]>
Commit | Line | Data |
---|---|---|
6a46079c AK |
1 | /* |
2 | * Copyright (C) 2008, 2009 Intel Corporation | |
3 | * Authors: Andi Kleen, Fengguang Wu | |
4 | * | |
5 | * This software may be redistributed and/or modified under the terms of | |
6 | * the GNU General Public License ("GPL") version 2 only as published by the | |
7 | * Free Software Foundation. | |
8 | * | |
9 | * High level machine check handler. Handles pages reported by the | |
10 | * hardware as being corrupted usually due to a 2bit ECC memory or cache | |
11 | * failure. | |
12 | * | |
13 | * Handles page cache pages in various states. The tricky part | |
14 | * here is that we can access any page asynchronous to other VM | |
15 | * users, because memory failures could happen anytime and anywhere, | |
16 | * possibly violating some of their assumptions. This is why this code | |
17 | * has to be extremely careful. Generally it tries to use normal locking | |
18 | * rules, as in get the standard locks, even if that means the | |
19 | * error handling takes potentially a long time. | |
20 | * | |
21 | * The operation to map back from RMAP chains to processes has to walk | |
22 | * the complete process list and has non linear complexity with the number | |
23 | * mappings. In short it can be quite slow. But since memory corruptions | |
24 | * are rare we hope to get away with this. | |
25 | */ | |
26 | ||
27 | /* | |
28 | * Notebook: | |
29 | * - hugetlb needs more code | |
30 | * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages | |
31 | * - pass bad pages to kdump next kernel | |
32 | */ | |
33 | #define DEBUG 1 /* remove me in 2.6.34 */ | |
34 | #include <linux/kernel.h> | |
35 | #include <linux/mm.h> | |
36 | #include <linux/page-flags.h> | |
478c5ffc | 37 | #include <linux/kernel-page-flags.h> |
6a46079c | 38 | #include <linux/sched.h> |
01e00f88 | 39 | #include <linux/ksm.h> |
6a46079c AK |
40 | #include <linux/rmap.h> |
41 | #include <linux/pagemap.h> | |
42 | #include <linux/swap.h> | |
43 | #include <linux/backing-dev.h> | |
facb6011 AK |
44 | #include <linux/migrate.h> |
45 | #include <linux/page-isolation.h> | |
46 | #include <linux/suspend.h> | |
5a0e3ad6 | 47 | #include <linux/slab.h> |
bf998156 | 48 | #include <linux/swapops.h> |
7af446a8 | 49 | #include <linux/hugetlb.h> |
6a46079c AK |
50 | #include "internal.h" |
51 | ||
52 | int sysctl_memory_failure_early_kill __read_mostly = 0; | |
53 | ||
54 | int sysctl_memory_failure_recovery __read_mostly = 1; | |
55 | ||
56 | atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); | |
57 | ||
27df5068 AK |
58 | #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) |
59 | ||
1bfe5feb | 60 | u32 hwpoison_filter_enable = 0; |
7c116f2b WF |
61 | u32 hwpoison_filter_dev_major = ~0U; |
62 | u32 hwpoison_filter_dev_minor = ~0U; | |
478c5ffc WF |
63 | u64 hwpoison_filter_flags_mask; |
64 | u64 hwpoison_filter_flags_value; | |
1bfe5feb | 65 | EXPORT_SYMBOL_GPL(hwpoison_filter_enable); |
7c116f2b WF |
66 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); |
67 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); | |
478c5ffc WF |
68 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); |
69 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); | |
7c116f2b WF |
70 | |
71 | static int hwpoison_filter_dev(struct page *p) | |
72 | { | |
73 | struct address_space *mapping; | |
74 | dev_t dev; | |
75 | ||
76 | if (hwpoison_filter_dev_major == ~0U && | |
77 | hwpoison_filter_dev_minor == ~0U) | |
78 | return 0; | |
79 | ||
80 | /* | |
81 | * page_mapping() does not accept slab page | |
82 | */ | |
83 | if (PageSlab(p)) | |
84 | return -EINVAL; | |
85 | ||
86 | mapping = page_mapping(p); | |
87 | if (mapping == NULL || mapping->host == NULL) | |
88 | return -EINVAL; | |
89 | ||
90 | dev = mapping->host->i_sb->s_dev; | |
91 | if (hwpoison_filter_dev_major != ~0U && | |
92 | hwpoison_filter_dev_major != MAJOR(dev)) | |
93 | return -EINVAL; | |
94 | if (hwpoison_filter_dev_minor != ~0U && | |
95 | hwpoison_filter_dev_minor != MINOR(dev)) | |
96 | return -EINVAL; | |
97 | ||
98 | return 0; | |
99 | } | |
100 | ||
478c5ffc WF |
101 | static int hwpoison_filter_flags(struct page *p) |
102 | { | |
103 | if (!hwpoison_filter_flags_mask) | |
104 | return 0; | |
105 | ||
106 | if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == | |
107 | hwpoison_filter_flags_value) | |
108 | return 0; | |
109 | else | |
110 | return -EINVAL; | |
111 | } | |
112 | ||
4fd466eb AK |
113 | /* |
114 | * This allows stress tests to limit test scope to a collection of tasks | |
115 | * by putting them under some memcg. This prevents killing unrelated/important | |
116 | * processes such as /sbin/init. Note that the target task may share clean | |
117 | * pages with init (eg. libc text), which is harmless. If the target task | |
118 | * share _dirty_ pages with another task B, the test scheme must make sure B | |
119 | * is also included in the memcg. At last, due to race conditions this filter | |
120 | * can only guarantee that the page either belongs to the memcg tasks, or is | |
121 | * a freed page. | |
122 | */ | |
123 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | |
124 | u64 hwpoison_filter_memcg; | |
125 | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); | |
126 | static int hwpoison_filter_task(struct page *p) | |
127 | { | |
128 | struct mem_cgroup *mem; | |
129 | struct cgroup_subsys_state *css; | |
130 | unsigned long ino; | |
131 | ||
132 | if (!hwpoison_filter_memcg) | |
133 | return 0; | |
134 | ||
135 | mem = try_get_mem_cgroup_from_page(p); | |
136 | if (!mem) | |
137 | return -EINVAL; | |
138 | ||
139 | css = mem_cgroup_css(mem); | |
140 | /* root_mem_cgroup has NULL dentries */ | |
141 | if (!css->cgroup->dentry) | |
142 | return -EINVAL; | |
143 | ||
144 | ino = css->cgroup->dentry->d_inode->i_ino; | |
145 | css_put(css); | |
146 | ||
147 | if (ino != hwpoison_filter_memcg) | |
148 | return -EINVAL; | |
149 | ||
150 | return 0; | |
151 | } | |
152 | #else | |
153 | static int hwpoison_filter_task(struct page *p) { return 0; } | |
154 | #endif | |
155 | ||
7c116f2b WF |
156 | int hwpoison_filter(struct page *p) |
157 | { | |
1bfe5feb HL |
158 | if (!hwpoison_filter_enable) |
159 | return 0; | |
160 | ||
7c116f2b WF |
161 | if (hwpoison_filter_dev(p)) |
162 | return -EINVAL; | |
163 | ||
478c5ffc WF |
