]>
Commit | Line | Data |
---|---|---|
fbf59bc9 | 1 | /* |
88999a89 | 2 | * mm/percpu.c - percpu memory allocator |
fbf59bc9 TH |
3 | * |
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | |
5 | * Copyright (C) 2009 Tejun Heo <[email protected]> | |
6 | * | |
7 | * This file is released under the GPLv2. | |
8 | * | |
9 | * This is percpu allocator which can handle both static and dynamic | |
88999a89 TH |
10 | * areas. Percpu areas are allocated in chunks. Each chunk is |
11 | * consisted of boot-time determined number of units and the first | |
12 | * chunk is used for static percpu variables in the kernel image | |
2f39e637 TH |
13 | * (special boot time alloc/init handling necessary as these areas |
14 | * need to be brought up before allocation services are running). | |
15 | * Unit grows as necessary and all units grow or shrink in unison. | |
88999a89 | 16 | * When a chunk is filled up, another chunk is allocated. |
fbf59bc9 TH |
17 | * |
18 | * c0 c1 c2 | |
19 | * ------------------- ------------------- ------------ | |
20 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | |
21 | * ------------------- ...... ------------------- .... ------------ | |
22 | * | |
23 | * Allocation is done in offset-size areas of single unit space. Ie, | |
24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | |
2f39e637 TH |
25 | * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to |
26 | * cpus. On NUMA, the mapping can be non-linear and even sparse. | |
27 | * Percpu access can be done by configuring percpu base registers | |
28 | * according to cpu to unit mapping and pcpu_unit_size. | |
fbf59bc9 | 29 | * |
2f39e637 TH |
30 | * There are usually many small percpu allocations many of them being |
31 | * as small as 4 bytes. The allocator organizes chunks into lists | |
fbf59bc9 TH |
32 | * according to free size and tries to allocate from the fullest one. |
33 | * Each chunk keeps the maximum contiguous area size hint which is | |
34 | * guaranteed to be eqaul to or larger than the maximum contiguous | |
35 | * area in the chunk. This helps the allocator not to iterate the | |
36 | * chunk maps unnecessarily. | |
37 | * | |
38 | * Allocation state in each chunk is kept using an array of integers | |
39 | * on chunk->map. A positive value in the map represents a free | |
40 | * region and negative allocated. Allocation inside a chunk is done | |
41 | * by scanning this map sequentially and serving the first matching | |
42 | * entry. This is mostly copied from the percpu_modalloc() allocator. | |
e1b9aa3f CL |
43 | * Chunks can be determined from the address using the index field |
44 | * in the page struct. The index field contains a pointer to the chunk. | |
fbf59bc9 TH |
45 | * |
46 | * To use this allocator, arch code should do the followings. | |
47 | * | |
fbf59bc9 | 48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate |
e0100983 TH |
49 | * regular address to percpu pointer and back if they need to be |
50 | * different from the default | |
fbf59bc9 | 51 | * |
8d408b4b TH |
52 | * - use pcpu_setup_first_chunk() during percpu area initialization to |
53 | * setup the first chunk containing the kernel static percpu area | |
fbf59bc9 TH |
54 | */ |
55 | ||
56 | #include <linux/bitmap.h> | |
57 | #include <linux/bootmem.h> | |
fd1e8a1f | 58 | #include <linux/err.h> |
fbf59bc9 | 59 | #include <linux/list.h> |
a530b795 | 60 | #include <linux/log2.h> |
fbf59bc9 TH |
61 | #include <linux/mm.h> |
62 | #include <linux/module.h> | |
63 | #include <linux/mutex.h> | |
64 | #include <linux/percpu.h> | |
65 | #include <linux/pfn.h> | |
fbf59bc9 | 66 | #include <linux/slab.h> |
ccea34b5 | 67 | #include <linux/spinlock.h> |
fbf59bc9 | 68 | #include <linux/vmalloc.h> |
a56dbddf | 69 | #include <linux/workqueue.h> |
fbf59bc9 TH |
70 | |
71 | #include <asm/cacheflush.h> | |
e0100983 | 72 | #include <asm/sections.h> |
fbf59bc9 | 73 | #include <asm/tlbflush.h> |
3b034b0d | 74 | #include <asm/io.h> |
fbf59bc9 | 75 | |
fbf59bc9 TH |
76 | #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ |
77 | #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ | |
78 | ||
e0100983 TH |
79 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ |
80 | #ifndef __addr_to_pcpu_ptr | |
81 | #define __addr_to_pcpu_ptr(addr) \ | |
43cf38eb TH |
82 | (void __percpu *)((unsigned long)(addr) - \ |
83 | (unsigned long)pcpu_base_addr + \ | |
84 | (unsigned long)__per_cpu_start) | |
e0100983 TH |
85 | #endif |
86 | #ifndef __pcpu_ptr_to_addr | |
87 | #define __pcpu_ptr_to_addr(ptr) \ | |
43cf38eb TH |
88 | (void __force *)((unsigned long)(ptr) + \ |
89 | (unsigned long)pcpu_base_addr - \ | |
90 | (unsigned long)__per_cpu_start) | |
e0100983 TH |
91 | #endif |
92 | ||
fbf59bc9 TH |
93 | struct pcpu_chunk { |
94 | struct list_head list; /* linked to pcpu_slot lists */ | |
fbf59bc9 TH |
95 | int free_size; /* free bytes in the chunk */ |
96 | int contig_hint; /* max contiguous size hint */ | |
bba174f5 | 97 | void *base_addr; /* base address of this chunk */ |
fbf59bc9 TH |
98 | int map_used; /* # of map entries used */ |
99 | int map_alloc; /* # of map entries allocated */ | |
100 | int *map; /* allocation map */ | |
88999a89 | 101 | void *data; /* chunk data */ |
8d408b4b | 102 | bool immutable; /* no [de]population allowed */ |
ce3141a2 | 103 | unsigned long populated[]; /* populated bitmap */ |
fbf59bc9 TH |
104 | }; |
105 | ||
40150d37 TH |
106 | static int pcpu_unit_pages __read_mostly; |
107 | static int pcpu_unit_size __read_mostly; | |
2f39e637 | 108 | static int pcpu_nr_units __read_mostly; |
6563297c | 109 | static int pcpu_atom_size __read_mostly; |
40150d37 TH |
110 | static int pcpu_nr_slots __read_mostly; |
111 | static size_t pcpu_chunk_struct_size __read_mostly; | |
fbf59bc9 | 112 | |
2f39e637 TH |
113 | /* cpus with the lowest and highest unit numbers */ |
114 | static unsigned int pcpu_first_unit_cpu __read_mostly; | |
115 | static unsigned int pcpu_last_unit_cpu __read_mostly; | |
116 | ||
fbf59bc9 | 117 | /* the address of the first chunk which starts with the kernel static area */ |
40150d37 | 118 | void *pcpu_base_addr __read_mostly; |
fbf59bc9 TH |
119 | EXPORT_SYMBOL_GPL(pcpu_base_addr); |
120 | ||
fb435d52 TH |
121 | static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ |
122 | const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ | |
2f39e637 | 123 | |
6563297c TH |
124 | /* group information, used for vm allocation */ |
125 | static int pcpu_nr_groups __read_mostly; | |
126 | static const unsigned long *pcpu_group_offsets __read_mostly; | |
127 | static const size_t *pcpu_group_sizes __read_mostly; | |
128 | ||
ae9e6bc9 TH |
129 | /* |
130 | * The first chunk which always exists. Note that unlike other | |
131 | * chunks, this one can be allocated and mapped in several different | |
132 | * ways and thus often doesn't live in the vmalloc area. | |
133 | */ | |
134 | static struct pcpu_chunk *pcpu_first_chunk; | |
135 | ||
136 | /* | |
137 | * Optional reserved chunk. This chunk reserves part of the first | |
138 | * chunk and serves it for reserved allocations. The amount of | |
139 | * reserved offset is in pcpu_reserved_chunk_limit. When reserved | |
140 | * area doesn't exist, the following variables contain NULL and 0 | |
141 | * respectively. | |
142 | */ | |
edcb4639 | 143 | static struct pcpu_chunk *pcpu_reserved_chunk; |
edcb4639 TH |
144 | static int pcpu_reserved_chunk_limit; |
145 | ||
fbf59bc9 | 146 | /* |
ccea34b5 TH |
147 | * Synchronization rules. |
148 | * | |
149 | * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former | |
ce3141a2 TH |
150 | * protects allocation/reclaim paths, chunks, populated bitmap and |
151 | * vmalloc mapping. The latter is a spinlock and protects the index | |
152 | * data structures - chunk slots, chunks and area maps in chunks. | |
ccea34b5 TH |
153 | * |
154 | * During allocation, pcpu_alloc_mutex is kept locked all the time and | |
155 | * pcpu_lock is grabbed and released as necessary. All actual memory | |
403a91b1 JK |
156 | * allocations are done using GFP_KERNEL with pcpu_lock released. In |
157 | * general, percpu memory can't be allocated with irq off but | |
158 | * irqsave/restore are still used in alloc path so that it can be used | |
159 | * from early init path - sched_init() specifically. | |
ccea34b5 TH |
160 | * |
161 | * Free path accesses and alters only the index data structures, so it | |
162 | * can be safely called from atomic context. When memory needs to be | |
163 | * returned to the system, free path schedules reclaim_work which | |
164 | * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be | |
165 | * reclaimed, release both locks and frees the chunks. Note that it's | |
166 | * necessary to grab both locks to remove a chunk from circulation as | |
167 | * allocation path might be referencing the chunk with only | |
168 | * pcpu_alloc_mutex locked. | |
fbf59bc9 | 169 | */ |
ccea34b5 TH |
170 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ |
171 | static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ | |
fbf59bc9 | 172 | |
40150d37 | 173 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ |
fbf59bc9 | 174 | |
a56dbddf TH |
175 | /* reclaim work to release fully free chunks, scheduled from free path */ |
176 | static void pcpu_reclaim(struct work_struct *work); | |
177 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | |
178 | ||
020ec653 TH |
179 | static bool pcpu_addr_in_first_chunk(void *addr) |
180 | { | |
181 | void *first_start = pcpu_first_chunk->base_addr; | |
182 | ||
