]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh ([email protected]) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * ([email protected]) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
9a840895 | 48 | #include <linux/ksm.h> |
1da177e4 LT |
49 | #include <linux/rmap.h> |
50 | #include <linux/module.h> | |
0ff92245 | 51 | #include <linux/delayacct.h> |
1da177e4 | 52 | #include <linux/init.h> |
edc79b2a | 53 | #include <linux/writeback.h> |
8a9f3ccd | 54 | #include <linux/memcontrol.h> |
cddb8a5c | 55 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
56 | #include <linux/kallsyms.h> |
57 | #include <linux/swapops.h> | |
58 | #include <linux/elf.h> | |
5a0e3ad6 | 59 | #include <linux/gfp.h> |
1da177e4 | 60 | |
6952b61d | 61 | #include <asm/io.h> |
1da177e4 LT |
62 | #include <asm/pgalloc.h> |
63 | #include <asm/uaccess.h> | |
64 | #include <asm/tlb.h> | |
65 | #include <asm/tlbflush.h> | |
66 | #include <asm/pgtable.h> | |
67 | ||
42b77728 JB |
68 | #include "internal.h" |
69 | ||
d41dee36 | 70 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
71 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
72 | unsigned long max_mapnr; | |
73 | struct page *mem_map; | |
74 | ||
75 | EXPORT_SYMBOL(max_mapnr); | |
76 | EXPORT_SYMBOL(mem_map); | |
77 | #endif | |
78 | ||
79 | unsigned long num_physpages; | |
80 | /* | |
81 | * A number of key systems in x86 including ioremap() rely on the assumption | |
82 | * that high_memory defines the upper bound on direct map memory, then end | |
83 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
84 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
85 | * and ZONE_HIGHMEM. | |
86 | */ | |
87 | void * high_memory; | |
1da177e4 LT |
88 | |
89 | EXPORT_SYMBOL(num_physpages); | |
90 | EXPORT_SYMBOL(high_memory); | |
1da177e4 | 91 | |
32a93233 IM |
92 | /* |
93 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
94 | * | |
95 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
96 | * as ancient (libc5 based) binaries can segfault. ) | |
97 | */ | |
98 | int randomize_va_space __read_mostly = | |
99 | #ifdef CONFIG_COMPAT_BRK | |
100 | 1; | |
101 | #else | |
102 | 2; | |
103 | #endif | |
a62eaf15 AK |
104 | |
105 | static int __init disable_randmaps(char *s) | |
106 | { | |
107 | randomize_va_space = 0; | |
9b41046c | 108 | return 1; |
a62eaf15 AK |
109 | } |
110 | __setup("norandmaps", disable_randmaps); | |
111 | ||
62eede62 | 112 | unsigned long zero_pfn __read_mostly; |
03f6462a | 113 | unsigned long highest_memmap_pfn __read_mostly; |
a13ea5b7 HD |
114 | |
115 | /* | |
116 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
117 | */ | |
118 | static int __init init_zero_pfn(void) | |
119 | { | |
120 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
121 | return 0; | |
122 | } | |
123 | core_initcall(init_zero_pfn); | |
a62eaf15 | 124 | |
d559db08 | 125 | |
34e55232 KH |
126 | #if defined(SPLIT_RSS_COUNTING) |
127 | ||
a3a2e76c | 128 | static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) |
34e55232 KH |
129 | { |
130 | int i; | |
131 | ||
132 | for (i = 0; i < NR_MM_COUNTERS; i++) { | |
133 | if (task->rss_stat.count[i]) { | |
134 | add_mm_counter(mm, i, task->rss_stat.count[i]); | |
135 | task->rss_stat.count[i] = 0; | |
136 | } | |
137 | } | |
138 | task->rss_stat.events = 0; | |
139 | } | |
140 | ||
141 | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | |
142 | { | |
143 | struct task_struct *task = current; | |
144 | ||
145 | if (likely(task->mm == mm)) | |
146 | task->rss_stat.count[member] += val; | |
147 | else | |
148 | add_mm_counter(mm, member, val); | |
149 | } | |
150 | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | |
151 | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | |
152 | ||
153 | /* sync counter once per 64 page faults */ | |
154 | #define TASK_RSS_EVENTS_THRESH (64) | |
155 | static void check_sync_rss_stat(struct task_struct *task) | |
156 | { | |
157 | if (unlikely(task != current)) | |
158 | return; | |
159 | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | |
160 | __sync_task_rss_stat(task, task->mm); | |
161 | } | |
162 | ||
163 | unsigned long get_mm_counter(struct mm_struct *mm, int member) | |
164 | { | |
165 | long val = 0; | |
166 | ||
167 | /* | |
168 | * Don't use task->mm here...for avoiding to use task_get_mm().. | |
169 | * The caller must guarantee task->mm is not invalid. | |
170 | */ | |
171 | val = atomic_long_read(&mm->rss_stat.count[member]); | |
172 | /* | |
173 | * counter is updated in asynchronous manner and may go to minus. | |
174 | * But it's never be expected number for users. | |
175 | */ | |
176 | if (val < 0) | |
177 | return 0; | |
178 | return (unsigned long)val; | |
179 | } | |
180 | ||
181 | void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) | |
182 | { | |
183 | __sync_task_rss_stat(task, mm); | |
184 | } | |
185 | #else | |
186 | ||
187 | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | |
188 | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | |
189 | ||
190 | static void check_sync_rss_stat(struct task_struct *task) | |
191 | { | |
192 | } | |
193 | ||
34e55232 KH |
194 | #endif |
195 | ||
1da177e4 LT |
196 | /* |
197 | * If a p?d_bad entry is found while walking page tables, report | |
198 | * the error, before resetting entry to p?d_none. Usually (but | |
199 | * very seldom) called out from the p?d_none_or_clear_bad macros. | |
200 | */ | |
201 | ||
202 | void pgd_clear_bad(pgd_t *pgd) | |
203 | { | |
204 | pgd_ERROR(*pgd); | |
205 | pgd_clear(pgd); | |
206 | } | |
207 | ||
208 | void pud_clear_bad(pud_t *pud) | |
209 | { | |
210 | pud_ERROR(*pud); | |
211 | pud_clear(pud); | |
212 | } | |
213 | ||
214 | void pmd_clear_bad(pmd_t *pmd) | |
215 | { | |
216 | pmd_ERROR(*pmd); | |
217 | pmd_clear(pmd); | |
218 | } | |
219 | ||
220 | /* | |
221 | * Note: this doesn't free the actual pages themselves. That | |
222 | * has been handled earlier when unmapping all the memory regions. | |
223 | */ | |
9e1b32ca BH |
224 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
225 | unsigned long addr) | |
1da177e4 | 226 | { |
2f569afd | 227 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 228 | pmd_clear(pmd); |
9e1b32ca | 229 | pte_free_tlb(tlb, token, addr); |
e0da382c | 230 | tlb->mm->nr_ptes--; |
1da177e4 LT |
231 | } |
232 | ||
e0da382c HD |
233 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
234 | unsigned long addr, unsigned long end, | |
235 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
236 | { |
237 | pmd_t *pmd; | |
238 | unsigned long next; | |
e0da382c | 239 | unsigned long start; |
1da177e4 | 240 | |
e0da382c | 241 | start = addr; |
1da177e4 | 242 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
243 | do { |
244 | next = pmd_addr_end(addr, end); | |
245 | if (pmd_none_or_clear_bad(pmd)) | |
246 | continue; | |
9e1b32ca | 247 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
248 | } while (pmd++, addr = next, addr != end); |
249 | ||
e0da382c HD |
250 | start &= PUD_MASK; |
251 | if (start < floor) | |
252 | return; | |
253 | if (ceiling) { | |
254 | ceiling &= PUD_MASK; | |
255 | if (!ceiling) | |
256 | return; | |
1da177e4 | 257 | } |
e0da382c HD |
258 | if (end - 1 > ceiling - 1) |
259 | return; | |
260 | ||
261 | pmd = pmd_offset(pud, start); | |
262 | pud_clear(pud); | |
9e1b32ca | 263 | pmd_free_tlb(tlb, pmd, start); |
1da177e4 LT |
264 | } |
265 | ||
e0da382c HD |
266 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
267 | unsigned long addr, unsigned long end, | |
268 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
269 | { |
270 | pud_t *pud; | |
271 | unsigned long next; | |
e0da382c | 272 | unsigned long start; |
1da177e4 | 273 | |
e0da382c | 274 | start = addr; |
1da177e4 | 275 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
276 | do { |
277 | next = pud_addr_end(addr, end); | |
278 | if (pud_none_or_clear_bad(pud)) | |
279 | continue; | |
e0da382c | 280 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
281 | } while (pud++, addr = next, addr != end); |
282 | ||
e0da382c HD |
283 | start &= PGDIR_MASK; |
284 | if (start < floor) | |
285 | return; | |
286 | if (ceiling) { | |
287 | ceiling &= PGDIR_MASK; | |
288 | if (!ceiling) | |
289 | return; | |
1da177e4 | 290 | } |
e0da382c HD |
291 | if (end - 1 > ceiling - 1) |
292 | return; | |
293 | ||
294 | pud = pud_offset(pgd, start); | |
295 | pgd_clear(pgd); | |
9e1b32ca | 296 | pud_free_tlb(tlb, pud, start); |
1da177e4 LT |
297 | } |
298 | ||
299 | /* | |
e0da382c HD |
300 | * This function frees user-level page tables of a process. |
301 | * | |
1da177e4 LT |
302 | * Must be called with pagetable lock held. |
303 | */ | |
42b77728 | 304 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
305 | unsigned long addr, unsigned long end, |
306 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
307 | { |
308 | pgd_t *pgd; | |
309 | unsigned long next; | |
e0da382c HD |
310 | |
311 | /* | |
312 | * The next few lines have given us lots of grief... | |
313 | * | |
314 | * Why are we testing PMD* at this top level? Because often | |
315 | * there will be no work to do at all, and we'd prefer not to | |
316 | * go all the way down to the bottom just to discover that. | |
317 | * | |
318 | * Why all these "- 1"s? Because 0 represents both the bottom | |
319 | * of the address space and the top of it (using -1 for the | |
320 | * top wouldn't help much: the masks would do the wrong thing). | |
321 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
322 | * the address space, but end 0 and ceiling 0 refer to the top | |
323 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
324 | * that end 0 case should be mythical). | |
325 | * | |
326 | * Wherever addr is brought up or ceiling brought down, we must | |
327 | * be careful to reject "the opposite 0" before it confuses the | |
328 | * subsequent tests. But what about where end is brought down | |
329 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
330 | * | |
331 | * Whereas we round start (addr) and ceiling down, by different | |
332 | * masks at different levels, in order to test whether a table | |
333 | * now has no other vmas using it, so can be freed, we don't | |
334 | * bother to round floor or end up - the tests don't need that. | |
335 | */ | |
1da177e4 | 336 | |
e0da382c HD |
337 | addr &= PMD_MASK; |
338 | if (addr < floor) { | |
339 | addr += PMD_SIZE; | |
340 | if (!addr) | |
341 | return; | |
342 | } | |
343 | if (ceiling) { | |
344 | ceiling &= PMD_MASK; | |
345 | if (!ceiling) | |
346 | return; | |
347 | } | |
348 | if (end - 1 > ceiling - 1) | |
349 | end -= PMD_SIZE; | |
350 | if (addr > end - 1) | |
351 | return; | |
352 | ||
42b77728 | 353 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
354 | do { |
355 | next = pgd_addr_end(addr, end); | |
356 | if (pgd_none_or_clear_bad(pgd)) | |
357 | continue; | |
42b77728 | 358 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 359 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
360 | } |
361 | ||
42b77728 | 362 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 363 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
364 | { |
365 | while (vma) { | |
366 | struct vm_area_struct *next = vma->vm_next; | |
367 | unsigned long addr = vma->vm_start; | |
368 | ||
8f4f8c16 | 369 | /* |
25d9e2d1 NP |
370 | * Hide vma from rmap and truncate_pagecache before freeing |
371 | * pgtables | |
8f4f8c16 | 372 | */ |
5beb4930 | 373 | unlink_anon_vmas(vma); |
8f4f8c16 HD |
374 | unlink_file_vma(vma); |
375 | ||
9da61aef | 376 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 377 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
e0da382c | 378 | floor, next? next->vm_start: ceiling); |
3bf5ee95 HD |
379 | } else { |
380 | /* | |
381 | * Optimization: gather nearby vmas into one call down | |
382 | */ | |
383 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 384 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
385 | vma = next; |
386 | next = vma->vm_next; | |
5beb4930 | 387 | unlink_anon_vmas(vma); |
8f4f8c16 | 388 | unlink_file_vma(vma); |
3bf5ee95 HD |
389 | } |
390 | free_pgd_range(tlb, addr, vma->vm_end, | |
391 | floor, next? next->vm_start: ceiling); | |
392 | } | |
e0da382c HD |
393 | vma = next; |
394 | } | |
1da177e4 LT |
395 | } |
396 | ||
1bb3630e | 397 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 398 | { |
2f569afd | 399 | pgtable_t new = pte_alloc_one(mm, address); |
1bb3630e HD |
400 | if (!new) |
401 | return -ENOMEM; | |
402 | ||
362a61ad NP |
403 | /* |
404 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
405 | * visible before the pte is made visible to other CPUs by being | |
406 | * put into page tables. | |
407 | * | |
408 | * The other side of the story is the pointer chasing in the page | |
409 | * table walking code (when walking the page table without locking; | |
410 | * ie. most of the time). Fortunately, these data accesses consist | |
411 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
412 | * being the notable exception) will already guarantee loads are | |
413 | * seen in-order. See the alpha page table accessors for the | |
414 | * smp_read_barrier_depends() barriers in page table walking code. | |
415 | */ | |
416 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
417 | ||
c74df32c | 418 | spin_lock(&mm->page_table_lock); |
2f569afd | 419 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1da177e4 | 420 | mm->nr_ptes++; |
1da177e4 | 421 | pmd_populate(mm, pmd, new); |
2f569afd | 422 | new = NULL; |
1da177e4 | 423 | } |
c74df32c | 424 | spin_unlock(&mm->page_table_lock); |
2f569afd MS |
425 | if (new) |
426 | pte_free(mm, new); | |
1bb3630e | 427 | return 0; |
1da177e4 LT |
428 | } |
429 | ||
1bb3630e | 430 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 431 | { |
1bb3630e HD |
432 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
433 | if (!new) | |
434 | return -ENOMEM; | |
435 | ||
362a61ad NP |
436 | smp_wmb(); /* See comment in __pte_alloc */ |
437 | ||
1bb3630e | 438 | spin_lock(&init_mm.page_table_lock); |
2f569afd | 439 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1bb3630e | 440 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd MS |
441 | new = NULL; |
442 | } | |
1bb3630e | 443 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
444 | if (new) |
445 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 446 | return 0; |
1da177e4 LT |
447 | } |
448 | ||
d559db08 KH |
449 | static inline void init_rss_vec(int *rss) |
450 | { | |
451 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | |
452 | } | |
453 | ||
454 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | |
ae859762 | 455 | { |
d559db08 KH |
456 | int i; |
457 | ||
34e55232 KH |
458 | if (current->mm == mm) |
459 | sync_mm_rss(current, mm); | |
d559db08 KH |
460 | for (i = 0; i < NR_MM_COUNTERS; i++) |
461 | if (rss[i]) | |
462 | add_mm_counter(mm, i, rss[i]); | |
ae859762 HD |
463 | } |
464 | ||
b5810039 | 465 | /* |
6aab341e LT |
466 | * This function is called to print an error when a bad pte |
467 | * is found. For example, we might have a PFN-mapped pte in | |
468 | * a region that doesn't allow it. | |
b5810039 NP |
469 | * |
470 | * The calling function must still handle the error. | |
471 | */ | |
3dc14741 HD |
472 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
473 | pte_t pte, struct page *page) | |
b5810039 | 474 | { |
3dc14741 HD |
475 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
476 | pud_t *pud = pud_offset(pgd, addr); | |
477 | pmd_t *pmd = pmd_offset(pud, addr); | |
478 | struct address_space *mapping; | |
479 | pgoff_t index; | |
d936cf9b HD |
480 | static unsigned long resume; |
481 | static unsigned long nr_shown; | |
482 | static unsigned long nr_unshown; | |
483 | ||
484 | /* | |
485 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
486 | * or allow a steady drip of one report per second. | |
487 | */ | |
488 | if (nr_shown == 60) { | |
489 | if (time_before(jiffies, resume)) { | |
490 | nr_unshown++; | |
491 | return; | |
492 | } | |
493 | if (nr_unshown) { | |
1e9e6365 HD |
494 | printk(KERN_ALERT |
495 | "BUG: Bad page map: %lu messages suppressed\n", | |
d936cf9b HD |
496 | nr_unshown); |
497 | nr_unshown = 0; | |
498 | } | |
499 | nr_shown = 0; | |
500 | } | |
501 | if (nr_shown++ == 0) | |
502 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
503 | |
504 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
505 | index = linear_page_index(vma, addr); | |
506 | ||
1e9e6365 HD |
507 | printk(KERN_ALERT |
508 | "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", | |
3dc14741 HD |
509 | current->comm, |
510 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
718a3821 WF |
511 | if (page) |
512 | dump_page(page); | |
1e9e6365 | 513 | printk(KERN_ALERT |
3dc14741 HD |
514 | "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", |
515 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | |
516 | /* | |
517 | * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y | |
518 | */ | |
519 | if (vma->vm_ops) | |
1e9e6365 | 520 | print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", |
3dc14741 HD |
521 | (unsigned long)vma->vm_ops->fault); |
