]> Git Repo - linux.git/blame - fs/xfs/xfs_file.c
xfs: validate extsz hints against rt extent size when rtinherit is set
[linux.git] / fs / xfs / xfs_file.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
dda35b8f 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
1da177e4 13#include "xfs_inode.h"
239880ef 14#include "xfs_trans.h"
fd3200be 15#include "xfs_inode_item.h"
dda35b8f 16#include "xfs_bmap.h"
c24b5dfa 17#include "xfs_bmap_util.h"
2b9ab5ab 18#include "xfs_dir2.h"
c24b5dfa 19#include "xfs_dir2_priv.h"
ddcd856d 20#include "xfs_ioctl.h"
dda35b8f 21#include "xfs_trace.h"
239880ef 22#include "xfs_log.h"
dc06f398 23#include "xfs_icache.h"
781355c6 24#include "xfs_pnfs.h"
68a9f5e7 25#include "xfs_iomap.h"
0613f16c 26#include "xfs_reflink.h"
1da177e4 27
2fe17c10 28#include <linux/falloc.h>
66114cad 29#include <linux/backing-dev.h>
a39e596b 30#include <linux/mman.h>
40144e49 31#include <linux/fadvise.h>
f736d93d 32#include <linux/mount.h>
1da177e4 33
f0f37e2f 34static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 35
25219dbf
DW
36/*
37 * Decide if the given file range is aligned to the size of the fundamental
38 * allocation unit for the file.
39 */
40static bool
41xfs_is_falloc_aligned(
42 struct xfs_inode *ip,
43 loff_t pos,
44 long long int len)
45{
46 struct xfs_mount *mp = ip->i_mount;
47 uint64_t mask;
48
49 if (XFS_IS_REALTIME_INODE(ip)) {
50 if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
51 u64 rextbytes;
52 u32 mod;
53
54 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
55 div_u64_rem(pos, rextbytes, &mod);
56 if (mod)
57 return false;
58 div_u64_rem(len, rextbytes, &mod);
59 return mod == 0;
60 }
61 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
62 } else {
63 mask = mp->m_sb.sb_blocksize - 1;
64 }
65
66 return !((pos | len) & mask);
67}
68
8add71ca
CH
69int
70xfs_update_prealloc_flags(
71 struct xfs_inode *ip,
72 enum xfs_prealloc_flags flags)
73{
74 struct xfs_trans *tp;
75 int error;
76
253f4911
CH
77 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
78 0, 0, 0, &tp);
79 if (error)
8add71ca 80 return error;
8add71ca
CH
81
82 xfs_ilock(ip, XFS_ILOCK_EXCL);
83 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
84
85 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
86 VFS_I(ip)->i_mode &= ~S_ISUID;
87 if (VFS_I(ip)->i_mode & S_IXGRP)
88 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
89 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
90 }
91
92 if (flags & XFS_PREALLOC_SET)
db07349d 93 ip->i_diflags |= XFS_DIFLAG_PREALLOC;
8add71ca 94 if (flags & XFS_PREALLOC_CLEAR)
db07349d 95 ip->i_diflags &= ~XFS_DIFLAG_PREALLOC;
8add71ca
CH
96
97 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
98 if (flags & XFS_PREALLOC_SYNC)
99 xfs_trans_set_sync(tp);
70393313 100 return xfs_trans_commit(tp);
8add71ca
CH
101}
102
1da2f2db
CH
103/*
104 * Fsync operations on directories are much simpler than on regular files,
105 * as there is no file data to flush, and thus also no need for explicit
106 * cache flush operations, and there are no non-transaction metadata updates
107 * on directories either.
108 */
109STATIC int
110xfs_dir_fsync(
111 struct file *file,
112 loff_t start,
113 loff_t end,
114 int datasync)
115{
116 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
1da2f2db
CH
117
118 trace_xfs_dir_fsync(ip);
54fbdd10 119 return xfs_log_force_inode(ip);
1da2f2db
CH
120}
121
f22c7f87
CH
122static xfs_lsn_t
123xfs_fsync_lsn(
124 struct xfs_inode *ip,
125 bool datasync)
126{
127 if (!xfs_ipincount(ip))
128 return 0;
129 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
130 return 0;
131 return ip->i_itemp->ili_last_lsn;
132}
133
134/*
135 * All metadata updates are logged, which means that we just have to flush the
136 * log up to the latest LSN that touched the inode.
137 *
138 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
139 * the log force before we clear the ili_fsync_fields field. This ensures that
140 * we don't get a racing sync operation that does not wait for the metadata to
141 * hit the journal before returning. If we race with clearing ili_fsync_fields,
142 * then all that will happen is the log force will do nothing as the lsn will
143 * already be on disk. We can't race with setting ili_fsync_fields because that
144 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
145 * shared until after the ili_fsync_fields is cleared.
146 */
147static int
148xfs_fsync_flush_log(
149 struct xfs_inode *ip,
150 bool datasync,
151 int *log_flushed)
152{
153 int error = 0;
154 xfs_lsn_t lsn;
155
156 xfs_ilock(ip, XFS_ILOCK_SHARED);
157 lsn = xfs_fsync_lsn(ip, datasync);
158 if (lsn) {
159 error = xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC,
160 log_flushed);
161
162 spin_lock(&ip->i_itemp->ili_lock);
163 ip->i_itemp->ili_fsync_fields = 0;
164 spin_unlock(&ip->i_itemp->ili_lock);
165 }
166 xfs_iunlock(ip, XFS_ILOCK_SHARED);
167 return error;
168}
169
fd3200be
CH
170STATIC int
171xfs_file_fsync(
172 struct file *file,
02c24a82
JB
173 loff_t start,
174 loff_t end,
fd3200be
CH
175 int datasync)
176{
f22c7f87 177 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
a27a263b 178 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
179 int error = 0;
180 int log_flushed = 0;
181
cca28fb8 182 trace_xfs_file_fsync(ip);
fd3200be 183
1b180274 184 error = file_write_and_wait_range(file, start, end);
02c24a82
JB
185 if (error)
186 return error;
187
a27a263b 188 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 189 return -EIO;
fd3200be
CH
190
191 xfs_iflags_clear(ip, XFS_ITRUNCATED);
192
2291dab2
DC
193 /*
194 * If we have an RT and/or log subvolume we need to make sure to flush
195 * the write cache the device used for file data first. This is to
196 * ensure newly written file data make it to disk before logging the new
197 * inode size in case of an extending write.