183 | return addr >= first_start && addr < first_start + pcpu_unit_size; | |
184 | } | |
185 | ||
186 | static bool pcpu_addr_in_reserved_chunk(void *addr) | |
187 | { | |
188 | void *first_start = pcpu_first_chunk->base_addr; | |
189 | ||
190 | return addr >= first_start && | |
191 | addr < first_start + pcpu_reserved_chunk_limit; | |
192 | } | |
193 | ||
d9b55eeb | 194 | static int __pcpu_size_to_slot(int size) |
fbf59bc9 | 195 | { |
cae3aeb8 | 196 | int highbit = fls(size); /* size is in bytes */ |
fbf59bc9 TH |
197 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); |
198 | } | |
199 | ||
d9b55eeb TH |
200 | static int pcpu_size_to_slot(int size) |
201 | { | |
202 | if (size == pcpu_unit_size) | |
203 | return pcpu_nr_slots - 1; | |
204 | return __pcpu_size_to_slot(size); | |
205 | } | |
206 | ||
fbf59bc9 TH |
207 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) |
208 | { | |
209 | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | |
210 | return 0; | |
211 | ||
212 | return pcpu_size_to_slot(chunk->free_size); | |
213 | } | |
214 | ||
88999a89 TH |
215 | /* set the pointer to a chunk in a page struct */ |
216 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | |
217 | { | |
218 | page->index = (unsigned long)pcpu; | |
219 | } | |
220 | ||
221 | /* obtain pointer to a chunk from a page struct */ | |
222 | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |
223 | { | |
224 | return (struct pcpu_chunk *)page->index; | |
225 | } | |
226 | ||
227 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) | |
fbf59bc9 | 228 | { |
2f39e637 | 229 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; |
fbf59bc9 TH |
230 | } |
231 | ||
9983b6f0 TH |
232 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, |
233 | unsigned int cpu, int page_idx) | |
fbf59bc9 | 234 | { |
bba174f5 | 235 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + |
fb435d52 | 236 | (page_idx << PAGE_SHIFT); |
fbf59bc9 TH |
237 | } |
238 | ||
88999a89 TH |
239 | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, |
240 | int *rs, int *re, int end) | |
ce3141a2 TH |
241 | { |
242 | *rs = find_next_zero_bit(chunk->populated, end, *rs); | |
243 | *re = find_next_bit(chunk->populated, end, *rs + 1); | |
244 | } | |
245 | ||
88999a89 TH |
246 | static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, |
247 | int *rs, int *re, int end) | |
ce3141a2 TH |
248 | { |
249 | *rs = find_next_bit(chunk->populated, end, *rs); | |
250 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | |
251 | } | |
252 | ||
253 | /* | |
254 | * (Un)populated page region iterators. Iterate over (un)populated | |
255 | * page regions betwen @start and @end in @chunk. @rs and @re should | |
256 | * be integer variables and will be set to start and end page index of | |
257 | * the current region. | |
258 | */ | |
259 | #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ | |
260 | for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ | |
261 | (rs) < (re); \ | |
262 | (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) | |
263 | ||
264 | #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ | |
265 | for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ | |
266 | (rs) < (re); \ | |
267 | (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) | |
268 | ||
fbf59bc9 | 269 | /** |
1880d93b TH |
270 | * pcpu_mem_alloc - allocate memory |
271 | * @size: bytes to allocate | |
fbf59bc9 | 272 | * |
1880d93b TH |
273 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, |
274 | * kzalloc() is used; otherwise, vmalloc() is used. The returned | |
275 | * memory is always zeroed. | |
fbf59bc9 | 276 | * |
ccea34b5 TH |
277 | * CONTEXT: |
278 | * Does GFP_KERNEL allocation. | |
279 | * | |
fbf59bc9 | 280 | * RETURNS: |
1880d93b | 281 | * Pointer to the allocated area on success, NULL on failure. |
fbf59bc9 | 282 | */ |
1880d93b | 283 | static void *pcpu_mem_alloc(size_t size) |
fbf59bc9 | 284 | { |
099a19d9 TH |
285 | if (WARN_ON_ONCE(!slab_is_available())) |
286 | return NULL; | |
287 | ||
1880d93b TH |
288 | if (size <= PAGE_SIZE) |
289 | return kzalloc(size, GFP_KERNEL); | |
290 | else { | |
291 | void *ptr = vmalloc(size); | |
292 | if (ptr) | |
293 | memset(ptr, 0, size); | |
294 | return ptr; | |
295 | } | |
296 | } | |
fbf59bc9 | 297 | |
1880d93b TH |
298 | /** |
299 | * pcpu_mem_free - free memory | |
300 | * @ptr: memory to free | |
301 | * @size: size of the area | |
302 | * | |
303 | * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). | |
304 | */ | |
305 | static void pcpu_mem_free(void *ptr, size_t size) | |
306 | { | |
fbf59bc9 | 307 | if (size <= PAGE_SIZE) |
1880d93b | 308 | kfree(ptr); |
fbf59bc9 | 309 | else |
1880d93b | 310 | vfree(ptr); |
fbf59bc9 TH |
311 | } |
312 | ||
313 | /** | |
314 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | |
315 | * @chunk: chunk of interest | |
316 | * @oslot: the previous slot it was on | |
317 | * | |
318 | * This function is called after an allocation or free changed @chunk. | |
319 | * New slot according to the changed state is determined and @chunk is | |
edcb4639 TH |
320 | * moved to the slot. Note that the reserved chunk is never put on |
321 | * chunk slots. | |
ccea34b5 TH |
322 | * |
323 | * CONTEXT: | |
324 | * pcpu_lock. | |
fbf59bc9 TH |
325 | */ |
326 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |
327 | { | |
328 | int nslot = pcpu_chunk_slot(chunk); | |
329 | ||
edcb4639 | 330 | if (chunk != pcpu_reserved_chunk && oslot != nslot) { |
fbf59bc9 TH |
331 | if (oslot < nslot) |
332 | list_move(&chunk->list, &pcpu_slot[nslot]); | |
333 | else | |
334 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | |
335 | } | |
336 | } | |
337 | ||
9f7dcf22 | 338 | /** |
833af842 TH |
339 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended |
340 | * @chunk: chunk of interest | |
9f7dcf22 | 341 | * |
833af842 TH |
342 | * Determine whether area map of @chunk needs to be extended to |
343 | * accomodate a new allocation. | |
9f7dcf22 | 344 | * |
ccea34b5 | 345 | * CONTEXT: |
833af842 | 346 | * pcpu_lock. |
ccea34b5 | 347 | * |
9f7dcf22 | 348 | * RETURNS: |
833af842 TH |
349 | * New target map allocation length if extension is necessary, 0 |
350 | * otherwise. | |
9f7dcf22 | 351 | */ |
833af842 | 352 | static int pcpu_need_to_extend(struct pcpu_chunk *chunk) |
9f7dcf22 TH |
353 | { |
354 | int new_alloc; | |
9f7dcf22 | 355 | |
9f7dcf22 TH |
356 | if (chunk->map_alloc >= chunk->map_used + 2) |
357 | return 0; | |
358 | ||
359 | new_alloc = PCPU_DFL_MAP_ALLOC; | |
360 | while (new_alloc < chunk->map_used + 2) | |
361 | new_alloc *= 2; | |
362 | ||
833af842 TH |
363 | return new_alloc; |
364 | } | |
365 | ||
366 | /** | |
367 | * pcpu_extend_area_map - extend area map of a chunk | |
368 | * @chunk: chunk of interest | |
369 | * @new_alloc: new target allocation length of the area map | |
370 | * | |
371 | * Extend area map of @chunk to have @new_alloc entries. | |
372 | * | |
373 | * CONTEXT: | |
374 | * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. | |
375 | * | |
376 | * RETURNS: | |
377 | * 0 on success, -errno on failure. | |
378 | */ | |
379 | static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) | |
380 | { | |
381 | int *old = NULL, *new = NULL; | |
382 | size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); | |
383 | unsigned long flags; | |
384 | ||
385 | new = pcpu_mem_alloc(new_size); | |
386 | if (!new) | |
9f7dcf22 | 387 | return -ENOMEM; |
ccea34b5 | 388 | |
833af842 TH |
389 | /* acquire pcpu_lock and switch to new area map */ |
390 | spin_lock_irqsave(&pcpu_lock, flags); | |
391 | ||
392 | if (new_alloc <= chunk->map_alloc) | |
393 | goto out_unlock; | |
9f7dcf22 | 394 | |
833af842 TH |
395 | old_size = chunk->map_alloc * sizeof(chunk->map[0]); |
396 | memcpy(new, chunk->map, old_size); | |
9f7dcf22 | 397 | |
9f7dcf22 TH |
398 | chunk->map_alloc = new_alloc; |
399 | chunk->map = new; | |
833af842 TH |
400 | new = NULL; |
401 | ||
402 | out_unlock: | |
403 | spin_unlock_irqrestore(&pcpu_lock, flags); | |
404 | ||
405 | /* | |
406 | * pcpu_mem_free() might end up calling vfree() which uses | |
407 | * IRQ-unsafe lock and thus can't be called under pcpu_lock. | |
408 | */ | |
409 | pcpu_mem_free(old, old_size); | |
410 | pcpu_mem_free(new, new_size); | |
411 | ||
9f7dcf22 TH |
412 | return 0; |
413 | } | |
414 | ||
fbf59bc9 TH |
415 | /** |
416 | * pcpu_split_block - split a map block | |
417 | * @chunk: chunk of interest | |
418 | * @i: index of map block to split | |
cae3aeb8 TH |
419 | * @head: head size in bytes (can be 0) |
420 | * @tail: tail size in bytes (can be 0) | |
fbf59bc9 TH |
421 | * |
422 | * Split the @i'th map block into two or three blocks. If @head is | |
423 | * non-zero, @head bytes block is inserted before block @i moving it | |
424 | * to @i+1 and reducing its size by @head bytes. | |
425 | * | |
426 | * If @tail is non-zero, the target block, which can be @i or @i+1 | |
427 | * depending on @head, is reduced by @tail bytes and @tail byte block | |
428 | * is inserted after the target block. | |
429 | * | |
9f7dcf22 | 430 | * @chunk->map must have enough free slots to accomodate the split. |
ccea34b5 TH |
431 | * |
432 | * CONTEXT: | |
433 | * pcpu_lock. | |
fbf59bc9 | 434 | */ |
9f7dcf22 TH |
435 | static void pcpu_split_block(struct pcpu_chunk *chunk, int i, |
436 | int head, int tail) | |
fbf59bc9 TH |
437 | { |
438 | int nr_extra = !!head + !!tail; | |
1880d93b | 439 | |
9f7dcf22 | 440 | BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); |
fbf59bc9 | 441 | |
9f7dcf22 | 442 | /* insert new subblocks */ |
fbf59bc9 TH |
