | * until the moment when something will explicitly mark the buffer | |
1622 | * dirty (hopefully that will not happen until we will free that block ;-) | |
1623 | * We don't even need to mark it not-uptodate - nobody can expect | |
1624 | * anything from a newly allocated buffer anyway. We used to used | |
1625 | * unmap_buffer() for such invalidation, but that was wrong. We definitely | |
1626 | * don't want to mark the alias unmapped, for example - it would confuse | |
1627 | * anyone who might pick it with bread() afterwards... | |
1628 | * | |
1629 | * Also.. Note that bforget() doesn't lock the buffer. So there can | |
1630 | * be writeout I/O going on against recently-freed buffers. We don't | |
1631 | * wait on that I/O in bforget() - it's more efficient to wait on the I/O | |
1632 | * only if we really need to. That happens here. | |
1633 | */ | |
1634 | void unmap_underlying_metadata(struct block_device *bdev, sector_t block) | |
1635 | { | |
1636 | struct buffer_head *old_bh; | |
1637 | ||
1638 | might_sleep(); | |
1639 | ||
385fd4c5 | 1640 | old_bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1641 | if (old_bh) { |
1642 | clear_buffer_dirty(old_bh); | |
1643 | wait_on_buffer(old_bh); | |
1644 | clear_buffer_req(old_bh); | |
1645 | __brelse(old_bh); | |
1646 | } | |
1647 | } | |
1648 | EXPORT_SYMBOL(unmap_underlying_metadata); | |
1649 | ||
45bce8f3 LT |
1650 | /* |
1651 | * Size is a power-of-two in the range 512..PAGE_SIZE, | |
1652 | * and the case we care about most is PAGE_SIZE. | |
1653 | * | |
1654 | * So this *could* possibly be written with those | |
1655 | * constraints in mind (relevant mostly if some | |
1656 | * architecture has a slow bit-scan instruction) | |
1657 | */ | |
1658 | static inline int block_size_bits(unsigned int blocksize) | |
1659 | { | |
1660 | return ilog2(blocksize); | |
1661 | } | |
1662 | ||
1663 | static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) | |
1664 | { | |
1665 | BUG_ON(!PageLocked(page)); | |
1666 | ||
1667 | if (!page_has_buffers(page)) | |
1668 | create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); | |
1669 | return page_buffers(page); | |
1670 | } | |
1671 | ||
1da177e4 LT |
1672 | /* |
1673 | * NOTE! All mapped/uptodate combinations are valid: | |
1674 | * | |
1675 | * Mapped Uptodate Meaning | |
1676 | * | |
1677 | * No No "unknown" - must do get_block() | |
1678 | * No Yes "hole" - zero-filled | |
1679 | * Yes No "allocated" - allocated on disk, not read in | |
1680 | * Yes Yes "valid" - allocated and up-to-date in memory. | |
1681 | * | |
1682 | * "Dirty" is valid only with the last case (mapped+uptodate). | |
1683 | */ | |
1684 | ||
1685 | /* | |
1686 | * While block_write_full_page is writing back the dirty buffers under | |
1687 | * the page lock, whoever dirtied the buffers may decide to clean them | |
1688 | * again at any time. We handle that by only looking at the buffer | |
1689 | * state inside lock_buffer(). | |
1690 | * | |
1691 | * If block_write_full_page() is called for regular writeback | |
1692 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a | |
1693 | * locked buffer. This only can happen if someone has written the buffer | |
1694 | * directly, with submit_bh(). At the address_space level PageWriteback | |
1695 | * prevents this contention from occurring. | |
6e34eedd TT |
1696 | * |
1697 | * If block_write_full_page() is called with wbc->sync_mode == | |
721a9602 JA |
1698 | * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this |
1699 | * causes the writes to be flagged as synchronous writes. | |
1da177e4 LT |
1700 | */ |
1701 | static int __block_write_full_page(struct inode *inode, struct page *page, | |
35c80d5f CM |
1702 | get_block_t *get_block, struct writeback_control *wbc, |
1703 | bh_end_io_t *handler) | |
1da177e4 LT |
1704 | { |
1705 | int err; | |
1706 | sector_t block; | |
1707 | sector_t last_block; | |
f0fbd5fc | 1708 | struct buffer_head *bh, *head; |
45bce8f3 | 1709 | unsigned int blocksize, bbits; |
1da177e4 | 1710 | int nr_underway = 0; |
bafc0dba | 1711 | int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); |
1da177e4 | 1712 | |
45bce8f3 | 1713 | head = create_page_buffers(page, inode, |
1da177e4 | 1714 | (1 << BH_Dirty)|(1 << BH_Uptodate)); |
1da177e4 LT |
1715 | |
1716 | /* | |
1717 | * Be very careful. We have no exclusion from __set_page_dirty_buffers | |
1718 | * here, and the (potentially unmapped) buffers may become dirty at | |
1719 | * any time. If a buffer becomes dirty here after we've inspected it | |
1720 | * then we just miss that fact, and the page stays dirty. | |
1721 | * | |
1722 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; | |
1723 | * handle that here by just cleaning them. | |
1724 | */ | |
1725 | ||
1da177e4 | 1726 | bh = head; |
45bce8f3 LT |
1727 | blocksize = bh->b_size; |
1728 | bbits = block_size_bits(blocksize); | |
1729 | ||
1730 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); | |
1731 | last_block = (i_size_read(inode) - 1) >> bbits; | |
1da177e4 LT |
1732 | |
1733 | /* | |
1734 | * Get all the dirty buffers mapped to disk addresses and | |
1735 | * handle any aliases from the underlying blockdev's mapping. | |
1736 | */ | |
1737 | do { | |
1738 | if (block > last_block) { | |
1739 | /* | |
1740 | * mapped buffers outside i_size will occur, because | |
1741 | * this page can be outside i_size when there is a | |
1742 | * truncate in progress. | |
1743 | */ | |
1744 | /* | |
1745 | * The buffer was zeroed by block_write_full_page() | |
1746 | */ | |
1747 | clear_buffer_dirty(bh); | |
1748 | set_buffer_uptodate(bh); | |
29a814d2 AT |
1749 | } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && |
1750 | buffer_dirty(bh)) { | |
b0cf2321 | 1751 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1752 | err = get_block(inode, block, bh, 1); |
1753 | if (err) | |
1754 | goto recover; | |
29a814d2 | 1755 | clear_buffer_delay(bh); |
1da177e4 LT |
1756 | if (buffer_new(bh)) { |
1757 | /* blockdev mappings never come here */ | |
1758 | clear_buffer_new(bh); | |
1759 | unmap_underlying_metadata(bh->b_bdev, | |
1760 | bh->b_blocknr); | |
1761 | } | |
1762 | } | |
1763 | bh = bh->b_this_page; | |
1764 | block++; | |
1765 | } while (bh != head); | |
1766 | ||
1767 | do { | |
1da177e4 LT |
1768 | if (!buffer_mapped(bh)) |
1769 | continue; | |
1770 | /* | |
1771 | * If it's a fully non-blocking write attempt and we cannot | |
1772 | * lock the buffer then redirty the page. Note that this can | |
5b0830cb JA |
1773 | * potentially cause a busy-wait loop from writeback threads |
1774 | * and kswapd activity, but those code paths have their own | |
1775 | * higher-level throttling. | |
1da177e4 | 1776 | */ |
1b430bee | 1777 | if (wbc->sync_mode != WB_SYNC_NONE) { |
1da177e4 | 1778 | lock_buffer(bh); |
ca5de404 | 1779 | } else if (!trylock_buffer(bh)) { |
1da177e4 LT |
1780 | redirty_page_for_writepage(wbc, page); |
1781 | continue; | |
1782 | } | |
1783 | if (test_clear_buffer_dirty(bh)) { | |
35c80d5f | 1784 | mark_buffer_async_write_endio(bh, handler); |
1da177e4 LT |
1785 | } else { |
1786 | unlock_buffer(bh); | |
1787 | } | |
1788 | } while ((bh = bh->b_this_page) != head); | |
1789 | ||
1790 | /* | |
1791 | * The page and its buffers are protected by PageWriteback(), so we can | |
1792 | * drop the bh refcounts early. | |
1793 | */ | |
1794 | BUG_ON(PageWriteback(page)); | |
1795 | set_page_writeback(page); | |
1da177e4 LT |
1796 | |
1797 | do { | |
1798 | struct buffer_head *next = bh->b_this_page; | |
1799 | if (buffer_async_write(bh)) { | |
b16b1deb | 1800 | submit_bh_wbc(write_op, bh, 0, wbc); |
1da177e4 LT |
1801 | nr_underway++; |
1802 | } | |
1da177e4 LT |
1803 | bh = next; |
1804 | } while (bh != head); | |
05937baa | 1805 | unlock_page(page); |
1da177e4 LT |
1806 | |
1807 | err = 0; | |
1808 | done: | |
1809 | if (nr_underway == 0) { | |
1810 | /* | |
1811 | * The page was marked dirty, but the buffers were | |
1812 | * clean. Someone wrote them back by hand with | |
1813 | * ll_rw_block/submit_bh. A rare case. | |
1814 | */ | |
1da177e4 | 1815 | end_page_writeback(page); |
3d67f2d7 | 1816 | |
1da177e4 LT |
1817 | /* |
1818 | * The page and buffer_heads can be released at any time from | |
1819 | * here on. | |
1820 | */ | |
1da177e4 LT |
1821 | } |
1822 | return err; | |
1823 | ||
1824 | recover: | |
1825 | /* | |
1826 | * ENOSPC, or some other error. We may already have added some | |
1827 | * blocks to the file, so we need to write these out to avoid | |
1828 | * exposing stale data. | |
1829 | * The page is currently locked and not marked for writeback | |
1830 | */ | |
1831 | bh = head; | |
1832 | /* Recovery: lock and submit the mapped buffers */ | |
1833 | do { | |
29a814d2 AT |
1834 | if (buffer_mapped(bh) && buffer_dirty(bh) && |
