]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/timer.c | |
3 | * | |
8524070b | 4 | * Kernel internal timers, basic process system calls |
1da177e4 LT |
5 | * |
6 | * Copyright (C) 1991, 1992 Linus Torvalds | |
7 | * | |
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | |
9 | * | |
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | |
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | |
13 | * serialize accesses to xtime/lost_ticks). | |
14 | * Copyright (C) 1998 Andrea Arcangeli | |
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | |
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | |
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | |
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | |
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | |
20 | */ | |
21 | ||
22 | #include <linux/kernel_stat.h> | |
23 | #include <linux/module.h> | |
24 | #include <linux/interrupt.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/init.h> | |
27 | #include <linux/mm.h> | |
28 | #include <linux/swap.h> | |
b488893a | 29 | #include <linux/pid_namespace.h> |
1da177e4 LT |
30 | #include <linux/notifier.h> |
31 | #include <linux/thread_info.h> | |
32 | #include <linux/time.h> | |
33 | #include <linux/jiffies.h> | |
34 | #include <linux/posix-timers.h> | |
35 | #include <linux/cpu.h> | |
36 | #include <linux/syscalls.h> | |
97a41e26 | 37 | #include <linux/delay.h> |
79bf2bb3 | 38 | #include <linux/tick.h> |
82f67cd9 | 39 | #include <linux/kallsyms.h> |
1da177e4 LT |
40 | |
41 | #include <asm/uaccess.h> | |
42 | #include <asm/unistd.h> | |
43 | #include <asm/div64.h> | |
44 | #include <asm/timex.h> | |
45 | #include <asm/io.h> | |
46 | ||
ecea8d19 TG |
47 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
48 | ||
49 | EXPORT_SYMBOL(jiffies_64); | |
50 | ||
1da177e4 LT |
51 | /* |
52 | * per-CPU timer vector definitions: | |
53 | */ | |
1da177e4 LT |
54 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) |
55 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | |
56 | #define TVN_SIZE (1 << TVN_BITS) | |
57 | #define TVR_SIZE (1 << TVR_BITS) | |
58 | #define TVN_MASK (TVN_SIZE - 1) | |
59 | #define TVR_MASK (TVR_SIZE - 1) | |
60 | ||
a6fa8e5a | 61 | struct tvec { |
1da177e4 | 62 | struct list_head vec[TVN_SIZE]; |
a6fa8e5a | 63 | }; |
1da177e4 | 64 | |
a6fa8e5a | 65 | struct tvec_root { |
1da177e4 | 66 | struct list_head vec[TVR_SIZE]; |
a6fa8e5a | 67 | }; |
1da177e4 | 68 | |
a6fa8e5a | 69 | struct tvec_base { |
3691c519 ON |
70 | spinlock_t lock; |
71 | struct timer_list *running_timer; | |
1da177e4 | 72 | unsigned long timer_jiffies; |
a6fa8e5a PM |
73 | struct tvec_root tv1; |
74 | struct tvec tv2; | |
75 | struct tvec tv3; | |
76 | struct tvec tv4; | |
77 | struct tvec tv5; | |
6e453a67 | 78 | } ____cacheline_aligned; |
1da177e4 | 79 | |
a6fa8e5a | 80 | struct tvec_base boot_tvec_bases; |
3691c519 | 81 | EXPORT_SYMBOL(boot_tvec_bases); |
a6fa8e5a | 82 | static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases; |
1da177e4 | 83 | |
6e453a67 | 84 | /* |
a6fa8e5a | 85 | * Note that all tvec_bases are 2 byte aligned and lower bit of |
6e453a67 VP |
86 | * base in timer_list is guaranteed to be zero. Use the LSB for |
87 | * the new flag to indicate whether the timer is deferrable | |
88 | */ | |
89 | #define TBASE_DEFERRABLE_FLAG (0x1) | |
90 | ||
91 | /* Functions below help us manage 'deferrable' flag */ | |
a6fa8e5a | 92 | static inline unsigned int tbase_get_deferrable(struct tvec_base *base) |
6e453a67 | 93 | { |
e9910846 | 94 | return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG); |
6e453a67 VP |
95 | } |
96 | ||
a6fa8e5a | 97 | static inline struct tvec_base *tbase_get_base(struct tvec_base *base) |
6e453a67 | 98 | { |
a6fa8e5a | 99 | return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG)); |
6e453a67 VP |
100 | } |
101 | ||
102 | static inline void timer_set_deferrable(struct timer_list *timer) | |
103 | { | |
a6fa8e5a | 104 | timer->base = ((struct tvec_base *)((unsigned long)(timer->base) | |
6819457d | 105 | TBASE_DEFERRABLE_FLAG)); |
6e453a67 VP |
106 | } |
107 | ||
108 | static inline void | |
a6fa8e5a | 109 | timer_set_base(struct timer_list *timer, struct tvec_base *new_base) |
6e453a67 | 110 | { |
a6fa8e5a | 111 | timer->base = (struct tvec_base *)((unsigned long)(new_base) | |
6819457d | 112 | tbase_get_deferrable(timer->base)); |
6e453a67 VP |
113 | } |
114 | ||
9c133c46 AS |
115 | static unsigned long round_jiffies_common(unsigned long j, int cpu, |
116 | bool force_up) | |
4c36a5de AV |
117 | { |
118 | int rem; | |
119 | unsigned long original = j; | |
120 | ||
121 | /* | |
122 | * We don't want all cpus firing their timers at once hitting the | |
123 | * same lock or cachelines, so we skew each extra cpu with an extra | |
124 | * 3 jiffies. This 3 jiffies came originally from the mm/ code which | |
125 | * already did this. | |
126 | * The skew is done by adding 3*cpunr, then round, then subtract this | |
127 | * extra offset again. | |
128 | */ | |
129 | j += cpu * 3; | |
130 | ||
131 | rem = j % HZ; | |
132 | ||
133 | /* | |
134 | * If the target jiffie is just after a whole second (which can happen | |
135 | * due to delays of the timer irq, long irq off times etc etc) then | |
136 | * we should round down to the whole second, not up. Use 1/4th second | |
137 | * as cutoff for this rounding as an extreme upper bound for this. | |
9c133c46 | 138 | * But never round down if @force_up is set. |
4c36a5de | 139 | */ |
9c133c46 | 140 | if (rem < HZ/4 && !force_up) /* round down */ |
4c36a5de AV |
141 | j = j - rem; |
142 | else /* round up */ | |
143 | j = j - rem + HZ; | |
144 | ||
145 | /* now that we have rounded, subtract the extra skew again */ | |
146 | j -= cpu * 3; | |
147 | ||
148 | if (j <= jiffies) /* rounding ate our timeout entirely; */ | |
149 | return original; | |
150 | return j; | |
151 | } | |
9c133c46 AS |
152 | |
153 | /** | |
154 | * __round_jiffies - function to round jiffies to a full second | |
155 | * @j: the time in (absolute) jiffies that should be rounded | |
156 | * @cpu: the processor number on which the timeout will happen | |
157 | * | |
158 | * __round_jiffies() rounds an absolute time in the future (in jiffies) | |
159 | * up or down to (approximately) full seconds. This is useful for timers | |
160 | * for which the exact time they fire does not matter too much, as long as | |
161 | * they fire approximately every X seconds. | |
162 | * | |
163 | * By rounding these timers to whole seconds, all such timers will fire | |
164 | * at the same time, rather than at various times spread out. The goal | |
165 | * of this is to have the CPU wake up less, which saves power. | |
166 | * | |
167 | * The exact rounding is skewed for each processor to avoid all | |
168 | * processors firing at the exact same time, which could lead | |
169 | * to lock contention or spurious cache line bouncing. | |
170 | * | |
171 | * The return value is the rounded version of the @j parameter. | |
172 | */ | |
173 | unsigned long __round_jiffies(unsigned long j, int cpu) | |
174 | { | |
175 | return round_jiffies_common(j, cpu, false); | |
176 | } | |
4c36a5de AV |
177 | EXPORT_SYMBOL_GPL(__round_jiffies); |
178 | ||
179 | /** | |
180 | * __round_jiffies_relative - function to round jiffies to a full second | |
181 | * @j: the time in (relative) jiffies that should be rounded | |
182 | * @cpu: the processor number on which the timeout will happen | |
183 | * | |
72fd4a35 | 184 | * __round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
185 | * up or down to (approximately) full seconds. This is useful for timers |