164 | if (hwpoison_filter_flags(p)) |
165 | return -EINVAL; | |
166 | ||
4fd466eb AK |
167 | if (hwpoison_filter_task(p)) |
168 | return -EINVAL; | |
169 | ||
7c116f2b WF |
170 | return 0; |
171 | } | |
27df5068 AK |
172 | #else |
173 | int hwpoison_filter(struct page *p) | |
174 | { | |
175 | return 0; | |
176 | } | |
177 | #endif | |
178 | ||
7c116f2b WF |
179 | EXPORT_SYMBOL_GPL(hwpoison_filter); |
180 | ||
6a46079c AK |
181 | /* |
182 | * Send all the processes who have the page mapped an ``action optional'' | |
183 | * signal. | |
184 | */ | |
185 | static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, | |
186 | unsigned long pfn) | |
187 | { | |
188 | struct siginfo si; | |
189 | int ret; | |
190 | ||
191 | printk(KERN_ERR | |
192 | "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", | |
193 | pfn, t->comm, t->pid); | |
194 | si.si_signo = SIGBUS; | |
195 | si.si_errno = 0; | |
196 | si.si_code = BUS_MCEERR_AO; | |
197 | si.si_addr = (void *)addr; | |
198 | #ifdef __ARCH_SI_TRAPNO | |
199 | si.si_trapno = trapno; | |
200 | #endif | |
201 | si.si_addr_lsb = PAGE_SHIFT; | |
202 | /* | |
203 | * Don't use force here, it's convenient if the signal | |
204 | * can be temporarily blocked. | |
205 | * This could cause a loop when the user sets SIGBUS | |
206 | * to SIG_IGN, but hopefully noone will do that? | |
207 | */ | |
208 | ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ | |
209 | if (ret < 0) | |
210 | printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", | |
211 | t->comm, t->pid, ret); | |
212 | return ret; | |
213 | } | |
214 | ||
588f9ce6 AK |
215 | /* |
216 | * When a unknown page type is encountered drain as many buffers as possible | |
217 | * in the hope to turn the page into a LRU or free page, which we can handle. | |
218 | */ | |
facb6011 | 219 | void shake_page(struct page *p, int access) |
588f9ce6 AK |
220 | { |
221 | if (!PageSlab(p)) { | |
222 | lru_add_drain_all(); | |
223 | if (PageLRU(p)) | |
224 | return; | |
225 | drain_all_pages(); | |
226 | if (PageLRU(p) || is_free_buddy_page(p)) | |
227 | return; | |
228 | } | |
facb6011 | 229 | |
588f9ce6 | 230 | /* |
facb6011 AK |
231 | * Only all shrink_slab here (which would also |
232 | * shrink other caches) if access is not potentially fatal. | |
588f9ce6 | 233 | */ |
facb6011 AK |
234 | if (access) { |
235 | int nr; | |
236 | do { | |
237 | nr = shrink_slab(1000, GFP_KERNEL, 1000); | |
238 | if (page_count(p) == 0) | |
239 | break; | |
240 | } while (nr > 10); | |
241 | } | |
588f9ce6 AK |
242 | } |
243 | EXPORT_SYMBOL_GPL(shake_page); | |
244 | ||
6a46079c AK |
245 | /* |
246 | * Kill all processes that have a poisoned page mapped and then isolate | |
247 | * the page. | |
248 | * | |
249 | * General strategy: | |
250 | * Find all processes having the page mapped and kill them. | |
251 | * But we keep a page reference around so that the page is not | |
252 | * actually freed yet. | |
253 | * Then stash the page away | |
254 | * | |
255 | * There's no convenient way to get back to mapped processes | |
256 | * from the VMAs. So do a brute-force search over all | |
257 | * running processes. | |
258 | * | |
259 | * Remember that machine checks are not common (or rather | |
260 | * if they are common you have other problems), so this shouldn't | |
261 | * be a performance issue. | |
262 | * | |
263 | * Also there are some races possible while we get from the | |
264 | * error detection to actually handle it. | |
265 | */ | |
266 | ||
267 | struct to_kill { | |
268 | struct list_head nd; | |
269 | struct task_struct *tsk; | |
270 | unsigned long addr; | |
271 | unsigned addr_valid:1; | |
272 | }; | |
273 | ||
274 | /* | |
275 | * Failure handling: if we can't find or can't kill a process there's | |
276 | * not much we can do. We just print a message and ignore otherwise. | |
277 | */ | |
278 | ||
279 | /* | |
280 | * Schedule a process for later kill. | |
281 | * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. | |
282 | * TBD would GFP_NOIO be enough? | |
283 | */ | |
284 | static void add_to_kill(struct task_struct *tsk, struct page *p, | |
285 | struct vm_area_struct *vma, | |
286 | struct list_head *to_kill, | |
287 | struct to_kill **tkc) | |
288 | { | |
289 | struct to_kill *tk; | |
290 | ||
291 | if (*tkc) { | |
292 | tk = *tkc; | |
293 | *tkc = NULL; | |
294 | } else { | |
295 | tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); | |
296 | if (!tk) { | |
297 | printk(KERN_ERR | |
298 | "MCE: Out of memory while machine check handling\n"); | |
299 | return; | |
300 | } | |
301 | } | |
302 | tk->addr = page_address_in_vma(p, vma); | |
303 | tk->addr_valid = 1; | |
304 | ||
305 | /* | |
306 | * In theory we don't have to kill when the page was | |
307 | * munmaped. But it could be also a mremap. Since that's | |
308 | * likely very rare kill anyways just out of paranoia, but use | |
309 | * a SIGKILL because the error is not contained anymore. | |
310 | */ | |
311 | if (tk->addr == -EFAULT) { | |
312 | pr_debug("MCE: Unable to find user space address %lx in %s\n", | |
313 | page_to_pfn(p), tsk->comm); | |
314 | tk->addr_valid = 0; | |
315 | } | |
316 | get_task_struct(tsk); | |
317 | tk->tsk = tsk; | |
318 | list_add_tail(&tk->nd, to_kill); | |
319 | } | |
320 | ||
321 | /* | |
322 | * Kill the processes that have been collected earlier. | |
323 | * | |
324 | * Only do anything when DOIT is set, otherwise just free the list | |
325 | * (this is used for clean pages which do not need killing) | |
326 | * Also when FAIL is set do a force kill because something went | |
327 | * wrong earlier. | |
328 | */ | |
329 | static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, | |
330 | int fail, unsigned long pfn) | |
331 | { | |
332 | struct to_kill *tk, *next; | |
333 | ||
334 | list_for_each_entry_safe (tk, next, to_kill, nd) { | |
335 | if (doit) { | |
336 | /* | |
af901ca1 | 337 | * In case something went wrong with munmapping |
6a46079c AK |
338 | * make sure the process doesn't catch the |
339 | * signal and then access the memory. Just kill it. | |
6a46079c AK |
340 | */ |
341 | if (fail || tk->addr_valid == 0) { | |
342 | printk(KERN_ERR | |
343 | "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", | |
344 | pfn, tk->tsk->comm, tk->tsk->pid); | |
345 | force_sig(SIGKILL, tk->tsk); | |
346 | } | |
347 | ||
348 | /* | |
349 | * In theory the process could have mapped | |