1835 | !buffer_delay(bh)) { | |
1da177e4 | 1836 | lock_buffer(bh); |
35c80d5f | 1837 | mark_buffer_async_write_endio(bh, handler); |
1da177e4 LT |
1838 | } else { |
1839 | /* | |
1840 | * The buffer may have been set dirty during | |
1841 | * attachment to a dirty page. | |
1842 | */ | |
1843 | clear_buffer_dirty(bh); | |
1844 | } | |
1845 | } while ((bh = bh->b_this_page) != head); | |
1846 | SetPageError(page); | |
1847 | BUG_ON(PageWriteback(page)); | |
7e4c3690 | 1848 | mapping_set_error(page->mapping, err); |
1da177e4 | 1849 | set_page_writeback(page); |
1da177e4 LT |
1850 | do { |
1851 | struct buffer_head *next = bh->b_this_page; | |
1852 | if (buffer_async_write(bh)) { | |
1853 | clear_buffer_dirty(bh); | |
b16b1deb | 1854 | submit_bh_wbc(write_op, bh, 0, wbc); |
1da177e4 LT |
1855 | nr_underway++; |
1856 | } | |
1da177e4 LT |
1857 | bh = next; |
1858 | } while (bh != head); | |
ffda9d30 | 1859 | unlock_page(page); |
1da177e4 LT |
1860 | goto done; |
1861 | } | |
1862 | ||
afddba49 NP |
1863 | /* |
1864 | * If a page has any new buffers, zero them out here, and mark them uptodate | |
1865 | * and dirty so they'll be written out (in order to prevent uninitialised | |
1866 | * block data from leaking). And clear the new bit. | |
1867 | */ | |
1868 | void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) | |
1869 | { | |
1870 | unsigned int block_start, block_end; | |
1871 | struct buffer_head *head, *bh; | |
1872 | ||
1873 | BUG_ON(!PageLocked(page)); | |
1874 | if (!page_has_buffers(page)) | |
1875 | return; | |
1876 | ||
1877 | bh = head = page_buffers(page); | |
1878 | block_start = 0; | |
1879 | do { | |
1880 | block_end = block_start + bh->b_size; | |
1881 | ||
1882 | if (buffer_new(bh)) { | |
1883 | if (block_end > from && block_start < to) { | |
1884 | if (!PageUptodate(page)) { | |
1885 | unsigned start, size; | |
1886 | ||
1887 | start = max(from, block_start); | |
1888 | size = min(to, block_end) - start; | |
1889 | ||
eebd2aa3 | 1890 | zero_user(page, start, size); |
afddba49 NP |
1891 | set_buffer_uptodate(bh); |
1892 | } | |
1893 | ||
1894 | clear_buffer_new(bh); | |
1895 | mark_buffer_dirty(bh); | |
1896 | } | |
1897 | } | |
1898 | ||
1899 | block_start = block_end; | |
1900 | bh = bh->b_this_page; | |
1901 | } while (bh != head); | |
1902 | } | |
1903 | EXPORT_SYMBOL(page_zero_new_buffers); | |
1904 | ||
ebdec241 | 1905 | int __block_write_begin(struct page *page, loff_t pos, unsigned len, |
6e1db88d | 1906 | get_block_t *get_block) |
1da177e4 | 1907 | { |
ebdec241 CH |
1908 | unsigned from = pos & (PAGE_CACHE_SIZE - 1); |
1909 | unsigned to = from + len; | |
6e1db88d | 1910 | struct inode *inode = page->mapping->host; |
1da177e4 LT |
1911 | unsigned block_start, block_end; |
1912 | sector_t block; | |
1913 | int err = 0; | |
1914 | unsigned blocksize, bbits; | |
1915 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; | |
1916 | ||
1917 | BUG_ON(!PageLocked(page)); | |
1918 | BUG_ON(from > PAGE_CACHE_SIZE); | |
1919 | BUG_ON(to > PAGE_CACHE_SIZE); | |
1920 | BUG_ON(from > to); | |
1921 | ||
45bce8f3 LT |
1922 | head = create_page_buffers(page, inode, 0); |
1923 | blocksize = head->b_size; | |
1924 | bbits = block_size_bits(blocksize); | |
1da177e4 | 1925 | |
1da177e4 LT |
1926 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); |
1927 | ||
1928 | for(bh = head, block_start = 0; bh != head || !block_start; | |
1929 | block++, block_start=block_end, bh = bh->b_this_page) { | |
1930 | block_end = block_start + blocksize; | |
1931 | if (block_end <= from || block_start >= to) { | |
1932 | if (PageUptodate(page)) { | |
1933 | if (!buffer_uptodate(bh)) | |
1934 | set_buffer_uptodate(bh); | |
1935 | } | |
1936 | continue; | |
1937 | } | |
1938 | if (buffer_new(bh)) | |
1939 | clear_buffer_new(bh); | |
1940 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 1941 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1942 | err = get_block(inode, block, bh, 1); |
1943 | if (err) | |
f3ddbdc6 | 1944 | break; |
1da177e4 | 1945 | if (buffer_new(bh)) { |
1da177e4 LT |
1946 | unmap_underlying_metadata(bh->b_bdev, |
1947 | bh->b_blocknr); | |
1948 | if (PageUptodate(page)) { | |
637aff46 | 1949 | clear_buffer_new(bh); |
1da177e4 | 1950 | set_buffer_uptodate(bh); |
637aff46 | 1951 | mark_buffer_dirty(bh); |
1da177e4 LT |
1952 | continue; |
1953 | } | |
eebd2aa3 CL |
1954 | if (block_end > to || block_start < from) |
1955 | zero_user_segments(page, | |
1956 | to, block_end, | |
1957 | block_start, from); | |
1da177e4 LT |
1958 | continue; |
1959 | } | |
1960 | } | |
1961 | if (PageUptodate(page)) { | |
1962 | if (!buffer_uptodate(bh)) | |
1963 | set_buffer_uptodate(bh); | |
1964 | continue; | |
1965 | } | |
1966 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | |
33a266dd | 1967 | !buffer_unwritten(bh) && |
1da177e4 LT |
1968 | (block_start < from || block_end > to)) { |
1969 | ll_rw_block(READ, 1, &bh); | |
1970 | *wait_bh++=bh; | |
1971 | } | |
1972 | } | |
1973 | /* | |
1974 | * If we issued read requests - let them complete. | |
1975 | */ | |
1976 | while(wait_bh > wait) { | |
1977 | wait_on_buffer(*--wait_bh); | |
1978 | if (!buffer_uptodate(*wait_bh)) | |
f3ddbdc6 | 1979 | err = -EIO; |
1da177e4 | 1980 | } |
f9f07b6c | 1981 | if (unlikely(err)) |
afddba49 | 1982 | page_zero_new_buffers(page, from, to); |
1da177e4 LT |
1983 | return err; |
1984 | } | |
ebdec241 | 1985 | EXPORT_SYMBOL(__block_write_begin); |
1da177e4 LT |
1986 | |
1987 | static int __block_commit_write(struct inode *inode, struct page *page, | |
1988 | unsigned from, unsigned to) | |
1989 | { | |
1990 | unsigned block_start, block_end; | |
1991 | int partial = 0; | |
1992 | unsigned blocksize; | |
1993 | struct buffer_head *bh, *head; | |
1994 | ||
45bce8f3 LT |
1995 | bh = head = page_buffers(page); |
1996 | blocksize = bh->b_size; | |
1da177e4 | 1997 | |
45bce8f3 LT |
1998 | block_start = 0; |
1999 | do { | |
1da177e4 LT |
2000 | block_end = block_start + blocksize; |
2001 | if (block_end <= from || block_start >= to) { | |
2002 | if (!buffer_uptodate(bh)) | |
2003 | partial = 1; | |
2004 | } else { | |
2005 | set_buffer_uptodate(bh); | |
2006 | mark_buffer_dirty(bh); | |
2007 | } | |
afddba49 | 2008 | clear_buffer_new(bh); |
45bce8f3 LT |
2009 | |
2010 | block_start = block_end; | |
2011 | bh = bh->b_this_page; | |
2012 | } while (bh != head); | |
1da177e4 LT |
2013 | |
2014 | /* | |
2015 | * If this is a partial write which happened to make all buffers | |
2016 | * uptodate then we can optimize away a bogus readpage() for | |
2017 | * the next read(). Here we 'discover' whether the page went | |
2018 | * uptodate as a result of this (potentially partial) write. | |
2019 | */ | |
2020 | if (!partial) | |
2021 | SetPageUptodate(page); | |
2022 | return 0; | |
2023 | } | |
2024 | ||
afddba49 | 2025 | /* |
155130a4 CH |
2026 | * block_write_begin takes care of the basic task of block allocation and |
2027 | * bringing partial write blocks uptodate first. | |
2028 | * | |
7bb46a67 | 2029 | * The filesystem needs to handle block truncation upon failure. |
afddba49 | 2030 | */ |
155130a4 CH |
2031 | int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, |
2032 | unsigned flags, struct page **pagep, get_block_t *get_block) | |
afddba49 | 2033 | { |
6e1db88d | 2034 | pgoff_t index = pos >> PAGE_CACHE_SHIFT; |
afddba49 | 2035 | struct page *page; |
6e1db88d | 2036 | int status; |
afddba49 | 2037 | |
6e1db88d CH |
2038 | page = grab_cache_page_write_begin(mapping, index, flags); |
2039 | if (!page) | |
2040 | return -ENOMEM; | |
afddba49 | 2041 | |
6e1db88d | 2042 | status = __block_write_begin(page, pos, len, get_block); |
afddba49 | 2043 | if (unlikely(status)) { |
6e1db88d CH |
2044 | unlock_page(page); |
2045 | page_cache_release(page); | |
2046 | page = NULL; | |
afddba49 NP |
2047 | } |
2048 | ||
6e1db88d | 2049 | *pagep = page; |
afddba49 NP |
2050 | return status; |
2051 | } | |
2052 | EXPORT_SYMBOL(block_write_begin); | |
2053 | ||
2054 | int block_write_end(struct file *file, struct address_space *mapping, | |
2055 | loff_t pos, unsigned len, unsigned copied, | |
2056 | struct page *page, void *fsdata) | |
2057 | { | |
2058 | struct inode *inode = mapping->host; | |
2059 | unsigned start; | |
2060 | ||
2061 | start = pos & (PAGE_CACHE_SIZE - 1); | |
2062 | ||
2063 | if (unlikely(copied < len)) { | |
2064 | /* | |
2065 | * The buffers that were written will now be uptodate, so we | |
2066 | * don't have to worry about a readpage reading them and | |
2067 | * overwriting a partial write. However if we have encountered | |
2068 | * a short write and only partially written into a buffer, it | |
2069 | * will not be marked uptodate, so a readpage might come in and | |
2070 | * destroy our partial write. | |
2071 | * | |