443 | memmove(&chunk->map[i + nr_extra], &chunk->map[i], |
444 | sizeof(chunk->map[0]) * (chunk->map_used - i)); | |
445 | chunk->map_used += nr_extra; | |
446 | ||
447 | if (head) { | |
448 | chunk->map[i + 1] = chunk->map[i] - head; | |
449 | chunk->map[i++] = head; | |
450 | } | |
451 | if (tail) { | |
452 | chunk->map[i++] -= tail; | |
453 | chunk->map[i] = tail; | |
454 | } | |
fbf59bc9 TH |
455 | } |
456 | ||
457 | /** | |
458 | * pcpu_alloc_area - allocate area from a pcpu_chunk | |
459 | * @chunk: chunk of interest | |
cae3aeb8 | 460 | * @size: wanted size in bytes |
fbf59bc9 TH |
461 | * @align: wanted align |
462 | * | |
463 | * Try to allocate @size bytes area aligned at @align from @chunk. | |
464 | * Note that this function only allocates the offset. It doesn't | |
465 | * populate or map the area. | |
466 | * | |
9f7dcf22 TH |
467 | * @chunk->map must have at least two free slots. |
468 | * | |
ccea34b5 TH |
469 | * CONTEXT: |
470 | * pcpu_lock. | |
471 | * | |
fbf59bc9 | 472 | * RETURNS: |
9f7dcf22 TH |
473 | * Allocated offset in @chunk on success, -1 if no matching area is |
474 | * found. | |
fbf59bc9 TH |
475 | */ |
476 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) | |
477 | { | |
478 | int oslot = pcpu_chunk_slot(chunk); | |
479 | int max_contig = 0; | |
480 | int i, off; | |
481 | ||
fbf59bc9 TH |
482 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { |
483 | bool is_last = i + 1 == chunk->map_used; | |
484 | int head, tail; | |
485 | ||
486 | /* extra for alignment requirement */ | |
487 | head = ALIGN(off, align) - off; | |
488 | BUG_ON(i == 0 && head != 0); | |
489 | ||
490 | if (chunk->map[i] < 0) | |
491 | continue; | |
492 | if (chunk->map[i] < head + size) { | |
493 | max_contig = max(chunk->map[i], max_contig); | |
494 | continue; | |
495 | } | |
496 | ||
497 | /* | |
498 | * If head is small or the previous block is free, | |
499 | * merge'em. Note that 'small' is defined as smaller | |
500 | * than sizeof(int), which is very small but isn't too | |
501 | * uncommon for percpu allocations. | |
502 | */ | |
503 | if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { | |
504 | if (chunk->map[i - 1] > 0) | |
505 | chunk->map[i - 1] += head; | |
506 | else { | |
507 | chunk->map[i - 1] -= head; | |
508 | chunk->free_size -= head; | |
509 | } | |
510 | chunk->map[i] -= head; | |
511 | off += head; | |
512 | head = 0; | |
513 | } | |
514 | ||
515 | /* if tail is small, just keep it around */ | |
516 | tail = chunk->map[i] - head - size; | |
517 | if (tail < sizeof(int)) | |
518 | tail = 0; | |
519 | ||
520 | /* split if warranted */ | |
521 | if (head || tail) { | |
9f7dcf22 | 522 | pcpu_split_block(chunk, i, head, tail); |
fbf59bc9 TH |
523 | if (head) { |
524 | i++; | |
525 | off += head; | |
526 | max_contig = max(chunk->map[i - 1], max_contig); | |
527 | } | |
528 | if (tail) | |
529 | max_contig = max(chunk->map[i + 1], max_contig); | |
530 | } | |
531 | ||
532 | /* update hint and mark allocated */ | |
533 | if (is_last) | |
534 | chunk->contig_hint = max_contig; /* fully scanned */ | |
535 | else | |
536 | chunk->contig_hint = max(chunk->contig_hint, | |
537 | max_contig); | |
538 | ||
539 | chunk->free_size -= chunk->map[i]; | |
540 | chunk->map[i] = -chunk->map[i]; | |
541 | ||
542 | pcpu_chunk_relocate(chunk, oslot); | |
543 | return off; | |
544 | } | |
545 | ||
546 | chunk->contig_hint = max_contig; /* fully scanned */ | |
547 | pcpu_chunk_relocate(chunk, oslot); | |
548 | ||
9f7dcf22 TH |
549 | /* tell the upper layer that this chunk has no matching area */ |
550 | return -1; | |
fbf59bc9 TH |
551 | } |
552 | ||
553 | /** | |
554 | * pcpu_free_area - free area to a pcpu_chunk | |
555 | * @chunk: chunk of interest | |
556 | * @freeme: offset of area to free | |
557 | * | |
558 | * Free area starting from @freeme to @chunk. Note that this function | |
559 | * only modifies the allocation map. It doesn't depopulate or unmap | |
560 | * the area. | |
ccea34b5 TH |
561 | * |
562 | * CONTEXT: | |
563 | * pcpu_lock. | |
fbf59bc9 TH |
564 | */ |
565 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | |
566 | { | |
567 | int oslot = pcpu_chunk_slot(chunk); | |
568 | int i, off; | |
569 | ||
570 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) | |
571 | if (off == freeme) | |
572 | break; | |
573 | BUG_ON(off != freeme); | |
574 | BUG_ON(chunk->map[i] > 0); | |
575 | ||
576 | chunk->map[i] = -chunk->map[i]; | |
577 | chunk->free_size += chunk->map[i]; | |
578 | ||
579 | /* merge with previous? */ | |
580 | if (i > 0 && chunk->map[i - 1] >= 0) { | |
581 | chunk->map[i - 1] += chunk->map[i]; | |
582 | chunk->map_used--; | |
583 | memmove(&chunk->map[i], &chunk->map[i + 1], | |
584 | (chunk->map_used - i) * sizeof(chunk->map[0])); | |
585 | i--; | |
586 | } | |
587 | /* merge with next? */ | |
588 | if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { | |
589 | chunk->map[i] += chunk->map[i + 1]; | |
590 | chunk->map_used--; | |
591 | memmove(&chunk->map[i + 1], &chunk->map[i + 2], | |
592 | (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); | |
593 | } | |
594 | ||
595 | chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); | |
596 | pcpu_chunk_relocate(chunk, oslot); | |
597 | } | |
598 | ||
6081089f TH |
599 | static struct pcpu_chunk *pcpu_alloc_chunk(void) |
600 | { | |
601 | struct pcpu_chunk *chunk; | |
602 | ||
099a19d9 | 603 | chunk = pcpu_mem_alloc(pcpu_chunk_struct_size); |
6081089f TH |
604 | if (!chunk) |
605 | return NULL; | |
606 | ||
607 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | |
608 | if (!chunk->map) { | |
609 | kfree(chunk); | |
610 | return NULL; | |
611 | } | |
612 | ||
613 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | |
614 | chunk->map[chunk->map_used++] = pcpu_unit_size; | |
615 | ||
616 | INIT_LIST_HEAD(&chunk->list); | |
617 | chunk->free_size = pcpu_unit_size; | |
618 | chunk->contig_hint = pcpu_unit_size; | |
619 | ||
620 | return chunk; | |
621 | } | |
622 | ||
623 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) | |
624 | { | |
625 | if (!chunk) | |
626 | return; | |
627 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | |
628 | kfree(chunk); | |
629 | } | |
630 | ||
9f645532 TH |
631 | /* |
632 | * Chunk management implementation. | |
633 | * | |
634 | * To allow different implementations, chunk alloc/free and | |
635 | * [de]population are implemented in a separate file which is pulled | |
636 | * into this file and compiled together. The following functions | |
637 | * should be implemented. | |
638 | * | |
639 | * pcpu_populate_chunk - populate the specified range of a chunk | |
640 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk | |
641 | * pcpu_create_chunk - create a new chunk | |
642 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop | |
643 | * pcpu_addr_to_page - translate address to physical address | |
644 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init | |
fbf59bc9 | 645 | */ |
9f645532 TH |
646 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); |
647 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); | |
648 | static struct pcpu_chunk *pcpu_create_chunk(void); | |
649 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); | |
650 | static struct page *pcpu_addr_to_page(void *addr); | |
651 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); | |
fbf59bc9 | 652 | |
b0c9778b TH |
653 | #ifdef CONFIG_NEED_PER_CPU_KM |
654 | #include "percpu-km.c" | |
655 | #else | |
9f645532 | 656 | #include "percpu-vm.c" |
b0c9778b | 657 | #endif |
fbf59bc9 | 658 | |
88999a89 TH |
659 | /** |
660 | * pcpu_chunk_addr_search - determine chunk containing specified address | |
661 | * @addr: address for which the chunk needs to be determined. | |
662 | * | |
663 | * RETURNS: | |
664 | * The address of the found chunk. | |
665 | */ | |
666 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | |
667 | { | |
668 | /* is it in the first chunk? */ | |
669 | if (pcpu_addr_in_first_chunk(addr)) { | |
670 | /* is it in the reserved area? */ | |
671 | if (pcpu_addr_in_reserved_chunk(addr)) | |
672 | return pcpu_reserved_chunk; | |
673 | return pcpu_first_chunk; | |
674 | } | |
675 | ||
676 | /* | |
677 | * The address is relative to unit0 which might be unused and | |
678 | * thus unmapped. Offset the address to the unit space of the | |
679 | * current processor before looking it up in the vmalloc | |
680 | * space. Note that any possible cpu id can be used here, so | |
681 | * there's no need to worry about preemption or cpu hotplug. | |
682 | */ | |
683 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | |
9f645532 | 684 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
88999a89 TH |
685 | } |
686 | ||
fbf59bc9 | 687 | /** |
edcb4639 | 688 | * pcpu_alloc - the percpu allocator |
cae3aeb8 | 689 | * @size: size of area to allocate in bytes |
fbf59bc9 | 690 | * @align: alignment of area (max PAGE_SIZE) |
edcb4639 | 691 | * @reserved: allocate from the reserved chunk if available |
fbf59bc9 | 692 | * |
ccea34b5 TH |
693 | * Allocate percpu area of @size bytes aligned at @align. |
694 | * | |
695 | * CONTEXT: | |
696 | * Does GFP_KERNEL allocation. | |
fbf59bc9 TH |
697 | * |
698 | * RETURNS: | |
699 | * Percpu pointer to the allocated area on success, NULL on failure. | |
700 | */ | |
43cf38eb | 701 | static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) |
fbf59bc9 | 702 | { |
f2badb0c | 703 | static int warn_limit = 10; |
fbf59bc9 | 704 | struct pcpu_chunk *chunk; |
f2badb0c | 705 | const char *err; |
833af842 | 706 | int slot, off, new_alloc; |
