]> Git Repo - linux.git/blame - include/linux/mm.h
mm: pass nid to reserve_bootmem_region()
[linux.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
ef6a22b7 32#include <linux/slab.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
e8edc6e0 37struct user_struct;
bce617ed 38struct pt_regs;
1da177e4 39
5ef64cc8
LT
40extern int sysctl_page_lock_unfairness;
41
b7ec1bf3 42void mm_core_init(void);
597b7305
MH
43void init_mm_internals(void);
44
a9ee6cf5 45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 46extern unsigned long max_mapnr;
fccc9987
JL
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
54#endif
55
ca79b0c2
AK
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
1da177e4 77extern void * high_memory;
1da177e4 78extern int page_cluster;
ea0ffd0c 79extern const int page_cluster_max;
1da177e4
LT
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4 98#include <asm/page.h>
1da177e4 99#include <asm/processor.h>
1da177e4 100
79442ed1
TC
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
1dff8083
AB
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
568c5fe5
LA
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
593befa6
DD
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
a4a3ede2
PT
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 129 */
5470dea4 130#if BITS_PER_LONG == 64
3770e52f 131/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 134 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
135 * this can result in several of the writes here being dropped.
136 */
137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138static inline void __mm_zero_struct_page(struct page *page)
139{
140 unsigned long *_pp = (void *)page;
141
3770e52f 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 145 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
146
147 switch (sizeof(struct page)) {
3770e52f
AB
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
5470dea4 154 case 80:
df561f66
GS
155 _pp[9] = 0;
156 fallthrough;
5470dea4 157 case 72:
df561f66
GS
158 _pp[8] = 0;
159 fallthrough;
5470dea4 160 case 64:
df561f66
GS
161 _pp[7] = 0;
162 fallthrough;
5470dea4
AD
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
a4a3ede2
PT
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
ea606cf5
AR
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
c9b1d098 198extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 199extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 200
49f0ce5f
JM
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
32927393
CH
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
56f3547b
FT
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
49f0ce5f 211
1cfcee72 212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
215#else
216#define nth_page(page,n) ((page) + (n))
659508f9 217#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 218#endif
1da177e4 219
27ac792c
AR
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
335e52c2
DG
223/* to align the pointer to the (prev) page boundary */
224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
0fa73b86 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 228
f86196ea 229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
f86196ea 234
5748fbc5
KW
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
1da177e4
LT
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
490fc053 247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
c43692e8 252
1da177e4 253#ifndef CONFIG_MMU
8feae131
DH
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
605d9288 261 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 262 * When changing, update also include/trace/events/mmflags.h
1da177e4 263 */
cc2383ec
KK
264#define VM_NONE 0x00000000
265
1da177e4
LT
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
7e2cff42 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 278#ifdef CONFIG_MMU
16ba6f81 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
6aab341e 284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 286
1da177e4
LT
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 300#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 304
d9104d1c
CG
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
b379d790 311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 315
63c17fb8
DH
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
322#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
323#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
324#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
325#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 326#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
327#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328
5212213a 329#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
330# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
331# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 332# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
333# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
334# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
335#ifdef CONFIG_PPC
336# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
337#else
338# define VM_PKEY_BIT4 0
8f62c883 339#endif
5212213a
RP
340#endif /* CONFIG_ARCH_HAS_PKEYS */
341
342#if defined(CONFIG_X86)
343# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
344#elif defined(CONFIG_PPC)
345# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
346#elif defined(CONFIG_PARISC)
347# define VM_GROWSUP VM_ARCH_1
348#elif defined(CONFIG_IA64)
349# define VM_GROWSUP VM_ARCH_1
74a04967
KA
350#elif defined(CONFIG_SPARC64)
351# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
352# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
353#elif defined(CONFIG_ARM64)
354# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
355# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
356#elif !defined(CONFIG_MMU)
357# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
358#endif
359
9f341931
CM
360#if defined(CONFIG_ARM64_MTE)
361# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
362# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
363#else
364# define VM_MTE VM_NONE
365# define VM_MTE_ALLOWED VM_NONE
366#endif
367
cc2383ec
KK
368#ifndef VM_GROWSUP
369# define VM_GROWSUP VM_NONE
370#endif
371
7677f7fd
AR
372#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373# define VM_UFFD_MINOR_BIT 37
374# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
375#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376# define VM_UFFD_MINOR VM_NONE
377#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378
a8bef8ff
MG
379/* Bits set in the VMA until the stack is in its final location */
380#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
381
c62da0c3
AK
382#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383
384/* Common data flag combinations */
385#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
388 VM_MAYWRITE | VM_MAYEXEC)
389#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391
392#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
393#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
394#endif
395
1da177e4
LT
396#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
397#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398#endif
399
400#ifdef CONFIG_STACK_GROWSUP
30bdbb78 401#define VM_STACK VM_GROWSUP
1da177e4 402#else
30bdbb78 403#define VM_STACK VM_GROWSDOWN
1da177e4
LT
404#endif
405
30bdbb78
KK
406#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
407
6cb4d9a2
AK
408/* VMA basic access permission flags */
409#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
410
411
b291f000 412/*
78f11a25 413 * Special vmas that are non-mergable, non-mlock()able.
b291f000 414 */
9050d7eb 415#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 416
b4443772
AK
417/* This mask prevents VMA from being scanned with khugepaged */
418#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
419
a0715cc2
AT
420/* This mask defines which mm->def_flags a process can inherit its parent */
421#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
422
e430a95a
SB
423/* This mask represents all the VMA flag bits used by mlock */
424#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 425
2c2d57b5
KA
426/* Arch-specific flags to clear when updating VM flags on protection change */
427#ifndef VM_ARCH_CLEAR
428# define VM_ARCH_CLEAR VM_NONE
429#endif
430#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
431
1da177e4
LT
432/*
433 * mapping from the currently active vm_flags protection bits (the
434 * low four bits) to a page protection mask..
435 */
1da177e4 436
dde16072
PX
437/*
438 * The default fault flags that should be used by most of the
439 * arch-specific page fault handlers.
440 */
441#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
442 FAULT_FLAG_KILLABLE | \
443 FAULT_FLAG_INTERRUPTIBLE)
dde16072 444
4064b982
PX
445/**
446 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 447 * @flags: Fault flags.
4064b982
PX
448 *
449 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 450 * the mmap_lock for too long a time when waiting for another condition
4064b982 451 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
452 * mmap_lock in the first round to avoid potential starvation of other
453 * processes that would also want the mmap_lock.
4064b982
PX
454 *
455 * Return: true if the page fault allows retry and this is the first
456 * attempt of the fault handling; false otherwise.
457 */
da2f5eb3 458static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
459{
460 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
461 (!(flags & FAULT_FLAG_TRIED));
462}
463
282a8e03
RZ
464#define FAULT_FLAG_TRACE \
465 { FAULT_FLAG_WRITE, "WRITE" }, \
466 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
467 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
468 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
469 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
470 { FAULT_FLAG_TRIED, "TRIED" }, \
471 { FAULT_FLAG_USER, "USER" }, \
472 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 473 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
474 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
475 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 476
54cb8821 477/*
11192337 478 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
479 * ->fault function. The vma's ->fault is responsible for returning a bitmask
480 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 481 *
c20cd45e
MH
482 * MM layer fills up gfp_mask for page allocations but fault handler might
483 * alter it if its implementation requires a different allocation context.
484 *
9b4bdd2f 485 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 486 */
d0217ac0 487struct vm_fault {
5857c920 488 const struct {
742d3372
WD
489 struct vm_area_struct *vma; /* Target VMA */
490 gfp_t gfp_mask; /* gfp mask to be used for allocations */
491 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
492 unsigned long address; /* Faulting virtual address - masked */
493 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 494 };
da2f5eb3 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 496 * XXX: should really be 'const' */
82b0f8c3 497 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 498 * the 'address' */
a2d58167
DJ
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
5db4f15c
YS
502 union {
503 pte_t orig_pte; /* Value of PTE at the time of fault */
504 pmd_t orig_pmd; /* Value of PMD at the time of fault,
505 * used by PMD fault only.
506 */
507 };
d0217ac0 508
3917048d 509 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 510 struct page *page; /* ->fault handlers should return a
83c54070 511 * page here, unless VM_FAULT_NOPAGE
d0217ac0 512 * is set (which is also implied by
83c54070 513 * VM_FAULT_ERROR).
d0217ac0 514 */
82b0f8c3 515 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
516 pte_t *pte; /* Pointer to pte entry matching
517 * the 'address'. NULL if the page
518 * table hasn't been allocated.
519 */
520 spinlock_t *ptl; /* Page table lock.
521 * Protects pte page table if 'pte'
522 * is not NULL, otherwise pmd.
523 */
7267ec00 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
525 * vm_ops->map_pages() sets up a page
526 * table from atomic context.
7267ec00
KS
527 * do_fault_around() pre-allocates
528 * page table to avoid allocation from
529 * atomic context.
530 */
54cb8821 531};
1da177e4 532
c791ace1
DJ
533/* page entry size for vm->huge_fault() */
534enum page_entry_size {
535 PE_SIZE_PTE = 0,
536 PE_SIZE_PMD,
537 PE_SIZE_PUD,
538};
539
1da177e4
LT
540/*
541 * These are the virtual MM functions - opening of an area, closing and
542 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 543 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
544 */
545struct vm_operations_struct {
546 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
547 /**
548 * @close: Called when the VMA is being removed from the MM.
549 * Context: User context. May sleep. Caller holds mmap_lock.
550 */
1da177e4 551 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
552 /* Called any time before splitting to check if it's allowed */
553 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 554 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
555 /*
556 * Called by mprotect() to make driver-specific permission
557 * checks before mprotect() is finalised. The VMA must not
3e0ee843 558 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
559 */
560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 unsigned long end, unsigned long newflags);
1c8f4220
SJ
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
f9ce0be7 565 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 566 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 567 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 572
dd906184 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 575
28b2ee20 576 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
SV
577 * for use by special VMAs. See also generic_access_phys() for a generic
578 * implementation useful for any iomem mapping.
28b2ee20
RR
579 */
580 int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 void *buf, int len, int write);
78d683e8
AL
582
583 /* Called by the /proc/PID/maps code to ask the vma whether it
584 * has a special name. Returning non-NULL will also cause this
585 * vma to be dumped unconditionally. */
586 const char *(*name)(struct vm_area_struct *vma);
587
1da177e4 588#ifdef CONFIG_NUMA
a6020ed7
LS
589 /*
590 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 * to hold the policy upon return. Caller should pass NULL @new to
592 * remove a policy and fall back to surrounding context--i.e. do not
593 * install a MPOL_DEFAULT policy, nor the task or system default
594 * mempolicy.
595 */
1da177e4 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
597
598 /*
599 * get_policy() op must add reference [mpol_get()] to any policy at
600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
601 * in mm/mempolicy.c will do this automatically.
602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 * must return NULL--i.e., do not "fallback" to task or system default
606 * policy.
607 */
1da177e4
LT
608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 unsigned long addr);
610#endif
667a0a06
DV
611 /*
612 * Called by vm_normal_page() for special PTEs to find the
613 * page for @addr. This is useful if the default behavior
614 * (using pte_page()) would not find the correct page.
615 */
616 struct page *(*find_special_page)(struct vm_area_struct *vma,
617 unsigned long addr);
1da177e4
LT
618};
619
ef6a22b7
MG
620#ifdef CONFIG_NUMA_BALANCING
621static inline void vma_numab_state_init(struct vm_area_struct *vma)
622{
623 vma->numab_state = NULL;
624}
625static inline void vma_numab_state_free(struct vm_area_struct *vma)
626{
627 kfree(vma->numab_state);
628}
629#else
630static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
631static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
632#endif /* CONFIG_NUMA_BALANCING */
633
5e31275c 634#ifdef CONFIG_PER_VMA_LOCK
5e31275c
SB
635/*
636 * Try to read-lock a vma. The function is allowed to occasionally yield false
637 * locked result to avoid performance overhead, in which case we fall back to
638 * using mmap_lock. The function should never yield false unlocked result.
639 */
640static inline bool vma_start_read(struct vm_area_struct *vma)
641{
642 /* Check before locking. A race might cause false locked result. */
643 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
644 return false;
645
c7f8f31c 646 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
5e31275c
SB
647 return false;
648
649 /*
650 * Overflow might produce false locked result.
651 * False unlocked result is impossible because we modify and check
c7f8f31c 652 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
5e31275c
SB
653 * modification invalidates all existing locks.
654 */
655 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
c7f8f31c 656 up_read(&vma->vm_lock->lock);
5e31275c
SB
657 return false;
658 }
659 return true;
660}
661
662static inline void vma_end_read(struct vm_area_struct *vma)
663{
664 rcu_read_lock(); /* keeps vma alive till the end of up_read */
c7f8f31c 665 up_read(&vma->vm_lock->lock);
5e31275c
SB
666 rcu_read_unlock();
667}
668
55fd6fcc 669static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 670{
5e31275c
SB
671 mmap_assert_write_locked(vma->vm_mm);
672
673 /*
674 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
675 * mm->mm_lock_seq can't be concurrently modified.
