]>
Commit | Line | Data |
---|---|---|
9f645532 TH |
1 | /* |
2 | * mm/percpu-vm.c - vmalloc area based chunk allocation | |
3 | * | |
4 | * Copyright (C) 2010 SUSE Linux Products GmbH | |
5 | * Copyright (C) 2010 Tejun Heo <[email protected]> | |
6 | * | |
7 | * This file is released under the GPLv2. | |
8 | * | |
9 | * Chunks are mapped into vmalloc areas and populated page by page. | |
10 | * This is the default chunk allocator. | |
11 | */ | |
12 | ||
13 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | |
14 | unsigned int cpu, int page_idx) | |
15 | { | |
16 | /* must not be used on pre-mapped chunk */ | |
17 | WARN_ON(chunk->immutable); | |
18 | ||
19 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | |
20 | } | |
21 | ||
22 | /** | |
23 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap | |
24 | * @chunk: chunk of interest | |
25 | * @bitmapp: output parameter for bitmap | |
26 | * @may_alloc: may allocate the array | |
27 | * | |
28 | * Returns pointer to array of pointers to struct page and bitmap, | |
29 | * both of which can be indexed with pcpu_page_idx(). The returned | |
30 | * array is cleared to zero and *@bitmapp is copied from | |
31 | * @chunk->populated. Note that there is only one array and bitmap | |
32 | * and access exclusion is the caller's responsibility. | |
33 | * | |
34 | * CONTEXT: | |
35 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | |
36 | * Otherwise, don't care. | |
37 | * | |
38 | * RETURNS: | |
39 | * Pointer to temp pages array on success, NULL on failure. | |
40 | */ | |
41 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, | |
42 | unsigned long **bitmapp, | |
43 | bool may_alloc) | |
44 | { | |
45 | static struct page **pages; | |
46 | static unsigned long *bitmap; | |
47 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | |
48 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | |
49 | sizeof(unsigned long); | |
50 | ||
51 | if (!pages || !bitmap) { | |
52 | if (may_alloc && !pages) | |
53 | pages = pcpu_mem_alloc(pages_size); | |
54 | if (may_alloc && !bitmap) | |
55 | bitmap = pcpu_mem_alloc(bitmap_size); | |
56 | if (!pages || !bitmap) | |
57 | return NULL; | |
58 | } | |
59 | ||
60 | memset(pages, 0, pages_size); | |
61 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); | |
62 | ||
63 | *bitmapp = bitmap; | |
64 | return pages; | |
65 | } | |
66 | ||
67 | /** | |
68 | * pcpu_free_pages - free pages which were allocated for @chunk | |
69 | * @chunk: chunk pages were allocated for | |
70 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | |
71 | * @populated: populated bitmap | |
72 | * @page_start: page index of the first page to be freed | |
73 | * @page_end: page index of the last page to be freed + 1 | |
74 | * | |
75 | * Free pages [@page_start and @page_end) in @pages for all units. | |
76 | * The pages were allocated for @chunk. | |
77 | */ | |
78 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | |
79 | struct page **pages, unsigned long *populated, | |
80 | int page_start, int page_end) | |
81 | { | |
82 | unsigned int cpu; | |
83 | int i; | |
84 | ||
85 | for_each_possible_cpu(cpu) { | |
86 | for (i = page_start; i < page_end; i++) { | |
87 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | |
88 | ||
89 | if (page) | |
90 | __free_page(page); | |
91 | } | |
92 | } | |
93 | } | |
94 | ||
95 | /** | |
96 | * pcpu_alloc_pages - allocates pages for @chunk | |
97 | * @chunk: target chunk | |
98 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | |
99 | * @populated: populated bitmap | |
100 | * @page_start: page index of the first page to be allocated | |
101 | * @page_end: page index of the last page to be allocated + 1 | |
102 | * | |
103 | * Allocate pages [@page_start,@page_end) into @pages for all units. | |
104 | * The allocation is for @chunk. Percpu core doesn't care about the | |
105 | * content of @pages and will pass it verbatim to pcpu_map_pages(). | |
106 | */ | |
107 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | |
108 | struct page **pages, unsigned long *populated, | |
109 | int page_start, int page_end) | |