186 | * for which the exact time they fire does not matter too much, as long as | |
187 | * they fire approximately every X seconds. | |
188 | * | |
189 | * By rounding these timers to whole seconds, all such timers will fire | |
190 | * at the same time, rather than at various times spread out. The goal | |
191 | * of this is to have the CPU wake up less, which saves power. | |
192 | * | |
193 | * The exact rounding is skewed for each processor to avoid all | |
194 | * processors firing at the exact same time, which could lead | |
195 | * to lock contention or spurious cache line bouncing. | |
196 | * | |
72fd4a35 | 197 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
198 | */ |
199 | unsigned long __round_jiffies_relative(unsigned long j, int cpu) | |
200 | { | |
9c133c46 AS |
201 | unsigned long j0 = jiffies; |
202 | ||
203 | /* Use j0 because jiffies might change while we run */ | |
204 | return round_jiffies_common(j + j0, cpu, false) - j0; | |
4c36a5de AV |
205 | } |
206 | EXPORT_SYMBOL_GPL(__round_jiffies_relative); | |
207 | ||
208 | /** | |
209 | * round_jiffies - function to round jiffies to a full second | |
210 | * @j: the time in (absolute) jiffies that should be rounded | |
211 | * | |
72fd4a35 | 212 | * round_jiffies() rounds an absolute time in the future (in jiffies) |
4c36a5de AV |
213 | * up or down to (approximately) full seconds. This is useful for timers |
214 | * for which the exact time they fire does not matter too much, as long as | |
215 | * they fire approximately every X seconds. | |
216 | * | |
217 | * By rounding these timers to whole seconds, all such timers will fire | |
218 | * at the same time, rather than at various times spread out. The goal | |
219 | * of this is to have the CPU wake up less, which saves power. | |
220 | * | |
72fd4a35 | 221 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
222 | */ |
223 | unsigned long round_jiffies(unsigned long j) | |
224 | { | |
9c133c46 | 225 | return round_jiffies_common(j, raw_smp_processor_id(), false); |
4c36a5de AV |
226 | } |
227 | EXPORT_SYMBOL_GPL(round_jiffies); | |
228 | ||
229 | /** | |
230 | * round_jiffies_relative - function to round jiffies to a full second | |
231 | * @j: the time in (relative) jiffies that should be rounded | |
232 | * | |
72fd4a35 | 233 | * round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
234 | * up or down to (approximately) full seconds. This is useful for timers |
235 | * for which the exact time they fire does not matter too much, as long as | |
236 | * they fire approximately every X seconds. | |
237 | * | |
238 | * By rounding these timers to whole seconds, all such timers will fire | |
239 | * at the same time, rather than at various times spread out. The goal | |
240 | * of this is to have the CPU wake up less, which saves power. | |
241 | * | |
72fd4a35 | 242 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
243 | */ |
244 | unsigned long round_jiffies_relative(unsigned long j) | |
245 | { | |
246 | return __round_jiffies_relative(j, raw_smp_processor_id()); | |
247 | } | |
248 | EXPORT_SYMBOL_GPL(round_jiffies_relative); | |
249 | ||
9c133c46 AS |
250 | /** |
251 | * __round_jiffies_up - function to round jiffies up to a full second | |
252 | * @j: the time in (absolute) jiffies that should be rounded | |
253 | * @cpu: the processor number on which the timeout will happen | |
254 | * | |
255 | * This is the same as __round_jiffies() except that it will never | |
256 | * round down. This is useful for timeouts for which the exact time | |
257 | * of firing does not matter too much, as long as they don't fire too | |
258 | * early. | |
259 | */ | |
260 | unsigned long __round_jiffies_up(unsigned long j, int cpu) | |
261 | { | |
262 | return round_jiffies_common(j, cpu, true); | |
263 | } | |
264 | EXPORT_SYMBOL_GPL(__round_jiffies_up); | |
265 | ||
266 | /** | |
267 | * __round_jiffies_up_relative - function to round jiffies up to a full second | |
268 | * @j: the time in (relative) jiffies that should be rounded | |
269 | * @cpu: the processor number on which the timeout will happen | |
270 | * | |
271 | * This is the same as __round_jiffies_relative() except that it will never | |
272 | * round down. This is useful for timeouts for which the exact time | |
273 | * of firing does not matter too much, as long as they don't fire too | |
274 | * early. | |
275 | */ | |
276 | unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) | |
277 | { | |
278 | unsigned long j0 = jiffies; | |
279 | ||
280 | /* Use j0 because jiffies might change while we run */ | |
281 | return round_jiffies_common(j + j0, cpu, true) - j0; | |
282 | } | |
283 | EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); | |
284 | ||
285 | /** | |
286 | * round_jiffies_up - function to round jiffies up to a full second | |
287 | * @j: the time in (absolute) jiffies that should be rounded | |
288 | * | |
289 | * This is the same as round_jiffies() except that it will never | |
290 | * round down. This is useful for timeouts for which the exact time | |
291 | * of firing does not matter too much, as long as they don't fire too | |
292 | * early. | |
293 | */ | |
294 | unsigned long round_jiffies_up(unsigned long j) | |
295 | { | |
296 | return round_jiffies_common(j, raw_smp_processor_id(), true); | |
297 | } | |
298 | EXPORT_SYMBOL_GPL(round_jiffies_up); | |
299 | ||
300 | /** | |
301 | * round_jiffies_up_relative - function to round jiffies up to a full second | |
302 | * @j: the time in (relative) jiffies that should be rounded | |
303 | * | |
304 | * This is the same as round_jiffies_relative() except that it will never | |
305 | * round down. This is useful for timeouts for which the exact time | |
306 | * of firing does not matter too much, as long as they don't fire too | |
307 | * early. | |
308 | */ | |
309 | unsigned long round_jiffies_up_relative(unsigned long j) | |
310 | { | |
311 | return __round_jiffies_up_relative(j, raw_smp_processor_id()); | |
312 | } | |
313 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); | |
314 | ||
4c36a5de | 315 | |
a6fa8e5a | 316 | static inline void set_running_timer(struct tvec_base *base, |
1da177e4 LT |
317 | struct timer_list *timer) |
318 | { | |
319 | #ifdef CONFIG_SMP | |
3691c519 | 320 | base->running_timer = timer; |
1da177e4 LT |
321 | #endif |
322 | } | |
323 | ||
a6fa8e5a | 324 | static void internal_add_timer(struct tvec_base *base, struct timer_list *timer) |
1da177e4 LT |
325 | { |
326 | unsigned long expires = timer->expires; | |
327 | unsigned long idx = expires - base->timer_jiffies; | |
328 | struct list_head *vec; | |
329 | ||
330 | if (idx < TVR_SIZE) { | |
331 | int i = expires & TVR_MASK; | |
332 | vec = base->tv1.vec + i; | |
333 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | |
334 | int i = (expires >> TVR_BITS) & TVN_MASK; | |
335 | vec = base->tv2.vec + i; | |
336 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | |
337 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | |
338 | vec = base->tv3.vec + i; | |
339 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | |
340 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | |
341 | vec = base->tv4.vec + i; | |
342 | } else if ((signed long) idx < 0) { | |
343 | /* | |
344 | * Can happen if you add a timer with expires == jiffies, | |
345 | * or you set a timer to go off in the past | |
346 | */ | |
347 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | |
348 | } else { | |
349 | int i; | |
350 | /* If the timeout is larger than 0xffffffff on 64-bit | |
351 | * architectures then we use the maximum timeout: | |
352 | */ | |
353 | if (idx > 0xffffffffUL) { | |