198 */
199 if (XFS_IS_REALTIME_INODE(ip))
200 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
201 else if (mp->m_logdev_targp != mp->m_ddev_targp)
202 xfs_blkdev_issue_flush(mp->m_ddev_targp);
a27a263b 203
fd3200be 204 /*
ae29e422
CH
205 * Any inode that has dirty modifications in the log is pinned. The
206 * racy check here for a pinned inode while not catch modifications
207 * that happen concurrently to the fsync call, but fsync semantics
208 * only require to sync previously completed I/O.
fd3200be 209 */
ae29e422
CH
210 if (xfs_ipincount(ip))
211 error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
b1037058 212
a27a263b
CH
213 /*
214 * If we only have a single device, and the log force about was
215 * a no-op we might have to flush the data device cache here.
216 * This can only happen for fdatasync/O_DSYNC if we were overwriting
217 * an already allocated file and thus do not have any metadata to
218 * commit.
219 */
2291dab2
DC
220 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
221 mp->m_logdev_targp == mp->m_ddev_targp)
a27a263b 222 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 223
2451337d 224 return error;
fd3200be
CH
225}
226
f50b8f47
CH
227static int
228xfs_ilock_iocb(
229 struct kiocb *iocb,
230 unsigned int lock_mode)
231{
232 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
233
234 if (iocb->ki_flags & IOCB_NOWAIT) {
235 if (!xfs_ilock_nowait(ip, lock_mode))
236 return -EAGAIN;
237 } else {
238 xfs_ilock(ip, lock_mode);
239 }
240
241 return 0;
242}
243
00258e36 244STATIC ssize_t
ee1b218b 245xfs_file_dio_read(
dda35b8f 246 struct kiocb *iocb,
b4f5d2c6 247 struct iov_iter *to)
dda35b8f 248{
acdda3aa 249 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
acdda3aa 250 ssize_t ret;
dda35b8f 251
3e40b13c 252 trace_xfs_file_direct_read(iocb, to);
dda35b8f 253
3e40b13c 254 if (!iov_iter_count(to))
f1285ff0 255 return 0; /* skip atime */
dda35b8f 256
a447d7cd
CH
257 file_accessed(iocb->ki_filp);
258
f50b8f47
CH
259 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
260 if (ret)
261 return ret;
2f632965 262 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0);
65523218 263 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
acdda3aa 264
16d4d435
CH
265 return ret;
266}
267
f021bd07 268static noinline ssize_t
16d4d435
CH
269xfs_file_dax_read(
270 struct kiocb *iocb,
271 struct iov_iter *to)
272{
6c31f495 273 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
274 ssize_t ret = 0;
275
3e40b13c 276 trace_xfs_file_dax_read(iocb, to);
16d4d435 277
3e40b13c 278 if (!iov_iter_count(to))
16d4d435
CH
279 return 0; /* skip atime */
280
f50b8f47
CH
281 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
282 if (ret)
283 return ret;
690c2a38 284 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
65523218 285 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 286
f1285ff0 287 file_accessed(iocb->ki_filp);
bbc5a740
CH
288 return ret;
289}
290
291STATIC ssize_t
ee1b218b 292xfs_file_buffered_read(
bbc5a740
CH
293 struct kiocb *iocb,
294 struct iov_iter *to)
295{
296 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
297 ssize_t ret;
298
3e40b13c 299 trace_xfs_file_buffered_read(iocb, to);
dda35b8f 300
f50b8f47
CH
301 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
302 if (ret)
303 return ret;
b4f5d2c6 304 ret = generic_file_read_iter(iocb, to);
65523218 305 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
306
307 return ret;
308}
309
310STATIC ssize_t
311xfs_file_read_iter(
312 struct kiocb *iocb,
313 struct iov_iter *to)
314{
16d4d435
CH
315 struct inode *inode = file_inode(iocb->ki_filp);
316 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
317 ssize_t ret = 0;
318
319 XFS_STATS_INC(mp, xs_read_calls);
320
321 if (XFS_FORCED_SHUTDOWN(mp))
322 return -EIO;
323
16d4d435
CH
324 if (IS_DAX(inode))
325 ret = xfs_file_dax_read(iocb, to);
326 else if (iocb->ki_flags & IOCB_DIRECT)
ee1b218b 327 ret = xfs_file_dio_read(iocb, to);
3176c3e0 328 else
ee1b218b 329 ret = xfs_file_buffered_read(iocb, to);
dda35b8f 330
dda35b8f 331 if (ret > 0)
ff6d6af2 332 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
333 return ret;
334}
335
4d8d1581
DC
336/*
337 * Common pre-write limit and setup checks.
338 *
5bf1f262
CH
339 * Called with the iolocked held either shared and exclusive according to
340 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
341 * if called for a direct write beyond i_size.
4d8d1581
DC
342 */
343STATIC ssize_t
ee1b218b 344xfs_file_write_checks(
99733fa3
AV
345 struct kiocb *iocb,
346 struct iov_iter *from,
4d8d1581
DC
347 int *iolock)
348{
99733fa3 349 struct file *file = iocb->ki_filp;
4d8d1581
DC
350 struct inode *inode = file->f_mapping->host;
351 struct xfs_inode *ip = XFS_I(inode);
3309dd04 352 ssize_t error = 0;
99733fa3 353 size_t count = iov_iter_count(from);
3136e8bb 354 bool drained_dio = false;
f5c54717 355 loff_t isize;
4d8d1581 356
7271d243 357restart:
3309dd04
AV
358 error = generic_write_checks(iocb, from);
359 if (error <= 0)
4d8d1581 360 return error;
4d8d1581 361
354be7e3
CH
362 if (iocb->ki_flags & IOCB_NOWAIT) {
363 error = break_layout(inode, false);
364 if (error == -EWOULDBLOCK)
365 error = -EAGAIN;
366 } else {
367 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
368 }
369
781355c6
CH
370 if (error)
371 return error;
372
65523218
CH
373 /*
374 * For changing security info in file_remove_privs() we need i_rwsem
375 * exclusively.
376 */
a6de82ca 377 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 378 xfs_iunlock(ip, *iolock);
a6de82ca 379 *iolock = XFS_IOLOCK_EXCL;
354be7e3
CH
380 error = xfs_ilock_iocb(iocb, *iolock);
381 if (error) {
382 *iolock = 0;
383 return error;
384 }
a6de82ca
JK
385 goto restart;
386 }
4d8d1581
DC
387 /*
388 * If the offset is beyond the size of the file, we need to zero any
389 * blocks that fall between the existing EOF and the start of this
2813d682 390 * write. If zeroing is needed and we are currently holding the
467f7899
CH
391 * iolock shared, we need to update it to exclusive which implies
392 * having to redo all checks before.
b9d59846
DC
393 *
394 * We need to serialise against EOF updates that occur in IO
395 * completions here. We want to make sure that nobody is changing the
396 * size while we do this check until we have placed an IO barrier (i.e.