403a91b1 | 707 | unsigned long flags; |
fbf59bc9 | 708 | |
8d408b4b | 709 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { |
fbf59bc9 TH |
710 | WARN(true, "illegal size (%zu) or align (%zu) for " |
711 | "percpu allocation\n", size, align); | |
712 | return NULL; | |
713 | } | |
714 | ||
ccea34b5 | 715 | mutex_lock(&pcpu_alloc_mutex); |
403a91b1 | 716 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 | 717 | |
edcb4639 TH |
718 | /* serve reserved allocations from the reserved chunk if available */ |
719 | if (reserved && pcpu_reserved_chunk) { | |
720 | chunk = pcpu_reserved_chunk; | |
833af842 TH |
721 | |
722 | if (size > chunk->contig_hint) { | |
723 | err = "alloc from reserved chunk failed"; | |
ccea34b5 | 724 | goto fail_unlock; |
f2badb0c | 725 | } |
833af842 TH |
726 | |
727 | while ((new_alloc = pcpu_need_to_extend(chunk))) { | |
728 | spin_unlock_irqrestore(&pcpu_lock, flags); | |
729 | if (pcpu_extend_area_map(chunk, new_alloc) < 0) { | |
730 | err = "failed to extend area map of reserved chunk"; | |
731 | goto fail_unlock_mutex; | |
732 | } | |
733 | spin_lock_irqsave(&pcpu_lock, flags); | |
734 | } | |
735 | ||
edcb4639 TH |
736 | off = pcpu_alloc_area(chunk, size, align); |
737 | if (off >= 0) | |
738 | goto area_found; | |
833af842 | 739 | |
f2badb0c | 740 | err = "alloc from reserved chunk failed"; |
ccea34b5 | 741 | goto fail_unlock; |
edcb4639 TH |
742 | } |
743 | ||
ccea34b5 | 744 | restart: |
edcb4639 | 745 | /* search through normal chunks */ |
fbf59bc9 TH |
746 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { |
747 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | |
748 | if (size > chunk->contig_hint) | |
749 | continue; | |
ccea34b5 | 750 | |
833af842 TH |
751 | new_alloc = pcpu_need_to_extend(chunk); |
752 | if (new_alloc) { | |
753 | spin_unlock_irqrestore(&pcpu_lock, flags); | |
754 | if (pcpu_extend_area_map(chunk, | |
755 | new_alloc) < 0) { | |
756 | err = "failed to extend area map"; | |
757 | goto fail_unlock_mutex; | |
758 | } | |
759 | spin_lock_irqsave(&pcpu_lock, flags); | |
760 | /* | |
761 | * pcpu_lock has been dropped, need to | |
762 | * restart cpu_slot list walking. | |
763 | */ | |
764 | goto restart; | |
ccea34b5 TH |
765 | } |
766 | ||
fbf59bc9 TH |
767 | off = pcpu_alloc_area(chunk, size, align); |
768 | if (off >= 0) | |
769 | goto area_found; | |
fbf59bc9 TH |
770 | } |
771 | } | |
772 | ||
773 | /* hmmm... no space left, create a new chunk */ | |
403a91b1 | 774 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 775 | |
6081089f | 776 | chunk = pcpu_create_chunk(); |
f2badb0c TH |
777 | if (!chunk) { |
778 | err = "failed to allocate new chunk"; | |
ccea34b5 | 779 | goto fail_unlock_mutex; |
f2badb0c | 780 | } |
ccea34b5 | 781 | |
403a91b1 | 782 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 | 783 | pcpu_chunk_relocate(chunk, -1); |
ccea34b5 | 784 | goto restart; |
fbf59bc9 TH |
785 | |
786 | area_found: | |
403a91b1 | 787 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 788 | |
fbf59bc9 TH |
789 | /* populate, map and clear the area */ |
790 | if (pcpu_populate_chunk(chunk, off, size)) { | |
403a91b1 | 791 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 | 792 | pcpu_free_area(chunk, off); |
f2badb0c | 793 | err = "failed to populate"; |
ccea34b5 | 794 | goto fail_unlock; |
fbf59bc9 TH |
795 | } |
796 | ||
ccea34b5 TH |
797 | mutex_unlock(&pcpu_alloc_mutex); |
798 | ||
bba174f5 TH |
799 | /* return address relative to base address */ |
800 | return __addr_to_pcpu_ptr(chunk->base_addr + off); | |
ccea34b5 TH |
801 | |
802 | fail_unlock: | |
403a91b1 | 803 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 TH |
804 | fail_unlock_mutex: |
805 | mutex_unlock(&pcpu_alloc_mutex); | |
f2badb0c TH |
806 | if (warn_limit) { |
807 | pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " | |
808 | "%s\n", size, align, err); | |
809 | dump_stack(); | |
810 | if (!--warn_limit) | |
811 | pr_info("PERCPU: limit reached, disable warning\n"); | |
812 | } | |
ccea34b5 | 813 | return NULL; |
fbf59bc9 | 814 | } |
edcb4639 TH |
815 | |
816 | /** | |
817 | * __alloc_percpu - allocate dynamic percpu area | |
818 | * @size: size of area to allocate in bytes | |
819 | * @align: alignment of area (max PAGE_SIZE) | |
820 | * | |
821 | * Allocate percpu area of @size bytes aligned at @align. Might | |
822 | * sleep. Might trigger writeouts. | |
823 | * | |
ccea34b5 TH |
824 | * CONTEXT: |
825 | * Does GFP_KERNEL allocation. | |
826 | * | |
edcb4639 TH |
827 | * RETURNS: |
828 | * Percpu pointer to the allocated area on success, NULL on failure. | |
829 | */ | |
43cf38eb | 830 | void __percpu *__alloc_percpu(size_t size, size_t align) |
edcb4639 TH |
831 | { |
832 | return pcpu_alloc(size, align, false); | |
833 | } | |
fbf59bc9 TH |
834 | EXPORT_SYMBOL_GPL(__alloc_percpu); |
835 | ||
edcb4639 TH |
836 | /** |
837 | * __alloc_reserved_percpu - allocate reserved percpu area | |
838 | * @size: size of area to allocate in bytes | |
839 | * @align: alignment of area (max PAGE_SIZE) | |
840 | * | |
841 | * Allocate percpu area of @size bytes aligned at @align from reserved | |
842 | * percpu area if arch has set it up; otherwise, allocation is served | |
843 | * from the same dynamic area. Might sleep. Might trigger writeouts. | |
844 | * | |
ccea34b5 TH |
845 | * CONTEXT: |
846 | * Does GFP_KERNEL allocation. | |
847 | * | |
edcb4639 TH |
848 | * RETURNS: |
849 | * Percpu pointer to the allocated area on success, NULL on failure. | |
850 | */ | |
43cf38eb | 851 | void __percpu *__alloc_reserved_percpu(size_t size, size_t align) |
edcb4639 TH |
852 | { |
853 | return pcpu_alloc(size, align, true); | |
854 | } | |
855 | ||
a56dbddf TH |
856 | /** |
857 | * pcpu_reclaim - reclaim fully free chunks, workqueue function | |
858 | * @work: unused | |
859 | * | |
860 | * Reclaim all fully free chunks except for the first one. | |
ccea34b5 TH |
861 | * |
862 | * CONTEXT: | |
863 | * workqueue context. | |
a56dbddf TH |
864 | */ |
865 | static void pcpu_reclaim(struct work_struct *work) | |
fbf59bc9 | 866 | { |
a56dbddf TH |
867 | LIST_HEAD(todo); |
868 | struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; | |
869 | struct pcpu_chunk *chunk, *next; | |
870 | ||
ccea34b5 TH |
871 | mutex_lock(&pcpu_alloc_mutex); |
872 | spin_lock_irq(&pcpu_lock); | |
a56dbddf TH |
873 | |
874 | list_for_each_entry_safe(chunk, next, head, list) { | |
875 | WARN_ON(chunk->immutable); | |
876 | ||
877 | /* spare the first one */ | |
878 | if (chunk == list_first_entry(head, struct pcpu_chunk, list)) | |
879 | continue; | |
880 | ||
a56dbddf TH |
881 | list_move(&chunk->list, &todo); |
882 | } | |
883 | ||
ccea34b5 | 884 | spin_unlock_irq(&pcpu_lock); |
a56dbddf TH |
885 | |
886 | list_for_each_entry_safe(chunk, next, &todo, list) { | |
ce3141a2 | 887 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); |
6081089f | 888 | pcpu_destroy_chunk(chunk); |
a56dbddf | 889 | } |
971f3918 TH |
890 | |
891 | mutex_unlock(&pcpu_alloc_mutex); | |
fbf59bc9 TH |
892 | } |
893 | ||
894 | /** | |
895 | * free_percpu - free percpu area | |
896 | * @ptr: pointer to area to free | |
897 | * | |
ccea34b5 TH |
898 | * Free percpu area @ptr. |
899 | * | |
900 | * CONTEXT: | |
901 | * Can be called from atomic context. | |
fbf59bc9 | 902 | */ |
43cf38eb | 903 | void free_percpu(void __percpu *ptr) |
fbf59bc9 | 904 | { |
129182e5 | 905 | void *addr; |
fbf59bc9 | 906 | struct pcpu_chunk *chunk; |
ccea34b5 | 907 | unsigned long flags; |
fbf59bc9 TH |
908 | int off; |
909 | ||
910 | if (!ptr) | |
911 | return; | |
912 | ||
129182e5 AM |
913 | addr = __pcpu_ptr_to_addr(ptr); |
914 | ||
ccea34b5 | 915 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 TH |
916 | |
917 | chunk = pcpu_chunk_addr_search(addr); | |
bba174f5 | 918 | off = addr - chunk->base_addr; |
fbf59bc9 TH |
919 | |
920 | pcpu_free_area(chunk, off); | |
921 | ||
a56dbddf | 922 | /* if there are more than one fully free chunks, wake up grim reaper */ |
fbf59bc9 TH |
923 | if (chunk->free_size == pcpu_unit_size) { |
924 | struct pcpu_chunk *pos; | |
925 | ||
a56dbddf | 926 | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) |
fbf59bc9 | 927 | if (pos != chunk) { |
a56dbddf | 928 | schedule_work(&pcpu_reclaim_work); |
fbf59bc9 TH |
929 | break; |
930 | } | |
931 | } | |
932 | ||
ccea34b5 | 933 | spin_unlock_irqrestore(&pcpu_lock, flags); |
fbf59bc9 TH |
934 | } |
935 | EXPORT_SYMBOL_GPL(free_percpu); | |
936 | ||
10fad5e4 TH |
937 | /** |
938 | * is_kernel_percpu_address - test whether address is from static percpu area | |
939 | * @addr: address to test | |
940 | * | |
941 | * Test whether @addr belongs to in-kernel static percpu area. Module | |
942 | * static percpu areas are not considered. For those, use | |
943 | * is_module_percpu_address(). | |
944 | * | |
945 | * RETURNS: | |
946 | * %true if @addr is from in-kernel static percpu area, %false otherwise. | |
947 | */ | |
948 | bool is_kernel_percpu_address(unsigned long addr) | |
949 | { | |
950 | const size_t static_size = __per_cpu_end - __per_cpu_start; | |
951 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | |
952 | unsigned int cpu; | |
953 | ||
954 | for_each_possible_cpu(cpu) { | |
955 | void *start = per_cpu_ptr(base, cpu); | |
956 | ||
957 | if ((void *)addr >= start && (void *)addr < start + static_size) | |
958 | return true; | |
959 | } | |
960 | return false; | |
961 | } | |
962 | ||
3b034b0d VG |
963 | /** |
964 | * per_cpu_ptr_to_phys - convert translated percpu address to physical address | |
965 | * @addr: the address to be converted to physical address | |