2072 | * Do the simplest thing, and just treat any short write to a | |
2073 | * non uptodate page as a zero-length write, and force the | |
2074 | * caller to redo the whole thing. | |
2075 | */ | |
2076 | if (!PageUptodate(page)) | |
2077 | copied = 0; | |
2078 | ||
2079 | page_zero_new_buffers(page, start+copied, start+len); | |
2080 | } | |
2081 | flush_dcache_page(page); | |
2082 | ||
2083 | /* This could be a short (even 0-length) commit */ | |
2084 | __block_commit_write(inode, page, start, start+copied); | |
2085 | ||
2086 | return copied; | |
2087 | } | |
2088 | EXPORT_SYMBOL(block_write_end); | |
2089 | ||
2090 | int generic_write_end(struct file *file, struct address_space *mapping, | |
2091 | loff_t pos, unsigned len, unsigned copied, | |
2092 | struct page *page, void *fsdata) | |
2093 | { | |
2094 | struct inode *inode = mapping->host; | |
90a80202 | 2095 | loff_t old_size = inode->i_size; |
c7d206b3 | 2096 | int i_size_changed = 0; |
afddba49 NP |
2097 | |
2098 | copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); | |
2099 | ||
2100 | /* | |
2101 | * No need to use i_size_read() here, the i_size | |
2102 | * cannot change under us because we hold i_mutex. | |
2103 | * | |
2104 | * But it's important to update i_size while still holding page lock: | |
2105 | * page writeout could otherwise come in and zero beyond i_size. | |
2106 | */ | |
2107 | if (pos+copied > inode->i_size) { | |
2108 | i_size_write(inode, pos+copied); | |
c7d206b3 | 2109 | i_size_changed = 1; |
afddba49 NP |
2110 | } |
2111 | ||
2112 | unlock_page(page); | |
2113 | page_cache_release(page); | |
2114 | ||
90a80202 JK |
2115 | if (old_size < pos) |
2116 | pagecache_isize_extended(inode, old_size, pos); | |
c7d206b3 JK |
2117 | /* |
2118 | * Don't mark the inode dirty under page lock. First, it unnecessarily | |
2119 | * makes the holding time of page lock longer. Second, it forces lock | |
2120 | * ordering of page lock and transaction start for journaling | |
2121 | * filesystems. | |
2122 | */ | |
2123 | if (i_size_changed) | |
2124 | mark_inode_dirty(inode); | |
2125 | ||
afddba49 NP |
2126 | return copied; |
2127 | } | |
2128 | EXPORT_SYMBOL(generic_write_end); | |
2129 | ||
8ab22b9a HH |
2130 | /* |
2131 | * block_is_partially_uptodate checks whether buffers within a page are | |
2132 | * uptodate or not. | |
2133 | * | |
2134 | * Returns true if all buffers which correspond to a file portion | |
2135 | * we want to read are uptodate. | |
2136 | */ | |
c186afb4 AV |
2137 | int block_is_partially_uptodate(struct page *page, unsigned long from, |
2138 | unsigned long count) | |
8ab22b9a | 2139 | { |
8ab22b9a HH |
2140 | unsigned block_start, block_end, blocksize; |
2141 | unsigned to; | |
2142 | struct buffer_head *bh, *head; | |
2143 | int ret = 1; | |
2144 | ||
2145 | if (!page_has_buffers(page)) | |
2146 | return 0; | |
2147 | ||
45bce8f3 LT |
2148 | head = page_buffers(page); |
2149 | blocksize = head->b_size; | |
c186afb4 | 2150 | to = min_t(unsigned, PAGE_CACHE_SIZE - from, count); |
8ab22b9a HH |
2151 | to = from + to; |
2152 | if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) | |
2153 | return 0; | |
2154 | ||
8ab22b9a HH |
2155 | bh = head; |
2156 | block_start = 0; | |
2157 | do { | |
2158 | block_end = block_start + blocksize; | |
2159 | if (block_end > from && block_start < to) { | |
2160 | if (!buffer_uptodate(bh)) { | |
2161 | ret = 0; | |
2162 | break; | |
2163 | } | |
2164 | if (block_end >= to) | |
2165 | break; | |
2166 | } | |
2167 | block_start = block_end; | |
2168 | bh = bh->b_this_page; | |
2169 | } while (bh != head); | |
2170 | ||
2171 | return ret; | |
2172 | } | |
2173 | EXPORT_SYMBOL(block_is_partially_uptodate); | |
2174 | ||
1da177e4 LT |
2175 | /* |
2176 | * Generic "read page" function for block devices that have the normal | |
2177 | * get_block functionality. This is most of the block device filesystems. | |
2178 | * Reads the page asynchronously --- the unlock_buffer() and | |
2179 | * set/clear_buffer_uptodate() functions propagate buffer state into the | |
2180 | * page struct once IO has completed. | |
2181 | */ | |
2182 | int block_read_full_page(struct page *page, get_block_t *get_block) | |
2183 | { | |
2184 | struct inode *inode = page->mapping->host; | |
2185 | sector_t iblock, lblock; | |
2186 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; | |
45bce8f3 | 2187 | unsigned int blocksize, bbits; |
1da177e4 LT |
2188 | int nr, i; |
2189 | int fully_mapped = 1; | |
2190 | ||
45bce8f3 LT |
2191 | head = create_page_buffers(page, inode, 0); |
2192 | blocksize = head->b_size; | |
2193 | bbits = block_size_bits(blocksize); | |
1da177e4 | 2194 | |
45bce8f3 LT |
2195 | iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); |
2196 | lblock = (i_size_read(inode)+blocksize-1) >> bbits; | |
1da177e4 LT |
2197 | bh = head; |
2198 | nr = 0; | |
2199 | i = 0; | |
2200 | ||
2201 | do { | |
2202 | if (buffer_uptodate(bh)) | |
2203 | continue; | |
2204 | ||
2205 | if (!buffer_mapped(bh)) { | |
c64610ba AM |
2206 | int err = 0; |
2207 | ||
1da177e4 LT |
2208 | fully_mapped = 0; |
2209 | if (iblock < lblock) { | |
b0cf2321 | 2210 | WARN_ON(bh->b_size != blocksize); |
c64610ba AM |
2211 | err = get_block(inode, iblock, bh, 0); |
2212 | if (err) | |
1da177e4 LT |
2213 | SetPageError(page); |
2214 | } | |
2215 | if (!buffer_mapped(bh)) { | |
eebd2aa3 | 2216 | zero_user(page, i * blocksize, blocksize); |
c64610ba AM |
2217 | if (!err) |
2218 | set_buffer_uptodate(bh); | |
1da177e4 LT |
2219 | continue; |
2220 | } | |
2221 | /* | |
2222 | * get_block() might have updated the buffer | |
2223 | * synchronously | |
2224 | */ | |
2225 | if (buffer_uptodate(bh)) | |
2226 | continue; | |
2227 | } | |
2228 | arr[nr++] = bh; | |
2229 | } while (i++, iblock++, (bh = bh->b_this_page) != head); | |
2230 | ||
2231 | if (fully_mapped) | |
2232 | SetPageMappedToDisk(page); | |
2233 | ||
2234 | if (!nr) { | |
2235 | /* | |
2236 | * All buffers are uptodate - we can set the page uptodate | |
2237 | * as well. But not if get_block() returned an error. | |
2238 | */ | |
2239 | if (!PageError(page)) | |
2240 | SetPageUptodate(page); | |
2241 | unlock_page(page); | |
2242 | return 0; | |
2243 | } | |
2244 | ||
2245 | /* Stage two: lock the buffers */ | |
2246 | for (i = 0; i < nr; i++) { | |
2247 | bh = arr[i]; | |
2248 | lock_buffer(bh); | |
2249 | mark_buffer_async_read(bh); | |
2250 | } | |
2251 | ||
2252 | /* | |
2253 | * Stage 3: start the IO. Check for uptodateness | |
2254 | * inside the buffer lock in case another process reading | |
2255 | * the underlying blockdev brought it uptodate (the sct fix). | |
2256 | */ | |
2257 | for (i = 0; i < nr; i++) { | |
2258 | bh = arr[i]; | |
2259 | if (buffer_uptodate(bh)) | |
2260 | end_buffer_async_read(bh, 1); | |
2261 | else | |
2262 | submit_bh(READ, bh); | |
2263 | } | |
2264 | return 0; | |
2265 | } | |
1fe72eaa | 2266 | EXPORT_SYMBOL(block_read_full_page); |
1da177e4 LT |
2267 | |
2268 | /* utility function for filesystems that need to do work on expanding | |
89e10787 | 2269 | * truncates. Uses filesystem pagecache writes to allow the filesystem to |
1da177e4 LT |
2270 | * deal with the hole. |
2271 | */ | |
89e10787 | 2272 | int generic_cont_expand_simple(struct inode *inode, loff_t size) |
1da177e4 LT |
2273 | { |
2274 | struct address_space *mapping = inode->i_mapping; | |
2275 | struct page *page; | |
89e10787 | 2276 | void *fsdata; |
1da177e4 LT |
2277 | int err; |
2278 | ||
c08d3b0e NP |
2279 | err = inode_newsize_ok(inode, size); |
2280 | if (err) | |
1da177e4 LT |
2281 | goto out; |
2282 | ||
89e10787 NP |
2283 | err = pagecache_write_begin(NULL, mapping, size, 0, |
2284 | AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, | |
2285 | &page, &fsdata); | |
2286 | if (err) | |
05eb0b51 | 2287 | goto out; |
05eb0b51 | 2288 | |
89e10787 NP |
2289 | err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); |
2290 | BUG_ON(err > 0); | |
05eb0b51 | 2291 | |
1da177e4 LT |
2292 | out: |
2293 | return err; | |
2294 | } | |
1fe72eaa | 2295 | EXPORT_SYMBOL(generic_cont_expand_simple); |
1da177e4 | 2296 | |
f1e3af72 AB |
2297 | static int cont_expand_zero(struct file *file, struct address_space *mapping, |
2298 | loff_t pos, loff_t *bytes) | |
1da177e4 | 2299 | { |
1da177e4 | 2300 | struct inode *inode = mapping->host; |
1da177e4 | 2301 | unsigned blocksize = 1 << inode->i_blkbits; |
89e10787 NP |
2302 | struct page *page; |
2303 | void *fsdata; | |
2304 | pgoff_t index, curidx; | |
2305 | loff_t curpos; | |
2306 | unsigned zerofrom, offset, len; | |
2307 | int err = 0; | |
1da177e4 | 2308 | |
89e10787 NP |
2309 | index = pos >> PAGE_CACHE_SHIFT; |
2310 | offset = pos & ~PAGE_CACHE_MASK; | |
2311 | ||
2312 | while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { | |
2313 | zerofrom = curpos & ~PAGE_CACHE_MASK; | |
1da177e4 LT |
2314 | if (zerofrom & (blocksize-1)) { |
2315 | *bytes |= (blocksize-1); | |
2316 | (*bytes)++; | |
2317 | } | |
89e10787 | 2318 | len = PAGE_CACHE_SIZE - zerofrom; |
1da177e4 | 2319 | |
89e10787 NP |
2320 | err = pagecache_write_begin(file, mapping, curpos, len, |
2321 | AOP_FLAG_UNINTERRUPTIBLE, | |
2322 | &page, &fsdata); | |
2323 | if (err) | |
2324 | goto out; | |
eebd2aa3 | 2325 | zero_user(page, zerofrom, len); |
89e10787 NP |
2326 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2327 | page, fsdata); | |
2328 | if (err < 0) | |
2329 | goto out; | |
2330 | BUG_ON(err != len); | |
2331 | err = 0; | |
061e9746 OH |
2332 | |
2333 | balance_dirty_pages_ratelimited(mapping); | |
c2ca0fcd MP |
2334 | |
2335 | if (unlikely(fatal_signal_pending(current))) { | |
2336 | err = -EINTR; | |
2337 | goto out; | |
2338 | } | |
89e10787 | 2339 | } |
1da177e4 | 2340 | |
89e10787 NP |
2341 | /* page covers the boundary, find the boundary offset */ |
2342 | if (index == curidx) { | |
2343 | zerofrom = curpos & ~PAGE_CACHE_MASK; | |
1da177e4 | 2344 | /* if we will expand the thing last block will be filled */ |
89e10787 NP |
2345 | if (offset <= zerofrom) { |
2346 | goto out; | |
2347 | } | |
2348 | if (zerofrom & (blocksize-1)) { | |
1da177e4 LT |
2349 | *bytes |= (blocksize-1); |
2350 | (*bytes)++; | |
2351 | } | |
89e10787 | 2352 | len = offset - zerofrom; |
1da177e4 | 2353 | |
89e10787 NP |
2354 | err = pagecache_write_begin(file, mapping, curpos, len, |
2355 | AOP_FLAG_UNINTERRUPTIBLE, | |
2356 | &page, &fsdata); | |
2357 | if (err) | |
2358 | goto out; | |
eebd2aa3 | 2359 | zero_user(page, zerofrom, len); |
89e10787 NP |
2360 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2361 | page, fsdata); | |
2362 | if (err < 0) | |
2363 | goto out; | |
2364 | BUG_ON(err != len); | |
2365 | err = 0; | |
1da177e4 | 2366 | } |
89e10787 NP |
2367 | out: |
2368 | return err; | |
2369 | } | |
2370 | ||
2371 | /* | |
2372 | * For moronic filesystems that do not allow holes in file. | |
2373 | * We may have to extend the file. | |
2374 | */ | |
282dc178 | 2375 | int cont_write_begin(struct file *file, struct address_space *mapping, |
89e10787 NP |
2376 | loff_t pos, unsigned len, unsigned flags, |
2377 | struct page **pagep, void **fsdata, | |
2378 | get_block_t *get_block, loff_t *bytes) | |
2379 | { | |
2380 | struct inode *inode = mapping->host; | |
2381 | unsigned blocksize = 1 << inode->i_blkbits; | |
2382 | unsigned zerofrom; | |
2383 | int err; | |
2384 | ||
2385 | err = cont_expand_zero(file, mapping, pos, bytes); | |
2386 | if (err) | |
155130a4 | 2387 | return err; |
89e10787 NP |
2388 | |
2389 | zerofrom = *bytes & ~PAGE_CACHE_MASK; | |
2390 | if (pos+len > *bytes && zerofrom & (blocksize-1)) { | |
2391 | *bytes |= (blocksize-1); | |
2392 | (*bytes)++; | |
1da177e4 | 2393 | } |
1da177e4 | 2394 | |
155130a4 | 2395 | return block_write_begin(mapping, pos, len, flags, pagep, get_block); |
1da177e4 | 2396 | } |
1fe72eaa | 2397 | EXPORT_SYMBOL(cont_write_begin); |
1da177e4 | 2398 | |
1da177e4 LT |
2399 | int block_commit_write(struct page *page, unsigned from, unsigned to) |
2400 | { | |
2401 | struct inode *inode = page->mapping->host; | |
2402 | __block_commit_write(inode,page,from,to); | |
2403 | return 0; | |
2404 | } | |
1fe72eaa | 2405 | EXPORT_SYMBOL(block_commit_write); |
1da177e4 | 2406 | |
54171690 DC |
2407 | /* |
2408 | * block_page_mkwrite() is not allowed to change the file size as it gets | |
2409 | * called from a page fault handler when a page is first dirtied. Hence we must | |
2410 | * be careful to check for EOF conditions here. We set the page up correctly | |
2411 | * for a written page which means we get ENOSPC checking when writing into | |
2412 | * holes and correct delalloc and unwritten extent mapping on filesystems that | |
2413 | * support these features. | |
2414 | * | |
2415 | * We are not allowed to take the i_mutex here so we have to play games to | |
2416 | * protect against truncate races as the page could now be beyond EOF. Because | |
7bb46a67 | 2417 | * truncate writes the inode size before removing pages, once we have the |
54171690 DC |
2418 | * page lock we can determine safely if the page is beyond EOF. If it is not |
2419 | * beyond EOF, then the page is guaranteed safe against truncation until we | |
2420 | * unlock the page. | |
ea13a864 | 2421 | * |
14da9200 JK |
2422 | * Direct callers of this function should protect against filesystem freezing |
2423 | * using sb_start_write() - sb_end_write() functions. | |
54171690 | 2424 | */ |
24da4fab JK |
2425 | int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, |
2426 | get_block_t get_block) | |
54171690 | 2427 | { |
c2ec175c | 2428 | struct page *page = vmf->page; |
496ad9aa | 2429 | struct inode *inode = file_inode(vma->vm_file); |
54171690 DC |
2430 | unsigned long end; |
2431 | loff_t size; | |
24da4fab | 2432 | int ret; |
54171690 DC |
2433 | |
2434 | lock_page(page); | |
2435 | size = i_size_read(inode); | |
2436 | if ((page->mapping != inode->i_mapping) || | |
18336338 | 2437 | (page_offset(page) > size)) { |
24da4fab JK |
2438 | /* We overload EFAULT to mean page got truncated */ |
2439 | ret = -EFAULT; | |
2440 | goto out_unlock; | |
54171690 DC |
2441 | } |
2442 | ||
2443 | /* page is wholly or partially inside EOF */ | |
2444 | if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) | |
2445 | end = size & ~PAGE_CACHE_MASK; | |
2446 | else | |
2447 | end = PAGE_CACHE_SIZE; | |
2448 | ||
ebdec241 | 2449 | ret = __block_write_begin(page, 0, end, get_block); |
54171690 DC |
2450 | if (!ret) |
2451 | ret = block_commit_write(page, 0, end); | |
2452 | ||
24da4fab JK |
2453 | if (unlikely(ret < 0)) |
2454 | goto out_unlock; | |
ea13a864 | 2455 | set_page_dirty(page); |
1d1d1a76 | 2456 | wait_for_stable_page(page); |
24da4fab JK |
2457 | return 0; |
2458 | out_unlock: | |
2459 | unlock_page(page); | |
54171690 | 2460 | return ret; |
24da4fab JK |
2461 | } |
2462 | EXPORT_SYMBOL(__block_page_mkwrite); | |
2463 | ||
2464 | int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, | |
2465 | get_block_t get_block) | |
2466 | { | |
ea13a864 | 2467 | int ret; |
496ad9aa | 2468 | struct super_block *sb = file_inode(vma->vm_file)->i_sb; |
24da4fab | 2469 | |
14da9200 | 2470 | sb_start_pagefault(sb); |
041bbb6d TT |
2471 | |
2472 | /* | |
2473 | * Update file times before taking page lock. We may end up failing the | |
2474 | * fault so this update may be superfluous but who really cares... | |
2475 | */ | |
2476 | file_update_time(vma->vm_file); | |
2477 | ||
ea13a864 | 2478 | ret = __block_page_mkwrite(vma, vmf, get_block); |
14da9200 | 2479 | sb_end_pagefault(sb); |
24da4fab | 2480 | return block_page_mkwrite_return(ret); |
54171690 | 2481 | } |
1fe72eaa | 2482 | EXPORT_SYMBOL(block_page_mkwrite); |
1da177e4 LT |
2483 | |
2484 | /* | |
03158cd7 | 2485 | * nobh_write_begin()'s prereads are special: the buffer_heads are freed |
1da177e4 LT |
2486 | * immediately, while under the page lock. So it needs a special end_io |
2487 | * handler which does not touch the bh after unlocking it. | |
1da177e4 LT |
2488 | */ |
2489 | static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) | |
2490 | { | |
68671f35 | 2491 | __end_buffer_read_notouch(bh, uptodate); |
1da177e4 LT |
2492 | } |
2493 | ||
03158cd7 NP |
2494 | /* |
2495 | * Attach the singly-linked list of buffers created by nobh_write_begin, to | |
2496 | * the page (converting it to circular linked list and taking care of page | |
2497 | * dirty races). | |
2498 | */ | |
2499 | static void attach_nobh_buffers(struct page *page, struct buffer_head *head) | |
2500 | { | |
2501 | struct buffer_head *bh; | |
2502 | ||
2503 | BUG_ON(!PageLocked(page)); | |
2504 | ||
2505 | spin_lock(&page->mapping->private_lock); | |
2506 | bh = head; | |
2507 | do { | |
2508 | if (PageDirty(page)) | |
2509 | set_buffer_dirty(bh); | |
2510 | if (!bh->b_this_page) | |
2511 | bh->b_this_page = head; | |
2512 | bh = bh->b_this_page; | |
2513 | } while (bh != head); | |
2514 | attach_page_buffers(page, head); | |
2515 | spin_unlock(&page->mapping->private_lock); | |
2516 | } | |
2517 | ||
1da177e4 | 2518 | /* |
ea0f04e5 CH |
2519 | * On entry, the page is fully not uptodate. |
2520 | * On exit the page is fully uptodate in the areas outside (from,to) | |
7bb46a67 | 2521 | * The filesystem needs to handle block truncation upon failure. |
1da177e4 | 2522 | */ |
ea0f04e5 | 2523 | int nobh_write_begin(struct address_space *mapping, |
03158cd7 NP |
2524 | loff_t pos, unsigned len, unsigned flags, |
2525 | struct page **pagep, void **fsdata, | |
1da177e4 LT |
2526 | get_block_t *get_block) |
2527 | { | |
03158cd7 | 2528 | struct inode *inode = mapping->host; |
1da177e4 LT |