350 | * something else on the address in-between. We could | |
351 | * check for that, but we need to tell the | |
352 | * process anyways. | |
353 | */ | |
354 | else if (kill_proc_ao(tk->tsk, tk->addr, trapno, | |
355 | pfn) < 0) | |
356 | printk(KERN_ERR | |
357 | "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", | |
358 | pfn, tk->tsk->comm, tk->tsk->pid); | |
359 | } | |
360 | put_task_struct(tk->tsk); | |
361 | kfree(tk); | |
362 | } | |
363 | } | |
364 | ||
365 | static int task_early_kill(struct task_struct *tsk) | |
366 | { | |
367 | if (!tsk->mm) | |
368 | return 0; | |
369 | if (tsk->flags & PF_MCE_PROCESS) | |
370 | return !!(tsk->flags & PF_MCE_EARLY); | |
371 | return sysctl_memory_failure_early_kill; | |
372 | } | |
373 | ||
374 | /* | |
375 | * Collect processes when the error hit an anonymous page. | |
376 | */ | |
377 | static void collect_procs_anon(struct page *page, struct list_head *to_kill, | |
378 | struct to_kill **tkc) | |
379 | { | |
380 | struct vm_area_struct *vma; | |
381 | struct task_struct *tsk; | |
382 | struct anon_vma *av; | |
383 | ||
384 | read_lock(&tasklist_lock); | |
385 | av = page_lock_anon_vma(page); | |
386 | if (av == NULL) /* Not actually mapped anymore */ | |
387 | goto out; | |
388 | for_each_process (tsk) { | |
5beb4930 RR |
389 | struct anon_vma_chain *vmac; |
390 | ||
6a46079c AK |
391 | if (!task_early_kill(tsk)) |
392 | continue; | |
5beb4930 RR |
393 | list_for_each_entry(vmac, &av->head, same_anon_vma) { |
394 | vma = vmac->vma; | |
6a46079c AK |
395 | if (!page_mapped_in_vma(page, vma)) |
396 | continue; | |
397 | if (vma->vm_mm == tsk->mm) | |
398 | add_to_kill(tsk, page, vma, to_kill, tkc); | |
399 | } | |
400 | } | |
401 | page_unlock_anon_vma(av); | |
402 | out: | |
403 | read_unlock(&tasklist_lock); | |
404 | } | |
405 | ||
406 | /* | |
407 | * Collect processes when the error hit a file mapped page. | |
408 | */ | |
409 | static void collect_procs_file(struct page *page, struct list_head *to_kill, | |
410 | struct to_kill **tkc) | |
411 | { | |
412 | struct vm_area_struct *vma; | |
413 | struct task_struct *tsk; | |
414 | struct prio_tree_iter iter; | |
415 | struct address_space *mapping = page->mapping; | |
416 | ||
417 | /* | |
418 | * A note on the locking order between the two locks. | |
419 | * We don't rely on this particular order. | |
420 | * If you have some other code that needs a different order | |
421 | * feel free to switch them around. Or add a reverse link | |
422 | * from mm_struct to task_struct, then this could be all | |
423 | * done without taking tasklist_lock and looping over all tasks. | |
424 | */ | |
425 | ||
426 | read_lock(&tasklist_lock); | |
427 | spin_lock(&mapping->i_mmap_lock); | |
428 | for_each_process(tsk) { | |
429 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
430 | ||
431 | if (!task_early_kill(tsk)) | |
432 | continue; | |
433 | ||
434 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, | |
435 | pgoff) { | |
436 | /* | |
437 | * Send early kill signal to tasks where a vma covers | |
438 | * the page but the corrupted page is not necessarily | |
439 | * mapped it in its pte. | |
440 | * Assume applications who requested early kill want | |
441 | * to be informed of all such data corruptions. | |
442 | */ | |
443 | if (vma->vm_mm == tsk->mm) | |
444 | add_to_kill(tsk, page, vma, to_kill, tkc); | |
445 | } | |
446 | } | |
447 | spin_unlock(&mapping->i_mmap_lock); | |
448 | read_unlock(&tasklist_lock); | |
449 | } | |
450 | ||
451 | /* | |
452 | * Collect the processes who have the corrupted page mapped to kill. | |
453 | * This is done in two steps for locking reasons. | |
454 | * First preallocate one tokill structure outside the spin locks, | |
455 | * so that we can kill at least one process reasonably reliable. | |
456 | */ | |
457 | static void collect_procs(struct page *page, struct list_head *tokill) | |
458 | { | |
459 | struct to_kill *tk; | |
460 | ||
461 | if (!page->mapping) | |
462 | return; | |
463 | ||
464 | tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); | |
465 | if (!tk) | |
466 | return; | |
467 | if (PageAnon(page)) | |
468 | collect_procs_anon(page, tokill, &tk); | |
469 | else | |
470 | collect_procs_file(page, tokill, &tk); | |
471 | kfree(tk); | |
472 | } | |
473 | ||
474 | /* | |
475 | * Error handlers for various types of pages. | |
476 | */ | |
477 | ||
478 | enum outcome { | |
d95ea51e WF |
479 | IGNORED, /* Error: cannot be handled */ |
480 | FAILED, /* Error: handling failed */ | |
6a46079c | 481 | DELAYED, /* Will be handled later */ |
6a46079c AK |
482 | RECOVERED, /* Successfully recovered */ |
483 | }; | |
484 | ||
485 | static const char *action_name[] = { | |
d95ea51e | 486 | [IGNORED] = "Ignored", |
6a46079c AK |
487 | [FAILED] = "Failed", |
488 | [DELAYED] = "Delayed", | |
6a46079c AK |
489 | [RECOVERED] = "Recovered", |
490 | }; | |
491 | ||
dc2a1cbf WF |
492 | /* |
493 | * XXX: It is possible that a page is isolated from LRU cache, | |
494 | * and then kept in swap cache or failed to remove from page cache. | |
495 | * The page count will stop it from being freed by unpoison. | |
496 | * Stress tests should be aware of this memory leak problem. | |
497 | */ | |
498 | static int delete_from_lru_cache(struct page *p) | |
499 | { | |
500 | if (!isolate_lru_page(p)) { | |
501 | /* | |
502 | * Clear sensible page flags, so that the buddy system won't | |
503 | * complain when the page is unpoison-and-freed. | |
504 | */ | |
505 | ClearPageActive(p); | |
506 | ClearPageUnevictable(p); | |
507 | /* | |
508 | * drop the page count elevated by isolate_lru_page() | |
509 | */ | |
510 | page_cache_release(p); | |
511 | return 0; | |
512 | } | |
513 | return -EIO; | |
514 | } | |
515 | ||
6a46079c AK |
516 | /* |
517 | * Error hit kernel page. | |
518 | * Do nothing, try to be lucky and not touch this instead. For a few cases we | |
519 | * could be more sophisticated. | |
520 | */ | |
521 | static int me_kernel(struct page *p, unsigned long pfn) | |
6a46079c AK |
522 | { |
523 | return IGNORED; | |
524 | } | |
525 | ||
526 | /* | |
527 | * Page in unknown state. Do nothing. | |
528 | */ | |
529 | static int me_unknown(struct page *p, unsigned long pfn) | |
530 | { | |
531 | printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); | |
532 | return FAILED; | |
533 | } | |