354 | idx = 0xffffffffUL; | |
355 | expires = idx + base->timer_jiffies; | |
356 | } | |
357 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | |
358 | vec = base->tv5.vec + i; | |
359 | } | |
360 | /* | |
361 | * Timers are FIFO: | |
362 | */ | |
363 | list_add_tail(&timer->entry, vec); | |
364 | } | |
365 | ||
82f67cd9 IM |
366 | #ifdef CONFIG_TIMER_STATS |
367 | void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr) | |
368 | { | |
369 | if (timer->start_site) | |
370 | return; | |
371 | ||
372 | timer->start_site = addr; | |
373 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | |
374 | timer->start_pid = current->pid; | |
375 | } | |
c5c061b8 VP |
376 | |
377 | static void timer_stats_account_timer(struct timer_list *timer) | |
378 | { | |
379 | unsigned int flag = 0; | |
380 | ||
381 | if (unlikely(tbase_get_deferrable(timer->base))) | |
382 | flag |= TIMER_STATS_FLAG_DEFERRABLE; | |
383 | ||
384 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, | |
385 | timer->function, timer->start_comm, flag); | |
386 | } | |
387 | ||
388 | #else | |
389 | static void timer_stats_account_timer(struct timer_list *timer) {} | |
82f67cd9 IM |
390 | #endif |
391 | ||
c6f3a97f TG |
392 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
393 | ||
394 | static struct debug_obj_descr timer_debug_descr; | |
395 | ||
396 | /* | |
397 | * fixup_init is called when: | |
398 | * - an active object is initialized | |
55c888d6 | 399 | */ |
c6f3a97f TG |
400 | static int timer_fixup_init(void *addr, enum debug_obj_state state) |
401 | { | |
402 | struct timer_list *timer = addr; | |
403 | ||
404 | switch (state) { | |
405 | case ODEBUG_STATE_ACTIVE: | |
406 | del_timer_sync(timer); | |
407 | debug_object_init(timer, &timer_debug_descr); | |
408 | return 1; | |
409 | default: | |
410 | return 0; | |
411 | } | |
412 | } | |
413 | ||
414 | /* | |
415 | * fixup_activate is called when: | |
416 | * - an active object is activated | |
417 | * - an unknown object is activated (might be a statically initialized object) | |
418 | */ | |
419 | static int timer_fixup_activate(void *addr, enum debug_obj_state state) | |
420 | { | |
421 | struct timer_list *timer = addr; | |
422 | ||
423 | switch (state) { | |
424 | ||
425 | case ODEBUG_STATE_NOTAVAILABLE: | |
426 | /* | |
427 | * This is not really a fixup. The timer was | |
428 | * statically initialized. We just make sure that it | |
429 | * is tracked in the object tracker. | |
430 | */ | |
431 | if (timer->entry.next == NULL && | |
432 | timer->entry.prev == TIMER_ENTRY_STATIC) { | |
433 | debug_object_init(timer, &timer_debug_descr); | |
434 | debug_object_activate(timer, &timer_debug_descr); | |
435 | return 0; | |
436 | } else { | |
437 | WARN_ON_ONCE(1); | |
438 | } | |
439 | return 0; | |
440 | ||
441 | case ODEBUG_STATE_ACTIVE: | |
442 | WARN_ON(1); | |
443 | ||
444 | default: | |
445 | return 0; | |
446 | } | |
447 | } | |
448 | ||
449 | /* | |
450 | * fixup_free is called when: | |
451 | * - an active object is freed | |
452 | */ | |
453 | static int timer_fixup_free(void *addr, enum debug_obj_state state) | |
454 | { | |
455 | struct timer_list *timer = addr; | |
456 | ||
457 | switch (state) { | |
458 | case ODEBUG_STATE_ACTIVE: | |
459 | del_timer_sync(timer); | |
460 | debug_object_free(timer, &timer_debug_descr); | |
461 | return 1; | |
462 | default: | |
463 | return 0; | |
464 | } | |
465 | } | |
466 | ||
467 | static struct debug_obj_descr timer_debug_descr = { | |
468 | .name = "timer_list", | |
469 | .fixup_init = timer_fixup_init, | |
470 | .fixup_activate = timer_fixup_activate, | |
471 | .fixup_free = timer_fixup_free, | |
472 | }; | |
473 | ||
474 | static inline void debug_timer_init(struct timer_list *timer) | |
475 | { | |
476 | debug_object_init(timer, &timer_debug_descr); | |
477 | } | |
478 | ||
479 | static inline void debug_timer_activate(struct timer_list *timer) | |
480 | { | |
481 | debug_object_activate(timer, &timer_debug_descr); | |
482 | } | |
483 | ||
484 | static inline void debug_timer_deactivate(struct timer_list *timer) | |
485 | { | |
486 | debug_object_deactivate(timer, &timer_debug_descr); | |
487 | } | |
488 | ||
489 | static inline void debug_timer_free(struct timer_list *timer) | |
490 | { | |
491 | debug_object_free(timer, &timer_debug_descr); | |
492 | } | |
493 | ||
494 | static void __init_timer(struct timer_list *timer); | |
495 | ||
496 | void init_timer_on_stack(struct timer_list *timer) | |
497 | { | |
498 | debug_object_init_on_stack(timer, &timer_debug_descr); | |
499 | __init_timer(timer); | |
500 | } | |
501 | EXPORT_SYMBOL_GPL(init_timer_on_stack); | |
502 | ||
503 | void destroy_timer_on_stack(struct timer_list *timer) | |
504 | { | |
505 | debug_object_free(timer, &timer_debug_descr); | |
506 | } | |
507 | EXPORT_SYMBOL_GPL(destroy_timer_on_stack); | |
508 | ||
509 | #else | |
510 | static inline void debug_timer_init(struct timer_list *timer) { } | |
511 | static inline void debug_timer_activate(struct timer_list *timer) { } | |
512 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | |
513 | #endif | |
514 | ||
515 | static void __init_timer(struct timer_list *timer) | |
55c888d6 ON |
516 | { |
517 | timer->entry.next = NULL; | |
bfe5d834 | 518 | timer->base = __raw_get_cpu_var(tvec_bases); |
82f67cd9 IM |
519 | #ifdef CONFIG_TIMER_STATS |
520 | timer->start_site = NULL; | |
521 | timer->start_pid = -1; | |
522 | memset(timer->start_comm, 0, TASK_COMM_LEN); | |
523 | #endif | |
55c888d6 | 524 | } |
c6f3a97f TG |
525 | |
526 | /** | |
527 | * init_timer - initialize a timer. | |
528 | * @timer: the timer to be initialized | |
529 | * | |
530 | * init_timer() must be done to a timer prior calling *any* of the | |
531 | * other timer functions. | |
532 | */ | |
533 | void init_timer(struct timer_list *timer) | |
534 | { | |
535 | debug_timer_init(timer); | |
536 | __init_timer(timer); | |
537 | } | |
55c888d6 ON |
538 | EXPORT_SYMBOL(init_timer); |
539 | ||
7ad5b3a5 | 540 | void init_timer_deferrable(struct timer_list *timer) |
6e453a67 VP |
541 | { |
542 | init_timer(timer); | |
543 | timer_set_deferrable(timer); | |
544 | } | |
545 | EXPORT_SYMBOL(init_timer_deferrable); | |
546 | ||
55c888d6 | 547 | static inline void detach_timer(struct timer_list *timer, |
82f67cd9 | 548 | int clear_pending) |
55c888d6 ON |
549 | { |
550 | struct list_head *entry = &timer->entry; | |
551 | ||
c6f3a97f TG |
552 | debug_timer_deactivate(timer); |
553 | ||
55c888d6 ON |
554 | __list_del(entry->prev, entry->next); |
555 | if (clear_pending) | |
556 | entry->next = NULL; | |
557 | entry->prev = LIST_POISON2; | |
558 | } | |
559 | ||
560 | /* | |
3691c519 | 561 | * We are using hashed locking: holding per_cpu(tvec_bases).lock |
55c888d6 ON |
562 | * means that all timers which are tied to this base via timer->base are |
563 | * locked, and the base itself is locked too. | |
564 | * | |
565 | * So __run_timers/migrate_timers can safely modify all timers which could | |
566 | * be found on ->tvX lists. | |
567 | * | |
568 | * When the timer's base is locked, and the timer removed from list, it is | |
569 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
570 | * locked. | |
571 | */ | |
a6fa8e5a | 572 | static struct tvec_base *lock_timer_base(struct timer_list *timer, |
55c888d6 | 573 | unsigned long *flags) |
89e7e374 | 574 | __acquires(timer->base->lock) |
55c888d6 | 575 | { |
a6fa8e5a | 576 | struct tvec_base *base; |
55c888d6 ON |
577 | |
578 | for (;;) { | |
a6fa8e5a | 579 | struct tvec_base *prelock_base = timer->base; |
6e453a67 | 580 | base = tbase_get_base(prelock_base); |
55c888d6 ON |
