]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
0fe23479 | 2 | * Copyright (C) 2001 Jens Axboe <[email protected]> |
1da177e4 LT |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License version 2 as | |
6 | * published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 | * GNU General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public Licens | |
14 | * along with this program; if not, write to the Free Software | |
15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | |
16 | * | |
17 | */ | |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/bio.h> | |
21 | #include <linux/blkdev.h> | |
a27bb332 | 22 | #include <linux/uio.h> |
852c788f | 23 | #include <linux/iocontext.h> |
1da177e4 LT |
24 | #include <linux/slab.h> |
25 | #include <linux/init.h> | |
26 | #include <linux/kernel.h> | |
630d9c47 | 27 | #include <linux/export.h> |
1da177e4 LT |
28 | #include <linux/mempool.h> |
29 | #include <linux/workqueue.h> | |
852c788f | 30 | #include <linux/cgroup.h> |
1da177e4 | 31 | |
55782138 | 32 | #include <trace/events/block.h> |
9e234eea | 33 | #include "blk.h" |
0bfc2455 | 34 | |
392ddc32 JA |
35 | /* |
36 | * Test patch to inline a certain number of bi_io_vec's inside the bio | |
37 | * itself, to shrink a bio data allocation from two mempool calls to one | |
38 | */ | |
39 | #define BIO_INLINE_VECS 4 | |
40 | ||
1da177e4 LT |
41 | /* |
42 | * if you change this list, also change bvec_alloc or things will | |
43 | * break badly! cannot be bigger than what you can fit into an | |
44 | * unsigned short | |
45 | */ | |
1da177e4 | 46 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } |
ed996a52 | 47 | static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { |
1da177e4 LT |
48 | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), |
49 | }; | |
50 | #undef BV | |
51 | ||
1da177e4 LT |
52 | /* |
53 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | |
54 | * IO code that does not need private memory pools. | |
55 | */ | |
51d654e1 | 56 | struct bio_set *fs_bio_set; |
3f86a82a | 57 | EXPORT_SYMBOL(fs_bio_set); |
1da177e4 | 58 | |
bb799ca0 JA |
59 | /* |
60 | * Our slab pool management | |
61 | */ | |
62 | struct bio_slab { | |
63 | struct kmem_cache *slab; | |
64 | unsigned int slab_ref; | |
65 | unsigned int slab_size; | |
66 | char name[8]; | |
67 | }; | |
68 | static DEFINE_MUTEX(bio_slab_lock); | |
69 | static struct bio_slab *bio_slabs; | |
70 | static unsigned int bio_slab_nr, bio_slab_max; | |
71 | ||
72 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) | |
73 | { | |
74 | unsigned int sz = sizeof(struct bio) + extra_size; | |
75 | struct kmem_cache *slab = NULL; | |
389d7b26 | 76 | struct bio_slab *bslab, *new_bio_slabs; |
386bc35a | 77 | unsigned int new_bio_slab_max; |
bb799ca0 JA |
78 | unsigned int i, entry = -1; |
79 | ||
80 | mutex_lock(&bio_slab_lock); | |
81 | ||
82 | i = 0; | |
83 | while (i < bio_slab_nr) { | |
f06f135d | 84 | bslab = &bio_slabs[i]; |
bb799ca0 JA |
85 | |
86 | if (!bslab->slab && entry == -1) | |
87 | entry = i; | |
88 | else if (bslab->slab_size == sz) { | |
89 | slab = bslab->slab; | |
90 | bslab->slab_ref++; | |
91 | break; | |
92 | } | |
93 | i++; | |
94 | } | |
95 | ||
96 | if (slab) | |
97 | goto out_unlock; | |
98 | ||
99 | if (bio_slab_nr == bio_slab_max && entry == -1) { | |
386bc35a | 100 | new_bio_slab_max = bio_slab_max << 1; |
389d7b26 | 101 | new_bio_slabs = krealloc(bio_slabs, |
386bc35a | 102 | new_bio_slab_max * sizeof(struct bio_slab), |
389d7b26 AK |
103 | GFP_KERNEL); |
104 | if (!new_bio_slabs) | |
bb799ca0 | 105 | goto out_unlock; |
386bc35a | 106 | bio_slab_max = new_bio_slab_max; |
389d7b26 | 107 | bio_slabs = new_bio_slabs; |
bb799ca0 JA |
108 | } |
109 | if (entry == -1) | |
110 | entry = bio_slab_nr++; | |
111 | ||
112 | bslab = &bio_slabs[entry]; | |
113 | ||
114 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); | |
6a241483 MP |
115 | slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, |
116 | SLAB_HWCACHE_ALIGN, NULL); | |
bb799ca0 JA |
117 | if (!slab) |
118 | goto out_unlock; | |
119 | ||
bb799ca0 JA |
120 | bslab->slab = slab; |
121 | bslab->slab_ref = 1; | |
122 | bslab->slab_size = sz; | |
123 | out_unlock: | |
124 | mutex_unlock(&bio_slab_lock); | |
125 | return slab; | |
126 | } | |
127 | ||
128 | static void bio_put_slab(struct bio_set *bs) | |
129 | { | |
130 | struct bio_slab *bslab = NULL; | |
131 | unsigned int i; | |
132 | ||
133 | mutex_lock(&bio_slab_lock); | |
134 | ||
135 | for (i = 0; i < bio_slab_nr; i++) { | |
136 | if (bs->bio_slab == bio_slabs[i].slab) { | |
137 | bslab = &bio_slabs[i]; | |
138 | break; | |
139 | } | |
140 | } | |
141 | ||
142 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | |
143 | goto out; | |
144 | ||
145 | WARN_ON(!bslab->slab_ref); | |
146 | ||
147 | if (--bslab->slab_ref) | |
148 | goto out; | |
149 | ||
150 | kmem_cache_destroy(bslab->slab); | |
151 | bslab->slab = NULL; | |
152 | ||
153 | out: | |
154 | mutex_unlock(&bio_slab_lock); | |
155 | } | |
156 | ||
7ba1ba12 MP |
157 | unsigned int bvec_nr_vecs(unsigned short idx) |
158 | { | |
159 | return bvec_slabs[idx].nr_vecs; | |
160 | } | |
161 | ||
9f060e22 | 162 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) |
bb799ca0 | 163 | { |
ed996a52 CH |
164 | if (!idx) |
165 | return; | |
166 | idx--; | |
167 | ||
168 | BIO_BUG_ON(idx >= BVEC_POOL_NR); | |
bb799ca0 | 169 | |
ed996a52 | 170 | if (idx == BVEC_POOL_MAX) { |
9f060e22 | 171 | mempool_free(bv, pool); |
ed996a52 | 172 | } else { |
bb799ca0 JA |
173 | struct biovec_slab *bvs = bvec_slabs + idx; |
174 | ||
175 | kmem_cache_free(bvs->slab, bv); | |
176 | } | |
177 | } | |
178 | ||
9f060e22 KO |
179 | struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, |
180 | mempool_t *pool) | |
1da177e4 LT |
181 | { |
182 | struct bio_vec *bvl; | |
1da177e4 | 183 | |
7ff9345f JA |
184 | /* |
185 | * see comment near bvec_array define! | |
186 | */ | |
187 | switch (nr) { | |
188 | case 1: | |
189 | *idx = 0; | |
190 | break; | |
191 | case 2 ... 4: | |
192 | *idx = 1; | |
193 | break; | |
194 | case 5 ... 16: | |
195 | *idx = 2; | |
196 | break; | |
197 | case 17 ... 64: | |
198 | *idx = 3; | |
199 | break; | |
200 | case 65 ... 128: | |
201 | *idx = 4; | |
202 | break; | |
203 | case 129 ... BIO_MAX_PAGES: | |
204 | *idx = 5; | |
205 | break; | |
206 | default: | |
207 | return NULL; | |
208 | } | |
209 | ||
210 | /* | |
211 | * idx now points to the pool we want to allocate from. only the | |
212 | * 1-vec entry pool is mempool backed. | |
213 | */ | |
ed996a52 | 214 | if (*idx == BVEC_POOL_MAX) { |
7ff9345f | 215 | fallback: |
9f060e22 | 216 | bvl = mempool_alloc(pool, gfp_mask); |
7ff9345f JA |
217 | } else { |
218 | struct biovec_slab *bvs = bvec_slabs + *idx; | |
d0164adc | 219 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); |
7ff9345f | 220 | |
0a0d96b0 | 221 | /* |
7ff9345f JA |
222 | * Make this allocation restricted and don't dump info on |
223 | * allocation failures, since we'll fallback to the mempool | |
224 | * in case of failure. | |
0a0d96b0 | 225 | */ |
7ff9345f | 226 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; |
1da177e4 | 227 | |
0a0d96b0 | 228 | /* |
d0164adc | 229 | * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM |
7ff9345f | 230 | * is set, retry with the 1-entry mempool |
0a0d96b0 | 231 | */ |
7ff9345f | 232 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); |
d0164adc | 233 | if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { |
ed996a52 | 234 | *idx = BVEC_POOL_MAX; |
7ff9345f JA |
235 | goto fallback; |
236 | } | |
237 | } | |
238 | ||
ed996a52 | 239 | (*idx)++; |
1da177e4 LT |
240 | return bvl; |
241 | } | |
242 | ||
4254bba1 | 243 | static void __bio_free(struct bio *bio) |
1da177e4 | 244 | { |
4254bba1 | 245 | bio_disassociate_task(bio); |
1da177e4 | 246 | |
7ba1ba12 | 247 | if (bio_integrity(bio)) |
1e2a410f | 248 | bio_integrity_free(bio); |
4254bba1 | 249 | } |
7ba1ba12 | 250 | |
4254bba1 KO |
251 | static void bio_free(struct bio *bio) |
252 | { | |
253 | struct bio_set *bs = bio->bi_pool; | |
254 | void *p; | |
255 | ||
256 | __bio_free(bio); | |
257 | ||
258 | if (bs) { | |
ed996a52 | 259 | bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); |
4254bba1 KO |
260 | |
261 | /* | |
262 | * If we have front padding, adjust the bio pointer before freeing | |
263 | */ | |
264 | p = bio; | |
bb799ca0 JA |
265 | p -= bs->front_pad; |
266 | ||
4254bba1 KO |
267 | mempool_free(p, bs->bio_pool); |
268 | } else { | |
269 | /* Bio was allocated by bio_kmalloc() */ | |
270 | kfree(bio); | |
271 | } | |
3676347a PO |
272 | } |
273 | ||
3a83f467 ML |
274 | void bio_init(struct bio *bio, struct bio_vec *table, |
275 | unsigned short max_vecs) | |
1da177e4 | 276 | { |
2b94de55 | 277 | memset(bio, 0, sizeof(*bio)); |
c4cf5261 | 278 | atomic_set(&bio->__bi_remaining, 1); |
dac56212 | 279 | atomic_set(&bio->__bi_cnt, 1); |
3a83f467 ML |
280 | |
281 | bio->bi_io_vec = table; | |
282 | bio->bi_max_vecs = max_vecs; | |
1da177e4 | 283 | } |
a112a71d | 284 | EXPORT_SYMBOL(bio_init); |
1da177e4 | 285 | |
f44b48c7 KO |
286 | /** |
287 | * bio_reset - reinitialize a bio | |
288 | * @bio: bio to reset | |
289 | * | |
290 | * Description: | |
291 | * After calling bio_reset(), @bio will be in the same state as a freshly | |
292 | * allocated bio returned bio bio_alloc_bioset() - the only fields that are | |
293 | * preserved are the ones that are initialized by bio_alloc_bioset(). See | |
294 | * comment in struct bio. | |
295 | */ | |
296 | void bio_reset(struct bio *bio) | |
297 | { | |