522 | if (vma->vm_file && vma->vm_file->f_op) | |
1e9e6365 | 523 | print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", |
3dc14741 | 524 | (unsigned long)vma->vm_file->f_op->mmap); |
b5810039 | 525 | dump_stack(); |
3dc14741 | 526 | add_taint(TAINT_BAD_PAGE); |
b5810039 NP |
527 | } |
528 | ||
67121172 LT |
529 | static inline int is_cow_mapping(unsigned int flags) |
530 | { | |
531 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
532 | } | |
533 | ||
62eede62 HD |
534 | #ifndef is_zero_pfn |
535 | static inline int is_zero_pfn(unsigned long pfn) | |
536 | { | |
537 | return pfn == zero_pfn; | |
538 | } | |
539 | #endif | |
540 | ||
541 | #ifndef my_zero_pfn | |
542 | static inline unsigned long my_zero_pfn(unsigned long addr) | |
543 | { | |
544 | return zero_pfn; | |
545 | } | |
546 | #endif | |
547 | ||
ee498ed7 | 548 | /* |
7e675137 | 549 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 550 | * |
7e675137 NP |
551 | * "Special" mappings do not wish to be associated with a "struct page" (either |
552 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
553 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 554 | * |
7e675137 NP |
555 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
556 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
557 | * may not have a spare pte bit, which requires a more complicated scheme, | |
558 | * described below. | |
559 | * | |
560 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
561 | * special mapping (even if there are underlying and valid "struct pages"). | |
562 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 563 | * |
b379d790 JH |
564 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
565 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
566 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
567 | * mapping will always honor the rule | |
6aab341e LT |
568 | * |
569 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
570 | * | |
7e675137 NP |
571 | * And for normal mappings this is false. |
572 | * | |
573 | * This restricts such mappings to be a linear translation from virtual address | |
574 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
575 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
576 | * special (because none can have been COWed). | |
b379d790 | 577 | * |
b379d790 | 578 | * |
7e675137 | 579 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
580 | * |
581 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
582 | * page" backing, however the difference is that _all_ pages with a struct | |
583 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
584 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
585 | * (which can be slower and simply not an option for some PFNMAP users). The | |
586 | * advantage is that we don't have to follow the strict linearity rule of | |
587 | * PFNMAP mappings in order to support COWable mappings. | |
588 | * | |
ee498ed7 | 589 | */ |
7e675137 NP |
590 | #ifdef __HAVE_ARCH_PTE_SPECIAL |
591 | # define HAVE_PTE_SPECIAL 1 | |
592 | #else | |
593 | # define HAVE_PTE_SPECIAL 0 | |
594 | #endif | |
595 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | |
596 | pte_t pte) | |
ee498ed7 | 597 | { |
22b31eec | 598 | unsigned long pfn = pte_pfn(pte); |
7e675137 NP |
599 | |
600 | if (HAVE_PTE_SPECIAL) { | |
22b31eec HD |
601 | if (likely(!pte_special(pte))) |
602 | goto check_pfn; | |
a13ea5b7 HD |
603 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
604 | return NULL; | |
62eede62 | 605 | if (!is_zero_pfn(pfn)) |
22b31eec | 606 | print_bad_pte(vma, addr, pte, NULL); |
7e675137 NP |
607 | return NULL; |
608 | } | |
609 | ||
610 | /* !HAVE_PTE_SPECIAL case follows: */ | |
611 | ||
b379d790 JH |
612 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
613 | if (vma->vm_flags & VM_MIXEDMAP) { | |
614 | if (!pfn_valid(pfn)) | |
615 | return NULL; | |
616 | goto out; | |
617 | } else { | |
7e675137 NP |
618 | unsigned long off; |
619 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
620 | if (pfn == vma->vm_pgoff + off) |
621 | return NULL; | |
622 | if (!is_cow_mapping(vma->vm_flags)) | |
623 | return NULL; | |
624 | } | |
6aab341e LT |
625 | } |
626 | ||
62eede62 HD |
627 | if (is_zero_pfn(pfn)) |
628 | return NULL; | |
22b31eec HD |
629 | check_pfn: |
630 | if (unlikely(pfn > highest_memmap_pfn)) { | |
631 | print_bad_pte(vma, addr, pte, NULL); | |
632 | return NULL; | |
633 | } | |
6aab341e LT |
634 | |
635 | /* | |
7e675137 | 636 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 637 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 638 | */ |
b379d790 | 639 | out: |
6aab341e | 640 | return pfn_to_page(pfn); |
ee498ed7 HD |
641 | } |
642 | ||
1da177e4 LT |
643 | /* |
644 | * copy one vm_area from one task to the other. Assumes the page tables | |
645 | * already present in the new task to be cleared in the whole range | |
646 | * covered by this vma. | |
1da177e4 LT |
647 | */ |
648 | ||
570a335b | 649 | static inline unsigned long |
1da177e4 | 650 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 651 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 652 | unsigned long addr, int *rss) |
1da177e4 | 653 | { |
b5810039 | 654 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
655 | pte_t pte = *src_pte; |
656 | struct page *page; | |
1da177e4 LT |
657 | |
658 | /* pte contains position in swap or file, so copy. */ | |
659 | if (unlikely(!pte_present(pte))) { | |
660 | if (!pte_file(pte)) { | |
0697212a CL |
661 | swp_entry_t entry = pte_to_swp_entry(pte); |
662 | ||
570a335b HD |
663 | if (swap_duplicate(entry) < 0) |
664 | return entry.val; | |
665 | ||
1da177e4 LT |
666 | /* make sure dst_mm is on swapoff's mmlist. */ |
667 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
668 | spin_lock(&mmlist_lock); | |
f412ac08 HD |
669 | if (list_empty(&dst_mm->mmlist)) |
670 | list_add(&dst_mm->mmlist, | |
671 | &src_mm->mmlist); | |
1da177e4 LT |
672 | spin_unlock(&mmlist_lock); |
673 | } | |
b084d435 KH |
674 | if (likely(!non_swap_entry(entry))) |
675 | rss[MM_SWAPENTS]++; | |
676 | else if (is_write_migration_entry(entry) && | |
0697212a CL |
677 | is_cow_mapping(vm_flags)) { |
678 | /* | |
679 | * COW mappings require pages in both parent | |
680 | * and child to be set to read. | |
681 | */ | |
682 | make_migration_entry_read(&entry); | |
683 | pte = swp_entry_to_pte(entry); | |
684 | set_pte_at(src_mm, addr, src_pte, pte); | |
685 | } | |
1da177e4 | 686 | } |
ae859762 | 687 | goto out_set_pte; |
1da177e4 LT |
688 | } |
689 | ||
1da177e4 LT |
690 | /* |
691 | * If it's a COW mapping, write protect it both | |
692 | * in the parent and the child | |
693 | */ | |
67121172 | 694 | if (is_cow_mapping(vm_flags)) { |
1da177e4 | 695 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 696 | pte = pte_wrprotect(pte); |
1da177e4 LT |
697 | } |
698 | ||
699 | /* | |
700 | * If it's a shared mapping, mark it clean in | |
701 | * the child | |
702 | */ | |
703 | if (vm_flags & VM_SHARED) | |
704 | pte = pte_mkclean(pte); | |
705 | pte = pte_mkold(pte); | |
6aab341e LT |
706 | |
707 | page = vm_normal_page(vma, addr, pte); | |
708 | if (page) { | |
709 | get_page(page); | |
21333b2b | 710 | page_dup_rmap(page); |
d559db08 KH |
711 | if (PageAnon(page)) |
712 | rss[MM_ANONPAGES]++; | |
713 | else | |
714 | rss[MM_FILEPAGES]++; | |
6aab341e | 715 | } |
ae859762 HD |
716 | |
717 | out_set_pte: | |
718 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
570a335b | 719 | return 0; |
1da177e4 LT |
720 | } |
721 | ||
722 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
723 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | |
724 | unsigned long addr, unsigned long end) | |
725 | { | |
c36987e2 | 726 | pte_t *orig_src_pte, *orig_dst_pte; |
1da177e4 | 727 | pte_t *src_pte, *dst_pte; |
c74df32c | 728 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 729 | int progress = 0; |
d559db08 | 730 | int rss[NR_MM_COUNTERS]; |
570a335b | 731 | swp_entry_t entry = (swp_entry_t){0}; |
1da177e4 LT |
732 | |
733 | again: | |
d559db08 KH |
734 | init_rss_vec(rss); |
735 | ||
c74df32c | 736 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
737 | if (!dst_pte) |
738 | return -ENOMEM; | |
739 | src_pte = pte_offset_map_nested(src_pmd, addr); | |
4c21e2f2 | 740 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 741 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
c36987e2 DN |
742 | orig_src_pte = src_pte; |
743 | orig_dst_pte = dst_pte; | |
6606c3e0 | 744 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 745 | |
1da177e4 LT |
746 | do { |
747 | /* | |
748 | * We are holding two locks at this point - either of them | |
749 | * could generate latencies in another task on another CPU. | |
750 | */ | |
e040f218 HD |
751 | if (progress >= 32) { |
752 | progress = 0; | |
753 | if (need_resched() || | |
95c354fe | 754 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
755 | break; |
756 | } | |
1da177e4 LT |
757 | if (pte_none(*src_pte)) { |
758 | progress++; | |
759 | continue; | |
760 | } | |
570a335b HD |
761 | entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, |
762 | vma, addr, rss); | |
763 | if (entry.val) | |
764 | break; | |
1da177e4 LT |
765 | progress += 8; |
766 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 767 | |
6606c3e0 | 768 | arch_leave_lazy_mmu_mode(); |
c74df32c | 769 | spin_unlock(src_ptl); |
c36987e2 | 770 | pte_unmap_nested(orig_src_pte); |
d559db08 | 771 | add_mm_rss_vec(dst_mm, rss); |
c36987e2 | 772 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
c74df32c | 773 | cond_resched(); |
570a335b HD |
774 | |
775 | if (entry.val) { | |
776 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) | |
777 | return -ENOMEM; | |
778 | progress = 0; | |
779 | } | |
1da177e4 LT |
780 | if (addr != end) |
781 | goto again; | |
782 | return 0; | |
783 | } | |
784 | ||
785 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
786 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
787 | unsigned long addr, unsigned long end) | |
788 | { | |
789 | pmd_t *src_pmd, *dst_pmd; | |
790 | unsigned long next; | |
791 | ||
792 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
793 | if (!dst_pmd) | |
794 | return -ENOMEM; | |
795 | src_pmd = pmd_offset(src_pud, addr); | |
796 | do { | |
797 | next = pmd_addr_end(addr, end); | |
798 | if (pmd_none_or_clear_bad(src_pmd)) | |
799 | continue; | |
800 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
801 | vma, addr, next)) | |
802 | return -ENOMEM; | |
803 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
804 | return 0; | |
805 | } | |
806 | ||
807 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
808 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
809 | unsigned long addr, unsigned long end) | |
810 | { | |
811 | pud_t *src_pud, *dst_pud; | |
812 | unsigned long next; | |
813 | ||
814 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
815 | if (!dst_pud) | |
816 | return -ENOMEM; | |
817 | src_pud = pud_offset(src_pgd, addr); | |
818 | do { | |
819 | next = pud_addr_end(addr, end); | |
820 | if (pud_none_or_clear_bad(src_pud)) | |
821 | continue; | |
822 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
823 | vma, addr, next)) | |
824 | return -ENOMEM; | |
825 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
826 | return 0; | |
827 | } | |
828 | ||
829 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
830 | struct vm_area_struct *vma) | |
831 | { | |
832 | pgd_t *src_pgd, *dst_pgd; | |
833 | unsigned long next; | |
834 | unsigned long addr = vma->vm_start; | |
835 | unsigned long end = vma->vm_end; | |
cddb8a5c | 836 | int ret; |
1da177e4 | 837 | |
d992895b NP |
838 | /* |
839 | * Don't copy ptes where a page fault will fill them correctly. | |
840 | * Fork becomes much lighter when there are big shared or private | |
841 | * readonly mappings. The tradeoff is that copy_page_range is more | |
842 | * efficient than faulting. | |
843 | */ | |
4d7672b4 | 844 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { |
d992895b NP |
845 | if (!vma->anon_vma) |
846 | return 0; | |
847 | } | |
848 | ||
1da177e4 LT |
849 | if (is_vm_hugetlb_page(vma)) |
850 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
851 | ||
34801ba9 | 852 | if (unlikely(is_pfn_mapping(vma))) { |
2ab64037 | 853 | /* |
854 | * We do not free on error cases below as remove_vma | |
855 | * gets called on error from higher level routine | |
856 | */ | |
857 | ret = track_pfn_vma_copy(vma); | |
858 | if (ret) | |
859 | return ret; | |
860 | } | |
861 | ||
cddb8a5c AA |
862 | /* |
863 | * We need to invalidate the secondary MMU mappings only when | |
864 | * there could be a permission downgrade on the ptes of the | |
865 | * parent mm. And a permission downgrade will only happen if | |
866 | * is_cow_mapping() returns true. | |
867 | */ | |
868 | if (is_cow_mapping(vma->vm_flags)) | |
869 | mmu_notifier_invalidate_range_start(src_mm, addr, end); | |
870 | ||
871 | ret = 0; | |
1da177e4 LT |
872 | dst_pgd = pgd_offset(dst_mm, addr); |
873 | src_pgd = pgd_offset(src_mm, addr); | |
874 | do { | |
875 | next = pgd_addr_end(addr, end); | |
876 | if (pgd_none_or_clear_bad(src_pgd)) | |
877 | continue; | |
cddb8a5c AA |
878 | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, |
879 | vma, addr, next))) { | |
880 | ret = -ENOMEM; | |
881 | break; | |
882 | } | |
1da177e4 | 883 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c AA |
884 | |
885 | if (is_cow_mapping(vma->vm_flags)) | |
886 | mmu_notifier_invalidate_range_end(src_mm, | |
887 | vma->vm_start, end); | |
888 | return ret; | |
1da177e4 LT |
889 | } |
890 | ||
51c6f666 | 891 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 892 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 893 | unsigned long addr, unsigned long end, |
51c6f666 | 894 | long *zap_work, struct zap_details *details) |
1da177e4 | 895 | { |
b5810039 | 896 | struct mm_struct *mm = tlb->mm; |
1da177e4 | 897 | pte_t *pte; |
508034a3 | 898 | spinlock_t *ptl; |
d559db08 KH |
899 | int rss[NR_MM_COUNTERS]; |
900 | ||
901 | init_rss_vec(rss); | |
1da177e4 | 902 | |
508034a3 | 903 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
6606c3e0 | 904 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
905 | do { |
906 | pte_t ptent = *pte; | |
51c6f666 RH |
907 | if (pte_none(ptent)) { |
908 | (*zap_work)--; | |
1da177e4 | 909 | continue; |
51c6f666 | 910 | } |
6f5e6b9e HD |
911 | |
912 | (*zap_work) -= PAGE_SIZE; | |
913 | ||
1da177e4 | 914 | if (pte_present(ptent)) { |
ee498ed7 | 915 | struct page *page; |
51c6f666 | 916 | |
6aab341e | 917 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
918 | if (unlikely(details) && page) { |
919 | /* | |
920 | * unmap_shared_mapping_pages() wants to | |
921 | * invalidate cache without truncating: | |
922 | * unmap shared but keep private pages. | |
923 | */ | |
924 | if (details->check_mapping && | |
925 | details->check_mapping != page->mapping) | |
926 | continue; | |
927 | /* | |
928 | * Each page->index must be checked when | |
929 | * invalidating or truncating nonlinear. | |
930 | */ | |
931 | if (details->nonlinear_vma && | |
932 | (page->index < details->first_index || | |
933 | page->index > details->last_index)) | |
934 | continue; | |
935 | } | |
b5810039 | 936 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 937 | tlb->fullmm); |
1da177e4 LT |
938 | tlb_remove_tlb_entry(tlb, pte, addr); |
939 | if (unlikely(!page)) | |
940 | continue; | |
941 | if (unlikely(details) && details->nonlinear_vma | |
942 | && linear_page_index(details->nonlinear_vma, | |
943 | addr) != page->index) | |
b5810039 | 944 | set_pte_at(mm, addr, pte, |
1da177e4 | 945 | pgoff_to_pte(page->index)); |
1da177e4 | 946 | if (PageAnon(page)) |
d559db08 | 947 | rss[MM_ANONPAGES]--; |
6237bcd9 HD |
948 | else { |
949 | if (pte_dirty(ptent)) | |
950 | set_page_dirty(page); | |
4917e5d0 JW |
951 | if (pte_young(ptent) && |
952 | likely(!VM_SequentialReadHint(vma))) | |
bf3f3bc5 | 953 | mark_page_accessed(page); |
d559db08 | 954 | rss[MM_FILEPAGES]--; |
6237bcd9 | 955 | } |
edc315fd | 956 | page_remove_rmap(page); |
3dc14741 HD |
957 | if (unlikely(page_mapcount(page) < 0)) |
958 | print_bad_pte(vma, addr, ptent, page); | |
1da177e4 LT |
959 | tlb_remove_page(tlb, page); |
960 | continue; | |
961 | } | |
962 | /* | |
963 | * If details->check_mapping, we leave swap entries; | |
964 | * if details->nonlinear_vma, we leave file entries. | |
965 | */ | |
966 | if (unlikely(details)) | |
967 | continue; | |
2509ef26 HD |
968 | if (pte_file(ptent)) { |
969 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) | |
970 | print_bad_pte(vma, addr, ptent, NULL); | |
b084d435 KH |
971 | } else { |
972 | swp_entry_t entry = pte_to_swp_entry(ptent); | |
973 | ||
974 | if (!non_swap_entry(entry)) | |
975 | rss[MM_SWAPENTS]--; | |
976 | if (unlikely(!free_swap_and_cache(entry))) | |
977 | print_bad_pte(vma, addr, ptent, NULL); | |
978 | } | |
9888a1ca | 979 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
51c6f666 | 980 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
ae859762 | 981 | |
d559db08 | 982 | add_mm_rss_vec(mm, rss); |
6606c3e0 | 983 | arch_leave_lazy_mmu_mode(); |