397 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
398 * The spinlock effectively forms a memory barrier once we have the
399 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
400 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 401 */
b9d59846 402 spin_lock(&ip->i_flags_lock);
f5c54717
CH
403 isize = i_size_read(inode);
404 if (iocb->ki_pos > isize) {
b9d59846 405 spin_unlock(&ip->i_flags_lock);
354be7e3
CH
406
407 if (iocb->ki_flags & IOCB_NOWAIT)
408 return -EAGAIN;
409
3136e8bb
BF
410 if (!drained_dio) {
411 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 412 xfs_iunlock(ip, *iolock);
3136e8bb 413 *iolock = XFS_IOLOCK_EXCL;
65523218 414 xfs_ilock(ip, *iolock);
3136e8bb
BF
415 iov_iter_reexpand(from, count);
416 }
40c63fbc
DC
417 /*
418 * We now have an IO submission barrier in place, but
419 * AIO can do EOF updates during IO completion and hence
420 * we now need to wait for all of them to drain. Non-AIO
421 * DIO will have drained before we are given the
422 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
423 * no-op.
424 */
425 inode_dio_wait(inode);
3136e8bb 426 drained_dio = true;
7271d243
DC
427 goto restart;
428 }
f5c54717
CH
429
430 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
431 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
f150b423 432 NULL, &xfs_buffered_write_iomap_ops);
467f7899
CH
433 if (error)
434 return error;
b9d59846
DC
435 } else
436 spin_unlock(&ip->i_flags_lock);
4d8d1581 437
8c3f406c 438 return file_modified(file);
4d8d1581
DC
439}
440
acdda3aa
CH
441static int
442xfs_dio_write_end_io(
443 struct kiocb *iocb,
444 ssize_t size,
6fe7b990 445 int error,
acdda3aa
CH
446 unsigned flags)
447{
448 struct inode *inode = file_inode(iocb->ki_filp);
449 struct xfs_inode *ip = XFS_I(inode);
450 loff_t offset = iocb->ki_pos;
73d30d48 451 unsigned int nofs_flag;
acdda3aa
CH
452
453 trace_xfs_end_io_direct_write(ip, offset, size);
454
455 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
456 return -EIO;
457
6fe7b990
MB
458 if (error)
459 return error;
460 if (!size)
461 return 0;
acdda3aa 462
ed5c3e66
DC
463 /*
464 * Capture amount written on completion as we can't reliably account
465 * for it on submission.
466 */
467 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
468
73d30d48
CH
469 /*
470 * We can allocate memory here while doing writeback on behalf of
471 * memory reclaim. To avoid memory allocation deadlocks set the
472 * task-wide nofs context for the following operations.
473 */
474 nofs_flag = memalloc_nofs_save();
475
ee70daab
EG
476 if (flags & IOMAP_DIO_COW) {
477 error = xfs_reflink_end_cow(ip, offset, size);
478 if (error)
73d30d48 479 goto out;
ee70daab
EG
480 }
481
482 /*
483 * Unwritten conversion updates the in-core isize after extent
484 * conversion but before updating the on-disk size. Updating isize any
485 * earlier allows a racing dio read to find unwritten extents before
486 * they are converted.
487 */
73d30d48
CH
488 if (flags & IOMAP_DIO_UNWRITTEN) {
489 error = xfs_iomap_write_unwritten(ip, offset, size, true);
490 goto out;
491 }
ee70daab 492
acdda3aa
CH
493 /*
494 * We need to update the in-core inode size here so that we don't end up
495 * with the on-disk inode size being outside the in-core inode size. We
496 * have no other method of updating EOF for AIO, so always do it here
497 * if necessary.
498 *
499 * We need to lock the test/set EOF update as we can be racing with
500 * other IO completions here to update the EOF. Failing to serialise
501 * here can result in EOF moving backwards and Bad Things Happen when
502 * that occurs.
503 */
504 spin_lock(&ip->i_flags_lock);
505 if (offset + size > i_size_read(inode)) {
506 i_size_write(inode, offset + size);
ee70daab 507 spin_unlock(&ip->i_flags_lock);
acdda3aa 508 error = xfs_setfilesize(ip, offset, size);
ee70daab
EG
509 } else {
510 spin_unlock(&ip->i_flags_lock);
511 }
acdda3aa 512
73d30d48
CH
513out:
514 memalloc_nofs_restore(nofs_flag);
acdda3aa
CH
515 return error;
516}
517
838c4f3d
CH
518static const struct iomap_dio_ops xfs_dio_write_ops = {
519 .end_io = xfs_dio_write_end_io,
520};
521
f0d26e86 522/*
caa89dbc 523 * Handle block aligned direct I/O writes
f0d26e86 524 */
caa89dbc
DC
525static noinline ssize_t
526xfs_file_dio_write_aligned(
527 struct xfs_inode *ip,
f0d26e86 528 struct kiocb *iocb,
b3188919 529 struct iov_iter *from)
f0d26e86 530{
caa89dbc
DC
531 int iolock = XFS_IOLOCK_SHARED;
532 ssize_t ret;
f0d26e86 533
caa89dbc
DC
534 ret = xfs_ilock_iocb(iocb, iolock);
535 if (ret)
536 return ret;
537 ret = xfs_file_write_checks(iocb, from, &iolock);
538 if (ret)
539 goto out_unlock;
f0d26e86 540
7271d243 541 /*
caa89dbc
DC
542 * We don't need to hold the IOLOCK exclusively across the IO, so demote
543 * the iolock back to shared if we had to take the exclusive lock in
544 * xfs_file_write_checks() for other reasons.
7271d243 545 */
caa89dbc
DC
546 if (iolock == XFS_IOLOCK_EXCL) {
547 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 548 iolock = XFS_IOLOCK_SHARED;
c58cb165 549 }
caa89dbc
DC
550 trace_xfs_file_direct_write(iocb, from);
551 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
552 &xfs_dio_write_ops, 0);
553out_unlock:
554 if (iolock)
555 xfs_iunlock(ip, iolock);
556 return ret;
557}
f0d26e86 558
caa89dbc
DC
559/*
560 * Handle block unaligned direct I/O writes
561 *
562 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
563 * them to be done in parallel with reads and other direct I/O writes. However,
564 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
565 * to do sub-block zeroing and that requires serialisation against other direct
566 * I/O to the same block. In this case we need to serialise the submission of
567 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
ed1128c2
DC
568 * In the case where sub-block zeroing is not required, we can do concurrent
569 * sub-block dios to the same block successfully.
caa89dbc 570 *
ed1128c2
DC
571 * Optimistically submit the I/O using the shared lock first, but use the
572 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
573 * if block allocation or partial block zeroing would be required. In that case
574 * we try again with the exclusive lock.
caa89dbc
DC
575 */
576static noinline ssize_t
577xfs_file_dio_write_unaligned(
578 struct xfs_inode *ip,
579 struct kiocb *iocb,
580 struct iov_iter *from)
581{
ed1128c2
DC
582 size_t isize = i_size_read(VFS_I(ip));
583 size_t count = iov_iter_count(from);
584 int iolock = XFS_IOLOCK_SHARED;
585 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
caa89dbc
DC
586 ssize_t ret;
587
ed1128c2
DC
588 /*
589 * Extending writes need exclusivity because of the sub-block zeroing
590 * that the DIO code always does for partial tail blocks beyond EOF, so
591 * don't even bother trying the fast path in this case.