676 */
55fd6fcc
SB
677 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
678 return (vma->vm_lock_seq == *mm_lock_seq);
679}
680
681static inline void vma_start_write(struct vm_area_struct *vma)
682{
683 int mm_lock_seq;
684
685 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
686 return;
687
c7f8f31c 688 down_write(&vma->vm_lock->lock);
5e31275c 689 vma->vm_lock_seq = mm_lock_seq;
c7f8f31c 690 up_write(&vma->vm_lock->lock);
5e31275c
SB
691}
692
55fd6fcc
SB
693static inline bool vma_try_start_write(struct vm_area_struct *vma)
694{
695 int mm_lock_seq;
696
697 if (__is_vma_write_locked(vma, &mm_lock_seq))
698 return true;
699
700 if (!down_write_trylock(&vma->vm_lock->lock))
701 return false;
702
703 vma->vm_lock_seq = mm_lock_seq;
704 up_write(&vma->vm_lock->lock);
705 return true;
706}
707
5e31275c
SB
708static inline void vma_assert_write_locked(struct vm_area_struct *vma)
709{
55fd6fcc
SB
710 int mm_lock_seq;
711
712 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
713}
714
457f67be
SB
715static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
716{
717 /* When detaching vma should be write-locked */
718 if (detached)
719 vma_assert_write_locked(vma);
720 vma->detached = detached;
721}
722
50ee3253
SB
723struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
724 unsigned long address);
725
5e31275c
SB
726#else /* CONFIG_PER_VMA_LOCK */
727
5e31275c
SB
728static inline bool vma_start_read(struct vm_area_struct *vma)
729 { return false; }
730static inline void vma_end_read(struct vm_area_struct *vma) {}
731static inline void vma_start_write(struct vm_area_struct *vma) {}
55fd6fcc
SB
732static inline bool vma_try_start_write(struct vm_area_struct *vma)
733 { return true; }
5e31275c 734static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
457f67be
SB
735static inline void vma_mark_detached(struct vm_area_struct *vma,
736 bool detached) {}
5e31275c
SB
737
738#endif /* CONFIG_PER_VMA_LOCK */
739
c7f8f31c
SB
740/*
741 * WARNING: vma_init does not initialize vma->vm_lock.
742 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
743 */
027232da
KS
744static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
745{
bfd40eaf
KS
746 static const struct vm_operations_struct dummy_vm_ops = {};
747
a670468f 748 memset(vma, 0, sizeof(*vma));
027232da 749 vma->vm_mm = mm;
bfd40eaf 750 vma->vm_ops = &dummy_vm_ops;
027232da 751 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 752 vma_mark_detached(vma, false);
ef6a22b7 753 vma_numab_state_init(vma);
027232da
KS
754}
755
bc292ab0
SB
756/* Use when VMA is not part of the VMA tree and needs no locking */
757static inline void vm_flags_init(struct vm_area_struct *vma,
758 vm_flags_t flags)
759{
760 ACCESS_PRIVATE(vma, __vm_flags) = flags;
761}
762
763/* Use when VMA is part of the VMA tree and modifications need coordination */
764static inline void vm_flags_reset(struct vm_area_struct *vma,
765 vm_flags_t flags)
766{
c7322933 767 vma_start_write(vma);
bc292ab0
SB
768 vm_flags_init(vma, flags);
769}
770
601c3c29
SB
771static inline void vm_flags_reset_once(struct vm_area_struct *vma,
772 vm_flags_t flags)
773{
c7322933 774 vma_start_write(vma);
601c3c29
SB
775 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
776}
777
bc292ab0
SB
778static inline void vm_flags_set(struct vm_area_struct *vma,
779 vm_flags_t flags)
780{
c7322933 781 vma_start_write(vma);
bc292ab0
SB
782 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
783}
784
785static inline void vm_flags_clear(struct vm_area_struct *vma,
786 vm_flags_t flags)
787{
c7322933 788 vma_start_write(vma);
bc292ab0
SB
789 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
790}
791
68f48381
SB
792/*
793 * Use only if VMA is not part of the VMA tree or has no other users and
794 * therefore needs no locking.
795 */
796static inline void __vm_flags_mod(struct vm_area_struct *vma,
797 vm_flags_t set, vm_flags_t clear)
798{
799 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
800}
801
bc292ab0
SB
802/*
803 * Use only when the order of set/clear operations is unimportant, otherwise
804 * use vm_flags_{set|clear} explicitly.
805 */
806static inline void vm_flags_mod(struct vm_area_struct *vma,
807 vm_flags_t set, vm_flags_t clear)
808{
c7322933 809 vma_start_write(vma);
68f48381 810 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
811}
812
bfd40eaf
KS
813static inline void vma_set_anonymous(struct vm_area_struct *vma)
814{
815 vma->vm_ops = NULL;
816}
817
43675e6f
YS
818static inline bool vma_is_anonymous(struct vm_area_struct *vma)
819{
820 return !vma->vm_ops;
821}
822
222100ee
AK
823static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
824{
825 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
826
827 if (!maybe_stack)
828 return false;
829
830 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
831 VM_STACK_INCOMPLETE_SETUP)
832 return true;
833
834 return false;
835}
836
7969f226
AK
837static inline bool vma_is_foreign(struct vm_area_struct *vma)
838{
839 if (!current->mm)
840 return true;
841
842 if (current->mm != vma->vm_mm)
843 return true;
844
845 return false;
846}
3122e80e
AK
847
848static inline bool vma_is_accessible(struct vm_area_struct *vma)
849{
6cb4d9a2 850 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
851}
852
f39af059
MWO
853static inline
854struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
855{
b62b633e 856 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
857}
858
859static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
860{
861 /*
b62b633e 862 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
863 * Calling mas_next() could skip the first entry.
864 */
b62b633e 865 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
866}
867
bb5dbd22
LH
868static inline
869struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
870{
871 return mas_next_range(&vmi->mas, ULONG_MAX);
872}
873
874
f39af059
MWO
875static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
876{
877 return mas_prev(&vmi->mas, 0);
878}
879
bb5dbd22
LH
880static inline
881struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
882{
883 return mas_prev_range(&vmi->mas, 0);
884}
885
f39af059
MWO
886static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
887{
888 return vmi->mas.index;
889}
890
b62b633e
LH
891static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
892{
893 return vmi->mas.last + 1;
894}
895static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
896 unsigned long count)
897{
898 return mas_expected_entries(&vmi->mas, count);
899}
900
901/* Free any unused preallocations */
902static inline void vma_iter_free(struct vma_iterator *vmi)
903{
904 mas_destroy(&vmi->mas);
905}
906
907static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
908 struct vm_area_struct *vma)
909{
910 vmi->mas.index = vma->vm_start;
911 vmi->mas.last = vma->vm_end - 1;
912 mas_store(&vmi->mas, vma);
913 if (unlikely(mas_is_err(&vmi->mas)))
914 return -ENOMEM;
915
916 return 0;
917}
918
919static inline void vma_iter_invalidate(struct vma_iterator *vmi)
920{
921 mas_pause(&vmi->mas);
922}
923
924static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
925{
926 mas_set(&vmi->mas, addr);
927}
928
f39af059
MWO
929#define for_each_vma(__vmi, __vma) \
930 while (((__vma) = vma_next(&(__vmi))) != NULL)
931
932/* The MM code likes to work with exclusive end addresses */
933#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 934 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 935
43675e6f
YS
936#ifdef CONFIG_SHMEM
937/*
938 * The vma_is_shmem is not inline because it is used only by slow
939 * paths in userfault.
940 */
941bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 942bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
943#else
944static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 945static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
946#endif
947
948int vma_is_stack_for_current(struct vm_area_struct *vma);
949
8b11ec1b
LT
950/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
951#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
952
1da177e4
LT
953struct mmu_gather;
954struct inode;
955
5eb5cea1
MWO
956/*
957 * compound_order() can be called without holding a reference, which means
958 * that niceties like page_folio() don't work. These callers should be
959 * prepared to handle wild return values. For example, PG_head may be
960 * set before _folio_order is initialised, or this may be a tail page.
961 * See compaction.c for some good examples.
962 */
5bf34d7c
MWO
963static inline unsigned int compound_order(struct page *page)
964{
5eb5cea1
MWO
965 struct folio *folio = (struct folio *)page;
966
967 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 968 return 0;
5eb5cea1 969 return folio->_folio_order;
5bf34d7c
MWO
970}
971
972/**
973 * folio_order - The allocation order of a folio.
974 * @folio: The folio.
975 *
976 * A folio is composed of 2^order pages. See get_order() for the definition
977 * of order.
978 *
979 * Return: The order of the folio.
980 */
981static inline unsigned int folio_order(struct folio *folio)
982{
c3a15bff
MWO
983 if (!folio_test_large(folio))
984 return 0;
985 return folio->_folio_order;
5bf34d7c
MWO
986}
987
71e3aac0 988#include <linux/huge_mm.h>
1da177e4
LT
989
990/*
991 * Methods to modify the page usage count.
992 *
993 * What counts for a page usage:
994 * - cache mapping (page->mapping)
995 * - private data (page->private)
996 * - page mapped in a task's page tables, each mapping
997 * is counted separately
998 *
999 * Also, many kernel routines increase the page count before a critical
1000 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
1001 */
1002
1003/*
da6052f7 1004 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 1005 */
7c8ee9a8
NP
1006static inline int put_page_testzero(struct page *page)
1007{
fe896d18
JK
1008 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1009 return page_ref_dec_and_test(page);
7c8ee9a8 1010}
1da177e4 1011
b620f633
MWO
1012static inline int folio_put_testzero(struct folio *folio)
1013{
1014 return put_page_testzero(&folio->page);
1015}
1016
1da177e4 1017/*
7c8ee9a8
NP
1018 * Try to grab a ref unless the page has a refcount of zero, return false if
1019 * that is the case.
8e0861fa
AK
1020 * This can be called when MMU is off so it must not access
1021 * any of the virtual mappings.
1da177e4 1022 */
c2530328 1023static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1024{
fe896d18 1025 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1026}
1da177e4 1027
3c1ea2c7
VMO
1028static inline struct folio *folio_get_nontail_page(struct page *page)
1029{
1030 if (unlikely(!get_page_unless_zero(page)))
1031 return NULL;
1032 return (struct folio *)page;
1033}
1034
53df8fdc 1035extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1036
1037enum {
1038 REGION_INTERSECTS,
1039 REGION_DISJOINT,
1040 REGION_MIXED,
1041};
1042
1c29f25b
TK
1043int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1044 unsigned long desc);
53df8fdc 1045
48667e7a 1046/* Support for virtually mapped pages */
b3bdda02
CL
1047struct page *vmalloc_to_page(const void *addr);
1048unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1049
0738c4bb
PM
1050/*
1051 * Determine if an address is within the vmalloc range
1052 *
1053 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1054 * is no special casing required.
1055 */
9bd3bb67
AK
1056
1057#ifndef is_ioremap_addr
1058#define is_ioremap_addr(x) is_vmalloc_addr(x)
1059#endif
1060
81ac3ad9 1061#ifdef CONFIG_MMU
186525bd 1062extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1063extern int is_vmalloc_or_module_addr(const void *x);
1064#else
186525bd
IM
1065static inline bool is_vmalloc_addr(const void *x)
1066{
1067 return false;
1068}
934831d0 1069static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1070{
1071 return 0;
1072}
1073#endif
9e2779fa 1074
74e8ee47
MWO
1075/*
1076 * How many times the entire folio is mapped as a single unit (eg by a
1077 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
1078 * debugging purposes - it does not include PTE-mapped sub-pages; look
1079 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
1080 */
1081static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1082{
74e8ee47 1083 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1084 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1085}
1086
70b50f94
AA
1087/*
1088 * The atomic page->_mapcount, starts from -1: so that transitions
1089 * both from it and to it can be tracked, using atomic_inc_and_test
1090 * and atomic_add_negative(-1).
1091 */
22b751c3 1092static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1093{
1094 atomic_set(&(page)->_mapcount, -1);
1095}
1096
c97eeb8f
MWO
1097/**
1098 * page_mapcount() - Number of times this precise page is mapped.
1099 * @page: The page.
1100 *
1101 * The number of times this page is mapped. If this page is part of
1102 * a large folio, it includes the number of times this page is mapped
1103 * as part of that folio.
6988f31d 1104 *
c97eeb8f 1105 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 1106 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 1107 * They use this field in struct page differently.
6988f31d 1108 */
70b50f94
AA
1109static inline int page_mapcount(struct page *page)
1110{
cb67f428 1111 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1112
c97eeb8f
MWO
1113 if (unlikely(PageCompound(page)))
1114 mapcount += folio_entire_mapcount(page_folio(page));
1115
1116 return mapcount;
b20ce5e0
KS
1117}
1118
b14224fb 1119int folio_total_mapcount(struct folio *folio);
4ba1119c 1120
cb67f428
HD
1121/**
1122 * folio_mapcount() - Calculate the number of mappings of this folio.
1123 * @folio: The folio.
1124 *
1125 * A large folio tracks both how many times the entire folio is mapped,
1126 * and how many times each individual page in the folio is mapped.
1127 * This function calculates the total number of times the folio is
1128 * mapped.
1129 *
1130 * Return: The number of times this folio is mapped.
1131 */
1132static inline int folio_mapcount(struct folio *folio)
4ba1119c 1133{
cb67f428
HD
1134 if (likely(!folio_test_large(folio)))
1135 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1136 return folio_total_mapcount(folio);
4ba1119c
MWO
1137}
1138
b20ce5e0
KS
1139static inline int total_mapcount(struct page *page)
1140{
be5ef2d9
HD
1141 if (likely(!PageCompound(page)))
1142 return atomic_read(&page->_mapcount) + 1;
b14224fb 1143 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1144}
1145
1146static inline bool folio_large_is_mapped(struct folio *folio)
1147{
4b51634c 1148 /*
1aa4d03b 1149 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1150 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1151 */
eec20426 1152 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1153 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1154}
1155
1156/**
1157 * folio_mapped - Is this folio mapped into userspace?