581 | if (likely(base != NULL)) { |
582 | spin_lock_irqsave(&base->lock, *flags); | |
6e453a67 | 583 | if (likely(prelock_base == timer->base)) |
55c888d6 ON |
584 | return base; |
585 | /* The timer has migrated to another CPU */ | |
586 | spin_unlock_irqrestore(&base->lock, *flags); | |
587 | } | |
588 | cpu_relax(); | |
589 | } | |
590 | } | |
591 | ||
1da177e4 LT |
592 | int __mod_timer(struct timer_list *timer, unsigned long expires) |
593 | { | |
a6fa8e5a | 594 | struct tvec_base *base, *new_base; |
1da177e4 LT |
595 | unsigned long flags; |
596 | int ret = 0; | |
597 | ||
82f67cd9 | 598 | timer_stats_timer_set_start_info(timer); |
1da177e4 | 599 | BUG_ON(!timer->function); |
1da177e4 | 600 | |
55c888d6 ON |
601 | base = lock_timer_base(timer, &flags); |
602 | ||
603 | if (timer_pending(timer)) { | |
604 | detach_timer(timer, 0); | |
605 | ret = 1; | |
606 | } | |
607 | ||
c6f3a97f TG |
608 | debug_timer_activate(timer); |
609 | ||
a4a6198b | 610 | new_base = __get_cpu_var(tvec_bases); |
1da177e4 | 611 | |
3691c519 | 612 | if (base != new_base) { |
1da177e4 | 613 | /* |
55c888d6 ON |
614 | * We are trying to schedule the timer on the local CPU. |
615 | * However we can't change timer's base while it is running, | |
616 | * otherwise del_timer_sync() can't detect that the timer's | |
617 | * handler yet has not finished. This also guarantees that | |
618 | * the timer is serialized wrt itself. | |
1da177e4 | 619 | */ |
a2c348fe | 620 | if (likely(base->running_timer != timer)) { |
55c888d6 | 621 | /* See the comment in lock_timer_base() */ |
6e453a67 | 622 | timer_set_base(timer, NULL); |
55c888d6 | 623 | spin_unlock(&base->lock); |
a2c348fe ON |
624 | base = new_base; |
625 | spin_lock(&base->lock); | |
6e453a67 | 626 | timer_set_base(timer, base); |
1da177e4 LT |
627 | } |
628 | } | |
629 | ||
1da177e4 | 630 | timer->expires = expires; |
a2c348fe ON |
631 | internal_add_timer(base, timer); |
632 | spin_unlock_irqrestore(&base->lock, flags); | |
1da177e4 LT |
633 | |
634 | return ret; | |
635 | } | |
636 | ||
637 | EXPORT_SYMBOL(__mod_timer); | |
638 | ||
2aae4a10 | 639 | /** |
1da177e4 LT |
640 | * add_timer_on - start a timer on a particular CPU |
641 | * @timer: the timer to be added | |
642 | * @cpu: the CPU to start it on | |
643 | * | |
644 | * This is not very scalable on SMP. Double adds are not possible. | |
645 | */ | |
646 | void add_timer_on(struct timer_list *timer, int cpu) | |
647 | { | |
a6fa8e5a | 648 | struct tvec_base *base = per_cpu(tvec_bases, cpu); |
6819457d | 649 | unsigned long flags; |
55c888d6 | 650 | |
82f67cd9 | 651 | timer_stats_timer_set_start_info(timer); |
6819457d | 652 | BUG_ON(timer_pending(timer) || !timer->function); |
3691c519 | 653 | spin_lock_irqsave(&base->lock, flags); |
6e453a67 | 654 | timer_set_base(timer, base); |
c6f3a97f | 655 | debug_timer_activate(timer); |
1da177e4 | 656 | internal_add_timer(base, timer); |
06d8308c TG |
657 | /* |
658 | * Check whether the other CPU is idle and needs to be | |
659 | * triggered to reevaluate the timer wheel when nohz is | |
660 | * active. We are protected against the other CPU fiddling | |
661 | * with the timer by holding the timer base lock. This also | |
662 | * makes sure that a CPU on the way to idle can not evaluate | |
663 | * the timer wheel. | |
664 | */ | |
665 | wake_up_idle_cpu(cpu); | |
3691c519 | 666 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 LT |
667 | } |
668 | ||
2aae4a10 | 669 | /** |
1da177e4 LT |
670 | * mod_timer - modify a timer's timeout |
671 | * @timer: the timer to be modified | |
2aae4a10 | 672 | * @expires: new timeout in jiffies |
1da177e4 | 673 | * |
72fd4a35 | 674 | * mod_timer() is a more efficient way to update the expire field of an |
1da177e4 LT |
675 | * active timer (if the timer is inactive it will be activated) |
676 | * | |
677 | * mod_timer(timer, expires) is equivalent to: | |
678 | * | |
679 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
680 | * | |
681 | * Note that if there are multiple unserialized concurrent users of the | |
682 | * same timer, then mod_timer() is the only safe way to modify the timeout, | |
683 | * since add_timer() cannot modify an already running timer. | |
684 | * | |
685 | * The function returns whether it has modified a pending timer or not. | |
686 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | |
687 | * active timer returns 1.) | |
688 | */ | |
689 | int mod_timer(struct timer_list *timer, unsigned long expires) | |
690 | { | |
691 | BUG_ON(!timer->function); | |
692 | ||
82f67cd9 | 693 | timer_stats_timer_set_start_info(timer); |
1da177e4 LT |
694 | /* |
695 | * This is a common optimization triggered by the | |
696 | * networking code - if the timer is re-modified | |
697 | * to be the same thing then just return: | |
698 | */ | |
699 | if (timer->expires == expires && timer_pending(timer)) | |
700 | return 1; | |
701 | ||
702 | return __mod_timer(timer, expires); | |
703 | } | |
704 | ||
705 | EXPORT_SYMBOL(mod_timer); | |
706 | ||
2aae4a10 | 707 | /** |
1da177e4 LT |
708 | * del_timer - deactive a timer. |
709 | * @timer: the timer to be deactivated | |
710 | * | |
711 | * del_timer() deactivates a timer - this works on both active and inactive | |
712 | * timers. | |
713 | * | |
714 | * The function returns whether it has deactivated a pending timer or not. | |
715 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | |
716 | * active timer returns 1.) | |
717 | */ | |
718 | int del_timer(struct timer_list *timer) | |
719 | { | |
a6fa8e5a | 720 | struct tvec_base *base; |
1da177e4 | 721 | unsigned long flags; |
55c888d6 | 722 | int ret = 0; |
1da177e4 | 723 | |
82f67cd9 | 724 | timer_stats_timer_clear_start_info(timer); |
55c888d6 ON |
725 | if (timer_pending(timer)) { |
726 | base = lock_timer_base(timer, &flags); | |
727 | if (timer_pending(timer)) { | |
728 | detach_timer(timer, 1); | |
729 | ret = 1; | |
730 | } | |
1da177e4 | 731 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 | 732 | } |
1da177e4 | 733 | |
55c888d6 | 734 | return ret; |
1da177e4 LT |
735 | } |
736 | ||
737 | EXPORT_SYMBOL(del_timer); | |
738 | ||
739 | #ifdef CONFIG_SMP | |
2aae4a10 REB |
740 | /** |
741 | * try_to_del_timer_sync - Try to deactivate a timer | |
742 | * @timer: timer do del | |
743 | * | |
fd450b73 ON |
744 | * This function tries to deactivate a timer. Upon successful (ret >= 0) |
745 | * exit the timer is not queued and the handler is not running on any CPU. | |
746 | * | |
747 | * It must not be called from interrupt contexts. | |
748 | */ | |
749 | int try_to_del_timer_sync(struct timer_list *timer) | |
750 | { | |
a6fa8e5a | 751 | struct tvec_base *base; |
fd450b73 ON |
752 | unsigned long flags; |
753 | int ret = -1; | |
754 | ||
755 | base = lock_timer_base(timer, &flags); | |
756 | ||
757 | if (base->running_timer == timer) | |
758 | goto out; | |
759 | ||
760 | ret = 0; | |
761 | if (timer_pending(timer)) { | |
762 | detach_timer(timer, 1); | |
763 | ret = 1; | |
764 | } | |
765 | out: | |
766 | spin_unlock_irqrestore(&base->lock, flags); | |
767 | ||
768 | return ret; | |
769 | } | |
770 | ||
e19dff1f DH |
771 | EXPORT_SYMBOL(try_to_del_timer_sync); |
772 | ||
2aae4a10 | 773 | /** |
1da177e4 LT |
774 | * del_timer_sync - deactivate a timer and wait for the handler to finish. |
775 | * @timer: the timer to be deactivated | |
776 | * | |
777 | * This function only differs from del_timer() on SMP: besides deactivating | |
778 | * the timer it also makes sure the handler has finished executing on other | |
779 | * CPUs. | |
780 | * | |
72fd4a35 | 781 | * Synchronization rules: Callers must prevent restarting of the timer, |