966 | * | |
967 | * Given @addr which is dereferenceable address obtained via one of | |
968 | * percpu access macros, this function translates it into its physical | |
969 | * address. The caller is responsible for ensuring @addr stays valid | |
970 | * until this function finishes. | |
971 | * | |
972 | * RETURNS: | |
973 | * The physical address for @addr. | |
974 | */ | |
975 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | |
976 | { | |
9983b6f0 TH |
977 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); |
978 | bool in_first_chunk = false; | |
979 | unsigned long first_start, first_end; | |
980 | unsigned int cpu; | |
981 | ||
982 | /* | |
983 | * The following test on first_start/end isn't strictly | |
984 | * necessary but will speed up lookups of addresses which | |
985 | * aren't in the first chunk. | |
986 | */ | |
987 | first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0); | |
988 | first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu, | |
989 | pcpu_unit_pages); | |
990 | if ((unsigned long)addr >= first_start && | |
991 | (unsigned long)addr < first_end) { | |
992 | for_each_possible_cpu(cpu) { | |
993 | void *start = per_cpu_ptr(base, cpu); | |
994 | ||
995 | if (addr >= start && addr < start + pcpu_unit_size) { | |
996 | in_first_chunk = true; | |
997 | break; | |
998 | } | |
999 | } | |
1000 | } | |
1001 | ||
1002 | if (in_first_chunk) { | |
020ec653 TH |
1003 | if ((unsigned long)addr < VMALLOC_START || |
1004 | (unsigned long)addr >= VMALLOC_END) | |
1005 | return __pa(addr); | |
1006 | else | |
1007 | return page_to_phys(vmalloc_to_page(addr)); | |
1008 | } else | |
9f645532 | 1009 | return page_to_phys(pcpu_addr_to_page(addr)); |
3b034b0d VG |
1010 | } |
1011 | ||
fbf59bc9 | 1012 | /** |
fd1e8a1f TH |
1013 | * pcpu_alloc_alloc_info - allocate percpu allocation info |
1014 | * @nr_groups: the number of groups | |
1015 | * @nr_units: the number of units | |
1016 | * | |
1017 | * Allocate ai which is large enough for @nr_groups groups containing | |
1018 | * @nr_units units. The returned ai's groups[0].cpu_map points to the | |
1019 | * cpu_map array which is long enough for @nr_units and filled with | |
1020 | * NR_CPUS. It's the caller's responsibility to initialize cpu_map | |
1021 | * pointer of other groups. | |
1022 | * | |
1023 | * RETURNS: | |
1024 | * Pointer to the allocated pcpu_alloc_info on success, NULL on | |
1025 | * failure. | |
1026 | */ | |
1027 | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | |
1028 | int nr_units) | |
1029 | { | |
1030 | struct pcpu_alloc_info *ai; | |
1031 | size_t base_size, ai_size; | |
1032 | void *ptr; | |
1033 | int unit; | |
1034 | ||
1035 | base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), | |
1036 | __alignof__(ai->groups[0].cpu_map[0])); | |
1037 | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | |
1038 | ||
1039 | ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); | |
1040 | if (!ptr) | |
1041 | return NULL; | |
1042 | ai = ptr; | |
1043 | ptr += base_size; | |
1044 | ||
1045 | ai->groups[0].cpu_map = ptr; | |
1046 | ||
1047 | for (unit = 0; unit < nr_units; unit++) | |
1048 | ai->groups[0].cpu_map[unit] = NR_CPUS; | |
1049 | ||
1050 | ai->nr_groups = nr_groups; | |
1051 | ai->__ai_size = PFN_ALIGN(ai_size); | |
1052 | ||
1053 | return ai; | |
1054 | } | |
1055 | ||
1056 | /** | |
1057 | * pcpu_free_alloc_info - free percpu allocation info | |
1058 | * @ai: pcpu_alloc_info to free | |
1059 | * | |
1060 | * Free @ai which was allocated by pcpu_alloc_alloc_info(). | |
1061 | */ | |
1062 | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | |
1063 | { | |
1064 | free_bootmem(__pa(ai), ai->__ai_size); | |
1065 | } | |
1066 | ||
1067 | /** | |
1068 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | |
edcb4639 | 1069 | * @reserved_size: the size of reserved percpu area in bytes |
4ba6ce25 | 1070 | * @dyn_size: minimum free size for dynamic allocation in bytes |
fd1e8a1f TH |
1071 | * @atom_size: allocation atom size |
1072 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
033e48fb | 1073 | * |
fd1e8a1f TH |
1074 | * This function determines grouping of units, their mappings to cpus |
1075 | * and other parameters considering needed percpu size, allocation | |
1076 | * atom size and distances between CPUs. | |
033e48fb | 1077 | * |
fd1e8a1f TH |
1078 | * Groups are always mutliples of atom size and CPUs which are of |
1079 | * LOCAL_DISTANCE both ways are grouped together and share space for | |
1080 | * units in the same group. The returned configuration is guaranteed | |
1081 | * to have CPUs on different nodes on different groups and >=75% usage | |
1082 | * of allocated virtual address space. | |
033e48fb TH |
1083 | * |
1084 | * RETURNS: | |
fd1e8a1f TH |
1085 | * On success, pointer to the new allocation_info is returned. On |
1086 | * failure, ERR_PTR value is returned. | |
033e48fb | 1087 | */ |
4ba6ce25 TH |
1088 | static struct pcpu_alloc_info * __init pcpu_build_alloc_info( |
1089 | size_t reserved_size, size_t dyn_size, | |
fd1e8a1f TH |
1090 | size_t atom_size, |
1091 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | |
033e48fb TH |
1092 | { |
1093 | static int group_map[NR_CPUS] __initdata; | |
1094 | static int group_cnt[NR_CPUS] __initdata; | |
1095 | const size_t static_size = __per_cpu_end - __per_cpu_start; | |
a92d3ff9 | 1096 | int nr_groups = 1, nr_units = 0; |
033e48fb TH |
1097 | size_t size_sum, min_unit_size, alloc_size; |
1098 | int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ | |
fd1e8a1f | 1099 | int last_allocs, group, unit; |
033e48fb | 1100 | unsigned int cpu, tcpu; |
fd1e8a1f TH |
1101 | struct pcpu_alloc_info *ai; |
1102 | unsigned int *cpu_map; | |
033e48fb | 1103 | |
fb59e72e TH |
1104 | /* this function may be called multiple times */ |
1105 | memset(group_map, 0, sizeof(group_map)); | |
a92d3ff9 | 1106 | memset(group_cnt, 0, sizeof(group_cnt)); |
fb59e72e | 1107 | |
099a19d9 TH |
1108 | /* calculate size_sum and ensure dyn_size is enough for early alloc */ |
1109 | size_sum = PFN_ALIGN(static_size + reserved_size + | |
1110 | max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); | |
4ba6ce25 TH |
1111 | dyn_size = size_sum - static_size - reserved_size; |
1112 | ||
033e48fb TH |
1113 | /* |
1114 | * Determine min_unit_size, alloc_size and max_upa such that | |
fd1e8a1f | 1115 | * alloc_size is multiple of atom_size and is the smallest |
033e48fb TH |
1116 | * which can accomodate 4k aligned segments which are equal to |
1117 | * or larger than min_unit_size. | |
1118 | */ | |
033e48fb TH |
1119 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); |
1120 | ||
fd1e8a1f | 1121 | alloc_size = roundup(min_unit_size, atom_size); |
033e48fb TH |
1122 | upa = alloc_size / min_unit_size; |
1123 | while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) | |
1124 | upa--; | |
1125 | max_upa = upa; | |
1126 | ||
1127 | /* group cpus according to their proximity */ | |
1128 | for_each_possible_cpu(cpu) { | |
1129 | group = 0; | |
1130 | next_group: | |
1131 | for_each_possible_cpu(tcpu) { | |
1132 | if (cpu == tcpu) | |
1133 | break; | |
fd1e8a1f | 1134 | if (group_map[tcpu] == group && cpu_distance_fn && |
033e48fb TH |
1135 | (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || |
1136 | cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { | |
1137 | group++; | |
fd1e8a1f | 1138 | nr_groups = max(nr_groups, group + 1); |
033e48fb TH |
1139 | goto next_group; |
1140 | } | |
1141 | } | |
1142 | group_map[cpu] = group; | |
1143 | group_cnt[group]++; | |
033e48fb TH |
1144 | } |
1145 | ||
1146 | /* | |
1147 | * Expand unit size until address space usage goes over 75% | |
1148 | * and then as much as possible without using more address | |
1149 | * space. | |
1150 | */ | |
1151 | last_allocs = INT_MAX; | |
1152 | for (upa = max_upa; upa; upa--) { | |
1153 | int allocs = 0, wasted = 0; | |
1154 | ||
1155 | if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) | |
1156 | continue; | |
1157 | ||
fd1e8a1f | 1158 | for (group = 0; group < nr_groups; group++) { |
033e48fb TH |
1159 | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); |
1160 | allocs += this_allocs; | |
1161 | wasted += this_allocs * upa - group_cnt[group]; | |
1162 | } | |
1163 | ||
1164 | /* | |
1165 | * Don't accept if wastage is over 25%. The | |
1166 | * greater-than comparison ensures upa==1 always | |
1167 | * passes the following check. | |
1168 | */ | |
1169 | if (wasted > num_possible_cpus() / 3) | |
1170 | continue; | |
1171 | ||
1172 | /* and then don't consume more memory */ | |
1173 | if (allocs > last_allocs) | |
1174 | break; | |
1175 | last_allocs = allocs; | |
1176 | best_upa = upa; | |
1177 | } | |
fd1e8a1f TH |
1178 | upa = best_upa; |
1179 | ||
1180 | /* allocate and fill alloc_info */ | |
1181 | for (group = 0; group < nr_groups; group++) | |
1182 | nr_units += roundup(group_cnt[group], upa); | |
1183 | ||
1184 | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | |
1185 | if (!ai) | |
1186 | return ERR_PTR(-ENOMEM); | |
1187 | cpu_map = ai->groups[0].cpu_map; | |
1188 | ||
1189 | for (group = 0; group < nr_groups; group++) { | |
1190 | ai->groups[group].cpu_map = cpu_map; | |
1191 | cpu_map += roundup(group_cnt[group], upa); | |
1192 | } | |
1193 | ||
1194 | ai->static_size = static_size; | |
1195 | ai->reserved_size = reserved_size; | |
1196 | ai->dyn_size = dyn_size; | |
1197 | ai->unit_size = alloc_size / upa; | |
1198 | ai->atom_size = atom_size; | |
1199 | ai->alloc_size = alloc_size; | |
1200 | ||