508034a3 | 984 | pte_unmap_unlock(pte - 1, ptl); |
51c6f666 RH |
985 | |
986 | return addr; | |
1da177e4 LT |
987 | } |
988 | ||
51c6f666 | 989 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 990 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 991 | unsigned long addr, unsigned long end, |
51c6f666 | 992 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
993 | { |
994 | pmd_t *pmd; | |
995 | unsigned long next; | |
996 | ||
997 | pmd = pmd_offset(pud, addr); | |
998 | do { | |
999 | next = pmd_addr_end(addr, end); | |
51c6f666 RH |
1000 | if (pmd_none_or_clear_bad(pmd)) { |
1001 | (*zap_work)--; | |
1da177e4 | 1002 | continue; |
51c6f666 RH |
1003 | } |
1004 | next = zap_pte_range(tlb, vma, pmd, addr, next, | |
1005 | zap_work, details); | |
1006 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | |
1007 | ||
1008 | return addr; | |
1da177e4 LT |
1009 | } |
1010 | ||
51c6f666 | 1011 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
b5810039 | 1012 | struct vm_area_struct *vma, pgd_t *pgd, |
1da177e4 | 1013 | unsigned long addr, unsigned long end, |
51c6f666 | 1014 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
1015 | { |
1016 | pud_t *pud; | |
1017 | unsigned long next; | |
1018 | ||
1019 | pud = pud_offset(pgd, addr); | |
1020 | do { | |
1021 | next = pud_addr_end(addr, end); | |
51c6f666 RH |
1022 | if (pud_none_or_clear_bad(pud)) { |
1023 | (*zap_work)--; | |
1da177e4 | 1024 | continue; |
51c6f666 RH |
1025 | } |
1026 | next = zap_pmd_range(tlb, vma, pud, addr, next, | |
1027 | zap_work, details); | |
1028 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | |
1029 | ||
1030 | return addr; | |
1da177e4 LT |
1031 | } |
1032 | ||
51c6f666 RH |
1033 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
1034 | struct vm_area_struct *vma, | |
1da177e4 | 1035 | unsigned long addr, unsigned long end, |
51c6f666 | 1036 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
1037 | { |
1038 | pgd_t *pgd; | |
1039 | unsigned long next; | |
1040 | ||
1041 | if (details && !details->check_mapping && !details->nonlinear_vma) | |
1042 | details = NULL; | |
1043 | ||
1044 | BUG_ON(addr >= end); | |
569b846d | 1045 | mem_cgroup_uncharge_start(); |
1da177e4 LT |
1046 | tlb_start_vma(tlb, vma); |
1047 | pgd = pgd_offset(vma->vm_mm, addr); | |
1048 | do { | |
1049 | next = pgd_addr_end(addr, end); | |
51c6f666 RH |
1050 | if (pgd_none_or_clear_bad(pgd)) { |
1051 | (*zap_work)--; | |
1da177e4 | 1052 | continue; |
51c6f666 RH |
1053 | } |
1054 | next = zap_pud_range(tlb, vma, pgd, addr, next, | |
1055 | zap_work, details); | |
1056 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | |
1da177e4 | 1057 | tlb_end_vma(tlb, vma); |
569b846d | 1058 | mem_cgroup_uncharge_end(); |
51c6f666 RH |
1059 | |
1060 | return addr; | |
1da177e4 LT |
1061 | } |
1062 | ||
1063 | #ifdef CONFIG_PREEMPT | |
1064 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | |
1065 | #else | |
1066 | /* No preempt: go for improved straight-line efficiency */ | |
1067 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | |
1068 | #endif | |
1069 | ||
1070 | /** | |
1071 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
1072 | * @tlbp: address of the caller's struct mmu_gather | |
1da177e4 LT |
1073 | * @vma: the starting vma |
1074 | * @start_addr: virtual address at which to start unmapping | |
1075 | * @end_addr: virtual address at which to end unmapping | |
1076 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | |
1077 | * @details: details of nonlinear truncation or shared cache invalidation | |
1078 | * | |
ee39b37b | 1079 | * Returns the end address of the unmapping (restart addr if interrupted). |
1da177e4 | 1080 | * |
508034a3 | 1081 | * Unmap all pages in the vma list. |
1da177e4 | 1082 | * |
508034a3 HD |
1083 | * We aim to not hold locks for too long (for scheduling latency reasons). |
1084 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | |
1da177e4 LT |
1085 | * return the ending mmu_gather to the caller. |
1086 | * | |
1087 | * Only addresses between `start' and `end' will be unmapped. | |
1088 | * | |
1089 | * The VMA list must be sorted in ascending virtual address order. | |
1090 | * | |
1091 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1092 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1093 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1094 | * drops the lock and schedules. | |
1095 | */ | |
508034a3 | 1096 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
1da177e4 LT |
1097 | struct vm_area_struct *vma, unsigned long start_addr, |
1098 | unsigned long end_addr, unsigned long *nr_accounted, | |
1099 | struct zap_details *details) | |
1100 | { | |
51c6f666 | 1101 | long zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
1102 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
1103 | int tlb_start_valid = 0; | |
ee39b37b | 1104 | unsigned long start = start_addr; |
1da177e4 | 1105 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
4d6ddfa9 | 1106 | int fullmm = (*tlbp)->fullmm; |
cddb8a5c | 1107 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 1108 | |
cddb8a5c | 1109 | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); |
1da177e4 | 1110 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { |
1da177e4 LT |
1111 | unsigned long end; |
1112 | ||
1113 | start = max(vma->vm_start, start_addr); | |
1114 | if (start >= vma->vm_end) | |
1115 | continue; | |
1116 | end = min(vma->vm_end, end_addr); | |
1117 | if (end <= vma->vm_start) | |
1118 | continue; | |
1119 | ||
1120 | if (vma->vm_flags & VM_ACCOUNT) | |
1121 | *nr_accounted += (end - start) >> PAGE_SHIFT; | |
1122 | ||
34801ba9 | 1123 | if (unlikely(is_pfn_mapping(vma))) |
2ab64037 | 1124 | untrack_pfn_vma(vma, 0, 0); |
1125 | ||
1da177e4 | 1126 | while (start != end) { |
1da177e4 LT |
1127 | if (!tlb_start_valid) { |
1128 | tlb_start = start; | |
1129 | tlb_start_valid = 1; | |
1130 | } | |
1131 | ||
51c6f666 | 1132 | if (unlikely(is_vm_hugetlb_page(vma))) { |
a137e1cc AK |
1133 | /* |
1134 | * It is undesirable to test vma->vm_file as it | |
1135 | * should be non-null for valid hugetlb area. | |
1136 | * However, vm_file will be NULL in the error | |
1137 | * cleanup path of do_mmap_pgoff. When | |
1138 | * hugetlbfs ->mmap method fails, | |
1139 | * do_mmap_pgoff() nullifies vma->vm_file | |
1140 | * before calling this function to clean up. | |
1141 | * Since no pte has actually been setup, it is | |
1142 | * safe to do nothing in this case. | |
1143 | */ | |
1144 | if (vma->vm_file) { | |
1145 | unmap_hugepage_range(vma, start, end, NULL); | |
1146 | zap_work -= (end - start) / | |
a5516438 | 1147 | pages_per_huge_page(hstate_vma(vma)); |
a137e1cc AK |
1148 | } |
1149 | ||
51c6f666 RH |
1150 | start = end; |
1151 | } else | |
1152 | start = unmap_page_range(*tlbp, vma, | |
1153 | start, end, &zap_work, details); | |
1154 | ||
1155 | if (zap_work > 0) { | |
1156 | BUG_ON(start != end); | |
1157 | break; | |
1da177e4 LT |
1158 | } |
1159 | ||
1da177e4 LT |
1160 | tlb_finish_mmu(*tlbp, tlb_start, start); |
1161 | ||
1162 | if (need_resched() || | |
95c354fe | 1163 | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { |
1da177e4 | 1164 | if (i_mmap_lock) { |
508034a3 | 1165 | *tlbp = NULL; |
1da177e4 LT |
1166 | goto out; |
1167 | } | |
1da177e4 | 1168 | cond_resched(); |
1da177e4 LT |
1169 | } |
1170 | ||
508034a3 | 1171 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
1da177e4 | 1172 | tlb_start_valid = 0; |
51c6f666 | 1173 | zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
1174 | } |
1175 | } | |
1176 | out: | |
cddb8a5c | 1177 | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); |
ee39b37b | 1178 | return start; /* which is now the end (or restart) address */ |
1da177e4 LT |
1179 | } |
1180 | ||
1181 | /** | |
1182 | * zap_page_range - remove user pages in a given range | |
1183 | * @vma: vm_area_struct holding the applicable pages | |
1184 | * @address: starting address of pages to zap | |
1185 | * @size: number of bytes to zap | |
1186 | * @details: details of nonlinear truncation or shared cache invalidation | |
1187 | */ | |
ee39b37b | 1188 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1189 | unsigned long size, struct zap_details *details) |
1190 | { | |
1191 | struct mm_struct *mm = vma->vm_mm; | |
1192 | struct mmu_gather *tlb; | |
1193 | unsigned long end = address + size; | |
1194 | unsigned long nr_accounted = 0; | |
1195 | ||
1da177e4 | 1196 | lru_add_drain(); |
1da177e4 | 1197 | tlb = tlb_gather_mmu(mm, 0); |
365e9c87 | 1198 | update_hiwater_rss(mm); |
508034a3 HD |
1199 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
1200 | if (tlb) | |
1201 | tlb_finish_mmu(tlb, address, end); | |
ee39b37b | 1202 | return end; |
1da177e4 LT |
1203 | } |
1204 | ||
c627f9cc JS |
1205 | /** |
1206 | * zap_vma_ptes - remove ptes mapping the vma | |
1207 | * @vma: vm_area_struct holding ptes to be zapped | |
1208 | * @address: starting address of pages to zap | |
1209 | * @size: number of bytes to zap | |
1210 | * | |
1211 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1212 | * | |
1213 | * The entire address range must be fully contained within the vma. | |
1214 | * | |
1215 | * Returns 0 if successful. | |
1216 | */ | |
1217 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | |
1218 | unsigned long size) | |
1219 | { | |
1220 | if (address < vma->vm_start || address + size > vma->vm_end || | |
1221 | !(vma->vm_flags & VM_PFNMAP)) | |
1222 | return -1; | |
1223 | zap_page_range(vma, address, size, NULL); | |
1224 | return 0; | |
1225 | } | |
1226 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1227 | ||
142762bd JW |
1228 | /** |
1229 | * follow_page - look up a page descriptor from a user-virtual address | |
1230 | * @vma: vm_area_struct mapping @address | |
1231 | * @address: virtual address to look up | |
1232 | * @flags: flags modifying lookup behaviour | |
1233 | * | |
1234 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
1235 | * | |
1236 | * Returns the mapped (struct page *), %NULL if no mapping exists, or | |
1237 | * an error pointer if there is a mapping to something not represented | |
1238 | * by a page descriptor (see also vm_normal_page()). | |
1da177e4 | 1239 | */ |
6aab341e | 1240 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
deceb6cd | 1241 | unsigned int flags) |
1da177e4 LT |
1242 | { |
1243 | pgd_t *pgd; | |
1244 | pud_t *pud; | |
1245 | pmd_t *pmd; | |
1246 | pte_t *ptep, pte; | |
deceb6cd | 1247 | spinlock_t *ptl; |
1da177e4 | 1248 | struct page *page; |
6aab341e | 1249 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 1250 | |
deceb6cd HD |
1251 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
1252 | if (!IS_ERR(page)) { | |
1253 | BUG_ON(flags & FOLL_GET); | |
1254 | goto out; | |
1255 | } | |
1da177e4 | 1256 | |
deceb6cd | 1257 | page = NULL; |
1da177e4 LT |
1258 | pgd = pgd_offset(mm, address); |
1259 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
deceb6cd | 1260 | goto no_page_table; |
1da177e4 LT |
1261 | |
1262 | pud = pud_offset(pgd, address); | |
ceb86879 | 1263 | if (pud_none(*pud)) |
deceb6cd | 1264 | goto no_page_table; |
ceb86879 AK |
1265 | if (pud_huge(*pud)) { |
1266 | BUG_ON(flags & FOLL_GET); | |
1267 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | |
1268 | goto out; | |
1269 | } | |
1270 | if (unlikely(pud_bad(*pud))) | |
1271 | goto no_page_table; | |
1272 | ||
1da177e4 | 1273 | pmd = pmd_offset(pud, address); |
aeed5fce | 1274 | if (pmd_none(*pmd)) |
deceb6cd | 1275 | goto no_page_table; |
deceb6cd HD |
1276 | if (pmd_huge(*pmd)) { |
1277 | BUG_ON(flags & FOLL_GET); | |
1278 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | |
1da177e4 | 1279 | goto out; |
deceb6cd | 1280 | } |
aeed5fce HD |
1281 | if (unlikely(pmd_bad(*pmd))) |
1282 | goto no_page_table; | |
1283 | ||
deceb6cd | 1284 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
1285 | |
1286 | pte = *ptep; | |
deceb6cd | 1287 | if (!pte_present(pte)) |
89f5b7da | 1288 | goto no_page; |
deceb6cd HD |
1289 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
1290 | goto unlock; | |
a13ea5b7 | 1291 | |
6aab341e | 1292 | page = vm_normal_page(vma, address, pte); |
a13ea5b7 HD |
1293 | if (unlikely(!page)) { |
1294 | if ((flags & FOLL_DUMP) || | |
62eede62 | 1295 | !is_zero_pfn(pte_pfn(pte))) |
a13ea5b7 HD |
1296 | goto bad_page; |
1297 | page = pte_page(pte); | |
1298 | } | |
1da177e4 | 1299 | |
deceb6cd HD |
1300 | if (flags & FOLL_GET) |
1301 | get_page(page); | |
1302 | if (flags & FOLL_TOUCH) { | |
1303 | if ((flags & FOLL_WRITE) && | |
1304 | !pte_dirty(pte) && !PageDirty(page)) | |
1305 | set_page_dirty(page); | |
bd775c42 KM |
1306 | /* |
1307 | * pte_mkyoung() would be more correct here, but atomic care | |
1308 | * is needed to avoid losing the dirty bit: it is easier to use | |
1309 | * mark_page_accessed(). | |
1310 | */ | |
deceb6cd HD |
1311 | mark_page_accessed(page); |
1312 | } | |
1313 | unlock: | |
1314 | pte_unmap_unlock(ptep, ptl); | |
1da177e4 | 1315 | out: |
deceb6cd | 1316 | return page; |
1da177e4 | 1317 | |
89f5b7da LT |
1318 | bad_page: |
1319 | pte_unmap_unlock(ptep, ptl); | |
1320 | return ERR_PTR(-EFAULT); | |
1321 | ||
1322 | no_page: | |
1323 | pte_unmap_unlock(ptep, ptl); | |
1324 | if (!pte_none(pte)) | |
1325 | return page; | |
8e4b9a60 | 1326 | |
deceb6cd HD |
1327 | no_page_table: |
1328 | /* | |
1329 | * When core dumping an enormous anonymous area that nobody | |
8e4b9a60 HD |
1330 | * has touched so far, we don't want to allocate unnecessary pages or |
1331 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
1332 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
1333 | * But we can only make this optimization where a hole would surely | |
1334 | * be zero-filled if handle_mm_fault() actually did handle it. | |
deceb6cd | 1335 | */ |
8e4b9a60 HD |
1336 | if ((flags & FOLL_DUMP) && |
1337 | (!vma->vm_ops || !vma->vm_ops->fault)) | |
1338 | return ERR_PTR(-EFAULT); | |
deceb6cd | 1339 | return page; |
1da177e4 LT |
1340 | } |
1341 | ||
b291f000 | 1342 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
58fa879e | 1343 | unsigned long start, int nr_pages, unsigned int gup_flags, |
9d73777e | 1344 | struct page **pages, struct vm_area_struct **vmas) |
1da177e4 LT |
1345 | { |
1346 | int i; | |
58fa879e | 1347 | unsigned long vm_flags; |
1da177e4 | 1348 | |
9d73777e | 1349 | if (nr_pages <= 0) |
900cf086 | 1350 | return 0; |
58fa879e HD |
1351 | |
1352 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); | |
1353 | ||
1da177e4 LT |
1354 | /* |
1355 | * Require read or write permissions. | |
58fa879e | 1356 | * If FOLL_FORCE is set, we only require the "MAY" flags. |
1da177e4 | 1357 | */ |
58fa879e HD |
1358 | vm_flags = (gup_flags & FOLL_WRITE) ? |
1359 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
1360 | vm_flags &= (gup_flags & FOLL_FORCE) ? | |
1361 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1da177e4 LT |
1362 | i = 0; |
1363 | ||
1364 | do { | |
deceb6cd | 1365 | struct vm_area_struct *vma; |
1da177e4 LT |
1366 | |
1367 | vma = find_extend_vma(mm, start); | |
1368 | if (!vma && in_gate_area(tsk, start)) { | |
1369 | unsigned long pg = start & PAGE_MASK; | |
1370 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | |
1371 | pgd_t *pgd; | |
1372 | pud_t *pud; | |
1373 | pmd_t *pmd; | |
1374 | pte_t *pte; | |
b291f000 NP |
1375 | |
1376 | /* user gate pages are read-only */ | |
58fa879e | 1377 | if (gup_flags & FOLL_WRITE) |
1da177e4 LT |
1378 | return i ? : -EFAULT; |
1379 | if (pg > TASK_SIZE) | |
1380 | pgd = pgd_offset_k(pg); | |
1381 | else | |
1382 | pgd = pgd_offset_gate(mm, pg); | |
1383 | BUG_ON(pgd_none(*pgd)); | |
1384 | pud = pud_offset(pgd, pg); | |
1385 | BUG_ON(pud_none(*pud)); | |
1386 | pmd = pmd_offset(pud, pg); | |
690dbe1c HD |
1387 | if (pmd_none(*pmd)) |
1388 | return i ? : -EFAULT; | |
1da177e4 | 1389 | pte = pte_offset_map(pmd, pg); |
690dbe1c HD |
1390 | if (pte_none(*pte)) { |
1391 | pte_unmap(pte); | |
1392 | return i ? : -EFAULT; | |
1393 | } | |
1da177e4 | 1394 | if (pages) { |
de51257a HD |
1395 | struct page *page; |
1396 | ||
1397 | page = vm_normal_page(gate_vma, start, *pte); | |
1398 | if (!page) { | |
1399 | if (!(gup_flags & FOLL_DUMP) && | |
1400 | is_zero_pfn(pte_pfn(*pte))) | |
1401 | page = pte_page(*pte); | |
1402 | else { | |
1403 | pte_unmap(pte); | |
1404 | return i ? : -EFAULT; | |
1405 | } | |
1406 | } | |
6aab341e | 1407 | pages[i] = page; |
de51257a | 1408 | get_page(page); |
1da177e4 LT |
1409 | } |
1410 | pte_unmap(pte); | |
1411 | if (vmas) | |
1412 | vmas[i] = gate_vma; | |
1413 | i++; | |
1414 | start += PAGE_SIZE; | |
9d73777e | 1415 | nr_pages--; |
1da177e4 LT |
1416 | continue; |
1417 | } | |
1418 | ||
b291f000 NP |
1419 | if (!vma || |
1420 | (vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1c3aff1c | 1421 | !(vm_flags & vma->vm_flags)) |
1da177e4 LT |
1422 | return i ? : -EFAULT; |
1423 | ||
2a15efc9 HD |
1424 | if (is_vm_hugetlb_page(vma)) { |
1425 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
58fa879e | 1426 | &start, &nr_pages, i, gup_flags); |
2a15efc9 HD |
1427 | continue; |
1428 | } | |