592 */
593 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
594retry_exclusive:
595 if (iocb->ki_flags & IOCB_NOWAIT)
596 return -EAGAIN;
597 iolock = XFS_IOLOCK_EXCL;
598 flags = IOMAP_DIO_FORCE_WAIT;
599 }
600
601 ret = xfs_ilock_iocb(iocb, iolock);
602 if (ret)
603 return ret;
caa89dbc
DC
604
605 /*
606 * We can't properly handle unaligned direct I/O to reflink files yet,
607 * as we can't unshare a partial block.
608 */
609 if (xfs_is_cow_inode(ip)) {
610 trace_xfs_reflink_bounce_dio_write(iocb, from);
611 ret = -ENOTBLK;
612 goto out_unlock;
29a5d29e 613 }
0ee7a3f6 614
ee1b218b 615 ret = xfs_file_write_checks(iocb, from, &iolock);
4d8d1581 616 if (ret)
caa89dbc 617 goto out_unlock;
f0d26e86 618
eda77982 619 /*
ed1128c2
DC
620 * If we are doing exclusive unaligned I/O, this must be the only I/O
621 * in-flight. Otherwise we risk data corruption due to unwritten extent
622 * conversions from the AIO end_io handler. Wait for all other I/O to
623 * drain first.
eda77982 624 */
ed1128c2
DC
625 if (flags & IOMAP_DIO_FORCE_WAIT)
626 inode_dio_wait(VFS_I(ip));
f0d26e86 627
3e40b13c 628 trace_xfs_file_direct_write(iocb, from);
f150b423 629 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
ed1128c2
DC
630 &xfs_dio_write_ops, flags);
631
632 /*
633 * Retry unaligned I/O with exclusive blocking semantics if the DIO
634 * layer rejected it for mapping or locking reasons. If we are doing
635 * nonblocking user I/O, propagate the error.
636 */
637 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
638 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
639 xfs_iunlock(ip, iolock);
640 goto retry_exclusive;
641 }
642
caa89dbc 643out_unlock:
354be7e3
CH
644 if (iolock)
645 xfs_iunlock(ip, iolock);
16d4d435
CH
646 return ret;
647}
648
caa89dbc
DC
649static ssize_t
650xfs_file_dio_write(
651 struct kiocb *iocb,
652 struct iov_iter *from)
653{
654 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
655 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
656 size_t count = iov_iter_count(from);
657
658 /* direct I/O must be aligned to device logical sector size */
659 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
660 return -EINVAL;
661 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
662 return xfs_file_dio_write_unaligned(ip, iocb, from);
663 return xfs_file_dio_write_aligned(ip, iocb, from);
664}
665
f021bd07 666static noinline ssize_t
16d4d435
CH
667xfs_file_dax_write(
668 struct kiocb *iocb,
669 struct iov_iter *from)
670{
6c31f495 671 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 672 struct xfs_inode *ip = XFS_I(inode);
17879e8f 673 int iolock = XFS_IOLOCK_EXCL;
6c31f495 674 ssize_t ret, error = 0;
6c31f495 675 loff_t pos;
16d4d435 676
f50b8f47
CH
677 ret = xfs_ilock_iocb(iocb, iolock);
678 if (ret)
679 return ret;
ee1b218b 680 ret = xfs_file_write_checks(iocb, from, &iolock);
16d4d435
CH
681 if (ret)
682 goto out;
683
6c31f495 684 pos = iocb->ki_pos;
8b2180b3 685
3e40b13c 686 trace_xfs_file_dax_write(iocb, from);
f150b423 687 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
6c31f495
CH
688 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
689 i_size_write(inode, iocb->ki_pos);
690 error = xfs_setfilesize(ip, pos, ret);
16d4d435 691 }
16d4d435 692out:
354be7e3
CH
693 if (iolock)
694 xfs_iunlock(ip, iolock);
ed5c3e66
DC
695 if (error)
696 return error;
697
698 if (ret > 0) {
699 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
700
701 /* Handle various SYNC-type writes */
702 ret = generic_write_sync(iocb, ret);
703 }
704 return ret;
f0d26e86
DC
705}
706
00258e36 707STATIC ssize_t
ee1b218b 708xfs_file_buffered_write(
dda35b8f 709 struct kiocb *iocb,
b3188919 710 struct iov_iter *from)
dda35b8f
CH
711{
712 struct file *file = iocb->ki_filp;
713 struct address_space *mapping = file->f_mapping;
714 struct inode *inode = mapping->host;
00258e36 715 struct xfs_inode *ip = XFS_I(inode);
637bbc75 716 ssize_t ret;
a636b1d1 717 bool cleared_space = false;
c3155097 718 int iolock;
dda35b8f 719
91f9943e
CH
720 if (iocb->ki_flags & IOCB_NOWAIT)
721 return -EOPNOTSUPP;
722
c3155097
BF
723write_retry:
724 iolock = XFS_IOLOCK_EXCL;
65523218 725 xfs_ilock(ip, iolock);
dda35b8f 726
ee1b218b 727 ret = xfs_file_write_checks(iocb, from, &iolock);
4d8d1581 728 if (ret)
d0606464 729 goto out;
dda35b8f
CH
730
731 /* We can write back this queue in page reclaim */
de1414a6 732 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 733
3e40b13c 734 trace_xfs_file_buffered_write(iocb, from);
f150b423
CH
735 ret = iomap_file_buffered_write(iocb, from,
736 &xfs_buffered_write_iomap_ops);
0a64bc2c 737 if (likely(ret >= 0))
99733fa3 738 iocb->ki_pos += ret;
dc06f398 739
637bbc75 740 /*
dc06f398
BF
741 * If we hit a space limit, try to free up some lingering preallocated
742 * space before returning an error. In the case of ENOSPC, first try to
743 * write back all dirty inodes to free up some of the excess reserved
744 * metadata space. This reduces the chances that the eofblocks scan
745 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
746 * also behaves as a filter to prevent too many eofblocks scans from
111068f8
DW
747 * running at the same time. Use a synchronous scan to increase the
748 * effectiveness of the scan.