298 | unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); | |
299 | ||
4254bba1 | 300 | __bio_free(bio); |
f44b48c7 KO |
301 | |
302 | memset(bio, 0, BIO_RESET_BYTES); | |
4246a0b6 | 303 | bio->bi_flags = flags; |
c4cf5261 | 304 | atomic_set(&bio->__bi_remaining, 1); |
f44b48c7 KO |
305 | } |
306 | EXPORT_SYMBOL(bio_reset); | |
307 | ||
38f8baae | 308 | static struct bio *__bio_chain_endio(struct bio *bio) |
196d38bc | 309 | { |
4246a0b6 CH |
310 | struct bio *parent = bio->bi_private; |
311 | ||
af3e3a52 CH |
312 | if (!parent->bi_error) |
313 | parent->bi_error = bio->bi_error; | |
196d38bc | 314 | bio_put(bio); |
38f8baae CH |
315 | return parent; |
316 | } | |
317 | ||
318 | static void bio_chain_endio(struct bio *bio) | |
319 | { | |
320 | bio_endio(__bio_chain_endio(bio)); | |
196d38bc KO |
321 | } |
322 | ||
323 | /** | |
324 | * bio_chain - chain bio completions | |
1051a902 RD |
325 | * @bio: the target bio |
326 | * @parent: the @bio's parent bio | |
196d38bc KO |
327 | * |
328 | * The caller won't have a bi_end_io called when @bio completes - instead, | |
329 | * @parent's bi_end_io won't be called until both @parent and @bio have | |
330 | * completed; the chained bio will also be freed when it completes. | |
331 | * | |
332 | * The caller must not set bi_private or bi_end_io in @bio. | |
333 | */ | |
334 | void bio_chain(struct bio *bio, struct bio *parent) | |
335 | { | |
336 | BUG_ON(bio->bi_private || bio->bi_end_io); | |
337 | ||
338 | bio->bi_private = parent; | |
339 | bio->bi_end_io = bio_chain_endio; | |
c4cf5261 | 340 | bio_inc_remaining(parent); |
196d38bc KO |
341 | } |
342 | EXPORT_SYMBOL(bio_chain); | |
343 | ||
df2cb6da KO |
344 | static void bio_alloc_rescue(struct work_struct *work) |
345 | { | |
346 | struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | |
347 | struct bio *bio; | |
348 | ||
349 | while (1) { | |
350 | spin_lock(&bs->rescue_lock); | |
351 | bio = bio_list_pop(&bs->rescue_list); | |
352 | spin_unlock(&bs->rescue_lock); | |
353 | ||
354 | if (!bio) | |
355 | break; | |
356 | ||
357 | generic_make_request(bio); | |
358 | } | |
359 | } | |
360 | ||
361 | static void punt_bios_to_rescuer(struct bio_set *bs) | |
362 | { | |
363 | struct bio_list punt, nopunt; | |
364 | struct bio *bio; | |
365 | ||
366 | /* | |
367 | * In order to guarantee forward progress we must punt only bios that | |
368 | * were allocated from this bio_set; otherwise, if there was a bio on | |
369 | * there for a stacking driver higher up in the stack, processing it | |
370 | * could require allocating bios from this bio_set, and doing that from | |
371 | * our own rescuer would be bad. | |
372 | * | |
373 | * Since bio lists are singly linked, pop them all instead of trying to | |
374 | * remove from the middle of the list: | |
375 | */ | |
376 | ||
377 | bio_list_init(&punt); | |
378 | bio_list_init(&nopunt); | |
379 | ||
f5fe1b51 | 380 | while ((bio = bio_list_pop(¤t->bio_list[0]))) |
df2cb6da | 381 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); |
f5fe1b51 | 382 | current->bio_list[0] = nopunt; |
df2cb6da | 383 | |
f5fe1b51 N |
384 | bio_list_init(&nopunt); |
385 | while ((bio = bio_list_pop(¤t->bio_list[1]))) | |
386 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | |
387 | current->bio_list[1] = nopunt; | |
df2cb6da KO |
388 | |
389 | spin_lock(&bs->rescue_lock); | |
390 | bio_list_merge(&bs->rescue_list, &punt); | |
391 | spin_unlock(&bs->rescue_lock); | |
392 | ||
393 | queue_work(bs->rescue_workqueue, &bs->rescue_work); | |
394 | } | |
395 | ||
1da177e4 LT |
396 | /** |
397 | * bio_alloc_bioset - allocate a bio for I/O | |
398 | * @gfp_mask: the GFP_ mask given to the slab allocator | |
399 | * @nr_iovecs: number of iovecs to pre-allocate | |
db18efac | 400 | * @bs: the bio_set to allocate from. |
1da177e4 LT |
401 | * |
402 | * Description: | |
3f86a82a KO |
403 | * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is |
404 | * backed by the @bs's mempool. | |
405 | * | |
d0164adc MG |
406 | * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will |
407 | * always be able to allocate a bio. This is due to the mempool guarantees. | |
408 | * To make this work, callers must never allocate more than 1 bio at a time | |
409 | * from this pool. Callers that need to allocate more than 1 bio must always | |
410 | * submit the previously allocated bio for IO before attempting to allocate | |
411 | * a new one. Failure to do so can cause deadlocks under memory pressure. | |
3f86a82a | 412 | * |
df2cb6da KO |
413 | * Note that when running under generic_make_request() (i.e. any block |
414 | * driver), bios are not submitted until after you return - see the code in | |
415 | * generic_make_request() that converts recursion into iteration, to prevent | |
416 | * stack overflows. | |
417 | * | |
418 | * This would normally mean allocating multiple bios under | |
419 | * generic_make_request() would be susceptible to deadlocks, but we have | |
420 | * deadlock avoidance code that resubmits any blocked bios from a rescuer | |
421 | * thread. | |
422 | * | |
423 | * However, we do not guarantee forward progress for allocations from other | |
424 | * mempools. Doing multiple allocations from the same mempool under | |
425 | * generic_make_request() should be avoided - instead, use bio_set's front_pad | |
426 | * for per bio allocations. | |
427 | * | |
3f86a82a KO |
428 | * RETURNS: |
429 | * Pointer to new bio on success, NULL on failure. | |
430 | */ | |
7a88fa19 DC |
431 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, |
432 | struct bio_set *bs) | |
1da177e4 | 433 | { |
df2cb6da | 434 | gfp_t saved_gfp = gfp_mask; |
3f86a82a KO |
435 | unsigned front_pad; |
436 | unsigned inline_vecs; | |
34053979 | 437 | struct bio_vec *bvl = NULL; |
451a9ebf TH |
438 | struct bio *bio; |
439 | void *p; | |
440 | ||
3f86a82a KO |
441 | if (!bs) { |
442 | if (nr_iovecs > UIO_MAXIOV) | |
443 | return NULL; | |
444 | ||
445 | p = kmalloc(sizeof(struct bio) + | |
446 | nr_iovecs * sizeof(struct bio_vec), | |
447 | gfp_mask); | |
448 | front_pad = 0; | |
449 | inline_vecs = nr_iovecs; | |
450 | } else { | |
d8f429e1 JN |
451 | /* should not use nobvec bioset for nr_iovecs > 0 */ |
452 | if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) | |
453 | return NULL; | |
df2cb6da KO |
454 | /* |
455 | * generic_make_request() converts recursion to iteration; this | |
456 | * means if we're running beneath it, any bios we allocate and | |
457 | * submit will not be submitted (and thus freed) until after we | |
458 | * return. | |
459 | * | |
460 | * This exposes us to a potential deadlock if we allocate | |
461 | * multiple bios from the same bio_set() while running | |
462 | * underneath generic_make_request(). If we were to allocate | |
463 | * multiple bios (say a stacking block driver that was splitting | |
464 | * bios), we would deadlock if we exhausted the mempool's | |
465 | * reserve. | |
466 | * | |
467 | * We solve this, and guarantee forward progress, with a rescuer | |
468 | * workqueue per bio_set. If we go to allocate and there are | |
469 | * bios on current->bio_list, we first try the allocation | |
d0164adc MG |
470 | * without __GFP_DIRECT_RECLAIM; if that fails, we punt those |
471 | * bios we would be blocking to the rescuer workqueue before | |
472 | * we retry with the original gfp_flags. | |
df2cb6da KO |
473 | */ |
474 | ||
f5fe1b51 N |
475 | if (current->bio_list && |
476 | (!bio_list_empty(¤t->bio_list[0]) || | |
477 | !bio_list_empty(¤t->bio_list[1]))) | |
d0164adc | 478 | gfp_mask &= ~__GFP_DIRECT_RECLAIM; |
df2cb6da | 479 | |
3f86a82a | 480 | p = mempool_alloc(bs->bio_pool, gfp_mask); |
df2cb6da KO |
481 | if (!p && gfp_mask != saved_gfp) { |
482 | punt_bios_to_rescuer(bs); | |
483 | gfp_mask = saved_gfp; | |
484 | p = mempool_alloc(bs->bio_pool, gfp_mask); | |
485 | } | |
486 | ||
3f86a82a KO |
487 | front_pad = bs->front_pad; |
488 | inline_vecs = BIO_INLINE_VECS; | |
489 | } | |
490 | ||
451a9ebf TH |
491 | if (unlikely(!p)) |
492 | return NULL; | |
1da177e4 | 493 | |
3f86a82a | 494 | bio = p + front_pad; |
3a83f467 | 495 | bio_init(bio, NULL, 0); |
34053979 | 496 | |
3f86a82a | 497 | if (nr_iovecs > inline_vecs) { |
ed996a52 CH |
498 | unsigned long idx = 0; |
499 | ||
9f060e22 | 500 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); |
df2cb6da KO |
501 | if (!bvl && gfp_mask != saved_gfp) { |
502 | punt_bios_to_rescuer(bs); | |
503 | gfp_mask = saved_gfp; | |
9f060e22 | 504 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); |
df2cb6da KO |
505 | } |
506 | ||
34053979 IM |
507 | if (unlikely(!bvl)) |
508 | goto err_free; | |
a38352e0 | 509 | |
ed996a52 | 510 | bio->bi_flags |= idx << BVEC_POOL_OFFSET; |
3f86a82a KO |
511 | } else if (nr_iovecs) { |
512 | bvl = bio->bi_inline_vecs; | |
1da177e4 | 513 | } |
3f86a82a KO |
514 | |
515 | bio->bi_pool = bs; | |
34053979 | 516 | bio->bi_max_vecs = nr_iovecs; |
34053979 | 517 | bio->bi_io_vec = bvl; |
1da177e4 | 518 | return bio; |
34053979 IM |
519 | |
520 | err_free: | |
451a9ebf | 521 | mempool_free(p, bs->bio_pool); |
34053979 | 522 | return NULL; |
1da177e4 | 523 | } |
a112a71d | 524 | EXPORT_SYMBOL(bio_alloc_bioset); |
1da177e4 | 525 | |
1da177e4 LT |
526 | void zero_fill_bio(struct bio *bio) |
527 | { | |
528 | unsigned long flags; | |
7988613b KO |
529 | struct bio_vec bv; |
530 | struct bvec_iter iter; | |
1da177e4 | 531 | |
7988613b KO |
532 | bio_for_each_segment(bv, bio, iter) { |
533 | char *data = bvec_kmap_irq(&bv, &flags); | |
534 | memset(data, 0, bv.bv_len); | |