deceb6cd | 1429 | |
1da177e4 | 1430 | do { |
08ef4729 | 1431 | struct page *page; |
58fa879e | 1432 | unsigned int foll_flags = gup_flags; |
1da177e4 | 1433 | |
462e00cc | 1434 | /* |
4779280d | 1435 | * If we have a pending SIGKILL, don't keep faulting |
1c3aff1c | 1436 | * pages and potentially allocating memory. |
462e00cc | 1437 | */ |
1c3aff1c | 1438 | if (unlikely(fatal_signal_pending(current))) |
4779280d | 1439 | return i ? i : -ERESTARTSYS; |
462e00cc | 1440 | |
deceb6cd | 1441 | cond_resched(); |
6aab341e | 1442 | while (!(page = follow_page(vma, start, foll_flags))) { |
deceb6cd | 1443 | int ret; |
d06063cc | 1444 | |
d26ed650 HD |
1445 | ret = handle_mm_fault(mm, vma, start, |
1446 | (foll_flags & FOLL_WRITE) ? | |
1447 | FAULT_FLAG_WRITE : 0); | |
1448 | ||
83c54070 NP |
1449 | if (ret & VM_FAULT_ERROR) { |
1450 | if (ret & VM_FAULT_OOM) | |
1451 | return i ? i : -ENOMEM; | |
d1737fdb AK |
1452 | if (ret & |
1453 | (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS)) | |
83c54070 NP |
1454 | return i ? i : -EFAULT; |
1455 | BUG(); | |
1456 | } | |
1457 | if (ret & VM_FAULT_MAJOR) | |
1458 | tsk->maj_flt++; | |
1459 | else | |
1460 | tsk->min_flt++; | |
1461 | ||
a68d2ebc | 1462 | /* |
83c54070 NP |
1463 | * The VM_FAULT_WRITE bit tells us that |
1464 | * do_wp_page has broken COW when necessary, | |
1465 | * even if maybe_mkwrite decided not to set | |
1466 | * pte_write. We can thus safely do subsequent | |
878b63ac HD |
1467 | * page lookups as if they were reads. But only |
1468 | * do so when looping for pte_write is futile: | |
1469 | * in some cases userspace may also be wanting | |
1470 | * to write to the gotten user page, which a | |
1471 | * read fault here might prevent (a readonly | |
1472 | * page might get reCOWed by userspace write). | |
a68d2ebc | 1473 | */ |
878b63ac HD |
1474 | if ((ret & VM_FAULT_WRITE) && |
1475 | !(vma->vm_flags & VM_WRITE)) | |
deceb6cd | 1476 | foll_flags &= ~FOLL_WRITE; |
83c54070 | 1477 | |
7f7bbbe5 | 1478 | cond_resched(); |
1da177e4 | 1479 | } |
89f5b7da LT |
1480 | if (IS_ERR(page)) |
1481 | return i ? i : PTR_ERR(page); | |
1da177e4 | 1482 | if (pages) { |
08ef4729 | 1483 | pages[i] = page; |
03beb076 | 1484 | |
a6f36be3 | 1485 | flush_anon_page(vma, page, start); |
08ef4729 | 1486 | flush_dcache_page(page); |
1da177e4 LT |
1487 | } |
1488 | if (vmas) | |
1489 | vmas[i] = vma; | |
1490 | i++; | |
1491 | start += PAGE_SIZE; | |
9d73777e PZ |
1492 | nr_pages--; |
1493 | } while (nr_pages && start < vma->vm_end); | |
1494 | } while (nr_pages); | |
1da177e4 LT |
1495 | return i; |
1496 | } | |
b291f000 | 1497 | |
d2bf6be8 NP |
1498 | /** |
1499 | * get_user_pages() - pin user pages in memory | |
1500 | * @tsk: task_struct of target task | |
1501 | * @mm: mm_struct of target mm | |
1502 | * @start: starting user address | |
9d73777e | 1503 | * @nr_pages: number of pages from start to pin |
d2bf6be8 NP |
1504 | * @write: whether pages will be written to by the caller |
1505 | * @force: whether to force write access even if user mapping is | |
1506 | * readonly. This will result in the page being COWed even | |
1507 | * in MAP_SHARED mappings. You do not want this. | |
1508 | * @pages: array that receives pointers to the pages pinned. | |
1509 | * Should be at least nr_pages long. Or NULL, if caller | |
1510 | * only intends to ensure the pages are faulted in. | |
1511 | * @vmas: array of pointers to vmas corresponding to each page. | |
1512 | * Or NULL if the caller does not require them. | |
1513 | * | |
1514 | * Returns number of pages pinned. This may be fewer than the number | |
9d73777e | 1515 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
d2bf6be8 NP |
1516 | * were pinned, returns -errno. Each page returned must be released |
1517 | * with a put_page() call when it is finished with. vmas will only | |
1518 | * remain valid while mmap_sem is held. | |
1519 | * | |
1520 | * Must be called with mmap_sem held for read or write. | |
1521 | * | |
1522 | * get_user_pages walks a process's page tables and takes a reference to | |
1523 | * each struct page that each user address corresponds to at a given | |
1524 | * instant. That is, it takes the page that would be accessed if a user | |
1525 | * thread accesses the given user virtual address at that instant. | |
1526 | * | |
1527 | * This does not guarantee that the page exists in the user mappings when | |
1528 | * get_user_pages returns, and there may even be a completely different | |
1529 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1530 | * and subsequently re faulted). However it does guarantee that the page | |
1531 | * won't be freed completely. And mostly callers simply care that the page | |
1532 | * contains data that was valid *at some point in time*. Typically, an IO | |
1533 | * or similar operation cannot guarantee anything stronger anyway because | |
1534 | * locks can't be held over the syscall boundary. | |
1535 | * | |
1536 | * If write=0, the page must not be written to. If the page is written to, | |
1537 | * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called | |
1538 | * after the page is finished with, and before put_page is called. | |
1539 | * | |
1540 | * get_user_pages is typically used for fewer-copy IO operations, to get a | |
1541 | * handle on the memory by some means other than accesses via the user virtual | |
1542 | * addresses. The pages may be submitted for DMA to devices or accessed via | |
1543 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | |
1544 | * use the correct cache flushing APIs. | |
1545 | * | |
1546 | * See also get_user_pages_fast, for performance critical applications. | |
1547 | */ | |
b291f000 | 1548 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
9d73777e | 1549 | unsigned long start, int nr_pages, int write, int force, |
b291f000 NP |
1550 | struct page **pages, struct vm_area_struct **vmas) |
1551 | { | |
58fa879e | 1552 | int flags = FOLL_TOUCH; |
b291f000 | 1553 | |
58fa879e HD |
1554 | if (pages) |
1555 | flags |= FOLL_GET; | |
b291f000 | 1556 | if (write) |
58fa879e | 1557 | flags |= FOLL_WRITE; |
b291f000 | 1558 | if (force) |
58fa879e | 1559 | flags |= FOLL_FORCE; |
b291f000 | 1560 | |
9d73777e | 1561 | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); |
b291f000 | 1562 | } |
1da177e4 LT |
1563 | EXPORT_SYMBOL(get_user_pages); |
1564 | ||
f3e8fccd HD |
1565 | /** |
1566 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1567 | * @addr: user address | |
1568 | * | |
1569 | * Returns struct page pointer of user page pinned for dump, | |
1570 | * to be freed afterwards by page_cache_release() or put_page(). | |
1571 | * | |
1572 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1573 | * the corefile, to preserve alignment with its headers; and also returns | |
1574 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1575 | * allowing a hole to be left in the corefile to save diskspace. | |
1576 | * | |
1577 | * Called without mmap_sem, but after all other threads have been killed. | |
1578 | */ | |
1579 | #ifdef CONFIG_ELF_CORE | |
1580 | struct page *get_dump_page(unsigned long addr) | |
1581 | { | |
1582 | struct vm_area_struct *vma; | |
1583 | struct page *page; | |
1584 | ||
1585 | if (__get_user_pages(current, current->mm, addr, 1, | |
58fa879e | 1586 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1) |
f3e8fccd | 1587 | return NULL; |
f3e8fccd HD |
1588 | flush_cache_page(vma, addr, page_to_pfn(page)); |
1589 | return page; | |
1590 | } | |
1591 | #endif /* CONFIG_ELF_CORE */ | |
1592 | ||
920c7a5d HH |
1593 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1594 | spinlock_t **ptl) | |
c9cfcddf LT |
1595 | { |
1596 | pgd_t * pgd = pgd_offset(mm, addr); | |
1597 | pud_t * pud = pud_alloc(mm, pgd, addr); | |
1598 | if (pud) { | |
49c91fb0 | 1599 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
c9cfcddf LT |
1600 | if (pmd) |
1601 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
1602 | } | |
1603 | return NULL; | |
1604 | } | |
1605 | ||
238f58d8 LT |
1606 | /* |
1607 | * This is the old fallback for page remapping. | |
1608 | * | |
1609 | * For historical reasons, it only allows reserved pages. Only | |
1610 | * old drivers should use this, and they needed to mark their | |
1611 | * pages reserved for the old functions anyway. | |
1612 | */ | |
423bad60 NP |
1613 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1614 | struct page *page, pgprot_t prot) | |
238f58d8 | 1615 | { |
423bad60 | 1616 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1617 | int retval; |
c9cfcddf | 1618 | pte_t *pte; |
8a9f3ccd BS |
1619 | spinlock_t *ptl; |
1620 | ||
238f58d8 | 1621 | retval = -EINVAL; |
a145dd41 | 1622 | if (PageAnon(page)) |
5b4e655e | 1623 | goto out; |
238f58d8 LT |
1624 | retval = -ENOMEM; |
1625 | flush_dcache_page(page); | |
c9cfcddf | 1626 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1627 | if (!pte) |
5b4e655e | 1628 | goto out; |
238f58d8 LT |
1629 | retval = -EBUSY; |
1630 | if (!pte_none(*pte)) | |
1631 | goto out_unlock; | |
1632 | ||
1633 | /* Ok, finally just insert the thing.. */ | |
1634 | get_page(page); | |
34e55232 | 1635 | inc_mm_counter_fast(mm, MM_FILEPAGES); |
238f58d8 LT |
1636 | page_add_file_rmap(page); |
1637 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1638 | ||
1639 | retval = 0; | |
8a9f3ccd BS |
1640 | pte_unmap_unlock(pte, ptl); |
1641 | return retval; | |
238f58d8 LT |
1642 | out_unlock: |
1643 | pte_unmap_unlock(pte, ptl); | |
1644 | out: | |
1645 | return retval; | |
1646 | } | |
1647 | ||
bfa5bf6d REB |
1648 | /** |
1649 | * vm_insert_page - insert single page into user vma | |
1650 | * @vma: user vma to map to | |
1651 | * @addr: target user address of this page | |
1652 | * @page: source kernel page | |
1653 | * | |
a145dd41 LT |
1654 | * This allows drivers to insert individual pages they've allocated |
1655 | * into a user vma. | |
1656 | * | |
1657 | * The page has to be a nice clean _individual_ kernel allocation. | |
1658 | * If you allocate a compound page, you need to have marked it as | |
1659 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1660 | * (see split_page()). |
a145dd41 LT |
1661 | * |
1662 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1663 | * took an arbitrary page protection parameter. This doesn't allow | |
1664 | * that. Your vma protection will have to be set up correctly, which | |
1665 | * means that if you want a shared writable mapping, you'd better | |
1666 | * ask for a shared writable mapping! | |
1667 | * | |
1668 | * The page does not need to be reserved. | |
1669 | */ | |
423bad60 NP |
1670 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1671 | struct page *page) | |
a145dd41 LT |
1672 | { |
1673 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1674 | return -EFAULT; | |
1675 | if (!page_count(page)) | |
1676 | return -EINVAL; | |
4d7672b4 | 1677 | vma->vm_flags |= VM_INSERTPAGE; |
423bad60 | 1678 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1679 | } |
e3c3374f | 1680 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1681 | |
423bad60 NP |
1682 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1683 | unsigned long pfn, pgprot_t prot) | |
1684 | { | |
1685 | struct mm_struct *mm = vma->vm_mm; | |
1686 | int retval; | |
1687 | pte_t *pte, entry; | |
1688 | spinlock_t *ptl; | |
1689 | ||
1690 | retval = -ENOMEM; | |
1691 | pte = get_locked_pte(mm, addr, &ptl); | |
1692 | if (!pte) | |
1693 | goto out; | |
1694 | retval = -EBUSY; | |
1695 | if (!pte_none(*pte)) | |
1696 | goto out_unlock; | |
1697 | ||
1698 | /* Ok, finally just insert the thing.. */ | |
1699 | entry = pte_mkspecial(pfn_pte(pfn, prot)); | |
1700 | set_pte_at(mm, addr, pte, entry); | |
4b3073e1 | 1701 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ |
423bad60 NP |
1702 | |
1703 | retval = 0; | |
1704 | out_unlock: | |
1705 | pte_unmap_unlock(pte, ptl); | |
1706 | out: | |
1707 | return retval; | |
1708 | } | |
1709 | ||
e0dc0d8f NP |
1710 | /** |
1711 | * vm_insert_pfn - insert single pfn into user vma | |
1712 | * @vma: user vma to map to | |
1713 | * @addr: target user address of this page | |
1714 | * @pfn: source kernel pfn | |
1715 | * | |
1716 | * Similar to vm_inert_page, this allows drivers to insert individual pages | |
1717 | * they've allocated into a user vma. Same comments apply. | |
1718 | * | |
1719 | * This function should only be called from a vm_ops->fault handler, and | |
1720 | * in that case the handler should return NULL. | |
0d71d10a NP |
1721 | * |
1722 | * vma cannot be a COW mapping. | |
1723 | * | |
1724 | * As this is called only for pages that do not currently exist, we | |
1725 | * do not need to flush old virtual caches or the TLB. | |
e0dc0d8f NP |
1726 | */ |
1727 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
423bad60 | 1728 | unsigned long pfn) |
e0dc0d8f | 1729 | { |
2ab64037 | 1730 | int ret; |
e4b866ed | 1731 | pgprot_t pgprot = vma->vm_page_prot; |
7e675137 NP |
1732 | /* |
1733 | * Technically, architectures with pte_special can avoid all these | |
1734 | * restrictions (same for remap_pfn_range). However we would like | |
1735 | * consistency in testing and feature parity among all, so we should | |
1736 | * try to keep these invariants in place for everybody. | |
1737 | */ | |
b379d790 JH |
1738 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
1739 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
1740 | (VM_PFNMAP|VM_MIXEDMAP)); | |
1741 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
1742 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
e0dc0d8f | 1743 | |
423bad60 NP |
1744 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1745 | return -EFAULT; | |
e4b866ed | 1746 | if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) |
2ab64037 | 1747 | return -EINVAL; |
1748 | ||
e4b866ed | 1749 | ret = insert_pfn(vma, addr, pfn, pgprot); |
2ab64037 | 1750 | |
1751 | if (ret) | |
1752 | untrack_pfn_vma(vma, pfn, PAGE_SIZE); | |
1753 | ||
1754 | return ret; | |
423bad60 NP |
1755 | } |
1756 | EXPORT_SYMBOL(vm_insert_pfn); | |
e0dc0d8f | 1757 | |
423bad60 NP |
1758 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
1759 | unsigned long pfn) | |
1760 | { | |
1761 | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | |
e0dc0d8f | 1762 | |
423bad60 NP |
1763 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1764 | return -EFAULT; | |
e0dc0d8f | 1765 | |
423bad60 NP |
1766 | /* |
1767 | * If we don't have pte special, then we have to use the pfn_valid() | |
1768 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
1769 | * refcount the page if pfn_valid is true (hence insert_page rather | |
62eede62 HD |
1770 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
1771 | * without pte special, it would there be refcounted as a normal page. | |
423bad60 NP |
1772 | */ |
1773 | if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { | |
1774 | struct page *page; | |
1775 | ||
1776 | page = pfn_to_page(pfn); | |
1777 | return insert_page(vma, addr, page, vma->vm_page_prot); | |
1778 | } | |
1779 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | |
e0dc0d8f | 1780 | } |
423bad60 | 1781 | EXPORT_SYMBOL(vm_insert_mixed); |
e0dc0d8f | 1782 | |
1da177e4 LT |
1783 | /* |
1784 | * maps a range of physical memory into the requested pages. the old | |
1785 | * mappings are removed. any references to nonexistent pages results | |
1786 | * in null mappings (currently treated as "copy-on-access") | |
1787 | */ | |
1788 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1789 | unsigned long addr, unsigned long end, | |
1790 | unsigned long pfn, pgprot_t prot) | |
1791 | { | |
1792 | pte_t *pte; | |
c74df32c | 1793 | spinlock_t *ptl; |
1da177e4 | 1794 | |
c74df32c | 1795 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1796 | if (!pte) |
1797 | return -ENOMEM; | |
6606c3e0 | 1798 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1799 | do { |
1800 | BUG_ON(!pte_none(*pte)); | |
7e675137 | 1801 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
1802 | pfn++; |
1803 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1804 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1805 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1806 | return 0; |
1807 | } | |
1808 | ||
1809 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1810 | unsigned long addr, unsigned long end, | |
1811 | unsigned long pfn, pgprot_t prot) | |
1812 | { | |
1813 | pmd_t *pmd; | |
1814 | unsigned long next; | |
1815 | ||
1816 | pfn -= addr >> PAGE_SHIFT; | |
1817 | pmd = pmd_alloc(mm, pud, addr); | |
1818 | if (!pmd) | |
1819 | return -ENOMEM; | |
1820 | do { | |
1821 | next = pmd_addr_end(addr, end); | |
1822 | if (remap_pte_range(mm, pmd, addr, next, | |
1823 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1824 | return -ENOMEM; | |
1825 | } while (pmd++, addr = next, addr != end); | |
1826 | return 0; | |
1827 | } | |
1828 | ||
1829 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1830 | unsigned long addr, unsigned long end, | |
1831 | unsigned long pfn, pgprot_t prot) | |
1832 | { | |
1833 | pud_t *pud; | |
1834 | unsigned long next; | |
1835 | ||
1836 | pfn -= addr >> PAGE_SHIFT; | |
