]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmalloc.c | |
3 | * | |
4 | * Copyright (C) 1993 Linus Torvalds | |
5 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
6 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000 | |
7 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
d43c36dc | 15 | #include <linux/sched.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
3ac7fe5a | 21 | #include <linux/debugobjects.h> |
23016969 | 22 | #include <linux/kallsyms.h> |
db64fe02 NP |
23 | #include <linux/list.h> |
24 | #include <linux/rbtree.h> | |
25 | #include <linux/radix-tree.h> | |
26 | #include <linux/rcupdate.h> | |
f0aa6617 | 27 | #include <linux/pfn.h> |
89219d37 | 28 | #include <linux/kmemleak.h> |
db64fe02 | 29 | #include <asm/atomic.h> |
1da177e4 LT |
30 | #include <asm/uaccess.h> |
31 | #include <asm/tlbflush.h> | |
2dca6999 | 32 | #include <asm/shmparam.h> |
1da177e4 | 33 | |
a0d40c80 | 34 | bool vmap_lazy_unmap __read_mostly = true; |
1da177e4 | 35 | |
db64fe02 | 36 | /*** Page table manipulation functions ***/ |
b221385b | 37 | |
1da177e4 LT |
38 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
39 | { | |
40 | pte_t *pte; | |
41 | ||
42 | pte = pte_offset_kernel(pmd, addr); | |
43 | do { | |
44 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
45 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
46 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
47 | } | |
48 | ||
db64fe02 | 49 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
1da177e4 LT |
50 | { |
51 | pmd_t *pmd; | |
52 | unsigned long next; | |
53 | ||
54 | pmd = pmd_offset(pud, addr); | |
55 | do { | |
56 | next = pmd_addr_end(addr, end); | |
57 | if (pmd_none_or_clear_bad(pmd)) | |
58 | continue; | |
59 | vunmap_pte_range(pmd, addr, next); | |
60 | } while (pmd++, addr = next, addr != end); | |
61 | } | |
62 | ||
db64fe02 | 63 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
1da177e4 LT |
64 | { |
65 | pud_t *pud; | |
66 | unsigned long next; | |
67 | ||
68 | pud = pud_offset(pgd, addr); | |
69 | do { | |
70 | next = pud_addr_end(addr, end); | |
71 | if (pud_none_or_clear_bad(pud)) | |
72 | continue; | |
73 | vunmap_pmd_range(pud, addr, next); | |
74 | } while (pud++, addr = next, addr != end); | |
75 | } | |
76 | ||
db64fe02 | 77 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
1da177e4 LT |
78 | { |
79 | pgd_t *pgd; | |
80 | unsigned long next; | |
1da177e4 LT |
81 | |
82 | BUG_ON(addr >= end); | |
83 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
84 | do { |
85 | next = pgd_addr_end(addr, end); | |
86 | if (pgd_none_or_clear_bad(pgd)) | |
87 | continue; | |
88 | vunmap_pud_range(pgd, addr, next); | |
89 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
90 | } |
91 | ||
92 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | |
db64fe02 | 93 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
94 | { |
95 | pte_t *pte; | |
96 | ||
db64fe02 NP |
97 | /* |
98 | * nr is a running index into the array which helps higher level | |
99 | * callers keep track of where we're up to. | |
100 | */ | |
101 | ||
872fec16 | 102 | pte = pte_alloc_kernel(pmd, addr); |
1da177e4 LT |
103 | if (!pte) |
104 | return -ENOMEM; | |
105 | do { | |
db64fe02 NP |
106 | struct page *page = pages[*nr]; |
107 | ||
108 | if (WARN_ON(!pte_none(*pte))) | |
109 | return -EBUSY; | |
110 | if (WARN_ON(!page)) | |
1da177e4 LT |
111 | return -ENOMEM; |
112 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 113 | (*nr)++; |
1da177e4 LT |
114 | } while (pte++, addr += PAGE_SIZE, addr != end); |
115 | return 0; | |
116 | } | |
117 | ||
db64fe02 NP |
118 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
119 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
120 | { |
121 | pmd_t *pmd; | |
122 | unsigned long next; | |
123 | ||
124 | pmd = pmd_alloc(&init_mm, pud, addr); | |
125 | if (!pmd) | |
126 | return -ENOMEM; | |
127 | do { | |
128 | next = pmd_addr_end(addr, end); | |
db64fe02 | 129 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
1da177e4 LT |
130 | return -ENOMEM; |
131 | } while (pmd++, addr = next, addr != end); | |
132 | return 0; | |
133 | } | |
134 | ||
db64fe02 NP |
135 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, |
136 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
137 | { |
138 | pud_t *pud; | |
139 | unsigned long next; | |
140 | ||
141 | pud = pud_alloc(&init_mm, pgd, addr); | |
142 | if (!pud) | |
143 | return -ENOMEM; | |
144 | do { | |
145 | next = pud_addr_end(addr, end); | |
db64fe02 | 146 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
1da177e4 LT |
147 | return -ENOMEM; |
148 | } while (pud++, addr = next, addr != end); | |
149 | return 0; | |
150 | } | |
151 | ||
db64fe02 NP |
152 | /* |
153 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | |
154 | * will have pfns corresponding to the "pages" array. | |
155 | * | |
156 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | |
157 | */ | |
8fc48985 TH |
158 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
159 | pgprot_t prot, struct page **pages) | |
1da177e4 LT |
160 | { |
161 | pgd_t *pgd; | |
162 | unsigned long next; | |
2e4e27c7 | 163 | unsigned long addr = start; |
db64fe02 NP |
164 | int err = 0; |
165 | int nr = 0; | |
1da177e4 LT |
166 | |
167 | BUG_ON(addr >= end); | |
168 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
169 | do { |
170 | next = pgd_addr_end(addr, end); | |
db64fe02 | 171 | err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); |
1da177e4 | 172 | if (err) |
bf88c8c8 | 173 | return err; |
1da177e4 | 174 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 175 | |
db64fe02 | 176 | return nr; |
1da177e4 LT |
177 | } |
178 | ||
8fc48985 TH |
179 | static int vmap_page_range(unsigned long start, unsigned long end, |
180 | pgprot_t prot, struct page **pages) | |
181 | { | |
182 | int ret; | |
183 | ||
184 | ret = vmap_page_range_noflush(start, end, prot, pages); | |
185 | flush_cache_vmap(start, end); | |
186 | return ret; | |
187 | } | |
188 | ||
81ac3ad9 | 189 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
190 | { |
191 | /* | |
ab4f2ee1 | 192 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
193 | * and fall back on vmalloc() if that fails. Others |
194 | * just put it in the vmalloc space. | |
195 | */ | |
196 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
197 | unsigned long addr = (unsigned long)x; | |
198 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
199 | return 1; | |
200 | #endif | |
201 | return is_vmalloc_addr(x); | |
202 | } | |
203 | ||
48667e7a | 204 | /* |
db64fe02 | 205 | * Walk a vmap address to the struct page it maps. |
48667e7a | 206 | */ |
b3bdda02 | 207 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
208 | { |
209 | unsigned long addr = (unsigned long) vmalloc_addr; | |
210 | struct page *page = NULL; | |
211 | pgd_t *pgd = pgd_offset_k(addr); | |
48667e7a | 212 | |
7aa413de IM |
213 | /* |
214 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
215 | * architectures that do not vmalloc module space | |
216 | */ | |
73bdf0a6 | 217 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 218 | |
48667e7a | 219 | if (!pgd_none(*pgd)) { |
db64fe02 | 220 | pud_t *pud = pud_offset(pgd, addr); |
48667e7a | 221 | if (!pud_none(*pud)) { |
db64fe02 | 222 | pmd_t *pmd = pmd_offset(pud, addr); |
48667e7a | 223 | if (!pmd_none(*pmd)) { |
db64fe02 NP |
224 | pte_t *ptep, pte; |
225 | ||
48667e7a CL |
226 | ptep = pte_offset_map(pmd, addr); |
227 | pte = *ptep; | |
228 | if (pte_present(pte)) | |
229 | page = pte_page(pte); | |
230 | pte_unmap(ptep); | |
231 | } | |
232 | } | |
233 | } | |
234 | return page; | |
235 | } | |
236 | EXPORT_SYMBOL(vmalloc_to_page); | |
237 | ||
238 | /* | |
239 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
240 | */ | |
b3bdda02 | 241 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a CL |
242 | { |
243 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
244 | } | |
245 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
246 | ||
db64fe02 NP |
247 | |
248 | /*** Global kva allocator ***/ | |
249 | ||
250 | #define VM_LAZY_FREE 0x01 | |
251 | #define VM_LAZY_FREEING 0x02 | |
252 | #define VM_VM_AREA 0x04 | |
253 | ||
254 | struct vmap_area { | |
255 | unsigned long va_start; | |
256 | unsigned long va_end; | |
257 | unsigned long flags; | |
258 | struct rb_node rb_node; /* address sorted rbtree */ | |
259 | struct list_head list; /* address sorted list */ | |
260 | struct list_head purge_list; /* "lazy purge" list */ | |
261 | void *private; | |
262 | struct rcu_head rcu_head; | |
263 | }; | |
264 | ||
265 | static DEFINE_SPINLOCK(vmap_area_lock); | |
266 | static struct rb_root vmap_area_root = RB_ROOT; | |
267 | static LIST_HEAD(vmap_area_list); | |
ca23e405 | 268 | static unsigned long vmap_area_pcpu_hole; |
db64fe02 NP |
269 | |
270 | static struct vmap_area *__find_vmap_area(unsigned long addr) | |
1da177e4 | 271 | { |
db64fe02 NP |
272 | struct rb_node *n = vmap_area_root.rb_node; |
273 | ||
274 | while (n) { | |
275 | struct vmap_area *va; | |
276 | ||
277 | va = rb_entry(n, struct vmap_area, rb_node); | |
278 | if (addr < va->va_start) | |
279 | n = n->rb_left; | |
280 | else if (addr > va->va_start) | |
281 | n = n->rb_right; | |
282 | else | |
283 | return va; | |
284 | } | |
285 | ||
286 | return NULL; | |
287 | } | |
288 | ||
289 | static void __insert_vmap_area(struct vmap_area *va) | |
290 | { | |
291 | struct rb_node **p = &vmap_area_root.rb_node; | |
292 | struct rb_node *parent = NULL; | |
293 | struct rb_node *tmp; | |
294 | ||
295 | while (*p) { | |
296 | struct vmap_area *tmp; | |
297 | ||
298 | parent = *p; | |
299 | tmp = rb_entry(parent, struct vmap_area, rb_node); | |
300 | if (va->va_start < tmp->va_end) | |
301 | p = &(*p)->rb_left; | |
302 | else if (va->va_end > tmp->va_start) | |
303 | p = &(*p)->rb_right; | |
304 | else | |
305 | BUG(); | |
306 | } | |
307 | ||
308 | rb_link_node(&va->rb_node, parent, p); | |
309 | rb_insert_color(&va->rb_node, &vmap_area_root); | |
310 | ||
311 | /* address-sort this list so it is usable like the vmlist */ | |
312 | tmp = rb_prev(&va->rb_node); | |
313 | if (tmp) { | |
314 | struct vmap_area *prev; | |
315 | prev = rb_entry(tmp, struct vmap_area, rb_node); | |
316 | list_add_rcu(&va->list, &prev->list); | |
317 | } else | |
318 | list_add_rcu(&va->list, &vmap_area_list); | |
319 | } | |
320 | ||
321 | static void purge_vmap_area_lazy(void); | |
322 | ||
323 | /* | |
324 | * Allocate a region of KVA of the specified size and alignment, within the | |
325 | * vstart and vend. | |
326 | */ | |
327 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
328 | unsigned long align, | |
329 | unsigned long vstart, unsigned long vend, | |
330 | int node, gfp_t gfp_mask) | |
331 | { | |
332 | struct vmap_area *va; | |
333 | struct rb_node *n; | |
1da177e4 | 334 | unsigned long addr; |
db64fe02 NP |
335 | int purged = 0; |