535 | flush_dcache_page(bv.bv_page); | |
1da177e4 LT |
536 | bvec_kunmap_irq(data, &flags); |
537 | } | |
538 | } | |
539 | EXPORT_SYMBOL(zero_fill_bio); | |
540 | ||
541 | /** | |
542 | * bio_put - release a reference to a bio | |
543 | * @bio: bio to release reference to | |
544 | * | |
545 | * Description: | |
546 | * Put a reference to a &struct bio, either one you have gotten with | |
ad0bf110 | 547 | * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. |
1da177e4 LT |
548 | **/ |
549 | void bio_put(struct bio *bio) | |
550 | { | |
dac56212 | 551 | if (!bio_flagged(bio, BIO_REFFED)) |
4254bba1 | 552 | bio_free(bio); |
dac56212 JA |
553 | else { |
554 | BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); | |
555 | ||
556 | /* | |
557 | * last put frees it | |
558 | */ | |
559 | if (atomic_dec_and_test(&bio->__bi_cnt)) | |
560 | bio_free(bio); | |
561 | } | |
1da177e4 | 562 | } |
a112a71d | 563 | EXPORT_SYMBOL(bio_put); |
1da177e4 | 564 | |
165125e1 | 565 | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) |
1da177e4 LT |
566 | { |
567 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | |
568 | blk_recount_segments(q, bio); | |
569 | ||
570 | return bio->bi_phys_segments; | |
571 | } | |
a112a71d | 572 | EXPORT_SYMBOL(bio_phys_segments); |
1da177e4 | 573 | |
59d276fe KO |
574 | /** |
575 | * __bio_clone_fast - clone a bio that shares the original bio's biovec | |
576 | * @bio: destination bio | |
577 | * @bio_src: bio to clone | |
578 | * | |
579 | * Clone a &bio. Caller will own the returned bio, but not | |
580 | * the actual data it points to. Reference count of returned | |
581 | * bio will be one. | |
582 | * | |
583 | * Caller must ensure that @bio_src is not freed before @bio. | |
584 | */ | |
585 | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) | |
586 | { | |
ed996a52 | 587 | BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); |
59d276fe KO |
588 | |
589 | /* | |
590 | * most users will be overriding ->bi_bdev with a new target, | |
591 | * so we don't set nor calculate new physical/hw segment counts here | |
592 | */ | |
593 | bio->bi_bdev = bio_src->bi_bdev; | |
b7c44ed9 | 594 | bio_set_flag(bio, BIO_CLONED); |
1eff9d32 | 595 | bio->bi_opf = bio_src->bi_opf; |
59d276fe KO |
596 | bio->bi_iter = bio_src->bi_iter; |
597 | bio->bi_io_vec = bio_src->bi_io_vec; | |
20bd723e PV |
598 | |
599 | bio_clone_blkcg_association(bio, bio_src); | |
59d276fe KO |
600 | } |
601 | EXPORT_SYMBOL(__bio_clone_fast); | |
602 | ||
603 | /** | |
604 | * bio_clone_fast - clone a bio that shares the original bio's biovec | |
605 | * @bio: bio to clone | |
606 | * @gfp_mask: allocation priority | |
607 | * @bs: bio_set to allocate from | |
608 | * | |
609 | * Like __bio_clone_fast, only also allocates the returned bio | |
610 | */ | |
611 | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) | |
612 | { | |
613 | struct bio *b; | |
614 | ||
615 | b = bio_alloc_bioset(gfp_mask, 0, bs); | |
616 | if (!b) | |
617 | return NULL; | |
618 | ||
619 | __bio_clone_fast(b, bio); | |
620 | ||
621 | if (bio_integrity(bio)) { | |
622 | int ret; | |
623 | ||
624 | ret = bio_integrity_clone(b, bio, gfp_mask); | |
625 | ||
626 | if (ret < 0) { | |
627 | bio_put(b); | |
628 | return NULL; | |
629 | } | |
630 | } | |
631 | ||
632 | return b; | |
633 | } | |
634 | EXPORT_SYMBOL(bio_clone_fast); | |
635 | ||
f4595875 SL |
636 | /** |
637 | * bio_clone_bioset - clone a bio | |
638 | * @bio_src: bio to clone | |
639 | * @gfp_mask: allocation priority | |
640 | * @bs: bio_set to allocate from | |
641 | * | |
642 | * Clone bio. Caller will own the returned bio, but not the actual data it | |
643 | * points to. Reference count of returned bio will be one. | |
644 | */ | |
645 | struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, | |
646 | struct bio_set *bs) | |
1da177e4 | 647 | { |
bdb53207 KO |
648 | struct bvec_iter iter; |
649 | struct bio_vec bv; | |
650 | struct bio *bio; | |
1da177e4 | 651 | |
bdb53207 KO |
652 | /* |
653 | * Pre immutable biovecs, __bio_clone() used to just do a memcpy from | |
654 | * bio_src->bi_io_vec to bio->bi_io_vec. | |
655 | * | |
656 | * We can't do that anymore, because: | |
657 | * | |
658 | * - The point of cloning the biovec is to produce a bio with a biovec | |
659 | * the caller can modify: bi_idx and bi_bvec_done should be 0. | |
660 | * | |
661 | * - The original bio could've had more than BIO_MAX_PAGES biovecs; if | |
662 | * we tried to clone the whole thing bio_alloc_bioset() would fail. | |
663 | * But the clone should succeed as long as the number of biovecs we | |
664 | * actually need to allocate is fewer than BIO_MAX_PAGES. | |
665 | * | |
666 | * - Lastly, bi_vcnt should not be looked at or relied upon by code | |
667 | * that does not own the bio - reason being drivers don't use it for | |
668 | * iterating over the biovec anymore, so expecting it to be kept up | |
669 | * to date (i.e. for clones that share the parent biovec) is just | |
670 | * asking for trouble and would force extra work on | |
671 | * __bio_clone_fast() anyways. | |
672 | */ | |
673 | ||
f4595875 | 674 | bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); |
bdb53207 | 675 | if (!bio) |
7ba1ba12 | 676 | return NULL; |
bdb53207 | 677 | bio->bi_bdev = bio_src->bi_bdev; |
1eff9d32 | 678 | bio->bi_opf = bio_src->bi_opf; |
bdb53207 KO |
679 | bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; |
680 | bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; | |
7ba1ba12 | 681 | |
7afafc8a AH |
682 | switch (bio_op(bio)) { |
683 | case REQ_OP_DISCARD: | |
684 | case REQ_OP_SECURE_ERASE: | |
a6f0788e | 685 | case REQ_OP_WRITE_ZEROES: |
7afafc8a AH |
686 | break; |
687 | case REQ_OP_WRITE_SAME: | |
8423ae3d | 688 | bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; |
7afafc8a AH |
689 | break; |
690 | default: | |
f4595875 | 691 | bio_for_each_segment(bv, bio_src, iter) |
7afafc8a AH |
692 | bio->bi_io_vec[bio->bi_vcnt++] = bv; |
693 | break; | |
8423ae3d KO |
694 | } |
695 | ||
bdb53207 KO |
696 | if (bio_integrity(bio_src)) { |
697 | int ret; | |
7ba1ba12 | 698 | |
bdb53207 | 699 | ret = bio_integrity_clone(bio, bio_src, gfp_mask); |
059ea331 | 700 | if (ret < 0) { |
bdb53207 | 701 | bio_put(bio); |
7ba1ba12 | 702 | return NULL; |
059ea331 | 703 | } |
3676347a | 704 | } |
1da177e4 | 705 | |
20bd723e PV |
706 | bio_clone_blkcg_association(bio, bio_src); |
707 | ||
bdb53207 | 708 | return bio; |
1da177e4 | 709 | } |
bf800ef1 | 710 | EXPORT_SYMBOL(bio_clone_bioset); |
1da177e4 LT |
711 | |
712 | /** | |
c66a14d0 KO |
713 | * bio_add_pc_page - attempt to add page to bio |
714 | * @q: the target queue | |
715 | * @bio: destination bio | |
716 | * @page: page to add | |
717 | * @len: vec entry length | |
718 | * @offset: vec entry offset | |
1da177e4 | 719 | * |
c66a14d0 KO |
720 | * Attempt to add a page to the bio_vec maplist. This can fail for a |
721 | * number of reasons, such as the bio being full or target block device | |
722 | * limitations. The target block device must allow bio's up to PAGE_SIZE, | |
723 | * so it is always possible to add a single page to an empty bio. | |
724 | * | |
725 | * This should only be used by REQ_PC bios. | |
1da177e4 | 726 | */ |
c66a14d0 KO |
727 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page |
728 | *page, unsigned int len, unsigned int offset) | |
1da177e4 LT |
729 | { |
730 | int retried_segments = 0; | |
731 | struct bio_vec *bvec; | |
732 | ||
733 | /* | |
734 | * cloned bio must not modify vec list | |
735 | */ | |
736 | if (unlikely(bio_flagged(bio, BIO_CLONED))) | |
737 | return 0; | |
738 | ||
c66a14d0 | 739 | if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) |
1da177e4 LT |
740 | return 0; |
741 | ||
80cfd548 JA |
742 | /* |
743 | * For filesystems with a blocksize smaller than the pagesize | |
744 | * we will often be called with the same page as last time and | |
745 | * a consecutive offset. Optimize this special case. | |
746 | */ | |
747 | if (bio->bi_vcnt > 0) { | |
748 | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | |
749 | ||
750 | if (page == prev->bv_page && | |
751 | offset == prev->bv_offset + prev->bv_len) { | |
752 | prev->bv_len += len; | |
fcbf6a08 | 753 | bio->bi_iter.bi_size += len; |
80cfd548 JA |
754 | goto done; |
755 | } | |
66cb45aa JA |
756 | |
757 | /* | |
758 | * If the queue doesn't support SG gaps and adding this | |
759 | * offset would create a gap, disallow it. | |
760 | */ | |
03100aad | 761 | if (bvec_gap_to_prev(q, prev, offset)) |
66cb45aa | 762 | return 0; |
80cfd548 JA |
763 | } |
764 | ||
765 | if (bio->bi_vcnt >= bio->bi_max_vecs) | |
1da177e4 LT |
766 | return 0; |
767 | ||
768 | /* | |
fcbf6a08 ML |
769 | * setup the new entry, we might clear it again later if we |
770 | * cannot add the page | |
771 | */ | |
772 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | |
773 | bvec->bv_page = page; | |
774 | bvec->bv_len = len; | |
775 | bvec->bv_offset = offset; | |
776 | bio->bi_vcnt++; | |
777 | bio->bi_phys_segments++; | |
778 | bio->bi_iter.bi_size += len; | |
779 | ||
780 | /* | |
781 | * Perform a recount if the number of segments is greater | |
782 | * than queue_max_segments(q). | |
1da177e4 LT |
783 | */ |
784 | ||
fcbf6a08 | 785 | while (bio->bi_phys_segments > queue_max_segments(q)) { |
1da177e4 LT |
786 | |
787 | if (retried_segments) | |
fcbf6a08 | 788 | goto failed; |
1da177e4 LT |
789 | |
790 | retried_segments = 1; | |
791 | blk_recount_segments(q, bio); | |
792 | } | |
793 | ||
1da177e4 | 794 | /* If we may be able to merge these biovecs, force a recount */ |