1201 | for (group = 0, unit = 0; group_cnt[group]; group++) { | |
1202 | struct pcpu_group_info *gi = &ai->groups[group]; | |
1203 | ||
1204 | /* | |
1205 | * Initialize base_offset as if all groups are located | |
1206 | * back-to-back. The caller should update this to | |
1207 | * reflect actual allocation. | |
1208 | */ | |
1209 | gi->base_offset = unit * ai->unit_size; | |
033e48fb | 1210 | |
033e48fb TH |
1211 | for_each_possible_cpu(cpu) |
1212 | if (group_map[cpu] == group) | |
fd1e8a1f TH |
1213 | gi->cpu_map[gi->nr_units++] = cpu; |
1214 | gi->nr_units = roundup(gi->nr_units, upa); | |
1215 | unit += gi->nr_units; | |
033e48fb | 1216 | } |
fd1e8a1f | 1217 | BUG_ON(unit != nr_units); |
033e48fb | 1218 | |
fd1e8a1f | 1219 | return ai; |
033e48fb TH |
1220 | } |
1221 | ||
fd1e8a1f TH |
1222 | /** |
1223 | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | |
1224 | * @lvl: loglevel | |
1225 | * @ai: allocation info to dump | |
1226 | * | |
1227 | * Print out information about @ai using loglevel @lvl. | |
1228 | */ | |
1229 | static void pcpu_dump_alloc_info(const char *lvl, | |
1230 | const struct pcpu_alloc_info *ai) | |
033e48fb | 1231 | { |
fd1e8a1f | 1232 | int group_width = 1, cpu_width = 1, width; |
033e48fb | 1233 | char empty_str[] = "--------"; |
fd1e8a1f TH |
1234 | int alloc = 0, alloc_end = 0; |
1235 | int group, v; | |
1236 | int upa, apl; /* units per alloc, allocs per line */ | |
1237 | ||
1238 | v = ai->nr_groups; | |
1239 | while (v /= 10) | |
1240 | group_width++; | |
033e48fb | 1241 | |
fd1e8a1f | 1242 | v = num_possible_cpus(); |
033e48fb | 1243 | while (v /= 10) |
fd1e8a1f TH |
1244 | cpu_width++; |
1245 | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | |
033e48fb | 1246 | |
fd1e8a1f TH |
1247 | upa = ai->alloc_size / ai->unit_size; |
1248 | width = upa * (cpu_width + 1) + group_width + 3; | |
1249 | apl = rounddown_pow_of_two(max(60 / width, 1)); | |
033e48fb | 1250 | |
fd1e8a1f TH |
1251 | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", |
1252 | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | |
1253 | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | |
033e48fb | 1254 | |
fd1e8a1f TH |
1255 | for (group = 0; group < ai->nr_groups; group++) { |
1256 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
1257 | int unit = 0, unit_end = 0; | |
1258 | ||
1259 | BUG_ON(gi->nr_units % upa); | |
1260 | for (alloc_end += gi->nr_units / upa; | |
1261 | alloc < alloc_end; alloc++) { | |
1262 | if (!(alloc % apl)) { | |
033e48fb | 1263 | printk("\n"); |
fd1e8a1f TH |
1264 | printk("%spcpu-alloc: ", lvl); |
1265 | } | |
1266 | printk("[%0*d] ", group_width, group); | |
1267 | ||
1268 | for (unit_end += upa; unit < unit_end; unit++) | |
1269 | if (gi->cpu_map[unit] != NR_CPUS) | |
1270 | printk("%0*d ", cpu_width, | |
1271 | gi->cpu_map[unit]); | |
1272 | else | |
1273 | printk("%s ", empty_str); | |
033e48fb | 1274 | } |
033e48fb TH |
1275 | } |
1276 | printk("\n"); | |
1277 | } | |
033e48fb | 1278 | |
fbf59bc9 | 1279 | /** |
8d408b4b | 1280 | * pcpu_setup_first_chunk - initialize the first percpu chunk |
fd1e8a1f | 1281 | * @ai: pcpu_alloc_info describing how to percpu area is shaped |
38a6be52 | 1282 | * @base_addr: mapped address |
8d408b4b TH |
1283 | * |
1284 | * Initialize the first percpu chunk which contains the kernel static | |
1285 | * perpcu area. This function is to be called from arch percpu area | |
38a6be52 | 1286 | * setup path. |
8d408b4b | 1287 | * |
fd1e8a1f TH |
1288 | * @ai contains all information necessary to initialize the first |
1289 | * chunk and prime the dynamic percpu allocator. | |
1290 | * | |
1291 | * @ai->static_size is the size of static percpu area. | |
1292 | * | |
1293 | * @ai->reserved_size, if non-zero, specifies the amount of bytes to | |
edcb4639 TH |
1294 | * reserve after the static area in the first chunk. This reserves |
1295 | * the first chunk such that it's available only through reserved | |
1296 | * percpu allocation. This is primarily used to serve module percpu | |
1297 | * static areas on architectures where the addressing model has | |
1298 | * limited offset range for symbol relocations to guarantee module | |
1299 | * percpu symbols fall inside the relocatable range. | |
1300 | * | |
fd1e8a1f TH |
1301 | * @ai->dyn_size determines the number of bytes available for dynamic |
1302 | * allocation in the first chunk. The area between @ai->static_size + | |
1303 | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. | |
6074d5b0 | 1304 | * |
fd1e8a1f TH |
1305 | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE |
1306 | * and equal to or larger than @ai->static_size + @ai->reserved_size + | |
1307 | * @ai->dyn_size. | |
8d408b4b | 1308 | * |
fd1e8a1f TH |
1309 | * @ai->atom_size is the allocation atom size and used as alignment |
1310 | * for vm areas. | |
8d408b4b | 1311 | * |
fd1e8a1f TH |
1312 | * @ai->alloc_size is the allocation size and always multiple of |
1313 | * @ai->atom_size. This is larger than @ai->atom_size if | |
1314 | * @ai->unit_size is larger than @ai->atom_size. | |
1315 | * | |
1316 | * @ai->nr_groups and @ai->groups describe virtual memory layout of | |
1317 | * percpu areas. Units which should be colocated are put into the | |
1318 | * same group. Dynamic VM areas will be allocated according to these | |
1319 | * groupings. If @ai->nr_groups is zero, a single group containing | |
1320 | * all units is assumed. | |
8d408b4b | 1321 | * |
38a6be52 TH |
1322 | * The caller should have mapped the first chunk at @base_addr and |
1323 | * copied static data to each unit. | |
fbf59bc9 | 1324 | * |
edcb4639 TH |
1325 | * If the first chunk ends up with both reserved and dynamic areas, it |
1326 | * is served by two chunks - one to serve the core static and reserved | |
1327 | * areas and the other for the dynamic area. They share the same vm | |
1328 | * and page map but uses different area allocation map to stay away | |
1329 | * from each other. The latter chunk is circulated in the chunk slots | |
1330 | * and available for dynamic allocation like any other chunks. | |
1331 | * | |
fbf59bc9 | 1332 | * RETURNS: |
fb435d52 | 1333 | * 0 on success, -errno on failure. |
fbf59bc9 | 1334 | */ |
fb435d52 TH |
1335 | int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
1336 | void *base_addr) | |
fbf59bc9 | 1337 | { |
635b75fc | 1338 | static char cpus_buf[4096] __initdata; |
099a19d9 TH |
1339 | static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; |
1340 | static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; | |
fd1e8a1f TH |
1341 | size_t dyn_size = ai->dyn_size; |
1342 | size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; | |
edcb4639 | 1343 | struct pcpu_chunk *schunk, *dchunk = NULL; |
6563297c TH |
1344 | unsigned long *group_offsets; |
1345 | size_t *group_sizes; | |
fb435d52 | 1346 | unsigned long *unit_off; |
fbf59bc9 | 1347 | unsigned int cpu; |
fd1e8a1f TH |
1348 | int *unit_map; |
1349 | int group, unit, i; | |
fbf59bc9 | 1350 | |
635b75fc TH |
1351 | cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); |
1352 | ||
1353 | #define PCPU_SETUP_BUG_ON(cond) do { \ | |
1354 | if (unlikely(cond)) { \ | |
1355 | pr_emerg("PERCPU: failed to initialize, %s", #cond); \ | |
1356 | pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ | |
1357 | pcpu_dump_alloc_info(KERN_EMERG, ai); \ | |
1358 | BUG(); \ | |
1359 | } \ | |
1360 | } while (0) | |
1361 | ||
2f39e637 | 1362 | /* sanity checks */ |
635b75fc TH |
1363 | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); |
1364 | PCPU_SETUP_BUG_ON(!ai->static_size); | |
1365 | PCPU_SETUP_BUG_ON(!base_addr); | |
1366 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); | |
1367 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); | |
1368 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | |
099a19d9 | 1369 | PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); |
9f645532 | 1370 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); |
8d408b4b | 1371 | |
6563297c TH |
1372 | /* process group information and build config tables accordingly */ |
1373 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); | |
1374 | group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); | |
fd1e8a1f | 1375 | unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); |
fb435d52 | 1376 | unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); |
2f39e637 | 1377 | |
fd1e8a1f | 1378 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) |
ffe0d5a5 | 1379 | unit_map[cpu] = UINT_MAX; |
fd1e8a1f | 1380 | pcpu_first_unit_cpu = NR_CPUS; |
2f39e637 | 1381 | |
fd1e8a1f TH |
1382 | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { |
1383 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
2f39e637 | 1384 | |
6563297c TH |
1385 | group_offsets[group] = gi->base_offset; |
1386 | group_sizes[group] = gi->nr_units * ai->unit_size; | |
1387 | ||
fd1e8a1f TH |
1388 | for (i = 0; i < gi->nr_units; i++) { |
1389 | cpu = gi->cpu_map[i]; | |
1390 | if (cpu == NR_CPUS) | |
1391 | continue; | |
8d408b4b | 1392 | |
635b75fc TH |
1393 | PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); |
1394 | PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); | |
1395 | PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); | |
fbf59bc9 | 1396 | |
fd1e8a1f | 1397 | unit_map[cpu] = unit + i; |
fb435d52 TH |
1398 | unit_off[cpu] = gi->base_offset + i * ai->unit_size; |
1399 | ||
fd1e8a1f TH |
1400 | if (pcpu_first_unit_cpu == NR_CPUS) |
1401 | pcpu_first_unit_cpu = cpu; | |
1402 | } | |
2f39e637 | 1403 | } |
fd1e8a1f TH |
1404 | pcpu_last_unit_cpu = cpu; |