534 | ||
6a46079c AK |
535 | /* |
536 | * Clean (or cleaned) page cache page. | |
537 | */ | |
538 | static int me_pagecache_clean(struct page *p, unsigned long pfn) | |
539 | { | |
540 | int err; | |
541 | int ret = FAILED; | |
542 | struct address_space *mapping; | |
543 | ||
dc2a1cbf WF |
544 | delete_from_lru_cache(p); |
545 | ||
6a46079c AK |
546 | /* |
547 | * For anonymous pages we're done the only reference left | |
548 | * should be the one m_f() holds. | |
549 | */ | |
550 | if (PageAnon(p)) | |
551 | return RECOVERED; | |
552 | ||
553 | /* | |
554 | * Now truncate the page in the page cache. This is really | |
555 | * more like a "temporary hole punch" | |
556 | * Don't do this for block devices when someone else | |
557 | * has a reference, because it could be file system metadata | |
558 | * and that's not safe to truncate. | |
559 | */ | |
560 | mapping = page_mapping(p); | |
561 | if (!mapping) { | |
562 | /* | |
563 | * Page has been teared down in the meanwhile | |
564 | */ | |
565 | return FAILED; | |
566 | } | |
567 | ||
568 | /* | |
569 | * Truncation is a bit tricky. Enable it per file system for now. | |
570 | * | |
571 | * Open: to take i_mutex or not for this? Right now we don't. | |
572 | */ | |
573 | if (mapping->a_ops->error_remove_page) { | |
574 | err = mapping->a_ops->error_remove_page(mapping, p); | |
575 | if (err != 0) { | |
576 | printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", | |
577 | pfn, err); | |
578 | } else if (page_has_private(p) && | |
579 | !try_to_release_page(p, GFP_NOIO)) { | |
580 | pr_debug("MCE %#lx: failed to release buffers\n", pfn); | |
581 | } else { | |
582 | ret = RECOVERED; | |
583 | } | |
584 | } else { | |
585 | /* | |
586 | * If the file system doesn't support it just invalidate | |
587 | * This fails on dirty or anything with private pages | |
588 | */ | |
589 | if (invalidate_inode_page(p)) | |
590 | ret = RECOVERED; | |
591 | else | |
592 | printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", | |
593 | pfn); | |
594 | } | |
595 | return ret; | |
596 | } | |
597 | ||
598 | /* | |
599 | * Dirty cache page page | |
600 | * Issues: when the error hit a hole page the error is not properly | |
601 | * propagated. | |
602 | */ | |
603 | static int me_pagecache_dirty(struct page *p, unsigned long pfn) | |
604 | { | |
605 | struct address_space *mapping = page_mapping(p); | |
606 | ||
607 | SetPageError(p); | |
608 | /* TBD: print more information about the file. */ | |
609 | if (mapping) { | |
610 | /* | |
611 | * IO error will be reported by write(), fsync(), etc. | |
612 | * who check the mapping. | |
613 | * This way the application knows that something went | |
614 | * wrong with its dirty file data. | |
615 | * | |
616 | * There's one open issue: | |
617 | * | |
618 | * The EIO will be only reported on the next IO | |
619 | * operation and then cleared through the IO map. | |
620 | * Normally Linux has two mechanisms to pass IO error | |
621 | * first through the AS_EIO flag in the address space | |
622 | * and then through the PageError flag in the page. | |
623 | * Since we drop pages on memory failure handling the | |
624 | * only mechanism open to use is through AS_AIO. | |
625 | * | |
626 | * This has the disadvantage that it gets cleared on | |
627 | * the first operation that returns an error, while | |
628 | * the PageError bit is more sticky and only cleared | |
629 | * when the page is reread or dropped. If an | |
630 | * application assumes it will always get error on | |
631 | * fsync, but does other operations on the fd before | |
632 | * and the page is dropped inbetween then the error | |
633 | * will not be properly reported. | |
634 | * | |
635 | * This can already happen even without hwpoisoned | |
636 | * pages: first on metadata IO errors (which only | |
637 | * report through AS_EIO) or when the page is dropped | |
638 | * at the wrong time. | |
639 | * | |
640 | * So right now we assume that the application DTRT on | |
641 | * the first EIO, but we're not worse than other parts | |
642 | * of the kernel. | |
643 | */ | |
644 | mapping_set_error(mapping, EIO); | |
645 | } | |
646 | ||
647 | return me_pagecache_clean(p, pfn); | |
648 | } | |
649 | ||
650 | /* | |
651 | * Clean and dirty swap cache. | |
652 | * | |
653 | * Dirty swap cache page is tricky to handle. The page could live both in page | |
654 | * cache and swap cache(ie. page is freshly swapped in). So it could be | |
655 | * referenced concurrently by 2 types of PTEs: | |
656 | * normal PTEs and swap PTEs. We try to handle them consistently by calling | |
657 | * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, | |
658 | * and then | |
659 | * - clear dirty bit to prevent IO | |
660 | * - remove from LRU | |
661 | * - but keep in the swap cache, so that when we return to it on | |
662 | * a later page fault, we know the application is accessing | |
663 | * corrupted data and shall be killed (we installed simple | |
664 | * interception code in do_swap_page to catch it). | |
665 | * | |
666 | * Clean swap cache pages can be directly isolated. A later page fault will | |
667 | * bring in the known good data from disk. | |
668 | */ | |
669 | static int me_swapcache_dirty(struct page *p, unsigned long pfn) | |
670 | { | |
6a46079c AK |
671 | ClearPageDirty(p); |
672 | /* Trigger EIO in shmem: */ | |
673 | ClearPageUptodate(p); | |
674 | ||
dc2a1cbf WF |
675 | if (!delete_from_lru_cache(p)) |
676 | return DELAYED; | |
677 | else | |
678 | return FAILED; | |
6a46079c AK |
679 | } |
680 | ||
681 | static int me_swapcache_clean(struct page *p, unsigned long pfn) | |
682 | { | |
6a46079c | 683 | delete_from_swap_cache(p); |
e43c3afb | 684 | |
dc2a1cbf WF |
685 | if (!delete_from_lru_cache(p)) |
686 | return RECOVERED; | |
687 | else | |
688 | return FAILED; | |
6a46079c AK |
689 | } |
690 | ||
691 | /* | |
692 | * Huge pages. Needs work. | |
693 | * Issues: | |
93f70f90 NH |
694 | * - Error on hugepage is contained in hugepage unit (not in raw page unit.) |
695 | * To narrow down kill region to one page, we need to break up pmd. | |
696 | * - To support soft-offlining for hugepage, we need to support hugepage | |
697 | * migration. | |
6a46079c AK |
698 | */ |
699 | static int me_huge_page(struct page *p, unsigned long pfn) | |
700 | { | |
93f70f90 NH |
701 | struct page *hpage = compound_head(p); |