fcbf6a08 | 795 | if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) |
b7c44ed9 | 796 | bio_clear_flag(bio, BIO_SEG_VALID); |
1da177e4 | 797 | |
80cfd548 | 798 | done: |
1da177e4 | 799 | return len; |
fcbf6a08 ML |
800 | |
801 | failed: | |
802 | bvec->bv_page = NULL; | |
803 | bvec->bv_len = 0; | |
804 | bvec->bv_offset = 0; | |
805 | bio->bi_vcnt--; | |
806 | bio->bi_iter.bi_size -= len; | |
807 | blk_recount_segments(q, bio); | |
808 | return 0; | |
1da177e4 | 809 | } |
a112a71d | 810 | EXPORT_SYMBOL(bio_add_pc_page); |
6e68af66 | 811 | |
1da177e4 LT |
812 | /** |
813 | * bio_add_page - attempt to add page to bio | |
814 | * @bio: destination bio | |
815 | * @page: page to add | |
816 | * @len: vec entry length | |
817 | * @offset: vec entry offset | |
818 | * | |
c66a14d0 KO |
819 | * Attempt to add a page to the bio_vec maplist. This will only fail |
820 | * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. | |
1da177e4 | 821 | */ |
c66a14d0 KO |
822 | int bio_add_page(struct bio *bio, struct page *page, |
823 | unsigned int len, unsigned int offset) | |
1da177e4 | 824 | { |
c66a14d0 KO |
825 | struct bio_vec *bv; |
826 | ||
827 | /* | |
828 | * cloned bio must not modify vec list | |
829 | */ | |
830 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) | |
831 | return 0; | |
762380ad | 832 | |
c66a14d0 KO |
833 | /* |
834 | * For filesystems with a blocksize smaller than the pagesize | |
835 | * we will often be called with the same page as last time and | |
836 | * a consecutive offset. Optimize this special case. | |
837 | */ | |
838 | if (bio->bi_vcnt > 0) { | |
839 | bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; | |
58a4915a | 840 | |
c66a14d0 KO |
841 | if (page == bv->bv_page && |
842 | offset == bv->bv_offset + bv->bv_len) { | |
843 | bv->bv_len += len; | |
844 | goto done; | |
845 | } | |
846 | } | |
847 | ||
848 | if (bio->bi_vcnt >= bio->bi_max_vecs) | |
849 | return 0; | |
850 | ||
851 | bv = &bio->bi_io_vec[bio->bi_vcnt]; | |
852 | bv->bv_page = page; | |
853 | bv->bv_len = len; | |
854 | bv->bv_offset = offset; | |
855 | ||
856 | bio->bi_vcnt++; | |
857 | done: | |
858 | bio->bi_iter.bi_size += len; | |
859 | return len; | |
1da177e4 | 860 | } |
a112a71d | 861 | EXPORT_SYMBOL(bio_add_page); |
1da177e4 | 862 | |
2cefe4db KO |
863 | /** |
864 | * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio | |
865 | * @bio: bio to add pages to | |
866 | * @iter: iov iterator describing the region to be mapped | |
867 | * | |
868 | * Pins as many pages from *iter and appends them to @bio's bvec array. The | |
869 | * pages will have to be released using put_page() when done. | |
870 | */ | |
871 | int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) | |
872 | { | |
873 | unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; | |
874 | struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; | |
875 | struct page **pages = (struct page **)bv; | |
876 | size_t offset, diff; | |
877 | ssize_t size; | |
878 | ||
879 | size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); | |
880 | if (unlikely(size <= 0)) | |
881 | return size ? size : -EFAULT; | |
882 | nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; | |
883 | ||
884 | /* | |
885 | * Deep magic below: We need to walk the pinned pages backwards | |
886 | * because we are abusing the space allocated for the bio_vecs | |
887 | * for the page array. Because the bio_vecs are larger than the | |
888 | * page pointers by definition this will always work. But it also | |
889 | * means we can't use bio_add_page, so any changes to it's semantics | |
890 | * need to be reflected here as well. | |
891 | */ | |
892 | bio->bi_iter.bi_size += size; | |
893 | bio->bi_vcnt += nr_pages; | |
894 | ||
895 | diff = (nr_pages * PAGE_SIZE - offset) - size; | |
896 | while (nr_pages--) { | |
897 | bv[nr_pages].bv_page = pages[nr_pages]; | |
898 | bv[nr_pages].bv_len = PAGE_SIZE; | |
899 | bv[nr_pages].bv_offset = 0; | |
900 | } | |
901 | ||
902 | bv[0].bv_offset += offset; | |
903 | bv[0].bv_len -= offset; | |
904 | if (diff) | |
905 | bv[bio->bi_vcnt - 1].bv_len -= diff; | |
906 | ||
907 | iov_iter_advance(iter, size); | |
908 | return 0; | |
909 | } | |
910 | EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); | |
911 | ||
9e882242 KO |
912 | struct submit_bio_ret { |
913 | struct completion event; | |
914 | int error; | |
915 | }; | |
916 | ||
4246a0b6 | 917 | static void submit_bio_wait_endio(struct bio *bio) |
9e882242 KO |
918 | { |
919 | struct submit_bio_ret *ret = bio->bi_private; | |
920 | ||
4246a0b6 | 921 | ret->error = bio->bi_error; |
9e882242 KO |
922 | complete(&ret->event); |
923 | } | |
924 | ||
925 | /** | |
926 | * submit_bio_wait - submit a bio, and wait until it completes | |
9e882242 KO |
927 | * @bio: The &struct bio which describes the I/O |
928 | * | |
929 | * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | |
930 | * bio_endio() on failure. | |
931 | */ | |
4e49ea4a | 932 | int submit_bio_wait(struct bio *bio) |
9e882242 KO |
933 | { |
934 | struct submit_bio_ret ret; | |
935 | ||
9e882242 KO |
936 | init_completion(&ret.event); |
937 | bio->bi_private = &ret; | |
938 | bio->bi_end_io = submit_bio_wait_endio; | |
1eff9d32 | 939 | bio->bi_opf |= REQ_SYNC; |
4e49ea4a | 940 | submit_bio(bio); |
d57d6115 | 941 | wait_for_completion_io(&ret.event); |
9e882242 KO |
942 | |
943 | return ret.error; | |
944 | } | |
945 | EXPORT_SYMBOL(submit_bio_wait); | |
946 | ||
054bdf64 KO |
947 | /** |
948 | * bio_advance - increment/complete a bio by some number of bytes | |
949 | * @bio: bio to advance | |
950 | * @bytes: number of bytes to complete | |
951 | * | |
952 | * This updates bi_sector, bi_size and bi_idx; if the number of bytes to | |
953 | * complete doesn't align with a bvec boundary, then bv_len and bv_offset will | |
954 | * be updated on the last bvec as well. | |
955 | * | |
956 | * @bio will then represent the remaining, uncompleted portion of the io. | |
957 | */ | |
958 | void bio_advance(struct bio *bio, unsigned bytes) | |
959 | { | |
960 | if (bio_integrity(bio)) | |
961 | bio_integrity_advance(bio, bytes); | |
962 | ||
4550dd6c | 963 | bio_advance_iter(bio, &bio->bi_iter, bytes); |
054bdf64 KO |
964 | } |
965 | EXPORT_SYMBOL(bio_advance); | |
966 | ||
a0787606 KO |
967 | /** |
968 | * bio_alloc_pages - allocates a single page for each bvec in a bio | |
969 | * @bio: bio to allocate pages for | |
970 | * @gfp_mask: flags for allocation | |
971 | * | |
972 | * Allocates pages up to @bio->bi_vcnt. | |
973 | * | |
974 | * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are | |
975 | * freed. | |
976 | */ | |
977 | int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) | |
978 | { | |
979 | int i; | |
980 | struct bio_vec *bv; | |
981 | ||
982 | bio_for_each_segment_all(bv, bio, i) { | |
983 | bv->bv_page = alloc_page(gfp_mask); | |
984 | if (!bv->bv_page) { | |
985 | while (--bv >= bio->bi_io_vec) | |
986 | __free_page(bv->bv_page); | |
987 | return -ENOMEM; | |
988 | } | |
989 | } | |
990 | ||
991 | return 0; | |
992 | } | |
993 | EXPORT_SYMBOL(bio_alloc_pages); | |
994 | ||
16ac3d63 KO |
995 | /** |
996 | * bio_copy_data - copy contents of data buffers from one chain of bios to | |
997 | * another | |
998 | * @src: source bio list | |
999 | * @dst: destination bio list | |
1000 | * | |
1001 | * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats | |
1002 | * @src and @dst as linked lists of bios. | |
1003 | * | |
1004 | * Stops when it reaches the end of either @src or @dst - that is, copies | |
1005 | * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | |
1006 | */ | |
1007 | void bio_copy_data(struct bio *dst, struct bio *src) | |
1008 | { | |
1cb9dda4 KO |
1009 | struct bvec_iter src_iter, dst_iter; |
1010 | struct bio_vec src_bv, dst_bv; | |
16ac3d63 | 1011 | void *src_p, *dst_p; |
1cb9dda4 | 1012 | unsigned bytes; |
16ac3d63 | 1013 | |
1cb9dda4 KO |
1014 | src_iter = src->bi_iter; |
1015 | dst_iter = dst->bi_iter; | |
16ac3d63 KO |
1016 | |
1017 | while (1) { | |
1cb9dda4 KO |
1018 | if (!src_iter.bi_size) { |
1019 | src = src->bi_next; | |
1020 | if (!src) | |
1021 | break; | |
16ac3d63 | 1022 | |
1cb9dda4 | 1023 | src_iter = src->bi_iter; |
16ac3d63 KO |
1024 | } |
1025 | ||
1cb9dda4 KO |
1026 | if (!dst_iter.bi_size) { |
1027 | dst = dst->bi_next; | |
1028 | if (!dst) | |
1029 | break; | |
16ac3d63 | 1030 | |
1cb9dda4 | 1031 | dst_iter = dst->bi_iter; |
16ac3d63 KO |
1032 | } |
1033 | ||
1cb9dda4 KO |
1034 | src_bv = bio_iter_iovec(src, src_iter); |
1035 | dst_bv = bio_iter_iovec(dst, dst_iter); | |
1036 | ||
1037 | bytes = min(src_bv.bv_len, dst_bv.bv_len); | |
16ac3d63 | 1038 | |
1cb9dda4 KO |
1039 | src_p = kmap_atomic(src_bv.bv_page); |
1040 | dst_p = kmap_atomic(dst_bv.bv_page); | |
16ac3d63 | 1041 | |
1cb9dda4 KO |
1042 | memcpy(dst_p + dst_bv.bv_offset, |
1043 | src_p + src_bv.bv_offset, | |
16ac3d63 KO |
1044 | bytes); |
1045 | ||
1046 | kunmap_atomic(dst_p); | |
1047 | kunmap_atomic(src_p); | |
1048 | ||
1cb9dda4 KO |
1049 | bio_advance_iter(src, &src_iter, bytes); |
1050 | bio_advance_iter(dst, &dst_iter, bytes); | |
16ac3d63 KO |
1051 | } |
1052 | } | |
1053 | EXPORT_SYMBOL(bio_copy_data); | |
1054 | ||
1da177e4 | 1055 | struct bio_map_data { |
152e283f | 1056 | int is_our_pages; |
26e49cfc KO |
1057 | struct iov_iter iter; |
1058 | struct iovec iov[]; | |
1da177e4 LT |
1059 | }; |
1060 | ||
7410b3c6 | 1061 | static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, |
76029ff3 | 1062 | gfp_t gfp_mask) |