637bbc75 749 */
a636b1d1 750 if (ret == -EDQUOT && !cleared_space) {
c3155097 751 xfs_iunlock(ip, iolock);
111068f8
DW
752 xfs_blockgc_free_quota(ip, XFS_EOF_FLAGS_SYNC);
753 cleared_space = true;
754 goto write_retry;
a636b1d1 755 } else if (ret == -ENOSPC && !cleared_space) {
dc06f398
BF
756 struct xfs_eofblocks eofb = {0};
757
a636b1d1 758 cleared_space = true;
9aa05000 759 xfs_flush_inodes(ip->i_mount);
c3155097
BF
760
761 xfs_iunlock(ip, iolock);
dc06f398 762 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
85c5b270 763 xfs_blockgc_free_space(ip->i_mount, &eofb);
9aa05000 764 goto write_retry;
dda35b8f 765 }
d0606464 766
dda35b8f 767 current->backing_dev_info = NULL;
d0606464 768out:
c3155097
BF
769 if (iolock)
770 xfs_iunlock(ip, iolock);
ed5c3e66
DC
771
772 if (ret > 0) {
773 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
774 /* Handle various SYNC-type writes */
775 ret = generic_write_sync(iocb, ret);
776 }
637bbc75
DC
777 return ret;
778}
779
780STATIC ssize_t
bf97f3bc 781xfs_file_write_iter(
637bbc75 782 struct kiocb *iocb,
bf97f3bc 783 struct iov_iter *from)
637bbc75
DC
784{
785 struct file *file = iocb->ki_filp;
786 struct address_space *mapping = file->f_mapping;
787 struct inode *inode = mapping->host;
788 struct xfs_inode *ip = XFS_I(inode);
789 ssize_t ret;
bf97f3bc 790 size_t ocount = iov_iter_count(from);
637bbc75 791
ff6d6af2 792 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 793
637bbc75
DC
794 if (ocount == 0)
795 return 0;
796
bf97f3bc
AV
797 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
798 return -EIO;
637bbc75 799
16d4d435 800 if (IS_DAX(inode))
ed5c3e66
DC
801 return xfs_file_dax_write(iocb, from);
802
803 if (iocb->ki_flags & IOCB_DIRECT) {
0613f16c
DW
804 /*
805 * Allow a directio write to fall back to a buffered
806 * write *only* in the case that we're doing a reflink
807 * CoW. In all other directio scenarios we do not
808 * allow an operation to fall back to buffered mode.
809 */
ee1b218b 810 ret = xfs_file_dio_write(iocb, from);
80e543ae 811 if (ret != -ENOTBLK)
ed5c3e66 812 return ret;
0613f16c 813 }
dda35b8f 814
ee1b218b 815 return xfs_file_buffered_write(iocb, from);
dda35b8f
CH
816}
817
d6dc57e2
DW
818static void
819xfs_wait_dax_page(
e25ff835 820 struct inode *inode)
d6dc57e2
DW
821{
822 struct xfs_inode *ip = XFS_I(inode);
823
d6dc57e2
DW
824 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
825 schedule();
826 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
827}
828
829static int
830xfs_break_dax_layouts(
831 struct inode *inode,
e25ff835 832 bool *retry)
d6dc57e2
DW
833{
834 struct page *page;
835
836 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
837
838 page = dax_layout_busy_page(inode->i_mapping);
839 if (!page)
840 return 0;
841
e25ff835 842 *retry = true;
d6dc57e2
DW
843 return ___wait_var_event(&page->_refcount,
844 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
e25ff835 845 0, 0, xfs_wait_dax_page(inode));
d6dc57e2
DW
846}
847
69eb5fa1
DW
848int
849xfs_break_layouts(
850 struct inode *inode,
851 uint *iolock,
852 enum layout_break_reason reason)
853{
854 bool retry;
d6dc57e2 855 int error;
69eb5fa1
DW
856
857 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
858
d6dc57e2
DW
859 do {
860 retry = false;
861 switch (reason) {
862 case BREAK_UNMAP:
a4722a64 863 error = xfs_break_dax_layouts(inode, &retry);
d6dc57e2
DW
864 if (error || retry)
865 break;
866 /* fall through */
867 case BREAK_WRITE:
868 error = xfs_break_leased_layouts(inode, iolock, &retry);
869 break;
870 default:
871 WARN_ON_ONCE(1);
872 error = -EINVAL;
873 }
874 } while (error == 0 && retry);
875
876 return error;
69eb5fa1
DW
877}
878
a904b1ca
NJ
879#define XFS_FALLOC_FL_SUPPORTED \
880 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
881 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 882 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 883
2fe17c10
CH
884STATIC long
885xfs_file_fallocate(
83aee9e4
CH
886 struct file *file,
887 int mode,
888 loff_t offset,
889 loff_t len)
2fe17c10 890{
83aee9e4
CH
891 struct inode *inode = file_inode(file);
892 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 893 long error;
8add71ca 894 enum xfs_prealloc_flags flags = 0;
c63a8eae 895 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
83aee9e4 896 loff_t new_size = 0;
749f24f3 897 bool do_file_insert = false;
2fe17c10 898
83aee9e4
CH
899 if (!S_ISREG(inode->i_mode))
900 return -EINVAL;
a904b1ca 901 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
902 return -EOPNOTSUPP;
903
781355c6 904 xfs_ilock(ip, iolock);
69eb5fa1 905 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
781355c6
CH
906 if (error)
907 goto out_unlock;
908
249bd908
DC
909 /*
910 * Must wait for all AIO to complete before we continue as AIO can
911 * change the file size on completion without holding any locks we
912 * currently hold. We must do this first because AIO can update both
913 * the on disk and in memory inode sizes, and the operations that follow
914 * require the in-memory size to be fully up-to-date.
915 */
916 inode_dio_wait(inode);
917
918 /*
919 * Now AIO and DIO has drained we flush and (if necessary) invalidate
920 * the cached range over the first operation we are about to run.
921 *
922 * We care about zero and collapse here because they both run a hole
923 * punch over the range first. Because that can zero data, and the range
924 * of invalidation for the shift operations is much larger, we still do
925 * the required flush for collapse in xfs_prepare_shift().
926 *
927 * Insert has the same range requirements as collapse, and we extend the
928 * file first which can zero data. Hence insert has the same
929 * flush/invalidate requirements as collapse and so they are both
930 * handled at the right time by xfs_prepare_shift().