702 | /* | |
703 | * We can safely recover from error on free or reserved (i.e. | |
704 | * not in-use) hugepage by dequeuing it from freelist. | |
705 | * To check whether a hugepage is in-use or not, we can't use | |
706 | * page->lru because it can be used in other hugepage operations, | |
707 | * such as __unmap_hugepage_range() and gather_surplus_pages(). | |
708 | * So instead we use page_mapping() and PageAnon(). | |
709 | * We assume that this function is called with page lock held, | |
710 | * so there is no race between isolation and mapping/unmapping. | |
711 | */ | |
712 | if (!(page_mapping(hpage) || PageAnon(hpage))) { | |
713 | __isolate_hwpoisoned_huge_page(hpage); | |
714 | return RECOVERED; | |
715 | } | |
716 | return DELAYED; | |
6a46079c AK |
717 | } |
718 | ||
719 | /* | |
720 | * Various page states we can handle. | |
721 | * | |
722 | * A page state is defined by its current page->flags bits. | |
723 | * The table matches them in order and calls the right handler. | |
724 | * | |
725 | * This is quite tricky because we can access page at any time | |
726 | * in its live cycle, so all accesses have to be extremly careful. | |
727 | * | |
728 | * This is not complete. More states could be added. | |
729 | * For any missing state don't attempt recovery. | |
730 | */ | |
731 | ||
732 | #define dirty (1UL << PG_dirty) | |
733 | #define sc (1UL << PG_swapcache) | |
734 | #define unevict (1UL << PG_unevictable) | |
735 | #define mlock (1UL << PG_mlocked) | |
736 | #define writeback (1UL << PG_writeback) | |
737 | #define lru (1UL << PG_lru) | |
738 | #define swapbacked (1UL << PG_swapbacked) | |
739 | #define head (1UL << PG_head) | |
740 | #define tail (1UL << PG_tail) | |
741 | #define compound (1UL << PG_compound) | |
742 | #define slab (1UL << PG_slab) | |
6a46079c AK |
743 | #define reserved (1UL << PG_reserved) |
744 | ||
745 | static struct page_state { | |
746 | unsigned long mask; | |
747 | unsigned long res; | |
748 | char *msg; | |
749 | int (*action)(struct page *p, unsigned long pfn); | |
750 | } error_states[] = { | |
d95ea51e | 751 | { reserved, reserved, "reserved kernel", me_kernel }, |
95d01fc6 WF |
752 | /* |
753 | * free pages are specially detected outside this table: | |
754 | * PG_buddy pages only make a small fraction of all free pages. | |
755 | */ | |
6a46079c AK |
756 | |
757 | /* | |
758 | * Could in theory check if slab page is free or if we can drop | |
759 | * currently unused objects without touching them. But just | |
760 | * treat it as standard kernel for now. | |
761 | */ | |
762 | { slab, slab, "kernel slab", me_kernel }, | |
763 | ||
764 | #ifdef CONFIG_PAGEFLAGS_EXTENDED | |
765 | { head, head, "huge", me_huge_page }, | |
766 | { tail, tail, "huge", me_huge_page }, | |
767 | #else | |
768 | { compound, compound, "huge", me_huge_page }, | |
769 | #endif | |
770 | ||
771 | { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, | |
772 | { sc|dirty, sc, "swapcache", me_swapcache_clean }, | |
773 | ||
774 | { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, | |
775 | { unevict, unevict, "unevictable LRU", me_pagecache_clean}, | |
776 | ||
6a46079c AK |
777 | { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, |
778 | { mlock, mlock, "mlocked LRU", me_pagecache_clean }, | |
6a46079c AK |
779 | |
780 | { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, | |
781 | { lru|dirty, lru, "clean LRU", me_pagecache_clean }, | |
6a46079c AK |
782 | |
783 | /* | |
784 | * Catchall entry: must be at end. | |
785 | */ | |
786 | { 0, 0, "unknown page state", me_unknown }, | |
787 | }; | |
788 | ||
2326c467 AK |
789 | #undef dirty |
790 | #undef sc | |
791 | #undef unevict | |
792 | #undef mlock | |
793 | #undef writeback | |
794 | #undef lru | |
795 | #undef swapbacked | |
796 | #undef head | |
797 | #undef tail | |
798 | #undef compound | |
799 | #undef slab | |
800 | #undef reserved | |
801 | ||
6a46079c AK |
802 | static void action_result(unsigned long pfn, char *msg, int result) |
803 | { | |
a7560fc8 | 804 | struct page *page = pfn_to_page(pfn); |
6a46079c AK |
805 | |
806 | printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", | |
807 | pfn, | |
a7560fc8 | 808 | PageDirty(page) ? "dirty " : "", |
6a46079c AK |
809 | msg, action_name[result]); |
810 | } | |
811 | ||
812 | static int page_action(struct page_state *ps, struct page *p, | |
bd1ce5f9 | 813 | unsigned long pfn) |
6a46079c AK |
814 | { |
815 | int result; | |
7456b040 | 816 | int count; |
6a46079c AK |
817 | |
818 | result = ps->action(p, pfn); | |
819 | action_result(pfn, ps->msg, result); | |
7456b040 | 820 | |
bd1ce5f9 | 821 | count = page_count(p) - 1; |
138ce286 WF |
822 | if (ps->action == me_swapcache_dirty && result == DELAYED) |
823 | count--; | |
824 | if (count != 0) { | |
6a46079c AK |
825 | printk(KERN_ERR |
826 | "MCE %#lx: %s page still referenced by %d users\n", | |
7456b040 | 827 | pfn, ps->msg, count); |
138ce286 WF |
828 | result = FAILED; |
829 | } | |
6a46079c AK |
830 | |
831 | /* Could do more checks here if page looks ok */ | |
832 | /* | |
833 | * Could adjust zone counters here to correct for the missing page. | |
834 | */ | |
835 | ||
138ce286 | 836 | return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; |
6a46079c AK |
837 | } |
838 | ||
839 | #define N_UNMAP_TRIES 5 | |
840 | ||
841 | /* | |
842 | * Do all that is necessary to remove user space mappings. Unmap | |
843 | * the pages and send SIGBUS to the processes if the data was dirty. | |
844 | */ | |
1668bfd5 | 845 | static int hwpoison_user_mappings(struct page *p, unsigned long pfn, |
6a46079c AK |
846 | int trapno) |
847 | { | |
848 | enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; | |
849 | struct address_space *mapping; | |
850 | LIST_HEAD(tokill); | |
851 | int ret; | |
852 | int i; | |
853 | int kill = 1; | |
7af446a8 | 854 | struct page *hpage = compound_head(p); |
6a46079c | 855 | |
1668bfd5 WF |
856 | if (PageReserved(p) || PageSlab(p)) |
857 | return SWAP_SUCCESS; | |
6a46079c | 858 | |
6a46079c AK |
859 | /* |
860 | * This check implies we don't kill processes if their pages | |
861 | * are in the swap cache early. Those are always late kills. | |
862 | */ | |
7af446a8 | 863 | if (!page_mapped(hpage)) |
1668bfd5 WF |
864 | return SWAP_SUCCESS; |
865 | ||
7af446a8 | 866 | if (PageKsm(p)) |
1668bfd5 | 867 | return SWAP_FAIL; |