2529 | const unsigned blkbits = inode->i_blkbits; |
2530 | const unsigned blocksize = 1 << blkbits; | |
a4b0672d | 2531 | struct buffer_head *head, *bh; |
03158cd7 NP |
2532 | struct page *page; |
2533 | pgoff_t index; | |
2534 | unsigned from, to; | |
1da177e4 | 2535 | unsigned block_in_page; |
a4b0672d | 2536 | unsigned block_start, block_end; |
1da177e4 | 2537 | sector_t block_in_file; |
1da177e4 | 2538 | int nr_reads = 0; |
1da177e4 LT |
2539 | int ret = 0; |
2540 | int is_mapped_to_disk = 1; | |
1da177e4 | 2541 | |
03158cd7 NP |
2542 | index = pos >> PAGE_CACHE_SHIFT; |
2543 | from = pos & (PAGE_CACHE_SIZE - 1); | |
2544 | to = from + len; | |
2545 | ||
54566b2c | 2546 | page = grab_cache_page_write_begin(mapping, index, flags); |
03158cd7 NP |
2547 | if (!page) |
2548 | return -ENOMEM; | |
2549 | *pagep = page; | |
2550 | *fsdata = NULL; | |
2551 | ||
2552 | if (page_has_buffers(page)) { | |
309f77ad NK |
2553 | ret = __block_write_begin(page, pos, len, get_block); |
2554 | if (unlikely(ret)) | |
2555 | goto out_release; | |
2556 | return ret; | |
03158cd7 | 2557 | } |
a4b0672d | 2558 | |
1da177e4 LT |
2559 | if (PageMappedToDisk(page)) |
2560 | return 0; | |
2561 | ||
a4b0672d NP |
2562 | /* |
2563 | * Allocate buffers so that we can keep track of state, and potentially | |
2564 | * attach them to the page if an error occurs. In the common case of | |
2565 | * no error, they will just be freed again without ever being attached | |
2566 | * to the page (which is all OK, because we're under the page lock). | |
2567 | * | |
2568 | * Be careful: the buffer linked list is a NULL terminated one, rather | |
2569 | * than the circular one we're used to. | |
2570 | */ | |
2571 | head = alloc_page_buffers(page, blocksize, 0); | |
03158cd7 NP |
2572 | if (!head) { |
2573 | ret = -ENOMEM; | |
2574 | goto out_release; | |
2575 | } | |
a4b0672d | 2576 | |
1da177e4 | 2577 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); |
1da177e4 LT |
2578 | |
2579 | /* | |
2580 | * We loop across all blocks in the page, whether or not they are | |
2581 | * part of the affected region. This is so we can discover if the | |
2582 | * page is fully mapped-to-disk. | |
2583 | */ | |
a4b0672d | 2584 | for (block_start = 0, block_in_page = 0, bh = head; |
1da177e4 | 2585 | block_start < PAGE_CACHE_SIZE; |
a4b0672d | 2586 | block_in_page++, block_start += blocksize, bh = bh->b_this_page) { |
1da177e4 LT |
2587 | int create; |
2588 | ||
a4b0672d NP |
2589 | block_end = block_start + blocksize; |
2590 | bh->b_state = 0; | |
1da177e4 LT |
2591 | create = 1; |
2592 | if (block_start >= to) | |
2593 | create = 0; | |
2594 | ret = get_block(inode, block_in_file + block_in_page, | |
a4b0672d | 2595 | bh, create); |
1da177e4 LT |
2596 | if (ret) |
2597 | goto failed; | |
a4b0672d | 2598 | if (!buffer_mapped(bh)) |
1da177e4 | 2599 | is_mapped_to_disk = 0; |
a4b0672d NP |
2600 | if (buffer_new(bh)) |
2601 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | |
2602 | if (PageUptodate(page)) { | |
2603 | set_buffer_uptodate(bh); | |
1da177e4 | 2604 | continue; |
a4b0672d NP |
2605 | } |
2606 | if (buffer_new(bh) || !buffer_mapped(bh)) { | |
eebd2aa3 CL |
2607 | zero_user_segments(page, block_start, from, |
2608 | to, block_end); | |
1da177e4 LT |
2609 | continue; |
2610 | } | |
a4b0672d | 2611 | if (buffer_uptodate(bh)) |
1da177e4 LT |
2612 | continue; /* reiserfs does this */ |
2613 | if (block_start < from || block_end > to) { | |
a4b0672d NP |
2614 | lock_buffer(bh); |
2615 | bh->b_end_io = end_buffer_read_nobh; | |
2616 | submit_bh(READ, bh); | |
2617 | nr_reads++; | |
1da177e4 LT |
2618 | } |
2619 | } | |
2620 | ||
2621 | if (nr_reads) { | |
1da177e4 LT |
2622 | /* |
2623 | * The page is locked, so these buffers are protected from | |
2624 | * any VM or truncate activity. Hence we don't need to care | |
2625 | * for the buffer_head refcounts. | |
2626 | */ | |
a4b0672d | 2627 | for (bh = head; bh; bh = bh->b_this_page) { |
1da177e4 LT |
2628 | wait_on_buffer(bh); |
2629 | if (!buffer_uptodate(bh)) | |
2630 | ret = -EIO; | |
1da177e4 LT |
2631 | } |
2632 | if (ret) | |
2633 | goto failed; | |
2634 | } | |
2635 | ||
2636 | if (is_mapped_to_disk) | |
2637 | SetPageMappedToDisk(page); | |
1da177e4 | 2638 | |
03158cd7 | 2639 | *fsdata = head; /* to be released by nobh_write_end */ |
a4b0672d | 2640 | |
1da177e4 LT |
2641 | return 0; |
2642 | ||
2643 | failed: | |
03158cd7 | 2644 | BUG_ON(!ret); |
1da177e4 | 2645 | /* |
a4b0672d NP |
2646 | * Error recovery is a bit difficult. We need to zero out blocks that |
2647 | * were newly allocated, and dirty them to ensure they get written out. | |
2648 | * Buffers need to be attached to the page at this point, otherwise | |
2649 | * the handling of potential IO errors during writeout would be hard | |
2650 | * (could try doing synchronous writeout, but what if that fails too?) | |
1da177e4 | 2651 | */ |
03158cd7 NP |
2652 | attach_nobh_buffers(page, head); |
2653 | page_zero_new_buffers(page, from, to); | |
a4b0672d | 2654 | |
03158cd7 NP |
2655 | out_release: |
2656 | unlock_page(page); | |
2657 | page_cache_release(page); | |
2658 | *pagep = NULL; | |
a4b0672d | 2659 | |
7bb46a67 NP |
2660 | return ret; |
2661 | } | |
03158cd7 | 2662 | EXPORT_SYMBOL(nobh_write_begin); |
1da177e4 | 2663 | |
03158cd7 NP |
2664 | int nobh_write_end(struct file *file, struct address_space *mapping, |
2665 | loff_t pos, unsigned len, unsigned copied, | |
2666 | struct page *page, void *fsdata) | |
1da177e4 LT |
2667 | { |
2668 | struct inode *inode = page->mapping->host; | |
efdc3131 | 2669 | struct buffer_head *head = fsdata; |
03158cd7 | 2670 | struct buffer_head *bh; |
5b41e74a | 2671 | BUG_ON(fsdata != NULL && page_has_buffers(page)); |
1da177e4 | 2672 | |
d4cf109f | 2673 | if (unlikely(copied < len) && head) |
5b41e74a DM |
2674 | attach_nobh_buffers(page, head); |
2675 | if (page_has_buffers(page)) | |
2676 | return generic_write_end(file, mapping, pos, len, | |
2677 | copied, page, fsdata); | |
a4b0672d | 2678 | |
22c8ca78 | 2679 | SetPageUptodate(page); |
1da177e4 | 2680 | set_page_dirty(page); |
03158cd7 NP |
2681 | if (pos+copied > inode->i_size) { |
2682 | i_size_write(inode, pos+copied); | |
1da177e4 LT |
2683 | mark_inode_dirty(inode); |
2684 | } | |
03158cd7 NP |
2685 | |
2686 | unlock_page(page); | |
2687 | page_cache_release(page); | |
2688 | ||
03158cd7 NP |
2689 | while (head) { |
2690 | bh = head; | |
2691 | head = head->b_this_page; | |
2692 | free_buffer_head(bh); | |
2693 | } | |
2694 | ||
2695 | return copied; | |
1da177e4 | 2696 | } |
03158cd7 | 2697 | EXPORT_SYMBOL(nobh_write_end); |
1da177e4 LT |
2698 | |
2699 | /* | |
2700 | * nobh_writepage() - based on block_full_write_page() except | |
2701 | * that it tries to operate without attaching bufferheads to | |
2702 | * the page. | |
2703 | */ | |
2704 | int nobh_writepage(struct page *page, get_block_t *get_block, | |
2705 | struct writeback_control *wbc) | |
2706 | { | |
2707 | struct inode * const inode = page->mapping->host; | |
2708 | loff_t i_size = i_size_read(inode); | |
2709 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2710 | unsigned offset; | |
1da177e4 LT |
2711 | int ret; |
2712 | ||
2713 | /* Is the page fully inside i_size? */ | |
2714 | if (page->index < end_index) | |
2715 | goto out; | |
2716 | ||
2717 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2718 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2719 | if (page->index >= end_index+1 || !offset) { | |
2720 | /* | |
2721 | * The page may have dirty, unmapped buffers. For example, | |
2722 | * they may have been added in ext3_writepage(). Make them | |
2723 | * freeable here, so the page does not leak. | |
2724 | */ | |
2725 | #if 0 | |
2726 | /* Not really sure about this - do we need this ? */ | |
2727 | if (page->mapping->a_ops->invalidatepage) | |
2728 | page->mapping->a_ops->invalidatepage(page, offset); | |
2729 | #endif | |
2730 | unlock_page(page); | |
2731 | return 0; /* don't care */ | |
2732 | } | |
2733 | ||
2734 | /* | |
2735 | * The page straddles i_size. It must be zeroed out on each and every | |
2736 | * writepage invocation because it may be mmapped. "A file is mapped | |
2737 | * in multiples of the page size. For a file that is not a multiple of | |
2738 | * the page size, the remaining memory is zeroed when mapped, and | |
2739 | * writes to that region are not written out to the file." | |
2740 | */ | |
eebd2aa3 | 2741 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
1da177e4 LT |
2742 | out: |
2743 | ret = mpage_writepage(page, get_block, wbc); | |
2744 | if (ret == -EAGAIN) | |
35c80d5f CM |
2745 | ret = __block_write_full_page(inode, page, get_block, wbc, |
2746 | end_buffer_async_write); | |
1da177e4 LT |
2747 | return ret; |
2748 | } | |