336 | ||
7766970c | 337 | BUG_ON(!size); |
db64fe02 NP |
338 | BUG_ON(size & ~PAGE_MASK); |
339 | ||
db64fe02 NP |
340 | va = kmalloc_node(sizeof(struct vmap_area), |
341 | gfp_mask & GFP_RECLAIM_MASK, node); | |
342 | if (unlikely(!va)) | |
343 | return ERR_PTR(-ENOMEM); | |
344 | ||
345 | retry: | |
0ae15132 GC |
346 | addr = ALIGN(vstart, align); |
347 | ||
db64fe02 | 348 | spin_lock(&vmap_area_lock); |
7766970c NP |
349 | if (addr + size - 1 < addr) |
350 | goto overflow; | |
351 | ||
db64fe02 NP |
352 | /* XXX: could have a last_hole cache */ |
353 | n = vmap_area_root.rb_node; | |
354 | if (n) { | |
355 | struct vmap_area *first = NULL; | |
356 | ||
357 | do { | |
358 | struct vmap_area *tmp; | |
359 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
360 | if (tmp->va_end >= addr) { | |
361 | if (!first && tmp->va_start < addr + size) | |
362 | first = tmp; | |
363 | n = n->rb_left; | |
364 | } else { | |
365 | first = tmp; | |
366 | n = n->rb_right; | |
367 | } | |
368 | } while (n); | |
369 | ||
370 | if (!first) | |
371 | goto found; | |
372 | ||
373 | if (first->va_end < addr) { | |
374 | n = rb_next(&first->rb_node); | |
375 | if (n) | |
376 | first = rb_entry(n, struct vmap_area, rb_node); | |
377 | else | |
378 | goto found; | |
379 | } | |
380 | ||
f011c2da | 381 | while (addr + size > first->va_start && addr + size <= vend) { |
db64fe02 | 382 | addr = ALIGN(first->va_end + PAGE_SIZE, align); |
7766970c NP |
383 | if (addr + size - 1 < addr) |
384 | goto overflow; | |
db64fe02 NP |
385 | |
386 | n = rb_next(&first->rb_node); | |
387 | if (n) | |
388 | first = rb_entry(n, struct vmap_area, rb_node); | |
389 | else | |
390 | goto found; | |
391 | } | |
392 | } | |
393 | found: | |
394 | if (addr + size > vend) { | |
7766970c | 395 | overflow: |
db64fe02 NP |
396 | spin_unlock(&vmap_area_lock); |
397 | if (!purged) { | |
398 | purge_vmap_area_lazy(); | |
399 | purged = 1; | |
400 | goto retry; | |
401 | } | |
402 | if (printk_ratelimit()) | |
c1279c4e GC |
403 | printk(KERN_WARNING |
404 | "vmap allocation for size %lu failed: " | |
405 | "use vmalloc=<size> to increase size.\n", size); | |
2498ce42 | 406 | kfree(va); |
db64fe02 NP |
407 | return ERR_PTR(-EBUSY); |
408 | } | |
409 | ||
410 | BUG_ON(addr & (align-1)); | |
411 | ||
412 | va->va_start = addr; | |
413 | va->va_end = addr + size; | |
414 | va->flags = 0; | |
415 | __insert_vmap_area(va); | |
416 | spin_unlock(&vmap_area_lock); | |
417 | ||
418 | return va; | |
419 | } | |
420 | ||
421 | static void rcu_free_va(struct rcu_head *head) | |
422 | { | |
423 | struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); | |
424 | ||
425 | kfree(va); | |
426 | } | |
427 | ||
428 | static void __free_vmap_area(struct vmap_area *va) | |
429 | { | |
430 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | |
431 | rb_erase(&va->rb_node, &vmap_area_root); | |
432 | RB_CLEAR_NODE(&va->rb_node); | |
433 | list_del_rcu(&va->list); | |
434 | ||
ca23e405 TH |
435 | /* |
436 | * Track the highest possible candidate for pcpu area | |
437 | * allocation. Areas outside of vmalloc area can be returned | |
438 | * here too, consider only end addresses which fall inside | |
439 | * vmalloc area proper. | |
440 | */ | |
441 | if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) | |
442 | vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); | |
443 | ||
db64fe02 NP |
444 | call_rcu(&va->rcu_head, rcu_free_va); |
445 | } | |
446 | ||
447 | /* | |
448 | * Free a region of KVA allocated by alloc_vmap_area | |
449 | */ | |
450 | static void free_vmap_area(struct vmap_area *va) | |
451 | { | |
452 | spin_lock(&vmap_area_lock); | |
453 | __free_vmap_area(va); | |
454 | spin_unlock(&vmap_area_lock); | |
455 | } | |
456 | ||
457 | /* | |
458 | * Clear the pagetable entries of a given vmap_area | |
459 | */ | |
460 | static void unmap_vmap_area(struct vmap_area *va) | |
461 | { | |
462 | vunmap_page_range(va->va_start, va->va_end); | |
463 | } | |
464 | ||
cd52858c NP |
465 | static void vmap_debug_free_range(unsigned long start, unsigned long end) |
466 | { | |
467 | /* | |
468 | * Unmap page tables and force a TLB flush immediately if | |
469 | * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free | |
470 | * bugs similarly to those in linear kernel virtual address | |
471 | * space after a page has been freed. | |
472 | * | |
473 | * All the lazy freeing logic is still retained, in order to | |
474 | * minimise intrusiveness of this debugging feature. | |
475 | * | |
476 | * This is going to be *slow* (linear kernel virtual address | |
477 | * debugging doesn't do a broadcast TLB flush so it is a lot | |
478 | * faster). | |
479 | */ | |
480 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
481 | vunmap_page_range(start, end); | |
482 | flush_tlb_kernel_range(start, end); | |
483 | #endif | |
484 | } | |
485 | ||
db64fe02 NP |
486 | /* |
487 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
488 | * before attempting to purge with a TLB flush. | |
489 | * | |
490 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
491 | * and take slightly longer to purge, but it will linearly reduce the number of | |
492 | * global TLB flushes that must be performed. It would seem natural to scale | |
493 | * this number up linearly with the number of CPUs (because vmapping activity | |
494 | * could also scale linearly with the number of CPUs), however it is likely | |
495 | * that in practice, workloads might be constrained in other ways that mean | |
496 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
497 | * conservative and not introduce a big latency on huge systems, so go with | |
498 | * a less aggressive log scale. It will still be an improvement over the old | |
499 | * code, and it will be simple to change the scale factor if we find that it | |
500 | * becomes a problem on bigger systems. | |
501 | */ | |
502 | static unsigned long lazy_max_pages(void) | |
503 | { | |
504 | unsigned int log; | |
505 | ||
a0d40c80 JF |
506 | if (!vmap_lazy_unmap) |
507 | return 0; | |
508 | ||
db64fe02 NP |
509 | log = fls(num_online_cpus()); |
510 | ||
511 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
512 | } | |
513 | ||
514 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | |
515 | ||
02b709df NP |
516 | /* for per-CPU blocks */ |
517 | static void purge_fragmented_blocks_allcpus(void); | |
518 | ||
db64fe02 NP |
519 | /* |
520 | * Purges all lazily-freed vmap areas. | |
521 | * | |
522 | * If sync is 0 then don't purge if there is already a purge in progress. | |
523 | * If force_flush is 1, then flush kernel TLBs between *start and *end even | |
524 | * if we found no lazy vmap areas to unmap (callers can use this to optimise | |
525 | * their own TLB flushing). | |
526 | * Returns with *start = min(*start, lowest purged address) | |
527 | * *end = max(*end, highest purged address) | |
528 | */ | |
529 | static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, | |
530 | int sync, int force_flush) | |
531 | { | |
46666d8a | 532 | static DEFINE_SPINLOCK(purge_lock); |
db64fe02 NP |
533 | LIST_HEAD(valist); |
534 | struct vmap_area *va; | |
cbb76676 | 535 | struct vmap_area *n_va; |
db64fe02 NP |
536 | int nr = 0; |
537 | ||
538 | /* | |
539 | * If sync is 0 but force_flush is 1, we'll go sync anyway but callers | |
540 | * should not expect such behaviour. This just simplifies locking for | |
541 | * the case that isn't actually used at the moment anyway. | |
542 | */ | |
543 | if (!sync && !force_flush) { | |
46666d8a | 544 | if (!spin_trylock(&purge_lock)) |
db64fe02 NP |
545 | return; |
546 | } else | |
46666d8a | 547 | spin_lock(&purge_lock); |
db64fe02 | 548 | |
02b709df NP |
549 | if (sync) |
550 | purge_fragmented_blocks_allcpus(); | |
551 | ||
db64fe02 NP |
552 | rcu_read_lock(); |
553 | list_for_each_entry_rcu(va, &vmap_area_list, list) { | |
554 | if (va->flags & VM_LAZY_FREE) { | |
555 | if (va->va_start < *start) | |
556 | *start = va->va_start; | |
557 | if (va->va_end > *end) | |
558 | *end = va->va_end; | |
559 | nr += (va->va_end - va->va_start) >> PAGE_SHIFT; | |
560 | unmap_vmap_area(va); | |
561 | list_add_tail(&va->purge_list, &valist); | |
562 | va->flags |= VM_LAZY_FREEING; | |
563 | va->flags &= ~VM_LAZY_FREE; | |
564 | } | |
565 | } | |
566 | rcu_read_unlock(); | |
567 | ||
88f50044 | 568 | if (nr) |
db64fe02 | 569 | atomic_sub(nr, &vmap_lazy_nr); |
db64fe02 NP |
570 | |
571 | if (nr || force_flush) | |
572 | flush_tlb_kernel_range(*start, *end); | |
573 | ||
574 | if (nr) { | |
575 | spin_lock(&vmap_area_lock); | |
cbb76676 | 576 | list_for_each_entry_safe(va, n_va, &valist, purge_list) |
db64fe02 NP |
577 | __free_vmap_area(va); |
578 | spin_unlock(&vmap_area_lock); | |
579 | } | |
46666d8a | 580 | spin_unlock(&purge_lock); |
db64fe02 NP |
581 | } |
582 | ||
496850e5 NP |
583 | /* |
584 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
585 | * is already purging. | |
586 | */ | |
587 | static void try_purge_vmap_area_lazy(void) | |
588 | { | |
589 | unsigned long start = ULONG_MAX, end = 0; | |
590 | ||
591 | __purge_vmap_area_lazy(&start, &end, 0, 0); | |
592 | } | |
593 | ||
db64fe02 NP |
594 | /* |
595 | * Kick off a purge of the outstanding lazy areas. | |
596 | */ | |
597 | static void purge_vmap_area_lazy(void) | |
598 | { | |
599 | unsigned long start = ULONG_MAX, end = 0; | |
600 | ||
496850e5 | 601 | __purge_vmap_area_lazy(&start, &end, 1, 0); |
db64fe02 NP |
602 | } |
603 | ||
604 | /* | |
b29acbdc NP |
605 | * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been |
606 | * called for the correct range previously. | |
db64fe02 | 607 | */ |
b29acbdc | 608 | static void free_unmap_vmap_area_noflush(struct vmap_area *va) |
db64fe02 NP |
609 | { |
610 | va->flags |= VM_LAZY_FREE; | |
611 | atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); | |
612 | if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) | |
496850e5 | 613 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
614 | } |
615 | ||
b29acbdc NP |
616 | /* |
617 | * Free and unmap a vmap area | |
618 | */ | |
619 | static void free_unmap_vmap_area(struct vmap_area *va) | |
620 | { | |
621 | flush_cache_vunmap(va->va_start, va->va_end); | |
622 | free_unmap_vmap_area_noflush(va); | |
623 | } | |
624 | ||
db64fe02 NP |
625 | static struct vmap_area *find_vmap_area(unsigned long addr) |
626 | { | |
627 | struct vmap_area *va; | |
628 | ||
629 | spin_lock(&vmap_area_lock); | |
630 | va = __find_vmap_area(addr); | |
631 | spin_unlock(&vmap_area_lock); | |
632 | ||
633 | return va; | |
634 | } | |
635 | ||
636 | static void free_unmap_vmap_area_addr(unsigned long addr) | |
637 | { | |
638 | struct vmap_area *va; | |
639 | ||
640 | va = find_vmap_area(addr); | |
641 | BUG_ON(!va); | |
642 | free_unmap_vmap_area(va); | |
643 | } | |
644 | ||
645 | ||
646 | /*** Per cpu kva allocator ***/ | |
647 | ||
648 | /* | |