1da177e4 LT |
782 | * otherwise this function is meaningless. It must not be called from |
783 | * interrupt contexts. The caller must not hold locks which would prevent | |
55c888d6 ON |
784 | * completion of the timer's handler. The timer's handler must not call |
785 | * add_timer_on(). Upon exit the timer is not queued and the handler is | |
786 | * not running on any CPU. | |
1da177e4 LT |
787 | * |
788 | * The function returns whether it has deactivated a pending timer or not. | |
1da177e4 LT |
789 | */ |
790 | int del_timer_sync(struct timer_list *timer) | |
791 | { | |
fd450b73 ON |
792 | for (;;) { |
793 | int ret = try_to_del_timer_sync(timer); | |
794 | if (ret >= 0) | |
795 | return ret; | |
a0009652 | 796 | cpu_relax(); |
fd450b73 | 797 | } |
1da177e4 | 798 | } |
1da177e4 | 799 | |
55c888d6 | 800 | EXPORT_SYMBOL(del_timer_sync); |
1da177e4 LT |
801 | #endif |
802 | ||
a6fa8e5a | 803 | static int cascade(struct tvec_base *base, struct tvec *tv, int index) |
1da177e4 LT |
804 | { |
805 | /* cascade all the timers from tv up one level */ | |
3439dd86 P |
806 | struct timer_list *timer, *tmp; |
807 | struct list_head tv_list; | |
808 | ||
809 | list_replace_init(tv->vec + index, &tv_list); | |
1da177e4 | 810 | |
1da177e4 | 811 | /* |
3439dd86 P |
812 | * We are removing _all_ timers from the list, so we |
813 | * don't have to detach them individually. | |
1da177e4 | 814 | */ |
3439dd86 | 815 | list_for_each_entry_safe(timer, tmp, &tv_list, entry) { |
6e453a67 | 816 | BUG_ON(tbase_get_base(timer->base) != base); |
3439dd86 | 817 | internal_add_timer(base, timer); |
1da177e4 | 818 | } |
1da177e4 LT |
819 | |
820 | return index; | |
821 | } | |
822 | ||
2aae4a10 REB |
823 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) |
824 | ||
825 | /** | |
1da177e4 LT |
826 | * __run_timers - run all expired timers (if any) on this CPU. |
827 | * @base: the timer vector to be processed. | |
828 | * | |
829 | * This function cascades all vectors and executes all expired timer | |
830 | * vectors. | |
831 | */ | |
a6fa8e5a | 832 | static inline void __run_timers(struct tvec_base *base) |
1da177e4 LT |
833 | { |
834 | struct timer_list *timer; | |
835 | ||
3691c519 | 836 | spin_lock_irq(&base->lock); |
1da177e4 | 837 | while (time_after_eq(jiffies, base->timer_jiffies)) { |
626ab0e6 | 838 | struct list_head work_list; |
1da177e4 | 839 | struct list_head *head = &work_list; |
6819457d | 840 | int index = base->timer_jiffies & TVR_MASK; |
626ab0e6 | 841 | |
1da177e4 LT |
842 | /* |
843 | * Cascade timers: | |
844 | */ | |
845 | if (!index && | |
846 | (!cascade(base, &base->tv2, INDEX(0))) && | |
847 | (!cascade(base, &base->tv3, INDEX(1))) && | |
848 | !cascade(base, &base->tv4, INDEX(2))) | |
849 | cascade(base, &base->tv5, INDEX(3)); | |
626ab0e6 ON |
850 | ++base->timer_jiffies; |
851 | list_replace_init(base->tv1.vec + index, &work_list); | |
55c888d6 | 852 | while (!list_empty(head)) { |
1da177e4 LT |
853 | void (*fn)(unsigned long); |
854 | unsigned long data; | |
855 | ||
b5e61818 | 856 | timer = list_first_entry(head, struct timer_list,entry); |
6819457d TG |
857 | fn = timer->function; |
858 | data = timer->data; | |
1da177e4 | 859 | |
82f67cd9 IM |
860 | timer_stats_account_timer(timer); |
861 | ||
1da177e4 | 862 | set_running_timer(base, timer); |
55c888d6 | 863 | detach_timer(timer, 1); |
3691c519 | 864 | spin_unlock_irq(&base->lock); |
1da177e4 | 865 | { |
be5b4fbd | 866 | int preempt_count = preempt_count(); |
1da177e4 LT |
867 | fn(data); |
868 | if (preempt_count != preempt_count()) { | |
4c9dc641 | 869 | printk(KERN_ERR "huh, entered %p " |
be5b4fbd JJ |
870 | "with preempt_count %08x, exited" |
871 | " with %08x?\n", | |
872 | fn, preempt_count, | |
873 | preempt_count()); | |
1da177e4 LT |
874 | BUG(); |
875 | } | |
876 | } | |
3691c519 | 877 | spin_lock_irq(&base->lock); |
1da177e4 LT |
878 | } |
879 | } | |
880 | set_running_timer(base, NULL); | |
3691c519 | 881 | spin_unlock_irq(&base->lock); |
1da177e4 LT |
882 | } |
883 | ||
ee9c5785 | 884 | #ifdef CONFIG_NO_HZ |
1da177e4 LT |
885 | /* |
886 | * Find out when the next timer event is due to happen. This | |
887 | * is used on S/390 to stop all activity when a cpus is idle. | |
888 | * This functions needs to be called disabled. | |
889 | */ | |
a6fa8e5a | 890 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
1da177e4 | 891 | { |
1cfd6849 | 892 | unsigned long timer_jiffies = base->timer_jiffies; |
eaad084b | 893 | unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA; |
1cfd6849 | 894 | int index, slot, array, found = 0; |
1da177e4 | 895 | struct timer_list *nte; |
a6fa8e5a | 896 | struct tvec *varray[4]; |
1da177e4 LT |
897 | |
898 | /* Look for timer events in tv1. */ | |
1cfd6849 | 899 | index = slot = timer_jiffies & TVR_MASK; |
1da177e4 | 900 | do { |
1cfd6849 | 901 | list_for_each_entry(nte, base->tv1.vec + slot, entry) { |
6819457d TG |
902 | if (tbase_get_deferrable(nte->base)) |
903 | continue; | |
6e453a67 | 904 | |
1cfd6849 | 905 | found = 1; |
1da177e4 | 906 | expires = nte->expires; |
1cfd6849 TG |
907 | /* Look at the cascade bucket(s)? */ |
908 | if (!index || slot < index) | |
909 | goto cascade; | |
910 | return expires; | |
1da177e4 | 911 | } |
1cfd6849 TG |
912 | slot = (slot + 1) & TVR_MASK; |
913 | } while (slot != index); | |
914 | ||
915 | cascade: | |
916 | /* Calculate the next cascade event */ | |
917 | if (index) | |
918 | timer_jiffies += TVR_SIZE - index; | |
919 | timer_jiffies >>= TVR_BITS; | |
1da177e4 LT |
920 | |
921 | /* Check tv2-tv5. */ | |
922 | varray[0] = &base->tv2; | |
923 | varray[1] = &base->tv3; | |
924 | varray[2] = &base->tv4; | |
925 | varray[3] = &base->tv5; | |
1cfd6849 TG |
926 | |
927 | for (array = 0; array < 4; array++) { | |
a6fa8e5a | 928 | struct tvec *varp = varray[array]; |
1cfd6849 TG |
929 | |
930 | index = slot = timer_jiffies & TVN_MASK; | |
1da177e4 | 931 | do { |
1cfd6849 TG |
932 | list_for_each_entry(nte, varp->vec + slot, entry) { |
933 | found = 1; | |
1da177e4 LT |
934 | if (time_before(nte->expires, expires)) |
935 | expires = nte->expires; | |
1cfd6849 TG |
936 | } |
937 | /* | |
938 | * Do we still search for the first timer or are | |
939 | * we looking up the cascade buckets ? | |
940 | */ | |
941 | if (found) { | |
942 | /* Look at the cascade bucket(s)? */ | |
943 | if (!index || slot < index) | |
944 | break; | |
945 | return expires; | |
946 | } | |
947 | slot = (slot + 1) & TVN_MASK; | |
948 | } while (slot != index); | |
949 | ||
950 | if (index) | |
951 | timer_jiffies += TVN_SIZE - index; | |
952 | timer_jiffies >>= TVN_BITS; | |
1da177e4 | 953 | } |
1cfd6849 TG |
954 | return expires; |
955 | } | |
69239749 | 956 | |
1cfd6849 TG |
957 | /* |
958 | * Check, if the next hrtimer event is before the next timer wheel | |
959 | * event: | |
960 | */ | |
961 | static unsigned long cmp_next_hrtimer_event(unsigned long now, | |
962 | unsigned long expires) | |
963 | { | |
964 | ktime_t hr_delta = hrtimer_get_next_event(); | |
965 | struct timespec tsdelta; | |
9501b6cf | 966 | unsigned long delta; |
1cfd6849 TG |
967 | |
968 | if (hr_delta.tv64 == KTIME_MAX) | |
969 | return expires; | |
0662b713 | 970 | |
9501b6cf TG |
971 | /* |
972 | * Expired timer available, let it expire in the next tick | |
973 | */ | |
974 | if (hr_delta.tv64 <= 0) | |
975 | return now + 1; | |
69239749 | 976 | |
1cfd6849 | 977 | tsdelta = ktime_to_timespec(hr_delta); |
9501b6cf | 978 | delta = timespec_to_jiffies(&tsdelta); |
eaad084b TG |
979 | |
980 | /* | |
981 | * Limit the delta to the max value, which is checked in | |