1837 | pud = pud_alloc(mm, pgd, addr); | |
1838 | if (!pud) | |
1839 | return -ENOMEM; | |
1840 | do { | |
1841 | next = pud_addr_end(addr, end); | |
1842 | if (remap_pmd_range(mm, pud, addr, next, | |
1843 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1844 | return -ENOMEM; | |
1845 | } while (pud++, addr = next, addr != end); | |
1846 | return 0; | |
1847 | } | |
1848 | ||
bfa5bf6d REB |
1849 | /** |
1850 | * remap_pfn_range - remap kernel memory to userspace | |
1851 | * @vma: user vma to map to | |
1852 | * @addr: target user address to start at | |
1853 | * @pfn: physical address of kernel memory | |
1854 | * @size: size of map area | |
1855 | * @prot: page protection flags for this mapping | |
1856 | * | |
1857 | * Note: this is only safe if the mm semaphore is held when called. | |
1858 | */ | |
1da177e4 LT |
1859 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1860 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1861 | { | |
1862 | pgd_t *pgd; | |
1863 | unsigned long next; | |
2d15cab8 | 1864 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
1865 | struct mm_struct *mm = vma->vm_mm; |
1866 | int err; | |
1867 | ||
1868 | /* | |
1869 | * Physically remapped pages are special. Tell the | |
1870 | * rest of the world about it: | |
1871 | * VM_IO tells people not to look at these pages | |
1872 | * (accesses can have side effects). | |
0b14c179 HD |
1873 | * VM_RESERVED is specified all over the place, because |
1874 | * in 2.4 it kept swapout's vma scan off this vma; but | |
1875 | * in 2.6 the LRU scan won't even find its pages, so this | |
1876 | * flag means no more than count its pages in reserved_vm, | |
1877 | * and omit it from core dump, even when VM_IO turned off. | |
6aab341e LT |
1878 | * VM_PFNMAP tells the core MM that the base pages are just |
1879 | * raw PFN mappings, and do not have a "struct page" associated | |
1880 | * with them. | |
fb155c16 LT |
1881 | * |
1882 | * There's a horrible special case to handle copy-on-write | |
1883 | * behaviour that some programs depend on. We mark the "original" | |
1884 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
1da177e4 | 1885 | */ |
4bb9c5c0 | 1886 | if (addr == vma->vm_start && end == vma->vm_end) { |
fb155c16 | 1887 | vma->vm_pgoff = pfn; |
895791da | 1888 | vma->vm_flags |= VM_PFN_AT_MMAP; |
4bb9c5c0 | 1889 | } else if (is_cow_mapping(vma->vm_flags)) |
3c8bb73a | 1890 | return -EINVAL; |
fb155c16 | 1891 | |
6aab341e | 1892 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
1da177e4 | 1893 | |
e4b866ed | 1894 | err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); |
a3670613 | 1895 | if (err) { |
1896 | /* | |
1897 | * To indicate that track_pfn related cleanup is not | |
1898 | * needed from higher level routine calling unmap_vmas | |
1899 | */ | |
1900 | vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); | |
895791da | 1901 | vma->vm_flags &= ~VM_PFN_AT_MMAP; |
2ab64037 | 1902 | return -EINVAL; |
a3670613 | 1903 | } |
2ab64037 | 1904 | |
1da177e4 LT |
1905 | BUG_ON(addr >= end); |
1906 | pfn -= addr >> PAGE_SHIFT; | |
1907 | pgd = pgd_offset(mm, addr); | |
1908 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1909 | do { |
1910 | next = pgd_addr_end(addr, end); | |
1911 | err = remap_pud_range(mm, pgd, addr, next, | |
1912 | pfn + (addr >> PAGE_SHIFT), prot); | |
1913 | if (err) | |
1914 | break; | |
1915 | } while (pgd++, addr = next, addr != end); | |
2ab64037 | 1916 | |
1917 | if (err) | |
1918 | untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); | |
1919 | ||
1da177e4 LT |
1920 | return err; |
1921 | } | |
1922 | EXPORT_SYMBOL(remap_pfn_range); | |
1923 | ||
aee16b3c JF |
1924 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1925 | unsigned long addr, unsigned long end, | |
1926 | pte_fn_t fn, void *data) | |
1927 | { | |
1928 | pte_t *pte; | |
1929 | int err; | |
2f569afd | 1930 | pgtable_t token; |
94909914 | 1931 | spinlock_t *uninitialized_var(ptl); |
aee16b3c JF |
1932 | |
1933 | pte = (mm == &init_mm) ? | |
1934 | pte_alloc_kernel(pmd, addr) : | |
1935 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
1936 | if (!pte) | |
1937 | return -ENOMEM; | |
1938 | ||
1939 | BUG_ON(pmd_huge(*pmd)); | |
1940 | ||
38e0edb1 JF |
1941 | arch_enter_lazy_mmu_mode(); |
1942 | ||
2f569afd | 1943 | token = pmd_pgtable(*pmd); |
aee16b3c JF |
1944 | |
1945 | do { | |
c36987e2 | 1946 | err = fn(pte++, token, addr, data); |
aee16b3c JF |
1947 | if (err) |
1948 | break; | |
c36987e2 | 1949 | } while (addr += PAGE_SIZE, addr != end); |
aee16b3c | 1950 | |
38e0edb1 JF |
1951 | arch_leave_lazy_mmu_mode(); |
1952 | ||
aee16b3c JF |
1953 | if (mm != &init_mm) |
1954 | pte_unmap_unlock(pte-1, ptl); | |
1955 | return err; | |
1956 | } | |
1957 | ||
1958 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1959 | unsigned long addr, unsigned long end, | |
1960 | pte_fn_t fn, void *data) | |
1961 | { | |
1962 | pmd_t *pmd; | |
1963 | unsigned long next; | |
1964 | int err; | |
1965 | ||
ceb86879 AK |
1966 | BUG_ON(pud_huge(*pud)); |
1967 | ||
aee16b3c JF |
1968 | pmd = pmd_alloc(mm, pud, addr); |
1969 | if (!pmd) | |
1970 | return -ENOMEM; | |
1971 | do { | |
1972 | next = pmd_addr_end(addr, end); | |
1973 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | |
1974 | if (err) | |
1975 | break; | |
1976 | } while (pmd++, addr = next, addr != end); | |
1977 | return err; | |
1978 | } | |
1979 | ||
1980 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1981 | unsigned long addr, unsigned long end, | |
1982 | pte_fn_t fn, void *data) | |
1983 | { | |
1984 | pud_t *pud; | |
1985 | unsigned long next; | |
1986 | int err; | |
1987 | ||
1988 | pud = pud_alloc(mm, pgd, addr); | |
1989 | if (!pud) | |
1990 | return -ENOMEM; | |
1991 | do { | |
1992 | next = pud_addr_end(addr, end); | |
1993 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | |
1994 | if (err) | |
1995 | break; | |
1996 | } while (pud++, addr = next, addr != end); | |
1997 | return err; | |
1998 | } | |
1999 | ||
2000 | /* | |
2001 | * Scan a region of virtual memory, filling in page tables as necessary | |
2002 | * and calling a provided function on each leaf page table. | |
2003 | */ | |
2004 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
2005 | unsigned long size, pte_fn_t fn, void *data) | |
2006 | { | |
2007 | pgd_t *pgd; | |
2008 | unsigned long next; | |
57250a5b | 2009 | unsigned long end = addr + size; |
aee16b3c JF |
2010 | int err; |
2011 | ||
2012 | BUG_ON(addr >= end); | |
2013 | pgd = pgd_offset(mm, addr); | |
2014 | do { | |
2015 | next = pgd_addr_end(addr, end); | |
2016 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | |
2017 | if (err) | |
2018 | break; | |
2019 | } while (pgd++, addr = next, addr != end); | |
57250a5b | 2020 | |
aee16b3c JF |
2021 | return err; |
2022 | } | |
2023 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
2024 | ||
8f4e2101 HD |
2025 | /* |
2026 | * handle_pte_fault chooses page fault handler according to an entry | |
2027 | * which was read non-atomically. Before making any commitment, on | |
2028 | * those architectures or configurations (e.g. i386 with PAE) which | |
2029 | * might give a mix of unmatched parts, do_swap_page and do_file_page | |
2030 | * must check under lock before unmapping the pte and proceeding | |
2031 | * (but do_wp_page is only called after already making such a check; | |
2032 | * and do_anonymous_page and do_no_page can safely check later on). | |
2033 | */ | |
4c21e2f2 | 2034 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
2035 | pte_t *page_table, pte_t orig_pte) |
2036 | { | |
2037 | int same = 1; | |
2038 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
2039 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
2040 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
2041 | spin_lock(ptl); | |
8f4e2101 | 2042 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 2043 | spin_unlock(ptl); |
8f4e2101 HD |
2044 | } |
2045 | #endif | |
2046 | pte_unmap(page_table); | |
2047 | return same; | |
2048 | } | |
2049 | ||
1da177e4 LT |
2050 | /* |
2051 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | |
2052 | * servicing faults for write access. In the normal case, do always want | |
2053 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | |
2054 | * that do not have writing enabled, when used by access_process_vm. | |
2055 | */ | |
2056 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |
2057 | { | |
2058 | if (likely(vma->vm_flags & VM_WRITE)) | |
2059 | pte = pte_mkwrite(pte); | |
2060 | return pte; | |
2061 | } | |
2062 | ||
9de455b2 | 2063 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e LT |
2064 | { |
2065 | /* | |
2066 | * If the source page was a PFN mapping, we don't have | |
2067 | * a "struct page" for it. We do a best-effort copy by | |
2068 | * just copying from the original user address. If that | |
2069 | * fails, we just zero-fill it. Live with it. | |
2070 | */ | |
2071 | if (unlikely(!src)) { | |
2072 | void *kaddr = kmap_atomic(dst, KM_USER0); | |
5d2a2dbb LT |
2073 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
2074 | ||
2075 | /* | |
2076 | * This really shouldn't fail, because the page is there | |
2077 | * in the page tables. But it might just be unreadable, | |
2078 | * in which case we just give up and fill the result with | |
2079 | * zeroes. | |
2080 | */ | |
2081 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
6aab341e LT |
2082 | memset(kaddr, 0, PAGE_SIZE); |
2083 | kunmap_atomic(kaddr, KM_USER0); | |
c4ec7b0d | 2084 | flush_dcache_page(dst); |
0ed361de NP |
2085 | } else |
2086 | copy_user_highpage(dst, src, va, vma); | |
6aab341e LT |
2087 | } |
2088 | ||
1da177e4 LT |
2089 | /* |
2090 | * This routine handles present pages, when users try to write | |
2091 | * to a shared page. It is done by copying the page to a new address | |
2092 | * and decrementing the shared-page counter for the old page. | |
2093 | * | |
1da177e4 LT |
2094 | * Note that this routine assumes that the protection checks have been |
2095 | * done by the caller (the low-level page fault routine in most cases). | |
2096 | * Thus we can safely just mark it writable once we've done any necessary | |
2097 | * COW. | |
2098 | * | |
2099 | * We also mark the page dirty at this point even though the page will | |
2100 | * change only once the write actually happens. This avoids a few races, | |
2101 | * and potentially makes it more efficient. | |
2102 | * | |
8f4e2101 HD |
2103 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2104 | * but allow concurrent faults), with pte both mapped and locked. | |
2105 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2106 | */ |
65500d23 HD |
2107 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2108 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
8f4e2101 | 2109 | spinlock_t *ptl, pte_t orig_pte) |
1da177e4 | 2110 | { |
e5bbe4df | 2111 | struct page *old_page, *new_page; |
1da177e4 | 2112 | pte_t entry; |
83c54070 | 2113 | int reuse = 0, ret = 0; |
a200ee18 | 2114 | int page_mkwrite = 0; |
d08b3851 | 2115 | struct page *dirty_page = NULL; |
1da177e4 | 2116 | |
6aab341e | 2117 | old_page = vm_normal_page(vma, address, orig_pte); |
251b97f5 PZ |
2118 | if (!old_page) { |
2119 | /* | |
2120 | * VM_MIXEDMAP !pfn_valid() case | |
2121 | * | |
2122 | * We should not cow pages in a shared writeable mapping. | |
2123 | * Just mark the pages writable as we can't do any dirty | |
2124 | * accounting on raw pfn maps. | |
2125 | */ | |
2126 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
2127 | (VM_WRITE|VM_SHARED)) | |
2128 | goto reuse; | |
6aab341e | 2129 | goto gotten; |
251b97f5 | 2130 | } |
1da177e4 | 2131 | |
d08b3851 | 2132 | /* |
ee6a6457 PZ |
2133 | * Take out anonymous pages first, anonymous shared vmas are |
2134 | * not dirty accountable. | |
d08b3851 | 2135 | */ |
9a840895 | 2136 | if (PageAnon(old_page) && !PageKsm(old_page)) { |
ab967d86 HD |
2137 | if (!trylock_page(old_page)) { |
2138 | page_cache_get(old_page); | |
2139 | pte_unmap_unlock(page_table, ptl); | |
2140 | lock_page(old_page); | |
2141 | page_table = pte_offset_map_lock(mm, pmd, address, | |
2142 | &ptl); | |
2143 | if (!pte_same(*page_table, orig_pte)) { | |
2144 | unlock_page(old_page); | |
2145 | page_cache_release(old_page); | |
2146 | goto unlock; | |
2147 | } | |
2148 | page_cache_release(old_page); | |
ee6a6457 | 2149 | } |
7b1fe597 | 2150 | reuse = reuse_swap_page(old_page); |
c44b6743 RR |
2151 | if (reuse) |
2152 | /* | |
2153 | * The page is all ours. Move it to our anon_vma so | |
2154 | * the rmap code will not search our parent or siblings. | |
2155 | * Protected against the rmap code by the page lock. | |
2156 | */ | |
2157 | page_move_anon_rmap(old_page, vma, address); | |
ab967d86 | 2158 | unlock_page(old_page); |
ee6a6457 | 2159 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
d08b3851 | 2160 | (VM_WRITE|VM_SHARED))) { |
ee6a6457 PZ |
2161 | /* |
2162 | * Only catch write-faults on shared writable pages, | |
2163 | * read-only shared pages can get COWed by | |
2164 | * get_user_pages(.write=1, .force=1). | |
2165 | */ | |
9637a5ef | 2166 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
c2ec175c NP |
2167 | struct vm_fault vmf; |
2168 | int tmp; | |
2169 | ||
2170 | vmf.virtual_address = (void __user *)(address & | |
2171 | PAGE_MASK); | |
2172 | vmf.pgoff = old_page->index; | |
2173 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | |
2174 | vmf.page = old_page; | |
2175 | ||
9637a5ef DH |
2176 | /* |
2177 | * Notify the address space that the page is about to | |
2178 | * become writable so that it can prohibit this or wait | |
2179 | * for the page to get into an appropriate state. | |
2180 | * | |
2181 | * We do this without the lock held, so that it can | |
2182 | * sleep if it needs to. | |
2183 | */ | |
2184 | page_cache_get(old_page); | |
2185 | pte_unmap_unlock(page_table, ptl); | |
2186 | ||
c2ec175c NP |
2187 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); |
2188 | if (unlikely(tmp & | |
2189 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | |
2190 | ret = tmp; | |
9637a5ef | 2191 | goto unwritable_page; |
c2ec175c | 2192 | } |
b827e496 NP |
2193 | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { |
2194 | lock_page(old_page); | |
2195 | if (!old_page->mapping) { | |
2196 | ret = 0; /* retry the fault */ | |
2197 | unlock_page(old_page); | |
2198 | goto unwritable_page; | |
2199 | } | |
2200 | } else | |
2201 | VM_BUG_ON(!PageLocked(old_page)); | |
9637a5ef | 2202 | |
9637a5ef DH |
2203 | /* |
2204 | * Since we dropped the lock we need to revalidate | |
2205 | * the PTE as someone else may have changed it. If | |
2206 | * they did, we just return, as we can count on the | |
2207 | * MMU to tell us if they didn't also make it writable. | |
2208 | */ | |
2209 | page_table = pte_offset_map_lock(mm, pmd, address, | |
2210 | &ptl); | |
b827e496 NP |
2211 | if (!pte_same(*page_table, orig_pte)) { |
2212 | unlock_page(old_page); | |
2213 | page_cache_release(old_page); | |
9637a5ef | 2214 | goto unlock; |
b827e496 | 2215 | } |
a200ee18 PZ |
2216 | |
2217 | page_mkwrite = 1; | |
1da177e4 | 2218 | } |
d08b3851 PZ |
2219 | dirty_page = old_page; |
2220 | get_page(dirty_page); | |
9637a5ef | 2221 | reuse = 1; |
9637a5ef DH |
2222 | } |
2223 | ||
2224 | if (reuse) { | |
251b97f5 | 2225 | reuse: |
9637a5ef DH |
2226 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
2227 | entry = pte_mkyoung(orig_pte); | |
2228 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
954ffcb3 | 2229 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) |
4b3073e1 | 2230 | update_mmu_cache(vma, address, page_table); |
9637a5ef DH |
2231 | ret |= VM_FAULT_WRITE; |
2232 | goto unlock; | |
1da177e4 | 2233 | } |
1da177e4 LT |
2234 | |
2235 | /* | |
2236 | * Ok, we need to copy. Oh, well.. | |
2237 | */ | |
b5810039 | 2238 | page_cache_get(old_page); |
920fc356 | 2239 | gotten: |
8f4e2101 | 2240 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2241 | |
2242 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 | 2243 | goto oom; |
a13ea5b7 | 2244 | |
62eede62 | 2245 | if (is_zero_pfn(pte_pfn(orig_pte))) { |
a13ea5b7 HD |
2246 | new_page = alloc_zeroed_user_highpage_movable(vma, address); |
2247 | if (!new_page) | |
2248 | goto oom; | |
2249 | } else { | |
2250 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
2251 | if (!new_page) | |
2252 | goto oom; | |
2253 | cow_user_page(new_page, old_page, address, vma); | |
2254 | } | |
2255 | __SetPageUptodate(new_page); | |
2256 | ||
b291f000 NP |
2257 | /* |
2258 | * Don't let another task, with possibly unlocked vma, | |
2259 | * keep the mlocked page. | |
2260 | */ | |
ab92661d | 2261 | if ((vma->vm_flags & VM_LOCKED) && old_page) { |
b291f000 NP |
2262 | lock_page(old_page); /* for LRU manipulation */ |
2263 | clear_page_mlock(old_page); | |
2264 | unlock_page(old_page); | |
2265 | } | |
65500d23 | 2266 | |
2c26fdd7 | 2267 | if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
2268 | goto oom_free_new; |
2269 | ||
1da177e4 LT |
2270 | /* |
2271 | * Re-check the pte - we dropped the lock | |
2272 | */ | |