649 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
650 | * room for at least 16 percpu vmap blocks per CPU. | |
651 | */ | |
652 | /* | |
653 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
654 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
655 | * instead (we just need a rough idea) | |
656 | */ | |
657 | #if BITS_PER_LONG == 32 | |
658 | #define VMALLOC_SPACE (128UL*1024*1024) | |
659 | #else | |
660 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
661 | #endif | |
662 | ||
663 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
664 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
665 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
666 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
667 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
668 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
669 | #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
670 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
671 | VMALLOC_PAGES / NR_CPUS / 16)) | |
672 | ||
673 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
674 | ||
9b463334 JF |
675 | static bool vmap_initialized __read_mostly = false; |
676 | ||
db64fe02 NP |
677 | struct vmap_block_queue { |
678 | spinlock_t lock; | |
679 | struct list_head free; | |
db64fe02 NP |
680 | }; |
681 | ||
682 | struct vmap_block { | |
683 | spinlock_t lock; | |
684 | struct vmap_area *va; | |
685 | struct vmap_block_queue *vbq; | |
686 | unsigned long free, dirty; | |
687 | DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); | |
688 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); | |
de560423 NP |
689 | struct list_head free_list; |
690 | struct rcu_head rcu_head; | |
02b709df | 691 | struct list_head purge; |
db64fe02 NP |
692 | }; |
693 | ||
694 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
695 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
696 | ||
697 | /* | |
698 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | |
699 | * in the free path. Could get rid of this if we change the API to return a | |
700 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
701 | */ | |
702 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | |
703 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | |
704 | ||
705 | /* | |
706 | * We should probably have a fallback mechanism to allocate virtual memory | |
707 | * out of partially filled vmap blocks. However vmap block sizing should be | |
708 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
709 | * big problem. | |
710 | */ | |
711 | ||
712 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
713 | { | |
714 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
715 | addr /= VMAP_BLOCK_SIZE; | |
716 | return addr; | |
717 | } | |
718 | ||
719 | static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |
720 | { | |
721 | struct vmap_block_queue *vbq; | |
722 | struct vmap_block *vb; | |
723 | struct vmap_area *va; | |
724 | unsigned long vb_idx; | |
725 | int node, err; | |
726 | ||
727 | node = numa_node_id(); | |
728 | ||
729 | vb = kmalloc_node(sizeof(struct vmap_block), | |
730 | gfp_mask & GFP_RECLAIM_MASK, node); | |
731 | if (unlikely(!vb)) | |
732 | return ERR_PTR(-ENOMEM); | |
733 | ||
734 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
735 | VMALLOC_START, VMALLOC_END, | |
736 | node, gfp_mask); | |
737 | if (unlikely(IS_ERR(va))) { | |
738 | kfree(vb); | |
e7d86340 | 739 | return ERR_CAST(va); |
db64fe02 NP |
740 | } |
741 | ||
742 | err = radix_tree_preload(gfp_mask); | |
743 | if (unlikely(err)) { | |
744 | kfree(vb); | |
745 | free_vmap_area(va); | |
746 | return ERR_PTR(err); | |
747 | } | |
748 | ||
749 | spin_lock_init(&vb->lock); | |
750 | vb->va = va; | |
751 | vb->free = VMAP_BBMAP_BITS; | |
752 | vb->dirty = 0; | |
753 | bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); | |
754 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); | |
755 | INIT_LIST_HEAD(&vb->free_list); | |
db64fe02 NP |
756 | |
757 | vb_idx = addr_to_vb_idx(va->va_start); | |
758 | spin_lock(&vmap_block_tree_lock); | |
759 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | |
760 | spin_unlock(&vmap_block_tree_lock); | |
761 | BUG_ON(err); | |
762 | radix_tree_preload_end(); | |
763 | ||
764 | vbq = &get_cpu_var(vmap_block_queue); | |
765 | vb->vbq = vbq; | |
766 | spin_lock(&vbq->lock); | |
de560423 | 767 | list_add_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 768 | spin_unlock(&vbq->lock); |
3f04ba85 | 769 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
770 | |
771 | return vb; | |
772 | } | |
773 | ||
774 | static void rcu_free_vb(struct rcu_head *head) | |
775 | { | |
776 | struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); | |
777 | ||
778 | kfree(vb); | |
779 | } | |
780 | ||
781 | static void free_vmap_block(struct vmap_block *vb) | |
782 | { | |
783 | struct vmap_block *tmp; | |
784 | unsigned long vb_idx; | |
785 | ||
db64fe02 NP |
786 | vb_idx = addr_to_vb_idx(vb->va->va_start); |
787 | spin_lock(&vmap_block_tree_lock); | |
788 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | |
789 | spin_unlock(&vmap_block_tree_lock); | |
790 | BUG_ON(tmp != vb); | |
791 | ||
b29acbdc | 792 | free_unmap_vmap_area_noflush(vb->va); |
db64fe02 NP |
793 | call_rcu(&vb->rcu_head, rcu_free_vb); |
794 | } | |
795 | ||
02b709df NP |
796 | static void purge_fragmented_blocks(int cpu) |
797 | { | |
798 | LIST_HEAD(purge); | |
799 | struct vmap_block *vb; | |
800 | struct vmap_block *n_vb; | |
801 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
802 | ||
803 | rcu_read_lock(); | |
804 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
805 | ||
806 | if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | |
807 | continue; | |
808 | ||
809 | spin_lock(&vb->lock); | |
810 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | |
811 | vb->free = 0; /* prevent further allocs after releasing lock */ | |
812 | vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | |
813 | bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); | |
814 | bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); | |
815 | spin_lock(&vbq->lock); | |
816 | list_del_rcu(&vb->free_list); | |
817 | spin_unlock(&vbq->lock); | |
818 | spin_unlock(&vb->lock); | |
819 | list_add_tail(&vb->purge, &purge); | |
820 | } else | |
821 | spin_unlock(&vb->lock); | |
822 | } | |
823 | rcu_read_unlock(); | |
824 | ||
825 | list_for_each_entry_safe(vb, n_vb, &purge, purge) { | |
826 | list_del(&vb->purge); | |
827 | free_vmap_block(vb); | |
828 | } | |
829 | } | |
830 | ||
831 | static void purge_fragmented_blocks_thiscpu(void) | |
832 | { | |
833 | purge_fragmented_blocks(smp_processor_id()); | |
834 | } | |
835 | ||
836 | static void purge_fragmented_blocks_allcpus(void) | |
837 | { | |
838 | int cpu; | |
839 | ||
840 | for_each_possible_cpu(cpu) | |
841 | purge_fragmented_blocks(cpu); | |
842 | } | |
843 | ||
db64fe02 NP |
844 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
845 | { | |
846 | struct vmap_block_queue *vbq; | |
847 | struct vmap_block *vb; | |
848 | unsigned long addr = 0; | |
849 | unsigned int order; | |
02b709df | 850 | int purge = 0; |
db64fe02 NP |
851 | |
852 | BUG_ON(size & ~PAGE_MASK); | |
853 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
854 | order = get_order(size); | |
855 | ||
856 | again: | |
857 | rcu_read_lock(); | |
858 | vbq = &get_cpu_var(vmap_block_queue); | |
859 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
860 | int i; | |
861 | ||
862 | spin_lock(&vb->lock); | |
02b709df NP |
863 | if (vb->free < 1UL << order) |
864 | goto next; | |
865 | ||
db64fe02 NP |
866 | i = bitmap_find_free_region(vb->alloc_map, |
867 | VMAP_BBMAP_BITS, order); | |
868 | ||
02b709df NP |
869 | if (i < 0) { |
870 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { | |
871 | /* fragmented and no outstanding allocations */ | |
872 | BUG_ON(vb->dirty != VMAP_BBMAP_BITS); | |
873 | purge = 1; | |
db64fe02 | 874 | } |
02b709df | 875 | goto next; |
db64fe02 | 876 | } |
02b709df NP |
877 | addr = vb->va->va_start + (i << PAGE_SHIFT); |
878 | BUG_ON(addr_to_vb_idx(addr) != | |
879 | addr_to_vb_idx(vb->va->va_start)); | |
880 | vb->free -= 1UL << order; | |
881 | if (vb->free == 0) { | |
882 | spin_lock(&vbq->lock); | |
883 | list_del_rcu(&vb->free_list); | |
884 | spin_unlock(&vbq->lock); | |
885 | } | |
886 | spin_unlock(&vb->lock); | |
887 | break; | |
888 | next: | |
db64fe02 NP |
889 | spin_unlock(&vb->lock); |
890 | } | |
02b709df NP |
891 | |
892 | if (purge) | |
893 | purge_fragmented_blocks_thiscpu(); | |
894 | ||
3f04ba85 | 895 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
896 | rcu_read_unlock(); |
897 | ||
898 | if (!addr) { | |
899 | vb = new_vmap_block(gfp_mask); | |
900 | if (IS_ERR(vb)) | |
901 | return vb; | |
902 | goto again; | |
903 | } | |
904 | ||
905 | return (void *)addr; | |
906 | } | |
907 | ||
908 | static void vb_free(const void *addr, unsigned long size) | |
909 | { | |
910 | unsigned long offset; | |
911 | unsigned long vb_idx; | |
912 | unsigned int order; | |
913 | struct vmap_block *vb; | |
914 | ||
915 | BUG_ON(size & ~PAGE_MASK); | |
916 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
b29acbdc NP |
917 | |
918 | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | |
919 | ||
db64fe02 NP |
920 | order = get_order(size); |
921 | ||
922 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | |
923 | ||
924 | vb_idx = addr_to_vb_idx((unsigned long)addr); | |
925 | rcu_read_lock(); | |
926 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | |
927 | rcu_read_unlock(); | |
928 | BUG_ON(!vb); | |
929 | ||
930 | spin_lock(&vb->lock); | |
de560423 | 931 | BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); |
d086817d | 932 | |
db64fe02 NP |
933 | vb->dirty += 1UL << order; |
934 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
de560423 | 935 | BUG_ON(vb->free); |
db64fe02 NP |
936 | spin_unlock(&vb->lock); |
937 | free_vmap_block(vb); | |
938 | } else | |
939 | spin_unlock(&vb->lock); | |
940 | } | |
941 | ||
942 | /** | |
943 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
944 | * | |
945 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
946 | * to amortize TLB flushing overheads. What this means is that any page you | |
947 | * have now, may, in a former life, have been mapped into kernel virtual | |
948 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
949 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
950 | * | |
951 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
952 | * be sure that none of the pages we have control over will have any aliases | |
953 | * from the vmap layer. | |
954 | */ | |
955 | void vm_unmap_aliases(void) | |
956 | { | |
957 | unsigned long start = ULONG_MAX, end = 0; | |
958 | int cpu; | |
959 | int flush = 0; | |
960 | ||
9b463334 JF |
961 | if (unlikely(!vmap_initialized)) |
962 | return; | |
963 | ||