1da177e4 | 1063 | { |
f3f63c1c JA |
1064 | if (iov_count > UIO_MAXIOV) |
1065 | return NULL; | |
1da177e4 | 1066 | |
c8db4448 | 1067 | return kmalloc(sizeof(struct bio_map_data) + |
26e49cfc | 1068 | sizeof(struct iovec) * iov_count, gfp_mask); |
1da177e4 LT |
1069 | } |
1070 | ||
9124d3fe DP |
1071 | /** |
1072 | * bio_copy_from_iter - copy all pages from iov_iter to bio | |
1073 | * @bio: The &struct bio which describes the I/O as destination | |
1074 | * @iter: iov_iter as source | |
1075 | * | |
1076 | * Copy all pages from iov_iter to bio. | |
1077 | * Returns 0 on success, or error on failure. | |
1078 | */ | |
1079 | static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) | |
c5dec1c3 | 1080 | { |
9124d3fe | 1081 | int i; |
c5dec1c3 | 1082 | struct bio_vec *bvec; |
c5dec1c3 | 1083 | |
d74c6d51 | 1084 | bio_for_each_segment_all(bvec, bio, i) { |
9124d3fe | 1085 | ssize_t ret; |
c5dec1c3 | 1086 | |
9124d3fe DP |
1087 | ret = copy_page_from_iter(bvec->bv_page, |
1088 | bvec->bv_offset, | |
1089 | bvec->bv_len, | |
1090 | &iter); | |
1091 | ||
1092 | if (!iov_iter_count(&iter)) | |
1093 | break; | |
1094 | ||
1095 | if (ret < bvec->bv_len) | |
1096 | return -EFAULT; | |
c5dec1c3 FT |
1097 | } |
1098 | ||
9124d3fe DP |
1099 | return 0; |
1100 | } | |
1101 | ||
1102 | /** | |
1103 | * bio_copy_to_iter - copy all pages from bio to iov_iter | |
1104 | * @bio: The &struct bio which describes the I/O as source | |
1105 | * @iter: iov_iter as destination | |
1106 | * | |
1107 | * Copy all pages from bio to iov_iter. | |
1108 | * Returns 0 on success, or error on failure. | |
1109 | */ | |
1110 | static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) | |
1111 | { | |
1112 | int i; | |
1113 | struct bio_vec *bvec; | |
1114 | ||
1115 | bio_for_each_segment_all(bvec, bio, i) { | |
1116 | ssize_t ret; | |
1117 | ||
1118 | ret = copy_page_to_iter(bvec->bv_page, | |
1119 | bvec->bv_offset, | |
1120 | bvec->bv_len, | |
1121 | &iter); | |
1122 | ||
1123 | if (!iov_iter_count(&iter)) | |
1124 | break; | |
1125 | ||
1126 | if (ret < bvec->bv_len) | |
1127 | return -EFAULT; | |
1128 | } | |
1129 | ||
1130 | return 0; | |
c5dec1c3 FT |
1131 | } |
1132 | ||
491221f8 | 1133 | void bio_free_pages(struct bio *bio) |
1dfa0f68 CH |
1134 | { |
1135 | struct bio_vec *bvec; | |
1136 | int i; | |
1137 | ||
1138 | bio_for_each_segment_all(bvec, bio, i) | |
1139 | __free_page(bvec->bv_page); | |
1140 | } | |
491221f8 | 1141 | EXPORT_SYMBOL(bio_free_pages); |
1dfa0f68 | 1142 | |
1da177e4 LT |
1143 | /** |
1144 | * bio_uncopy_user - finish previously mapped bio | |
1145 | * @bio: bio being terminated | |
1146 | * | |
ddad8dd0 | 1147 | * Free pages allocated from bio_copy_user_iov() and write back data |
1da177e4 LT |
1148 | * to user space in case of a read. |
1149 | */ | |
1150 | int bio_uncopy_user(struct bio *bio) | |
1151 | { | |
1152 | struct bio_map_data *bmd = bio->bi_private; | |
1dfa0f68 | 1153 | int ret = 0; |
1da177e4 | 1154 | |
35dc2483 RD |
1155 | if (!bio_flagged(bio, BIO_NULL_MAPPED)) { |
1156 | /* | |
1157 | * if we're in a workqueue, the request is orphaned, so | |
2d99b55d HR |
1158 | * don't copy into a random user address space, just free |
1159 | * and return -EINTR so user space doesn't expect any data. | |
35dc2483 | 1160 | */ |
2d99b55d HR |
1161 | if (!current->mm) |
1162 | ret = -EINTR; | |
1163 | else if (bio_data_dir(bio) == READ) | |
9124d3fe | 1164 | ret = bio_copy_to_iter(bio, bmd->iter); |
1dfa0f68 CH |
1165 | if (bmd->is_our_pages) |
1166 | bio_free_pages(bio); | |
35dc2483 | 1167 | } |
c8db4448 | 1168 | kfree(bmd); |
1da177e4 LT |
1169 | bio_put(bio); |
1170 | return ret; | |
1171 | } | |
1172 | ||
1173 | /** | |
c5dec1c3 | 1174 | * bio_copy_user_iov - copy user data to bio |
26e49cfc KO |
1175 | * @q: destination block queue |
1176 | * @map_data: pointer to the rq_map_data holding pages (if necessary) | |
1177 | * @iter: iovec iterator | |
1178 | * @gfp_mask: memory allocation flags | |
1da177e4 LT |
1179 | * |
1180 | * Prepares and returns a bio for indirect user io, bouncing data | |
1181 | * to/from kernel pages as necessary. Must be paired with | |
1182 | * call bio_uncopy_user() on io completion. | |
1183 | */ | |
152e283f FT |
1184 | struct bio *bio_copy_user_iov(struct request_queue *q, |
1185 | struct rq_map_data *map_data, | |
26e49cfc KO |
1186 | const struct iov_iter *iter, |
1187 | gfp_t gfp_mask) | |
1da177e4 | 1188 | { |
1da177e4 | 1189 | struct bio_map_data *bmd; |
1da177e4 LT |
1190 | struct page *page; |
1191 | struct bio *bio; | |
1192 | int i, ret; | |
c5dec1c3 | 1193 | int nr_pages = 0; |
26e49cfc | 1194 | unsigned int len = iter->count; |
bd5cecea | 1195 | unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; |
1da177e4 | 1196 | |
26e49cfc | 1197 | for (i = 0; i < iter->nr_segs; i++) { |
c5dec1c3 FT |
1198 | unsigned long uaddr; |
1199 | unsigned long end; | |
1200 | unsigned long start; | |
1201 | ||
26e49cfc KO |
1202 | uaddr = (unsigned long) iter->iov[i].iov_base; |
1203 | end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) | |
1204 | >> PAGE_SHIFT; | |
c5dec1c3 FT |
1205 | start = uaddr >> PAGE_SHIFT; |
1206 | ||
cb4644ca JA |
1207 | /* |
1208 | * Overflow, abort | |
1209 | */ | |
1210 | if (end < start) | |
1211 | return ERR_PTR(-EINVAL); | |
1212 | ||
c5dec1c3 | 1213 | nr_pages += end - start; |
c5dec1c3 FT |
1214 | } |
1215 | ||
69838727 FT |
1216 | if (offset) |
1217 | nr_pages++; | |
1218 | ||
26e49cfc | 1219 | bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); |
1da177e4 LT |
1220 | if (!bmd) |
1221 | return ERR_PTR(-ENOMEM); | |
1222 | ||
26e49cfc KO |
1223 | /* |
1224 | * We need to do a deep copy of the iov_iter including the iovecs. | |
1225 | * The caller provided iov might point to an on-stack or otherwise | |
1226 | * shortlived one. | |
1227 | */ | |
1228 | bmd->is_our_pages = map_data ? 0 : 1; | |
1229 | memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); | |
1230 | iov_iter_init(&bmd->iter, iter->type, bmd->iov, | |
1231 | iter->nr_segs, iter->count); | |
1232 | ||
1da177e4 | 1233 | ret = -ENOMEM; |
a9e9dc24 | 1234 | bio = bio_kmalloc(gfp_mask, nr_pages); |
1da177e4 LT |
1235 | if (!bio) |
1236 | goto out_bmd; | |
1237 | ||
1da177e4 | 1238 | ret = 0; |
56c451f4 FT |
1239 | |
1240 | if (map_data) { | |
e623ddb4 | 1241 | nr_pages = 1 << map_data->page_order; |
56c451f4 FT |
1242 | i = map_data->offset / PAGE_SIZE; |
1243 | } | |
1da177e4 | 1244 | while (len) { |
e623ddb4 | 1245 | unsigned int bytes = PAGE_SIZE; |
1da177e4 | 1246 | |
56c451f4 FT |
1247 | bytes -= offset; |
1248 | ||
1da177e4 LT |
1249 | if (bytes > len) |
1250 | bytes = len; | |
1251 | ||
152e283f | 1252 | if (map_data) { |
e623ddb4 | 1253 | if (i == map_data->nr_entries * nr_pages) { |
152e283f FT |
1254 | ret = -ENOMEM; |
1255 | break; | |
1256 | } | |
e623ddb4 FT |
1257 | |
1258 | page = map_data->pages[i / nr_pages]; | |
1259 | page += (i % nr_pages); | |
1260 | ||
1261 | i++; | |
1262 | } else { | |
152e283f | 1263 | page = alloc_page(q->bounce_gfp | gfp_mask); |
e623ddb4 FT |
1264 | if (!page) { |
1265 | ret = -ENOMEM; | |
1266 | break; | |
1267 | } | |
1da177e4 LT |
1268 | } |
1269 | ||
56c451f4 | 1270 | if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) |
1da177e4 | 1271 | break; |
1da177e4 LT |
1272 | |
1273 | len -= bytes; | |
56c451f4 | 1274 | offset = 0; |
1da177e4 LT |
1275 | } |
1276 | ||
1277 | if (ret) | |
1278 | goto cleanup; | |
1279 | ||
1280 | /* | |
1281 | * success | |
1282 | */ | |
26e49cfc | 1283 | if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || |
ecb554a8 | 1284 | (map_data && map_data->from_user)) { |
9124d3fe | 1285 | ret = bio_copy_from_iter(bio, *iter); |
c5dec1c3 FT |
1286 | if (ret) |
1287 | goto cleanup; | |
1da177e4 LT |
1288 | } |
1289 | ||
26e49cfc | 1290 | bio->bi_private = bmd; |
1da177e4 LT |
1291 | return bio; |
1292 | cleanup: | |
152e283f | 1293 | if (!map_data) |
1dfa0f68 | 1294 | bio_free_pages(bio); |
1da177e4 LT |
1295 | bio_put(bio); |
1296 | out_bmd: | |
c8db4448 | 1297 | kfree(bmd); |
1da177e4 LT |
1298 | return ERR_PTR(ret); |
1299 | } | |
1300 | ||
37f19e57 CH |
1301 | /** |
1302 | * bio_map_user_iov - map user iovec into bio | |
1303 | * @q: the struct request_queue for the bio | |
1304 | * @iter: iovec iterator | |
1305 | * @gfp_mask: memory allocation flags | |
1306 | * | |
1307 | * Map the user space address into a bio suitable for io to a block | |
1308 | * device. Returns an error pointer in case of error. | |
1309 | */ | |
1310 | struct bio *bio_map_user_iov(struct request_queue *q, | |
1311 | const struct iov_iter *iter, | |
1312 | gfp_t gfp_mask) | |
1da177e4 | 1313 | { |
26e49cfc | 1314 | int j; |
f1970baf | 1315 | int nr_pages = 0; |
1da177e4 LT |
1316 | struct page **pages; |
1317 | struct bio *bio; | |
f1970baf JB |
1318 | int cur_page = 0; |
1319 | int ret, offset; | |
26e49cfc KO |
1320 | struct iov_iter i; |
1321 | struct iovec iov; | |
1da177e4 | 1322 | |
26e49cfc KO |
1323 | iov_for_each(iov, i, *iter) { |
1324 | unsigned long uaddr = (unsigned long) iov.iov_base; | |
1325 | unsigned long len = iov.iov_len; | |
f1970baf JB |
1326 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1327 | unsigned long start = uaddr >> PAGE_SHIFT; | |
1328 | ||
cb4644ca JA |
1329 | /* |
1330 | * Overflow, abort | |
1331 | */ | |
1332 | if (end < start) | |
1333 | return ERR_PTR(-EINVAL); | |
1334 | ||
f1970baf JB |
1335 | nr_pages += end - start; |
1336 | /* | |
a441b0d0 | 1337 | * buffer must be aligned to at least logical block size for now |
f1970baf | 1338 | */ |