1158 * @folio: The folio.
1159 *
1160 * Return: True if any page in this folio is referenced by user page tables.
1161 */
1162static inline bool folio_mapped(struct folio *folio)
1163{
be5ef2d9
HD
1164 if (likely(!folio_test_large(folio)))
1165 return atomic_read(&folio->_mapcount) >= 0;
1166 return folio_large_is_mapped(folio);
1167}
1168
1169/*
1170 * Return true if this page is mapped into pagetables.
1171 * For compound page it returns true if any sub-page of compound page is mapped,
1172 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1173 */
1174static inline bool page_mapped(struct page *page)
1175{
1176 if (likely(!PageCompound(page)))
1177 return atomic_read(&page->_mapcount) >= 0;
1178 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1179}
1180
b49af68f
CL
1181static inline struct page *virt_to_head_page(const void *x)
1182{
1183 struct page *page = virt_to_page(x);
ccaafd7f 1184
1d798ca3 1185 return compound_head(page);
b49af68f
CL
1186}
1187
7d4203c1
VB
1188static inline struct folio *virt_to_folio(const void *x)
1189{
1190 struct page *page = virt_to_page(x);
1191
1192 return page_folio(page);
1193}
1194
8d29c703 1195void __folio_put(struct folio *folio);
ddc58f27 1196
1d7ea732 1197void put_pages_list(struct list_head *pages);
1da177e4 1198
8dfcc9ba 1199void split_page(struct page *page, unsigned int order);
715cbfd6 1200void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1201
a1554c00
ML
1202unsigned long nr_free_buffer_pages(void);
1203
33f2ef89
AW
1204/*
1205 * Compound pages have a destructor function. Provide a
1206 * prototype for that function and accessor functions.
f1e61557 1207 * These are _only_ valid on the head of a compound page.
33f2ef89 1208 */
f1e61557
KS
1209typedef void compound_page_dtor(struct page *);
1210
1211/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1212enum compound_dtor_id {
1213 NULL_COMPOUND_DTOR,
1214 COMPOUND_PAGE_DTOR,
1215#ifdef CONFIG_HUGETLB_PAGE
1216 HUGETLB_PAGE_DTOR,
9a982250
KS
1217#endif
1218#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1219 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1220#endif
1221 NR_COMPOUND_DTORS,
1222};
33f2ef89 1223
9fd33058
SK
1224static inline void folio_set_compound_dtor(struct folio *folio,
1225 enum compound_dtor_id compound_dtor)
1226{
1227 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1228 folio->_folio_dtor = compound_dtor;
1229}
1230
5375336c 1231void destroy_large_folio(struct folio *folio);
33f2ef89 1232
a50b854e
MWO
1233/* Returns the number of bytes in this potentially compound page. */
1234static inline unsigned long page_size(struct page *page)
1235{
1236 return PAGE_SIZE << compound_order(page);
1237}
1238
94ad9338
MWO
1239/* Returns the number of bits needed for the number of bytes in a page */
1240static inline unsigned int page_shift(struct page *page)
1241{
1242 return PAGE_SHIFT + compound_order(page);
1243}
1244
18788cfa
MWO
1245/**
1246 * thp_order - Order of a transparent huge page.
1247 * @page: Head page of a transparent huge page.
1248 */
1249static inline unsigned int thp_order(struct page *page)
1250{
1251 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1252 return compound_order(page);
1253}
1254
18788cfa
MWO
1255/**
1256 * thp_size - Size of a transparent huge page.
1257 * @page: Head page of a transparent huge page.
1258 *
1259 * Return: Number of bytes in this page.
1260 */
1261static inline unsigned long thp_size(struct page *page)
1262{
1263 return PAGE_SIZE << thp_order(page);
1264}
1265
9a982250
KS
1266void free_compound_page(struct page *page);
1267
3dece370 1268#ifdef CONFIG_MMU
14fd403f
AA
1269/*
1270 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1271 * servicing faults for write access. In the normal case, do always want
1272 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1273 * that do not have writing enabled, when used by access_process_vm.
1274 */
1275static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1276{
1277 if (likely(vma->vm_flags & VM_WRITE))
1278 pte = pte_mkwrite(pte);
1279 return pte;
1280}
8c6e50b0 1281
f9ce0be7 1282vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1283void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1284
2b740303
SJ
1285vm_fault_t finish_fault(struct vm_fault *vmf);
1286vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1287#endif
14fd403f 1288
1da177e4
LT
1289/*
1290 * Multiple processes may "see" the same page. E.g. for untouched
1291 * mappings of /dev/null, all processes see the same page full of
1292 * zeroes, and text pages of executables and shared libraries have
1293 * only one copy in memory, at most, normally.
1294 *
1295 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1296 * page_count() == 0 means the page is free. page->lru is then used for
1297 * freelist management in the buddy allocator.
da6052f7 1298 * page_count() > 0 means the page has been allocated.
1da177e4 1299 *
da6052f7
NP
1300 * Pages are allocated by the slab allocator in order to provide memory
1301 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1302 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1303 * unless a particular usage is carefully commented. (the responsibility of
1304 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1305 *
da6052f7
NP
1306 * A page may be used by anyone else who does a __get_free_page().
1307 * In this case, page_count still tracks the references, and should only
1308 * be used through the normal accessor functions. The top bits of page->flags
1309 * and page->virtual store page management information, but all other fields
1310 * are unused and could be used privately, carefully. The management of this
1311 * page is the responsibility of the one who allocated it, and those who have
1312 * subsequently been given references to it.
1313 *
1314 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1315 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1316 * The following discussion applies only to them.
1317 *
da6052f7
NP
1318 * A pagecache page contains an opaque `private' member, which belongs to the
1319 * page's address_space. Usually, this is the address of a circular list of
1320 * the page's disk buffers. PG_private must be set to tell the VM to call
1321 * into the filesystem to release these pages.
1da177e4 1322 *
da6052f7
NP
1323 * A page may belong to an inode's memory mapping. In this case, page->mapping
1324 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1325 * in units of PAGE_SIZE.
1da177e4 1326 *
da6052f7
NP
1327 * If pagecache pages are not associated with an inode, they are said to be
1328 * anonymous pages. These may become associated with the swapcache, and in that
1329 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1330 *
da6052f7
NP
1331 * In either case (swapcache or inode backed), the pagecache itself holds one
1332 * reference to the page. Setting PG_private should also increment the
1333 * refcount. The each user mapping also has a reference to the page.
1da177e4 1334 *
da6052f7 1335 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1336 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1337 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1338 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1339 *
da6052f7 1340 * All pagecache pages may be subject to I/O:
1da177e4
LT
1341 * - inode pages may need to be read from disk,
1342 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1343 * to be written back to the inode on disk,
1344 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1345 * modified may need to be swapped out to swap space and (later) to be read
1346 * back into memory.
1da177e4
LT
1347 */
1348
27674ef6 1349#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1350DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1351
f4f451a1
MS
1352bool __put_devmap_managed_page_refs(struct page *page, int refs);
1353static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1354{
1355 if (!static_branch_unlikely(&devmap_managed_key))
1356 return false;
1357 if (!is_zone_device_page(page))
1358 return false;
f4f451a1 1359 return __put_devmap_managed_page_refs(page, refs);
e7638488 1360}
27674ef6 1361#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1362static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1363{
1364 return false;
1365}
27674ef6 1366#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1367
f4f451a1
MS
1368static inline bool put_devmap_managed_page(struct page *page)
1369{
1370 return put_devmap_managed_page_refs(page, 1);
1371}
1372
f958d7b5 1373/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1374#define folio_ref_zero_or_close_to_overflow(folio) \
1375 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1376
1377/**
1378 * folio_get - Increment the reference count on a folio.
1379 * @folio: The folio.
1380 *
1381 * Context: May be called in any context, as long as you know that
1382 * you have a refcount on the folio. If you do not already have one,
1383 * folio_try_get() may be the right interface for you to use.
1384 */
1385static inline void folio_get(struct folio *folio)
1386{
1387 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1388 folio_ref_inc(folio);
1389}
f958d7b5 1390
3565fce3
DW
1391static inline void get_page(struct page *page)
1392{
86d234cb 1393 folio_get(page_folio(page));
3565fce3
DW
1394}
1395
cd1adf1b
LT
1396static inline __must_check bool try_get_page(struct page *page)
1397{
1398 page = compound_head(page);
1399 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1400 return false;
1401 page_ref_inc(page);
1402 return true;
1403}
3565fce3 1404
b620f633
MWO
1405/**
1406 * folio_put - Decrement the reference count on a folio.
1407 * @folio: The folio.
1408 *
1409 * If the folio's reference count reaches zero, the memory will be
1410 * released back to the page allocator and may be used by another
1411 * allocation immediately. Do not access the memory or the struct folio
1412 * after calling folio_put() unless you can be sure that it wasn't the
1413 * last reference.
1414 *
1415 * Context: May be called in process or interrupt context, but not in NMI
1416 * context. May be called while holding a spinlock.
1417 */
1418static inline void folio_put(struct folio *folio)
1419{
1420 if (folio_put_testzero(folio))
8d29c703 1421 __folio_put(folio);
b620f633
MWO
1422}
1423
3fe7fa58
MWO
1424/**
1425 * folio_put_refs - Reduce the reference count on a folio.
1426 * @folio: The folio.
1427 * @refs: The amount to subtract from the folio's reference count.
1428 *
1429 * If the folio's reference count reaches zero, the memory will be
1430 * released back to the page allocator and may be used by another
1431 * allocation immediately. Do not access the memory or the struct folio
1432 * after calling folio_put_refs() unless you can be sure that these weren't
1433 * the last references.
1434 *
1435 * Context: May be called in process or interrupt context, but not in NMI
1436 * context. May be called while holding a spinlock.
1437 */
1438static inline void folio_put_refs(struct folio *folio, int refs)
1439{
1440 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1441 __folio_put(folio);
3fe7fa58
MWO
1442}
1443
0411d6ee
SP
1444/*
1445 * union release_pages_arg - an array of pages or folios
449c7967 1446 *
0411d6ee 1447 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1448 * accepts various different forms of said page array: either
1449 * a regular old boring array of pages, an array of folios, or
1450 * an array of encoded page pointers.
1451 *
1452 * The transparent union syntax for this kind of "any of these
1453 * argument types" is all kinds of ugly, so look away.
1454 */
1455typedef union {
1456 struct page **pages;
1457 struct folio **folios;
1458 struct encoded_page **encoded_pages;
1459} release_pages_arg __attribute__ ((__transparent_union__));
1460
1461void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1462
1463/**
1464 * folios_put - Decrement the reference count on an array of folios.
1465 * @folios: The folios.
1466 * @nr: How many folios there are.
1467 *
1468 * Like folio_put(), but for an array of folios. This is more efficient
1469 * than writing the loop yourself as it will optimise the locks which
1470 * need to be taken if the folios are freed.
1471 *
1472 * Context: May be called in process or interrupt context, but not in NMI
1473 * context. May be called while holding a spinlock.
1474 */
1475static inline void folios_put(struct folio **folios, unsigned int nr)
1476{
449c7967 1477 release_pages(folios, nr);
3fe7fa58
MWO
1478}
1479
3565fce3
DW
1480static inline void put_page(struct page *page)
1481{
b620f633 1482 struct folio *folio = page_folio(page);
3565fce3 1483
7b2d55d2 1484 /*
89574945
CH
1485 * For some devmap managed pages we need to catch refcount transition
1486 * from 2 to 1:
7b2d55d2 1487 */
89574945 1488 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1489 return;
b620f633 1490 folio_put(folio);
3565fce3
DW
1491}
1492
3faa52c0
JH
1493/*
1494 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1495 * the page's refcount so that two separate items are tracked: the original page
1496 * reference count, and also a new count of how many pin_user_pages() calls were
1497 * made against the page. ("gup-pinned" is another term for the latter).
1498 *
1499 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1500 * distinct from normal pages. As such, the unpin_user_page() call (and its
1501 * variants) must be used in order to release gup-pinned pages.
1502 *
1503 * Choice of value:
1504 *
1505 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1506 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1507 * simpler, due to the fact that adding an even power of two to the page
1508 * refcount has the effect of using only the upper N bits, for the code that
1509 * counts up using the bias value. This means that the lower bits are left for
1510 * the exclusive use of the original code that increments and decrements by one
1511 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1512 *
3faa52c0
JH
1513 * Of course, once the lower bits overflow into the upper bits (and this is
1514 * OK, because subtraction recovers the original values), then visual inspection
1515 * no longer suffices to directly view the separate counts. However, for normal
1516 * applications that don't have huge page reference counts, this won't be an
1517 * issue.
fc1d8e7c 1518 *
40fcc7fc
MWO
1519 * Locking: the lockless algorithm described in folio_try_get_rcu()
1520 * provides safe operation for get_user_pages(), page_mkclean() and
1521 * other calls that race to set up page table entries.
fc1d8e7c 1522 */
3faa52c0 1523#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1524
3faa52c0 1525void unpin_user_page(struct page *page);
f1f6a7dd
JH
1526void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1527 bool make_dirty);
458a4f78
JM
1528void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1529 bool make_dirty);
f1f6a7dd 1530void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1531
97a7e473
PX
1532static inline bool is_cow_mapping(vm_flags_t flags)
1533{
1534 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1535}
1536
fc4f4be9
DH
1537#ifndef CONFIG_MMU
1538static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1539{
1540 /*
1541 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1542 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1543 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1544 * underlying memory if ptrace is active, so this is only possible if
1545 * ptrace does not apply. Note that there is no mprotect() to upgrade
1546 * write permissions later.