110 | { | |
111 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | |
112 | unsigned int cpu; | |
113 | int i; | |
114 | ||
115 | for_each_possible_cpu(cpu) { | |
116 | for (i = page_start; i < page_end; i++) { | |
117 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | |
118 | ||
119 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | |
120 | if (!*pagep) { | |
121 | pcpu_free_pages(chunk, pages, populated, | |
122 | page_start, page_end); | |
123 | return -ENOMEM; | |
124 | } | |
125 | } | |
126 | } | |
127 | return 0; | |
128 | } | |
129 | ||
130 | /** | |
131 | * pcpu_pre_unmap_flush - flush cache prior to unmapping | |
132 | * @chunk: chunk the regions to be flushed belongs to | |
133 | * @page_start: page index of the first page to be flushed | |
134 | * @page_end: page index of the last page to be flushed + 1 | |
135 | * | |
136 | * Pages in [@page_start,@page_end) of @chunk are about to be | |
137 | * unmapped. Flush cache. As each flushing trial can be very | |
138 | * expensive, issue flush on the whole region at once rather than | |
139 | * doing it for each cpu. This could be an overkill but is more | |
140 | * scalable. | |
141 | */ | |
142 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | |
143 | int page_start, int page_end) | |
144 | { | |
145 | flush_cache_vunmap( | |
146 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | |
147 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | |
148 | } | |
149 | ||
150 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | |
151 | { | |
152 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | |
153 | } | |
154 | ||
155 | /** | |
156 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | |
157 | * @chunk: chunk of interest | |
158 | * @pages: pages array which can be used to pass information to free | |
159 | * @populated: populated bitmap | |
160 | * @page_start: page index of the first page to unmap | |
161 | * @page_end: page index of the last page to unmap + 1 | |
162 | * | |
163 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | |
164 | * Corresponding elements in @pages were cleared by the caller and can | |
165 | * be used to carry information to pcpu_free_pages() which will be | |
166 | * called after all unmaps are finished. The caller should call | |
167 | * proper pre/post flush functions. | |
168 | */ | |
169 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | |
170 | struct page **pages, unsigned long *populated, | |
171 | int page_start, int page_end) | |
172 | { | |
173 | unsigned int cpu; | |
174 | int i; | |
175 | ||
176 | for_each_possible_cpu(cpu) { | |
177 | for (i = page_start; i < page_end; i++) { | |
178 | struct page *page; | |
179 | ||
180 | page = pcpu_chunk_page(chunk, cpu, i); | |
181 | WARN_ON(!page); | |
182 | pages[pcpu_page_idx(cpu, i)] = page; | |
183 | } | |
184 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | |
185 | page_end - page_start); | |
186 | } | |
187 | ||
188 | for (i = page_start; i < page_end; i++) | |
189 | __clear_bit(i, populated); | |
190 | } | |
191 | ||
192 | /** | |
193 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | |
194 | * @chunk: pcpu_chunk the regions to be flushed belong to | |
195 | * @page_start: page index of the first page to be flushed | |
196 | * @page_end: page index of the last page to be flushed + 1 | |
197 | * | |
198 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | |
199 | * TLB for the regions. This can be skipped if the area is to be | |
200 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | |
201 | * | |
202 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | |
203 | * for the whole region. | |
204 | */ | |
205 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | |
206 | int page_start, int page_end) | |
207 | { | |
208 | flush_tlb_kernel_range( | |
209 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | |
210 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | |
211 | } | |
212 | ||
213 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | |
214 | int nr_pages) | |
215 | { | |
216 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | |
217 | PAGE_KERNEL, pages); | |
218 | } | |
219 | ||
220 | /** | |
221 | * pcpu_map_pages - map pages into a pcpu_chunk | |
222 | * @chunk: chunk of interest | |
223 | * @pages: pages array containing pages to be mapped | |
224 | * @populated: populated bitmap | |
225 | * @page_start: page index of the first page to map | |
226 | * @page_end: page index of the last page to map + 1 | |
227 | * | |
228 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The | |
229 | * caller is responsible for calling pcpu_post_map_flush() after all | |
230 | * mappings are complete. | |
231 | * | |
232 | * This function is responsible for setting corresponding bits in | |
233 | * @chunk->populated bitmap and whatever is necessary for reverse | |
234 | * lookup (addr -> chunk). | |
235 | */ | |
236 | static int pcpu_map_pages(struct pcpu_chunk *chunk, | |
237 | struct page **pages, unsigned long *populated, | |
238 | int page_start, int page_end) | |
239 | { | |
240 | unsigned int cpu, tcpu; | |
241 | int i, err; | |
242 | ||
243 | for_each_possible_cpu(cpu) { | |
244 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | |
245 | &pages[pcpu_page_idx(cpu, page_start)], | |
246 | page_end - page_start); | |
247 | if (err < 0) | |
248 | goto err; | |
249 | } | |
250 | ||
251 | /* mapping successful, link chunk and mark populated */ | |
252 | for (i = page_start; i < page_end; i++) { | |
253 | for_each_possible_cpu(cpu) | |
254 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | |
255 | chunk); | |
256 | __set_bit(i, populated); | |
257 | } | |
258 | ||
259 | return 0; | |
260 | ||
261 | err: | |
262 | for_each_possible_cpu(tcpu) { | |
263 | if (tcpu == cpu) | |
264 | break; | |
265 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | |
266 | page_end - page_start); | |
267 | } | |
268 | return err; | |
269 | } | |
270 | ||
271 | /** | |
272 | * pcpu_post_map_flush - flush cache after mapping | |
273 | * @chunk: pcpu_chunk the regions to be flushed belong to | |
274 | * @page_start: page index of the first page to be flushed | |
275 | * @page_end: page index of the last page to be flushed + 1 | |
276 | * | |
277 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | |
278 | * cache. | |
279 | * | |
280 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | |
281 | * for the whole region. | |
282 | */ | |
283 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | |
284 | int page_start, int page_end) | |
285 | { | |
286 | flush_cache_vmap( | |
287 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | |
288 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | |
289 | } | |
290 | ||
291 | /** | |
292 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | |
293 | * @chunk: chunk of interest | |
294 | * @off: offset to the area to populate | |
295 | * @size: size of the area to populate in bytes | |
296 | * | |
297 | * For each cpu, populate and map pages [@page_start,@page_end) into | |
298 | * @chunk. The area is cleared on return. | |
299 | * | |
300 | * CONTEXT: | |
301 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | |
302 | */ | |
303 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | |
304 | { | |
305 | int page_start = PFN_DOWN(off); | |
306 | int page_end = PFN_UP(off + size); | |
307 | int free_end = page_start, unmap_end = page_start; | |
308 | struct page **pages; | |
309 | unsigned long *populated; | |
310 | unsigned int cpu; | |
311 | int rs, re, rc; | |
312 | ||
313 | /* quick path, check whether all pages are already there */ | |
314 | rs = page_start; | |
315 | pcpu_next_pop(chunk, &rs, &re, page_end); | |
316 | if (rs == page_start && re == page_end) | |
317 | goto clear; | |
318 | ||
319 | /* need to allocate and map pages, this chunk can't be immutable */ | |
320 | WARN_ON(chunk->immutable); | |
321 | ||
322 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); | |
323 | if (!pages) | |
324 | return -ENOMEM; | |
325 | ||
326 | /* alloc and map */ | |
327 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | |
328 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); | |
329 | if (rc) | |
330 | goto err_free; | |