6a46079c AK |
868 | |
869 | if (PageSwapCache(p)) { | |
870 | printk(KERN_ERR | |
871 | "MCE %#lx: keeping poisoned page in swap cache\n", pfn); | |
872 | ttu |= TTU_IGNORE_HWPOISON; | |
873 | } | |
874 | ||
875 | /* | |
876 | * Propagate the dirty bit from PTEs to struct page first, because we | |
877 | * need this to decide if we should kill or just drop the page. | |
db0480b3 WF |
878 | * XXX: the dirty test could be racy: set_page_dirty() may not always |
879 | * be called inside page lock (it's recommended but not enforced). | |
6a46079c | 880 | */ |
7af446a8 NH |
881 | mapping = page_mapping(hpage); |
882 | if (!PageDirty(hpage) && mapping && | |
883 | mapping_cap_writeback_dirty(mapping)) { | |
884 | if (page_mkclean(hpage)) { | |
885 | SetPageDirty(hpage); | |
6a46079c AK |
886 | } else { |
887 | kill = 0; | |
888 | ttu |= TTU_IGNORE_HWPOISON; | |
889 | printk(KERN_INFO | |
890 | "MCE %#lx: corrupted page was clean: dropped without side effects\n", | |
891 | pfn); | |
892 | } | |
893 | } | |
894 | ||
895 | /* | |
896 | * First collect all the processes that have the page | |
897 | * mapped in dirty form. This has to be done before try_to_unmap, | |
898 | * because ttu takes the rmap data structures down. | |
899 | * | |
900 | * Error handling: We ignore errors here because | |
901 | * there's nothing that can be done. | |
902 | */ | |
903 | if (kill) | |
7af446a8 | 904 | collect_procs(hpage, &tokill); |
6a46079c AK |
905 | |
906 | /* | |
907 | * try_to_unmap can fail temporarily due to races. | |
908 | * Try a few times (RED-PEN better strategy?) | |
909 | */ | |
910 | for (i = 0; i < N_UNMAP_TRIES; i++) { | |
7af446a8 | 911 | ret = try_to_unmap(hpage, ttu); |
6a46079c AK |
912 | if (ret == SWAP_SUCCESS) |
913 | break; | |
914 | pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); | |
915 | } | |
916 | ||
917 | if (ret != SWAP_SUCCESS) | |
918 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", | |
7af446a8 | 919 | pfn, page_mapcount(hpage)); |
6a46079c AK |
920 | |
921 | /* | |
922 | * Now that the dirty bit has been propagated to the | |
923 | * struct page and all unmaps done we can decide if | |
924 | * killing is needed or not. Only kill when the page | |
925 | * was dirty, otherwise the tokill list is merely | |
926 | * freed. When there was a problem unmapping earlier | |
927 | * use a more force-full uncatchable kill to prevent | |
928 | * any accesses to the poisoned memory. | |
929 | */ | |
7af446a8 | 930 | kill_procs_ao(&tokill, !!PageDirty(hpage), trapno, |
6a46079c | 931 | ret != SWAP_SUCCESS, pfn); |
1668bfd5 WF |
932 | |
933 | return ret; | |
6a46079c AK |
934 | } |
935 | ||
7013febc NH |
936 | static void set_page_hwpoison_huge_page(struct page *hpage) |
937 | { | |
938 | int i; | |
939 | int nr_pages = 1 << compound_order(hpage); | |
940 | for (i = 0; i < nr_pages; i++) | |
941 | SetPageHWPoison(hpage + i); | |
942 | } | |
943 | ||
944 | static void clear_page_hwpoison_huge_page(struct page *hpage) | |
945 | { | |
946 | int i; | |
947 | int nr_pages = 1 << compound_order(hpage); | |
948 | for (i = 0; i < nr_pages; i++) | |
949 | ClearPageHWPoison(hpage + i); | |
950 | } | |
951 | ||
82ba011b | 952 | int __memory_failure(unsigned long pfn, int trapno, int flags) |
6a46079c AK |
953 | { |
954 | struct page_state *ps; | |
955 | struct page *p; | |
7af446a8 | 956 | struct page *hpage; |
6a46079c | 957 | int res; |
c9fbdd5f | 958 | unsigned int nr_pages; |
6a46079c AK |
959 | |
960 | if (!sysctl_memory_failure_recovery) | |
961 | panic("Memory failure from trap %d on page %lx", trapno, pfn); | |
962 | ||
963 | if (!pfn_valid(pfn)) { | |
a7560fc8 WF |
964 | printk(KERN_ERR |
965 | "MCE %#lx: memory outside kernel control\n", | |
966 | pfn); | |
967 | return -ENXIO; | |
6a46079c AK |
968 | } |
969 | ||
970 | p = pfn_to_page(pfn); | |
7af446a8 | 971 | hpage = compound_head(p); |
6a46079c | 972 | if (TestSetPageHWPoison(p)) { |
d95ea51e | 973 | printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); |
6a46079c AK |
974 | return 0; |
975 | } | |
976 | ||
c9fbdd5f NH |
977 | nr_pages = 1 << compound_order(hpage); |
978 | atomic_long_add(nr_pages, &mce_bad_pages); | |
6a46079c AK |
979 | |
980 | /* | |
981 | * We need/can do nothing about count=0 pages. | |
982 | * 1) it's a free page, and therefore in safe hand: | |
983 | * prep_new_page() will be the gate keeper. | |
984 | * 2) it's part of a non-compound high order page. | |
985 | * Implies some kernel user: cannot stop them from | |
986 | * R/W the page; let's pray that the page has been | |
987 | * used and will be freed some time later. | |
988 | * In fact it's dangerous to directly bump up page count from 0, | |
989 | * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. | |
990 | */ | |
82ba011b | 991 | if (!(flags & MF_COUNT_INCREASED) && |
7af446a8 | 992 | !get_page_unless_zero(hpage)) { |
8d22ba1b WF |
993 | if (is_free_buddy_page(p)) { |
994 | action_result(pfn, "free buddy", DELAYED); | |
995 | return 0; | |
996 | } else { | |
997 | action_result(pfn, "high order kernel", IGNORED); | |
998 | return -EBUSY; | |
999 | } | |
6a46079c AK |
1000 | } |
1001 | ||
e43c3afb WF |
1002 | /* |
1003 | * We ignore non-LRU pages for good reasons. | |
1004 | * - PG_locked is only well defined for LRU pages and a few others | |
1005 | * - to avoid races with __set_page_locked() | |
1006 | * - to avoid races with __SetPageSlab*() (and more non-atomic ops) | |
1007 | * The check (unnecessarily) ignores LRU pages being isolated and | |
1008 | * walked by the page reclaim code, however that's not a big loss. | |
1009 | */ | |
7af446a8 | 1010 | if (!PageLRU(p) && !PageHuge(p)) |
facb6011 | 1011 | shake_page(p, 0); |
7af446a8 | 1012 | if (!PageLRU(p) && !PageHuge(p)) { |
0474a60e AK |
1013 | /* |
1014 | * shake_page could have turned it free. | |
1015 | */ | |
1016 | if (is_free_buddy_page(p)) { | |
1017 | action_result(pfn, "free buddy, 2nd try", DELAYED); | |
1018 | return 0; | |
1019 | } | |
e43c3afb WF |
1020 | action_result(pfn, "non LRU", IGNORED); |
1021 | put_page(p); | |
1022 | return -EBUSY; | |
1023 | } | |
e43c3afb | 1024 | |
6a46079c AK |
1025 | /* |
1026 | * Lock the page and wait for writeback to finish. | |
1027 | * It's very difficult to mess with pages currently under IO | |
1028 | * and in many cases impossible, so we just avoid it here. | |
1029 | */ | |