931 */
932 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
933 FALLOC_FL_COLLAPSE_RANGE)) {
934 error = xfs_flush_unmap_range(ip, offset, len);
935 if (error)
936 goto out_unlock;
937 }
938
83aee9e4
CH
939 if (mode & FALLOC_FL_PUNCH_HOLE) {
940 error = xfs_free_file_space(ip, offset, len);
941 if (error)
942 goto out_unlock;
e1d8fb88 943 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
25219dbf 944 if (!xfs_is_falloc_aligned(ip, offset, len)) {
2451337d 945 error = -EINVAL;
e1d8fb88
NJ
946 goto out_unlock;
947 }
948
23fffa92
LC
949 /*
950 * There is no need to overlap collapse range with EOF,
951 * in which case it is effectively a truncate operation
952 */
953 if (offset + len >= i_size_read(inode)) {
2451337d 954 error = -EINVAL;
23fffa92
LC
955 goto out_unlock;
956 }
957
e1d8fb88
NJ
958 new_size = i_size_read(inode) - len;
959
960 error = xfs_collapse_file_space(ip, offset, len);
961 if (error)
962 goto out_unlock;
a904b1ca 963 } else if (mode & FALLOC_FL_INSERT_RANGE) {
7d83fb14 964 loff_t isize = i_size_read(inode);
a904b1ca 965
25219dbf 966 if (!xfs_is_falloc_aligned(ip, offset, len)) {
a904b1ca
NJ
967 error = -EINVAL;
968 goto out_unlock;
969 }
970
7d83fb14
DW
971 /*
972 * New inode size must not exceed ->s_maxbytes, accounting for
973 * possible signed overflow.
974 */
975 if (inode->i_sb->s_maxbytes - isize < len) {
a904b1ca
NJ
976 error = -EFBIG;
977 goto out_unlock;
978 }
7d83fb14 979 new_size = isize + len;
a904b1ca
NJ
980
981 /* Offset should be less than i_size */
7d83fb14 982 if (offset >= isize) {
a904b1ca
NJ
983 error = -EINVAL;
984 goto out_unlock;
985 }
749f24f3 986 do_file_insert = true;
83aee9e4 987 } else {
8add71ca
CH
988 flags |= XFS_PREALLOC_SET;
989
83aee9e4
CH
990 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
991 offset + len > i_size_read(inode)) {
992 new_size = offset + len;
2451337d 993 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
994 if (error)
995 goto out_unlock;
996 }
2fe17c10 997
66ae56a5 998 if (mode & FALLOC_FL_ZERO_RANGE) {
360c09c0
CH
999 /*
1000 * Punch a hole and prealloc the range. We use a hole
1001 * punch rather than unwritten extent conversion for two
1002 * reasons:
1003 *
1004 * 1.) Hole punch handles partial block zeroing for us.
1005 * 2.) If prealloc returns ENOSPC, the file range is
1006 * still zero-valued by virtue of the hole punch.
1007 */
1008 unsigned int blksize = i_blocksize(inode);
1009
1010 trace_xfs_zero_file_space(ip);
1011
1012 error = xfs_free_file_space(ip, offset, len);
1013 if (error)
1014 goto out_unlock;
1015
1016 len = round_up(offset + len, blksize) -
1017 round_down(offset, blksize);
1018 offset = round_down(offset, blksize);
66ae56a5
CH
1019 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1020 error = xfs_reflink_unshare(ip, offset, len);
1021 if (error)
1022 goto out_unlock;
66ae56a5
CH
1023 } else {
1024 /*
1025 * If always_cow mode we can't use preallocations and
1026 * thus should not create them.
1027 */
1028 if (xfs_is_always_cow_inode(ip)) {
1029 error = -EOPNOTSUPP;
1030 goto out_unlock;
1031 }
360c09c0 1032 }
66ae56a5 1033
360c09c0 1034 if (!xfs_is_always_cow_inode(ip)) {
376ba313
LC
1035 error = xfs_alloc_file_space(ip, offset, len,
1036 XFS_BMAPI_PREALLOC);
360c09c0
CH
1037 if (error)
1038 goto out_unlock;
98cc2db5 1039 }
2fe17c10
CH
1040 }
1041
83aee9e4 1042 if (file->f_flags & O_DSYNC)
8add71ca
CH
1043 flags |= XFS_PREALLOC_SYNC;
1044
1045 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
1046 if (error)
1047 goto out_unlock;
1048
1049 /* Change file size if needed */
1050 if (new_size) {
1051 struct iattr iattr;
1052
1053 iattr.ia_valid = ATTR_SIZE;
1054 iattr.ia_size = new_size;
f736d93d
CH
1055 error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1056 file_dentry(file), &iattr);
a904b1ca
NJ
1057 if (error)
1058 goto out_unlock;
2fe17c10
CH
1059 }
1060
a904b1ca
NJ
1061 /*
1062 * Perform hole insertion now that the file size has been
1063 * updated so that if we crash during the operation we don't
1064 * leave shifted extents past EOF and hence losing access to
1065 * the data that is contained within them.
1066 */
1067 if (do_file_insert)
1068 error = xfs_insert_file_space(ip, offset, len);
1069
2fe17c10 1070out_unlock:
781355c6 1071 xfs_iunlock(ip, iolock);
2451337d 1072 return error;
2fe17c10
CH
1073}
1074
40144e49
JK
1075STATIC int
1076xfs_file_fadvise(
1077 struct file *file,
1078 loff_t start,
1079 loff_t end,
1080 int advice)
1081{
1082 struct xfs_inode *ip = XFS_I(file_inode(file));
1083 int ret;
1084 int lockflags = 0;
1085
1086 /*
1087 * Operations creating pages in page cache need protection from hole
1088 * punching and similar ops
1089 */
1090 if (advice == POSIX_FADV_WILLNEED) {
1091 lockflags = XFS_IOLOCK_SHARED;
1092 xfs_ilock(ip, lockflags);
1093 }
1094 ret = generic_fadvise(file, start, end, advice);
1095 if (lockflags)
1096 xfs_iunlock(ip, lockflags);
1097 return ret;
1098}
3fc9f5e4 1099
5ffce3cc
DW
1100/* Does this file, inode, or mount want synchronous writes? */
1101static inline bool xfs_file_sync_writes(struct file *filp)
1102{
1103 struct xfs_inode *ip = XFS_I(file_inode(filp));
1104
1105 if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1106 return true;
1107 if (filp->f_flags & (__O_SYNC | O_DSYNC))
1108 return true;
1109 if (IS_SYNC(file_inode(filp)))
1110 return true;
1111
1112 return false;
1113}
1114
da034bcc 1115STATIC loff_t
2e5dfc99 1116xfs_file_remap_range(
3fc9f5e4
DW
1117 struct file *file_in,
1118 loff_t pos_in,
1119 struct file *file_out,
1120 loff_t pos_out,
1121 loff_t len,
1122 unsigned int remap_flags)
9fe26045 1123{
3fc9f5e4
DW
1124 struct inode *inode_in = file_inode(file_in);
1125 struct xfs_inode *src = XFS_I(inode_in);
1126 struct inode *inode_out = file_inode(file_out);
1127 struct xfs_inode *dest = XFS_I(inode_out);
1128 struct xfs_mount *mp = src->i_mount;
1129 loff_t remapped = 0;
1130 xfs_extlen_t cowextsize;
1131 int ret;
1132
2e5dfc99
DW
1133 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1134 return -EINVAL;
cc714660 1135
3fc9f5e4
DW
1136 if (!xfs_sb_version_hasreflink(&mp->m_sb))
1137 return -EOPNOTSUPP;
1138
1139 if (XFS_FORCED_SHUTDOWN(mp))
1140 return -EIO;
1141
1142 /* Prepare and then clone file data. */
1143 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1144 &len, remap_flags);
451d34ee 1145 if (ret || len == 0)
3fc9f5e4
DW
1146 return ret;
1147
1148 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1149
1150 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1151 &remapped);
1152 if (ret)
1153 goto out_unlock;
1154
1155 /*
1156 * Carry the cowextsize hint from src to dest if we're sharing the
1157 * entire source file to the entire destination file, the source file
1158 * has a cowextsize hint, and the destination file does not.