db64fe02 NP |
964 | for_each_possible_cpu(cpu) { |
965 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
966 | struct vmap_block *vb; | |
967 | ||
968 | rcu_read_lock(); | |
969 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
970 | int i; | |
971 | ||
972 | spin_lock(&vb->lock); | |
973 | i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); | |
974 | while (i < VMAP_BBMAP_BITS) { | |
975 | unsigned long s, e; | |
976 | int j; | |
977 | j = find_next_zero_bit(vb->dirty_map, | |
978 | VMAP_BBMAP_BITS, i); | |
979 | ||
980 | s = vb->va->va_start + (i << PAGE_SHIFT); | |
981 | e = vb->va->va_start + (j << PAGE_SHIFT); | |
982 | vunmap_page_range(s, e); | |
983 | flush = 1; | |
984 | ||
985 | if (s < start) | |
986 | start = s; | |
987 | if (e > end) | |
988 | end = e; | |
989 | ||
990 | i = j; | |
991 | i = find_next_bit(vb->dirty_map, | |
992 | VMAP_BBMAP_BITS, i); | |
993 | } | |
994 | spin_unlock(&vb->lock); | |
995 | } | |
996 | rcu_read_unlock(); | |
997 | } | |
998 | ||
999 | __purge_vmap_area_lazy(&start, &end, 1, flush); | |
1000 | } | |
1001 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
1002 | ||
1003 | /** | |
1004 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
1005 | * @mem: the pointer returned by vm_map_ram | |
1006 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
1007 | */ | |
1008 | void vm_unmap_ram(const void *mem, unsigned int count) | |
1009 | { | |
1010 | unsigned long size = count << PAGE_SHIFT; | |
1011 | unsigned long addr = (unsigned long)mem; | |
1012 | ||
1013 | BUG_ON(!addr); | |
1014 | BUG_ON(addr < VMALLOC_START); | |
1015 | BUG_ON(addr > VMALLOC_END); | |
1016 | BUG_ON(addr & (PAGE_SIZE-1)); | |
1017 | ||
1018 | debug_check_no_locks_freed(mem, size); | |
cd52858c | 1019 | vmap_debug_free_range(addr, addr+size); |
db64fe02 NP |
1020 | |
1021 | if (likely(count <= VMAP_MAX_ALLOC)) | |
1022 | vb_free(mem, size); | |
1023 | else | |
1024 | free_unmap_vmap_area_addr(addr); | |
1025 | } | |
1026 | EXPORT_SYMBOL(vm_unmap_ram); | |
1027 | ||
1028 | /** | |
1029 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
1030 | * @pages: an array of pointers to the pages to be mapped | |
1031 | * @count: number of pages | |
1032 | * @node: prefer to allocate data structures on this node | |
1033 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | |
e99c97ad RD |
1034 | * |
1035 | * Returns: a pointer to the address that has been mapped, or %NULL on failure | |
db64fe02 NP |
1036 | */ |
1037 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | |
1038 | { | |
1039 | unsigned long size = count << PAGE_SHIFT; | |
1040 | unsigned long addr; | |
1041 | void *mem; | |
1042 | ||
1043 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
1044 | mem = vb_alloc(size, GFP_KERNEL); | |
1045 | if (IS_ERR(mem)) | |
1046 | return NULL; | |
1047 | addr = (unsigned long)mem; | |
1048 | } else { | |
1049 | struct vmap_area *va; | |
1050 | va = alloc_vmap_area(size, PAGE_SIZE, | |
1051 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
1052 | if (IS_ERR(va)) | |
1053 | return NULL; | |
1054 | ||
1055 | addr = va->va_start; | |
1056 | mem = (void *)addr; | |
1057 | } | |
1058 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | |
1059 | vm_unmap_ram(mem, count); | |
1060 | return NULL; | |
1061 | } | |
1062 | return mem; | |
1063 | } | |
1064 | EXPORT_SYMBOL(vm_map_ram); | |
1065 | ||
f0aa6617 TH |
1066 | /** |
1067 | * vm_area_register_early - register vmap area early during boot | |
1068 | * @vm: vm_struct to register | |
c0c0a293 | 1069 | * @align: requested alignment |
f0aa6617 TH |
1070 | * |
1071 | * This function is used to register kernel vm area before | |
1072 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
1073 | * proper values on entry and other fields should be zero. On return, | |
1074 | * vm->addr contains the allocated address. | |
1075 | * | |
1076 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1077 | */ | |
c0c0a293 | 1078 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 TH |
1079 | { |
1080 | static size_t vm_init_off __initdata; | |
c0c0a293 TH |
1081 | unsigned long addr; |
1082 | ||
1083 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | |
1084 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | |
f0aa6617 | 1085 | |
c0c0a293 | 1086 | vm->addr = (void *)addr; |
f0aa6617 TH |
1087 | |
1088 | vm->next = vmlist; | |
1089 | vmlist = vm; | |
1090 | } | |
1091 | ||
db64fe02 NP |
1092 | void __init vmalloc_init(void) |
1093 | { | |
822c18f2 IK |
1094 | struct vmap_area *va; |
1095 | struct vm_struct *tmp; | |
db64fe02 NP |
1096 | int i; |
1097 | ||
1098 | for_each_possible_cpu(i) { | |
1099 | struct vmap_block_queue *vbq; | |
1100 | ||
1101 | vbq = &per_cpu(vmap_block_queue, i); | |
1102 | spin_lock_init(&vbq->lock); | |
1103 | INIT_LIST_HEAD(&vbq->free); | |
db64fe02 | 1104 | } |
9b463334 | 1105 | |
822c18f2 IK |
1106 | /* Import existing vmlist entries. */ |
1107 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
43ebdac4 | 1108 | va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); |
822c18f2 IK |
1109 | va->flags = tmp->flags | VM_VM_AREA; |
1110 | va->va_start = (unsigned long)tmp->addr; | |
1111 | va->va_end = va->va_start + tmp->size; | |
1112 | __insert_vmap_area(va); | |
1113 | } | |
ca23e405 TH |
1114 | |
1115 | vmap_area_pcpu_hole = VMALLOC_END; | |
1116 | ||
9b463334 | 1117 | vmap_initialized = true; |
db64fe02 NP |
1118 | } |
1119 | ||
8fc48985 TH |
1120 | /** |
1121 | * map_kernel_range_noflush - map kernel VM area with the specified pages | |
1122 | * @addr: start of the VM area to map | |
1123 | * @size: size of the VM area to map | |
1124 | * @prot: page protection flags to use | |
1125 | * @pages: pages to map | |
1126 | * | |
1127 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1128 | * specify should have been allocated using get_vm_area() and its | |
1129 | * friends. | |
1130 | * | |
1131 | * NOTE: | |
1132 | * This function does NOT do any cache flushing. The caller is | |
1133 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | |
1134 | * before calling this function. | |
1135 | * | |
1136 | * RETURNS: | |
1137 | * The number of pages mapped on success, -errno on failure. | |
1138 | */ | |
1139 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | |
1140 | pgprot_t prot, struct page **pages) | |
1141 | { | |
1142 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | |
1143 | } | |
1144 | ||
1145 | /** | |
1146 | * unmap_kernel_range_noflush - unmap kernel VM area | |
1147 | * @addr: start of the VM area to unmap | |
1148 | * @size: size of the VM area to unmap | |
1149 | * | |
1150 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1151 | * specify should have been allocated using get_vm_area() and its | |
1152 | * friends. | |
1153 | * | |
1154 | * NOTE: | |
1155 | * This function does NOT do any cache flushing. The caller is | |
1156 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | |
1157 | * before calling this function and flush_tlb_kernel_range() after. | |
1158 | */ | |
1159 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | |
1160 | { | |
1161 | vunmap_page_range(addr, addr + size); | |
1162 | } | |
1163 | ||
1164 | /** | |
1165 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | |
1166 | * @addr: start of the VM area to unmap | |
1167 | * @size: size of the VM area to unmap | |
1168 | * | |
1169 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | |
1170 | * the unmapping and tlb after. | |
1171 | */ | |
db64fe02 NP |
1172 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1173 | { | |
1174 | unsigned long end = addr + size; | |
f6fcba70 TH |
1175 | |
1176 | flush_cache_vunmap(addr, end); | |
db64fe02 NP |
1177 | vunmap_page_range(addr, end); |
1178 | flush_tlb_kernel_range(addr, end); | |
1179 | } | |
1180 | ||
1181 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | |
1182 | { | |
1183 | unsigned long addr = (unsigned long)area->addr; | |
1184 | unsigned long end = addr + area->size - PAGE_SIZE; | |
1185 | int err; | |
1186 | ||
1187 | err = vmap_page_range(addr, end, prot, *pages); | |
1188 | if (err > 0) { | |
1189 | *pages += err; | |
1190 | err = 0; | |
1191 | } | |
1192 | ||
1193 | return err; | |
1194 | } | |
1195 | EXPORT_SYMBOL_GPL(map_vm_area); | |
1196 | ||
1197 | /*** Old vmalloc interfaces ***/ | |
1198 | DEFINE_RWLOCK(vmlist_lock); | |
1199 | struct vm_struct *vmlist; | |
1200 | ||
cf88c790 TH |
1201 | static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, |
1202 | unsigned long flags, void *caller) | |
1203 | { | |
1204 | struct vm_struct *tmp, **p; | |
1205 | ||
1206 | vm->flags = flags; | |
1207 | vm->addr = (void *)va->va_start; | |
1208 | vm->size = va->va_end - va->va_start; | |
1209 | vm->caller = caller; | |
1210 | va->private = vm; | |
1211 | va->flags |= VM_VM_AREA; | |
1212 | ||
1213 | write_lock(&vmlist_lock); | |
1214 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
1215 | if (tmp->addr >= vm->addr) | |
1216 | break; | |
1217 | } | |
1218 | vm->next = *p; | |
1219 | *p = vm; | |
1220 | write_unlock(&vmlist_lock); | |
1221 | } | |
1222 | ||
db64fe02 | 1223 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
2dca6999 DM |
1224 | unsigned long align, unsigned long flags, unsigned long start, |
1225 | unsigned long end, int node, gfp_t gfp_mask, void *caller) | |
db64fe02 NP |
1226 | { |
1227 | static struct vmap_area *va; | |
1228 | struct vm_struct *area; | |
1da177e4 | 1229 | |
52fd24ca | 1230 | BUG_ON(in_interrupt()); |
1da177e4 LT |
1231 | if (flags & VM_IOREMAP) { |
1232 | int bit = fls(size); | |
1233 | ||
1234 | if (bit > IOREMAP_MAX_ORDER) | |
1235 | bit = IOREMAP_MAX_ORDER; | |
1236 | else if (bit < PAGE_SHIFT) | |
1237 | bit = PAGE_SHIFT; | |
1238 | ||
1239 | align = 1ul << bit; | |
1240 | } | |
db64fe02 | 1241 | |
1da177e4 | 1242 | size = PAGE_ALIGN(size); |
31be8309 OH |
1243 | if (unlikely(!size)) |
1244 | return NULL; | |
1da177e4 | 1245 | |
cf88c790 | 1246 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
1247 | if (unlikely(!area)) |
1248 | return NULL; | |
1249 | ||
1da177e4 LT |
1250 | /* |
1251 | * We always allocate a guard page. | |
1252 | */ | |
1253 | size += PAGE_SIZE; | |
1254 | ||
db64fe02 NP |
1255 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
1256 | if (IS_ERR(va)) { | |
1257 | kfree(area); | |
1258 | return NULL; | |
1da177e4 | 1259 | } |
1da177e4 | 1260 | |
cf88c790 | 1261 | insert_vmalloc_vm(area, va, flags, caller); |
1da177e4 | 1262 | return area; |
1da177e4 LT |
1263 | } |
1264 | ||
930fc45a CL |
1265 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
1266 | unsigned long start, unsigned long end) | |
1267 | { | |
2dca6999 | 1268 | return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, |
23016969 | 1269 | __builtin_return_address(0)); |
930fc45a | 1270 | } |
5992b6da | 1271 | EXPORT_SYMBOL_GPL(__get_vm_area); |
930fc45a | 1272 | |
c2968612 BH |