ad2d7225 | 1339 | if (uaddr & queue_dma_alignment(q)) |
f1970baf JB |
1340 | return ERR_PTR(-EINVAL); |
1341 | } | |
1342 | ||
1343 | if (!nr_pages) | |
1da177e4 LT |
1344 | return ERR_PTR(-EINVAL); |
1345 | ||
a9e9dc24 | 1346 | bio = bio_kmalloc(gfp_mask, nr_pages); |
1da177e4 LT |
1347 | if (!bio) |
1348 | return ERR_PTR(-ENOMEM); | |
1349 | ||
1350 | ret = -ENOMEM; | |
a3bce90e | 1351 | pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); |
1da177e4 LT |
1352 | if (!pages) |
1353 | goto out; | |
1354 | ||
26e49cfc KO |
1355 | iov_for_each(iov, i, *iter) { |
1356 | unsigned long uaddr = (unsigned long) iov.iov_base; | |
1357 | unsigned long len = iov.iov_len; | |
f1970baf JB |
1358 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1359 | unsigned long start = uaddr >> PAGE_SHIFT; | |
1360 | const int local_nr_pages = end - start; | |
1361 | const int page_limit = cur_page + local_nr_pages; | |
cb4644ca | 1362 | |
f5dd33c4 | 1363 | ret = get_user_pages_fast(uaddr, local_nr_pages, |
26e49cfc KO |
1364 | (iter->type & WRITE) != WRITE, |
1365 | &pages[cur_page]); | |
99172157 JA |
1366 | if (ret < local_nr_pages) { |
1367 | ret = -EFAULT; | |
f1970baf | 1368 | goto out_unmap; |
99172157 | 1369 | } |
f1970baf | 1370 | |
bd5cecea | 1371 | offset = offset_in_page(uaddr); |
f1970baf JB |
1372 | for (j = cur_page; j < page_limit; j++) { |
1373 | unsigned int bytes = PAGE_SIZE - offset; | |
1374 | ||
1375 | if (len <= 0) | |
1376 | break; | |
1377 | ||
1378 | if (bytes > len) | |
1379 | bytes = len; | |
1380 | ||
1381 | /* | |
1382 | * sorry... | |
1383 | */ | |
defd94b7 MC |
1384 | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < |
1385 | bytes) | |
f1970baf JB |
1386 | break; |
1387 | ||
1388 | len -= bytes; | |
1389 | offset = 0; | |
1390 | } | |
1da177e4 | 1391 | |
f1970baf | 1392 | cur_page = j; |
1da177e4 | 1393 | /* |
f1970baf | 1394 | * release the pages we didn't map into the bio, if any |
1da177e4 | 1395 | */ |
f1970baf | 1396 | while (j < page_limit) |
09cbfeaf | 1397 | put_page(pages[j++]); |
1da177e4 LT |
1398 | } |
1399 | ||
1da177e4 LT |
1400 | kfree(pages); |
1401 | ||
b7c44ed9 | 1402 | bio_set_flag(bio, BIO_USER_MAPPED); |
37f19e57 CH |
1403 | |
1404 | /* | |
5fad1b64 | 1405 | * subtle -- if bio_map_user_iov() ended up bouncing a bio, |
37f19e57 CH |
1406 | * it would normally disappear when its bi_end_io is run. |
1407 | * however, we need it for the unmap, so grab an extra | |
1408 | * reference to it | |
1409 | */ | |
1410 | bio_get(bio); | |
1da177e4 | 1411 | return bio; |
f1970baf JB |
1412 | |
1413 | out_unmap: | |
26e49cfc KO |
1414 | for (j = 0; j < nr_pages; j++) { |
1415 | if (!pages[j]) | |
f1970baf | 1416 | break; |
09cbfeaf | 1417 | put_page(pages[j]); |
f1970baf JB |
1418 | } |
1419 | out: | |
1da177e4 LT |
1420 | kfree(pages); |
1421 | bio_put(bio); | |
1422 | return ERR_PTR(ret); | |
1423 | } | |
1424 | ||
1da177e4 LT |
1425 | static void __bio_unmap_user(struct bio *bio) |
1426 | { | |
1427 | struct bio_vec *bvec; | |
1428 | int i; | |
1429 | ||
1430 | /* | |
1431 | * make sure we dirty pages we wrote to | |
1432 | */ | |
d74c6d51 | 1433 | bio_for_each_segment_all(bvec, bio, i) { |
1da177e4 LT |
1434 | if (bio_data_dir(bio) == READ) |
1435 | set_page_dirty_lock(bvec->bv_page); | |
1436 | ||
09cbfeaf | 1437 | put_page(bvec->bv_page); |
1da177e4 LT |
1438 | } |
1439 | ||
1440 | bio_put(bio); | |
1441 | } | |
1442 | ||
1443 | /** | |
1444 | * bio_unmap_user - unmap a bio | |
1445 | * @bio: the bio being unmapped | |
1446 | * | |
5fad1b64 BVA |
1447 | * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from |
1448 | * process context. | |
1da177e4 LT |
1449 | * |
1450 | * bio_unmap_user() may sleep. | |
1451 | */ | |
1452 | void bio_unmap_user(struct bio *bio) | |
1453 | { | |
1454 | __bio_unmap_user(bio); | |
1455 | bio_put(bio); | |
1456 | } | |
1457 | ||
4246a0b6 | 1458 | static void bio_map_kern_endio(struct bio *bio) |
b823825e | 1459 | { |
b823825e | 1460 | bio_put(bio); |
b823825e JA |
1461 | } |
1462 | ||
75c72b83 CH |
1463 | /** |
1464 | * bio_map_kern - map kernel address into bio | |
1465 | * @q: the struct request_queue for the bio | |
1466 | * @data: pointer to buffer to map | |
1467 | * @len: length in bytes | |
1468 | * @gfp_mask: allocation flags for bio allocation | |
1469 | * | |
1470 | * Map the kernel address into a bio suitable for io to a block | |
1471 | * device. Returns an error pointer in case of error. | |
1472 | */ | |
1473 | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, | |
1474 | gfp_t gfp_mask) | |
df46b9a4 MC |
1475 | { |
1476 | unsigned long kaddr = (unsigned long)data; | |
1477 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1478 | unsigned long start = kaddr >> PAGE_SHIFT; | |
1479 | const int nr_pages = end - start; | |
1480 | int offset, i; | |
1481 | struct bio *bio; | |
1482 | ||
a9e9dc24 | 1483 | bio = bio_kmalloc(gfp_mask, nr_pages); |
df46b9a4 MC |
1484 | if (!bio) |
1485 | return ERR_PTR(-ENOMEM); | |
1486 | ||
1487 | offset = offset_in_page(kaddr); | |
1488 | for (i = 0; i < nr_pages; i++) { | |
1489 | unsigned int bytes = PAGE_SIZE - offset; | |
1490 | ||
1491 | if (len <= 0) | |
1492 | break; | |
1493 | ||
1494 | if (bytes > len) | |
1495 | bytes = len; | |
1496 | ||
defd94b7 | 1497 | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, |
75c72b83 CH |
1498 | offset) < bytes) { |
1499 | /* we don't support partial mappings */ | |
1500 | bio_put(bio); | |
1501 | return ERR_PTR(-EINVAL); | |
1502 | } | |
df46b9a4 MC |
1503 | |
1504 | data += bytes; | |
1505 | len -= bytes; | |
1506 | offset = 0; | |
1507 | } | |
1508 | ||
b823825e | 1509 | bio->bi_end_io = bio_map_kern_endio; |
df46b9a4 MC |
1510 | return bio; |
1511 | } | |
a112a71d | 1512 | EXPORT_SYMBOL(bio_map_kern); |
df46b9a4 | 1513 | |
4246a0b6 | 1514 | static void bio_copy_kern_endio(struct bio *bio) |
68154e90 | 1515 | { |
1dfa0f68 CH |
1516 | bio_free_pages(bio); |
1517 | bio_put(bio); | |
1518 | } | |
1519 | ||
4246a0b6 | 1520 | static void bio_copy_kern_endio_read(struct bio *bio) |
1dfa0f68 | 1521 | { |
42d2683a | 1522 | char *p = bio->bi_private; |
1dfa0f68 | 1523 | struct bio_vec *bvec; |
68154e90 FT |
1524 | int i; |
1525 | ||
d74c6d51 | 1526 | bio_for_each_segment_all(bvec, bio, i) { |
1dfa0f68 | 1527 | memcpy(p, page_address(bvec->bv_page), bvec->bv_len); |
c8db4448 | 1528 | p += bvec->bv_len; |
68154e90 FT |
1529 | } |
1530 | ||
4246a0b6 | 1531 | bio_copy_kern_endio(bio); |
68154e90 FT |
1532 | } |
1533 | ||
1534 | /** | |
1535 | * bio_copy_kern - copy kernel address into bio | |
1536 | * @q: the struct request_queue for the bio | |
1537 | * @data: pointer to buffer to copy | |
1538 | * @len: length in bytes | |
1539 | * @gfp_mask: allocation flags for bio and page allocation | |
ffee0259 | 1540 | * @reading: data direction is READ |
68154e90 FT |
1541 | * |
1542 | * copy the kernel address into a bio suitable for io to a block | |
1543 | * device. Returns an error pointer in case of error. | |
1544 | */ | |
1545 | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, | |
1546 | gfp_t gfp_mask, int reading) | |
1547 | { | |
42d2683a CH |
1548 | unsigned long kaddr = (unsigned long)data; |
1549 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1550 | unsigned long start = kaddr >> PAGE_SHIFT; | |
42d2683a CH |
1551 | struct bio *bio; |
1552 | void *p = data; | |
1dfa0f68 | 1553 | int nr_pages = 0; |
68154e90 | 1554 | |
42d2683a CH |
1555 | /* |
1556 | * Overflow, abort | |
1557 | */ | |
1558 | if (end < start) | |
1559 | return ERR_PTR(-EINVAL); | |
68154e90 | 1560 | |
42d2683a CH |
1561 | nr_pages = end - start; |
1562 | bio = bio_kmalloc(gfp_mask, nr_pages); | |
1563 | if (!bio) | |
1564 | return ERR_PTR(-ENOMEM); | |
68154e90 | 1565 | |
42d2683a CH |
1566 | while (len) { |
1567 | struct page *page; | |
1568 | unsigned int bytes = PAGE_SIZE; | |
68154e90 | 1569 | |
42d2683a CH |
1570 | if (bytes > len) |
1571 | bytes = len; | |
1572 | ||
1573 | page = alloc_page(q->bounce_gfp | gfp_mask); | |
1574 | if (!page) | |
1575 | goto cleanup; | |
1576 | ||
1577 | if (!reading) | |
1578 | memcpy(page_address(page), p, bytes); | |
1579 | ||
1580 | if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) | |
1581 | break; | |
1582 | ||
1583 | len -= bytes; | |
1584 | p += bytes; | |
68154e90 FT |
1585 | } |
1586 | ||
1dfa0f68 CH |
1587 | if (reading) { |
1588 | bio->bi_end_io = bio_copy_kern_endio_read; | |
1589 | bio->bi_private = data; | |
1590 | } else { | |
1591 | bio->bi_end_io = bio_copy_kern_endio; | |
1dfa0f68 | 1592 | } |
76029ff3 | 1593 | |
68154e90 | 1594 | return bio; |
42d2683a CH |
1595 | |
1596 | cleanup: | |
1dfa0f68 | 1597 | bio_free_pages(bio); |
42d2683a CH |
1598 | bio_put(bio); |
1599 | return ERR_PTR(-ENOMEM); | |
68154e90 FT |
1600 | } |
1601 | ||
1da177e4 LT |
1602 | /* |
1603 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | |
1604 | * for performing direct-IO in BIOs. | |
1605 | * | |
1606 | * The problem is that we cannot run set_page_dirty() from interrupt context | |
1607 | * because the required locks are not interrupt-safe. So what we can do is to | |
1608 | * mark the pages dirty _before_ performing IO. And in interrupt context, | |
1609 | * check that the pages are still dirty. If so, fine. If not, redirty them | |
1610 | * in process context. | |
1611 | * | |
1612 | * We special-case compound pages here: normally this means reads into hugetlb | |
1613 | * pages. The logic in here doesn't really work right for compound pages | |
1614 | * because the VM does not uniformly chase down the head page in all cases. | |