1159 */
1160 cowextsize = 0;
1161 if (pos_in == 0 && len == i_size_read(inode_in) &&
3e09ab8f 1162 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
3fc9f5e4 1163 pos_out == 0 && len >= i_size_read(inode_out) &&
3e09ab8f 1164 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
b33ce57d 1165 cowextsize = src->i_cowextsize;
3fc9f5e4
DW
1166
1167 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1168 remap_flags);
5833112d
CH
1169 if (ret)
1170 goto out_unlock;
3fc9f5e4 1171
5ffce3cc 1172 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
5833112d 1173 xfs_log_force_inode(dest);
3fc9f5e4 1174out_unlock:
e2aaee9c 1175 xfs_iunlock2_io_mmap(src, dest);
3fc9f5e4
DW
1176 if (ret)
1177 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1178 return remapped > 0 ? remapped : ret;
9fe26045 1179}
2fe17c10 1180
1da177e4 1181STATIC int
3562fd45 1182xfs_file_open(
1da177e4 1183 struct inode *inode,
f999a5bf 1184 struct file *file)
1da177e4 1185{
f999a5bf 1186 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 1187 return -EFBIG;
f999a5bf
CH
1188 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1189 return -EIO;
f89fb730 1190 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
f999a5bf
CH
1191 return 0;
1192}
1193
1194STATIC int
1195xfs_dir_open(
1196 struct inode *inode,
1197 struct file *file)
1198{
1199 struct xfs_inode *ip = XFS_I(inode);
1200 int mode;
1201 int error;
1202
1203 error = xfs_file_open(inode, file);
1204 if (error)
1205 return error;
1206
1207 /*
1208 * If there are any blocks, read-ahead block 0 as we're almost
1209 * certain to have the next operation be a read there.
1210 */
309ecac8 1211 mode = xfs_ilock_data_map_shared(ip);
daf83964 1212 if (ip->i_df.if_nextents > 0)
06566fda 1213 error = xfs_dir3_data_readahead(ip, 0, 0);
f999a5bf 1214 xfs_iunlock(ip, mode);
7a652bbe 1215 return error;
1da177e4
LT
1216}
1217
1da177e4 1218STATIC int
3562fd45 1219xfs_file_release(
1da177e4
LT
1220 struct inode *inode,
1221 struct file *filp)
1222{
2451337d 1223 return xfs_release(XFS_I(inode));
1da177e4
LT
1224}
1225
1da177e4 1226STATIC int
3562fd45 1227xfs_file_readdir(
b8227554
AV
1228 struct file *file,
1229 struct dir_context *ctx)
1da177e4 1230{
b8227554 1231 struct inode *inode = file_inode(file);
739bfb2a 1232 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1233 size_t bufsize;
1234
1235 /*
1236 * The Linux API doesn't pass down the total size of the buffer
1237 * we read into down to the filesystem. With the filldir concept
1238 * it's not needed for correct information, but the XFS dir2 leaf
1239 * code wants an estimate of the buffer size to calculate it's
1240 * readahead window and size the buffers used for mapping to
1241 * physical blocks.
1242 *
1243 * Try to give it an estimate that's good enough, maybe at some
1244 * point we can change the ->readdir prototype to include the
a9cc799e 1245 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1246 */
13d2c10b 1247 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
051e7cd4 1248
acb9553c 1249 return xfs_readdir(NULL, ip, ctx, bufsize);
3fe3e6b1
JL
1250}
1251
1252STATIC loff_t
1253xfs_file_llseek(
1254 struct file *file,
1255 loff_t offset,
59f9c004 1256 int whence)
3fe3e6b1 1257{
9b2970aa
CH
1258 struct inode *inode = file->f_mapping->host;
1259
1260 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1261 return -EIO;
1262
59f9c004 1263 switch (whence) {
9b2970aa 1264 default:
59f9c004 1265 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1266 case SEEK_HOLE:
60271ab7 1267 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
9b2970aa 1268 break;
49c69591 1269 case SEEK_DATA:
60271ab7 1270 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
9b2970aa 1271 break;
3fe3e6b1 1272 }
9b2970aa
CH
1273
1274 if (offset < 0)
1275 return offset;
1276 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1277}
1278
de0e8c20
DC
1279/*
1280 * Locking for serialisation of IO during page faults. This results in a lock
1281 * ordering of:
1282 *
c1e8d7c6 1283 * mmap_lock (MM)
6b698ede 1284 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1285 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1286 * page_lock (MM)
1287 * i_lock (XFS - extent map serialisation)
de0e8c20 1288 */
05edd888 1289static vm_fault_t
d522d569
CH
1290__xfs_filemap_fault(
1291 struct vm_fault *vmf,
1292 enum page_entry_size pe_size,
1293 bool write_fault)
de0e8c20 1294{
11bac800 1295 struct inode *inode = file_inode(vmf->vma->vm_file);
d522d569 1296 struct xfs_inode *ip = XFS_I(inode);
05edd888 1297 vm_fault_t ret;
de0e8c20 1298
d522d569 1299 trace_xfs_filemap_fault(ip, pe_size, write_fault);
de0e8c20 1300
d522d569
CH
1301 if (write_fault) {
1302 sb_start_pagefault(inode->i_sb);
1303 file_update_time(vmf->vma->vm_file);
1304 }
de0e8c20 1305
d522d569 1306 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1307 if (IS_DAX(inode)) {
a39e596b
CH
1308 pfn_t pfn;
1309
690c2a38
CH
1310 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1311 (write_fault && !vmf->cow_page) ?