1405 | pcpu_nr_units = unit; | |
1406 | ||
1407 | for_each_possible_cpu(cpu) | |
635b75fc TH |
1408 | PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); |
1409 | ||
1410 | /* we're done parsing the input, undefine BUG macro and dump config */ | |
1411 | #undef PCPU_SETUP_BUG_ON | |
1412 | pcpu_dump_alloc_info(KERN_INFO, ai); | |
fd1e8a1f | 1413 | |
6563297c TH |
1414 | pcpu_nr_groups = ai->nr_groups; |
1415 | pcpu_group_offsets = group_offsets; | |
1416 | pcpu_group_sizes = group_sizes; | |
fd1e8a1f | 1417 | pcpu_unit_map = unit_map; |
fb435d52 | 1418 | pcpu_unit_offsets = unit_off; |
2f39e637 TH |
1419 | |
1420 | /* determine basic parameters */ | |
fd1e8a1f | 1421 | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; |
d9b55eeb | 1422 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; |
6563297c | 1423 | pcpu_atom_size = ai->atom_size; |
ce3141a2 TH |
1424 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + |
1425 | BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); | |
cafe8816 | 1426 | |
d9b55eeb TH |
1427 | /* |
1428 | * Allocate chunk slots. The additional last slot is for | |
1429 | * empty chunks. | |
1430 | */ | |
1431 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | |
fbf59bc9 TH |
1432 | pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); |
1433 | for (i = 0; i < pcpu_nr_slots; i++) | |
1434 | INIT_LIST_HEAD(&pcpu_slot[i]); | |
1435 | ||
edcb4639 TH |
1436 | /* |
1437 | * Initialize static chunk. If reserved_size is zero, the | |
1438 | * static chunk covers static area + dynamic allocation area | |
1439 | * in the first chunk. If reserved_size is not zero, it | |
1440 | * covers static area + reserved area (mostly used for module | |
1441 | * static percpu allocation). | |
1442 | */ | |
2441d15c TH |
1443 | schunk = alloc_bootmem(pcpu_chunk_struct_size); |
1444 | INIT_LIST_HEAD(&schunk->list); | |
bba174f5 | 1445 | schunk->base_addr = base_addr; |
61ace7fa TH |
1446 | schunk->map = smap; |
1447 | schunk->map_alloc = ARRAY_SIZE(smap); | |
38a6be52 | 1448 | schunk->immutable = true; |
ce3141a2 | 1449 | bitmap_fill(schunk->populated, pcpu_unit_pages); |
edcb4639 | 1450 | |
fd1e8a1f TH |
1451 | if (ai->reserved_size) { |
1452 | schunk->free_size = ai->reserved_size; | |
ae9e6bc9 | 1453 | pcpu_reserved_chunk = schunk; |
fd1e8a1f | 1454 | pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; |
edcb4639 TH |
1455 | } else { |
1456 | schunk->free_size = dyn_size; | |
1457 | dyn_size = 0; /* dynamic area covered */ | |
1458 | } | |
2441d15c | 1459 | schunk->contig_hint = schunk->free_size; |
fbf59bc9 | 1460 | |
fd1e8a1f | 1461 | schunk->map[schunk->map_used++] = -ai->static_size; |
61ace7fa TH |
1462 | if (schunk->free_size) |
1463 | schunk->map[schunk->map_used++] = schunk->free_size; | |
1464 | ||
edcb4639 TH |
1465 | /* init dynamic chunk if necessary */ |
1466 | if (dyn_size) { | |
ce3141a2 | 1467 | dchunk = alloc_bootmem(pcpu_chunk_struct_size); |
edcb4639 | 1468 | INIT_LIST_HEAD(&dchunk->list); |
bba174f5 | 1469 | dchunk->base_addr = base_addr; |
edcb4639 TH |
1470 | dchunk->map = dmap; |
1471 | dchunk->map_alloc = ARRAY_SIZE(dmap); | |
38a6be52 | 1472 | dchunk->immutable = true; |
ce3141a2 | 1473 | bitmap_fill(dchunk->populated, pcpu_unit_pages); |
edcb4639 TH |
1474 | |
1475 | dchunk->contig_hint = dchunk->free_size = dyn_size; | |
1476 | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; | |
1477 | dchunk->map[dchunk->map_used++] = dchunk->free_size; | |
1478 | } | |
1479 | ||
2441d15c | 1480 | /* link the first chunk in */ |
ae9e6bc9 TH |
1481 | pcpu_first_chunk = dchunk ?: schunk; |
1482 | pcpu_chunk_relocate(pcpu_first_chunk, -1); | |
fbf59bc9 TH |
1483 | |
1484 | /* we're done */ | |
bba174f5 | 1485 | pcpu_base_addr = base_addr; |
fb435d52 | 1486 | return 0; |
fbf59bc9 | 1487 | } |
66c3a757 | 1488 | |
f58dc01b TH |
1489 | const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { |
1490 | [PCPU_FC_AUTO] = "auto", | |
1491 | [PCPU_FC_EMBED] = "embed", | |
1492 | [PCPU_FC_PAGE] = "page", | |
f58dc01b | 1493 | }; |
66c3a757 | 1494 | |
f58dc01b | 1495 | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; |
66c3a757 | 1496 | |
f58dc01b TH |
1497 | static int __init percpu_alloc_setup(char *str) |
1498 | { | |
1499 | if (0) | |
1500 | /* nada */; | |
1501 | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | |
1502 | else if (!strcmp(str, "embed")) | |
1503 | pcpu_chosen_fc = PCPU_FC_EMBED; | |
1504 | #endif | |
1505 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | |
1506 | else if (!strcmp(str, "page")) | |
1507 | pcpu_chosen_fc = PCPU_FC_PAGE; | |
f58dc01b TH |
1508 | #endif |
1509 | else | |
1510 | pr_warning("PERCPU: unknown allocator %s specified\n", str); | |
66c3a757 | 1511 | |
f58dc01b | 1512 | return 0; |
66c3a757 | 1513 | } |
f58dc01b | 1514 | early_param("percpu_alloc", percpu_alloc_setup); |
66c3a757 | 1515 | |
08fc4580 TH |
1516 | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ |
1517 | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | |
66c3a757 TH |
1518 | /** |
1519 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | |
66c3a757 | 1520 | * @reserved_size: the size of reserved percpu area in bytes |
4ba6ce25 | 1521 | * @dyn_size: minimum free size for dynamic allocation in bytes |
c8826dd5 TH |
1522 | * @atom_size: allocation atom size |
1523 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
1524 | * @alloc_fn: function to allocate percpu page | |
1525 | * @free_fn: funtion to free percpu page | |
66c3a757 TH |
1526 | * |
1527 | * This is a helper to ease setting up embedded first percpu chunk and | |
1528 | * can be called where pcpu_setup_first_chunk() is expected. | |
1529 | * | |
1530 | * If this function is used to setup the first chunk, it is allocated | |
c8826dd5 TH |
1531 | * by calling @alloc_fn and used as-is without being mapped into |
1532 | * vmalloc area. Allocations are always whole multiples of @atom_size | |
1533 | * aligned to @atom_size. | |
1534 | * | |
1535 | * This enables the first chunk to piggy back on the linear physical | |
1536 | * mapping which often uses larger page size. Please note that this | |
1537 | * can result in very sparse cpu->unit mapping on NUMA machines thus | |
1538 | * requiring large vmalloc address space. Don't use this allocator if | |
1539 | * vmalloc space is not orders of magnitude larger than distances | |
1540 | * between node memory addresses (ie. 32bit NUMA machines). | |
66c3a757 | 1541 | * |
4ba6ce25 | 1542 | * @dyn_size specifies the minimum dynamic area size. |
66c3a757 TH |
1543 | * |
1544 | * If the needed size is smaller than the minimum or specified unit | |
c8826dd5 | 1545 | * size, the leftover is returned using @free_fn. |
66c3a757 TH |
1546 | * |
1547 | * RETURNS: | |
fb435d52 | 1548 | * 0 on success, -errno on failure. |
66c3a757 | 1549 | */ |
4ba6ce25 | 1550 | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, |
c8826dd5 TH |
1551 | size_t atom_size, |
1552 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | |
1553 | pcpu_fc_alloc_fn_t alloc_fn, | |
1554 | pcpu_fc_free_fn_t free_fn) | |
66c3a757 | 1555 | { |
c8826dd5 TH |
1556 | void *base = (void *)ULONG_MAX; |
1557 | void **areas = NULL; | |
fd1e8a1f | 1558 | struct pcpu_alloc_info *ai; |
6ea529a2 | 1559 | size_t size_sum, areas_size, max_distance; |
c8826dd5 | 1560 | int group, i, rc; |
66c3a757 | 1561 | |
c8826dd5 TH |
1562 | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, |
1563 | cpu_distance_fn); | |
fd1e8a1f TH |
1564 | if (IS_ERR(ai)) |
1565 | return PTR_ERR(ai); | |
66c3a757 | 1566 | |
fd1e8a1f | 1567 | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; |
c8826dd5 | 1568 | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); |
fa8a7094 | 1569 | |
c8826dd5 TH |
1570 | areas = alloc_bootmem_nopanic(areas_size); |
1571 | if (!areas) { | |
fb435d52 | 1572 | rc = -ENOMEM; |
c8826dd5 | 1573 | goto out_free; |
fa8a7094 | 1574 | } |
66c3a757 | 1575 | |
c8826dd5 TH |
1576 | /* allocate, copy and determine base address */ |
1577 | for (group = 0; group < ai->nr_groups; group++) { | |
1578 | struct pcpu_group_info *gi = &ai->groups[group]; | |
1579 | unsigned int cpu = NR_CPUS; | |
1580 | void *ptr; | |
1581 | ||
1582 | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) | |
1583 | cpu = gi->cpu_map[i]; | |
1584 | BUG_ON(cpu == NR_CPUS); | |
1585 | ||
1586 | /* allocate space for the whole group */ | |
1587 | ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); | |
1588 | if (!ptr) { | |
1589 | rc = -ENOMEM; | |
1590 | goto out_free_areas; | |
1591 | } | |
1592 | areas[group] = ptr; | |
fd1e8a1f | 1593 | |
c8826dd5 TH |
1594 | base = min(ptr, base); |
1595 | ||
1596 | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | |
1597 | if (gi->cpu_map[i] == NR_CPUS) { | |
1598 | /* unused unit, free whole */ | |
1599 | free_fn(ptr, ai->unit_size); | |
1600 | continue; | |
1601 | } | |
1602 | /* copy and return the unused part */ | |
1603 | memcpy(ptr, __per_cpu_load, ai->static_size); | |
1604 | free_fn(ptr + size_sum, ai->unit_size - size_sum); | |
1605 | } | |
fa8a7094 | 1606 | } |
66c3a757 | 1607 | |
c8826dd5 | 1608 | /* base address is now known, determine group base offsets */ |
6ea529a2 TH |
1609 | max_distance = 0; |
1610 | for (group = 0; group < ai->nr_groups; group++) { | |
c8826dd5 | 1611 | ai->groups[group].base_offset = areas[group] - base; |
1a0c3298 TH |
1612 | max_distance = max_t(size_t, max_distance, |
1613 | ai->groups[group].base_offset); | |
6ea529a2 TH |
1614 | } |
1615 | max_distance += ai->unit_size; | |
1616 | ||