1547 */
b6b7a8fa 1548 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1549}
1550#endif
1551
9127ab4f
CS
1552#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1553#define SECTION_IN_PAGE_FLAGS
1554#endif
1555
89689ae7 1556/*
7a8010cd
VB
1557 * The identification function is mainly used by the buddy allocator for
1558 * determining if two pages could be buddies. We are not really identifying
1559 * the zone since we could be using the section number id if we do not have
1560 * node id available in page flags.
1561 * We only guarantee that it will return the same value for two combinable
1562 * pages in a zone.
89689ae7 1563 */
cb2b95e1
AW
1564static inline int page_zone_id(struct page *page)
1565{
89689ae7 1566 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1567}
1568
89689ae7 1569#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1570extern int page_to_nid(const struct page *page);
89689ae7 1571#else
33dd4e0e 1572static inline int page_to_nid(const struct page *page)
d41dee36 1573{
f165b378
PT
1574 struct page *p = (struct page *)page;
1575
1576 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1577}
89689ae7
CL
1578#endif
1579
874fd90c
MWO
1580static inline int folio_nid(const struct folio *folio)
1581{
1582 return page_to_nid(&folio->page);
1583}
1584
57e0a030 1585#ifdef CONFIG_NUMA_BALANCING
33024536
YH
1586/* page access time bits needs to hold at least 4 seconds */
1587#define PAGE_ACCESS_TIME_MIN_BITS 12
1588#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1589#define PAGE_ACCESS_TIME_BUCKETS \
1590 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1591#else
1592#define PAGE_ACCESS_TIME_BUCKETS 0
1593#endif
1594
1595#define PAGE_ACCESS_TIME_MASK \
1596 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1597
90572890 1598static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1599{
90572890 1600 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1601}
1602
90572890 1603static inline int cpupid_to_pid(int cpupid)
57e0a030 1604{
90572890 1605 return cpupid & LAST__PID_MASK;
57e0a030 1606}
b795854b 1607
90572890 1608static inline int cpupid_to_cpu(int cpupid)
b795854b 1609{
90572890 1610 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1611}
1612
90572890 1613static inline int cpupid_to_nid(int cpupid)
b795854b 1614{
90572890 1615 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1616}
1617
90572890 1618static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1619{
90572890 1620 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1621}
1622
90572890 1623static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1624{
90572890 1625 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1626}
1627
8c8a743c
PZ
1628static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1629{
1630 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1631}
1632
1633#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1634#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1635static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1636{
1ae71d03 1637 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1638}
90572890
PZ
1639
1640static inline int page_cpupid_last(struct page *page)
1641{
1642 return page->_last_cpupid;
1643}
1644static inline void page_cpupid_reset_last(struct page *page)
b795854b 1645{
1ae71d03 1646 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1647}
1648#else
90572890 1649static inline int page_cpupid_last(struct page *page)
75980e97 1650{
90572890 1651 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1652}
1653
90572890 1654extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1655
90572890 1656static inline void page_cpupid_reset_last(struct page *page)
75980e97 1657{
09940a4f 1658 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1659}
90572890 1660#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
YH
1661
1662static inline int xchg_page_access_time(struct page *page, int time)
1663{
1664 int last_time;
1665
1666 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1667 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1668}
fc137c0d
R
1669
1670static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1671{
1672 unsigned int pid_bit;
1673
d46031f4 1674 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
20f58648
R
1675 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1676 __set_bit(pid_bit, &vma->numab_state->access_pids[1]);
fc137c0d
R
1677 }
1678}
90572890
PZ
1679#else /* !CONFIG_NUMA_BALANCING */
1680static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1681{
90572890 1682 return page_to_nid(page); /* XXX */
57e0a030
MG
1683}
1684
33024536
YH
1685static inline int xchg_page_access_time(struct page *page, int time)
1686{
1687 return 0;
1688}
1689
90572890 1690static inline int page_cpupid_last(struct page *page)
57e0a030 1691{
90572890 1692 return page_to_nid(page); /* XXX */
57e0a030
MG
1693}
1694
90572890 1695static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1696{
1697 return -1;
1698}
1699
90572890 1700static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1701{
1702 return -1;
1703}
1704
90572890 1705static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1706{
1707 return -1;
1708}
1709
90572890
PZ
1710static inline int cpu_pid_to_cpupid(int nid, int pid)
1711{
1712 return -1;
1713}
1714
1715static inline bool cpupid_pid_unset(int cpupid)
b795854b 1716{
2b787449 1717 return true;
b795854b
MG
1718}
1719
90572890 1720static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1721{
1722}
8c8a743c
PZ
1723
1724static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1725{
1726 return false;
1727}
fc137c0d
R
1728
1729static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1730{
1731}
90572890 1732#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1733
2e903b91 1734#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1735
cf10bd4c
AK
1736/*
1737 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1738 * setting tags for all pages to native kernel tag value 0xff, as the default
1739 * value 0x00 maps to 0xff.
1740 */
1741
2813b9c0
AK
1742static inline u8 page_kasan_tag(const struct page *page)
1743{
cf10bd4c
AK
1744 u8 tag = 0xff;
1745
1746 if (kasan_enabled()) {
1747 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1748 tag ^= 0xff;
1749 }
1750
1751 return tag;
2813b9c0
AK
1752}
1753
1754static inline void page_kasan_tag_set(struct page *page, u8 tag)
1755{
27fe7339
PC
1756 unsigned long old_flags, flags;
1757
1758 if (!kasan_enabled())
1759 return;
1760
1761 tag ^= 0xff;
1762 old_flags = READ_ONCE(page->flags);
1763 do {
1764 flags = old_flags;
1765 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1766 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1767 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1768}
1769
1770static inline void page_kasan_tag_reset(struct page *page)
1771{
34303244
AK
1772 if (kasan_enabled())
1773 page_kasan_tag_set(page, 0xff);
2813b9c0 1774}
34303244
AK
1775
1776#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1777
2813b9c0
AK
1778static inline u8 page_kasan_tag(const struct page *page)
1779{
1780 return 0xff;
1781}
1782
1783static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1784static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1785
1786#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1787
33dd4e0e 1788static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1789{
1790 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1791}
1792
75ef7184
MG
1793static inline pg_data_t *page_pgdat(const struct page *page)
1794{
1795 return NODE_DATA(page_to_nid(page));
1796}
1797
32b8fc48
MWO
1798static inline struct zone *folio_zone(const struct folio *folio)
1799{
1800 return page_zone(&folio->page);
1801}
1802
1803static inline pg_data_t *folio_pgdat(const struct folio *folio)
1804{
1805 return page_pgdat(&folio->page);
1806}
1807
9127ab4f 1808#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1809static inline void set_page_section(struct page *page, unsigned long section)
1810{
1811 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1812 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1813}
1814
aa462abe 1815static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1816{
1817 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1818}
308c05e3 1819#endif
d41dee36 1820
bf6bd276
MWO
1821/**
1822 * folio_pfn - Return the Page Frame Number of a folio.
1823 * @folio: The folio.
1824 *
1825 * A folio may contain multiple pages. The pages have consecutive
1826 * Page Frame Numbers.
1827 *
1828 * Return: The Page Frame Number of the first page in the folio.
1829 */
1830static inline unsigned long folio_pfn(struct folio *folio)
1831{
1832 return page_to_pfn(&folio->page);
1833}
1834
018ee47f
YZ
1835static inline struct folio *pfn_folio(unsigned long pfn)
1836{
1837 return page_folio(pfn_to_page(pfn));
1838}
1839
0b90ddae
MWO
1840/**
1841 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1842 * @folio: The folio.
1843 *
1844 * This function checks if a folio has been pinned via a call to
1845 * a function in the pin_user_pages() family.
1846 *
1847 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1848 * because it means "definitely not pinned for DMA", but true means "probably
1849 * pinned for DMA, but possibly a false positive due to having at least
1850 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1851 *
1852 * False positives are OK, because: a) it's unlikely for a folio to
1853 * get that many refcounts, and b) all the callers of this routine are
1854 * expected to be able to deal gracefully with a false positive.
1855 *
1856 * For large folios, the result will be exactly correct. That's because
94688e8e 1857 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1858 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1859 *
1860 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1861 *
1862 * Return: True, if it is likely that the page has been "dma-pinned".
1863 * False, if the page is definitely not dma-pinned.
1864 */
1865static inline bool folio_maybe_dma_pinned(struct folio *folio)
1866{
1867 if (folio_test_large(folio))
94688e8e 1868 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1869
1870 /*
1871 * folio_ref_count() is signed. If that refcount overflows, then
1872 * folio_ref_count() returns a negative value, and callers will avoid
1873 * further incrementing the refcount.
1874 *
1875 * Here, for that overflow case, use the sign bit to count a little
1876 * bit higher via unsigned math, and thus still get an accurate result.
1877 */
1878 return ((unsigned int)folio_ref_count(folio)) >=
1879 GUP_PIN_COUNTING_BIAS;
1880}
1881
1882static inline bool page_maybe_dma_pinned(struct page *page)
1883{
1884 return folio_maybe_dma_pinned(page_folio(page));
1885}
1886
1887/*
1888 * This should most likely only be called during fork() to see whether we
fb3d824d 1889 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1890 *
1891 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1892 */
1893static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1894 struct page *page)
1895{
623a1ddf 1896 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1897
1898 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1899 return false;
1900
1901 return page_maybe_dma_pinned(page);
1902}
1903
5d949953 1904/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
8e3560d9 1905#ifdef CONFIG_MIGRATION
5d949953 1906static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9 1907{
1c563432 1908#ifdef CONFIG_CMA
5d949953 1909 int mt = folio_migratetype(folio);
1c563432
MK
1910
1911 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1912 return false;
1913#endif
fcab34b4 1914 /* The zero page may always be pinned */
5d949953 1915 if (is_zero_pfn(folio_pfn(folio)))
fcab34b4
AW
1916 return true;
1917
1918 /* Coherent device memory must always allow eviction. */
5d949953 1919 if (folio_is_device_coherent(folio))
fcab34b4
AW
1920 return false;
1921
5d949953
VMO
1922 /* Otherwise, non-movable zone folios can be pinned. */
1923 return !folio_is_zone_movable(folio);
1924
8e3560d9
PT
1925}
1926#else
5d949953 1927static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9
PT
1928{
1929 return true;
1930}
1931#endif
1932
2f1b6248 1933static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1934{
1935 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1936 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1937}
2f1b6248 1938
348f8b6c
DH
1939static inline void set_page_node(struct page *page, unsigned long node)
1940{
1941 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1942 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1943}
89689ae7 1944
2f1b6248 1945static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1946 unsigned long node, unsigned long pfn)
1da177e4 1947{
348f8b6c
DH
1948 set_page_zone(page, zone);
1949 set_page_node(page, node);
9127ab4f 1950#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1951 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1952#endif
1da177e4
LT
1953}
1954
7b230db3
MWO
1955/**
1956 * folio_nr_pages - The number of pages in the folio.
1957 * @folio: The folio.
1958 *
1959 * Return: A positive power of two.
1960 */
1961static inline long folio_nr_pages(struct folio *folio)
1962{
c3a15bff
MWO
1963 if (!folio_test_large(folio))
1964 return 1;
1965#ifdef CONFIG_64BIT
1966 return folio->_folio_nr_pages;
1967#else
1968 return 1L << folio->_folio_order;
1969#endif
7b230db3
MWO
1970}
1971
21a000fe
MWO
1972/*
1973 * compound_nr() returns the number of pages in this potentially compound
1974 * page. compound_nr() can be called on a tail page, and is defined to
1975 * return 1 in that case.
1976 */
1977static inline unsigned long compound_nr(struct page *page)
1978{
1979 struct folio *folio = (struct folio *)page;
1980
1981 if (!test_bit(PG_head, &folio->flags))
1982 return 1;
1983#ifdef CONFIG_64BIT
1984 return folio->_folio_nr_pages;
1985#else
1986 return 1L << folio->_folio_order;
1987#endif
1988}
1989
1990/**
1991 * thp_nr_pages - The number of regular pages in this huge page.
1992 * @page: The head page of a huge page.
1993 */
1994static inline int thp_nr_pages(struct page *page)
1995{
1996 return folio_nr_pages((struct folio *)page);
1997}
1998
7b230db3
MWO
1999/**
2000 * folio_next - Move to the next physical folio.
2001 * @folio: The folio we're currently operating on.
2002 *
2003 * If you have physically contiguous memory which may span more than
2004 * one folio (eg a &struct bio_vec), use this function to move from one
2005 * folio to the next. Do not use it if the memory is only virtually
2006 * contiguous as the folios are almost certainly not adjacent to each
2007 * other. This is the folio equivalent to writing ``page++``.
2008 *
2009 * Context: We assume that the folios are refcounted and/or locked at a
2010 * higher level and do not adjust the reference counts.
2011 * Return: The next struct folio.
2012 */
2013static inline struct folio *folio_next(struct folio *folio)
2014{
2015 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2016}
2017
2018/**
2019 * folio_shift - The size of the memory described by this folio.
2020 * @folio: The folio.
2021 *
2022 * A folio represents a number of bytes which is a power-of-two in size.
2023 * This function tells you which power-of-two the folio is. See also
2024 * folio_size() and folio_order().
2025 *
2026 * Context: The caller should have a reference on the folio to prevent
2027 * it from being split. It is not necessary for the folio to be locked.