7af446a8 | 1030 | lock_page_nosync(hpage); |
847ce401 WF |
1031 | |
1032 | /* | |
1033 | * unpoison always clear PG_hwpoison inside page lock | |
1034 | */ | |
1035 | if (!PageHWPoison(p)) { | |
d95ea51e | 1036 | printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); |
847ce401 WF |
1037 | res = 0; |
1038 | goto out; | |
1039 | } | |
7c116f2b WF |
1040 | if (hwpoison_filter(p)) { |
1041 | if (TestClearPageHWPoison(p)) | |
c9fbdd5f | 1042 | atomic_long_sub(nr_pages, &mce_bad_pages); |
7af446a8 NH |
1043 | unlock_page(hpage); |
1044 | put_page(hpage); | |
7c116f2b WF |
1045 | return 0; |
1046 | } | |
847ce401 | 1047 | |
7013febc NH |
1048 | /* |
1049 | * For error on the tail page, we should set PG_hwpoison | |
1050 | * on the head page to show that the hugepage is hwpoisoned | |
1051 | */ | |
1052 | if (PageTail(p) && TestSetPageHWPoison(hpage)) { | |
1053 | action_result(pfn, "hugepage already hardware poisoned", | |
1054 | IGNORED); | |
1055 | unlock_page(hpage); | |
1056 | put_page(hpage); | |
1057 | return 0; | |
1058 | } | |
1059 | /* | |
1060 | * Set PG_hwpoison on all pages in an error hugepage, | |
1061 | * because containment is done in hugepage unit for now. | |
1062 | * Since we have done TestSetPageHWPoison() for the head page with | |
1063 | * page lock held, we can safely set PG_hwpoison bits on tail pages. | |
1064 | */ | |
1065 | if (PageHuge(p)) | |
1066 | set_page_hwpoison_huge_page(hpage); | |
1067 | ||
6a46079c AK |
1068 | wait_on_page_writeback(p); |
1069 | ||
1070 | /* | |
1071 | * Now take care of user space mappings. | |
1668bfd5 | 1072 | * Abort on fail: __remove_from_page_cache() assumes unmapped page. |
6a46079c | 1073 | */ |
1668bfd5 WF |
1074 | if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { |
1075 | printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); | |
1076 | res = -EBUSY; | |
1077 | goto out; | |
1078 | } | |
6a46079c AK |
1079 | |
1080 | /* | |
1081 | * Torn down by someone else? | |
1082 | */ | |
dc2a1cbf | 1083 | if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { |
6a46079c | 1084 | action_result(pfn, "already truncated LRU", IGNORED); |
d95ea51e | 1085 | res = -EBUSY; |
6a46079c AK |
1086 | goto out; |
1087 | } | |
1088 | ||
1089 | res = -EBUSY; | |
1090 | for (ps = error_states;; ps++) { | |
dc2a1cbf | 1091 | if ((p->flags & ps->mask) == ps->res) { |
bd1ce5f9 | 1092 | res = page_action(ps, p, pfn); |
6a46079c AK |
1093 | break; |
1094 | } | |
1095 | } | |
1096 | out: | |
7af446a8 | 1097 | unlock_page(hpage); |
6a46079c AK |
1098 | return res; |
1099 | } | |
1100 | EXPORT_SYMBOL_GPL(__memory_failure); | |
1101 | ||
1102 | /** | |
1103 | * memory_failure - Handle memory failure of a page. | |
1104 | * @pfn: Page Number of the corrupted page | |
1105 | * @trapno: Trap number reported in the signal to user space. | |
1106 | * | |
1107 | * This function is called by the low level machine check code | |
1108 | * of an architecture when it detects hardware memory corruption | |
1109 | * of a page. It tries its best to recover, which includes | |
1110 | * dropping pages, killing processes etc. | |
1111 | * | |
1112 | * The function is primarily of use for corruptions that | |
1113 | * happen outside the current execution context (e.g. when | |
1114 | * detected by a background scrubber) | |
1115 | * | |
1116 | * Must run in process context (e.g. a work queue) with interrupts | |
1117 | * enabled and no spinlocks hold. | |
1118 | */ | |
1119 | void memory_failure(unsigned long pfn, int trapno) | |
1120 | { | |
1121 | __memory_failure(pfn, trapno, 0); | |
1122 | } | |
847ce401 WF |
1123 | |
1124 | /** | |
1125 | * unpoison_memory - Unpoison a previously poisoned page | |
1126 | * @pfn: Page number of the to be unpoisoned page | |
1127 | * | |
1128 | * Software-unpoison a page that has been poisoned by | |
1129 | * memory_failure() earlier. | |
1130 | * | |
1131 | * This is only done on the software-level, so it only works | |
1132 | * for linux injected failures, not real hardware failures | |
1133 | * | |
1134 | * Returns 0 for success, otherwise -errno. | |
1135 | */ | |
1136 | int unpoison_memory(unsigned long pfn) | |
1137 | { | |
1138 | struct page *page; | |
1139 | struct page *p; | |
1140 | int freeit = 0; | |
c9fbdd5f | 1141 | unsigned int nr_pages; |
847ce401 WF |
1142 | |
1143 | if (!pfn_valid(pfn)) | |
1144 | return -ENXIO; | |
1145 | ||
1146 | p = pfn_to_page(pfn); | |
1147 | page = compound_head(p); | |
1148 | ||
1149 | if (!PageHWPoison(p)) { | |
1150 | pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn); | |
1151 | return 0; | |
1152 | } | |
1153 | ||
c9fbdd5f NH |
1154 | nr_pages = 1 << compound_order(page); |
1155 | ||
847ce401 WF |
1156 | if (!get_page_unless_zero(page)) { |
1157 | if (TestClearPageHWPoison(p)) | |
c9fbdd5f | 1158 | atomic_long_sub(nr_pages, &mce_bad_pages); |
847ce401 WF |
1159 | pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); |
1160 | return 0; | |
1161 | } | |
1162 | ||
1163 | lock_page_nosync(page); | |
1164 | /* | |
1165 | * This test is racy because PG_hwpoison is set outside of page lock. | |
1166 | * That's acceptable because that won't trigger kernel panic. Instead, | |
1167 | * the PG_hwpoison page will be caught and isolated on the entrance to | |
1168 | * the free buddy page pool. | |
1169 | */ | |
c9fbdd5f | 1170 | if (TestClearPageHWPoison(page)) { |
847ce401 | 1171 | pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); |
c9fbdd5f | 1172 | atomic_long_sub(nr_pages, &mce_bad_pages); |
847ce401 WF |
1173 | freeit = 1; |
1174 | } | |
7013febc NH |
1175 | if (PageHuge(p)) |
1176 | clear_page_hwpoison_huge_page(page); | |
847ce401 WF |
1177 | unlock_page(page); |
1178 | ||
1179 | put_page(page); | |
1180 | if (freeit) | |
1181 | put_page(page); | |
1182 | ||
1183 | return 0; | |
1184 | } | |
1185 | EXPORT_SYMBOL(unpoison_memory); | |
facb6011 AK |
1186 | |
1187 | static struct page *new_page(struct page *p, unsigned long private, int **x) | |
1188 | { | |
12686d15 AK |
1189 | int nid = page_to_nid(p); |
1190 | return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); | |
facb6011 AK |
1191 | } |
1192 | ||
1193 | /* | |
1194 | * Safely get reference count of an arbitrary page. | |
1195 | * Returns 0 for a free page, -EIO for a zero refcount page | |
1196 | * that is not free, and 1 for any other page type. | |