1617 | /* warn if maximum distance is further than 75% of vmalloc space */ | |
1618 | if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { | |
1a0c3298 | 1619 | pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " |
6ea529a2 TH |
1620 | "space 0x%lx\n", |
1621 | max_distance, VMALLOC_END - VMALLOC_START); | |
1622 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | |
1623 | /* and fail if we have fallback */ | |
1624 | rc = -EINVAL; | |
1625 | goto out_free; | |
1626 | #endif | |
1627 | } | |
c8826dd5 | 1628 | |
004018e2 | 1629 | pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", |
fd1e8a1f TH |
1630 | PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, |
1631 | ai->dyn_size, ai->unit_size); | |
d4b95f80 | 1632 | |
fb435d52 | 1633 | rc = pcpu_setup_first_chunk(ai, base); |
c8826dd5 TH |
1634 | goto out_free; |
1635 | ||
1636 | out_free_areas: | |
1637 | for (group = 0; group < ai->nr_groups; group++) | |
1638 | free_fn(areas[group], | |
1639 | ai->groups[group].nr_units * ai->unit_size); | |
1640 | out_free: | |
fd1e8a1f | 1641 | pcpu_free_alloc_info(ai); |
c8826dd5 TH |
1642 | if (areas) |
1643 | free_bootmem(__pa(areas), areas_size); | |
fb435d52 | 1644 | return rc; |
d4b95f80 | 1645 | } |
08fc4580 TH |
1646 | #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK || |
1647 | !CONFIG_HAVE_SETUP_PER_CPU_AREA */ | |
d4b95f80 | 1648 | |
08fc4580 | 1649 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK |
d4b95f80 | 1650 | /** |
00ae4064 | 1651 | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages |
d4b95f80 TH |
1652 | * @reserved_size: the size of reserved percpu area in bytes |
1653 | * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE | |
1654 | * @free_fn: funtion to free percpu page, always called with PAGE_SIZE | |
1655 | * @populate_pte_fn: function to populate pte | |
1656 | * | |
00ae4064 TH |
1657 | * This is a helper to ease setting up page-remapped first percpu |
1658 | * chunk and can be called where pcpu_setup_first_chunk() is expected. | |
d4b95f80 TH |
1659 | * |
1660 | * This is the basic allocator. Static percpu area is allocated | |
1661 | * page-by-page into vmalloc area. | |
1662 | * | |
1663 | * RETURNS: | |
fb435d52 | 1664 | * 0 on success, -errno on failure. |
d4b95f80 | 1665 | */ |
fb435d52 TH |
1666 | int __init pcpu_page_first_chunk(size_t reserved_size, |
1667 | pcpu_fc_alloc_fn_t alloc_fn, | |
1668 | pcpu_fc_free_fn_t free_fn, | |
1669 | pcpu_fc_populate_pte_fn_t populate_pte_fn) | |
d4b95f80 | 1670 | { |
8f05a6a6 | 1671 | static struct vm_struct vm; |
fd1e8a1f | 1672 | struct pcpu_alloc_info *ai; |
00ae4064 | 1673 | char psize_str[16]; |
ce3141a2 | 1674 | int unit_pages; |
d4b95f80 | 1675 | size_t pages_size; |
ce3141a2 | 1676 | struct page **pages; |
fb435d52 | 1677 | int unit, i, j, rc; |
d4b95f80 | 1678 | |
00ae4064 TH |
1679 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); |
1680 | ||
4ba6ce25 | 1681 | ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); |
fd1e8a1f TH |
1682 | if (IS_ERR(ai)) |
1683 | return PTR_ERR(ai); | |
1684 | BUG_ON(ai->nr_groups != 1); | |
1685 | BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); | |
1686 | ||
1687 | unit_pages = ai->unit_size >> PAGE_SHIFT; | |
d4b95f80 TH |
1688 | |
1689 | /* unaligned allocations can't be freed, round up to page size */ | |
fd1e8a1f TH |
1690 | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * |
1691 | sizeof(pages[0])); | |
ce3141a2 | 1692 | pages = alloc_bootmem(pages_size); |
d4b95f80 | 1693 | |
8f05a6a6 | 1694 | /* allocate pages */ |
d4b95f80 | 1695 | j = 0; |
fd1e8a1f | 1696 | for (unit = 0; unit < num_possible_cpus(); unit++) |
ce3141a2 | 1697 | for (i = 0; i < unit_pages; i++) { |
fd1e8a1f | 1698 | unsigned int cpu = ai->groups[0].cpu_map[unit]; |
d4b95f80 TH |
1699 | void *ptr; |
1700 | ||
3cbc8565 | 1701 | ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); |
d4b95f80 | 1702 | if (!ptr) { |
00ae4064 TH |
1703 | pr_warning("PERCPU: failed to allocate %s page " |
1704 | "for cpu%u\n", psize_str, cpu); | |
d4b95f80 TH |
1705 | goto enomem; |
1706 | } | |
ce3141a2 | 1707 | pages[j++] = virt_to_page(ptr); |
d4b95f80 TH |
1708 | } |
1709 | ||
8f05a6a6 TH |
1710 | /* allocate vm area, map the pages and copy static data */ |
1711 | vm.flags = VM_ALLOC; | |
fd1e8a1f | 1712 | vm.size = num_possible_cpus() * ai->unit_size; |
8f05a6a6 TH |
1713 | vm_area_register_early(&vm, PAGE_SIZE); |
1714 | ||
fd1e8a1f | 1715 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
1d9d3257 | 1716 | unsigned long unit_addr = |
fd1e8a1f | 1717 | (unsigned long)vm.addr + unit * ai->unit_size; |
8f05a6a6 | 1718 | |
ce3141a2 | 1719 | for (i = 0; i < unit_pages; i++) |
8f05a6a6 TH |
1720 | populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); |
1721 | ||
1722 | /* pte already populated, the following shouldn't fail */ | |
fb435d52 TH |
1723 | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], |
1724 | unit_pages); | |
1725 | if (rc < 0) | |
1726 | panic("failed to map percpu area, err=%d\n", rc); | |
66c3a757 | 1727 | |
8f05a6a6 TH |
1728 | /* |
1729 | * FIXME: Archs with virtual cache should flush local | |
1730 | * cache for the linear mapping here - something | |
1731 | * equivalent to flush_cache_vmap() on the local cpu. | |
1732 | * flush_cache_vmap() can't be used as most supporting | |
1733 | * data structures are not set up yet. | |
1734 | */ | |
1735 | ||
1736 | /* copy static data */ | |
fd1e8a1f | 1737 | memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); |
66c3a757 TH |
1738 | } |
1739 | ||
1740 | /* we're ready, commit */ | |
1d9d3257 | 1741 | pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", |
fd1e8a1f TH |
1742 | unit_pages, psize_str, vm.addr, ai->static_size, |
1743 | ai->reserved_size, ai->dyn_size); | |
d4b95f80 | 1744 | |
fb435d52 | 1745 | rc = pcpu_setup_first_chunk(ai, vm.addr); |
d4b95f80 TH |
1746 | goto out_free_ar; |
1747 | ||
1748 | enomem: | |
1749 | while (--j >= 0) | |
ce3141a2 | 1750 | free_fn(page_address(pages[j]), PAGE_SIZE); |
fb435d52 | 1751 | rc = -ENOMEM; |
d4b95f80 | 1752 | out_free_ar: |
ce3141a2 | 1753 | free_bootmem(__pa(pages), pages_size); |
fd1e8a1f | 1754 | pcpu_free_alloc_info(ai); |
fb435d52 | 1755 | return rc; |
d4b95f80 | 1756 | } |
08fc4580 | 1757 | #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */ |
d4b95f80 | 1758 | |
e74e3962 TH |
1759 | /* |
1760 | * Generic percpu area setup. | |
1761 | * | |
1762 | * The embedding helper is used because its behavior closely resembles | |
1763 | * the original non-dynamic generic percpu area setup. This is | |
1764 | * important because many archs have addressing restrictions and might | |
1765 | * fail if the percpu area is located far away from the previous | |
1766 | * location. As an added bonus, in non-NUMA cases, embedding is | |
1767 | * generally a good idea TLB-wise because percpu area can piggy back | |
1768 | * on the physical linear memory mapping which uses large page | |
1769 | * mappings on applicable archs. | |
1770 | */ | |
1771 | #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA | |
1772 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; | |
1773 | EXPORT_SYMBOL(__per_cpu_offset); | |
1774 | ||
c8826dd5 TH |
1775 | static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, |
1776 | size_t align) | |
1777 | { | |
1778 | return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); | |
1779 | } | |
66c3a757 | 1780 | |
c8826dd5 TH |
1781 | static void __init pcpu_dfl_fc_free(void *ptr, size_t size) |
1782 | { | |
1783 | free_bootmem(__pa(ptr), size); | |
1784 | } | |
1785 | ||
e74e3962 TH |
1786 | void __init setup_per_cpu_areas(void) |
1787 | { | |
e74e3962 TH |
1788 | unsigned long delta; |
1789 | unsigned int cpu; | |
fb435d52 | 1790 | int rc; |
e74e3962 TH |
1791 | |
1792 | /* | |
1793 | * Always reserve area for module percpu variables. That's | |
1794 | * what the legacy allocator did. | |
1795 | */ | |
fb435d52 | 1796 | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, |
c8826dd5 TH |
1797 | PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, |
1798 | pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); | |
fb435d52 | 1799 | if (rc < 0) |
e74e3962 TH |
1800 | panic("Failed to initialized percpu areas."); |
1801 | ||
1802 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | |
1803 | for_each_possible_cpu(cpu) | |
fb435d52 | 1804 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
66c3a757 | 1805 | } |
e74e3962 | 1806 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ |
099a19d9 TH |
1807 | |
1808 | /* | |
1809 | * First and reserved chunks are initialized with temporary allocation | |
1810 | * map in initdata so that they can be used before slab is online. | |
1811 | * This function is called after slab is brought up and replaces those | |
1812 | * with properly allocated maps. | |
1813 | */ | |
1814 | void __init percpu_init_late(void) | |
1815 | { | |
1816 | struct pcpu_chunk *target_chunks[] = | |
1817 | { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; | |
1818 | struct pcpu_chunk *chunk; | |
1819 | unsigned long flags; | |
1820 | int i; | |
1821 | ||
1822 | for (i = 0; (chunk = target_chunks[i]); i++) { | |
1823 | int *map; | |
1824 | const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); | |
1825 | ||
1826 | BUILD_BUG_ON(size > PAGE_SIZE); | |
1827 | ||
1828 | map = pcpu_mem_alloc(size); | |
1829 | BUG_ON(!map); | |
1830 | ||
1831 | spin_lock_irqsave(&pcpu_lock, flags); | |
1832 | memcpy(map, chunk->map, size); | |
1833 | chunk->map = map; | |
1834 | spin_unlock_irqrestore(&pcpu_lock, flags); | |
1835 | } | |
1836 | } |