]>
Commit | Line | Data |
---|---|---|
95f72d1e YL |
1 | /* |
2 | * Procedures for maintaining information about logical memory blocks. | |
3 | * | |
4 | * Peter Bergner, IBM Corp. June 2001. | |
5 | * Copyright (C) 2001 Peter Bergner. | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or | |
8 | * modify it under the terms of the GNU General Public License | |
9 | * as published by the Free Software Foundation; either version | |
10 | * 2 of the License, or (at your option) any later version. | |
11 | */ | |
12 | ||
13 | #include <linux/kernel.h> | |
14 | #include <linux/init.h> | |
15 | #include <linux/bitops.h> | |
16 | #include <linux/memblock.h> | |
17 | ||
18 | #define MEMBLOCK_ALLOC_ANYWHERE 0 | |
19 | ||
20 | struct memblock memblock; | |
21 | ||
22 | static int memblock_debug; | |
23 | ||
24 | static int __init early_memblock(char *p) | |
25 | { | |
26 | if (p && strstr(p, "debug")) | |
27 | memblock_debug = 1; | |
28 | return 0; | |
29 | } | |
30 | early_param("memblock", early_memblock); | |
31 | ||
32 | static void memblock_dump(struct memblock_region *region, char *name) | |
33 | { | |
34 | unsigned long long base, size; | |
35 | int i; | |
36 | ||
37 | pr_info(" %s.cnt = 0x%lx\n", name, region->cnt); | |
38 | ||
39 | for (i = 0; i < region->cnt; i++) { | |
40 | base = region->region[i].base; | |
41 | size = region->region[i].size; | |
42 | ||
43 | pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n", | |
44 | name, i, base, base + size - 1, size); | |
45 | } | |
46 | } | |
47 | ||
48 | void memblock_dump_all(void) | |
49 | { | |
50 | if (!memblock_debug) | |
51 | return; | |
52 | ||
53 | pr_info("MEMBLOCK configuration:\n"); | |
54 | pr_info(" rmo_size = 0x%llx\n", (unsigned long long)memblock.rmo_size); | |
55 | pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size); | |
56 | ||
57 | memblock_dump(&memblock.memory, "memory"); | |
58 | memblock_dump(&memblock.reserved, "reserved"); | |
59 | } | |
60 | ||
61 | static unsigned long memblock_addrs_overlap(u64 base1, u64 size1, u64 base2, | |
62 | u64 size2) | |
63 | { | |
64 | return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); | |
65 | } | |
66 | ||
67 | static long memblock_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2) | |
68 | { | |
69 | if (base2 == base1 + size1) | |
70 | return 1; | |
71 | else if (base1 == base2 + size2) | |
72 | return -1; | |
73 | ||
74 | return 0; | |
75 | } | |
76 | ||
77 | static long memblock_regions_adjacent(struct memblock_region *rgn, | |
78 | unsigned long r1, unsigned long r2) | |
79 | { | |
80 | u64 base1 = rgn->region[r1].base; | |
81 | u64 size1 = rgn->region[r1].size; | |
82 | u64 base2 = rgn->region[r2].base; | |
83 | u64 size2 = rgn->region[r2].size; | |
84 | ||
85 | return memblock_addrs_adjacent(base1, size1, base2, size2); | |
86 | } | |
87 | ||
88 | static void memblock_remove_region(struct memblock_region *rgn, unsigned long r) | |
89 | { | |
90 | unsigned long i; | |
91 | ||
92 | for (i = r; i < rgn->cnt - 1; i++) { | |
93 | rgn->region[i].base = rgn->region[i + 1].base; | |
94 | rgn->region[i].size = rgn->region[i + 1].size; | |
95 | } | |
96 | rgn->cnt--; | |
97 | } | |
98 | ||
99 | /* Assumption: base addr of region 1 < base addr of region 2 */ | |
100 | static void memblock_coalesce_regions(struct memblock_region *rgn, | |
101 | unsigned long r1, unsigned long r2) | |
102 | { | |
103 | rgn->region[r1].size += rgn->region[r2].size; | |