1615 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | |
1616 | * handle them at all. So we skip compound pages here at an early stage. | |
1617 | * | |
1618 | * Note that this code is very hard to test under normal circumstances because | |
1619 | * direct-io pins the pages with get_user_pages(). This makes | |
1620 | * is_page_cache_freeable return false, and the VM will not clean the pages. | |
0d5c3eba | 1621 | * But other code (eg, flusher threads) could clean the pages if they are mapped |
1da177e4 LT |
1622 | * pagecache. |
1623 | * | |
1624 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | |
1625 | * deferred bio dirtying paths. | |
1626 | */ | |
1627 | ||
1628 | /* | |
1629 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | |
1630 | */ | |
1631 | void bio_set_pages_dirty(struct bio *bio) | |
1632 | { | |
cb34e057 | 1633 | struct bio_vec *bvec; |
1da177e4 LT |
1634 | int i; |
1635 | ||
cb34e057 KO |
1636 | bio_for_each_segment_all(bvec, bio, i) { |
1637 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1638 | |
1639 | if (page && !PageCompound(page)) | |
1640 | set_page_dirty_lock(page); | |
1641 | } | |
1642 | } | |
1643 | ||
86b6c7a7 | 1644 | static void bio_release_pages(struct bio *bio) |
1da177e4 | 1645 | { |
cb34e057 | 1646 | struct bio_vec *bvec; |
1da177e4 LT |
1647 | int i; |
1648 | ||
cb34e057 KO |
1649 | bio_for_each_segment_all(bvec, bio, i) { |
1650 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1651 | |
1652 | if (page) | |
1653 | put_page(page); | |
1654 | } | |
1655 | } | |
1656 | ||
1657 | /* | |
1658 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | |
1659 | * If they are, then fine. If, however, some pages are clean then they must | |
1660 | * have been written out during the direct-IO read. So we take another ref on | |
1661 | * the BIO and the offending pages and re-dirty the pages in process context. | |
1662 | * | |
1663 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | |
ea1754a0 KS |
1664 | * here on. It will run one put_page() against each page and will run one |
1665 | * bio_put() against the BIO. | |
1da177e4 LT |
1666 | */ |
1667 | ||
65f27f38 | 1668 | static void bio_dirty_fn(struct work_struct *work); |
1da177e4 | 1669 | |
65f27f38 | 1670 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
1da177e4 LT |
1671 | static DEFINE_SPINLOCK(bio_dirty_lock); |
1672 | static struct bio *bio_dirty_list; | |
1673 | ||
1674 | /* | |
1675 | * This runs in process context | |
1676 | */ | |
65f27f38 | 1677 | static void bio_dirty_fn(struct work_struct *work) |
1da177e4 LT |
1678 | { |
1679 | unsigned long flags; | |
1680 | struct bio *bio; | |
1681 | ||
1682 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1683 | bio = bio_dirty_list; | |
1684 | bio_dirty_list = NULL; | |
1685 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1686 | ||
1687 | while (bio) { | |
1688 | struct bio *next = bio->bi_private; | |
1689 | ||
1690 | bio_set_pages_dirty(bio); | |
1691 | bio_release_pages(bio); | |
1692 | bio_put(bio); | |
1693 | bio = next; | |
1694 | } | |
1695 | } | |
1696 | ||
1697 | void bio_check_pages_dirty(struct bio *bio) | |
1698 | { | |
cb34e057 | 1699 | struct bio_vec *bvec; |
1da177e4 LT |
1700 | int nr_clean_pages = 0; |
1701 | int i; | |
1702 | ||
cb34e057 KO |
1703 | bio_for_each_segment_all(bvec, bio, i) { |
1704 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1705 | |
1706 | if (PageDirty(page) || PageCompound(page)) { | |
09cbfeaf | 1707 | put_page(page); |
cb34e057 | 1708 | bvec->bv_page = NULL; |
1da177e4 LT |
1709 | } else { |
1710 | nr_clean_pages++; | |
1711 | } | |
1712 | } | |
1713 | ||
1714 | if (nr_clean_pages) { | |
1715 | unsigned long flags; | |
1716 | ||
1717 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1718 | bio->bi_private = bio_dirty_list; | |
1719 | bio_dirty_list = bio; | |
1720 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1721 | schedule_work(&bio_dirty_work); | |
1722 | } else { | |
1723 | bio_put(bio); | |
1724 | } | |
1725 | } | |
1726 | ||
394ffa50 GZ |
1727 | void generic_start_io_acct(int rw, unsigned long sectors, |
1728 | struct hd_struct *part) | |
1729 | { | |
1730 | int cpu = part_stat_lock(); | |
1731 | ||
1732 | part_round_stats(cpu, part); | |
1733 | part_stat_inc(cpu, part, ios[rw]); | |
1734 | part_stat_add(cpu, part, sectors[rw], sectors); | |
1735 | part_inc_in_flight(part, rw); | |
1736 | ||
1737 | part_stat_unlock(); | |
1738 | } | |
1739 | EXPORT_SYMBOL(generic_start_io_acct); | |
1740 | ||
1741 | void generic_end_io_acct(int rw, struct hd_struct *part, | |
1742 | unsigned long start_time) | |
1743 | { | |
1744 | unsigned long duration = jiffies - start_time; | |
1745 | int cpu = part_stat_lock(); | |
1746 | ||
1747 | part_stat_add(cpu, part, ticks[rw], duration); | |
1748 | part_round_stats(cpu, part); | |
1749 | part_dec_in_flight(part, rw); | |
1750 | ||
1751 | part_stat_unlock(); | |
1752 | } | |
1753 | EXPORT_SYMBOL(generic_end_io_acct); | |
1754 | ||
2d4dc890 IL |
1755 | #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE |
1756 | void bio_flush_dcache_pages(struct bio *bi) | |
1757 | { | |
7988613b KO |
1758 | struct bio_vec bvec; |
1759 | struct bvec_iter iter; | |
2d4dc890 | 1760 | |
7988613b KO |
1761 | bio_for_each_segment(bvec, bi, iter) |
1762 | flush_dcache_page(bvec.bv_page); | |
2d4dc890 IL |
1763 | } |
1764 | EXPORT_SYMBOL(bio_flush_dcache_pages); | |
1765 | #endif | |
1766 | ||
c4cf5261 JA |
1767 | static inline bool bio_remaining_done(struct bio *bio) |
1768 | { | |
1769 | /* | |
1770 | * If we're not chaining, then ->__bi_remaining is always 1 and | |
1771 | * we always end io on the first invocation. | |
1772 | */ | |
1773 | if (!bio_flagged(bio, BIO_CHAIN)) | |
1774 | return true; | |
1775 | ||
1776 | BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); | |
1777 | ||
326e1dbb | 1778 | if (atomic_dec_and_test(&bio->__bi_remaining)) { |
b7c44ed9 | 1779 | bio_clear_flag(bio, BIO_CHAIN); |
c4cf5261 | 1780 | return true; |
326e1dbb | 1781 | } |
c4cf5261 JA |
1782 | |
1783 | return false; | |
1784 | } | |
1785 | ||
1da177e4 LT |
1786 | /** |
1787 | * bio_endio - end I/O on a bio | |
1788 | * @bio: bio | |
1da177e4 LT |
1789 | * |
1790 | * Description: | |
4246a0b6 CH |
1791 | * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred |
1792 | * way to end I/O on a bio. No one should call bi_end_io() directly on a | |
1793 | * bio unless they own it and thus know that it has an end_io function. | |
fbbaf700 N |
1794 | * |
1795 | * bio_endio() can be called several times on a bio that has been chained | |
1796 | * using bio_chain(). The ->bi_end_io() function will only be called the | |
1797 | * last time. At this point the BLK_TA_COMPLETE tracing event will be | |
1798 | * generated if BIO_TRACE_COMPLETION is set. | |
1da177e4 | 1799 | **/ |
4246a0b6 | 1800 | void bio_endio(struct bio *bio) |
1da177e4 | 1801 | { |
ba8c6967 | 1802 | again: |
2b885517 | 1803 | if (!bio_remaining_done(bio)) |
ba8c6967 | 1804 | return; |
1da177e4 | 1805 | |
ba8c6967 CH |
1806 | /* |
1807 | * Need to have a real endio function for chained bios, otherwise | |
1808 | * various corner cases will break (like stacking block devices that | |
1809 | * save/restore bi_end_io) - however, we want to avoid unbounded | |
1810 | * recursion and blowing the stack. Tail call optimization would | |
1811 | * handle this, but compiling with frame pointers also disables | |
1812 | * gcc's sibling call optimization. | |
1813 | */ | |
1814 | if (bio->bi_end_io == bio_chain_endio) { | |
1815 | bio = __bio_chain_endio(bio); | |
1816 | goto again; | |
196d38bc | 1817 | } |
ba8c6967 | 1818 | |
fbbaf700 N |
1819 | if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { |
1820 | trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), | |
1821 | bio, bio->bi_error); | |
1822 | bio_clear_flag(bio, BIO_TRACE_COMPLETION); | |
1823 | } | |
1824 | ||
9e234eea | 1825 | blk_throtl_bio_endio(bio); |
ba8c6967 CH |
1826 | if (bio->bi_end_io) |
1827 | bio->bi_end_io(bio); | |
1da177e4 | 1828 | } |
a112a71d | 1829 | EXPORT_SYMBOL(bio_endio); |
1da177e4 | 1830 | |
20d0189b KO |
1831 | /** |
1832 | * bio_split - split a bio | |
1833 | * @bio: bio to split | |
1834 | * @sectors: number of sectors to split from the front of @bio | |
1835 | * @gfp: gfp mask | |
1836 | * @bs: bio set to allocate from | |
1837 | * | |
1838 | * Allocates and returns a new bio which represents @sectors from the start of | |
1839 | * @bio, and updates @bio to represent the remaining sectors. | |
1840 | * | |
f3f5da62 MP |
1841 | * Unless this is a discard request the newly allocated bio will point |
1842 | * to @bio's bi_io_vec; it is the caller's responsibility to ensure that | |
1843 | * @bio is not freed before the split. | |
20d0189b KO |
1844 | */ |
1845 | struct bio *bio_split(struct bio *bio, int sectors, | |
1846 | gfp_t gfp, struct bio_set *bs) | |
1847 | { | |
1848 | struct bio *split = NULL; | |
1849 | ||
1850 | BUG_ON(sectors <= 0); | |
1851 | BUG_ON(sectors >= bio_sectors(bio)); | |
1852 | ||
f9d03f96 | 1853 | split = bio_clone_fast(bio, gfp, bs); |
20d0189b KO |
1854 | if (!split) |
1855 | return NULL; | |
1856 | ||
1857 | split->bi_iter.bi_size = sectors << 9; | |
1858 | ||
1859 | if (bio_integrity(split)) | |
1860 | bio_integrity_trim(split, 0, sectors); | |
1861 | ||
1862 | bio_advance(bio, split->bi_iter.bi_size); | |
1863 | ||
fbbaf700 N |
1864 | if (bio_flagged(bio, BIO_TRACE_COMPLETION)) |
1865 | bio_set_flag(bio, BIO_TRACE_COMPLETION); | |
1866 | ||
20d0189b KO |
1867 | return split; |
1868 | } | |