2028 * Return: The base-2 logarithm of the size of this folio.
2029 */
2030static inline unsigned int folio_shift(struct folio *folio)
2031{
2032 return PAGE_SHIFT + folio_order(folio);
2033}
2034
2035/**
2036 * folio_size - The number of bytes in a folio.
2037 * @folio: The folio.
2038 *
2039 * Context: The caller should have a reference on the folio to prevent
2040 * it from being split. It is not necessary for the folio to be locked.
2041 * Return: The number of bytes in this folio.
2042 */
2043static inline size_t folio_size(struct folio *folio)
2044{
2045 return PAGE_SIZE << folio_order(folio);
2046}
2047
fa4e3f5f
VMO
2048/**
2049 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2050 * @folio: The folio.
2051 *
2052 * folio_estimated_sharers() aims to serve as a function to efficiently
2053 * estimate the number of processes sharing a folio. This is done by
2054 * looking at the precise mapcount of the first subpage in the folio, and
2055 * assuming the other subpages are the same. This may not be true for large
2056 * folios. If you want exact mapcounts for exact calculations, look at
2057 * page_mapcount() or folio_total_mapcount().
2058 *
2059 * Return: The estimated number of processes sharing a folio.
2060 */
2061static inline int folio_estimated_sharers(struct folio *folio)
2062{
2063 return page_mapcount(folio_page(folio, 0));
2064}
2065
b424de33
MWO
2066#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2067static inline int arch_make_page_accessible(struct page *page)
2068{
2069 return 0;
2070}
2071#endif
2072
2073#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2074static inline int arch_make_folio_accessible(struct folio *folio)
2075{
2076 int ret;
2077 long i, nr = folio_nr_pages(folio);
2078
2079 for (i = 0; i < nr; i++) {
2080 ret = arch_make_page_accessible(folio_page(folio, i));
2081 if (ret)
2082 break;
2083 }
2084
2085 return ret;
2086}
2087#endif
2088
f6ac2354
CL
2089/*
2090 * Some inline functions in vmstat.h depend on page_zone()
2091 */
2092#include <linux/vmstat.h>
2093
33dd4e0e 2094static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 2095{
1dff8083 2096 return page_to_virt(page);
1da177e4
LT
2097}
2098
2099#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2100#define HASHED_PAGE_VIRTUAL
2101#endif
2102
2103#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2104static inline void *page_address(const struct page *page)
2105{
2106 return page->virtual;
2107}
2108static inline void set_page_address(struct page *page, void *address)
2109{
2110 page->virtual = address;
2111}
1da177e4
LT
2112#define page_address_init() do { } while(0)
2113#endif
2114
2115#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2116void *page_address(const struct page *page);
1da177e4
LT
2117void set_page_address(struct page *page, void *virtual);
2118void page_address_init(void);
2119#endif
2120
2121#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2122#define page_address(page) lowmem_page_address(page)
2123#define set_page_address(page, address) do { } while(0)
2124#define page_address_init() do { } while(0)
2125#endif
2126
7d4203c1
VB
2127static inline void *folio_address(const struct folio *folio)
2128{
2129 return page_address(&folio->page);
2130}
2131
e39155ea 2132extern void *page_rmapping(struct page *page);
f6ab1f7f
YH
2133extern pgoff_t __page_file_index(struct page *page);
2134
1da177e4
LT
2135/*
2136 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2137 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2138 */
2139static inline pgoff_t page_index(struct page *page)
2140{
2141 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2142 return __page_file_index(page);
1da177e4
LT
2143 return page->index;
2144}
2145
2f064f34
MH
2146/*
2147 * Return true only if the page has been allocated with
2148 * ALLOC_NO_WATERMARKS and the low watermark was not
2149 * met implying that the system is under some pressure.
2150 */
1d7bab6a 2151static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2152{
2153 /*
c07aea3e
MC
2154 * lru.next has bit 1 set if the page is allocated from the
2155 * pfmemalloc reserves. Callers may simply overwrite it if
2156 * they do not need to preserve that information.
2f064f34 2157 */
c07aea3e 2158 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2159}
2160
02d65d6f
SK
2161/*
2162 * Return true only if the folio has been allocated with
2163 * ALLOC_NO_WATERMARKS and the low watermark was not
2164 * met implying that the system is under some pressure.
2165 */
2166static inline bool folio_is_pfmemalloc(const struct folio *folio)
2167{
2168 /*
2169 * lru.next has bit 1 set if the page is allocated from the
2170 * pfmemalloc reserves. Callers may simply overwrite it if
2171 * they do not need to preserve that information.
2172 */
2173 return (uintptr_t)folio->lru.next & BIT(1);
2174}
2175
2f064f34
MH
2176/*
2177 * Only to be called by the page allocator on a freshly allocated
2178 * page.
2179 */
2180static inline void set_page_pfmemalloc(struct page *page)
2181{
c07aea3e 2182 page->lru.next = (void *)BIT(1);
2f064f34
MH
2183}
2184
2185static inline void clear_page_pfmemalloc(struct page *page)
2186{
c07aea3e 2187 page->lru.next = NULL;
2f064f34
MH
2188}
2189
1c0fe6e3
NP
2190/*
2191 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2192 */
2193extern void pagefault_out_of_memory(void);
2194
1da177e4 2195#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2196#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2197#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2198
ddd588b5 2199/*
7bf02ea2 2200 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2201 * various contexts.
2202 */
4b59e6c4 2203#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2204
974f4367
MH
2205extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2206static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2207{
2208 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2209}
1da177e4 2210
21b85b09
MK
2211/*
2212 * Parameter block passed down to zap_pte_range in exceptional cases.
2213 */
2214struct zap_details {
2215 struct folio *single_folio; /* Locked folio to be unmapped */
2216 bool even_cows; /* Zap COWed private pages too? */
2217 zap_flags_t zap_flags; /* Extra flags for zapping */
2218};
2219
2220/*
2221 * Whether to drop the pte markers, for example, the uffd-wp information for
2222 * file-backed memory. This should only be specified when we will completely
2223 * drop the page in the mm, either by truncation or unmapping of the vma. By
2224 * default, the flag is not set.
2225 */
2226#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2227/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2228#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2229
af7f588d
MD
2230#ifdef CONFIG_SCHED_MM_CID
2231void sched_mm_cid_before_execve(struct task_struct *t);
2232void sched_mm_cid_after_execve(struct task_struct *t);
2233void sched_mm_cid_fork(struct task_struct *t);
2234void sched_mm_cid_exit_signals(struct task_struct *t);
2235static inline int task_mm_cid(struct task_struct *t)
2236{
2237 return t->mm_cid;
2238}
2239#else
2240static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2241static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2242static inline void sched_mm_cid_fork(struct task_struct *t) { }
2243static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2244static inline int task_mm_cid(struct task_struct *t)
2245{
2246 /*
2247 * Use the processor id as a fall-back when the mm cid feature is
2248 * disabled. This provides functional per-cpu data structure accesses
2249 * in user-space, althrough it won't provide the memory usage benefits.
2250 */
2251 return raw_smp_processor_id();
2252}
2253#endif
2254
710ec38b 2255#ifdef CONFIG_MMU
7f43add4 2256extern bool can_do_mlock(void);
710ec38b
AB
2257#else
2258static inline bool can_do_mlock(void) { return false; }
2259#endif
d7c9e99a
AG
2260extern int user_shm_lock(size_t, struct ucounts *);
2261extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2262
318e9342
VMO
2263struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2264 pte_t pte);
25b2995a
CH
2265struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2266 pte_t pte);
28093f9f
GS
2267struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2268 pmd_t pmd);
7e675137 2269
27d036e3
LR
2270void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2271 unsigned long size);
21b85b09
MK
2272void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2273 unsigned long size, struct zap_details *details);
e9adcfec
MK
2274static inline void zap_vma_pages(struct vm_area_struct *vma)
2275{
2276 zap_page_range_single(vma, vma->vm_start,
2277 vma->vm_end - vma->vm_start, NULL);
2278}
763ecb03
LH
2279void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2280 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2281 unsigned long end, bool mm_wr_locked);
e6473092 2282
ac46d4f3
JG
2283struct mmu_notifier_range;
2284
42b77728 2285void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2286 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2287int
2288copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2289int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2290 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2291int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2292 unsigned long *pfn);
d87fe660 2293int follow_phys(struct vm_area_struct *vma, unsigned long address,
2294 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2295int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2296 void *buf, int len, int write);
1da177e4 2297
7caef267 2298extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2299extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2300void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2301void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2302int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2303
7ee1dd3f 2304#ifdef CONFIG_MMU
2b740303 2305extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2306 unsigned long address, unsigned int flags,
2307 struct pt_regs *regs);
64019a2e 2308extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2309 unsigned long address, unsigned int fault_flags,
2310 bool *unlocked);
977fbdcd
MW
2311void unmap_mapping_pages(struct address_space *mapping,
2312 pgoff_t start, pgoff_t nr, bool even_cows);
2313void unmap_mapping_range(struct address_space *mapping,
2314 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2315#else
2b740303 2316static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2317 unsigned long address, unsigned int flags,
2318 struct pt_regs *regs)
7ee1dd3f
DH
2319{
2320 /* should never happen if there's no MMU */
2321 BUG();
2322 return VM_FAULT_SIGBUS;
2323}
64019a2e 2324static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2325 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2326{
2327 /* should never happen if there's no MMU */
2328 BUG();
2329 return -EFAULT;
2330}
977fbdcd
MW
2331static inline void unmap_mapping_pages(struct address_space *mapping,
2332 pgoff_t start, pgoff_t nr, bool even_cows) { }
2333static inline void unmap_mapping_range(struct address_space *mapping,
2334 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2335#endif
f33ea7f4 2336
977fbdcd
MW
2337static inline void unmap_shared_mapping_range(struct address_space *mapping,
2338 loff_t const holebegin, loff_t const holelen)
2339{
2340 unmap_mapping_range(mapping, holebegin, holelen, 0);
2341}
2342
ca5e8632
LS
2343static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2344 unsigned long addr);
2345
977fbdcd
MW
2346extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2347 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2348extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2349 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2350extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2351 void *buf, int len, unsigned int gup_flags);
1da177e4 2352
64019a2e 2353long get_user_pages_remote(struct mm_struct *mm,
ca5e8632
LS
2354 unsigned long start, unsigned long nr_pages,
2355 unsigned int gup_flags, struct page **pages,
2356 int *locked);
64019a2e 2357long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2358 unsigned long start, unsigned long nr_pages,
2359 unsigned int gup_flags, struct page **pages,
0b295316 2360 int *locked);
ca5e8632
LS
2361
2362static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2363 unsigned long addr,
2364 int gup_flags,
2365 struct vm_area_struct **vmap)
2366{
2367 struct page *page;
2368 struct vm_area_struct *vma;
2369 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2370
2371 if (got < 0)
2372 return ERR_PTR(got);
2373 if (got == 0)
2374 return NULL;
2375
2376 vma = vma_lookup(mm, addr);
2377 if (WARN_ON_ONCE(!vma)) {
2378 put_page(page);
2379 return ERR_PTR(-EINVAL);
2380 }
2381
2382 *vmap = vma;
2383 return page;
2384}
2385
c12d2da5 2386long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2387 unsigned int gup_flags, struct page **pages);
eddb1c22 2388long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 2389 unsigned int gup_flags, struct page **pages);
c12d2da5 2390long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2391 struct page **pages, unsigned int gup_flags);
91429023
JH
2392long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2393 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2394
73b0140b
IW
2395int get_user_pages_fast(unsigned long start, int nr_pages,
2396 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2397int pin_user_pages_fast(unsigned long start, int nr_pages,
2398 unsigned int gup_flags, struct page **pages);
8025e5dd 2399
79eb597c
DJ
2400int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2401int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2402 struct task_struct *task, bool bypass_rlim);
2403
18022c5d 2404struct kvec;
f3e8fccd 2405struct page *get_dump_page(unsigned long addr);
1da177e4 2406
b5e84594
MWO
2407bool folio_mark_dirty(struct folio *folio);
2408bool set_page_dirty(struct page *page);
1da177e4 2409int set_page_dirty_lock(struct page *page);
b9ea2515 2410
a9090253 2411int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2412
b6a2fea3
OW
2413extern unsigned long move_page_tables(struct vm_area_struct *vma,
2414 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2415 unsigned long new_addr, unsigned long len,
2416 bool need_rmap_locks);
58705444
PX
2417
2418/*
2419 * Flags used by change_protection(). For now we make it a bitmap so
2420 * that we can pass in multiple flags just like parameters. However
2421 * for now all the callers are only use one of the flags at the same
2422 * time.
2423 */
64fe24a3
DH
2424/*
2425 * Whether we should manually check if we can map individual PTEs writable,
2426 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2427 * PTEs automatically in a writable mapping.
2428 */
2429#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2430/* Whether this protection change is for NUMA hints */
2431#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2432/* Whether this change is for write protecting */
2433#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2434#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2435#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2436 MM_CP_UFFD_WP_RESOLVE)
58705444 2437
54cbbbf3 2438bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
eb309ec8
DH
2439int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2440static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2441{
2442 /*
2443 * We want to check manually if we can change individual PTEs writable
2444 * if we can't do that automatically for all PTEs in a mapping. For
2445 * private mappings, that's always the case when we have write
2446 * permissions as we properly have to handle COW.