1197 | * For 1 the page is returned with increased page count, otherwise not. | |
1198 | */ | |
1199 | static int get_any_page(struct page *p, unsigned long pfn, int flags) | |
1200 | { | |
1201 | int ret; | |
1202 | ||
1203 | if (flags & MF_COUNT_INCREASED) | |
1204 | return 1; | |
1205 | ||
1206 | /* | |
1207 | * The lock_system_sleep prevents a race with memory hotplug, | |
1208 | * because the isolation assumes there's only a single user. | |
1209 | * This is a big hammer, a better would be nicer. | |
1210 | */ | |
1211 | lock_system_sleep(); | |
1212 | ||
1213 | /* | |
1214 | * Isolate the page, so that it doesn't get reallocated if it | |
1215 | * was free. | |
1216 | */ | |
1217 | set_migratetype_isolate(p); | |
1218 | if (!get_page_unless_zero(compound_head(p))) { | |
1219 | if (is_free_buddy_page(p)) { | |
1220 | pr_debug("get_any_page: %#lx free buddy page\n", pfn); | |
1221 | /* Set hwpoison bit while page is still isolated */ | |
1222 | SetPageHWPoison(p); | |
1223 | ret = 0; | |
1224 | } else { | |
1225 | pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n", | |
1226 | pfn, p->flags); | |
1227 | ret = -EIO; | |
1228 | } | |
1229 | } else { | |
1230 | /* Not a free page */ | |
1231 | ret = 1; | |
1232 | } | |
1233 | unset_migratetype_isolate(p); | |
1234 | unlock_system_sleep(); | |
1235 | return ret; | |
1236 | } | |
1237 | ||
1238 | /** | |
1239 | * soft_offline_page - Soft offline a page. | |
1240 | * @page: page to offline | |
1241 | * @flags: flags. Same as memory_failure(). | |
1242 | * | |
1243 | * Returns 0 on success, otherwise negated errno. | |
1244 | * | |
1245 | * Soft offline a page, by migration or invalidation, | |
1246 | * without killing anything. This is for the case when | |
1247 | * a page is not corrupted yet (so it's still valid to access), | |
1248 | * but has had a number of corrected errors and is better taken | |
1249 | * out. | |
1250 | * | |
1251 | * The actual policy on when to do that is maintained by | |
1252 | * user space. | |
1253 | * | |
1254 | * This should never impact any application or cause data loss, | |
1255 | * however it might take some time. | |
1256 | * | |
1257 | * This is not a 100% solution for all memory, but tries to be | |
1258 | * ``good enough'' for the majority of memory. | |
1259 | */ | |
1260 | int soft_offline_page(struct page *page, int flags) | |
1261 | { | |
1262 | int ret; | |
1263 | unsigned long pfn = page_to_pfn(page); | |
1264 | ||
1265 | ret = get_any_page(page, pfn, flags); | |
1266 | if (ret < 0) | |
1267 | return ret; | |
1268 | if (ret == 0) | |
1269 | goto done; | |
1270 | ||
1271 | /* | |
1272 | * Page cache page we can handle? | |
1273 | */ | |
1274 | if (!PageLRU(page)) { | |
1275 | /* | |
1276 | * Try to free it. | |
1277 | */ | |
1278 | put_page(page); | |
1279 | shake_page(page, 1); | |
1280 | ||
1281 | /* | |
1282 | * Did it turn free? | |
1283 | */ | |
1284 | ret = get_any_page(page, pfn, 0); | |
1285 | if (ret < 0) | |
1286 | return ret; | |
1287 | if (ret == 0) | |
1288 | goto done; | |
1289 | } | |
1290 | if (!PageLRU(page)) { | |
1291 | pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n", | |
1292 | pfn, page->flags); | |
1293 | return -EIO; | |
1294 | } | |
1295 | ||
1296 | lock_page(page); | |
1297 | wait_on_page_writeback(page); | |
1298 | ||
1299 | /* | |
1300 | * Synchronized using the page lock with memory_failure() | |
1301 | */ | |
1302 | if (PageHWPoison(page)) { | |
1303 | unlock_page(page); | |
1304 | put_page(page); | |
1305 | pr_debug("soft offline: %#lx page already poisoned\n", pfn); | |
1306 | return -EBUSY; | |
1307 | } | |
1308 | ||
1309 | /* | |
1310 | * Try to invalidate first. This should work for | |
1311 | * non dirty unmapped page cache pages. | |
1312 | */ | |
1313 | ret = invalidate_inode_page(page); | |
1314 | unlock_page(page); | |
1315 | ||
1316 | /* | |
1317 | * Drop count because page migration doesn't like raised | |
1318 | * counts. The page could get re-allocated, but if it becomes | |
1319 | * LRU the isolation will just fail. | |
1320 | * RED-PEN would be better to keep it isolated here, but we | |
1321 | * would need to fix isolation locking first. | |
1322 | */ | |
1323 | put_page(page); | |
1324 | if (ret == 1) { | |
1325 | ret = 0; | |
1326 | pr_debug("soft_offline: %#lx: invalidated\n", pfn); | |
1327 | goto done; | |
1328 | } | |
1329 | ||
1330 | /* | |
1331 | * Simple invalidation didn't work. | |
1332 | * Try to migrate to a new page instead. migrate.c | |
1333 | * handles a large number of cases for us. | |
1334 | */ | |
1335 | ret = isolate_lru_page(page); | |
1336 | if (!ret) { | |
1337 | LIST_HEAD(pagelist); | |
1338 | ||
1339 | list_add(&page->lru, &pagelist); | |
1340 | ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); | |
1341 | if (ret) { | |
1342 | pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", | |
1343 | pfn, ret, page->flags); | |
1344 | if (ret > 0) | |
1345 | ret = -EIO; | |
1346 | } | |
1347 | } else { | |
1348 | pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", | |
1349 | pfn, ret, page_count(page), page->flags); | |
1350 | } | |
1351 | if (ret) | |
1352 | return ret; | |
1353 | ||
1354 | done: | |
1355 | atomic_long_add(1, &mce_bad_pages); | |
1356 | SetPageHWPoison(page); | |
1357 | /* keep elevated page count for bad page */ | |
1358 | return ret; | |
1359 | } | |
bf998156 | 1360 | |
bbeb3406 YH |
1361 | /* |
1362 | * The caller must hold current->mm->mmap_sem in read mode. | |
1363 | */ | |
bf998156 YH |
1364 | int is_hwpoison_address(unsigned long addr) |
1365 | { | |
1366 | pgd_t *pgdp; | |
1367 | pud_t pud, *pudp; | |
1368 | pmd_t pmd, *pmdp; | |
1369 | pte_t pte, *ptep; | |
1370 | swp_entry_t entry; | |
1371 | ||
1372 | pgdp = pgd_offset(current->mm, addr); | |
1373 | if (!pgd_present(*pgdp)) | |
1374 | return 0; | |
1375 | pudp = pud_offset(pgdp, addr); | |
1376 | pud = *pudp; | |
1377 | if (!pud_present(pud) || pud_large(pud)) | |
1378 | return 0; | |
1379 | pmdp = pmd_offset(pudp, addr); | |
1380 | pmd = *pmdp; | |
1381 | if (!pmd_present(pmd) || pmd_large(pmd)) | |
1382 | return 0; | |
1383 | ptep = pte_offset_map(pmdp, addr); | |
1384 | pte = *ptep; | |
1385 | pte_unmap(ptep); | |
1386 | if (!is_swap_pte(pte)) | |
1387 | return 0; | |
1388 | entry = pte_to_swp_entry(pte); | |
1389 | return is_hwpoison_entry(entry); | |
1390 | } | |
1391 | EXPORT_SYMBOL_GPL(is_hwpoison_address); |