1273 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
1274 | unsigned long start, unsigned long end, | |
1275 | void *caller) | |
1276 | { | |
2dca6999 | 1277 | return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, |
c2968612 BH |
1278 | caller); |
1279 | } | |
1280 | ||
1da177e4 | 1281 | /** |
183ff22b | 1282 | * get_vm_area - reserve a contiguous kernel virtual area |
1da177e4 LT |
1283 | * @size: size of the area |
1284 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1285 | * | |
1286 | * Search an area of @size in the kernel virtual mapping area, | |
1287 | * and reserved it for out purposes. Returns the area descriptor | |
1288 | * on success or %NULL on failure. | |
1289 | */ | |
1290 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
1291 | { | |
2dca6999 | 1292 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
23016969 CL |
1293 | -1, GFP_KERNEL, __builtin_return_address(0)); |
1294 | } | |
1295 | ||
1296 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
1297 | void *caller) | |
1298 | { | |
2dca6999 | 1299 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
23016969 | 1300 | -1, GFP_KERNEL, caller); |
1da177e4 LT |
1301 | } |
1302 | ||
52fd24ca GP |
1303 | struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, |
1304 | int node, gfp_t gfp_mask) | |
930fc45a | 1305 | { |
2dca6999 DM |
1306 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
1307 | node, gfp_mask, __builtin_return_address(0)); | |
930fc45a CL |
1308 | } |
1309 | ||
db64fe02 | 1310 | static struct vm_struct *find_vm_area(const void *addr) |
83342314 | 1311 | { |
db64fe02 | 1312 | struct vmap_area *va; |
83342314 | 1313 | |
db64fe02 NP |
1314 | va = find_vmap_area((unsigned long)addr); |
1315 | if (va && va->flags & VM_VM_AREA) | |
1316 | return va->private; | |
1da177e4 | 1317 | |
1da177e4 | 1318 | return NULL; |
1da177e4 LT |
1319 | } |
1320 | ||
7856dfeb | 1321 | /** |
183ff22b | 1322 | * remove_vm_area - find and remove a continuous kernel virtual area |
7856dfeb AK |
1323 | * @addr: base address |
1324 | * | |
1325 | * Search for the kernel VM area starting at @addr, and remove it. | |
1326 | * This function returns the found VM area, but using it is NOT safe | |
1327 | * on SMP machines, except for its size or flags. | |
1328 | */ | |
b3bdda02 | 1329 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 1330 | { |
db64fe02 NP |
1331 | struct vmap_area *va; |
1332 | ||
1333 | va = find_vmap_area((unsigned long)addr); | |
1334 | if (va && va->flags & VM_VM_AREA) { | |
1335 | struct vm_struct *vm = va->private; | |
1336 | struct vm_struct *tmp, **p; | |
dd32c279 KH |
1337 | /* |
1338 | * remove from list and disallow access to this vm_struct | |
1339 | * before unmap. (address range confliction is maintained by | |
1340 | * vmap.) | |
1341 | */ | |
db64fe02 NP |
1342 | write_lock(&vmlist_lock); |
1343 | for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) | |
1344 | ; | |
1345 | *p = tmp->next; | |
1346 | write_unlock(&vmlist_lock); | |
1347 | ||
dd32c279 KH |
1348 | vmap_debug_free_range(va->va_start, va->va_end); |
1349 | free_unmap_vmap_area(va); | |
1350 | vm->size -= PAGE_SIZE; | |
1351 | ||
db64fe02 NP |
1352 | return vm; |
1353 | } | |
1354 | return NULL; | |
7856dfeb AK |
1355 | } |
1356 | ||
b3bdda02 | 1357 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
1358 | { |
1359 | struct vm_struct *area; | |
1360 | ||
1361 | if (!addr) | |
1362 | return; | |
1363 | ||
1364 | if ((PAGE_SIZE-1) & (unsigned long)addr) { | |
4c8573e2 | 1365 | WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); |
1da177e4 LT |
1366 | return; |
1367 | } | |
1368 | ||
1369 | area = remove_vm_area(addr); | |
1370 | if (unlikely(!area)) { | |
4c8573e2 | 1371 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 1372 | addr); |
1da177e4 LT |
1373 | return; |
1374 | } | |
1375 | ||
9a11b49a | 1376 | debug_check_no_locks_freed(addr, area->size); |
3ac7fe5a | 1377 | debug_check_no_obj_freed(addr, area->size); |
9a11b49a | 1378 | |
1da177e4 LT |
1379 | if (deallocate_pages) { |
1380 | int i; | |
1381 | ||
1382 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1383 | struct page *page = area->pages[i]; |
1384 | ||
1385 | BUG_ON(!page); | |
1386 | __free_page(page); | |
1da177e4 LT |
1387 | } |
1388 | ||
8757d5fa | 1389 | if (area->flags & VM_VPAGES) |
1da177e4 LT |
1390 | vfree(area->pages); |
1391 | else | |
1392 | kfree(area->pages); | |
1393 | } | |
1394 | ||
1395 | kfree(area); | |
1396 | return; | |
1397 | } | |
1398 | ||
1399 | /** | |
1400 | * vfree - release memory allocated by vmalloc() | |
1da177e4 LT |
1401 | * @addr: memory base address |
1402 | * | |
183ff22b | 1403 | * Free the virtually continuous memory area starting at @addr, as |
80e93eff PE |
1404 | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is |
1405 | * NULL, no operation is performed. | |
1da177e4 | 1406 | * |
80e93eff | 1407 | * Must not be called in interrupt context. |
1da177e4 | 1408 | */ |
b3bdda02 | 1409 | void vfree(const void *addr) |
1da177e4 LT |
1410 | { |
1411 | BUG_ON(in_interrupt()); | |
89219d37 CM |
1412 | |
1413 | kmemleak_free(addr); | |
1414 | ||
1da177e4 LT |
1415 | __vunmap(addr, 1); |
1416 | } | |
1da177e4 LT |
1417 | EXPORT_SYMBOL(vfree); |
1418 | ||
1419 | /** | |
1420 | * vunmap - release virtual mapping obtained by vmap() | |
1da177e4 LT |
1421 | * @addr: memory base address |
1422 | * | |
1423 | * Free the virtually contiguous memory area starting at @addr, | |
1424 | * which was created from the page array passed to vmap(). | |
1425 | * | |
80e93eff | 1426 | * Must not be called in interrupt context. |
1da177e4 | 1427 | */ |
b3bdda02 | 1428 | void vunmap(const void *addr) |
1da177e4 LT |
1429 | { |
1430 | BUG_ON(in_interrupt()); | |
34754b69 | 1431 | might_sleep(); |
1da177e4 LT |
1432 | __vunmap(addr, 0); |
1433 | } | |
1da177e4 LT |
1434 | EXPORT_SYMBOL(vunmap); |
1435 | ||
1436 | /** | |
1437 | * vmap - map an array of pages into virtually contiguous space | |
1da177e4 LT |
1438 | * @pages: array of page pointers |
1439 | * @count: number of pages to map | |
1440 | * @flags: vm_area->flags | |
1441 | * @prot: page protection for the mapping | |
1442 | * | |
1443 | * Maps @count pages from @pages into contiguous kernel virtual | |
1444 | * space. | |
1445 | */ | |
1446 | void *vmap(struct page **pages, unsigned int count, | |
1447 | unsigned long flags, pgprot_t prot) | |
1448 | { | |
1449 | struct vm_struct *area; | |
1450 | ||
34754b69 PZ |
1451 | might_sleep(); |
1452 | ||
4481374c | 1453 | if (count > totalram_pages) |
1da177e4 LT |
1454 | return NULL; |
1455 | ||
23016969 CL |
1456 | area = get_vm_area_caller((count << PAGE_SHIFT), flags, |
1457 | __builtin_return_address(0)); | |
1da177e4 LT |
1458 | if (!area) |
1459 | return NULL; | |
23016969 | 1460 | |
1da177e4 LT |
1461 | if (map_vm_area(area, prot, &pages)) { |
1462 | vunmap(area->addr); | |
1463 | return NULL; | |
1464 | } | |
1465 | ||
1466 | return area->addr; | |
1467 | } | |
1da177e4 LT |
1468 | EXPORT_SYMBOL(vmap); |
1469 | ||
2dca6999 DM |
1470 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1471 | gfp_t gfp_mask, pgprot_t prot, | |
db64fe02 | 1472 | int node, void *caller); |
e31d9eb5 | 1473 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
23016969 | 1474 | pgprot_t prot, int node, void *caller) |
1da177e4 LT |
1475 | { |
1476 | struct page **pages; | |
1477 | unsigned int nr_pages, array_size, i; | |
976d6dfb | 1478 | gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
1da177e4 LT |
1479 | |
1480 | nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; | |
1481 | array_size = (nr_pages * sizeof(struct page *)); | |
1482 | ||
1483 | area->nr_pages = nr_pages; | |
1484 | /* Please note that the recursion is strictly bounded. */ | |
8757d5fa | 1485 | if (array_size > PAGE_SIZE) { |
976d6dfb | 1486 | pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, |
23016969 | 1487 | PAGE_KERNEL, node, caller); |
8757d5fa | 1488 | area->flags |= VM_VPAGES; |
286e1ea3 | 1489 | } else { |
976d6dfb | 1490 | pages = kmalloc_node(array_size, nested_gfp, node); |
286e1ea3 | 1491 | } |
1da177e4 | 1492 | area->pages = pages; |
23016969 | 1493 | area->caller = caller; |
1da177e4 LT |
1494 | if (!area->pages) { |
1495 | remove_vm_area(area->addr); | |
1496 | kfree(area); | |
1497 | return NULL; | |
1498 | } | |
1da177e4 LT |
1499 | |
1500 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1501 | struct page *page; |
1502 | ||
930fc45a | 1503 | if (node < 0) |
bf53d6f8 | 1504 | page = alloc_page(gfp_mask); |
930fc45a | 1505 | else |
bf53d6f8 CL |
1506 | page = alloc_pages_node(node, gfp_mask, 0); |
1507 | ||
1508 | if (unlikely(!page)) { | |
1da177e4 LT |
1509 | /* Successfully allocated i pages, free them in __vunmap() */ |
1510 | area->nr_pages = i; | |
1511 | goto fail; | |
1512 | } | |
bf53d6f8 | 1513 | area->pages[i] = page; |
1da177e4 LT |
1514 | } |
1515 | ||
1516 | if (map_vm_area(area, prot, &pages)) | |
1517 | goto fail; | |
1518 | return area->addr; | |
1519 | ||
1520 | fail: | |
1521 | vfree(area->addr); | |
1522 | return NULL; | |
1523 | } | |
1524 | ||
930fc45a CL |
1525 | void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) |
1526 | { | |
89219d37 CM |
1527 | void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1, |
1528 | __builtin_return_address(0)); | |
1529 | ||
1530 | /* | |
1531 | * A ref_count = 3 is needed because the vm_struct and vmap_area | |
1532 | * structures allocated in the __get_vm_area_node() function contain | |
1533 | * references to the virtual address of the vmalloc'ed block. | |
1534 | */ | |
1535 | kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask); | |
1536 | ||
1537 | return addr; | |
930fc45a CL |
1538 | } |
1539 | ||
1da177e4 | 1540 | /** |
930fc45a | 1541 | * __vmalloc_node - allocate virtually contiguous memory |
1da177e4 | 1542 | * @size: allocation size |
2dca6999 | 1543 | * @align: desired alignment |
1da177e4 LT |
1544 | * @gfp_mask: flags for the page level allocator |
1545 | * @prot: protection mask for the allocated pages | |
d44e0780 | 1546 | * @node: node to use for allocation or -1 |
c85d194b | 1547 | * @caller: caller's return address |
1da177e4 LT |
1548 | * |
1549 | * Allocate enough pages to cover @size from the page level | |
1550 | * allocator with @gfp_mask flags. Map them into contiguous | |
1551 | * kernel virtual space, using a pagetable protection of @prot. | |
1552 | */ | |
2dca6999 DM |
1553 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1554 | gfp_t gfp_mask, pgprot_t prot, | |
1555 | int node, void *caller) | |
1da177e4 LT |
1556 | { |
1557 | struct vm_struct *area; | |
89219d37 CM |
1558 | void *addr; |
1559 | unsigned long real_size = size; | |
1da177e4 LT |
1560 | |
1561 | size = PAGE_ALIGN(size); | |
4481374c | 1562 | if (!size || (size >> PAGE_SHIFT) > totalram_pages) |
1da177e4 LT |
1563 | return NULL; |
1564 | ||
2dca6999 DM |