2447 */
2448 if (vma->vm_flags & VM_SHARED)
2449 return vma_wants_writenotify(vma, vma->vm_page_prot);
2450 return !!(vma->vm_flags & VM_WRITE);
2451
2452}
6a56ccbc
DH
2453bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2454 pte_t pte);
a79390f5 2455extern long change_protection(struct mmu_gather *tlb,
4a18419f 2456 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2457 unsigned long end, unsigned long cp_flags);
2286a691
LH
2458extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2459 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2460 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2461
465a454f
PZ
2462/*
2463 * doesn't attempt to fault and will return short.
2464 */
dadbb612
SJ
2465int get_user_pages_fast_only(unsigned long start, int nr_pages,
2466 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2467
2468static inline bool get_user_page_fast_only(unsigned long addr,
2469 unsigned int gup_flags, struct page **pagep)
2470{
2471 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2472}
d559db08
KH
2473/*
2474 * per-process(per-mm_struct) statistics.
2475 */
d559db08
KH
2476static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2477{
f1a79412 2478 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2479}
d559db08 2480
f1a79412 2481void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2482
d559db08
KH
2483static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2484{
f1a79412 2485 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2486
f1a79412 2487 mm_trace_rss_stat(mm, member);
d559db08
KH
2488}
2489
2490static inline void inc_mm_counter(struct mm_struct *mm, int member)
2491{
f1a79412 2492 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2493
f1a79412 2494 mm_trace_rss_stat(mm, member);
d559db08
KH
2495}
2496
2497static inline void dec_mm_counter(struct mm_struct *mm, int member)
2498{
f1a79412 2499 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2500
f1a79412 2501 mm_trace_rss_stat(mm, member);
d559db08
KH
2502}
2503
eca56ff9
JM
2504/* Optimized variant when page is already known not to be PageAnon */
2505static inline int mm_counter_file(struct page *page)
2506{
2507 if (PageSwapBacked(page))
2508 return MM_SHMEMPAGES;
2509 return MM_FILEPAGES;
2510}
2511
2512static inline int mm_counter(struct page *page)
2513{
2514 if (PageAnon(page))
2515 return MM_ANONPAGES;
2516 return mm_counter_file(page);
2517}
2518
d559db08
KH
2519static inline unsigned long get_mm_rss(struct mm_struct *mm)
2520{
2521 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2522 get_mm_counter(mm, MM_ANONPAGES) +
2523 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2524}
2525
2526static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2527{
2528 return max(mm->hiwater_rss, get_mm_rss(mm));
2529}
2530
2531static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2532{
2533 return max(mm->hiwater_vm, mm->total_vm);
2534}
2535
2536static inline void update_hiwater_rss(struct mm_struct *mm)
2537{
2538 unsigned long _rss = get_mm_rss(mm);
2539
2540 if ((mm)->hiwater_rss < _rss)
2541 (mm)->hiwater_rss = _rss;
2542}
2543
2544static inline void update_hiwater_vm(struct mm_struct *mm)
2545{
2546 if (mm->hiwater_vm < mm->total_vm)
2547 mm->hiwater_vm = mm->total_vm;
2548}
2549
695f0559
PC
2550static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2551{
2552 mm->hiwater_rss = get_mm_rss(mm);
2553}
2554
d559db08
KH
2555static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2556 struct mm_struct *mm)
2557{
2558 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2559
2560 if (*maxrss < hiwater_rss)
2561 *maxrss = hiwater_rss;
2562}
2563
53bddb4e 2564#if defined(SPLIT_RSS_COUNTING)
05af2e10 2565void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2566#else
05af2e10 2567static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2568{
2569}
2570#endif
465a454f 2571
78e7c5af
AK
2572#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2573static inline int pte_special(pte_t pte)
2574{
2575 return 0;
2576}
2577
2578static inline pte_t pte_mkspecial(pte_t pte)
2579{
2580 return pte;
2581}
2582#endif
2583
17596731 2584#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2585static inline int pte_devmap(pte_t pte)
2586{
2587 return 0;
2588}
2589#endif
2590
25ca1d6c
NK
2591extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2592 spinlock_t **ptl);
2593static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2594 spinlock_t **ptl)
2595{
2596 pte_t *ptep;
2597 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2598 return ptep;
2599}
c9cfcddf 2600
c2febafc
KS
2601#ifdef __PAGETABLE_P4D_FOLDED
2602static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2603 unsigned long address)
2604{
2605 return 0;
2606}
2607#else
2608int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2609#endif
2610
b4e98d9a 2611#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2612static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2613 unsigned long address)
2614{
2615 return 0;
2616}
b4e98d9a
KS
2617static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2618static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2619
5f22df00 2620#else
c2febafc 2621int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2622
b4e98d9a
KS
2623static inline void mm_inc_nr_puds(struct mm_struct *mm)
2624{
6d212db1
MS
2625 if (mm_pud_folded(mm))
2626 return;
af5b0f6a 2627 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2628}
2629
2630static inline void mm_dec_nr_puds(struct mm_struct *mm)
2631{
6d212db1
MS
2632 if (mm_pud_folded(mm))
2633 return;
af5b0f6a 2634 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2635}
5f22df00
NP
2636#endif
2637
2d2f5119 2638#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2639static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2640 unsigned long address)
2641{
2642 return 0;
2643}
dc6c9a35 2644
dc6c9a35
KS
2645static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2646static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2647
5f22df00 2648#else
1bb3630e 2649int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2650
dc6c9a35
KS
2651static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2652{
6d212db1
MS
2653 if (mm_pmd_folded(mm))
2654 return;
af5b0f6a 2655 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2656}
2657
2658static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2659{
6d212db1
MS
2660 if (mm_pmd_folded(mm))
2661 return;
af5b0f6a 2662 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2663}
5f22df00
NP
2664#endif
2665
c4812909 2666#ifdef CONFIG_MMU
af5b0f6a 2667static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2668{
af5b0f6a 2669 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2670}
2671
af5b0f6a 2672static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2673{
af5b0f6a 2674 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2675}
2676
2677static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2678{
af5b0f6a 2679 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2680}
2681
2682static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2683{
af5b0f6a 2684 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2685}
2686#else
c4812909 2687
af5b0f6a
KS
2688static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2689static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2690{
2691 return 0;
2692}
2693
2694static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2695static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2696#endif
2697
4cf58924
JFG
2698int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2699int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2700
f949286c
MR
2701#if defined(CONFIG_MMU)
2702
c2febafc
KS
2703static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2704 unsigned long address)
2705{
2706 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2707 NULL : p4d_offset(pgd, address);
2708}
2709
2710static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2711 unsigned long address)
1da177e4 2712{
c2febafc
KS
2713 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2714 NULL : pud_offset(p4d, address);
1da177e4 2715}
d8626138 2716
1da177e4
LT
2717static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2718{
1bb3630e
HD
2719 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2720 NULL: pmd_offset(pud, address);
1da177e4 2721}
f949286c 2722#endif /* CONFIG_MMU */
1bb3630e 2723
57c1ffce 2724#if USE_SPLIT_PTE_PTLOCKS
597d795a 2725#if ALLOC_SPLIT_PTLOCKS
b35f1819 2726void __init ptlock_cache_init(void);
539edb58
PZ
2727extern bool ptlock_alloc(struct page *page);
2728extern void ptlock_free(struct page *page);
2729
2730static inline spinlock_t *ptlock_ptr(struct page *page)
2731{
2732 return page->ptl;
2733}
597d795a 2734#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2735static inline void ptlock_cache_init(void)
2736{
2737}
2738
49076ec2
KS
2739static inline bool ptlock_alloc(struct page *page)
2740{
49076ec2
KS
2741 return true;
2742}
539edb58 2743
49076ec2
KS
2744static inline void ptlock_free(struct page *page)
2745{
49076ec2
KS
2746}
2747
2748static inline spinlock_t *ptlock_ptr(struct page *page)
2749{
539edb58 2750 return &page->ptl;
49076ec2 2751}
597d795a 2752#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2753
2754static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2755{
2756 return ptlock_ptr(pmd_page(*pmd));
2757}
2758
2759static inline bool ptlock_init(struct page *page)
2760{
2761 /*
2762 * prep_new_page() initialize page->private (and therefore page->ptl)
2763 * with 0. Make sure nobody took it in use in between.
2764 *
2765 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2766 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2767 */
309381fe 2768 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2769 if (!ptlock_alloc(page))
2770 return false;
2771 spin_lock_init(ptlock_ptr(page));
2772 return true;
2773}
2774
57c1ffce 2775#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2776/*
2777 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2778 */
49076ec2
KS
2779static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2780{
2781 return &mm->page_table_lock;
2782}
b35f1819 2783static inline void ptlock_cache_init(void) {}
49076ec2 2784static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2785static inline void ptlock_free(struct page *page) {}
57c1ffce 2786#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2787
b4ed71f5 2788static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2789{
706874e9
VD
2790 if (!ptlock_init(page))
2791 return false;
1d40a5ea 2792 __SetPageTable(page);
f0c0c115 2793 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2794 return true;
2f569afd
MS
2795}
2796
b4ed71f5 2797static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2798{
9e247bab 2799 ptlock_free(page);
1d40a5ea 2800 __ClearPageTable(page);
f0c0c115 2801 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2802}
2803
0d940a9b
HD
2804pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2805static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2806{
2807 return __pte_offset_map(pmd, addr, NULL);
2808}
2809
2810pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2811 unsigned long addr, spinlock_t **ptlp);
2812static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2813 unsigned long addr, spinlock_t **ptlp)
2814{
2815 pte_t *pte;
2816
2817 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2818 return pte;
2819}
2820
2821pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2822 unsigned long addr, spinlock_t **ptlp);
c74df32c
HD
2823
2824#define pte_unmap_unlock(pte, ptl) do { \
2825 spin_unlock(ptl); \
2826 pte_unmap(pte); \
2827} while (0)
2828
4cf58924 2829#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2830
2831#define pte_alloc_map(mm, pmd, address) \
4cf58924 2832 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2833
c74df32c 2834#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2835 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2836 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2837
1bb3630e 2838#define pte_alloc_kernel(pmd, address) \
4cf58924 2839 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2840 NULL: pte_offset_kernel(pmd, address))
1da177e4 2841
e009bb30
KS
2842#if USE_SPLIT_PMD_PTLOCKS
2843
7e25de77 2844static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2845{
2846 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2847 return virt_to_page((void *)((unsigned long) pmd & mask));
2848}
2849
e009bb30
KS
2850static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2851{
373dfda2 2852 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2853}
2854
b2b29d6d 2855static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2856{
e009bb30
KS
2857#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2858 page->pmd_huge_pte = NULL;
2859#endif
49076ec2 2860 return ptlock_init(page);
e009bb30
KS
2861}
2862
b2b29d6d 2863static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2864{
2865#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2866 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2867#endif
49076ec2 2868 ptlock_free(page);
e009bb30
KS
2869}
2870
373dfda2 2871#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2872
2873#else
2874
9a86cb7b
KS
2875static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2876{
2877 return &mm->page_table_lock;
2878}
2879
b2b29d6d
MW
2880static inline bool pmd_ptlock_init(struct page *page) { return true; }
2881static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2882
c389a250 2883#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2884
e009bb30
KS
2885#endif
2886
9a86cb7b
KS
2887static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2888{
2889 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2890 spin_lock(ptl);
2891 return ptl;
2892}
2893
b2b29d6d
MW
2894static inline bool pgtable_pmd_page_ctor(struct page *page)
2895{
2896 if (!pmd_ptlock_init(page))
2897 return false;
2898 __SetPageTable(page);
f0c0c115 2899 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2900 return true;
2901}
2902
2903static inline void pgtable_pmd_page_dtor(struct page *page)
2904{
2905 pmd_ptlock_free(page);
2906 __ClearPageTable(page);
f0c0c115 2907 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2908}
2909
a00cc7d9
MW
2910/*
2911 * No scalability reason to split PUD locks yet, but follow the same pattern
2912 * as the PMD locks to make it easier if we decide to. The VM should not be
2913 * considered ready to switch to split PUD locks yet; there may be places
2914 * which need to be converted from page_table_lock.
2915 */
2916static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2917{
2918 return &mm->page_table_lock;
2919}
2920
2921static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2922{
2923 spinlock_t *ptl = pud_lockptr(mm, pud);
2924
2925 spin_lock(ptl);
2926 return ptl;
2927}
62906027 2928
a00cc7d9 2929extern void __init pagecache_init(void);
49a7f04a
DH
2930extern void free_initmem(void);
2931
69afade7
JL
2932/*
2933 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2934 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2935 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2936 * Return pages freed into the buddy system.
2937 */
11199692 2938extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2939 int poison, const char *s);
c3d5f5f0 2940
c3d5f5f0 2941extern void adjust_managed_page_count(struct page *page, long count);
69afade7 2942
61167ad5
YD
2943extern void reserve_bootmem_region(phys_addr_t start,
2944 phys_addr_t end, int nid);
92923ca3 2945
69afade7 2946/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2947static inline void free_reserved_page(struct page *page)
69afade7
JL
2948{
2949 ClearPageReserved(page);
2950 init_page_count(page);
2951 __free_page(page);
69afade7
JL
2952 adjust_managed_page_count(page, 1);
2953}
a0cd7a7c 2954#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2955
2956static inline void mark_page_reserved(struct page *page)
2957{
2958 SetPageReserved(page);
2959 adjust_managed_page_count(page, -1);
2960}
2961
2962/*
2963 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2964 * The freed pages will be poisoned with pattern "poison" if it's within
2965 * range [0, UCHAR_MAX].
2966 * Return pages freed into the buddy system.