331 | free_end = re; | |
332 | } | |
333 | ||
334 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | |
335 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); | |
336 | if (rc) | |
337 | goto err_unmap; | |
338 | unmap_end = re; | |
339 | } | |
340 | pcpu_post_map_flush(chunk, page_start, page_end); | |
341 | ||
342 | /* commit new bitmap */ | |
343 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | |
344 | clear: | |
345 | for_each_possible_cpu(cpu) | |
346 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | |
347 | return 0; | |
348 | ||
349 | err_unmap: | |
350 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); | |
351 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) | |
352 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | |
353 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | |
354 | err_free: | |
355 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | |
356 | pcpu_free_pages(chunk, pages, populated, rs, re); | |
357 | return rc; | |
358 | } | |
359 | ||
360 | /** | |
361 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | |
362 | * @chunk: chunk to depopulate | |
363 | * @off: offset to the area to depopulate | |
364 | * @size: size of the area to depopulate in bytes | |
365 | * @flush: whether to flush cache and tlb or not | |
366 | * | |
367 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | |
368 | * from @chunk. If @flush is true, vcache is flushed before unmapping | |
369 | * and tlb after. | |
370 | * | |
371 | * CONTEXT: | |
372 | * pcpu_alloc_mutex. | |
373 | */ | |
374 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | |
375 | { | |
376 | int page_start = PFN_DOWN(off); | |
377 | int page_end = PFN_UP(off + size); | |
378 | struct page **pages; | |
379 | unsigned long *populated; | |
380 | int rs, re; | |
381 | ||
382 | /* quick path, check whether it's empty already */ | |
383 | rs = page_start; | |
384 | pcpu_next_unpop(chunk, &rs, &re, page_end); | |
385 | if (rs == page_start && re == page_end) | |
386 | return; | |
387 | ||
388 | /* immutable chunks can't be depopulated */ | |
389 | WARN_ON(chunk->immutable); | |
390 | ||
391 | /* | |
392 | * If control reaches here, there must have been at least one | |
393 | * successful population attempt so the temp pages array must | |
394 | * be available now. | |
395 | */ | |
396 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | |
397 | BUG_ON(!pages); | |
398 | ||
399 | /* unmap and free */ | |
400 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | |
401 | ||
402 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | |
403 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | |
404 | ||
405 | /* no need to flush tlb, vmalloc will handle it lazily */ | |
406 | ||
407 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | |
408 | pcpu_free_pages(chunk, pages, populated, rs, re); | |
409 | ||
410 | /* commit new bitmap */ | |
411 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | |
412 | } | |
413 | ||
414 | static struct pcpu_chunk *pcpu_create_chunk(void) | |
415 | { | |
416 | struct pcpu_chunk *chunk; | |
417 | struct vm_struct **vms; | |
418 | ||
419 | chunk = pcpu_alloc_chunk(); | |
420 | if (!chunk) | |
421 | return NULL; | |
422 | ||
423 | vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | |
424 | pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL); | |
425 | if (!vms) { | |
426 | pcpu_free_chunk(chunk); | |
427 | return NULL; | |
428 | } | |
429 | ||
430 | chunk->data = vms; | |
431 | chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0]; | |
432 | return chunk; | |
433 | } | |
434 | ||
435 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) | |
436 | { | |
437 | if (chunk && chunk->data) | |
438 | pcpu_free_vm_areas(chunk->data, pcpu_nr_groups); | |
439 | pcpu_free_chunk(chunk); | |
440 | } | |
441 | ||
442 | static struct page *pcpu_addr_to_page(void *addr) | |
443 | { | |
444 | return vmalloc_to_page(addr); | |
445 | } | |
446 | ||
447 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) | |
448 | { | |
449 | /* no extra restriction */ | |
450 | return 0; | |
451 | } |