104 | memblock_remove_region(rgn, r2); | |
105 | } | |
106 | ||
107 | void __init memblock_init(void) | |
108 | { | |
109 | /* Create a dummy zero size MEMBLOCK which will get coalesced away later. | |
110 | * This simplifies the memblock_add() code below... | |
111 | */ | |
112 | memblock.memory.region[0].base = 0; | |
113 | memblock.memory.region[0].size = 0; | |
114 | memblock.memory.cnt = 1; | |
115 | ||
116 | /* Ditto. */ | |
117 | memblock.reserved.region[0].base = 0; | |
118 | memblock.reserved.region[0].size = 0; | |
119 | memblock.reserved.cnt = 1; | |
120 | } | |
121 | ||
122 | void __init memblock_analyze(void) | |
123 | { | |
124 | int i; | |
125 | ||
126 | memblock.memory.size = 0; | |
127 | ||
128 | for (i = 0; i < memblock.memory.cnt; i++) | |
129 | memblock.memory.size += memblock.memory.region[i].size; | |
130 | } | |
131 | ||
132 | static long memblock_add_region(struct memblock_region *rgn, u64 base, u64 size) | |
133 | { | |
134 | unsigned long coalesced = 0; | |
135 | long adjacent, i; | |
136 | ||
137 | if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) { | |
138 | rgn->region[0].base = base; | |
139 | rgn->region[0].size = size; | |
140 | return 0; | |
141 | } | |
142 | ||
143 | /* First try and coalesce this MEMBLOCK with another. */ | |
144 | for (i = 0; i < rgn->cnt; i++) { | |
145 | u64 rgnbase = rgn->region[i].base; | |
146 | u64 rgnsize = rgn->region[i].size; | |
147 | ||
148 | if ((rgnbase == base) && (rgnsize == size)) | |
149 | /* Already have this region, so we're done */ | |
150 | return 0; | |
151 | ||
152 | adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize); | |
153 | if (adjacent > 0) { | |
154 | rgn->region[i].base -= size; | |
155 | rgn->region[i].size += size; | |
156 | coalesced++; | |
157 | break; | |
158 | } else if (adjacent < 0) { | |
159 | rgn->region[i].size += size; | |
160 | coalesced++; | |
161 | break; | |
162 | } | |
163 | } | |
164 | ||
165 | if ((i < rgn->cnt - 1) && memblock_regions_adjacent(rgn, i, i+1)) { | |
166 | memblock_coalesce_regions(rgn, i, i+1); | |
167 | coalesced++; | |
168 | } | |
169 | ||
170 | if (coalesced) | |
171 | return coalesced; | |
172 | if (rgn->cnt >= MAX_MEMBLOCK_REGIONS) | |
173 | return -1; | |
174 | ||
175 | /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */ | |
176 | for (i = rgn->cnt - 1; i >= 0; i--) { | |
177 | if (base < rgn->region[i].base) { | |
178 | rgn->region[i+1].base = rgn->region[i].base; | |
179 | rgn->region[i+1].size = rgn->region[i].size; | |
180 | } else { | |
181 | rgn->region[i+1].base = base; | |
182 | rgn->region[i+1].size = size; | |
183 | break; | |
184 | } | |
185 | } | |
186 | ||
187 | if (base < rgn->region[0].base) { | |
188 | rgn->region[0].base = base; | |
189 | rgn->region[0].size = size; | |
190 | } | |
191 | rgn->cnt++; | |
192 | ||
193 | return 0; | |
194 | } | |
195 | ||
196 | long memblock_add(u64 base, u64 size) | |
197 | { | |
198 | struct memblock_region *_rgn = &memblock.memory; | |
199 | ||
200 | /* On pSeries LPAR systems, the first MEMBLOCK is our RMO region. */ | |
201 | if (base == 0) | |
202 | memblock.rmo_size = size; | |
203 | ||
204 | return memblock_add_region(_rgn, base, size); | |
205 | ||
206 | } | |
207 | ||
208 | static long __memblock_remove(struct memblock_region *rgn, u64 base, u64 size) | |
209 | { | |
210 | u64 rgnbegin, rgnend; | |
211 | u64 end = base + size; | |
212 | int i; | |
213 | ||
214 | rgnbegin = rgnend = 0; /* supress gcc warnings */ | |