8f4e2101 | 2273 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
65500d23 | 2274 | if (likely(pte_same(*page_table, orig_pte))) { |
920fc356 | 2275 | if (old_page) { |
920fc356 | 2276 | if (!PageAnon(old_page)) { |
34e55232 KH |
2277 | dec_mm_counter_fast(mm, MM_FILEPAGES); |
2278 | inc_mm_counter_fast(mm, MM_ANONPAGES); | |
920fc356 HD |
2279 | } |
2280 | } else | |
34e55232 | 2281 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
eca35133 | 2282 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
65500d23 HD |
2283 | entry = mk_pte(new_page, vma->vm_page_prot); |
2284 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
4ce072f1 SS |
2285 | /* |
2286 | * Clear the pte entry and flush it first, before updating the | |
2287 | * pte with the new entry. This will avoid a race condition | |
2288 | * seen in the presence of one thread doing SMC and another | |
2289 | * thread doing COW. | |
2290 | */ | |
828502d3 | 2291 | ptep_clear_flush(vma, address, page_table); |
9617d95e | 2292 | page_add_new_anon_rmap(new_page, vma, address); |
828502d3 IE |
2293 | /* |
2294 | * We call the notify macro here because, when using secondary | |
2295 | * mmu page tables (such as kvm shadow page tables), we want the | |
2296 | * new page to be mapped directly into the secondary page table. | |
2297 | */ | |
2298 | set_pte_at_notify(mm, address, page_table, entry); | |
4b3073e1 | 2299 | update_mmu_cache(vma, address, page_table); |
945754a1 NP |
2300 | if (old_page) { |
2301 | /* | |
2302 | * Only after switching the pte to the new page may | |
2303 | * we remove the mapcount here. Otherwise another | |
2304 | * process may come and find the rmap count decremented | |
2305 | * before the pte is switched to the new page, and | |
2306 | * "reuse" the old page writing into it while our pte | |
2307 | * here still points into it and can be read by other | |
2308 | * threads. | |
2309 | * | |
2310 | * The critical issue is to order this | |
2311 | * page_remove_rmap with the ptp_clear_flush above. | |
2312 | * Those stores are ordered by (if nothing else,) | |
2313 | * the barrier present in the atomic_add_negative | |
2314 | * in page_remove_rmap. | |
2315 | * | |
2316 | * Then the TLB flush in ptep_clear_flush ensures that | |
2317 | * no process can access the old page before the | |
2318 | * decremented mapcount is visible. And the old page | |
2319 | * cannot be reused until after the decremented | |
2320 | * mapcount is visible. So transitively, TLBs to | |
2321 | * old page will be flushed before it can be reused. | |
2322 | */ | |
edc315fd | 2323 | page_remove_rmap(old_page); |
945754a1 NP |
2324 | } |
2325 | ||
1da177e4 LT |
2326 | /* Free the old page.. */ |
2327 | new_page = old_page; | |
f33ea7f4 | 2328 | ret |= VM_FAULT_WRITE; |
8a9f3ccd BS |
2329 | } else |
2330 | mem_cgroup_uncharge_page(new_page); | |
2331 | ||
920fc356 HD |
2332 | if (new_page) |
2333 | page_cache_release(new_page); | |
2334 | if (old_page) | |
2335 | page_cache_release(old_page); | |
65500d23 | 2336 | unlock: |
8f4e2101 | 2337 | pte_unmap_unlock(page_table, ptl); |
d08b3851 | 2338 | if (dirty_page) { |
79352894 NP |
2339 | /* |
2340 | * Yes, Virginia, this is actually required to prevent a race | |
2341 | * with clear_page_dirty_for_io() from clearing the page dirty | |
2342 | * bit after it clear all dirty ptes, but before a racing | |
2343 | * do_wp_page installs a dirty pte. | |
2344 | * | |
2345 | * do_no_page is protected similarly. | |
2346 | */ | |
b827e496 NP |
2347 | if (!page_mkwrite) { |
2348 | wait_on_page_locked(dirty_page); | |
2349 | set_page_dirty_balance(dirty_page, page_mkwrite); | |
2350 | } | |
d08b3851 | 2351 | put_page(dirty_page); |
b827e496 NP |
2352 | if (page_mkwrite) { |
2353 | struct address_space *mapping = dirty_page->mapping; | |
2354 | ||
2355 | set_page_dirty(dirty_page); | |
2356 | unlock_page(dirty_page); | |
2357 | page_cache_release(dirty_page); | |
2358 | if (mapping) { | |
2359 | /* | |
2360 | * Some device drivers do not set page.mapping | |
2361 | * but still dirty their pages | |
2362 | */ | |
2363 | balance_dirty_pages_ratelimited(mapping); | |
2364 | } | |
2365 | } | |
2366 | ||
2367 | /* file_update_time outside page_lock */ | |
2368 | if (vma->vm_file) | |
2369 | file_update_time(vma->vm_file); | |
d08b3851 | 2370 | } |
f33ea7f4 | 2371 | return ret; |
8a9f3ccd | 2372 | oom_free_new: |
6dbf6d3b | 2373 | page_cache_release(new_page); |
65500d23 | 2374 | oom: |
b827e496 NP |
2375 | if (old_page) { |
2376 | if (page_mkwrite) { | |
2377 | unlock_page(old_page); | |
2378 | page_cache_release(old_page); | |
2379 | } | |
920fc356 | 2380 | page_cache_release(old_page); |
b827e496 | 2381 | } |
1da177e4 | 2382 | return VM_FAULT_OOM; |
9637a5ef DH |
2383 | |
2384 | unwritable_page: | |
2385 | page_cache_release(old_page); | |
c2ec175c | 2386 | return ret; |
1da177e4 LT |
2387 | } |
2388 | ||
2389 | /* | |
2390 | * Helper functions for unmap_mapping_range(). | |
2391 | * | |
2392 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | |
2393 | * | |
2394 | * We have to restart searching the prio_tree whenever we drop the lock, | |
2395 | * since the iterator is only valid while the lock is held, and anyway | |
2396 | * a later vma might be split and reinserted earlier while lock dropped. | |
2397 | * | |
2398 | * The list of nonlinear vmas could be handled more efficiently, using | |
2399 | * a placeholder, but handle it in the same way until a need is shown. | |
2400 | * It is important to search the prio_tree before nonlinear list: a vma | |
2401 | * may become nonlinear and be shifted from prio_tree to nonlinear list | |
2402 | * while the lock is dropped; but never shifted from list to prio_tree. | |
2403 | * | |
2404 | * In order to make forward progress despite restarting the search, | |
2405 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | |
2406 | * quickly skip it next time around. Since the prio_tree search only | |
2407 | * shows us those vmas affected by unmapping the range in question, we | |
2408 | * can't efficiently keep all vmas in step with mapping->truncate_count: | |
2409 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | |
2410 | * mapping->truncate_count and vma->vm_truncate_count are protected by | |
2411 | * i_mmap_lock. | |
2412 | * | |
2413 | * In order to make forward progress despite repeatedly restarting some | |
ee39b37b | 2414 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1da177e4 LT |
2415 | * and restart from that address when we reach that vma again. It might |
2416 | * have been split or merged, shrunk or extended, but never shifted: so | |
2417 | * restart_addr remains valid so long as it remains in the vma's range. | |
2418 | * unmap_mapping_range forces truncate_count to leap over page-aligned | |
2419 | * values so we can save vma's restart_addr in its truncate_count field. | |
2420 | */ | |
2421 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | |
2422 | ||
2423 | static void reset_vma_truncate_counts(struct address_space *mapping) | |
2424 | { | |
2425 | struct vm_area_struct *vma; | |
2426 | struct prio_tree_iter iter; | |
2427 | ||
2428 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | |
2429 | vma->vm_truncate_count = 0; | |
2430 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
2431 | vma->vm_truncate_count = 0; | |
2432 | } | |
2433 | ||
2434 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | |
2435 | unsigned long start_addr, unsigned long end_addr, | |
2436 | struct zap_details *details) | |
2437 | { | |
2438 | unsigned long restart_addr; | |
2439 | int need_break; | |
2440 | ||
d00806b1 NP |
2441 | /* |
2442 | * files that support invalidating or truncating portions of the | |
d0217ac0 | 2443 | * file from under mmaped areas must have their ->fault function |
83c54070 NP |
2444 | * return a locked page (and set VM_FAULT_LOCKED in the return). |
2445 | * This provides synchronisation against concurrent unmapping here. | |
d00806b1 | 2446 | */ |
d00806b1 | 2447 | |
1da177e4 LT |
2448 | again: |
2449 | restart_addr = vma->vm_truncate_count; | |
2450 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | |
2451 | start_addr = restart_addr; | |
2452 | if (start_addr >= end_addr) { | |
2453 | /* Top of vma has been split off since last time */ | |
2454 | vma->vm_truncate_count = details->truncate_count; | |
2455 | return 0; | |
2456 | } | |
2457 | } | |
2458 | ||
ee39b37b HD |
2459 | restart_addr = zap_page_range(vma, start_addr, |
2460 | end_addr - start_addr, details); | |
95c354fe | 2461 | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); |
1da177e4 | 2462 | |
ee39b37b | 2463 | if (restart_addr >= end_addr) { |
1da177e4 LT |
2464 | /* We have now completed this vma: mark it so */ |
2465 | vma->vm_truncate_count = details->truncate_count; | |
2466 | if (!need_break) | |
2467 | return 0; | |
2468 | } else { | |
2469 | /* Note restart_addr in vma's truncate_count field */ | |
ee39b37b | 2470 | vma->vm_truncate_count = restart_addr; |
1da177e4 LT |
2471 | if (!need_break) |
2472 | goto again; | |
2473 | } | |
2474 | ||
2475 | spin_unlock(details->i_mmap_lock); | |
2476 | cond_resched(); | |
2477 | spin_lock(details->i_mmap_lock); | |
2478 | return -EINTR; | |
2479 | } | |
2480 | ||
2481 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | |
2482 | struct zap_details *details) | |
2483 | { | |
2484 | struct vm_area_struct *vma; | |
2485 | struct prio_tree_iter iter; | |
2486 | pgoff_t vba, vea, zba, zea; | |
2487 | ||
2488 | restart: | |
2489 | vma_prio_tree_foreach(vma, &iter, root, | |
2490 | details->first_index, details->last_index) { | |
2491 | /* Skip quickly over those we have already dealt with */ | |
2492 | if (vma->vm_truncate_count == details->truncate_count) | |
2493 | continue; | |
2494 | ||
2495 | vba = vma->vm_pgoff; | |
2496 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | |
2497 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | |
2498 | zba = details->first_index; | |
2499 | if (zba < vba) | |
2500 | zba = vba; | |
2501 | zea = details->last_index; | |
2502 | if (zea > vea) | |
2503 | zea = vea; | |
2504 | ||
2505 | if (unmap_mapping_range_vma(vma, | |
2506 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
2507 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
2508 | details) < 0) | |
2509 | goto restart; | |
2510 | } | |
2511 | } | |
2512 | ||
2513 | static inline void unmap_mapping_range_list(struct list_head *head, | |
2514 | struct zap_details *details) | |
2515 | { | |
2516 | struct vm_area_struct *vma; | |
2517 | ||
2518 | /* | |
2519 | * In nonlinear VMAs there is no correspondence between virtual address | |
2520 | * offset and file offset. So we must perform an exhaustive search | |
2521 | * across *all* the pages in each nonlinear VMA, not just the pages | |
2522 | * whose virtual address lies outside the file truncation point. | |
2523 | */ | |
2524 | restart: | |
2525 | list_for_each_entry(vma, head, shared.vm_set.list) { | |
2526 | /* Skip quickly over those we have already dealt with */ | |
2527 | if (vma->vm_truncate_count == details->truncate_count) | |
2528 | continue; | |
2529 | details->nonlinear_vma = vma; | |
2530 | if (unmap_mapping_range_vma(vma, vma->vm_start, | |
2531 | vma->vm_end, details) < 0) | |
2532 | goto restart; | |
2533 | } | |
2534 | } | |
2535 | ||
2536 | /** | |
72fd4a35 | 2537 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. |
3d41088f | 2538 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
2539 | * @holebegin: byte in first page to unmap, relative to the start of |
2540 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
25d9e2d1 | 2541 | * boundary. Note that this is different from truncate_pagecache(), which |
1da177e4 LT |
2542 | * must keep the partial page. In contrast, we must get rid of |
2543 | * partial pages. | |
2544 | * @holelen: size of prospective hole in bytes. This will be rounded | |
2545 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
2546 | * end of the file. | |
2547 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
2548 | * but 0 when invalidating pagecache, don't throw away private data. | |
2549 | */ | |
2550 | void unmap_mapping_range(struct address_space *mapping, | |
2551 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
2552 | { | |
2553 | struct zap_details details; | |
2554 | pgoff_t hba = holebegin >> PAGE_SHIFT; | |
2555 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2556 | ||
2557 | /* Check for overflow. */ | |
2558 | if (sizeof(holelen) > sizeof(hlen)) { | |
2559 | long long holeend = | |
2560 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2561 | if (holeend & ~(long long)ULONG_MAX) | |
2562 | hlen = ULONG_MAX - hba + 1; | |
2563 | } | |
2564 | ||
2565 | details.check_mapping = even_cows? NULL: mapping; | |
2566 | details.nonlinear_vma = NULL; | |
2567 | details.first_index = hba; | |
2568 | details.last_index = hba + hlen - 1; | |
2569 | if (details.last_index < details.first_index) | |
2570 | details.last_index = ULONG_MAX; | |
2571 | details.i_mmap_lock = &mapping->i_mmap_lock; | |
2572 | ||
2573 | spin_lock(&mapping->i_mmap_lock); | |
2574 | ||
d00806b1 | 2575 | /* Protect against endless unmapping loops */ |
1da177e4 | 2576 | mapping->truncate_count++; |
1da177e4 LT |
2577 | if (unlikely(is_restart_addr(mapping->truncate_count))) { |
2578 | if (mapping->truncate_count == 0) | |
2579 | reset_vma_truncate_counts(mapping); | |
2580 | mapping->truncate_count++; | |
2581 | } | |
2582 | details.truncate_count = mapping->truncate_count; | |
2583 | ||
2584 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | |
2585 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
2586 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | |
2587 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | |
2588 | spin_unlock(&mapping->i_mmap_lock); | |
2589 | } | |
2590 | EXPORT_SYMBOL(unmap_mapping_range); | |
2591 | ||
f6b3ec23 BP |
2592 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) |
2593 | { | |
2594 | struct address_space *mapping = inode->i_mapping; | |
2595 | ||
2596 | /* | |
2597 | * If the underlying filesystem is not going to provide | |
2598 | * a way to truncate a range of blocks (punch a hole) - | |
2599 | * we should return failure right now. | |
2600 | */ | |
acfa4380 | 2601 | if (!inode->i_op->truncate_range) |
f6b3ec23 BP |
2602 | return -ENOSYS; |
2603 | ||
1b1dcc1b | 2604 | mutex_lock(&inode->i_mutex); |
f6b3ec23 BP |
2605 | down_write(&inode->i_alloc_sem); |
2606 | unmap_mapping_range(mapping, offset, (end - offset), 1); | |
2607 | truncate_inode_pages_range(mapping, offset, end); | |
d00806b1 | 2608 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
f6b3ec23 BP |
2609 | inode->i_op->truncate_range(inode, offset, end); |
2610 | up_write(&inode->i_alloc_sem); | |
1b1dcc1b | 2611 | mutex_unlock(&inode->i_mutex); |
f6b3ec23 BP |
2612 | |
2613 | return 0; | |
2614 | } | |
f6b3ec23 | 2615 | |
1da177e4 | 2616 | /* |
8f4e2101 HD |
2617 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2618 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2619 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2620 | */ |
65500d23 HD |
2621 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2622 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 2623 | unsigned int flags, pte_t orig_pte) |
1da177e4 | 2624 | { |
8f4e2101 | 2625 | spinlock_t *ptl; |
1da177e4 | 2626 | struct page *page; |
65500d23 | 2627 | swp_entry_t entry; |
1da177e4 | 2628 | pte_t pte; |
7a81b88c | 2629 | struct mem_cgroup *ptr = NULL; |
ad8c2ee8 | 2630 | int exclusive = 0; |
83c54070 | 2631 | int ret = 0; |
1da177e4 | 2632 | |
4c21e2f2 | 2633 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2634 | goto out; |
65500d23 HD |
2635 | |
2636 | entry = pte_to_swp_entry(orig_pte); | |
d1737fdb AK |
2637 | if (unlikely(non_swap_entry(entry))) { |
2638 | if (is_migration_entry(entry)) { | |
2639 | migration_entry_wait(mm, pmd, address); | |
2640 | } else if (is_hwpoison_entry(entry)) { | |
2641 | ret = VM_FAULT_HWPOISON; | |
2642 | } else { | |
2643 | print_bad_pte(vma, address, orig_pte, NULL); | |
d99be1a8 | 2644 | ret = VM_FAULT_SIGBUS; |
d1737fdb | 2645 | } |
0697212a CL |
2646 | goto out; |
2647 | } | |
0ff92245 | 2648 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2649 | page = lookup_swap_cache(entry); |
2650 | if (!page) { | |
a5c9b696 | 2651 | grab_swap_token(mm); /* Contend for token _before_ read-in */ |
02098fea HD |
2652 | page = swapin_readahead(entry, |
2653 | GFP_HIGHUSER_MOVABLE, vma, address); | |
1da177e4 LT |
2654 | if (!page) { |
2655 | /* | |
8f4e2101 HD |
2656 | * Back out if somebody else faulted in this pte |
2657 | * while we released the pte lock. | |
1da177e4 | 2658 | */ |
8f4e2101 | 2659 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2660 | if (likely(pte_same(*page_table, orig_pte))) |
2661 | ret = VM_FAULT_OOM; | |
0ff92245 | 2662 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2663 | goto unlock; |
1da177e4 LT |
2664 | } |
2665 | ||
2666 | /* Had to read the page from swap area: Major fault */ | |
2667 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2668 | count_vm_event(PGMAJFAULT); |
d1737fdb | 2669 | } else if (PageHWPoison(page)) { |