1565 | area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START, |
1566 | VMALLOC_END, node, gfp_mask, caller); | |
23016969 | 1567 | |
1da177e4 LT |
1568 | if (!area) |
1569 | return NULL; | |
1570 | ||
89219d37 CM |
1571 | addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); |
1572 | ||
1573 | /* | |
1574 | * A ref_count = 3 is needed because the vm_struct and vmap_area | |
1575 | * structures allocated in the __get_vm_area_node() function contain | |
1576 | * references to the virtual address of the vmalloc'ed block. | |
1577 | */ | |
1578 | kmemleak_alloc(addr, real_size, 3, gfp_mask); | |
1579 | ||
1580 | return addr; | |
1da177e4 LT |
1581 | } |
1582 | ||
930fc45a CL |
1583 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
1584 | { | |
2dca6999 | 1585 | return __vmalloc_node(size, 1, gfp_mask, prot, -1, |
23016969 | 1586 | __builtin_return_address(0)); |
930fc45a | 1587 | } |
1da177e4 LT |
1588 | EXPORT_SYMBOL(__vmalloc); |
1589 | ||
1590 | /** | |
1591 | * vmalloc - allocate virtually contiguous memory | |
1da177e4 | 1592 | * @size: allocation size |
1da177e4 LT |
1593 | * Allocate enough pages to cover @size from the page level |
1594 | * allocator and map them into contiguous kernel virtual space. | |
1595 | * | |
c1c8897f | 1596 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1597 | * use __vmalloc() instead. |
1598 | */ | |
1599 | void *vmalloc(unsigned long size) | |
1600 | { | |
2dca6999 | 1601 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1602 | -1, __builtin_return_address(0)); |
1da177e4 | 1603 | } |
1da177e4 LT |
1604 | EXPORT_SYMBOL(vmalloc); |
1605 | ||
83342314 | 1606 | /** |
ead04089 REB |
1607 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1608 | * @size: allocation size | |
83342314 | 1609 | * |
ead04089 REB |
1610 | * The resulting memory area is zeroed so it can be mapped to userspace |
1611 | * without leaking data. | |
83342314 NP |
1612 | */ |
1613 | void *vmalloc_user(unsigned long size) | |
1614 | { | |
1615 | struct vm_struct *area; | |
1616 | void *ret; | |
1617 | ||
2dca6999 DM |
1618 | ret = __vmalloc_node(size, SHMLBA, |
1619 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, | |
84877848 | 1620 | PAGE_KERNEL, -1, __builtin_return_address(0)); |
2b4ac44e | 1621 | if (ret) { |
db64fe02 | 1622 | area = find_vm_area(ret); |
2b4ac44e | 1623 | area->flags |= VM_USERMAP; |
2b4ac44e | 1624 | } |
83342314 NP |
1625 | return ret; |
1626 | } | |
1627 | EXPORT_SYMBOL(vmalloc_user); | |
1628 | ||
930fc45a CL |
1629 | /** |
1630 | * vmalloc_node - allocate memory on a specific node | |
930fc45a | 1631 | * @size: allocation size |
d44e0780 | 1632 | * @node: numa node |
930fc45a CL |
1633 | * |
1634 | * Allocate enough pages to cover @size from the page level | |
1635 | * allocator and map them into contiguous kernel virtual space. | |
1636 | * | |
c1c8897f | 1637 | * For tight control over page level allocator and protection flags |
930fc45a CL |
1638 | * use __vmalloc() instead. |
1639 | */ | |
1640 | void *vmalloc_node(unsigned long size, int node) | |
1641 | { | |
2dca6999 | 1642 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1643 | node, __builtin_return_address(0)); |
930fc45a CL |
1644 | } |
1645 | EXPORT_SYMBOL(vmalloc_node); | |
1646 | ||
4dc3b16b PP |
1647 | #ifndef PAGE_KERNEL_EXEC |
1648 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1649 | #endif | |
1650 | ||
1da177e4 LT |
1651 | /** |
1652 | * vmalloc_exec - allocate virtually contiguous, executable memory | |
1da177e4 LT |
1653 | * @size: allocation size |
1654 | * | |
1655 | * Kernel-internal function to allocate enough pages to cover @size | |
1656 | * the page level allocator and map them into contiguous and | |
1657 | * executable kernel virtual space. | |
1658 | * | |
c1c8897f | 1659 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1660 | * use __vmalloc() instead. |
1661 | */ | |
1662 | ||
1da177e4 LT |
1663 | void *vmalloc_exec(unsigned long size) |
1664 | { | |
2dca6999 | 1665 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, |
84877848 | 1666 | -1, __builtin_return_address(0)); |
1da177e4 LT |
1667 | } |
1668 | ||
0d08e0d3 | 1669 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
7ac674f5 | 1670 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL |
0d08e0d3 | 1671 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
7ac674f5 | 1672 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL |
0d08e0d3 AK |
1673 | #else |
1674 | #define GFP_VMALLOC32 GFP_KERNEL | |
1675 | #endif | |
1676 | ||
1da177e4 LT |
1677 | /** |
1678 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
1da177e4 LT |
1679 | * @size: allocation size |
1680 | * | |
1681 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
1682 | * page level allocator and map them into contiguous kernel virtual space. | |
1683 | */ | |
1684 | void *vmalloc_32(unsigned long size) | |
1685 | { | |
2dca6999 | 1686 | return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, |
84877848 | 1687 | -1, __builtin_return_address(0)); |
1da177e4 | 1688 | } |
1da177e4 LT |
1689 | EXPORT_SYMBOL(vmalloc_32); |
1690 | ||
83342314 | 1691 | /** |
ead04089 | 1692 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
83342314 | 1693 | * @size: allocation size |
ead04089 REB |
1694 | * |
1695 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
1696 | * mapped to userspace without leaking data. | |
83342314 NP |
1697 | */ |
1698 | void *vmalloc_32_user(unsigned long size) | |
1699 | { | |
1700 | struct vm_struct *area; | |
1701 | void *ret; | |
1702 | ||
2dca6999 | 1703 | ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
84877848 | 1704 | -1, __builtin_return_address(0)); |
2b4ac44e | 1705 | if (ret) { |
db64fe02 | 1706 | area = find_vm_area(ret); |
2b4ac44e | 1707 | area->flags |= VM_USERMAP; |
2b4ac44e | 1708 | } |
83342314 NP |
1709 | return ret; |
1710 | } | |
1711 | EXPORT_SYMBOL(vmalloc_32_user); | |
1712 | ||
d0107eb0 KH |
1713 | /* |
1714 | * small helper routine , copy contents to buf from addr. | |
1715 | * If the page is not present, fill zero. | |
1716 | */ | |
1717 | ||
1718 | static int aligned_vread(char *buf, char *addr, unsigned long count) | |
1719 | { | |
1720 | struct page *p; | |
1721 | int copied = 0; | |
1722 | ||
1723 | while (count) { | |
1724 | unsigned long offset, length; | |
1725 | ||
1726 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1727 | length = PAGE_SIZE - offset; | |
1728 | if (length > count) | |
1729 | length = count; | |
1730 | p = vmalloc_to_page(addr); | |
1731 | /* | |
1732 | * To do safe access to this _mapped_ area, we need | |
1733 | * lock. But adding lock here means that we need to add | |
1734 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1735 | * interface, rarely used. Instead of that, we'll use | |
1736 | * kmap() and get small overhead in this access function. | |
1737 | */ | |
1738 | if (p) { | |
1739 | /* | |
1740 | * we can expect USER0 is not used (see vread/vwrite's | |
1741 | * function description) | |
1742 | */ | |
1743 | void *map = kmap_atomic(p, KM_USER0); | |
1744 | memcpy(buf, map + offset, length); | |
1745 | kunmap_atomic(map, KM_USER0); | |
1746 | } else | |
1747 | memset(buf, 0, length); | |
1748 | ||
1749 | addr += length; | |
1750 | buf += length; | |
1751 | copied += length; | |
1752 | count -= length; | |
1753 | } | |
1754 | return copied; | |
1755 | } | |
1756 | ||
1757 | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | |
1758 | { | |
1759 | struct page *p; | |
1760 | int copied = 0; | |
1761 | ||
1762 | while (count) { | |
1763 | unsigned long offset, length; | |
1764 | ||
1765 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1766 | length = PAGE_SIZE - offset; | |
1767 | if (length > count) | |
1768 | length = count; | |
1769 | p = vmalloc_to_page(addr); | |
1770 | /* | |
1771 | * To do safe access to this _mapped_ area, we need | |
1772 | * lock. But adding lock here means that we need to add | |
1773 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1774 | * interface, rarely used. Instead of that, we'll use | |
1775 | * kmap() and get small overhead in this access function. | |
1776 | */ | |
1777 | if (p) { | |
1778 | /* | |
1779 | * we can expect USER0 is not used (see vread/vwrite's | |
1780 | * function description) | |
1781 | */ | |
1782 | void *map = kmap_atomic(p, KM_USER0); | |
1783 | memcpy(map + offset, buf, length); | |
1784 | kunmap_atomic(map, KM_USER0); | |
1785 | } | |
1786 | addr += length; | |
1787 | buf += length; | |
1788 | copied += length; | |
1789 | count -= length; | |
1790 | } | |
1791 | return copied; | |
1792 | } | |
1793 | ||
1794 | /** | |
1795 | * vread() - read vmalloc area in a safe way. | |
1796 | * @buf: buffer for reading data | |
1797 | * @addr: vm address. | |
1798 | * @count: number of bytes to be read. | |
1799 | * | |
1800 | * Returns # of bytes which addr and buf should be increased. | |
1801 | * (same number to @count). Returns 0 if [addr...addr+count) doesn't | |
1802 | * includes any intersect with alive vmalloc area. | |
1803 | * | |
1804 | * This function checks that addr is a valid vmalloc'ed area, and | |
1805 | * copy data from that area to a given buffer. If the given memory range | |
1806 | * of [addr...addr+count) includes some valid address, data is copied to | |
1807 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
1808 | * IOREMAP area is treated as memory hole and no copy is done. | |
1809 | * | |
1810 | * If [addr...addr+count) doesn't includes any intersects with alive | |
1811 | * vm_struct area, returns 0. | |
1812 | * @buf should be kernel's buffer. Because this function uses KM_USER0, | |
1813 | * the caller should guarantee KM_USER0 is not used. | |
1814 | * | |
1815 | * Note: In usual ops, vread() is never necessary because the caller | |
1816 | * should know vmalloc() area is valid and can use memcpy(). | |
1817 | * This is for routines which have to access vmalloc area without | |
1818 | * any informaion, as /dev/kmem. | |
1819 | * | |
1820 | */ | |
1821 | ||
1da177e4 LT |
1822 | long vread(char *buf, char *addr, unsigned long count) |
1823 | { | |
1824 | struct vm_struct *tmp; | |
1825 | char *vaddr, *buf_start = buf; | |
d0107eb0 | 1826 | unsigned long buflen = count; |
1da177e4 LT |
1827 | unsigned long n; |
1828 | ||
1829 | /* Don't allow overflow */ | |
1830 | if ((unsigned long) addr + count < count) | |
1831 | count = -(unsigned long) addr; | |
1832 | ||
1833 | read_lock(&vmlist_lock); | |
d0107eb0 | 1834 | for (tmp = vmlist; count && tmp; tmp = tmp->next) { |
1da177e4 LT |
1835 | vaddr = (char *) tmp->addr; |
1836 | if (addr >= vaddr + tmp->size - PAGE_SIZE) | |
1837 | continue; | |
1838 | while (addr < vaddr) { | |
1839 | if (count == 0) | |
1840 | goto finished; | |
1841 | *buf = '\0'; | |
1842 | buf++; | |
1843 | addr++; | |
1844 | count--; | |
1845 | } | |
1846 | n = vaddr + tmp->size - PAGE_SIZE - addr; | |
d0107eb0 KH |