982 | * tick_nohz_stop_sched_tick(): | |
983 | */ | |
984 | if (delta > NEXT_TIMER_MAX_DELTA) | |
985 | delta = NEXT_TIMER_MAX_DELTA; | |
986 | ||
9501b6cf TG |
987 | /* |
988 | * Take rounding errors in to account and make sure, that it | |
989 | * expires in the next tick. Otherwise we go into an endless | |
990 | * ping pong due to tick_nohz_stop_sched_tick() retriggering | |
991 | * the timer softirq | |
992 | */ | |
993 | if (delta < 1) | |
994 | delta = 1; | |
995 | now += delta; | |
1cfd6849 TG |
996 | if (time_before(now, expires)) |
997 | return now; | |
1da177e4 LT |
998 | return expires; |
999 | } | |
1cfd6849 TG |
1000 | |
1001 | /** | |
8dce39c2 | 1002 | * get_next_timer_interrupt - return the jiffy of the next pending timer |
05fb6bf0 | 1003 | * @now: current time (in jiffies) |
1cfd6849 | 1004 | */ |
fd064b9b | 1005 | unsigned long get_next_timer_interrupt(unsigned long now) |
1cfd6849 | 1006 | { |
a6fa8e5a | 1007 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
fd064b9b | 1008 | unsigned long expires; |
1cfd6849 TG |
1009 | |
1010 | spin_lock(&base->lock); | |
1011 | expires = __next_timer_interrupt(base); | |
1012 | spin_unlock(&base->lock); | |
1013 | ||
1014 | if (time_before_eq(expires, now)) | |
1015 | return now; | |
1016 | ||
1017 | return cmp_next_hrtimer_event(now, expires); | |
1018 | } | |
1da177e4 LT |
1019 | #endif |
1020 | ||
fa13a5a1 PM |
1021 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
1022 | void account_process_tick(struct task_struct *p, int user_tick) | |
1023 | { | |
06b8e878 MN |
1024 | cputime_t one_jiffy = jiffies_to_cputime(1); |
1025 | ||
fa13a5a1 | 1026 | if (user_tick) { |
06b8e878 MN |
1027 | account_user_time(p, one_jiffy); |
1028 | account_user_time_scaled(p, cputime_to_scaled(one_jiffy)); | |
fa13a5a1 | 1029 | } else { |
06b8e878 MN |
1030 | account_system_time(p, HARDIRQ_OFFSET, one_jiffy); |
1031 | account_system_time_scaled(p, cputime_to_scaled(one_jiffy)); | |
fa13a5a1 PM |
1032 | } |
1033 | } | |
1034 | #endif | |
1035 | ||
1da177e4 | 1036 | /* |
5b4db0c2 | 1037 | * Called from the timer interrupt handler to charge one tick to the current |
1da177e4 LT |
1038 | * process. user_tick is 1 if the tick is user time, 0 for system. |
1039 | */ | |
1040 | void update_process_times(int user_tick) | |
1041 | { | |
1042 | struct task_struct *p = current; | |
1043 | int cpu = smp_processor_id(); | |
1044 | ||
1045 | /* Note: this timer irq context must be accounted for as well. */ | |
fa13a5a1 | 1046 | account_process_tick(p, user_tick); |
1da177e4 LT |
1047 | run_local_timers(); |
1048 | if (rcu_pending(cpu)) | |
1049 | rcu_check_callbacks(cpu, user_tick); | |
b845b517 | 1050 | printk_tick(); |
1da177e4 | 1051 | scheduler_tick(); |
6819457d | 1052 | run_posix_cpu_timers(p); |
1da177e4 LT |
1053 | } |
1054 | ||
1055 | /* | |
1056 | * Nr of active tasks - counted in fixed-point numbers | |
1057 | */ | |
1058 | static unsigned long count_active_tasks(void) | |
1059 | { | |
db1b1fef | 1060 | return nr_active() * FIXED_1; |
1da177e4 LT |
1061 | } |
1062 | ||
1063 | /* | |
1064 | * Hmm.. Changed this, as the GNU make sources (load.c) seems to | |
1065 | * imply that avenrun[] is the standard name for this kind of thing. | |
1066 | * Nothing else seems to be standardized: the fractional size etc | |
1067 | * all seem to differ on different machines. | |
1068 | * | |
1069 | * Requires xtime_lock to access. | |
1070 | */ | |
1071 | unsigned long avenrun[3]; | |
1072 | ||
1073 | EXPORT_SYMBOL(avenrun); | |
1074 | ||
1075 | /* | |
1076 | * calc_load - given tick count, update the avenrun load estimates. | |
1077 | * This is called while holding a write_lock on xtime_lock. | |
1078 | */ | |
1079 | static inline void calc_load(unsigned long ticks) | |
1080 | { | |
1081 | unsigned long active_tasks; /* fixed-point */ | |
1082 | static int count = LOAD_FREQ; | |
1083 | ||
cd7175ed ED |
1084 | count -= ticks; |
1085 | if (unlikely(count < 0)) { | |
1086 | active_tasks = count_active_tasks(); | |
1087 | do { | |
1088 | CALC_LOAD(avenrun[0], EXP_1, active_tasks); | |
1089 | CALC_LOAD(avenrun[1], EXP_5, active_tasks); | |
1090 | CALC_LOAD(avenrun[2], EXP_15, active_tasks); | |
1091 | count += LOAD_FREQ; | |
1092 | } while (count < 0); | |
1da177e4 LT |
1093 | } |
1094 | } | |
1095 | ||
1da177e4 LT |
1096 | /* |
1097 | * This function runs timers and the timer-tq in bottom half context. | |
1098 | */ | |
1099 | static void run_timer_softirq(struct softirq_action *h) | |
1100 | { | |
a6fa8e5a | 1101 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
1da177e4 | 1102 | |
d3d74453 | 1103 | hrtimer_run_pending(); |
82f67cd9 | 1104 | |
1da177e4 LT |
1105 | if (time_after_eq(jiffies, base->timer_jiffies)) |
1106 | __run_timers(base); | |
1107 | } | |
1108 | ||
1109 | /* | |
1110 | * Called by the local, per-CPU timer interrupt on SMP. | |
1111 | */ | |
1112 | void run_local_timers(void) | |
1113 | { | |
d3d74453 | 1114 | hrtimer_run_queues(); |
1da177e4 | 1115 | raise_softirq(TIMER_SOFTIRQ); |
6687a97d | 1116 | softlockup_tick(); |
1da177e4 LT |
1117 | } |
1118 | ||
1119 | /* | |
1120 | * Called by the timer interrupt. xtime_lock must already be taken | |
1121 | * by the timer IRQ! | |
1122 | */ | |
3171a030 | 1123 | static inline void update_times(unsigned long ticks) |
1da177e4 | 1124 | { |
ad596171 | 1125 | update_wall_time(); |
1da177e4 LT |
1126 | calc_load(ticks); |
1127 | } | |
6819457d | 1128 | |
1da177e4 LT |
1129 | /* |
1130 | * The 64-bit jiffies value is not atomic - you MUST NOT read it | |
1131 | * without sampling the sequence number in xtime_lock. | |
1132 | * jiffies is defined in the linker script... | |
1133 | */ | |
1134 | ||
3171a030 | 1135 | void do_timer(unsigned long ticks) |
1da177e4 | 1136 | { |
3171a030 AN |
1137 | jiffies_64 += ticks; |
1138 | update_times(ticks); | |
1da177e4 LT |
1139 | } |
1140 | ||
1141 | #ifdef __ARCH_WANT_SYS_ALARM | |
1142 | ||
1143 | /* | |
1144 | * For backwards compatibility? This can be done in libc so Alpha | |
1145 | * and all newer ports shouldn't need it. | |
1146 | */ | |
1147 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | |
1148 | { | |
c08b8a49 | 1149 | return alarm_setitimer(seconds); |
1da177e4 LT |
1150 | } |
1151 | ||
1152 | #endif | |
1153 | ||
1154 | #ifndef __alpha__ | |
1155 | ||
1156 | /* | |
1157 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this | |
1158 | * should be moved into arch/i386 instead? | |
1159 | */ | |
1160 | ||
1161 | /** | |
1162 | * sys_getpid - return the thread group id of the current process | |
1163 | * | |
1164 | * Note, despite the name, this returns the tgid not the pid. The tgid and | |
1165 | * the pid are identical unless CLONE_THREAD was specified on clone() in | |
1166 | * which case the tgid is the same in all threads of the same group. | |
1167 | * | |
1168 | * This is SMP safe as current->tgid does not change. | |
1169 | */ | |
1170 | asmlinkage long sys_getpid(void) | |
1171 | { | |
b488893a | 1172 | return task_tgid_vnr(current); |
1da177e4 LT |
1173 | } |
1174 | ||
1175 | /* | |
6997a6fa KK |
1176 | * Accessing ->real_parent is not SMP-safe, it could |
1177 | * change from under us. However, we can use a stale | |
1178 | * value of ->real_parent under rcu_read_lock(), see | |
1179 | * release_task()->call_rcu(delayed_put_task_struct). | |
1da177e4 LT |
1180 | */ |
1181 | asmlinkage long sys_getppid(void) | |
1182 | { | |
1183 | int pid; | |
1da177e4 | 1184 | |
6997a6fa | 1185 | rcu_read_lock(); |
6c5f3e7b | 1186 | pid = task_tgid_vnr(current->real_parent); |
6997a6fa | 1187 | rcu_read_unlock(); |
1da177e4 | 1188 | |
1da177e4 LT |
1189 | return pid; |
1190 | } | |