71f72525 WF |
2670 | /* |
2671 | * hwpoisoned dirty swapcache pages are kept for killing | |
2672 | * owner processes (which may be unknown at hwpoison time) | |
2673 | */ | |
d1737fdb AK |
2674 | ret = VM_FAULT_HWPOISON; |
2675 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
4779cb31 | 2676 | goto out_release; |
1da177e4 LT |
2677 | } |
2678 | ||
073e587e KH |
2679 | lock_page(page); |
2680 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
2681 | ||
5ad64688 HD |
2682 | page = ksm_might_need_to_copy(page, vma, address); |
2683 | if (!page) { | |
2684 | ret = VM_FAULT_OOM; | |
2685 | goto out; | |
2686 | } | |
2687 | ||
2c26fdd7 | 2688 | if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { |
8a9f3ccd | 2689 | ret = VM_FAULT_OOM; |
bc43f75c | 2690 | goto out_page; |
8a9f3ccd BS |
2691 | } |
2692 | ||
1da177e4 | 2693 | /* |
8f4e2101 | 2694 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2695 | */ |
8f4e2101 | 2696 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
9e9bef07 | 2697 | if (unlikely(!pte_same(*page_table, orig_pte))) |
b8107480 | 2698 | goto out_nomap; |
b8107480 KK |
2699 | |
2700 | if (unlikely(!PageUptodate(page))) { | |
2701 | ret = VM_FAULT_SIGBUS; | |
2702 | goto out_nomap; | |
1da177e4 LT |
2703 | } |
2704 | ||
8c7c6e34 KH |
2705 | /* |
2706 | * The page isn't present yet, go ahead with the fault. | |
2707 | * | |
2708 | * Be careful about the sequence of operations here. | |
2709 | * To get its accounting right, reuse_swap_page() must be called | |
2710 | * while the page is counted on swap but not yet in mapcount i.e. | |
2711 | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | |
2712 | * must be called after the swap_free(), or it will never succeed. | |
03f3c433 KH |
2713 | * Because delete_from_swap_page() may be called by reuse_swap_page(), |
2714 | * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry | |
2715 | * in page->private. In this case, a record in swap_cgroup is silently | |
2716 | * discarded at swap_free(). | |
8c7c6e34 | 2717 | */ |
1da177e4 | 2718 | |
34e55232 | 2719 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
b084d435 | 2720 | dec_mm_counter_fast(mm, MM_SWAPENTS); |
1da177e4 | 2721 | pte = mk_pte(page, vma->vm_page_prot); |
30c9f3a9 | 2722 | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { |
1da177e4 | 2723 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
30c9f3a9 | 2724 | flags &= ~FAULT_FLAG_WRITE; |
9a5b489b | 2725 | ret |= VM_FAULT_WRITE; |
ad8c2ee8 | 2726 | exclusive = 1; |
1da177e4 | 2727 | } |
1da177e4 LT |
2728 | flush_icache_page(vma, page); |
2729 | set_pte_at(mm, address, page_table, pte); | |
ad8c2ee8 | 2730 | do_page_add_anon_rmap(page, vma, address, exclusive); |
03f3c433 KH |
2731 | /* It's better to call commit-charge after rmap is established */ |
2732 | mem_cgroup_commit_charge_swapin(page, ptr); | |
1da177e4 | 2733 | |
c475a8ab | 2734 | swap_free(entry); |
b291f000 | 2735 | if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) |
a2c43eed | 2736 | try_to_free_swap(page); |
c475a8ab HD |
2737 | unlock_page(page); |
2738 | ||
30c9f3a9 | 2739 | if (flags & FAULT_FLAG_WRITE) { |
61469f1d HD |
2740 | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); |
2741 | if (ret & VM_FAULT_ERROR) | |
2742 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
2743 | goto out; |
2744 | } | |
2745 | ||
2746 | /* No need to invalidate - it was non-present before */ | |
4b3073e1 | 2747 | update_mmu_cache(vma, address, page_table); |
65500d23 | 2748 | unlock: |
8f4e2101 | 2749 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2750 | out: |
2751 | return ret; | |
b8107480 | 2752 | out_nomap: |
7a81b88c | 2753 | mem_cgroup_cancel_charge_swapin(ptr); |
8f4e2101 | 2754 | pte_unmap_unlock(page_table, ptl); |
bc43f75c | 2755 | out_page: |
b8107480 | 2756 | unlock_page(page); |
4779cb31 | 2757 | out_release: |
b8107480 | 2758 | page_cache_release(page); |
65500d23 | 2759 | return ret; |
1da177e4 LT |
2760 | } |
2761 | ||
320b2b8d | 2762 | /* |
8ca3eb08 TL |
2763 | * This is like a special single-page "expand_{down|up}wards()", |
2764 | * except we must first make sure that 'address{-|+}PAGE_SIZE' | |
320b2b8d | 2765 | * doesn't hit another vma. |
320b2b8d LT |
2766 | */ |
2767 | static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) | |
2768 | { | |
2769 | address &= PAGE_MASK; | |
2770 | if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { | |
0e8e50e2 LT |
2771 | struct vm_area_struct *prev = vma->vm_prev; |
2772 | ||
2773 | /* | |
2774 | * Is there a mapping abutting this one below? | |
2775 | * | |
2776 | * That's only ok if it's the same stack mapping | |
2777 | * that has gotten split.. | |
2778 | */ | |
2779 | if (prev && prev->vm_end == address) | |
2780 | return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; | |
320b2b8d | 2781 | |
0e8e50e2 | 2782 | expand_stack(vma, address - PAGE_SIZE); |
320b2b8d | 2783 | } |
8ca3eb08 TL |
2784 | if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { |
2785 | struct vm_area_struct *next = vma->vm_next; | |
2786 | ||
2787 | /* As VM_GROWSDOWN but s/below/above/ */ | |
2788 | if (next && next->vm_start == address + PAGE_SIZE) | |
2789 | return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; | |
2790 | ||
2791 | expand_upwards(vma, address + PAGE_SIZE); | |
2792 | } | |
320b2b8d LT |
2793 | return 0; |
2794 | } | |
2795 | ||
1da177e4 | 2796 | /* |
8f4e2101 HD |
2797 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2798 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2799 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2800 | */ |
65500d23 HD |
2801 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2802 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 2803 | unsigned int flags) |
1da177e4 | 2804 | { |
8f4e2101 HD |
2805 | struct page *page; |
2806 | spinlock_t *ptl; | |
1da177e4 | 2807 | pte_t entry; |
1da177e4 | 2808 | |
11ac5524 LT |
2809 | pte_unmap(page_table); |
2810 | ||
2811 | /* Check if we need to add a guard page to the stack */ | |
2812 | if (check_stack_guard_page(vma, address) < 0) | |
320b2b8d LT |
2813 | return VM_FAULT_SIGBUS; |
2814 | ||
11ac5524 | 2815 | /* Use the zero-page for reads */ |
62eede62 HD |
2816 | if (!(flags & FAULT_FLAG_WRITE)) { |
2817 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), | |
2818 | vma->vm_page_prot)); | |
11ac5524 | 2819 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
a13ea5b7 HD |
2820 | if (!pte_none(*page_table)) |
2821 | goto unlock; | |
2822 | goto setpte; | |
2823 | } | |
2824 | ||
557ed1fa | 2825 | /* Allocate our own private page. */ |
557ed1fa NP |
2826 | if (unlikely(anon_vma_prepare(vma))) |
2827 | goto oom; | |
2828 | page = alloc_zeroed_user_highpage_movable(vma, address); | |
2829 | if (!page) | |
2830 | goto oom; | |
0ed361de | 2831 | __SetPageUptodate(page); |
8f4e2101 | 2832 | |
2c26fdd7 | 2833 | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
2834 | goto oom_free_page; |
2835 | ||
557ed1fa | 2836 | entry = mk_pte(page, vma->vm_page_prot); |
1ac0cb5d HD |
2837 | if (vma->vm_flags & VM_WRITE) |
2838 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
1da177e4 | 2839 | |
557ed1fa | 2840 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1c2fb7a4 | 2841 | if (!pte_none(*page_table)) |
557ed1fa | 2842 | goto release; |
9ba69294 | 2843 | |
34e55232 | 2844 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
557ed1fa | 2845 | page_add_new_anon_rmap(page, vma, address); |
a13ea5b7 | 2846 | setpte: |
65500d23 | 2847 | set_pte_at(mm, address, page_table, entry); |
1da177e4 LT |
2848 | |
2849 | /* No need to invalidate - it was non-present before */ | |
4b3073e1 | 2850 | update_mmu_cache(vma, address, page_table); |
65500d23 | 2851 | unlock: |
8f4e2101 | 2852 | pte_unmap_unlock(page_table, ptl); |
83c54070 | 2853 | return 0; |
8f4e2101 | 2854 | release: |
8a9f3ccd | 2855 | mem_cgroup_uncharge_page(page); |
8f4e2101 HD |
2856 | page_cache_release(page); |
2857 | goto unlock; | |
8a9f3ccd | 2858 | oom_free_page: |
6dbf6d3b | 2859 | page_cache_release(page); |
65500d23 | 2860 | oom: |
1da177e4 LT |
2861 | return VM_FAULT_OOM; |
2862 | } | |
2863 | ||
2864 | /* | |
54cb8821 | 2865 | * __do_fault() tries to create a new page mapping. It aggressively |
1da177e4 | 2866 | * tries to share with existing pages, but makes a separate copy if |
54cb8821 NP |
2867 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid |
2868 | * the next page fault. | |
1da177e4 LT |
2869 | * |
2870 | * As this is called only for pages that do not currently exist, we | |
2871 | * do not need to flush old virtual caches or the TLB. | |
2872 | * | |
8f4e2101 | 2873 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
16abfa08 | 2874 | * but allow concurrent faults), and pte neither mapped nor locked. |
8f4e2101 | 2875 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
1da177e4 | 2876 | */ |
54cb8821 | 2877 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
16abfa08 | 2878 | unsigned long address, pmd_t *pmd, |
54cb8821 | 2879 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) |
1da177e4 | 2880 | { |
16abfa08 | 2881 | pte_t *page_table; |
8f4e2101 | 2882 | spinlock_t *ptl; |
d0217ac0 | 2883 | struct page *page; |
1da177e4 | 2884 | pte_t entry; |
1da177e4 | 2885 | int anon = 0; |
5b4e655e | 2886 | int charged = 0; |
d08b3851 | 2887 | struct page *dirty_page = NULL; |
d0217ac0 NP |
2888 | struct vm_fault vmf; |
2889 | int ret; | |
a200ee18 | 2890 | int page_mkwrite = 0; |
54cb8821 | 2891 | |
d0217ac0 NP |
2892 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); |
2893 | vmf.pgoff = pgoff; | |
2894 | vmf.flags = flags; | |
2895 | vmf.page = NULL; | |
1da177e4 | 2896 | |
3c18ddd1 NP |
2897 | ret = vma->vm_ops->fault(vma, &vmf); |
2898 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | |
2899 | return ret; | |
1da177e4 | 2900 | |
a3b947ea AK |
2901 | if (unlikely(PageHWPoison(vmf.page))) { |
2902 | if (ret & VM_FAULT_LOCKED) | |
2903 | unlock_page(vmf.page); | |
2904 | return VM_FAULT_HWPOISON; | |
2905 | } | |
2906 | ||
d00806b1 | 2907 | /* |
d0217ac0 | 2908 | * For consistency in subsequent calls, make the faulted page always |
d00806b1 NP |
2909 | * locked. |
2910 | */ | |
83c54070 | 2911 | if (unlikely(!(ret & VM_FAULT_LOCKED))) |
d0217ac0 | 2912 | lock_page(vmf.page); |
54cb8821 | 2913 | else |
d0217ac0 | 2914 | VM_BUG_ON(!PageLocked(vmf.page)); |
d00806b1 | 2915 | |
1da177e4 LT |
2916 | /* |
2917 | * Should we do an early C-O-W break? | |
2918 | */ | |
d0217ac0 | 2919 | page = vmf.page; |
54cb8821 | 2920 | if (flags & FAULT_FLAG_WRITE) { |
9637a5ef | 2921 | if (!(vma->vm_flags & VM_SHARED)) { |
54cb8821 | 2922 | anon = 1; |
d00806b1 | 2923 | if (unlikely(anon_vma_prepare(vma))) { |
d0217ac0 | 2924 | ret = VM_FAULT_OOM; |
54cb8821 | 2925 | goto out; |
d00806b1 | 2926 | } |
83c54070 NP |
2927 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, |
2928 | vma, address); | |
d00806b1 | 2929 | if (!page) { |
d0217ac0 | 2930 | ret = VM_FAULT_OOM; |
54cb8821 | 2931 | goto out; |
d00806b1 | 2932 | } |
2c26fdd7 | 2933 | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { |
5b4e655e KH |
2934 | ret = VM_FAULT_OOM; |
2935 | page_cache_release(page); | |
2936 | goto out; | |
2937 | } | |
2938 | charged = 1; | |
b291f000 NP |
2939 | /* |
2940 | * Don't let another task, with possibly unlocked vma, | |
2941 | * keep the mlocked page. | |
2942 | */ | |
2943 | if (vma->vm_flags & VM_LOCKED) | |
2944 | clear_page_mlock(vmf.page); | |
d0217ac0 | 2945 | copy_user_highpage(page, vmf.page, address, vma); |
0ed361de | 2946 | __SetPageUptodate(page); |
9637a5ef | 2947 | } else { |
54cb8821 NP |
2948 | /* |
2949 | * If the page will be shareable, see if the backing | |
9637a5ef | 2950 | * address space wants to know that the page is about |
54cb8821 NP |
2951 | * to become writable |
2952 | */ | |
69676147 | 2953 | if (vma->vm_ops->page_mkwrite) { |
c2ec175c NP |
2954 | int tmp; |
2955 | ||
69676147 | 2956 | unlock_page(page); |
b827e496 | 2957 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
c2ec175c NP |
2958 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); |
2959 | if (unlikely(tmp & | |
2960 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | |
2961 | ret = tmp; | |
b827e496 | 2962 | goto unwritable_page; |
d0217ac0 | 2963 | } |
b827e496 NP |
2964 | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { |
2965 | lock_page(page); | |
2966 | if (!page->mapping) { | |
2967 | ret = 0; /* retry the fault */ | |
2968 | unlock_page(page); | |
2969 | goto unwritable_page; | |
2970 | } | |
2971 | } else | |
2972 | VM_BUG_ON(!PageLocked(page)); | |
a200ee18 | 2973 | page_mkwrite = 1; |
9637a5ef DH |
2974 | } |
2975 | } | |
54cb8821 | 2976 | |
1da177e4 LT |
2977 | } |
2978 | ||
8f4e2101 | 2979 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2980 | |
2981 | /* | |
2982 | * This silly early PAGE_DIRTY setting removes a race | |
2983 | * due to the bad i386 page protection. But it's valid | |
2984 | * for other architectures too. | |
2985 | * | |
30c9f3a9 | 2986 | * Note that if FAULT_FLAG_WRITE is set, we either now have |
1da177e4 LT |
2987 | * an exclusive copy of the page, or this is a shared mapping, |
2988 | * so we can make it writable and dirty to avoid having to | |
2989 | * handle that later. | |
2990 | */ | |
2991 | /* Only go through if we didn't race with anybody else... */ | |
1c2fb7a4 | 2992 | if (likely(pte_same(*page_table, orig_pte))) { |
d00806b1 NP |
2993 | flush_icache_page(vma, page); |
2994 | entry = mk_pte(page, vma->vm_page_prot); | |
54cb8821 | 2995 | if (flags & FAULT_FLAG_WRITE) |
1da177e4 | 2996 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
1da177e4 | 2997 | if (anon) { |
34e55232 | 2998 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
64d6519d | 2999 | page_add_new_anon_rmap(page, vma, address); |
f57e88a8 | 3000 | } else { |
34e55232 | 3001 | inc_mm_counter_fast(mm, MM_FILEPAGES); |
d00806b1 | 3002 | page_add_file_rmap(page); |
54cb8821 | 3003 | if (flags & FAULT_FLAG_WRITE) { |
d00806b1 | 3004 | dirty_page = page; |
d08b3851 PZ |
3005 | get_page(dirty_page); |
3006 | } | |
4294621f | 3007 | } |
64d6519d | 3008 | set_pte_at(mm, address, page_table, entry); |
d00806b1 NP |
3009 | |
3010 | /* no need to invalidate: a not-present page won't be cached */ | |
4b3073e1 | 3011 | update_mmu_cache(vma, address, page_table); |
1da177e4 | 3012 | } else { |
5b4e655e KH |
3013 | if (charged) |
3014 | mem_cgroup_uncharge_page(page); | |
d00806b1 NP |
3015 | if (anon) |
3016 | page_cache_release(page); | |
3017 | else | |
54cb8821 | 3018 | anon = 1; /* no anon but release faulted_page */ |
1da177e4 LT |
3019 | } |
3020 | ||
8f4e2101 | 3021 | pte_unmap_unlock(page_table, ptl); |
d00806b1 NP |
3022 | |
3023 | out: | |
b827e496 NP |
3024 | if (dirty_page) { |
3025 | struct address_space *mapping = page->mapping; | |
8f7b3d15 | 3026 | |
b827e496 NP |
3027 | if (set_page_dirty(dirty_page)) |
3028 | page_mkwrite = 1; | |
3029 | unlock_page(dirty_page); | |
d08b3851 | 3030 | put_page(dirty_page); |
b827e496 NP |
3031 | if (page_mkwrite && mapping) { |
3032 | /* | |
3033 | * Some device drivers do not set page.mapping but still | |
3034 | * dirty their pages | |
3035 | */ | |
3036 | balance_dirty_pages_ratelimited(mapping); | |
3037 | } | |
3038 | ||
3039 | /* file_update_time outside page_lock */ | |
3040 | if (vma->vm_file) | |
3041 | file_update_time(vma->vm_file); | |
3042 | } else { | |
3043 | unlock_page(vmf.page); | |
3044 | if (anon) | |
3045 | page_cache_release(vmf.page); | |
d08b3851 | 3046 | } |
d00806b1 | 3047 | |
83c54070 | 3048 | return ret; |
b827e496 NP |
3049 | |
3050 | unwritable_page: | |
3051 | page_cache_release(page); | |
3052 | return ret; | |
54cb8821 | 3053 | } |
d00806b1 | 3054 | |
54cb8821 NP |
3055 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
3056 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 3057 | unsigned int flags, pte_t orig_pte) |
54cb8821 NP |
3058 | { |
3059 | pgoff_t pgoff = (((address & PAGE_MASK) | |
0da7e01f | 3060 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
54cb8821 | 3061 | |
16abfa08 HD |
3062 | pte_unmap(page_table); |
3063 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | |
54cb8821 NP |
3064 | } |
3065 | ||
1da177e4 LT |
3066 | /* |
3067 | * Fault of a previously existing named mapping. Repopulate the pte | |
3068 | * from the encoded file_pte if possible. This enables swappable | |
3069 | * nonlinear vmas. | |
8f4e2101 HD |
3070 | * |
3071 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
3072 | * but allow concurrent faults), and pte mapped but not yet locked. | |
3073 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 3074 | */ |
d0217ac0 | 3075 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
65500d23 | 3076 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
30c9f3a9 | 3077 | unsigned int flags, pte_t orig_pte) |
1da177e4 | 3078 | { |
65500d23 | 3079 | pgoff_t pgoff; |
1da177e4 | 3080 | |
30c9f3a9 LT |
3081 | flags |= FAULT_FLAG_NONLINEAR; |
3082 | ||
4c21e2f2 | 3083 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
83c54070 | 3084 | return 0; |
1da177e4 | 3085 | |