1847 | if (n > count) |
1848 | n = count; | |
1849 | if (!(tmp->flags & VM_IOREMAP)) | |
1850 | aligned_vread(buf, addr, n); | |
1851 | else /* IOREMAP area is treated as memory hole */ | |
1852 | memset(buf, 0, n); | |
1853 | buf += n; | |
1854 | addr += n; | |
1855 | count -= n; | |
1da177e4 LT |
1856 | } |
1857 | finished: | |
1858 | read_unlock(&vmlist_lock); | |
d0107eb0 KH |
1859 | |
1860 | if (buf == buf_start) | |
1861 | return 0; | |
1862 | /* zero-fill memory holes */ | |
1863 | if (buf != buf_start + buflen) | |
1864 | memset(buf, 0, buflen - (buf - buf_start)); | |
1865 | ||
1866 | return buflen; | |
1da177e4 LT |
1867 | } |
1868 | ||
d0107eb0 KH |
1869 | /** |
1870 | * vwrite() - write vmalloc area in a safe way. | |
1871 | * @buf: buffer for source data | |
1872 | * @addr: vm address. | |
1873 | * @count: number of bytes to be read. | |
1874 | * | |
1875 | * Returns # of bytes which addr and buf should be incresed. | |
1876 | * (same number to @count). | |
1877 | * If [addr...addr+count) doesn't includes any intersect with valid | |
1878 | * vmalloc area, returns 0. | |
1879 | * | |
1880 | * This function checks that addr is a valid vmalloc'ed area, and | |
1881 | * copy data from a buffer to the given addr. If specified range of | |
1882 | * [addr...addr+count) includes some valid address, data is copied from | |
1883 | * proper area of @buf. If there are memory holes, no copy to hole. | |
1884 | * IOREMAP area is treated as memory hole and no copy is done. | |
1885 | * | |
1886 | * If [addr...addr+count) doesn't includes any intersects with alive | |
1887 | * vm_struct area, returns 0. | |
1888 | * @buf should be kernel's buffer. Because this function uses KM_USER0, | |
1889 | * the caller should guarantee KM_USER0 is not used. | |
1890 | * | |
1891 | * Note: In usual ops, vwrite() is never necessary because the caller | |
1892 | * should know vmalloc() area is valid and can use memcpy(). | |
1893 | * This is for routines which have to access vmalloc area without | |
1894 | * any informaion, as /dev/kmem. | |
1895 | * | |
1896 | * The caller should guarantee KM_USER1 is not used. | |
1897 | */ | |
1898 | ||
1da177e4 LT |
1899 | long vwrite(char *buf, char *addr, unsigned long count) |
1900 | { | |
1901 | struct vm_struct *tmp; | |
d0107eb0 KH |
1902 | char *vaddr; |
1903 | unsigned long n, buflen; | |
1904 | int copied = 0; | |
1da177e4 LT |
1905 | |
1906 | /* Don't allow overflow */ | |
1907 | if ((unsigned long) addr + count < count) | |
1908 | count = -(unsigned long) addr; | |
d0107eb0 | 1909 | buflen = count; |
1da177e4 LT |
1910 | |
1911 | read_lock(&vmlist_lock); | |
d0107eb0 | 1912 | for (tmp = vmlist; count && tmp; tmp = tmp->next) { |
1da177e4 LT |
1913 | vaddr = (char *) tmp->addr; |
1914 | if (addr >= vaddr + tmp->size - PAGE_SIZE) | |
1915 | continue; | |
1916 | while (addr < vaddr) { | |
1917 | if (count == 0) | |
1918 | goto finished; | |
1919 | buf++; | |
1920 | addr++; | |
1921 | count--; | |
1922 | } | |
1923 | n = vaddr + tmp->size - PAGE_SIZE - addr; | |
d0107eb0 KH |
1924 | if (n > count) |
1925 | n = count; | |
1926 | if (!(tmp->flags & VM_IOREMAP)) { | |
1927 | aligned_vwrite(buf, addr, n); | |
1928 | copied++; | |
1929 | } | |
1930 | buf += n; | |
1931 | addr += n; | |
1932 | count -= n; | |
1da177e4 LT |
1933 | } |
1934 | finished: | |
1935 | read_unlock(&vmlist_lock); | |
d0107eb0 KH |
1936 | if (!copied) |
1937 | return 0; | |
1938 | return buflen; | |
1da177e4 | 1939 | } |
83342314 NP |
1940 | |
1941 | /** | |
1942 | * remap_vmalloc_range - map vmalloc pages to userspace | |
83342314 NP |
1943 | * @vma: vma to cover (map full range of vma) |
1944 | * @addr: vmalloc memory | |
1945 | * @pgoff: number of pages into addr before first page to map | |
7682486b RD |
1946 | * |
1947 | * Returns: 0 for success, -Exxx on failure | |
83342314 NP |
1948 | * |
1949 | * This function checks that addr is a valid vmalloc'ed area, and | |
1950 | * that it is big enough to cover the vma. Will return failure if | |
1951 | * that criteria isn't met. | |
1952 | * | |
72fd4a35 | 1953 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 NP |
1954 | */ |
1955 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
1956 | unsigned long pgoff) | |
1957 | { | |
1958 | struct vm_struct *area; | |
1959 | unsigned long uaddr = vma->vm_start; | |
1960 | unsigned long usize = vma->vm_end - vma->vm_start; | |
83342314 NP |
1961 | |
1962 | if ((PAGE_SIZE-1) & (unsigned long)addr) | |
1963 | return -EINVAL; | |
1964 | ||
db64fe02 | 1965 | area = find_vm_area(addr); |
83342314 | 1966 | if (!area) |
db64fe02 | 1967 | return -EINVAL; |
83342314 NP |
1968 | |
1969 | if (!(area->flags & VM_USERMAP)) | |
db64fe02 | 1970 | return -EINVAL; |
83342314 NP |
1971 | |
1972 | if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) | |
db64fe02 | 1973 | return -EINVAL; |
83342314 NP |
1974 | |
1975 | addr += pgoff << PAGE_SHIFT; | |
1976 | do { | |
1977 | struct page *page = vmalloc_to_page(addr); | |
db64fe02 NP |
1978 | int ret; |
1979 | ||
83342314 NP |
1980 | ret = vm_insert_page(vma, uaddr, page); |
1981 | if (ret) | |
1982 | return ret; | |
1983 | ||
1984 | uaddr += PAGE_SIZE; | |
1985 | addr += PAGE_SIZE; | |
1986 | usize -= PAGE_SIZE; | |
1987 | } while (usize > 0); | |
1988 | ||
1989 | /* Prevent "things" like memory migration? VM_flags need a cleanup... */ | |
1990 | vma->vm_flags |= VM_RESERVED; | |
1991 | ||
db64fe02 | 1992 | return 0; |
83342314 NP |
1993 | } |
1994 | EXPORT_SYMBOL(remap_vmalloc_range); | |
1995 | ||
1eeb66a1 CH |
1996 | /* |
1997 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to | |
1998 | * have one. | |
1999 | */ | |
2000 | void __attribute__((weak)) vmalloc_sync_all(void) | |
2001 | { | |
2002 | } | |
5f4352fb JF |
2003 | |
2004 | ||
2f569afd | 2005 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) |
5f4352fb JF |
2006 | { |
2007 | /* apply_to_page_range() does all the hard work. */ | |
2008 | return 0; | |
2009 | } | |
2010 | ||
2011 | /** | |
2012 | * alloc_vm_area - allocate a range of kernel address space | |
2013 | * @size: size of the area | |
7682486b RD |
2014 | * |
2015 | * Returns: NULL on failure, vm_struct on success | |
5f4352fb JF |
2016 | * |
2017 | * This function reserves a range of kernel address space, and | |
2018 | * allocates pagetables to map that range. No actual mappings | |
2019 | * are created. If the kernel address space is not shared | |
2020 | * between processes, it syncs the pagetable across all | |
2021 | * processes. | |
2022 | */ | |
2023 | struct vm_struct *alloc_vm_area(size_t size) | |
2024 | { | |
2025 | struct vm_struct *area; | |
2026 | ||
23016969 CL |
2027 | area = get_vm_area_caller(size, VM_IOREMAP, |
2028 | __builtin_return_address(0)); | |
5f4352fb JF |
2029 | if (area == NULL) |
2030 | return NULL; | |
2031 | ||
2032 | /* | |
2033 | * This ensures that page tables are constructed for this region | |
2034 | * of kernel virtual address space and mapped into init_mm. | |
2035 | */ | |
2036 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
2037 | area->size, f, NULL)) { | |
2038 | free_vm_area(area); | |
2039 | return NULL; | |
2040 | } | |
2041 | ||
2042 | /* Make sure the pagetables are constructed in process kernel | |
2043 | mappings */ | |
2044 | vmalloc_sync_all(); | |
2045 | ||
2046 | return area; | |
2047 | } | |
2048 | EXPORT_SYMBOL_GPL(alloc_vm_area); | |
2049 | ||
2050 | void free_vm_area(struct vm_struct *area) | |
2051 | { | |
2052 | struct vm_struct *ret; | |
2053 | ret = remove_vm_area(area->addr); | |
2054 | BUG_ON(ret != area); | |
2055 | kfree(area); | |
2056 | } | |
2057 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 2058 | |
ca23e405 TH |
2059 | static struct vmap_area *node_to_va(struct rb_node *n) |
2060 | { | |
2061 | return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; | |
2062 | } | |
2063 | ||
2064 | /** | |
2065 | * pvm_find_next_prev - find the next and prev vmap_area surrounding @end | |
2066 | * @end: target address | |
2067 | * @pnext: out arg for the next vmap_area | |
2068 | * @pprev: out arg for the previous vmap_area | |
2069 | * | |
2070 | * Returns: %true if either or both of next and prev are found, | |
2071 | * %false if no vmap_area exists | |
2072 | * | |
2073 | * Find vmap_areas end addresses of which enclose @end. ie. if not | |
2074 | * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. | |
2075 | */ | |
2076 | static bool pvm_find_next_prev(unsigned long end, | |
2077 | struct vmap_area **pnext, | |
2078 | struct vmap_area **pprev) | |
2079 | { | |
2080 | struct rb_node *n = vmap_area_root.rb_node; | |
2081 | struct vmap_area *va = NULL; | |
2082 | ||
2083 | while (n) { | |
2084 | va = rb_entry(n, struct vmap_area, rb_node); | |
2085 | if (end < va->va_end) | |
2086 | n = n->rb_left; | |
2087 | else if (end > va->va_end) | |
2088 | n = n->rb_right; | |
2089 | else | |
2090 | break; | |
2091 | } | |
2092 | ||
2093 | if (!va) | |
2094 | return false; | |
2095 | ||
2096 | if (va->va_end > end) { | |
2097 | *pnext = va; | |
2098 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2099 | } else { | |
2100 | *pprev = va; | |
2101 | *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); | |
2102 | } | |
2103 | return true; | |
2104 | } | |
2105 | ||
2106 | /** | |
2107 | * pvm_determine_end - find the highest aligned address between two vmap_areas | |
2108 | * @pnext: in/out arg for the next vmap_area | |
2109 | * @pprev: in/out arg for the previous vmap_area | |
2110 | * @align: alignment | |
2111 | * | |
2112 | * Returns: determined end address | |
2113 | * | |
2114 | * Find the highest aligned address between *@pnext and *@pprev below | |
2115 | * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned | |
2116 | * down address is between the end addresses of the two vmap_areas. | |
2117 | * | |
2118 | * Please note that the address returned by this function may fall | |
2119 | * inside *@pnext vmap_area. The caller is responsible for checking | |
2120 | * that. | |
2121 | */ | |
2122 | static unsigned long pvm_determine_end(struct vmap_area **pnext, | |
2123 | struct vmap_area **pprev, | |
2124 | unsigned long align) | |
2125 | { | |
2126 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2127 | unsigned long addr; | |
2128 | ||
2129 | if (*pnext) | |
2130 | addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); | |
2131 | else | |
2132 | addr = vmalloc_end; | |
2133 | ||
2134 | while (*pprev && (*pprev)->va_end > addr) { | |
2135 | *pnext = *pprev; | |
2136 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2137 | } | |
2138 | ||
2139 | return addr; | |
2140 | } | |
2141 | ||
2142 | /** | |
2143 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
2144 | * @offsets: array containing offset of each area | |
2145 | * @sizes: array containing size of each area | |
2146 | * @nr_vms: the number of areas to allocate | |