2749 | EXPORT_SYMBOL(nobh_writepage); | |
2750 | ||
03158cd7 NP |
2751 | int nobh_truncate_page(struct address_space *mapping, |
2752 | loff_t from, get_block_t *get_block) | |
1da177e4 | 2753 | { |
1da177e4 LT |
2754 | pgoff_t index = from >> PAGE_CACHE_SHIFT; |
2755 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
03158cd7 NP |
2756 | unsigned blocksize; |
2757 | sector_t iblock; | |
2758 | unsigned length, pos; | |
2759 | struct inode *inode = mapping->host; | |
1da177e4 | 2760 | struct page *page; |
03158cd7 NP |
2761 | struct buffer_head map_bh; |
2762 | int err; | |
1da177e4 | 2763 | |
03158cd7 NP |
2764 | blocksize = 1 << inode->i_blkbits; |
2765 | length = offset & (blocksize - 1); | |
2766 | ||
2767 | /* Block boundary? Nothing to do */ | |
2768 | if (!length) | |
2769 | return 0; | |
2770 | ||
2771 | length = blocksize - length; | |
2772 | iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | |
1da177e4 | 2773 | |
1da177e4 | 2774 | page = grab_cache_page(mapping, index); |
03158cd7 | 2775 | err = -ENOMEM; |
1da177e4 LT |
2776 | if (!page) |
2777 | goto out; | |
2778 | ||
03158cd7 NP |
2779 | if (page_has_buffers(page)) { |
2780 | has_buffers: | |
2781 | unlock_page(page); | |
2782 | page_cache_release(page); | |
2783 | return block_truncate_page(mapping, from, get_block); | |
2784 | } | |
2785 | ||
2786 | /* Find the buffer that contains "offset" */ | |
2787 | pos = blocksize; | |
2788 | while (offset >= pos) { | |
2789 | iblock++; | |
2790 | pos += blocksize; | |
2791 | } | |
2792 | ||
460bcf57 TT |
2793 | map_bh.b_size = blocksize; |
2794 | map_bh.b_state = 0; | |
03158cd7 NP |
2795 | err = get_block(inode, iblock, &map_bh, 0); |
2796 | if (err) | |
2797 | goto unlock; | |
2798 | /* unmapped? It's a hole - nothing to do */ | |
2799 | if (!buffer_mapped(&map_bh)) | |
2800 | goto unlock; | |
2801 | ||
2802 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2803 | if (!PageUptodate(page)) { | |
2804 | err = mapping->a_ops->readpage(NULL, page); | |
2805 | if (err) { | |
2806 | page_cache_release(page); | |
2807 | goto out; | |
2808 | } | |
2809 | lock_page(page); | |
2810 | if (!PageUptodate(page)) { | |
2811 | err = -EIO; | |
2812 | goto unlock; | |
2813 | } | |
2814 | if (page_has_buffers(page)) | |
2815 | goto has_buffers; | |
1da177e4 | 2816 | } |
eebd2aa3 | 2817 | zero_user(page, offset, length); |
03158cd7 NP |
2818 | set_page_dirty(page); |
2819 | err = 0; | |
2820 | ||
2821 | unlock: | |
1da177e4 LT |
2822 | unlock_page(page); |
2823 | page_cache_release(page); | |
2824 | out: | |
03158cd7 | 2825 | return err; |
1da177e4 LT |
2826 | } |
2827 | EXPORT_SYMBOL(nobh_truncate_page); | |
2828 | ||
2829 | int block_truncate_page(struct address_space *mapping, | |
2830 | loff_t from, get_block_t *get_block) | |
2831 | { | |
2832 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | |
2833 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
2834 | unsigned blocksize; | |
54b21a79 | 2835 | sector_t iblock; |
1da177e4 LT |
2836 | unsigned length, pos; |
2837 | struct inode *inode = mapping->host; | |
2838 | struct page *page; | |
2839 | struct buffer_head *bh; | |
1da177e4 LT |
2840 | int err; |
2841 | ||
2842 | blocksize = 1 << inode->i_blkbits; | |
2843 | length = offset & (blocksize - 1); | |
2844 | ||
2845 | /* Block boundary? Nothing to do */ | |
2846 | if (!length) | |
2847 | return 0; | |
2848 | ||
2849 | length = blocksize - length; | |
54b21a79 | 2850 | iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
2851 | |
2852 | page = grab_cache_page(mapping, index); | |
2853 | err = -ENOMEM; | |
2854 | if (!page) | |
2855 | goto out; | |
2856 | ||
2857 | if (!page_has_buffers(page)) | |
2858 | create_empty_buffers(page, blocksize, 0); | |
2859 | ||
2860 | /* Find the buffer that contains "offset" */ | |
2861 | bh = page_buffers(page); | |
2862 | pos = blocksize; | |
2863 | while (offset >= pos) { | |
2864 | bh = bh->b_this_page; | |
2865 | iblock++; | |
2866 | pos += blocksize; | |
2867 | } | |
2868 | ||
2869 | err = 0; | |
2870 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 2871 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
2872 | err = get_block(inode, iblock, bh, 0); |
2873 | if (err) | |
2874 | goto unlock; | |
2875 | /* unmapped? It's a hole - nothing to do */ | |
2876 | if (!buffer_mapped(bh)) | |
2877 | goto unlock; | |
2878 | } | |
2879 | ||
2880 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2881 | if (PageUptodate(page)) | |
2882 | set_buffer_uptodate(bh); | |
2883 | ||
33a266dd | 2884 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { |
1da177e4 LT |
2885 | err = -EIO; |
2886 | ll_rw_block(READ, 1, &bh); | |
2887 | wait_on_buffer(bh); | |
2888 | /* Uhhuh. Read error. Complain and punt. */ | |
2889 | if (!buffer_uptodate(bh)) | |
2890 | goto unlock; | |
2891 | } | |
2892 | ||
eebd2aa3 | 2893 | zero_user(page, offset, length); |
1da177e4 LT |
2894 | mark_buffer_dirty(bh); |
2895 | err = 0; | |
2896 | ||
2897 | unlock: | |
2898 | unlock_page(page); | |
2899 | page_cache_release(page); | |
2900 | out: | |
2901 | return err; | |
2902 | } | |
1fe72eaa | 2903 | EXPORT_SYMBOL(block_truncate_page); |
1da177e4 LT |
2904 | |
2905 | /* | |
2906 | * The generic ->writepage function for buffer-backed address_spaces | |
2907 | */ | |
1b938c08 MW |
2908 | int block_write_full_page(struct page *page, get_block_t *get_block, |
2909 | struct writeback_control *wbc) | |
1da177e4 LT |
2910 | { |
2911 | struct inode * const inode = page->mapping->host; | |
2912 | loff_t i_size = i_size_read(inode); | |
2913 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2914 | unsigned offset; | |
1da177e4 LT |
2915 | |
2916 | /* Is the page fully inside i_size? */ | |
2917 | if (page->index < end_index) | |
35c80d5f | 2918 | return __block_write_full_page(inode, page, get_block, wbc, |
1b938c08 | 2919 | end_buffer_async_write); |
1da177e4 LT |
2920 | |
2921 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2922 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2923 | if (page->index >= end_index+1 || !offset) { | |
2924 | /* | |
2925 | * The page may have dirty, unmapped buffers. For example, | |
2926 | * they may have been added in ext3_writepage(). Make them | |
2927 | * freeable here, so the page does not leak. | |
2928 | */ | |
d47992f8 | 2929 | do_invalidatepage(page, 0, PAGE_CACHE_SIZE); |
1da177e4 LT |
2930 | unlock_page(page); |
2931 | return 0; /* don't care */ | |
2932 | } | |
2933 | ||
2934 | /* | |
2935 | * The page straddles i_size. It must be zeroed out on each and every | |
2a61aa40 | 2936 | * writepage invocation because it may be mmapped. "A file is mapped |
1da177e4 LT |
2937 | * in multiples of the page size. For a file that is not a multiple of |
2938 | * the page size, the remaining memory is zeroed when mapped, and | |
2939 | * writes to that region are not written out to the file." | |
2940 | */ | |
eebd2aa3 | 2941 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
1b938c08 MW |
2942 | return __block_write_full_page(inode, page, get_block, wbc, |
2943 | end_buffer_async_write); | |
35c80d5f | 2944 | } |
1fe72eaa | 2945 | EXPORT_SYMBOL(block_write_full_page); |
35c80d5f | 2946 | |
1da177e4 LT |
2947 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, |
2948 | get_block_t *get_block) | |
2949 | { | |
2950 | struct buffer_head tmp; | |
2951 | struct inode *inode = mapping->host; | |
2952 | tmp.b_state = 0; | |
2953 | tmp.b_blocknr = 0; | |
b0cf2321 | 2954 | tmp.b_size = 1 << inode->i_blkbits; |
1da177e4 LT |
2955 | get_block(inode, block, &tmp, 0); |
2956 | return tmp.b_blocknr; | |
2957 | } | |
1fe72eaa | 2958 | EXPORT_SYMBOL(generic_block_bmap); |
1da177e4 | 2959 | |
4246a0b6 | 2960 | static void end_bio_bh_io_sync(struct bio *bio) |
1da177e4 LT |
2961 | { |
2962 | struct buffer_head *bh = bio->bi_private; | |
2963 | ||
b7c44ed9 | 2964 | if (unlikely(bio_flagged(bio, BIO_QUIET))) |
08bafc03 KM |
2965 | set_bit(BH_Quiet, &bh->b_state); |
2966 | ||
4246a0b6 | 2967 | bh->b_end_io(bh, !bio->bi_error); |
1da177e4 | 2968 | bio_put(bio); |
1da177e4 LT |
2969 | } |
2970 | ||
57302e0d LT |
2971 | /* |
2972 | * This allows us to do IO even on the odd last sectors | |
59d43914 | 2973 | * of a device, even if the block size is some multiple |
57302e0d LT |
2974 | * of the physical sector size. |
2975 | * | |
2976 | * We'll just truncate the bio to the size of the device, | |
2977 | * and clear the end of the buffer head manually. | |
2978 | * | |
2979 | * Truly out-of-range accesses will turn into actual IO | |
2980 | * errors, this only handles the "we need to be able to | |
2981 | * do IO at the final sector" case. | |
2982 | */ | |
4db96b71 | 2983 | void guard_bio_eod(int rw, struct bio *bio) |
57302e0d LT |
2984 | { |
2985 | sector_t maxsector; | |
59d43914 AM |
2986 | struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