1191 | ||
1192 | asmlinkage long sys_getuid(void) | |
1193 | { | |
1194 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1195 | return current_uid(); |
1da177e4 LT |
1196 | } |
1197 | ||
1198 | asmlinkage long sys_geteuid(void) | |
1199 | { | |
1200 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1201 | return current_euid(); |
1da177e4 LT |
1202 | } |
1203 | ||
1204 | asmlinkage long sys_getgid(void) | |
1205 | { | |
1206 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1207 | return current_gid(); |
1da177e4 LT |
1208 | } |
1209 | ||
1210 | asmlinkage long sys_getegid(void) | |
1211 | { | |
1212 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1213 | return current_egid(); |
1da177e4 LT |
1214 | } |
1215 | ||
1216 | #endif | |
1217 | ||
1218 | static void process_timeout(unsigned long __data) | |
1219 | { | |
36c8b586 | 1220 | wake_up_process((struct task_struct *)__data); |
1da177e4 LT |
1221 | } |
1222 | ||
1223 | /** | |
1224 | * schedule_timeout - sleep until timeout | |
1225 | * @timeout: timeout value in jiffies | |
1226 | * | |
1227 | * Make the current task sleep until @timeout jiffies have | |
1228 | * elapsed. The routine will return immediately unless | |
1229 | * the current task state has been set (see set_current_state()). | |
1230 | * | |
1231 | * You can set the task state as follows - | |
1232 | * | |
1233 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | |
1234 | * pass before the routine returns. The routine will return 0 | |
1235 | * | |
1236 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1237 | * delivered to the current task. In this case the remaining time | |
1238 | * in jiffies will be returned, or 0 if the timer expired in time | |
1239 | * | |
1240 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1241 | * routine returns. | |
1242 | * | |
1243 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | |
1244 | * the CPU away without a bound on the timeout. In this case the return | |
1245 | * value will be %MAX_SCHEDULE_TIMEOUT. | |
1246 | * | |
1247 | * In all cases the return value is guaranteed to be non-negative. | |
1248 | */ | |
7ad5b3a5 | 1249 | signed long __sched schedule_timeout(signed long timeout) |
1da177e4 LT |
1250 | { |
1251 | struct timer_list timer; | |
1252 | unsigned long expire; | |
1253 | ||
1254 | switch (timeout) | |
1255 | { | |
1256 | case MAX_SCHEDULE_TIMEOUT: | |
1257 | /* | |
1258 | * These two special cases are useful to be comfortable | |
1259 | * in the caller. Nothing more. We could take | |
1260 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | |
1261 | * but I' d like to return a valid offset (>=0) to allow | |
1262 | * the caller to do everything it want with the retval. | |
1263 | */ | |
1264 | schedule(); | |
1265 | goto out; | |
1266 | default: | |
1267 | /* | |
1268 | * Another bit of PARANOID. Note that the retval will be | |
1269 | * 0 since no piece of kernel is supposed to do a check | |
1270 | * for a negative retval of schedule_timeout() (since it | |
1271 | * should never happens anyway). You just have the printk() | |
1272 | * that will tell you if something is gone wrong and where. | |
1273 | */ | |
5b149bcc | 1274 | if (timeout < 0) { |
1da177e4 | 1275 | printk(KERN_ERR "schedule_timeout: wrong timeout " |
5b149bcc AM |
1276 | "value %lx\n", timeout); |
1277 | dump_stack(); | |
1da177e4 LT |
1278 | current->state = TASK_RUNNING; |
1279 | goto out; | |
1280 | } | |
1281 | } | |
1282 | ||
1283 | expire = timeout + jiffies; | |
1284 | ||
c6f3a97f | 1285 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); |
a8db2db1 | 1286 | __mod_timer(&timer, expire); |
1da177e4 LT |
1287 | schedule(); |
1288 | del_singleshot_timer_sync(&timer); | |
1289 | ||
c6f3a97f TG |
1290 | /* Remove the timer from the object tracker */ |
1291 | destroy_timer_on_stack(&timer); | |
1292 | ||
1da177e4 LT |
1293 | timeout = expire - jiffies; |
1294 | ||
1295 | out: | |
1296 | return timeout < 0 ? 0 : timeout; | |
1297 | } | |
1da177e4 LT |
1298 | EXPORT_SYMBOL(schedule_timeout); |
1299 | ||
8a1c1757 AM |
1300 | /* |
1301 | * We can use __set_current_state() here because schedule_timeout() calls | |
1302 | * schedule() unconditionally. | |
1303 | */ | |
64ed93a2 NA |
1304 | signed long __sched schedule_timeout_interruptible(signed long timeout) |
1305 | { | |
a5a0d52c AM |
1306 | __set_current_state(TASK_INTERRUPTIBLE); |
1307 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1308 | } |
1309 | EXPORT_SYMBOL(schedule_timeout_interruptible); | |
1310 | ||
294d5cc2 MW |
1311 | signed long __sched schedule_timeout_killable(signed long timeout) |
1312 | { | |
1313 | __set_current_state(TASK_KILLABLE); | |
1314 | return schedule_timeout(timeout); | |
1315 | } | |
1316 | EXPORT_SYMBOL(schedule_timeout_killable); | |
1317 | ||
64ed93a2 NA |
1318 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) |
1319 | { | |
a5a0d52c AM |
1320 | __set_current_state(TASK_UNINTERRUPTIBLE); |
1321 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1322 | } |
1323 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | |
1324 | ||
1da177e4 LT |
1325 | /* Thread ID - the internal kernel "pid" */ |
1326 | asmlinkage long sys_gettid(void) | |
1327 | { | |
b488893a | 1328 | return task_pid_vnr(current); |
1da177e4 LT |
1329 | } |
1330 | ||
2aae4a10 | 1331 | /** |
d4d23add | 1332 | * do_sysinfo - fill in sysinfo struct |
2aae4a10 | 1333 | * @info: pointer to buffer to fill |
6819457d | 1334 | */ |
d4d23add | 1335 | int do_sysinfo(struct sysinfo *info) |
1da177e4 | 1336 | { |
1da177e4 LT |
1337 | unsigned long mem_total, sav_total; |
1338 | unsigned int mem_unit, bitcount; | |
1339 | unsigned long seq; | |
1340 | ||
d4d23add | 1341 | memset(info, 0, sizeof(struct sysinfo)); |
1da177e4 LT |
1342 | |
1343 | do { | |
1344 | struct timespec tp; | |
1345 | seq = read_seqbegin(&xtime_lock); | |
1346 | ||
1347 | /* | |
1348 | * This is annoying. The below is the same thing | |
1349 | * posix_get_clock_monotonic() does, but it wants to | |
1350 | * take the lock which we want to cover the loads stuff | |
1351 | * too. | |
1352 | */ | |
1353 | ||
1354 | getnstimeofday(&tp); | |
1355 | tp.tv_sec += wall_to_monotonic.tv_sec; | |
1356 | tp.tv_nsec += wall_to_monotonic.tv_nsec; | |
d6214141 | 1357 | monotonic_to_bootbased(&tp); |
1da177e4 LT |
1358 | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { |
1359 | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | |
1360 | tp.tv_sec++; | |
1361 | } | |
d4d23add | 1362 | info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); |
1da177e4 | 1363 | |
d4d23add KM |
1364 | info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); |
1365 | info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | |
1366 | info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | |
1da177e4 | 1367 | |
d4d23add | 1368 | info->procs = nr_threads; |
1da177e4 LT |
1369 | } while (read_seqretry(&xtime_lock, seq)); |
1370 | ||
d4d23add KM |
1371 | si_meminfo(info); |
1372 | si_swapinfo(info); | |
1da177e4 LT |
1373 | |
1374 | /* | |
1375 | * If the sum of all the available memory (i.e. ram + swap) | |
1376 | * is less than can be stored in a 32 bit unsigned long then | |
1377 | * we can be binary compatible with 2.2.x kernels. If not, | |
1378 | * well, in that case 2.2.x was broken anyways... | |
1379 | * | |
1380 | * -Erik Andersen <[email protected]> | |
1381 | */ | |
1382 | ||
d4d23add KM |
1383 | mem_total = info->totalram + info->totalswap; |
1384 | if (mem_total < info->totalram || mem_total < info->totalswap) | |
1da177e4 LT |
1385 | goto out; |
1386 | bitcount = 0; | |
d4d23add | 1387 | mem_unit = info->mem_unit; |