2509ef26 | 3086 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { |
65500d23 HD |
3087 | /* |
3088 | * Page table corrupted: show pte and kill process. | |
3089 | */ | |
3dc14741 | 3090 | print_bad_pte(vma, address, orig_pte, NULL); |
d99be1a8 | 3091 | return VM_FAULT_SIGBUS; |
65500d23 | 3092 | } |
65500d23 HD |
3093 | |
3094 | pgoff = pte_to_pgoff(orig_pte); | |
16abfa08 | 3095 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
1da177e4 LT |
3096 | } |
3097 | ||
3098 | /* | |
3099 | * These routines also need to handle stuff like marking pages dirty | |
3100 | * and/or accessed for architectures that don't do it in hardware (most | |
3101 | * RISC architectures). The early dirtying is also good on the i386. | |
3102 | * | |
3103 | * There is also a hook called "update_mmu_cache()" that architectures | |
3104 | * with external mmu caches can use to update those (ie the Sparc or | |
3105 | * PowerPC hashed page tables that act as extended TLBs). | |
3106 | * | |
c74df32c HD |
3107 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
3108 | * but allow concurrent faults), and pte mapped but not yet locked. | |
3109 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 LT |
3110 | */ |
3111 | static inline int handle_pte_fault(struct mm_struct *mm, | |
65500d23 | 3112 | struct vm_area_struct *vma, unsigned long address, |
30c9f3a9 | 3113 | pte_t *pte, pmd_t *pmd, unsigned int flags) |
1da177e4 LT |
3114 | { |
3115 | pte_t entry; | |
8f4e2101 | 3116 | spinlock_t *ptl; |
1da177e4 | 3117 | |
8dab5241 | 3118 | entry = *pte; |
1da177e4 | 3119 | if (!pte_present(entry)) { |
65500d23 | 3120 | if (pte_none(entry)) { |
f4b81804 | 3121 | if (vma->vm_ops) { |
3c18ddd1 | 3122 | if (likely(vma->vm_ops->fault)) |
54cb8821 | 3123 | return do_linear_fault(mm, vma, address, |
30c9f3a9 | 3124 | pte, pmd, flags, entry); |
f4b81804 JS |
3125 | } |
3126 | return do_anonymous_page(mm, vma, address, | |
30c9f3a9 | 3127 | pte, pmd, flags); |
65500d23 | 3128 | } |
1da177e4 | 3129 | if (pte_file(entry)) |
d0217ac0 | 3130 | return do_nonlinear_fault(mm, vma, address, |
30c9f3a9 | 3131 | pte, pmd, flags, entry); |
65500d23 | 3132 | return do_swap_page(mm, vma, address, |
30c9f3a9 | 3133 | pte, pmd, flags, entry); |
1da177e4 LT |
3134 | } |
3135 | ||
4c21e2f2 | 3136 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
3137 | spin_lock(ptl); |
3138 | if (unlikely(!pte_same(*pte, entry))) | |
3139 | goto unlock; | |
30c9f3a9 | 3140 | if (flags & FAULT_FLAG_WRITE) { |
1da177e4 | 3141 | if (!pte_write(entry)) |
8f4e2101 HD |
3142 | return do_wp_page(mm, vma, address, |
3143 | pte, pmd, ptl, entry); | |
1da177e4 LT |
3144 | entry = pte_mkdirty(entry); |
3145 | } | |
3146 | entry = pte_mkyoung(entry); | |
30c9f3a9 | 3147 | if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { |
4b3073e1 | 3148 | update_mmu_cache(vma, address, pte); |
1a44e149 AA |
3149 | } else { |
3150 | /* | |
3151 | * This is needed only for protection faults but the arch code | |
3152 | * is not yet telling us if this is a protection fault or not. | |
3153 | * This still avoids useless tlb flushes for .text page faults | |
3154 | * with threads. | |
3155 | */ | |
30c9f3a9 | 3156 | if (flags & FAULT_FLAG_WRITE) |
1a44e149 AA |
3157 | flush_tlb_page(vma, address); |
3158 | } | |
8f4e2101 HD |
3159 | unlock: |
3160 | pte_unmap_unlock(pte, ptl); | |
83c54070 | 3161 | return 0; |
1da177e4 LT |
3162 | } |
3163 | ||
3164 | /* | |
3165 | * By the time we get here, we already hold the mm semaphore | |
3166 | */ | |
83c54070 | 3167 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
d06063cc | 3168 | unsigned long address, unsigned int flags) |
1da177e4 LT |
3169 | { |
3170 | pgd_t *pgd; | |
3171 | pud_t *pud; | |
3172 | pmd_t *pmd; | |
3173 | pte_t *pte; | |
3174 | ||
3175 | __set_current_state(TASK_RUNNING); | |
3176 | ||
f8891e5e | 3177 | count_vm_event(PGFAULT); |
1da177e4 | 3178 | |
34e55232 KH |
3179 | /* do counter updates before entering really critical section. */ |
3180 | check_sync_rss_stat(current); | |
3181 | ||
ac9b9c66 | 3182 | if (unlikely(is_vm_hugetlb_page(vma))) |
30c9f3a9 | 3183 | return hugetlb_fault(mm, vma, address, flags); |
1da177e4 | 3184 | |
1da177e4 | 3185 | pgd = pgd_offset(mm, address); |
1da177e4 LT |
3186 | pud = pud_alloc(mm, pgd, address); |
3187 | if (!pud) | |
c74df32c | 3188 | return VM_FAULT_OOM; |
1da177e4 LT |
3189 | pmd = pmd_alloc(mm, pud, address); |
3190 | if (!pmd) | |
c74df32c | 3191 | return VM_FAULT_OOM; |
1da177e4 LT |
3192 | pte = pte_alloc_map(mm, pmd, address); |
3193 | if (!pte) | |
c74df32c | 3194 | return VM_FAULT_OOM; |
1da177e4 | 3195 | |
30c9f3a9 | 3196 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); |
1da177e4 LT |
3197 | } |
3198 | ||
3199 | #ifndef __PAGETABLE_PUD_FOLDED | |
3200 | /* | |
3201 | * Allocate page upper directory. | |
872fec16 | 3202 | * We've already handled the fast-path in-line. |
1da177e4 | 3203 | */ |
1bb3630e | 3204 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1da177e4 | 3205 | { |
c74df32c HD |
3206 | pud_t *new = pud_alloc_one(mm, address); |
3207 | if (!new) | |
1bb3630e | 3208 | return -ENOMEM; |
1da177e4 | 3209 | |
362a61ad NP |
3210 | smp_wmb(); /* See comment in __pte_alloc */ |
3211 | ||
872fec16 | 3212 | spin_lock(&mm->page_table_lock); |
1bb3630e | 3213 | if (pgd_present(*pgd)) /* Another has populated it */ |
5e541973 | 3214 | pud_free(mm, new); |
1bb3630e HD |
3215 | else |
3216 | pgd_populate(mm, pgd, new); | |
c74df32c | 3217 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 3218 | return 0; |
1da177e4 LT |
3219 | } |
3220 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
3221 | ||
3222 | #ifndef __PAGETABLE_PMD_FOLDED | |
3223 | /* | |
3224 | * Allocate page middle directory. | |
872fec16 | 3225 | * We've already handled the fast-path in-line. |
1da177e4 | 3226 | */ |
1bb3630e | 3227 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 3228 | { |
c74df32c HD |
3229 | pmd_t *new = pmd_alloc_one(mm, address); |
3230 | if (!new) | |
1bb3630e | 3231 | return -ENOMEM; |
1da177e4 | 3232 | |
362a61ad NP |
3233 | smp_wmb(); /* See comment in __pte_alloc */ |
3234 | ||
872fec16 | 3235 | spin_lock(&mm->page_table_lock); |
1da177e4 | 3236 | #ifndef __ARCH_HAS_4LEVEL_HACK |
1bb3630e | 3237 | if (pud_present(*pud)) /* Another has populated it */ |
5e541973 | 3238 | pmd_free(mm, new); |
1bb3630e HD |
3239 | else |
3240 | pud_populate(mm, pud, new); | |
1da177e4 | 3241 | #else |
1bb3630e | 3242 | if (pgd_present(*pud)) /* Another has populated it */ |
5e541973 | 3243 | pmd_free(mm, new); |
1bb3630e HD |
3244 | else |
3245 | pgd_populate(mm, pud, new); | |
1da177e4 | 3246 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
c74df32c | 3247 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 3248 | return 0; |
e0f39591 | 3249 | } |
1da177e4 LT |
3250 | #endif /* __PAGETABLE_PMD_FOLDED */ |
3251 | ||
3252 | int make_pages_present(unsigned long addr, unsigned long end) | |
3253 | { | |
3254 | int ret, len, write; | |
3255 | struct vm_area_struct * vma; | |
3256 | ||
3257 | vma = find_vma(current->mm, addr); | |
3258 | if (!vma) | |
a477097d | 3259 | return -ENOMEM; |
1da177e4 | 3260 | write = (vma->vm_flags & VM_WRITE) != 0; |
5bcb28b1 ES |
3261 | BUG_ON(addr >= end); |
3262 | BUG_ON(end > vma->vm_end); | |
68e116a3 | 3263 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
1da177e4 LT |
3264 | ret = get_user_pages(current, current->mm, addr, |
3265 | len, write, 0, NULL, NULL); | |
c11d69d8 | 3266 | if (ret < 0) |
1da177e4 | 3267 | return ret; |
9978ad58 | 3268 | return ret == len ? 0 : -EFAULT; |
1da177e4 LT |
3269 | } |
3270 | ||
1da177e4 LT |
3271 | #if !defined(__HAVE_ARCH_GATE_AREA) |
3272 | ||
3273 | #if defined(AT_SYSINFO_EHDR) | |
5ce7852c | 3274 | static struct vm_area_struct gate_vma; |
1da177e4 LT |
3275 | |
3276 | static int __init gate_vma_init(void) | |
3277 | { | |
3278 | gate_vma.vm_mm = NULL; | |
3279 | gate_vma.vm_start = FIXADDR_USER_START; | |
3280 | gate_vma.vm_end = FIXADDR_USER_END; | |
b6558c4a RM |
3281 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
3282 | gate_vma.vm_page_prot = __P101; | |
f47aef55 RM |
3283 | /* |
3284 | * Make sure the vDSO gets into every core dump. | |
3285 | * Dumping its contents makes post-mortem fully interpretable later | |
3286 | * without matching up the same kernel and hardware config to see | |
3287 | * what PC values meant. | |
3288 | */ | |
3289 | gate_vma.vm_flags |= VM_ALWAYSDUMP; | |
1da177e4 LT |
3290 | return 0; |
3291 | } | |
3292 | __initcall(gate_vma_init); | |
3293 | #endif | |
3294 | ||
3295 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | |
3296 | { | |
3297 | #ifdef AT_SYSINFO_EHDR | |
3298 | return &gate_vma; | |
3299 | #else | |
3300 | return NULL; | |
3301 | #endif | |
3302 | } | |
3303 | ||
3304 | int in_gate_area_no_task(unsigned long addr) | |
3305 | { | |
3306 | #ifdef AT_SYSINFO_EHDR | |
3307 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | |
3308 | return 1; | |
3309 | #endif | |
3310 | return 0; | |
3311 | } | |
3312 | ||
3313 | #endif /* __HAVE_ARCH_GATE_AREA */ | |
0ec76a11 | 3314 | |
f8ad0f49 JW |
3315 | static int follow_pte(struct mm_struct *mm, unsigned long address, |
3316 | pte_t **ptepp, spinlock_t **ptlp) | |
3317 | { | |
3318 | pgd_t *pgd; | |
3319 | pud_t *pud; | |
3320 | pmd_t *pmd; | |
3321 | pte_t *ptep; | |
3322 | ||
3323 | pgd = pgd_offset(mm, address); | |
3324 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
3325 | goto out; | |
3326 | ||
3327 | pud = pud_offset(pgd, address); | |
3328 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
3329 | goto out; | |
3330 | ||
3331 | pmd = pmd_offset(pud, address); | |
3332 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
3333 | goto out; | |
3334 | ||
3335 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | |
3336 | if (pmd_huge(*pmd)) | |
3337 | goto out; | |
3338 | ||
3339 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | |
3340 | if (!ptep) | |
3341 | goto out; | |
3342 | if (!pte_present(*ptep)) | |
3343 | goto unlock; | |
3344 | *ptepp = ptep; | |
3345 | return 0; | |
3346 | unlock: | |
3347 | pte_unmap_unlock(ptep, *ptlp); | |
3348 | out: | |
3349 | return -EINVAL; | |
3350 | } | |
3351 | ||
3b6748e2 JW |
3352 | /** |
3353 | * follow_pfn - look up PFN at a user virtual address | |
3354 | * @vma: memory mapping | |
3355 | * @address: user virtual address | |
3356 | * @pfn: location to store found PFN | |
3357 | * | |
3358 | * Only IO mappings and raw PFN mappings are allowed. | |
3359 | * | |
3360 | * Returns zero and the pfn at @pfn on success, -ve otherwise. | |
3361 | */ | |
3362 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
3363 | unsigned long *pfn) | |
3364 | { | |
3365 | int ret = -EINVAL; | |
3366 | spinlock_t *ptl; | |
3367 | pte_t *ptep; | |
3368 | ||
3369 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
3370 | return ret; | |
3371 | ||
3372 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | |
3373 | if (ret) | |
3374 | return ret; | |
3375 | *pfn = pte_pfn(*ptep); | |
3376 | pte_unmap_unlock(ptep, ptl); | |
3377 | return 0; | |
3378 | } | |
3379 | EXPORT_SYMBOL(follow_pfn); | |
3380 | ||
28b2ee20 | 3381 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 3382 | int follow_phys(struct vm_area_struct *vma, |
3383 | unsigned long address, unsigned int flags, | |
3384 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 3385 | { |
03668a4d | 3386 | int ret = -EINVAL; |
28b2ee20 RR |
3387 | pte_t *ptep, pte; |
3388 | spinlock_t *ptl; | |
28b2ee20 | 3389 | |
d87fe660 | 3390 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
3391 | goto out; | |
28b2ee20 | 3392 | |
03668a4d | 3393 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 3394 | goto out; |
28b2ee20 | 3395 | pte = *ptep; |
03668a4d | 3396 | |
28b2ee20 RR |
3397 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
3398 | goto unlock; | |
28b2ee20 RR |
3399 | |
3400 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 3401 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 3402 | |
03668a4d | 3403 | ret = 0; |
28b2ee20 RR |
3404 | unlock: |
3405 | pte_unmap_unlock(ptep, ptl); | |
3406 | out: | |
d87fe660 | 3407 | return ret; |
28b2ee20 RR |
3408 | } |
3409 | ||
3410 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
3411 | void *buf, int len, int write) | |
3412 | { | |
3413 | resource_size_t phys_addr; | |
3414 | unsigned long prot = 0; | |
2bc7273b | 3415 | void __iomem *maddr; |
28b2ee20 RR |
3416 | int offset = addr & (PAGE_SIZE-1); |
3417 | ||
d87fe660 | 3418 | if (follow_phys(vma, addr, write, &prot, &phys_addr)) |
28b2ee20 RR |
3419 | return -EINVAL; |
3420 | ||
3421 | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | |
3422 | if (write) | |
3423 | memcpy_toio(maddr + offset, buf, len); | |
3424 | else | |
3425 | memcpy_fromio(buf, maddr + offset, len); | |
3426 | iounmap(maddr); | |
3427 | ||
3428 | return len; | |
3429 | } | |
3430 | #endif | |
3431 | ||
0ec76a11 DH |
3432 | /* |
3433 | * Access another process' address space. | |
3434 | * Source/target buffer must be kernel space, | |
3435 | * Do not walk the page table directly, use get_user_pages | |
3436 | */ | |
3437 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | |
3438 | { | |
3439 | struct mm_struct *mm; | |
3440 | struct vm_area_struct *vma; | |
0ec76a11 DH |
3441 | void *old_buf = buf; |
3442 | ||
3443 | mm = get_task_mm(tsk); | |
3444 | if (!mm) | |
3445 | return 0; | |
3446 | ||
3447 | down_read(&mm->mmap_sem); | |
183ff22b | 3448 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
3449 | while (len) { |
3450 | int bytes, ret, offset; | |
3451 | void *maddr; | |
28b2ee20 | 3452 | struct page *page = NULL; |
0ec76a11 DH |
3453 | |
3454 | ret = get_user_pages(tsk, mm, addr, 1, | |
3455 | write, 1, &page, &vma); | |
28b2ee20 RR |
3456 | if (ret <= 0) { |
3457 | /* | |
3458 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
3459 | * we can access using slightly different code. | |
3460 | */ | |
3461 | #ifdef CONFIG_HAVE_IOREMAP_PROT | |
3462 | vma = find_vma(mm, addr); | |
3463 | if (!vma) | |
3464 | break; | |
3465 | if (vma->vm_ops && vma->vm_ops->access) | |
3466 | ret = vma->vm_ops->access(vma, addr, buf, | |
3467 | len, write); | |
3468 | if (ret <= 0) | |
3469 | #endif | |
3470 | break; | |
3471 | bytes = ret; | |
0ec76a11 | 3472 | } else { |
28b2ee20 RR |
3473 | bytes = len; |
3474 | offset = addr & (PAGE_SIZE-1); | |
3475 | if (bytes > PAGE_SIZE-offset) | |
3476 | bytes = PAGE_SIZE-offset; | |
3477 | ||
3478 | maddr = kmap(page); | |
3479 | if (write) { | |
3480 | copy_to_user_page(vma, page, addr, | |
3481 | maddr + offset, buf, bytes); | |
3482 | set_page_dirty_lock(page); | |
3483 | } else { | |
3484 | copy_from_user_page(vma, page, addr, | |
3485 | buf, maddr + offset, bytes); | |
3486 | } | |
3487 | kunmap(page); | |
3488 | page_cache_release(page); | |
0ec76a11 | 3489 | } |
0ec76a11 DH |
3490 | len -= bytes; |
3491 | buf += bytes; | |
3492 | addr += bytes; | |
3493 | } | |
3494 | up_read(&mm->mmap_sem); | |
3495 | mmput(mm); | |
3496 | ||
3497 | return buf - old_buf; | |
3498 | } | |
03252919 AK |
3499 | |
3500 | /* | |
3501 | * Print the name of a VMA. | |
3502 | */ | |
3503 | void print_vma_addr(char *prefix, unsigned long ip) | |
3504 | { | |
3505 | struct mm_struct *mm = current->mm; | |
3506 | struct vm_area_struct *vma; | |
3507 | ||
e8bff74a IM |
3508 | /* |
3509 | * Do not print if we are in atomic | |
3510 | * contexts (in exception stacks, etc.): | |
3511 | */ | |
3512 | if (preempt_count()) | |
3513 | return; | |
3514 | ||
03252919 AK |
3515 | down_read(&mm->mmap_sem); |
3516 | vma = find_vma(mm, ip); | |
3517 | if (vma && vma->vm_file) { | |
3518 | struct file *f = vma->vm_file; | |
3519 | char *buf = (char *)__get_free_page(GFP_KERNEL); | |
3520 | if (buf) { | |
3521 | char *p, *s; | |
3522 | ||
cf28b486 | 3523 | p = d_path(&f->f_path, buf, PAGE_SIZE); |
03252919 AK |
3524 | if (IS_ERR(p)) |
3525 | p = "?"; | |
3526 | s = strrchr(p, '/'); | |
3527 | if (s) | |
3528 | p = s+1; | |
3529 | printk("%s%s[%lx+%lx]", prefix, p, | |
3530 | vma->vm_start, | |
3531 | vma->vm_end - vma->vm_start); | |
3532 | free_page((unsigned long)buf); | |
3533 | } | |
3534 | } | |
3535 | up_read(¤t->mm->mmap_sem); | |
3536 | } | |
3ee1afa3 NP |
3537 | |
3538 | #ifdef CONFIG_PROVE_LOCKING | |
3539 | void might_fault(void) | |
3540 | { | |
95156f00 PZ |
3541 | /* |
3542 | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | |
3543 | * holding the mmap_sem, this is safe because kernel memory doesn't | |
3544 | * get paged out, therefore we'll never actually fault, and the | |
3545 | * below annotations will generate false positives. | |
3546 | */ | |
3547 | if (segment_eq(get_fs(), KERNEL_DS)) | |
3548 | return; | |
3549 | ||
3ee1afa3 NP |
3550 | might_sleep(); |
3551 | /* | |
3552 | * it would be nicer only to annotate paths which are not under | |
3553 | * pagefault_disable, however that requires a larger audit and | |
3554 | * providing helpers like get_user_atomic. | |
3555 | */ | |
3556 | if (!in_atomic() && current->mm) | |
3557 | might_lock_read(¤t->mm->mmap_sem); | |
3558 | } | |
3559 | EXPORT_SYMBOL(might_fault); | |
3560 | #endif |