2147 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
2148 | * @gfp_mask: allocation mask | |
2149 | * | |
2150 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
2151 | * vm_structs on success, %NULL on failure | |
2152 | * | |
2153 | * Percpu allocator wants to use congruent vm areas so that it can | |
2154 | * maintain the offsets among percpu areas. This function allocates | |
2155 | * congruent vmalloc areas for it. These areas tend to be scattered | |
2156 | * pretty far, distance between two areas easily going up to | |
2157 | * gigabytes. To avoid interacting with regular vmallocs, these areas | |
2158 | * are allocated from top. | |
2159 | * | |
2160 | * Despite its complicated look, this allocator is rather simple. It | |
2161 | * does everything top-down and scans areas from the end looking for | |
2162 | * matching slot. While scanning, if any of the areas overlaps with | |
2163 | * existing vmap_area, the base address is pulled down to fit the | |
2164 | * area. Scanning is repeated till all the areas fit and then all | |
2165 | * necessary data structres are inserted and the result is returned. | |
2166 | */ | |
2167 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
2168 | const size_t *sizes, int nr_vms, | |
2169 | size_t align, gfp_t gfp_mask) | |
2170 | { | |
2171 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
2172 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2173 | struct vmap_area **vas, *prev, *next; | |
2174 | struct vm_struct **vms; | |
2175 | int area, area2, last_area, term_area; | |
2176 | unsigned long base, start, end, last_end; | |
2177 | bool purged = false; | |
2178 | ||
2179 | gfp_mask &= GFP_RECLAIM_MASK; | |
2180 | ||
2181 | /* verify parameters and allocate data structures */ | |
2182 | BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); | |
2183 | for (last_area = 0, area = 0; area < nr_vms; area++) { | |
2184 | start = offsets[area]; | |
2185 | end = start + sizes[area]; | |
2186 | ||
2187 | /* is everything aligned properly? */ | |
2188 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
2189 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
2190 | ||
2191 | /* detect the area with the highest address */ | |
2192 | if (start > offsets[last_area]) | |
2193 | last_area = area; | |
2194 | ||
2195 | for (area2 = 0; area2 < nr_vms; area2++) { | |
2196 | unsigned long start2 = offsets[area2]; | |
2197 | unsigned long end2 = start2 + sizes[area2]; | |
2198 | ||
2199 | if (area2 == area) | |
2200 | continue; | |
2201 | ||
2202 | BUG_ON(start2 >= start && start2 < end); | |
2203 | BUG_ON(end2 <= end && end2 > start); | |
2204 | } | |
2205 | } | |
2206 | last_end = offsets[last_area] + sizes[last_area]; | |
2207 | ||
2208 | if (vmalloc_end - vmalloc_start < last_end) { | |
2209 | WARN_ON(true); | |
2210 | return NULL; | |
2211 | } | |
2212 | ||
2213 | vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask); | |
2214 | vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask); | |
2215 | if (!vas || !vms) | |
2216 | goto err_free; | |
2217 | ||
2218 | for (area = 0; area < nr_vms; area++) { | |
2219 | vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask); | |
2220 | vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask); | |
2221 | if (!vas[area] || !vms[area]) | |
2222 | goto err_free; | |
2223 | } | |
2224 | retry: | |
2225 | spin_lock(&vmap_area_lock); | |
2226 | ||
2227 | /* start scanning - we scan from the top, begin with the last area */ | |
2228 | area = term_area = last_area; | |
2229 | start = offsets[area]; | |
2230 | end = start + sizes[area]; | |
2231 | ||
2232 | if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { | |
2233 | base = vmalloc_end - last_end; | |
2234 | goto found; | |
2235 | } | |
2236 | base = pvm_determine_end(&next, &prev, align) - end; | |
2237 | ||
2238 | while (true) { | |
2239 | BUG_ON(next && next->va_end <= base + end); | |
2240 | BUG_ON(prev && prev->va_end > base + end); | |
2241 | ||
2242 | /* | |
2243 | * base might have underflowed, add last_end before | |
2244 | * comparing. | |
2245 | */ | |
2246 | if (base + last_end < vmalloc_start + last_end) { | |
2247 | spin_unlock(&vmap_area_lock); | |
2248 | if (!purged) { | |
2249 | purge_vmap_area_lazy(); | |
2250 | purged = true; | |
2251 | goto retry; | |
2252 | } | |
2253 | goto err_free; | |
2254 | } | |
2255 | ||
2256 | /* | |
2257 | * If next overlaps, move base downwards so that it's | |
2258 | * right below next and then recheck. | |
2259 | */ | |
2260 | if (next && next->va_start < base + end) { | |
2261 | base = pvm_determine_end(&next, &prev, align) - end; | |
2262 | term_area = area; | |
2263 | continue; | |
2264 | } | |
2265 | ||
2266 | /* | |
2267 | * If prev overlaps, shift down next and prev and move | |
2268 | * base so that it's right below new next and then | |
2269 | * recheck. | |
2270 | */ | |
2271 | if (prev && prev->va_end > base + start) { | |
2272 | next = prev; | |
2273 | prev = node_to_va(rb_prev(&next->rb_node)); | |
2274 | base = pvm_determine_end(&next, &prev, align) - end; | |
2275 | term_area = area; | |
2276 | continue; | |
2277 | } | |
2278 | ||
2279 | /* | |
2280 | * This area fits, move on to the previous one. If | |
2281 | * the previous one is the terminal one, we're done. | |
2282 | */ | |
2283 | area = (area + nr_vms - 1) % nr_vms; | |
2284 | if (area == term_area) | |
2285 | break; | |
2286 | start = offsets[area]; | |
2287 | end = start + sizes[area]; | |
2288 | pvm_find_next_prev(base + end, &next, &prev); | |
2289 | } | |
2290 | found: | |
2291 | /* we've found a fitting base, insert all va's */ | |
2292 | for (area = 0; area < nr_vms; area++) { | |
2293 | struct vmap_area *va = vas[area]; | |
2294 | ||
2295 | va->va_start = base + offsets[area]; | |
2296 | va->va_end = va->va_start + sizes[area]; | |
2297 | __insert_vmap_area(va); | |
2298 | } | |
2299 | ||
2300 | vmap_area_pcpu_hole = base + offsets[last_area]; | |
2301 | ||
2302 | spin_unlock(&vmap_area_lock); | |
2303 | ||
2304 | /* insert all vm's */ | |
2305 | for (area = 0; area < nr_vms; area++) | |
2306 | insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, | |
2307 | pcpu_get_vm_areas); | |
2308 | ||
2309 | kfree(vas); | |
2310 | return vms; | |
2311 | ||
2312 | err_free: | |
2313 | for (area = 0; area < nr_vms; area++) { | |
2314 | if (vas) | |
2315 | kfree(vas[area]); | |
2316 | if (vms) | |
2317 | kfree(vms[area]); | |
2318 | } | |
2319 | kfree(vas); | |
2320 | kfree(vms); | |
2321 | return NULL; | |
2322 | } | |
2323 | ||
2324 | /** | |
2325 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
2326 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
2327 | * @nr_vms: the number of allocated areas | |
2328 | * | |
2329 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
2330 | */ | |
2331 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
2332 | { | |
2333 | int i; | |
2334 | ||
2335 | for (i = 0; i < nr_vms; i++) | |
2336 | free_vm_area(vms[i]); | |
2337 | kfree(vms); | |
2338 | } | |
a10aa579 CL |
2339 | |
2340 | #ifdef CONFIG_PROC_FS | |
2341 | static void *s_start(struct seq_file *m, loff_t *pos) | |
2342 | { | |
2343 | loff_t n = *pos; | |
2344 | struct vm_struct *v; | |
2345 | ||
2346 | read_lock(&vmlist_lock); | |
2347 | v = vmlist; | |
2348 | while (n > 0 && v) { | |
2349 | n--; | |
2350 | v = v->next; | |
2351 | } | |
2352 | if (!n) | |
2353 | return v; | |
2354 | ||
2355 | return NULL; | |
2356 | ||
2357 | } | |
2358 | ||
2359 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
2360 | { | |
2361 | struct vm_struct *v = p; | |
2362 | ||
2363 | ++*pos; | |
2364 | return v->next; | |
2365 | } | |
2366 | ||
2367 | static void s_stop(struct seq_file *m, void *p) | |
2368 | { | |
2369 | read_unlock(&vmlist_lock); | |
2370 | } | |
2371 | ||
a47a126a ED |
2372 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
2373 | { | |
2374 | if (NUMA_BUILD) { | |
2375 | unsigned int nr, *counters = m->private; | |
2376 | ||
2377 | if (!counters) | |
2378 | return; | |
2379 | ||
2380 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | |
2381 | ||
2382 | for (nr = 0; nr < v->nr_pages; nr++) | |
2383 | counters[page_to_nid(v->pages[nr])]++; | |
2384 | ||
2385 | for_each_node_state(nr, N_HIGH_MEMORY) | |
2386 | if (counters[nr]) | |
2387 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
2388 | } | |
2389 | } | |
2390 | ||
a10aa579 CL |
2391 | static int s_show(struct seq_file *m, void *p) |
2392 | { | |
2393 | struct vm_struct *v = p; | |
2394 | ||
2395 | seq_printf(m, "0x%p-0x%p %7ld", | |
2396 | v->addr, v->addr + v->size, v->size); | |
2397 | ||
23016969 | 2398 | if (v->caller) { |
9c246247 | 2399 | char buff[KSYM_SYMBOL_LEN]; |
23016969 CL |
2400 | |
2401 | seq_putc(m, ' '); | |
2402 | sprint_symbol(buff, (unsigned long)v->caller); | |
2403 | seq_puts(m, buff); | |
2404 | } | |
2405 | ||
a10aa579 CL |
2406 | if (v->nr_pages) |
2407 | seq_printf(m, " pages=%d", v->nr_pages); | |
2408 | ||
2409 | if (v->phys_addr) | |
ffa71f33 | 2410 | seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); |
a10aa579 CL |
2411 | |
2412 | if (v->flags & VM_IOREMAP) | |
2413 | seq_printf(m, " ioremap"); | |
2414 | ||
2415 | if (v->flags & VM_ALLOC) | |
2416 | seq_printf(m, " vmalloc"); | |
2417 | ||
2418 | if (v->flags & VM_MAP) | |
2419 | seq_printf(m, " vmap"); | |
2420 | ||
2421 | if (v->flags & VM_USERMAP) | |
2422 | seq_printf(m, " user"); | |
2423 | ||
2424 | if (v->flags & VM_VPAGES) | |
2425 | seq_printf(m, " vpages"); | |
2426 | ||
a47a126a | 2427 | show_numa_info(m, v); |
a10aa579 CL |
2428 | seq_putc(m, '\n'); |
2429 | return 0; | |
2430 | } | |
2431 | ||
5f6a6a9c | 2432 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
2433 | .start = s_start, |
2434 | .next = s_next, | |
2435 | .stop = s_stop, | |
2436 | .show = s_show, | |
2437 | }; | |
5f6a6a9c AD |
2438 | |
2439 | static int vmalloc_open(struct inode *inode, struct file *file) | |
2440 | { | |
2441 | unsigned int *ptr = NULL; | |
2442 | int ret; | |
2443 | ||
51980ac9 | 2444 | if (NUMA_BUILD) { |
5f6a6a9c | 2445 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); |
51980ac9 KV |
2446 | if (ptr == NULL) |
2447 | return -ENOMEM; | |
2448 | } | |
5f6a6a9c AD |
2449 | ret = seq_open(file, &vmalloc_op); |
2450 | if (!ret) { | |
2451 | struct seq_file *m = file->private_data; | |
2452 | m->private = ptr; | |
2453 | } else | |
2454 | kfree(ptr); | |
2455 | return ret; | |
2456 | } | |
2457 | ||
2458 | static const struct file_operations proc_vmalloc_operations = { | |
2459 | .open = vmalloc_open, | |
2460 | .read = seq_read, | |
2461 | .llseek = seq_lseek, | |
2462 | .release = seq_release_private, | |
2463 | }; | |
2464 | ||
2465 | static int __init proc_vmalloc_init(void) | |
2466 | { | |
2467 | proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | |
2468 | return 0; | |
2469 | } | |
2470 | module_init(proc_vmalloc_init); | |
a10aa579 CL |
2471 | #endif |
2472 |