215 | ||
216 | /* Find the region where (base, size) belongs to */ | |
217 | for (i=0; i < rgn->cnt; i++) { | |
218 | rgnbegin = rgn->region[i].base; | |
219 | rgnend = rgnbegin + rgn->region[i].size; | |
220 | ||
221 | if ((rgnbegin <= base) && (end <= rgnend)) | |
222 | break; | |
223 | } | |
224 | ||
225 | /* Didn't find the region */ | |
226 | if (i == rgn->cnt) | |
227 | return -1; | |
228 | ||
229 | /* Check to see if we are removing entire region */ | |
230 | if ((rgnbegin == base) && (rgnend == end)) { | |
231 | memblock_remove_region(rgn, i); | |
232 | return 0; | |
233 | } | |
234 | ||
235 | /* Check to see if region is matching at the front */ | |
236 | if (rgnbegin == base) { | |
237 | rgn->region[i].base = end; | |
238 | rgn->region[i].size -= size; | |
239 | return 0; | |
240 | } | |
241 | ||
242 | /* Check to see if the region is matching at the end */ | |
243 | if (rgnend == end) { | |
244 | rgn->region[i].size -= size; | |
245 | return 0; | |
246 | } | |
247 | ||
248 | /* | |
249 | * We need to split the entry - adjust the current one to the | |
250 | * beginging of the hole and add the region after hole. | |
251 | */ | |
252 | rgn->region[i].size = base - rgn->region[i].base; | |
253 | return memblock_add_region(rgn, end, rgnend - end); | |
254 | } | |
255 | ||
256 | long memblock_remove(u64 base, u64 size) | |
257 | { | |
258 | return __memblock_remove(&memblock.memory, base, size); | |
259 | } | |
260 | ||
261 | long __init memblock_free(u64 base, u64 size) | |
262 | { | |
263 | return __memblock_remove(&memblock.reserved, base, size); | |
264 | } | |
265 | ||
266 | long __init memblock_reserve(u64 base, u64 size) | |
267 | { | |
268 | struct memblock_region *_rgn = &memblock.reserved; | |
269 | ||
270 | BUG_ON(0 == size); | |
271 | ||
272 | return memblock_add_region(_rgn, base, size); | |
273 | } | |
274 | ||
275 | long memblock_overlaps_region(struct memblock_region *rgn, u64 base, u64 size) | |
276 | { | |
277 | unsigned long i; | |
278 | ||
279 | for (i = 0; i < rgn->cnt; i++) { | |
280 | u64 rgnbase = rgn->region[i].base; | |
281 | u64 rgnsize = rgn->region[i].size; | |
282 | if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) | |
283 | break; | |
284 | } | |
285 | ||
286 | return (i < rgn->cnt) ? i : -1; | |
287 | } | |
288 | ||
289 | static u64 memblock_align_down(u64 addr, u64 size) | |
290 | { | |
291 | return addr & ~(size - 1); | |
292 | } | |
293 | ||
294 | static u64 memblock_align_up(u64 addr, u64 size) | |
295 | { | |
296 | return (addr + (size - 1)) & ~(size - 1); | |
297 | } | |
298 | ||
299 | static u64 __init memblock_alloc_nid_unreserved(u64 start, u64 end, | |
300 | u64 size, u64 align) | |
301 | { | |
302 | u64 base, res_base; | |
303 | long j; | |
304 | ||
305 | base = memblock_align_down((end - size), align); | |
306 | while (start <= base) { | |
307 | j = memblock_overlaps_region(&memblock.reserved, base, size); | |
308 | if (j < 0) { | |
309 | /* this area isn't reserved, take it */ | |
310 | if (memblock_add_region(&memblock.reserved, base, size) < 0) | |
311 | base = ~(u64)0; | |
312 | return base; | |
313 | } | |
314 | res_base = memblock.reserved.region[j].base; | |
315 | if (res_base < size) | |
316 | break; | |
317 | base = memblock_align_down(res_base - size, align); | |
318 | } | |
319 | ||
320 | return ~(u64)0; | |
321 | } | |
322 | ||
323 | static u64 __init memblock_alloc_nid_region(struct memblock_property *mp, | |