f150b423
CH
1312 &xfs_direct_write_iomap_ops :
1313 &xfs_read_iomap_ops);
a39e596b
CH
1314 if (ret & VM_FAULT_NEEDDSYNC)
1315 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
6b698ede 1316 } else {
d522d569 1317 if (write_fault)
f150b423
CH
1318 ret = iomap_page_mkwrite(vmf,
1319 &xfs_buffered_write_iomap_ops);
d522d569
CH
1320 else
1321 ret = filemap_fault(vmf);
6b698ede 1322 }
6b698ede 1323 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1324
d522d569
CH
1325 if (write_fault)
1326 sb_end_pagefault(inode->i_sb);
6b698ede 1327 return ret;
de0e8c20
DC
1328}
1329
b17164e2
MP
1330static inline bool
1331xfs_is_write_fault(
1332 struct vm_fault *vmf)
1333{
1334 return (vmf->flags & FAULT_FLAG_WRITE) &&
1335 (vmf->vma->vm_flags & VM_SHARED);
1336}
1337
05edd888 1338static vm_fault_t
6b698ede 1339xfs_filemap_fault(
075a924d
DC
1340 struct vm_fault *vmf)
1341{
6b698ede 1342 /* DAX can shortcut the normal fault path on write faults! */
d522d569
CH
1343 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1344 IS_DAX(file_inode(vmf->vma->vm_file)) &&
b17164e2 1345 xfs_is_write_fault(vmf));
6b698ede
DC
1346}
1347
05edd888 1348static vm_fault_t
a2d58167 1349xfs_filemap_huge_fault(
c791ace1
DJ
1350 struct vm_fault *vmf,
1351 enum page_entry_size pe_size)
acd76e74 1352{
d522d569 1353 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
acd76e74
MW
1354 return VM_FAULT_FALLBACK;
1355
d522d569
CH
1356 /* DAX can shortcut the normal fault path on write faults! */
1357 return __xfs_filemap_fault(vmf, pe_size,
b17164e2 1358 xfs_is_write_fault(vmf));
d522d569 1359}
acd76e74 1360
05edd888 1361static vm_fault_t
d522d569
CH
1362xfs_filemap_page_mkwrite(
1363 struct vm_fault *vmf)
1364{
1365 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1366}
1367
3af49285 1368/*
7b565c9f
JK
1369 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1370 * on write faults. In reality, it needs to serialise against truncate and
1371 * prepare memory for writing so handle is as standard write fault.
3af49285 1372 */
05edd888 1373static vm_fault_t
3af49285 1374xfs_filemap_pfn_mkwrite(
3af49285
DC
1375 struct vm_fault *vmf)
1376{
1377
7b565c9f 1378 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1379}
1380
f9ce0be7 1381static vm_fault_t
cd647d56
DC
1382xfs_filemap_map_pages(
1383 struct vm_fault *vmf,
1384 pgoff_t start_pgoff,
1385 pgoff_t end_pgoff)
1386{
1387 struct inode *inode = file_inode(vmf->vma->vm_file);
f9ce0be7 1388 vm_fault_t ret;
cd647d56
DC
1389
1390 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
f9ce0be7 1391 ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
cd647d56 1392 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
f9ce0be7 1393 return ret;
cd647d56
DC
1394}
1395
6b698ede
DC
1396static const struct vm_operations_struct xfs_file_vm_ops = {
1397 .fault = xfs_filemap_fault,
a2d58167 1398 .huge_fault = xfs_filemap_huge_fault,
cd647d56 1399 .map_pages = xfs_filemap_map_pages,
6b698ede 1400 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1401 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1402};
1403
1404STATIC int
1405xfs_file_mmap(
30fa529e
CH
1406 struct file *file,
1407 struct vm_area_struct *vma)
6b698ede 1408{
30fa529e
CH
1409 struct inode *inode = file_inode(file);
1410 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
b21fec41 1411
a39e596b 1412 /*
b21fec41
PG
1413 * We don't support synchronous mappings for non-DAX files and
1414 * for DAX files if underneath dax_device is not synchronous.
a39e596b 1415 */
30fa529e 1416 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
a39e596b
CH
1417 return -EOPNOTSUPP;
1418
30fa529e 1419 file_accessed(file);
6b698ede 1420 vma->vm_ops = &xfs_file_vm_ops;
30fa529e 1421 if (IS_DAX(inode))
e1fb4a08 1422 vma->vm_flags |= VM_HUGEPAGE;
6b698ede 1423 return 0;
075a924d
DC
1424}
1425
4b6f5d20 1426const struct file_operations xfs_file_operations = {
3fe3e6b1 1427 .llseek = xfs_file_llseek,
b4f5d2c6 1428 .read_iter = xfs_file_read_iter,
bf97f3bc 1429 .write_iter = xfs_file_write_iter,
82c156f8 1430 .splice_read = generic_file_splice_read,
8d020765 1431 .splice_write = iter_file_splice_write,
81214bab 1432 .iopoll = iomap_dio_iopoll,
3562fd45 1433 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1434#ifdef CONFIG_COMPAT
3562fd45 1435 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1436#endif
3562fd45 1437 .mmap = xfs_file_mmap,
a39e596b 1438 .mmap_supported_flags = MAP_SYNC,
3562fd45
NS
1439 .open = xfs_file_open,
1440 .release = xfs_file_release,
1441 .fsync = xfs_file_fsync,
dbe6ec81 1442 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1443 .fallocate = xfs_file_fallocate,
40144e49 1444 .fadvise = xfs_file_fadvise,
2e5dfc99 1445 .remap_file_range = xfs_file_remap_range,
1da177e4
LT
1446};
1447
4b6f5d20 1448const struct file_operations xfs_dir_file_operations = {
f999a5bf 1449 .open = xfs_dir_open,
1da177e4 1450 .read = generic_read_dir,
3b0a3c1a 1451 .iterate_shared = xfs_file_readdir,
59af1584 1452 .llseek = generic_file_llseek,
3562fd45 1453 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1454#ifdef CONFIG_COMPAT
3562fd45 1455 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1456#endif
1da2f2db 1457 .fsync = xfs_dir_fsync,
1da177e4 1458};
This page took 1.524174 seconds and 4 git commands to generate.