2987 | unsigned truncated_bytes; | |
57302e0d LT |
2988 | |
2989 | maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; | |
2990 | if (!maxsector) | |
2991 | return; | |
2992 | ||
2993 | /* | |
2994 | * If the *whole* IO is past the end of the device, | |
2995 | * let it through, and the IO layer will turn it into | |
2996 | * an EIO. | |
2997 | */ | |
4f024f37 | 2998 | if (unlikely(bio->bi_iter.bi_sector >= maxsector)) |
57302e0d LT |
2999 | return; |
3000 | ||
4f024f37 | 3001 | maxsector -= bio->bi_iter.bi_sector; |
59d43914 | 3002 | if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) |
57302e0d LT |
3003 | return; |
3004 | ||
59d43914 AM |
3005 | /* Uhhuh. We've got a bio that straddles the device size! */ |
3006 | truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); | |
57302e0d LT |
3007 | |
3008 | /* Truncate the bio.. */ | |
59d43914 AM |
3009 | bio->bi_iter.bi_size -= truncated_bytes; |
3010 | bvec->bv_len -= truncated_bytes; | |
57302e0d LT |
3011 | |
3012 | /* ..and clear the end of the buffer for reads */ | |
27d7c2a0 | 3013 | if ((rw & RW_MASK) == READ) { |
59d43914 AM |
3014 | zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, |
3015 | truncated_bytes); | |
57302e0d LT |
3016 | } |
3017 | } | |
3018 | ||
b16b1deb TH |
3019 | static int submit_bh_wbc(int rw, struct buffer_head *bh, |
3020 | unsigned long bio_flags, struct writeback_control *wbc) | |
1da177e4 LT |
3021 | { |
3022 | struct bio *bio; | |
1da177e4 LT |
3023 | |
3024 | BUG_ON(!buffer_locked(bh)); | |
3025 | BUG_ON(!buffer_mapped(bh)); | |
3026 | BUG_ON(!bh->b_end_io); | |
8fb0e342 AK |
3027 | BUG_ON(buffer_delay(bh)); |
3028 | BUG_ON(buffer_unwritten(bh)); | |
1da177e4 | 3029 | |
1da177e4 | 3030 | /* |
48fd4f93 | 3031 | * Only clear out a write error when rewriting |
1da177e4 | 3032 | */ |
48fd4f93 | 3033 | if (test_set_buffer_req(bh) && (rw & WRITE)) |
1da177e4 LT |
3034 | clear_buffer_write_io_error(bh); |
3035 | ||
3036 | /* | |
3037 | * from here on down, it's all bio -- do the initial mapping, | |
3038 | * submit_bio -> generic_make_request may further map this bio around | |
3039 | */ | |
3040 | bio = bio_alloc(GFP_NOIO, 1); | |
3041 | ||
2a814908 | 3042 | if (wbc) { |
b16b1deb | 3043 | wbc_init_bio(wbc, bio); |
2a814908 TH |
3044 | wbc_account_io(wbc, bh->b_page, bh->b_size); |
3045 | } | |
bafc0dba | 3046 | |
4f024f37 | 3047 | bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); |
1da177e4 | 3048 | bio->bi_bdev = bh->b_bdev; |
1da177e4 | 3049 | |
6cf66b4c KO |
3050 | bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); |
3051 | BUG_ON(bio->bi_iter.bi_size != bh->b_size); | |
1da177e4 LT |
3052 | |
3053 | bio->bi_end_io = end_bio_bh_io_sync; | |
3054 | bio->bi_private = bh; | |
71368511 | 3055 | bio->bi_flags |= bio_flags; |
1da177e4 | 3056 | |
57302e0d | 3057 | /* Take care of bh's that straddle the end of the device */ |
59d43914 | 3058 | guard_bio_eod(rw, bio); |
57302e0d | 3059 | |
877f962c TT |
3060 | if (buffer_meta(bh)) |
3061 | rw |= REQ_META; | |
3062 | if (buffer_prio(bh)) | |
3063 | rw |= REQ_PRIO; | |
3064 | ||
1da177e4 | 3065 | submit_bio(rw, bio); |
f6454b04 | 3066 | return 0; |
1da177e4 | 3067 | } |
bafc0dba TH |
3068 | |
3069 | int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) | |
3070 | { | |
b16b1deb | 3071 | return submit_bh_wbc(rw, bh, bio_flags, NULL); |
bafc0dba | 3072 | } |
71368511 DW |
3073 | EXPORT_SYMBOL_GPL(_submit_bh); |
3074 | ||
3075 | int submit_bh(int rw, struct buffer_head *bh) | |
3076 | { | |
b16b1deb | 3077 | return submit_bh_wbc(rw, bh, 0, NULL); |
71368511 | 3078 | } |
1fe72eaa | 3079 | EXPORT_SYMBOL(submit_bh); |
1da177e4 LT |
3080 | |
3081 | /** | |
3082 | * ll_rw_block: low-level access to block devices (DEPRECATED) | |
9cb569d6 | 3083 | * @rw: whether to %READ or %WRITE or maybe %READA (readahead) |
1da177e4 LT |
3084 | * @nr: number of &struct buffer_heads in the array |
3085 | * @bhs: array of pointers to &struct buffer_head | |
3086 | * | |
a7662236 JK |
3087 | * ll_rw_block() takes an array of pointers to &struct buffer_heads, and |
3088 | * requests an I/O operation on them, either a %READ or a %WRITE. The third | |
9cb569d6 CH |
3089 | * %READA option is described in the documentation for generic_make_request() |
3090 | * which ll_rw_block() calls. | |
1da177e4 LT |
3091 | * |
3092 | * This function drops any buffer that it cannot get a lock on (with the | |
9cb569d6 CH |
3093 | * BH_Lock state bit), any buffer that appears to be clean when doing a write |
3094 | * request, and any buffer that appears to be up-to-date when doing read | |
3095 | * request. Further it marks as clean buffers that are processed for | |
3096 | * writing (the buffer cache won't assume that they are actually clean | |
3097 | * until the buffer gets unlocked). | |
1da177e4 LT |
3098 | * |
3099 | * ll_rw_block sets b_end_io to simple completion handler that marks | |
e227867f | 3100 | * the buffer up-to-date (if appropriate), unlocks the buffer and wakes |
1da177e4 LT |
3101 | * any waiters. |
3102 | * | |
3103 | * All of the buffers must be for the same device, and must also be a | |
3104 | * multiple of the current approved size for the device. | |
3105 | */ | |
3106 | void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) | |
3107 | { | |
3108 | int i; | |
3109 | ||
3110 | for (i = 0; i < nr; i++) { | |
3111 | struct buffer_head *bh = bhs[i]; | |
3112 | ||
9cb569d6 | 3113 | if (!trylock_buffer(bh)) |
1da177e4 | 3114 | continue; |
9cb569d6 | 3115 | if (rw == WRITE) { |
1da177e4 | 3116 | if (test_clear_buffer_dirty(bh)) { |
76c3073a | 3117 | bh->b_end_io = end_buffer_write_sync; |
e60e5c50 | 3118 | get_bh(bh); |
9cb569d6 | 3119 | submit_bh(WRITE, bh); |
1da177e4 LT |
3120 | continue; |
3121 | } | |
3122 | } else { | |
1da177e4 | 3123 | if (!buffer_uptodate(bh)) { |
76c3073a | 3124 | bh->b_end_io = end_buffer_read_sync; |
e60e5c50 | 3125 | get_bh(bh); |
1da177e4 LT |
3126 | submit_bh(rw, bh); |
3127 | continue; | |
3128 | } | |
3129 | } | |
3130 | unlock_buffer(bh); | |
1da177e4 LT |
3131 | } |
3132 | } | |
1fe72eaa | 3133 | EXPORT_SYMBOL(ll_rw_block); |
1da177e4 | 3134 | |
9cb569d6 CH |
3135 | void write_dirty_buffer(struct buffer_head *bh, int rw) |
3136 | { | |
3137 | lock_buffer(bh); | |
3138 | if (!test_clear_buffer_dirty(bh)) { | |
3139 | unlock_buffer(bh); | |
3140 | return; | |
3141 | } | |
3142 | bh->b_end_io = end_buffer_write_sync; | |
3143 | get_bh(bh); | |
3144 | submit_bh(rw, bh); | |
3145 | } | |
3146 | EXPORT_SYMBOL(write_dirty_buffer); | |
3147 | ||
1da177e4 LT |
3148 | /* |
3149 | * For a data-integrity writeout, we need to wait upon any in-progress I/O | |
3150 | * and then start new I/O and then wait upon it. The caller must have a ref on | |
3151 | * the buffer_head. | |
3152 | */ | |
87e99511 | 3153 | int __sync_dirty_buffer(struct buffer_head *bh, int rw) |
1da177e4 LT |
3154 | { |
3155 | int ret = 0; | |
3156 | ||
3157 | WARN_ON(atomic_read(&bh->b_count) < 1); | |
3158 | lock_buffer(bh); | |
3159 | if (test_clear_buffer_dirty(bh)) { | |
3160 | get_bh(bh); | |
3161 | bh->b_end_io = end_buffer_write_sync; | |
87e99511 | 3162 | ret = submit_bh(rw, bh); |
1da177e4 | 3163 | wait_on_buffer(bh); |
1da177e4 LT |
3164 | if (!ret && !buffer_uptodate(bh)) |
3165 | ret = -EIO; | |
3166 | } else { | |
3167 | unlock_buffer(bh); | |
3168 | } | |
3169 | return ret; | |
3170 | } | |
87e99511 CH |
3171 | EXPORT_SYMBOL(__sync_dirty_buffer); |
3172 | ||
3173 | int sync_dirty_buffer(struct buffer_head *bh) | |
3174 | { | |
3175 | return __sync_dirty_buffer(bh, WRITE_SYNC); | |
3176 | } | |
1fe72eaa | 3177 | EXPORT_SYMBOL(sync_dirty_buffer); |
1da177e4 LT |
3178 | |
3179 | /* | |
3180 | * try_to_free_buffers() checks if all the buffers on this particular page | |
3181 | * are unused, and releases them if so. | |
3182 | * | |
3183 | * Exclusion against try_to_free_buffers may be obtained by either | |
3184 | * locking the page or by holding its mapping's private_lock. | |
3185 | * | |
3186 | * If the page is dirty but all the buffers are clean then we need to | |
3187 | * be sure to mark the page clean as well. This is because the page | |
3188 | * may be against a block device, and a later reattachment of buffers | |
3189 | * to a dirty page will set *all* buffers dirty. Which would corrupt | |
3190 | * filesystem data on the same device. | |
3191 | * | |
3192 | * The same applies to regular filesystem pages: if all the buffers are | |
3193 | * clean then we set the page clean and proceed. To do that, we require | |
3194 | * total exclusion from __set_page_dirty_buffers(). That is obtained with | |
3195 | * private_lock. | |
3196 | * | |
3197 | * try_to_free_buffers() is non-blocking. | |
3198 | */ | |
3199 | static inline int buffer_busy(struct buffer_head *bh) | |