324 | u64 (*nid_range)(u64, u64, int *), | |
325 | u64 size, u64 align, int nid) | |
326 | { | |
327 | u64 start, end; | |
328 | ||
329 | start = mp->base; | |
330 | end = start + mp->size; | |
331 | ||
332 | start = memblock_align_up(start, align); | |
333 | while (start < end) { | |
334 | u64 this_end; | |
335 | int this_nid; | |
336 | ||
337 | this_end = nid_range(start, end, &this_nid); | |
338 | if (this_nid == nid) { | |
339 | u64 ret = memblock_alloc_nid_unreserved(start, this_end, | |
340 | size, align); | |
341 | if (ret != ~(u64)0) | |
342 | return ret; | |
343 | } | |
344 | start = this_end; | |
345 | } | |
346 | ||
347 | return ~(u64)0; | |
348 | } | |
349 | ||
350 | u64 __init memblock_alloc_nid(u64 size, u64 align, int nid, | |
351 | u64 (*nid_range)(u64 start, u64 end, int *nid)) | |
352 | { | |
353 | struct memblock_region *mem = &memblock.memory; | |
354 | int i; | |
355 | ||
356 | BUG_ON(0 == size); | |
357 | ||
358 | size = memblock_align_up(size, align); | |
359 | ||
360 | for (i = 0; i < mem->cnt; i++) { | |
361 | u64 ret = memblock_alloc_nid_region(&mem->region[i], | |
362 | nid_range, | |
363 | size, align, nid); | |
364 | if (ret != ~(u64)0) | |
365 | return ret; | |
366 | } | |
367 | ||
368 | return memblock_alloc(size, align); | |
369 | } | |
370 | ||
371 | u64 __init memblock_alloc(u64 size, u64 align) | |
372 | { | |
373 | return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE); | |
374 | } | |
375 | ||
376 | u64 __init memblock_alloc_base(u64 size, u64 align, u64 max_addr) | |
377 | { | |
378 | u64 alloc; | |
379 | ||
380 | alloc = __memblock_alloc_base(size, align, max_addr); | |
381 | ||
382 | if (alloc == 0) | |
383 | panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", | |
384 | (unsigned long long) size, (unsigned long long) max_addr); | |
385 | ||
386 | return alloc; | |
387 | } | |
388 | ||
389 | u64 __init __memblock_alloc_base(u64 size, u64 align, u64 max_addr) | |
390 | { | |
391 | long i, j; | |
392 | u64 base = 0; | |
393 | u64 res_base; | |
394 | ||
395 | BUG_ON(0 == size); | |
396 | ||
397 | size = memblock_align_up(size, align); | |
398 | ||
399 | /* On some platforms, make sure we allocate lowmem */ | |
400 | /* Note that MEMBLOCK_REAL_LIMIT may be MEMBLOCK_ALLOC_ANYWHERE */ | |
401 | if (max_addr == MEMBLOCK_ALLOC_ANYWHERE) | |
402 | max_addr = MEMBLOCK_REAL_LIMIT; | |
403 | ||
404 | for (i = memblock.memory.cnt - 1; i >= 0; i--) { | |
405 | u64 memblockbase = memblock.memory.region[i].base; | |
406 | u64 memblocksize = memblock.memory.region[i].size; | |
407 | ||
408 | if (memblocksize < size) | |
409 | continue; | |
410 | if (max_addr == MEMBLOCK_ALLOC_ANYWHERE) | |
411 | base = memblock_align_down(memblockbase + memblocksize - size, align); | |
412 | else if (memblockbase < max_addr) { | |
413 | base = min(memblockbase + memblocksize, max_addr); | |
414 | base = memblock_align_down(base - size, align); | |
415 | } else | |
416 | continue; | |
417 | ||
418 | while (base && memblockbase <= base) { | |
419 | j = memblock_overlaps_region(&memblock.reserved, base, size); | |
420 | if (j < 0) { | |
421 | /* this area isn't reserved, take it */ | |
422 | if (memblock_add_region(&memblock.reserved, base, size) < 0) | |
423 | return 0; | |
424 | return base; | |
425 | } | |
426 | res_base = memblock.reserved.region[j].base; | |
427 | if (res_base < size) | |
428 | break; | |
429 | base = memblock_align_down(res_base - size, align); | |