69afade7
JL
2967 */
2968static inline unsigned long free_initmem_default(int poison)
2969{
2970 extern char __init_begin[], __init_end[];
2971
11199692 2972 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2973 poison, "unused kernel image (initmem)");
69afade7
JL
2974}
2975
7ee3d4e8
JL
2976static inline unsigned long get_num_physpages(void)
2977{
2978 int nid;
2979 unsigned long phys_pages = 0;
2980
2981 for_each_online_node(nid)
2982 phys_pages += node_present_pages(nid);
2983
2984 return phys_pages;
2985}
2986
c713216d 2987/*
3f08a302 2988 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2989 * zones, allocate the backing mem_map and account for memory holes in an
2990 * architecture independent manner.
c713216d
MG
2991 *
2992 * An architecture is expected to register range of page frames backed by
0ee332c1 2993 * physical memory with memblock_add[_node]() before calling
9691a071 2994 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2995 * usage, an architecture is expected to do something like
2996 *
2997 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2998 * max_highmem_pfn};
2999 * for_each_valid_physical_page_range()
952eea9b 3000 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 3001 * free_area_init(max_zone_pfns);
c713216d 3002 */
9691a071 3003void free_area_init(unsigned long *max_zone_pfn);
1e01979c 3004unsigned long node_map_pfn_alignment(void);
32996250
YL
3005unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3006 unsigned long end_pfn);
c713216d
MG
3007extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3008 unsigned long end_pfn);
3009extern void get_pfn_range_for_nid(unsigned int nid,
3010 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 3011
a9ee6cf5 3012#ifndef CONFIG_NUMA
6f24fbd3 3013static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
3014{
3015 return 0;
3016}
3017#else
3018/* please see mm/page_alloc.c */
3019extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
3020#endif
3021
0e0b864e 3022extern void set_dma_reserve(unsigned long new_dma_reserve);
1da177e4 3023extern void mem_init(void);
8feae131 3024extern void __init mmap_init(void);
974f4367
MH
3025
3026extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3027static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3028{
3029 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3030}
d02bd27b 3031extern long si_mem_available(void);
1da177e4
LT
3032extern void si_meminfo(struct sysinfo * val);
3033extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
3034#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3035extern unsigned long arch_reserved_kernel_pages(void);
3036#endif
1da177e4 3037
a8e99259
MH
3038extern __printf(3, 4)
3039void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3040
e7c8d5c9 3041extern void setup_per_cpu_pageset(void);
e7c8d5c9 3042
8feae131 3043/* nommu.c */
33e5d769 3044extern atomic_long_t mmap_pages_allocated;
7e660872 3045extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3046
6b2dbba8 3047/* interval_tree.c */
6b2dbba8 3048void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3049 struct rb_root_cached *root);
9826a516
ML
3050void vma_interval_tree_insert_after(struct vm_area_struct *node,
3051 struct vm_area_struct *prev,
f808c13f 3052 struct rb_root_cached *root);
6b2dbba8 3053void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3054 struct rb_root_cached *root);
3055struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3056 unsigned long start, unsigned long last);
3057struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3058 unsigned long start, unsigned long last);
3059
3060#define vma_interval_tree_foreach(vma, root, start, last) \
3061 for (vma = vma_interval_tree_iter_first(root, start, last); \
3062 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3063
bf181b9f 3064void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3065 struct rb_root_cached *root);
bf181b9f 3066void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3067 struct rb_root_cached *root);
3068struct anon_vma_chain *
3069anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3070 unsigned long start, unsigned long last);
bf181b9f
ML
3071struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3072 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3073#ifdef CONFIG_DEBUG_VM_RB
3074void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3075#endif
bf181b9f
ML
3076
3077#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3078 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3079 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3080
1da177e4 3081/* mmap.c */
34b4e4aa 3082extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3083extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3084 unsigned long start, unsigned long end, pgoff_t pgoff,
3085 struct vm_area_struct *next);
cf51e86d
LH
3086extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3087 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 3088extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
3089 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3090 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3091 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3092 struct anon_vma_name *);
1da177e4 3093extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
3094extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3095 unsigned long addr, int new_below);
3096extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3097 unsigned long addr, int new_below);
1da177e4 3098extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3099extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3100extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3101 unsigned long addr, unsigned long len, pgoff_t pgoff,
3102 bool *need_rmap_locks);
1da177e4 3103extern void exit_mmap(struct mm_struct *);
925d1c40 3104
9c599024
CG
3105static inline int check_data_rlimit(unsigned long rlim,
3106 unsigned long new,
3107 unsigned long start,
3108 unsigned long end_data,
3109 unsigned long start_data)
3110{
3111 if (rlim < RLIM_INFINITY) {
3112 if (((new - start) + (end_data - start_data)) > rlim)
3113 return -ENOSPC;
3114 }
3115
3116 return 0;
3117}
3118
7906d00c
AA
3119extern int mm_take_all_locks(struct mm_struct *mm);
3120extern void mm_drop_all_locks(struct mm_struct *mm);
3121
fe69d560 3122extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3123extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3124extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3125extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3126
84638335
KK
3127extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3128extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3129
2eefd878
DS
3130extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3131 const struct vm_special_mapping *sm);
3935ed6a
SS
3132extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3133 unsigned long addr, unsigned long len,
a62c34bd
AL
3134 unsigned long flags,
3135 const struct vm_special_mapping *spec);
3136/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3137extern int install_special_mapping(struct mm_struct *mm,
3138 unsigned long addr, unsigned long len,
3139 unsigned long flags, struct page **pages);
1da177e4 3140
649775be 3141unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3142unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3143
1da177e4
LT
3144extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3145
0165ab44 3146extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3147 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3148 struct list_head *uf);
1fcfd8db 3149extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3150 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 3151 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 3152extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a
LH
3153 unsigned long start, size_t len, struct list_head *uf,
3154 bool downgrade);
897ab3e0
MR
3155extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3156 struct list_head *uf);
0726b01e 3157extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3158
bebeb3d6 3159#ifdef CONFIG_MMU
27b26701
LH
3160extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3161 unsigned long start, unsigned long end,
3162 struct list_head *uf, bool downgrade);
bebeb3d6
ML
3163extern int __mm_populate(unsigned long addr, unsigned long len,
3164 int ignore_errors);
3165static inline void mm_populate(unsigned long addr, unsigned long len)
3166{
3167 /* Ignore errors */
3168 (void) __mm_populate(addr, len, 1);
3169}
3170#else
3171static inline void mm_populate(unsigned long addr, unsigned long len) {}
3172#endif
3173
e4eb1ff6 3174/* These take the mm semaphore themselves */
5d22fc25 3175extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 3176extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3177extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3178extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3179 unsigned long, unsigned long,
3180 unsigned long, unsigned long);
1da177e4 3181
db4fbfb9
ML
3182struct vm_unmapped_area_info {
3183#define VM_UNMAPPED_AREA_TOPDOWN 1
3184 unsigned long flags;
3185 unsigned long length;
3186 unsigned long low_limit;
3187 unsigned long high_limit;
3188 unsigned long align_mask;
3189 unsigned long align_offset;
3190};
3191
baceaf1c 3192extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3193
85821aab 3194/* truncate.c */
1da177e4 3195extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3196extern void truncate_inode_pages_range(struct address_space *,
3197 loff_t lstart, loff_t lend);
91b0abe3 3198extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3199
3200/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3201extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3202extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3203 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3204extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3205
1be7107f 3206extern unsigned long stack_guard_gap;
d05f3169 3207/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 3208extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 3209
11192337 3210/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
3211extern int expand_downwards(struct vm_area_struct *vma,
3212 unsigned long address);
8ca3eb08 3213#if VM_GROWSUP
46dea3d0 3214extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 3215#else
fee7e49d 3216 #define expand_upwards(vma, address) (0)
9ab88515 3217#endif
1da177e4
LT
3218
3219/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3220extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3221extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3222 struct vm_area_struct **pprev);
3223
abdba2dd
LH
3224/*
3225 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3226 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3227 */
ce6d42f2 3228struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3229 unsigned long start_addr, unsigned long end_addr);
1da177e4 3230
ce6d42f2
LH
3231/**
3232 * vma_lookup() - Find a VMA at a specific address
3233 * @mm: The process address space.
3234 * @addr: The user address.
3235 *
3236 * Return: The vm_area_struct at the given address, %NULL otherwise.
3237 */
3238static inline
3239struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3240{
d7c62295 3241 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3242}
3243
1be7107f
HD
3244static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3245{
3246 unsigned long vm_start = vma->vm_start;
3247
3248 if (vma->vm_flags & VM_GROWSDOWN) {
3249 vm_start -= stack_guard_gap;
3250 if (vm_start > vma->vm_start)
3251 vm_start = 0;
3252 }
3253 return vm_start;
3254}
3255
3256static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3257{
3258 unsigned long vm_end = vma->vm_end;
3259
3260 if (vma->vm_flags & VM_GROWSUP) {
3261 vm_end += stack_guard_gap;
3262 if (vm_end < vma->vm_end)
3263 vm_end = -PAGE_SIZE;
3264 }
3265 return vm_end;
3266}
3267
1da177e4
LT
3268static inline unsigned long vma_pages(struct vm_area_struct *vma)
3269{
3270 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3271}
3272
640708a2
PE
3273/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3274static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3275 unsigned long vm_start, unsigned long vm_end)
3276{
dc8635b2 3277 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3278
3279 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3280 vma = NULL;
3281
3282 return vma;
3283}
3284
017b1660
MK
3285static inline bool range_in_vma(struct vm_area_struct *vma,
3286 unsigned long start, unsigned long end)
3287{
3288 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3289}
3290
bad849b3 3291#ifdef CONFIG_MMU
804af2cf 3292pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3293void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3294#else
3295static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3296{
3297 return __pgprot(0);
3298}
64e45507
PF
3299static inline void vma_set_page_prot(struct vm_area_struct *vma)
3300{
3301 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3302}
bad849b3
DH
3303#endif
3304
295992fb
CK
3305void vma_set_file(struct vm_area_struct *vma, struct file *file);
3306
5877231f 3307#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3308unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3309 unsigned long start, unsigned long end);
3310#endif
3311
deceb6cd 3312struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3313int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3314 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3315int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3316 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3317int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3318int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3319 struct page **pages, unsigned long *num);
a667d745
SJ
3320int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3321 unsigned long num);
3322int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3323 unsigned long num);
ae2b01f3 3324vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3325 unsigned long pfn);
f5e6d1d5
MW
3326vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3327 unsigned long pfn, pgprot_t pgprot);
5d747637 3328vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3329 pfn_t pfn);
ab77dab4
SJ
3330vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3331 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3332int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3333
1c8f4220
SJ
3334static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3335 unsigned long addr, struct page *page)
3336{
3337 int err = vm_insert_page(vma, addr, page);
3338
3339 if (err == -ENOMEM)
3340 return VM_FAULT_OOM;
3341 if (err < 0 && err != -EBUSY)
3342 return VM_FAULT_SIGBUS;
3343
3344 return VM_FAULT_NOPAGE;
3345}
3346
f8f6ae5d
JG
3347#ifndef io_remap_pfn_range
3348static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3349 unsigned long addr, unsigned long pfn,
3350 unsigned long size, pgprot_t prot)
3351{
3352 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3353}
3354#endif
3355
d97baf94
SJ
3356static inline vm_fault_t vmf_error(int err)
3357{
3358 if (err == -ENOMEM)
3359 return VM_FAULT_OOM;
3360 return VM_FAULT_SIGBUS;
3361}
3362
df06b37f
KB
3363struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3364 unsigned int foll_flags);
240aadee 3365
2b740303 3366static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3367{
3368 if (vm_fault & VM_FAULT_OOM)
3369 return -ENOMEM;
3370 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3371 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3372 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3373 return -EFAULT;
3374 return 0;
3375}
3376
474098ed
DH
3377/*
3378 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3379 * a (NUMA hinting) fault is required.
3380 */
3381static inline bool gup_can_follow_protnone(unsigned int flags)
3382{
3383 /*
3384 * FOLL_FORCE has to be able to make progress even if the VMA is
3385 * inaccessible. Further, FOLL_FORCE access usually does not represent
3386 * application behaviour and we should avoid triggering NUMA hinting
3387 * faults.
3388 */
3389 return flags & FOLL_FORCE;
3390}
3391
8b1e0f81 3392typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3393extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3394 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3395extern int apply_to_existing_page_range(struct mm_struct *mm,
3396 unsigned long address, unsigned long size,
3397 pte_fn_t fn, void *data);
aee16b3c 3398
8823b1db 3399#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3400extern void __kernel_poison_pages(struct page *page, int numpages);
3401extern void __kernel_unpoison_pages(struct page *page, int numpages);
3402extern bool _page_poisoning_enabled_early;
3403DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3404static inline bool page_poisoning_enabled(void)
3405{
3406 return _page_poisoning_enabled_early;
3407}
3408/*
3409 * For use in fast paths after init_mem_debugging() has run, or when a
3410 * false negative result is not harmful when called too early.