3200 | { | |
3201 | return atomic_read(&bh->b_count) | | |
3202 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); | |
3203 | } | |
3204 | ||
3205 | static int | |
3206 | drop_buffers(struct page *page, struct buffer_head **buffers_to_free) | |
3207 | { | |
3208 | struct buffer_head *head = page_buffers(page); | |
3209 | struct buffer_head *bh; | |
3210 | ||
3211 | bh = head; | |
3212 | do { | |
de7d5a3b | 3213 | if (buffer_write_io_error(bh) && page->mapping) |
1da177e4 LT |
3214 | set_bit(AS_EIO, &page->mapping->flags); |
3215 | if (buffer_busy(bh)) | |
3216 | goto failed; | |
3217 | bh = bh->b_this_page; | |
3218 | } while (bh != head); | |
3219 | ||
3220 | do { | |
3221 | struct buffer_head *next = bh->b_this_page; | |
3222 | ||
535ee2fb | 3223 | if (bh->b_assoc_map) |
1da177e4 LT |
3224 | __remove_assoc_queue(bh); |
3225 | bh = next; | |
3226 | } while (bh != head); | |
3227 | *buffers_to_free = head; | |
3228 | __clear_page_buffers(page); | |
3229 | return 1; | |
3230 | failed: | |
3231 | return 0; | |
3232 | } | |
3233 | ||
3234 | int try_to_free_buffers(struct page *page) | |
3235 | { | |
3236 | struct address_space * const mapping = page->mapping; | |
3237 | struct buffer_head *buffers_to_free = NULL; | |
3238 | int ret = 0; | |
3239 | ||
3240 | BUG_ON(!PageLocked(page)); | |
ecdfc978 | 3241 | if (PageWriteback(page)) |
1da177e4 LT |
3242 | return 0; |
3243 | ||
3244 | if (mapping == NULL) { /* can this still happen? */ | |
3245 | ret = drop_buffers(page, &buffers_to_free); | |
3246 | goto out; | |
3247 | } | |
3248 | ||
3249 | spin_lock(&mapping->private_lock); | |
3250 | ret = drop_buffers(page, &buffers_to_free); | |
ecdfc978 LT |
3251 | |
3252 | /* | |
3253 | * If the filesystem writes its buffers by hand (eg ext3) | |
3254 | * then we can have clean buffers against a dirty page. We | |
3255 | * clean the page here; otherwise the VM will never notice | |
3256 | * that the filesystem did any IO at all. | |
3257 | * | |
3258 | * Also, during truncate, discard_buffer will have marked all | |
3259 | * the page's buffers clean. We discover that here and clean | |
3260 | * the page also. | |
87df7241 NP |
3261 | * |
3262 | * private_lock must be held over this entire operation in order | |
3263 | * to synchronise against __set_page_dirty_buffers and prevent the | |
3264 | * dirty bit from being lost. | |
ecdfc978 | 3265 | */ |
11f81bec TH |
3266 | if (ret) |
3267 | cancel_dirty_page(page); | |
87df7241 | 3268 | spin_unlock(&mapping->private_lock); |
1da177e4 LT |
3269 | out: |
3270 | if (buffers_to_free) { | |
3271 | struct buffer_head *bh = buffers_to_free; | |
3272 | ||
3273 | do { | |
3274 | struct buffer_head *next = bh->b_this_page; | |
3275 | free_buffer_head(bh); | |
3276 | bh = next; | |
3277 | } while (bh != buffers_to_free); | |
3278 | } | |
3279 | return ret; | |
3280 | } | |
3281 | EXPORT_SYMBOL(try_to_free_buffers); | |
3282 | ||
1da177e4 LT |
3283 | /* |
3284 | * There are no bdflush tunables left. But distributions are | |
3285 | * still running obsolete flush daemons, so we terminate them here. | |
3286 | * | |
3287 | * Use of bdflush() is deprecated and will be removed in a future kernel. | |
5b0830cb | 3288 | * The `flush-X' kernel threads fully replace bdflush daemons and this call. |
1da177e4 | 3289 | */ |
bdc480e3 | 3290 | SYSCALL_DEFINE2(bdflush, int, func, long, data) |
1da177e4 LT |
3291 | { |
3292 | static int msg_count; | |
3293 | ||
3294 | if (!capable(CAP_SYS_ADMIN)) | |
3295 | return -EPERM; | |
3296 | ||
3297 | if (msg_count < 5) { | |
3298 | msg_count++; | |
3299 | printk(KERN_INFO | |
3300 | "warning: process `%s' used the obsolete bdflush" | |
3301 | " system call\n", current->comm); | |
3302 | printk(KERN_INFO "Fix your initscripts?\n"); | |
3303 | } | |
3304 | ||
3305 | if (func == 1) | |
3306 | do_exit(0); | |
3307 | return 0; | |
3308 | } | |
3309 | ||
3310 | /* | |
3311 | * Buffer-head allocation | |
3312 | */ | |
a0a9b043 | 3313 | static struct kmem_cache *bh_cachep __read_mostly; |
1da177e4 LT |
3314 | |
3315 | /* | |
3316 | * Once the number of bh's in the machine exceeds this level, we start | |
3317 | * stripping them in writeback. | |
3318 | */ | |
43be594a | 3319 | static unsigned long max_buffer_heads; |
1da177e4 LT |
3320 | |
3321 | int buffer_heads_over_limit; | |
3322 | ||
3323 | struct bh_accounting { | |
3324 | int nr; /* Number of live bh's */ | |
3325 | int ratelimit; /* Limit cacheline bouncing */ | |
3326 | }; | |
3327 | ||
3328 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; | |
3329 | ||
3330 | static void recalc_bh_state(void) | |
3331 | { | |
3332 | int i; | |
3333 | int tot = 0; | |
3334 | ||
ee1be862 | 3335 | if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) |
1da177e4 | 3336 | return; |
c7b92516 | 3337 | __this_cpu_write(bh_accounting.ratelimit, 0); |
8a143426 | 3338 | for_each_online_cpu(i) |
1da177e4 LT |
3339 | tot += per_cpu(bh_accounting, i).nr; |
3340 | buffer_heads_over_limit = (tot > max_buffer_heads); | |
3341 | } | |
c7b92516 | 3342 | |
dd0fc66f | 3343 | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) |
1da177e4 | 3344 | { |
019b4d12 | 3345 | struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); |
1da177e4 | 3346 | if (ret) { |
a35afb83 | 3347 | INIT_LIST_HEAD(&ret->b_assoc_buffers); |
c7b92516 CL |
3348 | preempt_disable(); |
3349 | __this_cpu_inc(bh_accounting.nr); | |
1da177e4 | 3350 | recalc_bh_state(); |
c7b92516 | 3351 | preempt_enable(); |
1da177e4 LT |
3352 | } |
3353 | return ret; | |
3354 | } | |
3355 | EXPORT_SYMBOL(alloc_buffer_head); | |
3356 | ||
3357 | void free_buffer_head(struct buffer_head *bh) | |
3358 | { | |
3359 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); | |
3360 | kmem_cache_free(bh_cachep, bh); | |
c7b92516 CL |
3361 | preempt_disable(); |
3362 | __this_cpu_dec(bh_accounting.nr); | |
1da177e4 | 3363 | recalc_bh_state(); |
c7b92516 | 3364 | preempt_enable(); |
1da177e4 LT |
3365 | } |
3366 | EXPORT_SYMBOL(free_buffer_head); | |
3367 | ||
1da177e4 LT |
3368 | static void buffer_exit_cpu(int cpu) |
3369 | { | |
3370 | int i; | |
3371 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); | |
3372 | ||
3373 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
3374 | brelse(b->bhs[i]); | |
3375 | b->bhs[i] = NULL; | |
3376 | } | |
c7b92516 | 3377 | this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); |
8a143426 | 3378 | per_cpu(bh_accounting, cpu).nr = 0; |
1da177e4 LT |
3379 | } |
3380 | ||
3381 | static int buffer_cpu_notify(struct notifier_block *self, | |
3382 | unsigned long action, void *hcpu) | |
3383 | { | |
8bb78442 | 3384 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) |
1da177e4 LT |
3385 | buffer_exit_cpu((unsigned long)hcpu); |
3386 | return NOTIFY_OK; | |
3387 | } | |
1da177e4 | 3388 | |
389d1b08 | 3389 | /** |
a6b91919 | 3390 | * bh_uptodate_or_lock - Test whether the buffer is uptodate |
389d1b08 AK |
3391 | * @bh: struct buffer_head |
3392 | * | |
3393 | * Return true if the buffer is up-to-date and false, | |
3394 | * with the buffer locked, if not. | |
3395 | */ | |
3396 | int bh_uptodate_or_lock(struct buffer_head *bh) | |
3397 | { | |
3398 | if (!buffer_uptodate(bh)) { | |
3399 | lock_buffer(bh); | |
3400 | if (!buffer_uptodate(bh)) | |
3401 | return 0; | |
3402 | unlock_buffer(bh); | |
3403 | } | |
3404 | return 1; | |
3405 | } | |
3406 | EXPORT_SYMBOL(bh_uptodate_or_lock); | |
3407 | ||
3408 | /** | |
a6b91919 | 3409 | * bh_submit_read - Submit a locked buffer for reading |
389d1b08 AK |
3410 | * @bh: struct buffer_head |
3411 | * | |
3412 | * Returns zero on success and -EIO on error. | |
3413 | */ | |
3414 | int bh_submit_read(struct buffer_head *bh) | |
3415 | { | |
3416 | BUG_ON(!buffer_locked(bh)); | |
3417 | ||
3418 | if (buffer_uptodate(bh)) { | |
3419 | unlock_buffer(bh); | |
3420 | return 0; | |
3421 | } | |
3422 | ||
3423 | get_bh(bh); | |
3424 | bh->b_end_io = end_buffer_read_sync; | |
3425 | submit_bh(READ, bh); | |
3426 | wait_on_buffer(bh); | |
3427 | if (buffer_uptodate(bh)) | |
3428 | return 0; | |
3429 | return -EIO; | |
3430 | } | |
3431 | EXPORT_SYMBOL(bh_submit_read); | |
3432 | ||
1da177e4 LT |
3433 | void __init buffer_init(void) |
3434 | { | |
43be594a | 3435 | unsigned long nrpages; |
1da177e4 | 3436 | |
b98938c3 CL |
3437 | bh_cachep = kmem_cache_create("buffer_head", |
3438 | sizeof(struct buffer_head), 0, | |
3439 | (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| | |
3440 | SLAB_MEM_SPREAD), | |
019b4d12 | 3441 | NULL); |
1da177e4 LT |
3442 | |
3443 | /* | |
3444 | * Limit the bh occupancy to 10% of ZONE_NORMAL | |
3445 | */ | |
3446 | nrpages = (nr_free_buffer_pages() * 10) / 100; | |
3447 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); | |
3448 | hotcpu_notifier(buffer_cpu_notify, 0); | |
3449 | } |