1da177e4 LT |
1388 | while (mem_unit > 1) { |
1389 | bitcount++; | |
1390 | mem_unit >>= 1; | |
1391 | sav_total = mem_total; | |
1392 | mem_total <<= 1; | |
1393 | if (mem_total < sav_total) | |
1394 | goto out; | |
1395 | } | |
1396 | ||
1397 | /* | |
1398 | * If mem_total did not overflow, multiply all memory values by | |
d4d23add | 1399 | * info->mem_unit and set it to 1. This leaves things compatible |
1da177e4 LT |
1400 | * with 2.2.x, and also retains compatibility with earlier 2.4.x |
1401 | * kernels... | |
1402 | */ | |
1403 | ||
d4d23add KM |
1404 | info->mem_unit = 1; |
1405 | info->totalram <<= bitcount; | |
1406 | info->freeram <<= bitcount; | |
1407 | info->sharedram <<= bitcount; | |
1408 | info->bufferram <<= bitcount; | |
1409 | info->totalswap <<= bitcount; | |
1410 | info->freeswap <<= bitcount; | |
1411 | info->totalhigh <<= bitcount; | |
1412 | info->freehigh <<= bitcount; | |
1413 | ||
1414 | out: | |
1415 | return 0; | |
1416 | } | |
1417 | ||
1418 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | |
1419 | { | |
1420 | struct sysinfo val; | |
1421 | ||
1422 | do_sysinfo(&val); | |
1da177e4 | 1423 | |
1da177e4 LT |
1424 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) |
1425 | return -EFAULT; | |
1426 | ||
1427 | return 0; | |
1428 | } | |
1429 | ||
b4be6258 | 1430 | static int __cpuinit init_timers_cpu(int cpu) |
1da177e4 LT |
1431 | { |
1432 | int j; | |
a6fa8e5a | 1433 | struct tvec_base *base; |
b4be6258 | 1434 | static char __cpuinitdata tvec_base_done[NR_CPUS]; |
55c888d6 | 1435 | |
ba6edfcd | 1436 | if (!tvec_base_done[cpu]) { |
a4a6198b JB |
1437 | static char boot_done; |
1438 | ||
a4a6198b | 1439 | if (boot_done) { |
ba6edfcd AM |
1440 | /* |
1441 | * The APs use this path later in boot | |
1442 | */ | |
94f6030c CL |
1443 | base = kmalloc_node(sizeof(*base), |
1444 | GFP_KERNEL | __GFP_ZERO, | |
a4a6198b JB |
1445 | cpu_to_node(cpu)); |
1446 | if (!base) | |
1447 | return -ENOMEM; | |
6e453a67 VP |
1448 | |
1449 | /* Make sure that tvec_base is 2 byte aligned */ | |
1450 | if (tbase_get_deferrable(base)) { | |
1451 | WARN_ON(1); | |
1452 | kfree(base); | |
1453 | return -ENOMEM; | |
1454 | } | |
ba6edfcd | 1455 | per_cpu(tvec_bases, cpu) = base; |
a4a6198b | 1456 | } else { |
ba6edfcd AM |
1457 | /* |
1458 | * This is for the boot CPU - we use compile-time | |
1459 | * static initialisation because per-cpu memory isn't | |
1460 | * ready yet and because the memory allocators are not | |
1461 | * initialised either. | |
1462 | */ | |
a4a6198b | 1463 | boot_done = 1; |
ba6edfcd | 1464 | base = &boot_tvec_bases; |
a4a6198b | 1465 | } |
ba6edfcd AM |
1466 | tvec_base_done[cpu] = 1; |
1467 | } else { | |
1468 | base = per_cpu(tvec_bases, cpu); | |
a4a6198b | 1469 | } |
ba6edfcd | 1470 | |
3691c519 | 1471 | spin_lock_init(&base->lock); |
d730e882 | 1472 | |
1da177e4 LT |
1473 | for (j = 0; j < TVN_SIZE; j++) { |
1474 | INIT_LIST_HEAD(base->tv5.vec + j); | |
1475 | INIT_LIST_HEAD(base->tv4.vec + j); | |
1476 | INIT_LIST_HEAD(base->tv3.vec + j); | |
1477 | INIT_LIST_HEAD(base->tv2.vec + j); | |
1478 | } | |
1479 | for (j = 0; j < TVR_SIZE; j++) | |
1480 | INIT_LIST_HEAD(base->tv1.vec + j); | |
1481 | ||
1482 | base->timer_jiffies = jiffies; | |
a4a6198b | 1483 | return 0; |
1da177e4 LT |
1484 | } |
1485 | ||
1486 | #ifdef CONFIG_HOTPLUG_CPU | |
a6fa8e5a | 1487 | static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head) |
1da177e4 LT |
1488 | { |
1489 | struct timer_list *timer; | |
1490 | ||
1491 | while (!list_empty(head)) { | |
b5e61818 | 1492 | timer = list_first_entry(head, struct timer_list, entry); |
55c888d6 | 1493 | detach_timer(timer, 0); |
6e453a67 | 1494 | timer_set_base(timer, new_base); |
1da177e4 | 1495 | internal_add_timer(new_base, timer); |
1da177e4 | 1496 | } |
1da177e4 LT |
1497 | } |
1498 | ||
48ccf3da | 1499 | static void __cpuinit migrate_timers(int cpu) |
1da177e4 | 1500 | { |
a6fa8e5a PM |
1501 | struct tvec_base *old_base; |
1502 | struct tvec_base *new_base; | |
1da177e4 LT |
1503 | int i; |
1504 | ||
1505 | BUG_ON(cpu_online(cpu)); | |
a4a6198b JB |
1506 | old_base = per_cpu(tvec_bases, cpu); |
1507 | new_base = get_cpu_var(tvec_bases); | |
d82f0b0f ON |
1508 | /* |
1509 | * The caller is globally serialized and nobody else | |
1510 | * takes two locks at once, deadlock is not possible. | |
1511 | */ | |
1512 | spin_lock_irq(&new_base->lock); | |
0d180406 | 1513 | spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
3691c519 ON |
1514 | |
1515 | BUG_ON(old_base->running_timer); | |
1da177e4 | 1516 | |
1da177e4 | 1517 | for (i = 0; i < TVR_SIZE; i++) |
55c888d6 ON |
1518 | migrate_timer_list(new_base, old_base->tv1.vec + i); |
1519 | for (i = 0; i < TVN_SIZE; i++) { | |
1520 | migrate_timer_list(new_base, old_base->tv2.vec + i); | |
1521 | migrate_timer_list(new_base, old_base->tv3.vec + i); | |
1522 | migrate_timer_list(new_base, old_base->tv4.vec + i); | |
1523 | migrate_timer_list(new_base, old_base->tv5.vec + i); | |
1524 | } | |
1525 | ||
0d180406 | 1526 | spin_unlock(&old_base->lock); |
d82f0b0f | 1527 | spin_unlock_irq(&new_base->lock); |
1da177e4 | 1528 | put_cpu_var(tvec_bases); |
1da177e4 LT |
1529 | } |
1530 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1531 | ||
8c78f307 | 1532 | static int __cpuinit timer_cpu_notify(struct notifier_block *self, |
1da177e4 LT |
1533 | unsigned long action, void *hcpu) |
1534 | { | |
1535 | long cpu = (long)hcpu; | |
1536 | switch(action) { | |
1537 | case CPU_UP_PREPARE: | |
8bb78442 | 1538 | case CPU_UP_PREPARE_FROZEN: |
a4a6198b JB |
1539 | if (init_timers_cpu(cpu) < 0) |
1540 | return NOTIFY_BAD; | |
1da177e4 LT |
1541 | break; |
1542 | #ifdef CONFIG_HOTPLUG_CPU | |
1543 | case CPU_DEAD: | |
8bb78442 | 1544 | case CPU_DEAD_FROZEN: |
1da177e4 LT |
1545 | migrate_timers(cpu); |
1546 | break; | |
1547 | #endif | |
1548 | default: | |
1549 | break; | |
1550 | } | |
1551 | return NOTIFY_OK; | |
1552 | } | |
1553 | ||
8c78f307 | 1554 | static struct notifier_block __cpuinitdata timers_nb = { |
1da177e4 LT |
1555 | .notifier_call = timer_cpu_notify, |
1556 | }; | |
1557 | ||
1558 | ||
1559 | void __init init_timers(void) | |
1560 | { | |
07dccf33 | 1561 | int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, |
1da177e4 | 1562 | (void *)(long)smp_processor_id()); |
07dccf33 | 1563 | |
82f67cd9 IM |
1564 | init_timer_stats(); |
1565 | ||
07dccf33 | 1566 | BUG_ON(err == NOTIFY_BAD); |
1da177e4 | 1567 | register_cpu_notifier(&timers_nb); |
962cf36c | 1568 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq); |
1da177e4 LT |
1569 | } |
1570 | ||
1da177e4 LT |
1571 | /** |
1572 | * msleep - sleep safely even with waitqueue interruptions | |
1573 | * @msecs: Time in milliseconds to sleep for | |
1574 | */ | |
1575 | void msleep(unsigned int msecs) | |
1576 | { | |
1577 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1578 | ||
75bcc8c5 NA |
1579 | while (timeout) |
1580 | timeout = schedule_timeout_uninterruptible(timeout); | |
1da177e4 LT |
1581 | } |
1582 | ||
1583 | EXPORT_SYMBOL(msleep); | |
1584 | ||
1585 | /** | |
96ec3efd | 1586 | * msleep_interruptible - sleep waiting for signals |
1da177e4 LT |
1587 | * @msecs: Time in milliseconds to sleep for |
1588 | */ | |
1589 | unsigned long msleep_interruptible(unsigned int msecs) | |
1590 | { | |
1591 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1592 | ||
75bcc8c5 NA |
1593 | while (timeout && !signal_pending(current)) |
1594 | timeout = schedule_timeout_interruptible(timeout); | |
1da177e4 LT |
1595 | return jiffies_to_msecs(timeout); |
1596 | } | |
1597 | ||
1598 | EXPORT_SYMBOL(msleep_interruptible); |