3411 */
3412static inline bool page_poisoning_enabled_static(void)
3413{
3414 return static_branch_unlikely(&_page_poisoning_enabled);
3415}
3416static inline void kernel_poison_pages(struct page *page, int numpages)
3417{
3418 if (page_poisoning_enabled_static())
3419 __kernel_poison_pages(page, numpages);
3420}
3421static inline void kernel_unpoison_pages(struct page *page, int numpages)
3422{
3423 if (page_poisoning_enabled_static())
3424 __kernel_unpoison_pages(page, numpages);
3425}
8823b1db
LA
3426#else
3427static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3428static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3429static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3430static inline void kernel_poison_pages(struct page *page, int numpages) { }
3431static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3432#endif
3433
51cba1eb 3434DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3435static inline bool want_init_on_alloc(gfp_t flags)
3436{
51cba1eb
KC
3437 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3438 &init_on_alloc))
6471384a
AP
3439 return true;
3440 return flags & __GFP_ZERO;
3441}
3442
51cba1eb 3443DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3444static inline bool want_init_on_free(void)
3445{
51cba1eb
KC
3446 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3447 &init_on_free);
6471384a
AP
3448}
3449
8e57f8ac
VB
3450extern bool _debug_pagealloc_enabled_early;
3451DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3452
3453static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3454{
3455 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3456 _debug_pagealloc_enabled_early;
3457}
3458
3459/*
3460 * For use in fast paths after init_debug_pagealloc() has run, or when a
3461 * false negative result is not harmful when called too early.
3462 */
3463static inline bool debug_pagealloc_enabled_static(void)
031bc574 3464{
96a2b03f
VB
3465 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3466 return false;
3467
3468 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3469}
3470
5d6ad668 3471#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3472/*
5d6ad668
MR
3473 * To support DEBUG_PAGEALLOC architecture must ensure that
3474 * __kernel_map_pages() never fails
c87cbc1f 3475 */
d6332692
RE
3476extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3477
77bc7fd6
MR
3478static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3479{
3480 if (debug_pagealloc_enabled_static())
3481 __kernel_map_pages(page, numpages, 1);
3482}
3483
3484static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3485{
3486 if (debug_pagealloc_enabled_static())
3487 __kernel_map_pages(page, numpages, 0);
3488}
884c175f
KW
3489
3490extern unsigned int _debug_guardpage_minorder;
3491DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3492
3493static inline unsigned int debug_guardpage_minorder(void)
3494{
3495 return _debug_guardpage_minorder;
3496}
3497
3498static inline bool debug_guardpage_enabled(void)
3499{
3500 return static_branch_unlikely(&_debug_guardpage_enabled);
3501}
3502
3503static inline bool page_is_guard(struct page *page)
3504{
3505 if (!debug_guardpage_enabled())
3506 return false;
3507
3508 return PageGuard(page);
3509}
3510
3511bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3512 int migratetype);
3513static inline bool set_page_guard(struct zone *zone, struct page *page,
3514 unsigned int order, int migratetype)
3515{
3516 if (!debug_guardpage_enabled())
3517 return false;
3518 return __set_page_guard(zone, page, order, migratetype);
3519}
3520
3521void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3522 int migratetype);
3523static inline void clear_page_guard(struct zone *zone, struct page *page,
3524 unsigned int order, int migratetype)
3525{
3526 if (!debug_guardpage_enabled())
3527 return;
3528 __clear_page_guard(zone, page, order, migratetype);
3529}
3530
5d6ad668 3531#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3532static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3533static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
884c175f
KW
3534static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3535static inline bool debug_guardpage_enabled(void) { return false; }
3536static inline bool page_is_guard(struct page *page) { return false; }
3537static inline bool set_page_guard(struct zone *zone, struct page *page,
3538 unsigned int order, int migratetype) { return false; }
3539static inline void clear_page_guard(struct zone *zone, struct page *page,
3540 unsigned int order, int migratetype) {}
5d6ad668 3541#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3542
a6c19dfe 3543#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3544extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3545extern int in_gate_area_no_mm(unsigned long addr);
3546extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3547#else
a6c19dfe
AL
3548static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3549{
3550 return NULL;
3551}
3552static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3553static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3554{
3555 return 0;
3556}
1da177e4
LT
3557#endif /* __HAVE_ARCH_GATE_AREA */
3558
44a70ade
MH
3559extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3560
146732ce
JT
3561#ifdef CONFIG_SYSCTL
3562extern int sysctl_drop_caches;
32927393
CH
3563int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3564 loff_t *);
146732ce
JT
3565#endif
3566
cb731d6c 3567void drop_slab(void);
9d0243bc 3568
7a9166e3
LY
3569#ifndef CONFIG_MMU
3570#define randomize_va_space 0
3571#else
a62eaf15 3572extern int randomize_va_space;
7a9166e3 3573#endif
a62eaf15 3574
045e72ac 3575const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3576#ifdef CONFIG_MMU
03252919 3577void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3578#else
3579static inline void print_vma_addr(char *prefix, unsigned long rip)
3580{
3581}
3582#endif
e6e5494c 3583
35fd1eb1 3584void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3585struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3586 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3587 struct dev_pagemap *pgmap);
7b09f5af
FC
3588void pmd_init(void *addr);
3589void pud_init(void *addr);
29c71111 3590pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3591p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3592pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3593pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3594pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3595 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3596void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3597struct vmem_altmap;
56993b4e
AK
3598void *vmemmap_alloc_block_buf(unsigned long size, int node,
3599 struct vmem_altmap *altmap);
8f6aac41 3600void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3601void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3602 unsigned long addr, unsigned long next);
3603int vmemmap_check_pmd(pmd_t *pmd, int node,
3604 unsigned long addr, unsigned long next);
0aad818b 3605int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3606 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3607int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3608 int node, struct vmem_altmap *altmap);
7b73d978
CH
3609int vmemmap_populate(unsigned long start, unsigned long end, int node,
3610 struct vmem_altmap *altmap);
c2b91e2e 3611void vmemmap_populate_print_last(void);
0197518c 3612#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3613void vmemmap_free(unsigned long start, unsigned long end,
3614 struct vmem_altmap *altmap);
0197518c 3615#endif
87a7ae75 3616
0b376f1e 3617#ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
87a7ae75
AK
3618static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3619 struct dev_pagemap *pgmap)
3620{
3621 return is_power_of_2(sizeof(struct page)) &&
3622 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3623}
3624#else
3625static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3626 struct dev_pagemap *pgmap)
3627{
3628 return false;
3629}
3630#endif
3631
46723bfa 3632void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3633 unsigned long nr_pages);
6a46079c 3634
82ba011b
AK
3635enum mf_flags {
3636 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3637 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3638 MF_MUST_KILL = 1 << 2,
cf870c70 3639 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3640 MF_UNPOISON = 1 << 4,
67f22ba7 3641 MF_SW_SIMULATED = 1 << 5,
38f6d293 3642 MF_NO_RETRY = 1 << 6,
82ba011b 3643};
c36e2024
SR
3644int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3645 unsigned long count, int mf_flags);
83b57531 3646extern int memory_failure(unsigned long pfn, int flags);
06202231 3647extern void memory_failure_queue_kick(int cpu);
847ce401 3648extern int unpoison_memory(unsigned long pfn);
d0505e9f 3649extern void shake_page(struct page *p);
5844a486 3650extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3651extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3652#ifdef CONFIG_MEMORY_FAILURE
870388db
KW
3653/*
3654 * Sysfs entries for memory failure handling statistics.
3655 */
3656extern const struct attribute_group memory_failure_attr_group;
d302c239 3657extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3658extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3659 bool *migratable_cleared);
5033091d
NH
3660void num_poisoned_pages_inc(unsigned long pfn);
3661void num_poisoned_pages_sub(unsigned long pfn, long i);
4248d008 3662struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
405ce051 3663#else
d302c239
TL
3664static inline void memory_failure_queue(unsigned long pfn, int flags)
3665{
3666}
3667
e591ef7d
NH
3668static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3669 bool *migratable_cleared)
405ce051
NH
3670{
3671 return 0;
3672}
d027122d 3673
a46c9304 3674static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3675{
3676}
5033091d
NH
3677
3678static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3679{
3680}
3681#endif
3682
4248d008
LX
3683#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3684void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3685 struct vm_area_struct *vma, struct list_head *to_kill,
3686 unsigned long ksm_addr);
3687#endif
3688
5033091d
NH
3689#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3690extern void memblk_nr_poison_inc(unsigned long pfn);
3691extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3692#else
3693static inline void memblk_nr_poison_inc(unsigned long pfn)
3694{
3695}
3696
3697static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3698{
3699}
405ce051 3700#endif
6a46079c 3701
03b122da
TL
3702#ifndef arch_memory_failure
3703static inline int arch_memory_failure(unsigned long pfn, int flags)
3704{
3705 return -ENXIO;
3706}
3707#endif
3708
3709#ifndef arch_is_platform_page
3710static inline bool arch_is_platform_page(u64 paddr)
3711{
3712 return false;
3713}
3714#endif
cc637b17
XX
3715
3716/*
3717 * Error handlers for various types of pages.
3718 */
cc3e2af4 3719enum mf_result {
cc637b17
XX
3720 MF_IGNORED, /* Error: cannot be handled */
3721 MF_FAILED, /* Error: handling failed */
3722 MF_DELAYED, /* Will be handled later */
3723 MF_RECOVERED, /* Successfully recovered */
3724};
3725
3726enum mf_action_page_type {
3727 MF_MSG_KERNEL,
3728 MF_MSG_KERNEL_HIGH_ORDER,
3729 MF_MSG_SLAB,
3730 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3731 MF_MSG_HUGE,
3732 MF_MSG_FREE_HUGE,
3733 MF_MSG_UNMAP_FAILED,
3734 MF_MSG_DIRTY_SWAPCACHE,
3735 MF_MSG_CLEAN_SWAPCACHE,
3736 MF_MSG_DIRTY_MLOCKED_LRU,
3737 MF_MSG_CLEAN_MLOCKED_LRU,
3738 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3739 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3740 MF_MSG_DIRTY_LRU,
3741 MF_MSG_CLEAN_LRU,
3742 MF_MSG_TRUNCATED_LRU,
3743 MF_MSG_BUDDY,
6100e34b 3744 MF_MSG_DAX,
5d1fd5dc 3745 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3746 MF_MSG_UNKNOWN,
3747};
3748
47ad8475
AA
3749#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3750extern void clear_huge_page(struct page *page,
c79b57e4 3751 unsigned long addr_hint,
47ad8475 3752 unsigned int pages_per_huge_page);
1cb9dc4b
LS
3753int copy_user_large_folio(struct folio *dst, struct folio *src,
3754 unsigned long addr_hint,
3755 struct vm_area_struct *vma);
e87340ca
Z
3756long copy_folio_from_user(struct folio *dst_folio,
3757 const void __user *usr_src,
3758 bool allow_pagefault);
2484ca9b
THV
3759
3760/**
3761 * vma_is_special_huge - Are transhuge page-table entries considered special?
3762 * @vma: Pointer to the struct vm_area_struct to consider
3763 *
3764 * Whether transhuge page-table entries are considered "special" following
3765 * the definition in vm_normal_page().
3766 *
3767 * Return: true if transhuge page-table entries should be considered special,
3768 * false otherwise.
3769 */
3770static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3771{
3772 return vma_is_dax(vma) || (vma->vm_file &&
3773 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3774}
3775
47ad8475
AA
3776#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3777
f9872caf
CS
3778#if MAX_NUMNODES > 1
3779void __init setup_nr_node_ids(void);
3780#else
3781static inline void setup_nr_node_ids(void) {}
3782#endif
3783
010c164a
SL
3784extern int memcmp_pages(struct page *page1, struct page *page2);
3785
3786static inline int pages_identical(struct page *page1, struct page *page2)
3787{
3788 return !memcmp_pages(page1, page2);
3789}
3790
c5acad84
TH
3791#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3792unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3793 pgoff_t first_index, pgoff_t nr,
3794 pgoff_t bitmap_pgoff,
3795 unsigned long *bitmap,
3796 pgoff_t *start,
3797 pgoff_t *end);
3798
3799unsigned long wp_shared_mapping_range(struct address_space *mapping,
3800 pgoff_t first_index, pgoff_t nr);
3801#endif
3802
2374c09b
CH
3803extern int sysctl_nr_trim_pages;
3804
5bb1bb35 3805#ifdef CONFIG_PRINTK
8e7f37f2 3806void mem_dump_obj(void *object);
5bb1bb35
PM
3807#else
3808static inline void mem_dump_obj(void *object) {}
3809#endif
8e7f37f2 3810
22247efd
PX
3811/**
3812 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3813 * @seals: the seals to check
3814 * @vma: the vma to operate on
3815 *
3816 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3817 * the vma flags. Return 0 if check pass, or <0 for errors.
3818 */
3819static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3820{
3821 if (seals & F_SEAL_FUTURE_WRITE) {
3822 /*
3823 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3824 * "future write" seal active.
3825 */
3826 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3827 return -EPERM;
3828
3829 /*
3830 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3831 * MAP_SHARED and read-only, take care to not allow mprotect to
3832 * revert protections on such mappings. Do this only for shared
3833 * mappings. For private mappings, don't need to mask
3834 * VM_MAYWRITE as we still want them to be COW-writable.
3835 */
3836 if (vma->vm_flags & VM_SHARED)
1c71222e 3837 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3838 }
3839
3840 return 0;
3841}
3842
9a10064f
CC
3843#ifdef CONFIG_ANON_VMA_NAME
3844int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3845 unsigned long len_in,
3846 struct anon_vma_name *anon_name);
9a10064f
CC
3847#else
3848static inline int
3849madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3850 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3851 return 0;
3852}
3853#endif
3854
1da177e4 3855#endif /* _LINUX_MM_H */
This page took 4.484789 seconds and 4 git commands to generate.