430 | } | |
431 | } | |
432 | return 0; | |
433 | } | |
434 | ||
435 | /* You must call memblock_analyze() before this. */ | |
436 | u64 __init memblock_phys_mem_size(void) | |
437 | { | |
438 | return memblock.memory.size; | |
439 | } | |
440 | ||
441 | u64 memblock_end_of_DRAM(void) | |
442 | { | |
443 | int idx = memblock.memory.cnt - 1; | |
444 | ||
445 | return (memblock.memory.region[idx].base + memblock.memory.region[idx].size); | |
446 | } | |
447 | ||
448 | /* You must call memblock_analyze() after this. */ | |
449 | void __init memblock_enforce_memory_limit(u64 memory_limit) | |
450 | { | |
451 | unsigned long i; | |
452 | u64 limit; | |
453 | struct memblock_property *p; | |
454 | ||
455 | if (!memory_limit) | |
456 | return; | |
457 | ||
458 | /* Truncate the memblock regions to satisfy the memory limit. */ | |
459 | limit = memory_limit; | |
460 | for (i = 0; i < memblock.memory.cnt; i++) { | |
461 | if (limit > memblock.memory.region[i].size) { | |
462 | limit -= memblock.memory.region[i].size; | |
463 | continue; | |
464 | } | |
465 | ||
466 | memblock.memory.region[i].size = limit; | |
467 | memblock.memory.cnt = i + 1; | |
468 | break; | |
469 | } | |
470 | ||
471 | if (memblock.memory.region[0].size < memblock.rmo_size) | |
472 | memblock.rmo_size = memblock.memory.region[0].size; | |
473 | ||
474 | memory_limit = memblock_end_of_DRAM(); | |
475 | ||
476 | /* And truncate any reserves above the limit also. */ | |
477 | for (i = 0; i < memblock.reserved.cnt; i++) { | |
478 | p = &memblock.reserved.region[i]; | |
479 | ||
480 | if (p->base > memory_limit) | |
481 | p->size = 0; | |
482 | else if ((p->base + p->size) > memory_limit) | |
483 | p->size = memory_limit - p->base; | |
484 | ||
485 | if (p->size == 0) { | |
486 | memblock_remove_region(&memblock.reserved, i); | |
487 | i--; | |
488 | } | |
489 | } | |
490 | } | |
491 | ||
492 | int __init memblock_is_reserved(u64 addr) | |
493 | { | |
494 | int i; | |
495 | ||
496 | for (i = 0; i < memblock.reserved.cnt; i++) { | |
497 | u64 upper = memblock.reserved.region[i].base + | |
498 | memblock.reserved.region[i].size - 1; | |
499 | if ((addr >= memblock.reserved.region[i].base) && (addr <= upper)) | |
500 | return 1; | |
501 | } | |
502 | return 0; | |
503 | } | |
504 | ||
505 | int memblock_is_region_reserved(u64 base, u64 size) | |
506 | { | |
2ed9aae0 | 507 | return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; |
95f72d1e YL |
508 | } |
509 | ||
510 | /* | |
511 | * Given a <base, len>, find which memory regions belong to this range. | |
512 | * Adjust the request and return a contiguous chunk. | |
513 | */ | |
514 | int memblock_find(struct memblock_property *res) | |
515 | { | |
516 | int i; | |
517 | u64 rstart, rend; | |
518 | ||
519 | rstart = res->base; | |
520 | rend = rstart + res->size - 1; | |
521 | ||
522 | for (i = 0; i < memblock.memory.cnt; i++) { | |
523 | u64 start = memblock.memory.region[i].base; | |
524 | u64 end = start + memblock.memory.region[i].size - 1; | |
525 | ||
526 | if (start > rend) | |
527 | return -1; | |
528 | ||
529 | if ((end >= rstart) && (start < rend)) { | |
530 | /* adjust the request */ | |
531 | if (rstart < start) | |
532 | rstart = start; | |
533 | if (rend > end) | |
534 | rend = end; | |
535 | res->base = rstart; | |
536 | res->size = rend - rstart + 1; | |
537 | return 0; | |
538 | } | |
539 | } | |
540 | return -1; | |
541 | } |