1869 | EXPORT_SYMBOL(bio_split); | |
1870 | ||
6678d83f KO |
1871 | /** |
1872 | * bio_trim - trim a bio | |
1873 | * @bio: bio to trim | |
1874 | * @offset: number of sectors to trim from the front of @bio | |
1875 | * @size: size we want to trim @bio to, in sectors | |
1876 | */ | |
1877 | void bio_trim(struct bio *bio, int offset, int size) | |
1878 | { | |
1879 | /* 'bio' is a cloned bio which we need to trim to match | |
1880 | * the given offset and size. | |
6678d83f | 1881 | */ |
6678d83f KO |
1882 | |
1883 | size <<= 9; | |
4f024f37 | 1884 | if (offset == 0 && size == bio->bi_iter.bi_size) |
6678d83f KO |
1885 | return; |
1886 | ||
b7c44ed9 | 1887 | bio_clear_flag(bio, BIO_SEG_VALID); |
6678d83f KO |
1888 | |
1889 | bio_advance(bio, offset << 9); | |
1890 | ||
4f024f37 | 1891 | bio->bi_iter.bi_size = size; |
6678d83f KO |
1892 | } |
1893 | EXPORT_SYMBOL_GPL(bio_trim); | |
1894 | ||
1da177e4 LT |
1895 | /* |
1896 | * create memory pools for biovec's in a bio_set. | |
1897 | * use the global biovec slabs created for general use. | |
1898 | */ | |
a6c39cb4 | 1899 | mempool_t *biovec_create_pool(int pool_entries) |
1da177e4 | 1900 | { |
ed996a52 | 1901 | struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; |
1da177e4 | 1902 | |
9f060e22 | 1903 | return mempool_create_slab_pool(pool_entries, bp->slab); |
1da177e4 LT |
1904 | } |
1905 | ||
1906 | void bioset_free(struct bio_set *bs) | |
1907 | { | |
df2cb6da KO |
1908 | if (bs->rescue_workqueue) |
1909 | destroy_workqueue(bs->rescue_workqueue); | |
1910 | ||
1da177e4 LT |
1911 | if (bs->bio_pool) |
1912 | mempool_destroy(bs->bio_pool); | |
1913 | ||
9f060e22 KO |
1914 | if (bs->bvec_pool) |
1915 | mempool_destroy(bs->bvec_pool); | |
1916 | ||
7878cba9 | 1917 | bioset_integrity_free(bs); |
bb799ca0 | 1918 | bio_put_slab(bs); |
1da177e4 LT |
1919 | |
1920 | kfree(bs); | |
1921 | } | |
a112a71d | 1922 | EXPORT_SYMBOL(bioset_free); |
1da177e4 | 1923 | |
d8f429e1 JN |
1924 | static struct bio_set *__bioset_create(unsigned int pool_size, |
1925 | unsigned int front_pad, | |
1926 | bool create_bvec_pool) | |
1da177e4 | 1927 | { |
392ddc32 | 1928 | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); |
1b434498 | 1929 | struct bio_set *bs; |
1da177e4 | 1930 | |
1b434498 | 1931 | bs = kzalloc(sizeof(*bs), GFP_KERNEL); |
1da177e4 LT |
1932 | if (!bs) |
1933 | return NULL; | |
1934 | ||
bb799ca0 | 1935 | bs->front_pad = front_pad; |
1b434498 | 1936 | |
df2cb6da KO |
1937 | spin_lock_init(&bs->rescue_lock); |
1938 | bio_list_init(&bs->rescue_list); | |
1939 | INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | |
1940 | ||
392ddc32 | 1941 | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); |
bb799ca0 JA |
1942 | if (!bs->bio_slab) { |
1943 | kfree(bs); | |
1944 | return NULL; | |
1945 | } | |
1946 | ||
1947 | bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); | |
1da177e4 LT |
1948 | if (!bs->bio_pool) |
1949 | goto bad; | |
1950 | ||
d8f429e1 JN |
1951 | if (create_bvec_pool) { |
1952 | bs->bvec_pool = biovec_create_pool(pool_size); | |
1953 | if (!bs->bvec_pool) | |
1954 | goto bad; | |
1955 | } | |
df2cb6da KO |
1956 | |
1957 | bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); | |
1958 | if (!bs->rescue_workqueue) | |
1959 | goto bad; | |
1da177e4 | 1960 | |
df2cb6da | 1961 | return bs; |
1da177e4 LT |
1962 | bad: |
1963 | bioset_free(bs); | |
1964 | return NULL; | |
1965 | } | |
d8f429e1 JN |
1966 | |
1967 | /** | |
1968 | * bioset_create - Create a bio_set | |
1969 | * @pool_size: Number of bio and bio_vecs to cache in the mempool | |
1970 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1971 | * | |
1972 | * Description: | |
1973 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | |
1974 | * to ask for a number of bytes to be allocated in front of the bio. | |
1975 | * Front pad allocation is useful for embedding the bio inside | |
1976 | * another structure, to avoid allocating extra data to go with the bio. | |
1977 | * Note that the bio must be embedded at the END of that structure always, | |
1978 | * or things will break badly. | |
1979 | */ | |
1980 | struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) | |
1981 | { | |
1982 | return __bioset_create(pool_size, front_pad, true); | |
1983 | } | |
a112a71d | 1984 | EXPORT_SYMBOL(bioset_create); |
1da177e4 | 1985 | |
d8f429e1 JN |
1986 | /** |
1987 | * bioset_create_nobvec - Create a bio_set without bio_vec mempool | |
1988 | * @pool_size: Number of bio to cache in the mempool | |
1989 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1990 | * | |
1991 | * Description: | |
1992 | * Same functionality as bioset_create() except that mempool is not | |
1993 | * created for bio_vecs. Saving some memory for bio_clone_fast() users. | |
1994 | */ | |
1995 | struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) | |
1996 | { | |
1997 | return __bioset_create(pool_size, front_pad, false); | |
1998 | } | |
1999 | EXPORT_SYMBOL(bioset_create_nobvec); | |
2000 | ||
852c788f | 2001 | #ifdef CONFIG_BLK_CGROUP |
1d933cf0 TH |
2002 | |
2003 | /** | |
2004 | * bio_associate_blkcg - associate a bio with the specified blkcg | |
2005 | * @bio: target bio | |
2006 | * @blkcg_css: css of the blkcg to associate | |
2007 | * | |
2008 | * Associate @bio with the blkcg specified by @blkcg_css. Block layer will | |
2009 | * treat @bio as if it were issued by a task which belongs to the blkcg. | |
2010 | * | |
2011 | * This function takes an extra reference of @blkcg_css which will be put | |
2012 | * when @bio is released. The caller must own @bio and is responsible for | |
2013 | * synchronizing calls to this function. | |
2014 | */ | |
2015 | int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) | |
2016 | { | |
2017 | if (unlikely(bio->bi_css)) | |
2018 | return -EBUSY; | |
2019 | css_get(blkcg_css); | |
2020 | bio->bi_css = blkcg_css; | |
2021 | return 0; | |
2022 | } | |
5aa2a96b | 2023 | EXPORT_SYMBOL_GPL(bio_associate_blkcg); |
1d933cf0 | 2024 | |
852c788f TH |
2025 | /** |
2026 | * bio_associate_current - associate a bio with %current | |
2027 | * @bio: target bio | |
2028 | * | |
2029 | * Associate @bio with %current if it hasn't been associated yet. Block | |
2030 | * layer will treat @bio as if it were issued by %current no matter which | |
2031 | * task actually issues it. | |
2032 | * | |
2033 | * This function takes an extra reference of @task's io_context and blkcg | |
2034 | * which will be put when @bio is released. The caller must own @bio, | |
2035 | * ensure %current->io_context exists, and is responsible for synchronizing | |
2036 | * calls to this function. | |
2037 | */ | |
2038 | int bio_associate_current(struct bio *bio) | |
2039 | { | |
2040 | struct io_context *ioc; | |
852c788f | 2041 | |
1d933cf0 | 2042 | if (bio->bi_css) |
852c788f TH |
2043 | return -EBUSY; |
2044 | ||
2045 | ioc = current->io_context; | |
2046 | if (!ioc) | |
2047 | return -ENOENT; | |
2048 | ||
852c788f TH |
2049 | get_io_context_active(ioc); |
2050 | bio->bi_ioc = ioc; | |
c165b3e3 | 2051 | bio->bi_css = task_get_css(current, io_cgrp_id); |
852c788f TH |
2052 | return 0; |
2053 | } | |
5aa2a96b | 2054 | EXPORT_SYMBOL_GPL(bio_associate_current); |
852c788f TH |
2055 | |
2056 | /** | |
2057 | * bio_disassociate_task - undo bio_associate_current() | |
2058 | * @bio: target bio | |
2059 | */ | |
2060 | void bio_disassociate_task(struct bio *bio) | |
2061 | { | |
2062 | if (bio->bi_ioc) { | |
2063 | put_io_context(bio->bi_ioc); | |
2064 | bio->bi_ioc = NULL; | |
2065 | } | |
2066 | if (bio->bi_css) { | |
2067 | css_put(bio->bi_css); | |
2068 | bio->bi_css = NULL; | |
2069 | } | |
2070 | } | |
2071 | ||
20bd723e PV |
2072 | /** |
2073 | * bio_clone_blkcg_association - clone blkcg association from src to dst bio | |
2074 | * @dst: destination bio | |
2075 | * @src: source bio | |
2076 | */ | |
2077 | void bio_clone_blkcg_association(struct bio *dst, struct bio *src) | |
2078 | { | |
2079 | if (src->bi_css) | |
2080 | WARN_ON(bio_associate_blkcg(dst, src->bi_css)); | |
2081 | } | |
2082 | ||
852c788f TH |
2083 | #endif /* CONFIG_BLK_CGROUP */ |
2084 | ||
1da177e4 LT |
2085 | static void __init biovec_init_slabs(void) |
2086 | { | |
2087 | int i; | |
2088 | ||
ed996a52 | 2089 | for (i = 0; i < BVEC_POOL_NR; i++) { |
1da177e4 LT |
2090 | int size; |
2091 | struct biovec_slab *bvs = bvec_slabs + i; | |
2092 | ||
a7fcd37c JA |
2093 | if (bvs->nr_vecs <= BIO_INLINE_VECS) { |
2094 | bvs->slab = NULL; | |
2095 | continue; | |
2096 | } | |
a7fcd37c | 2097 | |
1da177e4 LT |
2098 | size = bvs->nr_vecs * sizeof(struct bio_vec); |
2099 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | |
20c2df83 | 2100 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1da177e4 LT |
2101 | } |
2102 | } | |
2103 | ||
2104 | static int __init init_bio(void) | |
2105 | { | |
bb799ca0 JA |
2106 | bio_slab_max = 2; |
2107 | bio_slab_nr = 0; | |
2108 | bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); | |
2109 | if (!bio_slabs) | |
2110 | panic("bio: can't allocate bios\n"); | |
1da177e4 | 2111 | |
7878cba9 | 2112 | bio_integrity_init(); |
1da177e4 LT |
2113 | biovec_init_slabs(); |
2114 | ||
bb799ca0 | 2115 | fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); |
1da177e4 LT |
2116 | if (!fs_bio_set) |
2117 | panic("bio: can't allocate bios\n"); | |
2118 | ||
a91a2785 MP |
2119 | if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) |
2120 | panic("bio: can't create integrity pool\n"); | |
2121 | ||
1da177e4 LT |
2122 | return 0; |
2123 | } | |
1da177e4 | 2124 | subsys_initcall(init_bio); |